NOTES ON TATE’S THESIS

YICHAO TIAN

The aim of this short note is to explain Tate’s thesis [Ta50] on the harmonic analysis on
Adeles and Ideles, the functional equations of Dedekind Zeta functions and Hecke L-series.
For general reference on adeles and ideles, we refer the reader to [We74].

1. LocAL THEORY

1.1. Let k be a local field of characteristic 0, i.e. R, C or a finite extension of Q. If £ is
p-adic, we denote by O C k the ring of integers in &k, p C O the maximal ideal, and w € p
a uniformizer of Q. If a is a fractional ideal of O, we denote by Na € Q the norm of a. So

if a C O is an ideal, we have Na = |O/al. Let | - | : K — R>o be the normalized absolute
value on k, i.e. for x € k, we have
|z|r if k=R;
2] = < |z|2 if k=C;

N(p)~od=() if k is p-adic and z = uw® =) with u € OX.

We denote by kT the additive group of k. Consider the unitary character ¢ : k™ — C*
defined as follows:

e—2mix if k=R;
(111) Ylo)=qemmttn itk =
627ri/\(Trk/Qp($)) if k is p—adiC,

where A(-) means the decimal part of a p-adic number. For any ¢ € k, we note by ¢ the
additive character x — v (z€) of k*. Note that if k is non-archimedean, 1(x) = 1 if and
only if z € 97!, where ? is the different of k over Qp, i.e.

redle Try/q,(vy) € Zy Vy € O.

Proposﬂzlon 1.2. The map V¥ : £ — ¢ defines an isomorphism of topological groups
Et ~ k‘*, where k+ denotes the group of unitary characters of k.

Proof. If k = R or C, this is well known in classical Fourier analysis. We assume here k is
non-archimedean.

(1) It’s clear that ¥ is a homomorphism of groups. We show first that ¥ is continuous
(at 0). If £ € p™, then ¢ is trivial on 9~1p~™. Since the subsets

Un={x € = | xis trivial on 9 1p~™}

form a fundamental system of open neighborhoods of 0 in = , the continuity of ¥ follows
immediately.
1
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(2) Next, we show that ¥ : k — W¥(k) C k is homoemorphism of k onto its image.
We need to check that if (zy,)n,>1 € k is a sequence such that 1, — 1 uniformly for all
compact subsets of k, then x, converges to 1 in k. Consider the compact open subgroup
p~™ for m € Z. Then for any 1/2 > € > 0, there exists an integer N > 0 such that
|(zpz) — 1] < eforallm > N and z € p~™. But z,p~"™ is a subgroup and the open ball
B(1,¢) C C* contains no subgroup of S. Hence we have ¢(z,z) = 1 for all z € p~™, so
T, €07 1p™. R

(3) The image of ¥ is dense in k. Let H be the image of ¥, and H C k be its closure.
Then we have

ﬁL:{x€i2k|X(:p):1, Vx € H}
={zek|y@) =1, V¢ € k} = {0}

Hence, we have H = k.
(4) The proof of the Proposition will be complete by the Lemma 1.3 below. O

Lemma 1.3. Let G be a locally compact topological group, H C G be a locally compact
subgroup. Then H 1is closed in G.

Proof. Let h, be a sequence in H that converges to ¢ € G. We need to prove that
g € H. Let (Uy)r>0 be a fundamental system of compact neighborhoods of 0. We have
Nr>oUy = {0}. Then for any r, there exists an integer N, > 0 such that h,, € g+ U, for all
n > N,. Up to modifying U,., we may assume h,, — h,, € HNU,_1 for any n,m € N,. Note
that H N U,_; is also compact by the local compactness of H. Up to replacing {U, },>0
by a subsequence, we may choose m, for each integer r such that

hm, oy +Ur NV H C by, +Up—1 N H.
By compactness, the intersection
() (A, + Ur—1 N H)
r>1
must contain an element h € H. It’s easy to see that h = g, since N,>oU, = {0}.

g

1.4. Now we choose a Haar measure dz on k as follows. If k = R, we take dz to be the
usual Lebesgue measure on R; if £ = C, we take dx to be twice of the usual Lebesgue

measure on C; and if k is non-archimedean, we normalize the measure by [, dz = (N D)_%.

Let L'(k,C) be the space of complex valued absolutely integrable functions on k. For
f € L'(k,C), we define the Fourier transform of f to be

(14.1) f(6) = /k Fl@)p(ee)da.

Let S(k) be the space of Schwartz functions on k, i.e.
amf

dz™

S(R) ={f e C®R)|Vn,meN, |z" | is bounded};
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we have a similar definition for £ = C; and if k is p-adic, S(k) consists of locally constant
and compactly supported functions on k. In all these cases, the space S(k) is dense in
L'(k,C).

Proposition 1.5. The map f — f preserves S(k), and we have f(x) = f(—z) for any
feSk).
The following lemma will be useful in the sequels.

Lemma 1.6. Assume k is non-archimedean. The local Fourier transform of f = 1,4,
the characteristic function of the set a + p’, is

(1.6.1) f(z) = (az)(NO) "2 (Np) "1y 1y .
In particular, we have f € S(k).

Proof. By definition, we have
fl@)= | W(ay)dy = P(ax / W (zy)d
a+pt
The lemma follows immediately from

~3 - if gz “Ip—t
/m<xy>dy={(N°) (W)™ iz ey
p

0 otherwise.

O

Proof of 1.5. If k is archimedean, this is well-known in classical analysis. Consider here
the non-archimedean case. Since any compactly supported locally constant function on &
is a linear combination of functions 1, ... We may assume thus f = 1,, .. The first part
of the proposition follows from the previous lemma. For the second part, we have

f(a) / )b (ey)dy = (No)~3 (Np)~ / b((z + a)y)dy

aflpfl

= (N0)~2(Np)~“(No) =3 (Np)d=@+01_

=1_q4pe.
In the third equality above, we have used (1.6.1) with ¢ replaced by —ord(?) — ¢ and x
replaced by z + a. Now it’s clear that f(z) = f(—z). O

1.7. Now consider the multiplicative group k>, and put
U={xek™||z| =1}
So U = {#1}if k =R, U = S' is the group of unit circle if k = C, and U = OX if k is

p-adic. We have
U = RY if k=R,C;
Z  if k is p-adic.
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Recall that a quasi-character of k™ is a continuous homomorphism x : £* — C*. We say
X is a (unitary) character if |x(z)| =1 for all x € k*, and x is unramified if x|y is trivial.
So x is unramified if and only if there is s € C such that x(x) = |z|*. Note that such an
s is determined by x if K = R or C, and determined up to 27i/log(Np) if k is p-adic.

Lemma 1.8. For any quasi-character x of k*, there exists a unique unitary character xg
of k™ such that x = xol| - |°.

Proof. For any x € k*, one can write uniquely = Zp where Z € U and p € R} if k =R
or C, and p € w?” if k is non-archimedean. We define xg as xo(z) = (x|v)(#). One checks
easily that the quasi-character x/xo is unramified. O

Let x be a quasi-character of k%, and s € C be the number appearing in the Lemma
above. Note that o(x) = R(s) is uniquely determined by x, and we call it the ezponent
of x. Let v € Z>( be the minimal integer such that x|y is trivial. We call the ideal
fx = p¥ conductor of x. So the conductor of x is O if and only if x is unramified.

1.9. We choose the Haar measure on k* to be d*z = ¢(k)dz/|z|, where

1 if k =R, C;
(1.9.1) =3 wp  p -
Np—1 1 1S non-arcnimedean.

If k is non-archimedean, the factor §(k) is justified by the fact that
/dx = (No)™ 2

U

Definition 1.10. For f € S(k), we put

(0= | fxt)as

which converges for any quasi-character x with o(x) > 0. We call {(f, x) the local zeta
function associated with f (in quasi-characters).

l\’)»—t

Proposition 1.11. For any f,g € S(k), we have
(2063 %) = ¢(F, )¢ (9. X),

where f,@ are Fourier transforms of f and g, and X = |- |x~' for any quasi-character x
with 0 < o(x) < 1.

Proof.
ctro@ 0= [ ([ st x|dX> iy

~ o) | ( / / i xyz)dzdx) (y~))lyld*y.

To finish the proof of the Proposition, it suffices to note that the expression above is
symmetric for f and g. O
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We endow the set of quasi-characters with a structure of complex manifold such that
for any fixed quasi-character y the map s — x| - |® induces an isomorphism of complex
manifolds from C to a connected component of the set of quasi-characters.

Theorem 1.12. For any f € S(k), the function ((f, x) can be continued to a meromorphic
function on the space of all quasi-characters. Moreover, it satisfies the functional equation

(1.12.1) C(f,x) = p()C(F, 0,
where p(x) is a meromorphic function of x independent of f given as follows:
(1) If k =R, then x(x) = |z|® or x(z) = sgn(x)|x|® for some s € C. We have
pll - [9) = 21 cos(TI0(s),  plsen| - [) = i2!~*r* sin(T2)D(s).

(2) If k = C, then there exists n € Z and s € C such that x = xn| - |* where x;, is the
unitary character x,(re?) = e™?. We have

(2m)' =T (s + 1)
(2m)sT(1 — s + 120)
(3) Assume k is p-adic. If x is unramified, then

11— s—1
pll- 1) = (voy—4 2R

If x = xo| - |® is ramified, where x¢ is unitary with xo(ww) = 1 as in Lemma 1.8,
then one has

POl - %) = il"

p(xol - [*) = N(of)* 2 po(xo0)

with
x

po(x0) = N(fy) 2 ZXO(—UCW(W)

where x runs over a set of representatives of O /(14 fy).

Proof. By Proposition 1.11, the function p(x) = % is independent of f. This proves
the functional equation (1.12.1). Note that ¢(f, x) is well defined if o(x) > 0, and ¢(f, X)
is well defined if o(x) < 1. Therefore, once we show that p(x) is meromorphic as in the
statement, it will follow from the functional equation (1.12.1) that {(f, x) can be continued
to a meromorphic function in x. It remains to compute p(x) by choosing special functions
feSk).

(1) Assume k =R. If xy = | - |*, we choose f = ¢~ ™", We have

2 +00 2 1 s S
C(fy -1 = / e zPd e = 2/ e ™t e = 20(2).
RX 0 2
On the other hand,

(1122) f‘(y) _ / e—w(z2+2i1’y)dx _ €_y2 / e_ﬂ(x+yi)2d$.
R R
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Using the well-known fact that

/ e e gy = / e dr = 1,
R R

we get f = f. Hence, we have ¢(f,]-[*%) = W_%F(l%s) and

e T 2L(3) L(3)0 (5
Al |)_7rl§5r(%s) LT

Now the formula for p(| - |?) follows from the properties of Gamma functions

_s L= Lt - 7T
) =21 Val(s), I( 2 ) 2 )_sin(wy

rr L

If x =sgn| - |%, we take f = ze~™° A similar computation shows that
X g

s 1
((fosen] ) = (S

).
Taking derivatives with respect to y in (1.12.2), we get f = —if. So we have

¢(f,sen|-|'*) = i3 '(1 - 2).

2
Therefore, we get
sgnl ) = T2 DCED 2 TEEDIG)
S n . == S - 7/7-‘- Wﬁ
e “im (- 3) T 3)r(3)
=2l =sp—s sm(?S)F(s).
(2) Assume k = C. If x = |- |*, we take f(z) = e ™(*2). The local zeta function

associated with f is

L) = [ ememyrars

27 +o0o
_/ / a2 9g2rdrdf
= e r 5
6=0 Jr=0 r
“+o00

o2 oe
:471'/ e 2 gy
0

oo dt
= 47r/ ae (set t = r?)
0 2/t
=217 (s).
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The Fourier transform of f is

(1123) f(z):/e_wwwe_zﬂi(zw‘i‘Z’UJ)dw
C

+oo  pto0 9 o .
= 2/ / e~ HVT) gdmi(uz—vy) gu, ) (put z = x + iy, w = u + iv)
—00 —00

5. o +o00 o 400 5
_ 26—4#(1‘ +y )/ 6—7r(u+2zz) du/ e—ﬁ(v—2zy) dv
—00 —00

=2f(22).
Therefore, one has C(f,|-|*7%) = 2271¢(f,| - |'75) = 2257°T(1 — s), thus

_9s I'(s)
15 = (2 1-2s )
pll- 1) = ) s
Let n > 1 and x = x_n|-|*. We put f, = 2" "(*3). We compute first the local zeta
function of f,:

(1‘12_4) C(fn,X—n\ . |s) = /(C>< Zne_w(zz)xin(z)(z,?)sdx?«’
2
0=

7r/“"’o a2 9g4n 2rdrdd
€ T —
r=0
+oo

- 2

0 T

2 _
— 47T/ e~ T25+n 1d7“
0

=dn /+Oo e i
0 24/t

= 20t B)D(s + g).

To find the Fourier transform of f,,, we consider the equality (1.12.3)
9p—im(z7) _ / (WD)  —2mi(zwtE0) 3y,
C
Regarding z and z as independent variables and applying 8877;, we get
2(—2iz)e 1% = / whe (W) g —2mi(zwE0) gy )
C
that is, fn(2) = 2/n(2i2). A similar computation as (1.12.4) shows that
C(fn(2), %) = C(2fn(2i2), X - [1%) = (=0)"2%°7° 73T (s + g)

Therefore, we get

2rl =+ D(s 4+ 2)
(—i)r22 7 2T (s + )

12 L(5+3)
I'3+1-s)

p(X—nl 1) = =i"(27)

The formulae for p(x,| - |*) can be proved in the same way by choosing f = f,.
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(3) Assume k is p-adic. Consider first the case x = |- |°. We take f = 1p. In the proof
of Proposition 1.5, we have seen that f = (Na)_%la—l. We have

Ry AN

As O — {0} = [[/25 @O, it follows that

+00 - y L 1
(0= [ = ot

Similarly, using 97' — {0} = [[/>° . d (o) @O, one obtains

W=t [ el
+00

= (N2 Y (Np)”(s_l)/ox d*z

n=—ordw(0)

+0oo
_ (ND)_l(Np)Ordw(D)(l_s) Z an(s—l)
n=0
1
1 — Nps—1'
The formula for p(] - |*) follows immediately.
Now consider the case x = xol| - |* with xo ramified, unitary and yo(w) = 1. We take

f(@) = p(——)lo.

coorde (ofx)

— (o)~

The local zeta function of f is

X

C(f.x) :/O_{O}WM)XO(:E)M\Sde

n

+oo
—ns rw
= Z(NP) /(9 Wm))(o(x)dxx
n=0

X
We claim that

(1.12.5) / (Y xo(@)d e =0 for n > 1.
Ox wo°r W(ofx)

Consider first the case n > ord(fy). We have

n an

1 as méb

T

— —1
¢( oorde (ofx) ) -

If S is a set of representatives of O /(1 + fy), the integral above is equal to

/@x Xo(z)d*z = (/ d*z) > xo(x) = 0.

I+fx z€eS
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Assume 0 < n < ordg(fy) — 1. For any y € 14+ p~"f,, we have

zyw" xw”

wort=tar) = Y oo )

U

Therefore, if S,, C S denotes a subset of representatives of O*/ (1 +p7 "y ), we get

Tl

xw" y
/Ox ¢(wordw(0fx))xo($)d e /+fx ZXO word (an))

zeS
evils
Xo(z )Y xo(y)
/+fx (E;n wordw (an) zy:

where y runs over a set of representatives of (1 + p~"f,)/(1 + fy). Note that

~Jo i1 <n <ords(fy),
%:XO@)_{1 if n=0.

This proves the claim. It follows that
(1.12.6)

W= () S ol i) = oD @ik

+ix zeS

where we have used the definition of pg in the last step. As in the proof of 1.5, the Fourier
transform of f is

fl@) = [ (i oy

1
= /(;1/}(y({l/‘+ m))dy
_1
= (No) 2 17w_ordw(afx)+a—1-

We get the local zeta function of f
Ao _1 s
C(f.%) = (No)~ o[ xg () d 2
_ o ordw (0fx) yp—1

= (N9)~2(Np)ord=Ch(-2) / Xo ! (@)d*x
_o—ordw (3fx) (]_+fx)

Since xg ' (—w@w 4= Ch) (1 4 ) = xo(—1) for any y € f,, we get
%) = XD ENGR) ([ @),
I+x

It thus follows that
C(f.xol - 1°)
C(fixa 'l 19

p(xol - °) = = N(of,)* 2 po(x0).
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Remark 1.13. The number pg(xo) in (3) is a generalization of (normalized) Gauss sum.
By the same method as the classical case, we can show that |pg(xo)| = 1. In general, it’s
an interesting and difficult problem to find the exact argument of pg(xo)-

2. GLOBAL THEORY

Let F' be a number field, Op be its ring of integers. Let > be the set of all places of
F,and ¥y C ¥ (resp. Yoo C X) be the subset of non-archimedean (resp. archimedean)
places. For v € X, we denote by F, the completion of F' at v. Let dz, be the self-dual
Haar measure on F), defined in 1.4. If v is finite, we denote by O, the ring of integers of
F,, by p, the maximal ideal of O,, and we fix a uniformizer w, € p,. Let Ar be the adele
ring of F', i.e. the subring of [], s F, consisting of elements z = (), with z, € O, for
almost all v, and Ar ¢ be the ring of finite adeles. We choose the Haar measure on A as
dx =[], dz,. It induces a quotient Haar measure on Ap/F'.

Lemma 2.1. Under the notation above, we have fAF/F dzr = 1.

Proof. By Chinese reminders theorem, we have Ap = F + ]| Ou X [Les., Fo- We get

UGEf
thus an isomorphism

AF/F:(H Oy X H F,)/Op.

’Uezf 'Uezoo
Hence we have
dzx = dx, x / dz
/AF/F Ul;[f Oy (Tveso F0)/OF v!;[oo
= H (Nay)iélAF‘l/zv
UEEf

where 0, denotes the different of F, and A is the discriminant of F. If 9 denotes the
different of F'/Q, then the lemma follows easily from the product formula:

|Ap| = No = H N,
Uezf
O
For v € 3, let v, be the additive character of the local field F, defined in (1.1.1).
It’s easy to check that ¢ = [],c5 ¥y is trivial on additive group F, therefore it defines a
character of the quotient Ar/F. We call it the basic character of Arp/F (or Ar). For any
£ € Ap, let ¢¢ : Ap — C* be the character given by x — ¥ (x€).
Proposition 2.2. The map ¥ : { — )¢ defines an isomorphism between Ap and its
topological dual Ap. Moreover v¢ is a character of Ap/F if and only if { € F', i.e. £ — )¢
gives rise to an isomorphism of topological groups F ~ Ap/F.
Proof. The proof is similar to that of Proposition 1.2. One checks easily that ¥ is contin-

uous and injective, and ¥ induces a homeomorphism of A onto its image. Conversely,
let ¢/ : Ap — C* be a continuous character. The restriction ¢ = v¢'|p, to the v-th local
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component defines a continuous character of F,,. By Proposition 1.2, there exists &, € F},
such that ¢! = 1,(& - -). Since ¢’ is continuous, there exists an open neighborhood
[Toes Uo X I1,¢s Ov of 0 such that its image under ¢’ lies in B(1,1/2) C C*. As B(1,1/2)
contains no non-trivial subgroups of S!, we see that for any v ¢ S, we have ¢, € O,. This
shows that £ = (& )vex € Ap, and ¢’ = 1p¢. This shows that ¥ : Ap — Apisa bijective
continuous homomorphism of topological groups. To conclude that ¥ is an isomorphism,
we need to show that if {, € Ap is a sequence such that ¢, — 1 in Ap, we have §, — 0
in Ap as n — +oo. Actually, for any compact subset U, C F, with U, = O, for almost
all v and any € > 0, we have [¢)¢, — 1|HU v, < € for n sufficiently large. By Proposition
1.2, for any finite subset S C ¥ containing Y, we can take (Uy,),cgs sufficiently large and
Uy, = O, for v ¢ S such that [£,|, < € for v € S and &, € O, for v ¢ S. This means that
fn — 0 in AF R

For the second part, let I' C Ap be the subgroup such that ¥(I') C Ap consists of all
characters trivial on F. It’s clear that F' C I' since 1) is trivial on F. To show that I' = F',
we consider first the case F' = Q. Let v € I'. Since Ag = Q + (—%, %] X Hp Zy, we can
write v = b+ ¢, where b € Q, coo € (—1/2,1/2] and ¢, € Z, for all primes p. Then we
have

L= (1) =9(y) = (b +¢) = P(c) = e 27,

Hence we have c,, = 0. Moreover, for any prime p and any integer n > 0, we deduce from
1 1 2miA( L
L= () = 90+ ) = T

that ¢, € p"Z,, i.e. we have ¢, = 0. This shows v = b, and hence I' = Q. In the general
case, we note that the basic character of Ar is the composition of that on Ag with the
trace map Trp)g : Ap — Ag. The following lemma will conclude the proof. O

Lemma 2.3. Let z = (7y)vex € Ap such that Trpg(zy) € Q C Ag for ally € F'. Then
we have x € F.

Proof. Let (e;)1<i<q be a basis of F//Q, and (e])1<i<q be the dual basis with respect to
the perfect pairing F' x F' — Q given by (z,y) = Trp/g(wy). For any place p < oo of Q,
we have a canonical isomorphism of Q,-algebras

F®Q,~ HFU‘
vlp

We put zp = (@0)y)p € []y), Fo- Then we can write z;, = Z?Zl apie; with a,; € Qp. As
Trr/g(we]) € Q C Ag for any 4, we deduce that a,; € Q and it’s independent of p. This
shows that x € F. d

Let S(Ar) be the space of Schwartz functions on Ap, i.e. the space of finite linear
combinations of functions on Ap of the form f = [], fu, where f, € S(F}) and f, = 1o,
for almost all v. For any f € S(Ar), we define the Fourier transform of f to be

(2.3.1) HOE | J@p(e)de.
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Proposition 2.4. (a) The Fourier transform f — f preserves the space S(Ap), and
fla) = f(—=). ) .

(b) If f = ®yfy with f, € S(Fy) and f, = 1o, for almost all v. Then f = ®,f,, where
fu is the local Fourier transform (1.4.1) of f,.

(c) For any f € S(A), the infinite sum ) |f(x)| converges, and we have the Poisson
formulae

(2.4.1) S @) =>f©).

el (eF

Proof. Statement (a) is a direct consequence of (b), which in turn follows from the local
computations in the proof of 1.5. Now we start to prove (c). We may assume f = ®,f,
with f, € S(F,) and f, = 1o, for almost all v. Then there exists an open compact
subgroup U C Ay such that Supp(f) C U x [[,ex.. Fv- Put Oy = F N (U X [[yex Fo)-
This is a lattice in . Each individual term in the summation ) 5 f(x) is non-zero only
if z € Op. Write f = f* fw, where [ = Quex, fu and foo = Quex,, fo- Then there exists
a constant C' > 0 such that |f*°(z)| < C for all x € U. Hence, we have

DoIf@l= Y 1f@<C Y |fxl@)l.

zeF zeOy ey

By classical analysis, the sum on the right hand side is convergent. This proves the first
part of (c). It remains to show Poisson’s summation formula (2.4.1). Consider the function
9(z) = >_,cr f(z +y), which converges for any z € Ap by the first part of (c). As g(z)
is invariant under translation of F', we regard g(z) as a function on Ap/F. Its Fourier
transform of g(x) is

a(e) = /A H@EeE (orge )

A~

= (@) (x§)dx = f(£).

Ap

By the Fourier inverse formulae (a), we have

g(z) = 4(O(—x).

el
The formulae (2.4.1) follows by setting « = 0. O

2.5. Let Ip = A} be the multiplicative group of ideles of F', i.e. the subgroup of [, ¢, F3
consisting of elements z = (z,), with x, € O, for almost all v, and H}; be the subgroup of
Iz of ideles with norm 1. The diagonal embedding F'* < ]I}T identifies F'* with a discrete
subgroup of I!' for the induced restricted product topology on H}T. A fundamental theorem
in the theory of ideles says that the quotient I}./F* is compact [We74, IV §4 Thm.6]. We
consider the Haar measure d*2 = [[, d*z, on If, where d*z, is the local Haar measure
on F considered in 1.9. We use the same notation for the induced Haar measures on I},
and IL/F*.
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Proposition 2.6. Under the notation above, we have

21 (27)2 h R
IL/Fx |Ap[t 2w

where r1 (resp. r9) is the number of real places (resp. complex places) of F', h is the class
number of F', Ap is the discriminant, R is the regulator, and w denotes the number of
roots of unity in F.

Proof. Note first that Vol(IL/F*) is finite, since IL/F* is compact. For each z =

ordy (zy)

(zy)vex € Ip, we denote by Div(z) = Hvezf Po
with z. Then Div induces a short exact sequence

be the fractional ideal associated

= (] 05 x ®*)™ x (C)2) x F* —1p = Clp — 0,

vEX
where Clp denotes the class group of F. Let © be the subgroup of (R*)™ x (C*)" with
product of absolute values []:; |z;| x [[;2; |zilc = 1. The the exact sequence above

induces a similar exact sequence
0= (J] 0 xQ) x F* - T} — Clp — 0.
’UEEf

Therefore, one gets

/ d*z* = h/ d*z.
IL/Fx (I, O xQ)/(IT, OF xQNF*

Let Ur denote the group of units of F. We have ([[, O x Q)N F* = U, and hence

1
H / dzf / d¥zx = H NDUQ/ d*z.
ox Q/Up Q/Up

/(HU OF xQ)/F*N([1, OF x) vEXf

In view of the product formula ] No~3 = |A F|7%, to complete the proof, it suffices

’UEEf
to prove that

1 T2
(2.6.1) / g = L CTER
Q/Up

w
Consider the map
Log : (R¥)" x (CX)"2 — R+
((zi)1<i<rs (2))1<i<m) = ((log |i])1<i<r, (0g |2)]*)1<j<rs )

Let S' be the unit circle subgroup of C*, and V be the subspace of R™ 772 defined by the
linear equation » ', x; + 27]"2:1 y; = 0. Then the map Log induces a short exact sequence

of abelian groups

0— {£1}" x (SH)2 - Q%5 v 0.
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If ur denotes the group of roots of unity in F, we have ({1} x (SH)™2)NUr = pup.
Therefore, one obtains

/ dxx:(/ d*z) x (/ ).
Q/Up {F1}1x(S)2 /up V/Log(Ur)

By the definition of the Haar measure on Iz, the induced measure on  C (R*)™ x

(C*)™ is determined as follows. On each copy of R*, the measure is given by d*z = %,

where dx is the usual Lebesgue measure on R; on each copy of C*, the measure is given
by

deNdy  d(r?)

d*z =2 YN

22

where z = x + iy = re'?. Therefore, the Haar measure on I induces the usual Lebesgue
measure on Log(©2) = V, and the measure []/2, df; on (SHr2.1 Tt follows that

271 (27r)"2
/ d*x = 7( ™) )
{£1}"1x(SY)2 /ur w

By the definition of the regulator, we have R = fV/LOg(UF) dx. Now the formula (2.6.1)
follows immediately. This finished the proof. 0

2.7. A Hecke character (or Grissencharacter) of F' is a continuous homomorphism y :
Ip/F* — C*. We say x is unramified if there exists a complex number s € C such that
x(x) = |z|*. We denote by X the set of Hecke characters of F'. We equip X with a
structure of Riemann surface such that for each fixed character x, the map s — x| - |° is
a local isomorphism of C into X.

Now we choose a splitting Ip/F* =1} /F* x R} of the norm map |- | : Ip/F* — R.
For every Hecke character y, we put xg = X‘]I}p JFX and denote still by xq its extension
to Ip/F* by requiring xo is trivial on the chosen complement R} of I[}; /F*. Note that
Xo is necessarily unitary since I%/F> is compact and x/xo is unramified, i.e. x = xo| - |*
with s € C. We put o(x) = R(s), which is independent of the choice of the splitting. For
v € X, we put x, = x| FX- The local component Y, is unramified for almost all v.

Definition 2.8. Let f € S(Ap) and x be a Hecke character of F'. We define the zeta
function of f at x to be

C(fx) = i f@)x(z)d™ .

Lemma 2.9. Let f € S(Ar) and x € X. Then the zeta function ((f,x) converges
absolutely for o(x) > 1.

INote that the finiteness of Vol(I'/F*) implies that fV/Log(UF) d*x is finite, and hence Log(Ur) C V

is a lattice. This actually gives another proof of Dirichlet’s theorem that Ur has rank r1 + ro — 1.
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Proof. We may assume f = Quex fo With f, = 1o, for almost all v € ¥y, and x = xol - |*
where o : I} LJF* — S1 unitary. By definition, we have an Euler product

X) = H C(fvaXv)»

VEYD

where ((fy, xv) is the local zeta function defined in 1.10. We have seen in the proof of

Theorem 1.12(3) that

1 1
lo,,|-[5) = (No,) 2 ———
C( Ov? | "U) ( ) 1 _ pr;s

Thus there exists a finite subset S of places such that

<ol -1 < T 6o xonl - ] =7

vES v¢S

Since each ((fy, x0,| - ;) converges for R(s) > 0, we are reduced to showing that the
product Hv¢ g ﬁ converges absolutely for ¢ > 1. If ' = Q, this is a well-known

theorem of Euler. In the general case, we have
1
H —0 — HH -0 — (H 7—0)[F:Q]'
vgéSl_Np Pv\pl_Np D 1-p
U
Theorem 2.10 (Tate). Let f € S(Ar). The zeta function ((f,x) can be analytically

continued to a meromorphic function on the whole complex manifold X. It satisfies the
functional equation

(2.10.1) (£, %) = ¢(£, %),
where f is the Fourier transform of f (2.3.1), and x = |- |x~*. Moreover, ((f,x) is
holomorphic on the complex manifold X except for two simple poles at x =1 and x = |-/,
with residues — f(0)Vol(IL/F>) at x =1 and f(0)Vol(IL/F*) at x = | - |, where
2" (2m)"2h
Vol(Ih/F¥) = M
|Ap|

Proof. Let H%l (resp. ]Ilél) be the subset of Iy with norm > 1 (resp. < 1). Since I}, =
]II%1 N ]I%1 has Haar measure 0 in Iz, we have
(o = [ sex@de= [ ex@des [ faas
Ir i

>1
HF

Note that f is well-behaved when |x| — oo, the first integral [>1 f(2)x(2)d*x converges
F

absolutely for all x € X, thus defines a holomorphic function on the whole complex
manifold X. For the second integral, we have

o ten@ee= [ (3 S

F F ceFx
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by the triviality of xy on F*. It’s easy to check that the Fourier transform of f(z - _) is
|z|71f (). Tt follows from the Poisson formulae (2.4.1) that

EeFX EeFXx z
Therefore, we get
[, raniae - (Y S Cm@dar [ (0 fO)x()a
IS/ Fx 15!/ Fx Py lz| "z IS5/ Fx |z|

Making the change of variable y = %, the first term on the right hand side above becomes

S w A . «
/H;l/FX(Z FE)x(@)d —/H?/FX( > fER(y)d*y

EeFX el
- [ fwiwary.
I[_
F
We choose a splitting Ir/F* = IL/F* x R} as in 2.7, and write that x = xo| - |*, with
X0 : IL./F* — C* is unitary and s € C. We have

@— z)d*x = 2)d*x ' @_ s—1
/ﬂ;vw(\wl F0)x(x)d _(/H}?/FXXO( )d )(/to( = fo)e .

We have
[ ol = Volth/F)by. :{
I/ Fx

For the second term, we have
L
0 0
| B0 popetan-
t=0 t S —

Combining all the computations above, we get

0 if xo is non-trivial;
Vol(IL/F>) if xo is trivial.

0= [ gexeres [ fei@as ok o - L

Now it’s clear that the right hand side of the equation above is invariant with f replaced
by f and x replaced by x. Thus (2.10.1) follows immediately. The moreover part follows
from the fact that the first two integrals above define holomorphic functions on X. O

2.11. We indicate how to apply Tate’s general theory to recover the classical results on
the Dedekind Zeta function of a number field. Recall that Dedekind’s zeta function is

defined to be
) =] = 2
vED 1= Np, aCOp Na

which converges absolutely for R(s) > 1. In the classical theory of Dedekind’s zeta func-
tion, we have
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Theorem 2.12. Let F' be a number field with r1 real places and r9 complex places. We
put

Zp(s) = G1(s)" Ga(s)*Cp(s),
where G1(s) = ﬂ_%F(%), Ga(s) = (27)'7°T'(s). Then Zp(s) is a meromorphic function
in the s-plan, holomorphic except for simple zeros at s = 0 and s = 1, and satisfies the
functional equation

1
ZF(S) = ‘AF|57'SZF(1 - S).
Its residues at s =0 and s = 1 are respectively —+/|Ap|Vol(IL/F*) and Vol(IL/F*).

Proof. We apply Tate’s theorem 2.10 to x = | - |%, and f = ®f, with
e~y if v is real;
fo =1 e ™% if v is complex;
1o, if v is non-archimedean.

By the local computations in 1.12, we have

’R'_%F(%) if v is real;
C(fo,| - °) = £ 271751 (s) if v is complex;
(NDU)_% 717]\1[13_3 if v is non-archimedean.

Therefore, we get
_1
CUfx) = TL Cusl - 1P) = 2| A |72 Zp (s).
veED
On the other hand, we have f = ®,f, with f, = f, if v is real, fv(z) = 2fy(22) if v is
complex, and f, = (N Dv)_%la;1 if v is non-archimedean. The local zeta functions are

W_lgsf(%) if v is real;
C(for |- I175) =4 25(2m)*T(1 — s)  if v is complex;
(N DU)_SW if v is non-archimedean.

Hence, we obtain

S Py =TT ¢l 1) = 2| Ap| 2R (1 — 5).

VED

The functional equation of Zx(s) follows immediately from ¢(f,|-|*) = ¢(f,|- |[*~*). The
resides of Zp(s) follows from the residues of {(f,|-|°) and the fact that f(0) = 1 and

~

£(0) =272 |Ap| 2. 0
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