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Abstract. Let k be an algebraically closed field of characteristic
p > 0, andG be a Barsotti-Tate over k. We denote by S the “algebraic”
local moduli in characteristic p of G, by G the universal deformation
of G over S, and by U ⊂ S the ordinary locus of G. The étale
part of G over U gives rise to a monodromy representation ρG of the
fundamental group of U on the Tate module of G. Motivated by a
famous theorem of Igusa, we prove in this article that ρG is surjective
if G is connected and HW-cyclic. This latter condition is equivalent
to saying that Oort’s a-number of G equals 1, and it is satisfied by all
connected one-dimensional Barsotti-Tate groups over k.
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1. Introduction

1.1. A classical theorem of Igusa says that the monodromy representation as-
sociated with a versal family of ordinary elliptic curves in characteristic p > 0
is surjective [Igu, Ka2]. This important result has deep consequences in the
theory of p-adic modular forms, and inpsired various generalizations. Faltings
and Chai [Ch2, FC] extended it to the universal family over the moduli space
of higher dimensional principally polarized ordinary abelian varieties in char-
acteristic p, and Ekedahl [Eke] generalized it to the jacobian of the universal
n-pointed curve in characteristic p, equipped with a symplectic level structure.
Recently, Chai and Oort [CO] proved the maximality of the p-adic monodromy
over each “central leaf” in the moduli space of abelian varieties which is not
contained in the supersingular locus. We refer to Deligne-Ribet [DR] and Hida
[Hid] for other generalizations to some moduli spaces of PEL-type and their
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arithmetic applications. Though it has been formulated in a global setting, the
proof of Igusa’s theorem is purely local, and it has got also local generalizations.
Gross [Gro] generalized it to one-dimensional formal O-modules over a com-
plete discrete valuation ring of characteristic p, where O is the integral closure
of Zp in a finite extension of Qp. We refer to Chai [Ch2] and Achter-Norman
[AN] for more results on local monodromy of Barsotti-Tate groups. Motivated
by these results, it has been longly expected/conjectured that the monodromy
of a versal family of ordinary Barsotti-Tate groups in characteristic p > 0 is
maximal. The aim of this paper is to prove the surjectivity of the monodromy
representation associated with the universal deformation in characteristic p of
a certain class of Barsotti-Tate groups.

1.2. To describe our main result, we introduce first the notion of HW-cyclic
Barsotti-Tate groups. Let k be an algebraically closed field of characteristic p >
0, and G be a Barsotti-Tate group over k. We denote by G∨ the Serre dual of G,
and by Lie(G∨) its Lie algebra. The Frobenius homomorphism of G (or dually
the Verschiebung of G∨) induces a semi-linear endomorphism ϕG on Lie(G∨),
called the Hasse-Witt map of G (2.6.1). We say that G is HW-cyclic, if c =
dim(G∨) ≥ 1 and there is a v ∈ Lie(G∨) such that v, ϕG(v), · · · , ϕc−1

G (v) form
a basis of Lie(G∨) over k (4.1). We prove in 4.7 that G is HW-cyclic and non-
ordinary if and only if the a-number of G, defined previously by Oort, equals
1. Basic examples of HW-cyclic Barsotti-Tate groups are given as follows. Let
r, s be relatively prime integers such that 0 ≤ s ≤ r and r 6= 0, λ = s/r, Gλ
be the Barsotti-Tate group over k whose (contravariant) Dieudonné module is
generated by an element e over the non-commutative Dieudonné ring with the
relation (F r−s − V s) · e = 0 (4.10). It is easy to see that Gλ is HW-cyclic for
any 0 < λ < 1. Any connected Barsotti-Tate group over k of dimension 1 and
height h is isomorphic to G1/h [Dem, Chap.IV §8].
Let G be a Barsotti-Tate group of dimension d and height c+d over k; assume
c ≥ 1. We denote by S the “algebraic” local moduli of G in characteristic p, and
by G be the universal deformation of G over S (cf. 3.8). The scheme S is affine
of ring R ' k[[(ti,j)1≤i≤c,1≤j≤d]], and the Barsotti-Tate group G is obtained
by algebraizing the formal universal deformation of G over Spf(R) (3.7). Let
U be the ordinary locus of G (i.e. the open subscheme of S parametrizing the
ordinary fibers of G), and η a geometric point over the generic point of U. For
any integer n ≥ 1, we denote by G(n) the kernel of the multiplication by pn
on G, and by

Tp(G, η) = lim←−
n

G(n)(η)

the Tate module of G at η. This is a free Zp-module of rank c. We consider
the monodromy representation attached to the étale part of G over U

(1.2.1) ρG : π1(U, η)→ AutZp(Tp(G, η)) ' GLc(Zp).

The aim of this paper is to prove the following :
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Theorem 1.3. If G is connected and HW-cyclic, then the monodromy repre-
sentation ρG is surjective.

Igusa’s theorem mentioned above corresponds to Theorem 1.3 for G = G1/2 (cf.
5.7). My interest in the p-adic monodromy problem started with the second
part of my PhD thesis [Ti1], where I guessed 1.3 for G = Gλ with 0 < λ < 1
and proved it for G1/3. After I posted the manuscript on ArXiv [Ti2], Strauch
proved the one-dimensional case of 1.3 by using Drinfeld’s level structures [Str,
Theorem 2.1]. Later on, Lau [Lau] proved 1.3 without the assumption that
G is HW-cyclic. By using the Newton stratification of the universal deforma-
tion space of G due to Oort, Lau reduced the higher dimensional case to the
one-dimensional case treated by Strauch. In fact, Strauch and Lau considered
more generally the monodromy representation over each p-rank stratum of the
universal deformation space. In this paper, we provide first a different proof of
the one-dimensional case of 1.3. Our approach is purely characteristic p, while
Strauch used Drinfeld’s level structure in characteristic 0. Then by following
Lau’s strategy, we give a new (and easier) argument to reduce the general case
of 1.3 to the one-dimensional case for HW-cyclic groups. The essential part
of our argument is a versality criterion by Hasse-Witt maps of deformations
of a connected one-dimensional Barsotti-Tate group (Prop. 4.11). This crite-
rion can be considered as a generalization of another theorem of Igusa which
claims that the Hasse invariant of a versal family of elliptic curves in charac-
teristic p has simple zeros. Compared with Strauch’s approach, our character-
istic p approach has the advantage of giving also results on the monodromy of
Barsotti-Tate groups over a discrete valuation ring of characteristic p.

1.4. Let A = k[[π]] be the ring of formal power series over k in the variable
π, K its fraction field, and v the valuation on K normalized by v(π) = 1. We
fix an algebraic closure K of K, and let Ksep be the separable closure of K
contained inK, I be the Galois group ofKsep overK, Ip ⊂ I be the wild inertia
subgroup, and It = I/Ip the tame inertia group. For every integer n ≥ 1, there
is a canonical surjective character θpn−1 : It → F×pn (5.2), where Fpn is the
finite subfield of k with pn elements.
We put S = Spec(A). Let G be a Barsotti-Tate group over S, G∨ be its Serre
dual, Lie(G∨) the Lie algebra of G∨, and ϕG the Hasse-Witt map of G, i.e.
the semi-linear endomorphism of Lie(G∨) induced by the Frobenius of G. We
define h(G) to be the valuation of the determinant of a matrix of ϕG, and call
it the Hasse invariant of G (5.4). We see easily that h(G) = 0 if and only if G
is ordinary over S, and h(G) <∞ if and only if G is generically ordinary. If G
is connected of height 2 and dimension 1, then h(G) = 1 is equivalent to that
G is versal (5.7).

Proposition 1.5. Let S = Spec(A) be as above, G be a connected HW-cyclic
Barsotti-Tate group with Hasse invariant h(G) = 1, and G(1) the kernel of the
multiplication by p on G. Then the action of I on G(1)(K) is tame; moverover,
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G(1)(K) is an Fpc-vector space of dimension 1 on which the induced action of
It is given by the surjective character θpc−1 : It → F×pc .

This proposition is an analog in characteristic p of Serre’s result [Se3, Prop.
9] on the tameness of the monodromy associated with one-dimensional formal
groups over a trait of mixed characteristic. We refer to 5.8 for the proof of this
proposition and more results on the p-adic monodromy of HW-cyclic Barsotti-
Tate groups over a trait in characteristic p.

1.6. This paper is organized as follows. In Section 2, we review some well
known facts on ordinary Barsotti-Tate groups. Section 3 contains some prelim-
inaries on the Dieudonné theory and the deformation theory of Barsotti-Tate
groups. In Section 4, after establishing some basic properties of HW-cyclic
groups, we give the fundamental relation between the versality of a Barsotti-
Tate group and the coefficients of its Hasse-Witt matrix (Prop. 4.11). Section
5 is devoted to the study of the monodromy of a HW-cyclic Barsotti-Tate group
over a complete trait of characteristic p. Section 6 is totally elementary, and
contains a criterion (6.3) for the surjectivity of a homomorphism from a profi-
nite group to GLn(Zp). Section 7 is the heart of this work, and it contains
a proof of Theorem 1.3 in the one-dimensional case. Finally in Section 8, we
follow Lau’s strategy and complete the proof of 1.3 by reducing the general
case to the one-dimensional case treated in Section 7.
The proof in Section 7 of 1.3 in the one-dimensional case is based on an induc-
tion on the height n+ 1 ≥ 2 of G. The case n = 1 is just the classical Igusa’s
theorem (5.7). For n ≥ 2, by lemmas 6.3 and 6.5, it suffices to prove the fol-
lowing two statements: (a) the image of reduction modulo p of ρG contains a
non-split Cartan subgroup; (b) under a suitable basis, the image of ρG contains

all matrix of the form
(
B b
0 1

)
with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp).

The first statement follows easily from 1.5 by considering a certain base change
of G to a complete discrete valuation ring. To prove (b), we consider the for-
mal completion Spec(R′) of the localization of the local moduli S = Spec(R)
of G at the generic point of the locus where the universal deformation G has
p-rank ≤ 1 (7.4). The ring R′ is a complete regular ring of dimension n − 1,
and the Barsotti-Tate group G ′ = G ⊗R R′ has a connected part of height n
and an étale part of height 1. Let K0 be the residue field of R′, and K0 an
algebraic closure of K0. In order to apply the induction hypothesis, we con-
sider the set of k-algebra homomorphisms σ : R′ → R̃′ = K0[[t1, · · · , tn−1]]
lifting the natural inclusion K0 → K0. The key point is that, the natural map
σ 7→ GfR′,σ = G ′⊗R′,σ R̃′ gives a bijection between the set of such σ’s and the set

of deformations of GK0
= G ′⊗R′K0 to R̃′; moreover, we can compute explicitly

the Hasse-Witt map of the connected component G ◦fR′,σ of GfR′,σ (Lemma 7.8).
From the versality criterion for one-dimensional Barsotti-Tate groups in terms
of the Hasse-Witt map established in Section 4 (Prop. 4.11), it follows imme-
diately that there exists a σ such that the Barsotti-Tate group G ◦fR′,σ, which

Documenta Mathematica 14 (2009) 281–324



p-Adic Monodromy of a Barsotti-Tate Group 285

is connected and one-dimensional of height n, is the universal deformation of
its closed fiber. We fix such a σ. Then the set of all σ′ with G ◦fR′,σ′ ' G ◦fR′,σ
as deformations of their common closed fiber is actually a group isomorphic
to Ext1fR′(Qp/Zp,G ◦fR′,σ) (Prop. 3.10). Let σ1 be the element corresponding

to neutral element in Ext1fR′(Qp/Zp,G ◦fR′,σ). Applying the induction hypothesis
to G ◦fR′,σ1

, we see that the monodromy group of GfR′,σ1
, hence that of G, con-

tains the subgroup
(

GLn−1(Zp) 0
0 1

)
under a suitable basis of the Tate module

(7.5.3). In order to conclude the proof, we need another σ2 such that GfR′,σ2

has the same connected component as GfR′,σ1
, and that the induced extension

between the Tate module of the étale part of GfR′,σ2
and that of G ◦R′,σ2

is non-
trivial after reduction modulo p (see 7.5 and 7.5.4). To verify the existence of
such a σ2, we reduce the problem to a similar situation over a complete trait of
characteristic p (see 7.9), and we use a criterion of non-triviality of extensions
by Hasse-Witt maps (5.12).

1.7. Acknowledgement. This paper is an expanded version of the second
part of my Ph.D. thesis at University Paris 13. I would like to express my great
gratitude to my thesis advisor Prof. A. Abbes for his encouragement during
this work, and also for his various helpful comments on earlier versions of this
paper. I also thank heartily E. Lau, F. Oort and M. Strauch for interesting
discussions and valuable suggestions.

1.8. Notations. Let S be a scheme of characteristic p > 0. A BT-group
over S stands for a Barsotti-Tate group over S. Let G be a commutative
finite group scheme (resp. a BT-group) over S. We denote by G∨ its Cartier
dual (resp. its Serre dual), by ωG the sheaf of invariant differentials of G over
S, and by Lie(G) the sheaf of Lie algebras of G. If S = Spec(A) is affine
and there is no risk of confusions, we also use ωG and Lie(G) to denote the
corresponding A-modules of global sections. We put G(p) the pull-back of G
by the absolute Frobenius of S, FG : G → G(p) the Frobenius homomorphism
and VG : G(p) → G the Verschiebung homomorphism. If G is a BT-group and
n an integer ≥ 1, we denote by G(n) the kernel of the multiplication by pn on
G; we have G∨(n) = (G∨)(n) by definition. For an OS-module M , we denote
by M (p) = OS ⊗FS M the scalar extension of M by the absolute Frobenius of
OS . If ϕ : M → N be a semi-linear homomorphism of OS-modules, we denote
by ϕ̃ : M (p) → N the linearization of ϕ, i.e. we have ϕ̃(λ⊗x) = λ ·ϕ(x), where
λ (resp. x) is a local section of OS (resp. of M).
Starting from Section 5, k will denote an algebraically closed field of charac-
teristic p > 0.

2. Review of ordinary Barsotti-Tate groups

In this section, S denotes a scheme of characteristic p > 0.
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2.1. Let G be a commutative group scheme, locally free of finite type over S.
We have a canonical isomorphism of coherent OS-modules [Ill, 2.1]

(2.1.1) Lie(G∨) 'H omSfppf (G,Ga),

where H omSfppf is the sheaf of homomorphisms in the category of abelian
fppf-sheaves over S, and Ga is the additive group scheme. Since G(p)

a ' Ga,
the Frobenius homomorphism of Ga induces an endomorphism

(2.1.2) ϕG : Lie(G∨)→ Lie(G∨),

semi-linear with respect to the absolute Frobenius map FS : OS → OS ; we call
it the Hasse-Witt map of G. By the functoriality of Frobenius, ϕG is also the
canonical map induced by the Frobenius of G, or dually by the Verschiebung
of G∨.

2.2. By a commutative p-Lie algebra over S, we mean a pair (L,ϕ), where L
is an OS-module locally free of finite type, and ϕ : L → L is a semi-linear
endomorphism with respect to the absolute Frobenius FS : OS → OS . When
there is no risk of confusions, we omit ϕ from the notation. We denote by
p-LieS the category of commutative p-Lie algebras over S.
Let (L,ϕ) be an object of p-LieS . We denote by

U (L) = Sym(L) = ⊕n≥0 Symn(L),

the symmetric algebra of L over OS . Let Ip(L) be the ideal sheaf of U (L)
defined, for an open subset V ⊂ S, by

Γ(V,Ip(L)) = {x⊗p − ϕ(x) ; x ∈ Γ(V,U (L))},

where x⊗p = x⊗ x⊗ · · · ⊗ x ∈ Γ(V,Symp(L)). We put Up(L) = U (L)/Ip(L),
and call it the p-enveloping algebra of (L,ϕ). We endow Up(L) with the struc-
ture of a Hopf-algebra with the comultiplication given by ∆(x) = 1⊗x+x⊗ 1
and the coinverse given by i(x) = −x.
Let G be a commutative group scheme, locally free of finite type over S. We
say that G is of coheight one if the Verschiebung VG : G(p) → G is the zero
homomorphism. We denote by GVS the category of such objects. For an
object G of GVS , the Frobenius FG∨ of G∨ is zero, so the Lie algebra Lie(G∨)
is locally free of finite type over OS ([DG] VIIA Théo. 7.4(iii)). The Hasse-Witt
map of G (2.1.2) endows Lie(G∨) with a commutative p-Lie algebra structure
over S.

Proposition 2.3 ([DG] VIIA, Théo. 7.2 et 7.4). The functor GVS → p-LieS
defined by G 7→ Lie(G∨) is an anti-equivalence of categories; a quasi-inverse is
given by (L,ϕ) 7→ Spec(Up(L)).

2.4. Assume S = Spec(A) affine. Let (L,ϕ) be an object of p-LieS such that
L is free of rank n over OS , (e1, · · · , en) be a basis of L over OS , (hij)1≤i,j≤n
be the matrix of ϕ under the basis (e1, · · · , en), i.e. ϕ(ej) =

∑n
i=1 hijei for
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1 ≤ j ≤ n. Then the group scheme attached to (L,ϕ) is explicitly given by

Spec(Up(L)) = Spec
(
A[X1, · · · , Xn]/(Xp

j −
n∑
i=1

hijXi)1≤j≤n

)
,

with the comultiplication ∆(Xj) = 1⊗Xj +Xj ⊗ 1. By the Jacobian criterion
of étaleness [EGA, IV0 22.6.7], the finite group scheme Spec(Up(L)) is étale
over S if and only if the matrix (hij)1≤i,j≤n is invertible. This condition is
equivalent to that the linearization of ϕ is an isomorphism.

Corollary 2.5. An object G of GVS is étale over S, if and only if the lin-
earization of its Hasse-Witt map (2.1.2) is an isomorphism.

Proof. The problem being local over S, we may assume S affine and L =
Lie(G∨) free over OS . By Theorem 2.3, G is isomorphic to Spec(Up(L)), and
we conclude by the last remark of 2.4. �

2.6. Let G be a BT-group over S of height c+ d and dimension d. The Lie al-
gebra Lie(G∨) is an OS-module locally free of rank c, and canonically identified
with Lie(G∨(1))([BBM] 3.3.2). We define the Hasse-Witt map of G

(2.6.1) ϕG : Lie(G∨)→ Lie(G∨)

to be that of G(1) (2.1.2).

2.7. Let k be a field of characteristic p > 0, G be a BT-group over k. Recall
that we have a canonical exact sequence of BT-groups over k

(2.7.1) 0→ G◦ → G→ Gét → 0

with G◦ connected and Gét étale ([Dem] Chap.II, §7). This induces an exact
sequence of Lie algebras

(2.7.2) 0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,

compatible with Hasse-Witt maps.

Proposition 2.8. Let k be a field of characteristic p > 0, G be a BT-group
over k. Then Lie(Gét∨) is the unique maximal k-subspace V of Lie(G∨) with
the following properties:
(a) V is stable under ϕG;
(b) the restriction of ϕG to V is injective.

Proof. It is clear that Lie(Gét∨) satisfies property (a). We note that the Ver-
schiebung of Gét(1) vanishes; so Gét(1) is in the category GVSpec(k). Since k
is a field, 2.5 implies that the restriction of ϕG to Lie(Gét∨), which coincides
with ϕGét , is injective. This proves that Lie(Gét∨) verifies (b). Conversely, let
V be an arbitrary k-subspace of Lie(G∨) with properties (a) and (b). We have
to show that V ⊂ Lie(Gét∨). Let σ be the Frobenius endomorphism of k. If M
is a k-vector space, for each integer n ≥ 1, we put M (pn) = k ⊗σn M , i.e. we
have 1 ⊗ ax = σn(a) ⊗ x in k ⊗σn M for a ∈ k, x ∈ M . Since ϕG|V : V → V

is injective by assumption, the linearization ϕ̃nG|V (pn) : V (pn) → V of ϕnG|V
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is injective (hence bijective) for any n ≥ 1. We have V = ϕ̃nG(V (pn)). Since
G◦ is connected, there is an integer n ≥ 1 such that the n-th iterated Frobe-
nius FnG◦(1) : G◦(1) → G◦(1)(pn) vanishes. Hence by definition, the linearized
n-iterated Hasse-Witt map ϕ̃nG◦ : Lie(G◦∨)(pn) → Lie(G◦∨) is zero. By the
compatibility of Hasse-Witt maps, we have ϕ̃nG(Lie(G∨)(pn)) ⊂ Lie(Gét∨); in
particular, we have V = ϕ̃nG(V (pn)) ⊂ Lie(Gét∨). This completes the proof. �

Corollary 2.9. Let k be a field of characteristic p > 0, G be a BT-group over
k. Then G is connected if and only if ϕG is nilpotent.

Proof. In the proof of the proposition, we have seen that the Hasse-Witt map
of the connected part of G is nilpotent. So the “only if” part is verified. Con-
versely, if ϕG is nilpotent, Lie(Gét∨) is zero by the proposition. Therefore G is
connected. �

Definition 2.10. Let S be a scheme of characteristic p > 0, G be a BT-
group over S. We say that G is ordinary if there exists an exact sequence of
BT-groups over S

(2.10.1) 0→ Gmult → G→ Gét → 0,

such that Gmult is multiplicative and Gét is étale.

We note that when it exists, the exact sequence (2.10.1) is unique up to a
unique isomorphism, because there is no non-trivial homomorphisms between a
multiplicative BT-group and an étale one in characteristic p > 0. The property
of being ordinary is clearly stable under arbitrary base change and Serre duality.
If S is the spectrum of a field of characteristic p > 0, G is ordinary if and only
if its connected part G◦ is of multiplicative type.

Proposition 2.11. Let G be a BT-group over S. The following conditions are
equivalent:
(a) G is ordinary over S.
(b) For every x ∈ S, the fiber Gx = G⊗S κ(x) is ordinary over κ(x).
(c) The finite group scheme KerVG is étale over S.
(c’) The finite group scheme KerFG is of multiplicative type over S.
(d) The linearization of the Hasse-Witt map ϕG is an isomorphism.

First, we prove the following lemmas.

Lemma 2.12. Let T be a scheme, H be a commutative group scheme locally free
of finite type over T . Then H is étale ( resp. of multiplicative type) over T if
and only if, for every x ∈ T , the fiber H⊗T κ(x) is étale ( resp. of multiplicative
type) over κ(x).

Proof. We will consider only the étale case; the multiplicative case follows by
duality. Since H is T -flat, it is étale over T if and only if it is unramified
over T . By [EGA, IV 17.4.2], this condition is equivalent to that H ⊗T κ(x) is
unramified over κ(x) for every point x ∈ T . Hence the conclusion follows. �
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Lemma 2.13. Let G be a BT-group over S. Then KerVG is an object of the
category GVS, i.e. it is locally free of finite type over S, and its Verschiebung is
zero. Moreover, we have a canonical isomorphism (KerVG)∨ ' KerFG∨ , which
induces an isomorphism of Lie algebras Lie

(
(KerVG)∨

)
' Lie(KerFG∨) =

Lie(G∨), and the Hasse-Witt map (2.1.2) of KerVG is identified with ϕG
(2.6.1).

Proof. The group scheme KerVG is locally free of finite type over S ([Ill] 1.3(b)),
and we have a commutative diagram

(KerVG)(p)
VKerVG //

� _

��

KerVG� _

��
(G(p))(p)

V
G(p) // G(p)

By the functoriality of Verschiebung, we have VG(p) = (VG)(p) and KerVG(p) =
(KerVG)(p). Hence the composition of the left vertical arrow with VG(p) van-
ishes, and the Verschiebung of KerVG is zero.
By Cartier duality, we have (KerVG)∨ = Coker(FG∨(1)). Moreover, the exact
sequence

· · · → G∨(1)
FG∨(1)−−−−→

(
G∨(1)

)(p) VG∨(1)−−−−→ G∨(1)→ · · · ,

induces a canonical isomorphism

(2.13.1) Coker(FG∨(1))
∼−→ Im(VG∨(1)) = KerFG∨(1) = KerFG∨ .

Hence, we deduce that

(2.13.2) (KerVG)∨ ' Coker(FG∨(1))
∼−→ KerFG∨ ↪→ G∨(1).

Since the natural injection KerFG∨ → G∨(1) induces an isomorphism of Lie
algebras, we get

(2.13.3) Lie
(
(KerVG)∨

)
' Lie(KerFG∨) = Lie(G∨(1)) = Lie(G∨).

It remains to prove the compatibility of the Hasse-Witt maps with (2.13.3). We
note that the dual of the morphism (2.13.2) is the canonical map F : G(1) →
KerVG = Im(FG(1)) induced by FG(1). Hence by (2.1.1), the isomorphism
(2.13.3) is identified with the functorial map

H omSfppf (KerVG,Ga)→H omSfppf (G(1),Ga)

induced by F , and its compatibility with the Hasse-Witt maps follows easily
from the definition (2.1.2). �

Proof of 2.11. (a)⇒(b). Indeed, the ordinarity of G is stable by base change.
(b)⇒(c). By Lemma 2.12, it suffices to verify that for every point x ∈ S, the
fiber (KerVG)⊗S κ(x) ' KerVGx is étale over κ(x). Since Gx is assumed to be
ordinary, its connected part (Gx)◦ is multiplicative. Hence, the Verschiebung of
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(Gx)◦ is an isomorphism, and KerVGx is canonically isomorphic to KerVGét
x
⊂

(Gét
x )(p) ' (G(p)

x )ét, so our assertion follows.
(c)⇔ (d). It follows immediately from Lemma 2.13 and Corollary 2.5.
(c)⇔(c’). By 2.12, we may assume that S is the spectrum of a field. So the
category of commutative finite group schemes over S is abelian. We will just
prove (c)⇒(c’); the converse can be proved by duality. We have a fundamental
short exact sequence of finite group schemes

(2.13.4) 0→ KerFG → G(1) F−→ KerVG → 0,

where F is induced by FG(1), That induces a commutative diagram

0 // (KerFG
)(p)

V ′

��

// (G(1)
)(p) F (p)

//

VG(1)

��

(
KerVG

)(p) //

V ′′

��

0

0 // KerFG // G(1) F // KerVG // 0

where vertical arrows are the Verschiebung homomorphisms. We have seen
that V ′′ = 0 (2.13). Therefore, by the snake lemma, we have a long exact
sequence

(2.13.5)
0→ KerV ′ → KerVG(1)

α−→
(
KerVG

)(p) →
→ CokerV ′ → CokerVG(1)

β−→ KerVG → 0,

where the map α is the Frobenius of KerVG and β is the composed isomorphism

Coker(VG(1)) ' G(1)/KerFG(1)
∼−→ Im(FG(1)) ' KerVG.

Then condition (c) is equivalent to that α is an isomorphism; it implies that
KerV ′ = CokerV ′ = 0, i.e. the Verschiebung of KerFG is an isomorphism,
and hence (c’).
(c)⇒(a). For every integer n > 0, we denote by FnG the composed homomor-
phism

G
FG−−→ G(p)

F
G(p)−−−−→ · · ·

F
G(pn−1)−−−−−−→ G(pn),

and by V nG the composed homomorphism

G(pn)
V
G(pn−1)−−−−−−→ G(pn−1)

V
G(pn−2)−−−−−−→ · · · VG−−→ G;

FnG and V nG are isogenies of BT-groups. From the relation V nG ◦ FnG = pn, we
deduce an exact sequence

(2.13.6) 0→ KerFnG → G(n) Fn−−→ KerV nG → 0,
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where Fn is induced by FnG. For 1 ≤ j < n, we have a commutative diagram

(2.13.7) G(pn)

V n−j

G(pj) //

V nG ""EEEEEEEE G(pj)

V jG||yy
yy

yy
yy

G.

One notices that KerV n−j
G(pj) = (KerV n−jG )(pj) by the functoriality of Ver-

schiebung . Since all maps in (2.13.7) are isogenies, we have an exact sequence

(2.13.8) 0→ (KerV n−jG )(pj)
i′n−j,n−−−−→ KerV nG

pn,j−−→ KerV jG → 0.

Therefore, condition (c) implies by induction that KerV nG is an étale group
scheme over S. Hence the j-th iteration of the Frobenius KerV n−jG →
(KerV n−jG )(pj) is an isomorphism, and KerV n−jG is identified with a closed
subgroup scheme of KerV nG by the composed map

in−j,n : KerV n−jG
∼−→ (KerV n−jG )(pj)

i′n−j,n−−−−→ KerV nG .

We claim that the kernel of the multiplication by pn−j on KerV nG is KerV n−jG .
Indeed, from the relation pn−j · IdG(pn) = Fn−j

G(pj) ◦ V
n−j
G(pj) , we deduce a commu-

tative diagram (without dotted arrows)

(2.13.9) KerV nG //

pn−j

��

pn,j

$$I
I

I
I

I G(pn)

pn−j

��

V n−j

G(pj)

##GG
GG

GG
GG

G

KerV jG
//_________

ij,nzzu u
u

u
u

G(pj)

Fn−j

G(pj){{ww
ww

ww
ww

w

KerV nG // G(pn).

It follows from (2.13.8) that the subgroup KerV nG of G(pn) is sent by V n−j
G(pj) onto

KerV jG. Therefore diagram (2.13.9) remains commutative when completed by
the dotted arrows, hence our claim. It follows from the claim that (KerV nG )n≥1

constitutes an étale BT-group over S, denoted by Gét. By duality, we have an
exact sequence

(2.13.10) 0→ KerF jG → KerFnG → (KerFn−jG )(pj) → 0.

Condition (c’) implies by induction that KerFnG is of multiplicative type. Hence
the j-th iteration of Verschiebung (KerFn−jG )(pj) → KerFn−jG is an isomor-
phism. We deduce from (2.13.10) that (KerFnG)n≥1 form a multiplicative BT-
group over S that we denote by Gmult. Then the exact sequences (2.13.6) give
a decomposition of G of the form (2.10.1). �
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Corollary 2.14. Let G be a BT-group over S, and Sord be the locus in S of
the points x ∈ S such that Gx = G ⊗S κ(x) is ordinary over κ(x). Then Sord

is open in S, and the canonical inclusion Sord → S is affine.

The open subscheme Sord of S is called the ordinary locus of G.

3. Preliminaries on Dieudonné Theory and Deformation Theory

3.1. We will use freely the conventions of 1.8. Let S be a scheme of charac-
teristic p > 0, G be a Barsotti-Tate group over S, and M(G) = D(G)(S,S) be
the coherent OS-module obtained by evaluating the (contravariant) Dieudonné
crystal of G at the trivial divided power immersion S ↪→ S [BBM, 3.3.6]. Recall
that M(G) is an OS-module locally free of finite type satisfying the following
properties:
(i) Let FM : M(G)(p) →M(G) and VM : M(G) →M(G)(p) be the OS-linear
maps induced respectively by the Frobenius and the Verschiebung of G. We
have the following exact sequence:

· · · →M(G)(p) FM−−→M(G) VM−−→M(G)(p) → · · · .

(ii) There is a connection ∇ : M(G) → M(G) ⊗OS Ω1
S/Fp for which FM and

VM are horizontal morphisms.
(iii) We have two canonical filtrations on M(G) by OS-modules locally free of
finite type:

(3.1.1) 0→ ωG →M(G)→ Lie(G∨)→ 0,

called the Hodge filtration on M(G) [BBM, 3.3.5], and the conjugate filtration
on M(G)

(3.1.2) 0→ Lie(G∨)(p) φG−−→M(G)→ ω
(p)
G → 0,

which is obtained by applying the Dieudonné functor to the exact sequence of
finite group schemes 0 → KerFG → G(1) → KerVG → 0 [BBM, 4.3.1, 4.3.6,
4.3.11]. Moreover, we have the following commutative diagram (cf. [Ka1, 2.3.2
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and 2.3.4])
(3.1.3)

0

��

0

��

0

��
ω

(p)
G

��

ωG

��

ψG // ω(p)
G

��
// M(G)(p)

FM //

��

M(G)

��

VM //

6 6mmmmmmmmmmmmmmmm
M(G)(p)

��

// ,

Lie(G∨)(p)

��

( �

φG

6llllllllllllll fϕG // Lie(G∨)

��

Lie(G∨)(p)

��
0 0 0

where the columns are the Hodge filtrations and the anti-diagonal is the
conjugate filtration. By functoriality, we see easily that ϕ̃G above is noth-
ing but the linearization of the Hasse-Witt map ϕG (2.6.1), and the mor-
phism ψ∗G : Lie(G)(p) → Lie(G), which is obtained by applying the functor
H omOS (_,OS) to ψG, is identified with the linearization ϕ̃G∨ of ϕG∨ .
The formation of these structures on M(G) commutes with arbitrary base
changes of S. In the sequel, we will use (M(G), FM ,∇) to emphasize these
structures on M(G).

3.2. In the reminder of this section, k will denote an algebraically closed field
of characteristic p > 0. Let S be a scheme formally smooth over k such that
Ω1
S/Fp = Ω1

S/k is an OS-module locally free of finite type, e.g. S = Spec(A)
with A a formally smooth k-algebra with a finite p-basis over k. Let G be a
BT-group over S. We put KS to be the composed morphism

(3.2.1) KS : ωG →M(G) ∇−→M(G)⊗OS Ω1
S/k

pr−→ Lie(G∨)⊗OS Ω1
S/k

which is OS-linear. We put TS/k = H omOS (Ω1
S/k,OS), and define the

Kodaira-Spencer map of G

(3.2.2) Kod : TS/k →H omOS (ωG,Lie(G∨))

to be the morphism induced by KS. We say that G is versal if Kod is surjective.

3.3. Let r be an integer ≥ 1, R = k[[t1, · · · , tr]], m be the maximal ideal
of R. We put S = Spf(R), S = Spec(R), and for each integer n ≥ 0,
Sn = Spec(R/mn+1). By a BT-group G over the formal scheme S , we mean
a sequence of BT-groups (Gn)n≥0 over (Sn)n≥0 equipped with isomorphisms
Gn+1 ×Sn+1 Sn ' Gn.
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According to [deJ, 2.4.4], the functor G 7→ (G×SSn)n≥0 induces an equivalence
of categories between the category of BT-groups over S and the category of BT-
groups over S . For a BT-group G over S , the corresponding BT-group G
over S is called the algebraization of G . We say that G is versal over S , if its
algebraization G is versal over S. Since S is local, by Nakayama’s Lemma, G
or G is versal if and only if the reduction of Kod modulo the maximal ideal

(3.3.1) Kod0 : TS/k ⊗OS k −→ Homk(ωG0 ,Lie(G∨0 ))

is surjective.

3.4. We recall briefly the deformation theory of a BT-group. Let ALk be the
category of local artinian k-algebras with residue field k. We notice that all
morphisms of ALk are local. A morphism A′ → A in ALk is called a small
extension, if it is surjective and its kernel I satisfies I · mA′ = 0, where mA′ is
the maximal ideal of A′.
Let G0 be a BT-group over k, and A an object of ALk. A deformation of
G0 over A is a pair (G,φ), where G is a BT-group over Spec(A) and φ is
an isomorphism φ : G ⊗A k

∼−→ G0. When there is no risk of confusions, we
will denote a deformation (G,φ) simply by G. Two deformations (G,φ) and
(G′, φ′) over A are isomorphic if there exists an isomorphism of BT-groups
ψ : G ∼−→ G′ over A such that φ = φ′ ◦ (ψ⊗A k). Let’s denote by D the functor
which associates with each object A of ALk the set of isomorphsm classes of
deformations of G0 over A. If f : A → B is a morphism of ALk, then the
map D(f) : D(A) → D(B) is given by extension of scalars. We call D the
deformation functor of G0 over ALk.

Proposition 3.5 ([Ill], 4.8). Let G0 be a BT-group over k of dimension d and
height c+ d, D be the deformation functor of G0 over ALk.
(i) Let A′ → A be a small extension in ALk with ideal I, x = (G,φ)
be an element in D(A), Dx(A′) be the subset of D(A′) with image x in
D(A). Then the set Dx(A′) is a nonempty homogenous space under the group
Homk(ωG0 ,Lie(G∨0 ))⊗k I.
(ii) The functor D is pro-representable by a formally smooth formal scheme S
over k of relative dimension cd, i.e. S = Spf(R) with R ' k[[(tij)1≤i≤c,1≤j≤d]],
and there exists a unique deformation (G , ψ) of G0 over S such that, for any
object A of ALk and any deformation (G,φ) of G0 over A, there is a unique
homomorphism of local k-algebras ϕ : R→ A with (G,φ) = D(ϕ)(G , ψ).
(iii) Let TS /k(0) = TS /k⊗OS k be the tangent space of S at its unique closed
point,

Kod0 : TS /k(0) −→ Homk(ωG0 ,Lie(G∨0 ))
be the Kodaira-Spencer map of G evaluated at the closed point of S . Then Kod0

is bijective, and it can be described as follows. For an element f ∈ TS /k(0), i.e.
a homomorphism of local k-algebras f : R→ k[ε]/ε2, Kod0(f) is the difference
of deformations

[G ⊗R (k[ε]/ε2)]− [G0 ⊗k (k[ε]/ε2)],
which is a well-defined element in Homk(ωG0 ,Lie(G∨0 )) by (i).
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Remark 3.6. Let (ej)1≤j≤d be a basis of ωG0 , (fi)1≤i≤c be a basis of Lie(G∨0 ).
In view of 3.5(iii), we can choose a system of parameters (tij)1≤i≤c,1≤j≤d of S
such that

Kod0(
∂

∂tij
) = e∗j ⊗ fi,

where (e∗j )1≤j≤d is the dual basis of (ej)1≤j≤d. Moreover, if m is the maximal
ideal of R, the parameters tij are determined uniquely modulo m2.

Corollary 3.7 (Algebraization of the universal deformation). The
assumptions being those of (3.5), we put moreover S = Spec(R) and G the
algebraization of the universal formal deformation G . Then the BT-group G
is versal over S, and satisfies the following universal property: Let A be a
noetherian complete local k-algebra with residue field k, G be a BT-group over
A endowed with an isomorphism G ⊗A k ' G0. Then there exists a unique
continuous homomorphism of local k-algebras ϕ : R→ A such that G ' G⊗RA.
Proof. By the last remark of 3.3, G is clearly versal. It remains to prove that it
satisfies the universal property in the corollary. Let G be a deformation of G0

over a noetherian complete local k-algebra A with residue field k. We denote
by mA the maximal ideal of A, and put An = A/mn+1

A for each integer n ≥ 0.
Then by 3.5(b), there exists a unique local homomorphism ϕn : R → An such
that G ⊗ An ' G ⊗R An. The ϕn’s form a projective system (ϕn)n≥0, whose
projective limit ϕ : R→ A answers the question. �

Definition 3.8. The notations are those of (3.7). We call S the local moduli in
characteristic p of G0, and G the universal deformation of G0 in characteristic
p.

If there is no confusions, we will omit “in characteristic p” for short.

3.9. Let G be a BT-group over k, G◦ be its connected part, and Gét be its
étale part. Let r be the height of Gét. Then we have Gét ' (Qp/Zp)r, since
k is algebraically closed. Let DG (resp. DG◦) be the deformation functor of G
(resp. G◦) over ALk. If A is an object in ALk and G is a deformation of G
(resp. G◦) over A, we denote by [G ] its isomorphism class in DG(A) (resp. in
DG◦(A)).

Proposition 3.10. The assumptions are as above, let Θ : DG → DG◦ be the
morphism of functors that maps a deformation of G to its connected component.
(i) The morphism Θ is formally smooth of relative dimension r.
(ii) Let A be an object of ALk, and G ◦ be a deformation of G◦ over A. Then the
subset Θ−1

A ([G ◦]) of DG(A) is canonically identified with Ext1
A(Qp/Zp,G ◦)r,

where Ext1
A means the group of extensions in the category of abelian fppf-

sheaves on Spec(A).

Proof. (i) Since DG and DG◦ are both pro-representable by a noetherian local
complete k-algebra and formally smooth over k (3.5), by a formal completion
version of [EGA, IV 17.11.1(d)], we only need to check that the tangent map

Θk[ε]/ε2 : DG(k[ε]/ε2)→ DG◦(k[ε]/ε2)
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is surjective with kernel of dimension r over k. By 3.5(iii), DG(k[ε]/ε2)
(resp. DG◦(k[ε]/ε2)) is isomorphic to Homk(ωG,Lie(G∨)) (resp.
Homk(ωG◦ ,Lie(G◦∨))) by the Kodaira-Spencer morphism. In view of the
canonical isomorphism ωG ' ωG◦ , Θk[ε]/ε2 corresponds to the map

Θ′k[ε]/ε2 : Homk(ωG,Lie(G∨))→ Homk(ωG,Lie(G◦∨))

induced by the canonical surjection Lie(G∨) → Lie(G◦∨). It is clear that
Θ′k[ε]/ε2 is surjective of kernel Homk(ωG,Lie(Gét∨)), which has dimension r

over k.
(ii) Since Gét is isomorphic to (Qp/Zp)r, every element in Ext1

A(Qp/Zp,G ◦)r
defines clearly an element of DG(A) with image [G ◦] in DG◦(A). Conversely, for
any G ∈ DG(A) with connected component isomorphic to G ◦, the isomorphism
Gét ' (Qp/Zp)r lifts uniquely to an isomorphism G ét ' (Qp/Zp)r because A is
henselian. The canonical exact sequence 0 → G ◦ → G → G ét → 0 shows that
G comes from an element of Ext1

A(Qp/Zp,G ◦)r.
�

4. HW-cyclic Barsotti-Tate Groups

Definition 4.1. Let S be a scheme of characteristic p > 0, G be a BT-group
over S such that c = dim(G∨) is constant. We say that G is HW-cyclic, if c ≥ 1
and there exists an element v ∈ Γ(S,Lie(G∨)) such that

v, ϕG(v), · · · , ϕc−1
G (v)

generate Lie(G∨) as an OS-module, where ϕG is the Hasse-Witt map (2.6.1) of
G.

Remark 4.2. It is clear that a BT-group G over S is HW-cyclic, if and only
if Lie(G∨) is free over OS and there exists a basis of Lie(G∨) over OS under
which ϕG is expressed by a matrix of the form

(4.2.1)


0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3

...
. . .

...
0 0 · · · 1 −ac

 ,

where ai ∈ Γ(S,OS) for 1 ≤ i ≤ c.

Lemma 4.3. Let R be a local ring of characteristic p > 0, k be its residue field.
(i) A BT-group G over R is HW-cyclic if and only if so is G⊗ k.
(ii) Let 0→ G′ → G→ G′′ → 0 be an exact sequence of BT-groups over R. If
G is HW-cyclic, then so is G′. In particular, if R is henselian, the connected
part of a HW-cyclic BT-group over R is HW-cyclic.

Proof. (i) The property of being HW-cyclic is clearly stable under arbitrary
base changes, so the “only if” part is clear. Assume that G0 = G ⊗ k
is HW-cyclic. Let v be an element of Lie(G∨0 ) = Lie(G∨) ⊗ k such that
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(v, ϕG0(v), · · · , ϕc−1
G0

(v)) is a basis of Lie(G∨0 ). Let v be any lift of v in Lie(G∨).
Then by Nakayama’s lemma, (v, ϕG(v), · · · , ϕc−1

G (v)) is a basis of Lie(G∨).
(ii) By statement (i), we may assume R = k. The exact sequence of BT-groups
induces an exact sequence of Lie algebras

(4.3.1) 0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,

and the Hasse-Witt map ϕG′ is induced by ϕG by functoriality. Assume that
G is HW-cyclic and G∨ has dimension c. Let u be an element of Lie(G∨) such
that

u, ϕG(u), · · · , ϕc−1
G (u)

form a basis of Lie(G∨) over k. We denote by u′ the image of u in Lie(G′∨).
Let r ≤ c be the maximal integer such that the vectors

u′, ϕG′(u′), · · · , ϕr−1
G′ (u′)

are linearly independent over k. It is easy to see that they form a basis of the
k-vector space Lie(G′∨). Hence G′ is HW-cyclic. �

Lemma 4.4. Let S = Spec(R) be an affine scheme of characteristic p > 0, G
be a HW-cyclic BT-group over R with c = dim(G∨) constant, and

0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3

...
. . .

...
0 0 · · · 1 −ac

 ∈ Mc×c(R),

be a matrix of ϕG. Put ac+1 = 1, and P (X) =
∑c
i=0 ai+1X

pi ∈ R[X].
(i) Let VG : G(p) → G be the Verschiebung homomorphism of G. Then KerVG
is isomorphic to the group scheme Spec(R[X]/P (X)) with comultiplication
given by X 7→ 1⊗X +X ⊗ 1.
(ii) Let x ∈ S, and Gx be the fibre of G at x. Put

(4.4.1) i0(x) = min
0≤i≤c

{i; ai+1(x) 6= 0},

where ai(x) denotes the image of ai in the residue field of x. Then the étale part
of Gx has height c− i0(x), and the connected part of Gx has height d+ i0(x).
In particular, Gx is connected if and only if ai(x) = 0 for 1 ≤ i ≤ c.

Proof. (i) By 2.3 and 2.13, KerVG is isomorphic to the group scheme

Spec
(
R[X1, . . . , Xc]/(X

p
1 −X2, · · · , Xp

c−1 −Xc, X
p
c + a1X1 + · · ·+ acXc)

)
with comultiplication ∆(Xi) = 1 ⊗ Xi + Xi ⊗ 1 for 1 ≤ i ≤ c. By sending
(X1, X2, · · · , Xc) 7→ (X,Xp, · · · , Xpc−1

), we see that the above group scheme
is isomorphic to Spec(R[X]/P (X)) with comultiplication ∆(X) = 1⊗X+X⊗1.
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(ii) By base change, we may assume that S = x = Spec(k) and hence G = Gx.
Let G(1) be the kernel of the multiplication by p on G. Then we have an exact
sequence

0→ KerFG → G(1)→ KerVG → 0.

Since KerFG is an infinitesimal group scheme over k, we have G(1)(k) =
(KerVG)(k), where k is an algebraic closure of k. By the definition of i0(x), we
have P (X) = Q(Xpi0(x)

), where Q(X) is an additive sepearable polynomial in
k[X] with deg(Q) = pc−i0(x). Hence the roots of P (X) in k form an Fp-vector
space of dimension c − i0(x). By (i), (KerVG)(k) can be identified with the
additive group consisting of the roots of P (X) in k. Therefore, the étale part
of G has height c− i0(x), and the connected part of G has height d+ i0(x). �

4.5. Let k be a perfect field of characteristic p > 0, and αp = Spec(k[X]/Xp) be
the finite group scheme over k with comultiplication map ∆(X) = 1⊗X+X⊗1.
Let G be a BT-group over k. Following Oort, we call

a(G) = dimk Homkfppf (αp, G)

the a-number of G, where Homkfppf means the homomorphisms in the cate-
gory of abelian fppf-sheaves over k. Since the Frobenius of αp vanishes, any
morphism of αp in G factorize through Ker(FG). Therefore we have

Homkfppf (αp, G) = Homk−gr(αp,Ker(FG))

= Homk−gr(Ker(FG)∨, αp)

= Homp-Liek(Lie(αp),Lie(Ker(FG))),

where Homk−gr denotes the homomorphisms in the category of commutative
group schemes over k, and the last equality uses Proposition 2.3. Since we have
a canonical isomorphism Lie(Ker(FG)) ' Lie(G) and Lie(αp) has dimension one
over k with ϕαp = 0, we get

(4.5.1) a(G) = dimk{x ∈ Lie(G)|ϕG∨(x) = 0} = dimk Ker(ϕG∨).

Due to the perfectness of k, we have also a(G) = dimk Ker(ϕ̃G∨), where ϕ̃G∨
is the linearization of ϕG∨ . By Proposition 2.11, we see that a(G) = 0 if and
only if G is ordinary.

Lemma 4.6. Let G be a BT-group over k, and G∨ its Serre dual. Then we
have a(G) = a(G∨).

Proof. Let ψG : ωG → ω
(p)
G be the k-linear map induced by the Verschiebung

of G. Then ψ∗G, the morphism obtained by applying the functor Homk(_, k)
to ψG, is identified with ϕ̃G∨ . By (4.5.1) and the exactitude of the functor
Homk(_, k), we have a(G) = dimk Ker(ψ∗G) = dimk Coker(ψG). Using the
additivity of dimk, we get finally a(G) = dimk Ker(ψG). By considering the
commutative diagram (3.1.3), we have

a(G) = dimk

(
ωG ∩ φG(Lie(G∨)(p))

)
.
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On the other hand, it follows also from (3.1.3) that

a(G∨) = dimk Ker(ϕ̃G) = dimk

(
φG(Lie(G∨)(p)) ∩ ωG

)
.

The lemma now follows immediately.
�

Proposition 4.7. Let k be a perfect field of characteristic p > 0, G a BT-group
over k. Consider the following conditions:
(i) G is HW-cyclic and non-ordinary;
(ii) the connected part G◦ of G is HW-cyclic and not of multiplicative type;
(iii) a(G∨) = a(G) = 1.
We have (i) ⇒ (ii) ⇔ (iii). If k is algebraically closed, we have moreover
(ii)⇒ (i).

Remark 4.8. In [Oo1, Lemma 2.2], Oort proved the following assertion, which
is a generalization of (iii) ⇒ (ii): Let k be an algebraically closed field of
characteristic p > 0, and G be a connected BT-group with a(G) = 1. Then
there exists a basis of the Dieudonné module M of G over W (k), such that the
action of Frobenius on M is given by a display-matrix of “normal form” in the
sense of [Oo1, 2.1].

Proof. (i)⇒ (ii) follows from 4.3(ii).
(ii)⇒ (iii). First, we note that a(G) = a(G◦), so we may assume G connected.
Since G is not of multiplicative type, we have c = dim(G∨) ≥ 1. By Lemma
4.4(ii), there exists a basis of Lie(G∨) over k under which ϕG is expressed by

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 ∈ Mc×c(k).

According to (4.5.1), a(G∨) equals to dimk Ker(ϕG), i.e. the k-dimension of
the solutions of the equation system in (x1, · · · , xc)

0 0 · · · 0 0
1 0 · · · 0 0
...

. . .
...

0 0 · · · 1 0



xp1
xp2
...
xpc

 = 0

The solutions (x1, · · · , xc) form clearly a vector space over k of dimension 1,
i.e. we have a(G∨) = 1.
(iii) ⇒ (ii). Let Gét be the étale part of G. Since k is perfect, the exact
sequence (2.7.1) splits [Dem, Chap. II §7]; so we have G ' G◦ ×Gét. We put
M = Lie(G∨), M1 = Lie(G◦∨) and M2 = Lie(Gét∨) for short. By 2.8 and 2.9,
we have a decomposition M = M1 ⊕M2, such that M1,M2 are stable under
ϕG, and the action of ϕG is nilpotent on M1 and bijective on M2. We note
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that a(G◦∨) = a(G◦) = a(G) = 1. By the last remark of 4.5, G◦ is not of
multiplicative type, hence dimkM1 = dim(G◦∨) ≥ 1. It remains to prove that
G◦ is HW-cyclic. Let n be the minimal integer such that ϕnG(M1) = 0. We
have a strictly increasing filtration

0 ( Ker(ϕG) ( · · · ( Ker(ϕnG) = M1.

If n = 1, then M1 is one-dimensional, hence G◦ is clearly HW-cyclic. Assume
n ≥ 2. For 2 ≤ m ≤ n, ϕm−1

G induces an injective map

ϕm−1
G : Ker(ϕmG )/Ker(ϕm−1

G ) −→ Ker(ϕG).

Since dimk Ker(ϕG) = a(G◦∨) = 1, ϕm−1
G is necessarily bijective. So we have

dimk Ker(ϕmG ) = m for 1 ≤ m ≤ n. Let v be an element of M1 but not in
Ker(ϕn−1

G ). Then v, ϕG(v), · · · , ϕn−1
G (v) are linearly independant, hence they

form a basis of M1 over k. This proves that G◦ is HW-cyclic.
Assume k algebraically closed. We prove that (ii) ⇒ (i). Noting that G is
ordinary if and only if G◦ is of multiplicative type, we only need to check that
G is HW-cyclic. We conserve the notations above. Since ϕG is bijective on M2

and k algebraically closed, there exists a basis (e1, · · · , em) of M2 such that
ϕG(ei) = ei for 1 ≤ i ≤ m. Let v ∈ M1 but not in Ker(ϕn−1

G ) as above, and
put u = v + λ1e1 + · · ·λmem, where λi(1 ≤ i ≤ m) are some elements in k to
be determined later. Then we have ϕnG(u)

...
ϕn+m−1
G (u)

 =


λp

n

1 · · · λp
n

m
...

. . .
...

λp
n+m−1

1 · · · λp
n+m−1

m


 e1

...
em

 .

Let L(λ1, · · · , λm) ∈ k[λ1, · · · , λm] be the determinant polynomial of the ma-
trix on the right side. An elementary computation shows that the polyno-
mial L(λ1, · · · , λm) is not null. We can choose λ1, · · · , λm ∈ k such that
L(λ1, · · · , λm) 6= 0 because k is algebraically closed. So ϕnG(u), · · · , ϕn+m−1

G (u)
form a basis of M2 over k. Since

ϕiG(u) ≡ ϕiG(v) mod M2 for 0 ≤ i ≤ n,
by the choice of u, we see that {u, ϕG(u), · · · , ϕn+m−1

G (u)} form a basis of
M = Lie(G∨) over k. �

By combining 4.6 and 4.7, we obtain the following

Corollary 4.9. Let k be an algebraically closed field of characteristic p > 0.
Then a BT-group over k is HW-cyclic if and only if so is its Serre dual.

4.10. Examples. Let k be a perfect field, W (k) be the ring of Witt vectors
with coefficients in k, and σ be the Frobenius automorphism of W (k). Let
s, r be relatively prime integers such that 0 ≤ s ≤ r and r 6= 0; put λ = s

r .
We consider the Dieudonné module Mλ ' W (k)[F, V ]/(F r−s − V s), where
W (k)[F, V ] is the non-commutative ring with relations FV = V F = p, Fa =
σ(a)F and V σ(a) = aV for all a ∈ W (k). We note that Mλ is free of rank
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r over W (k) and Mλ/VMλ ' k[F ]/F r−s. By the contravariant Dieudonné
theory, Mλ corresponds to a BT-group Gλ over k of height r with Lie(Gλ∨) =
Mλ/VMλ. We see easily that Gλ is HW-cyclic, and we call it the elementary
BT-group of slope λ. We note that G0 ' Qp/Zp, G1 ' µp∞ , and (Gλ)∨ ' G1−λ

for 0 ≤ λ ≤ 1.
Assume k algebraically closed. Then by the Dieudonné-Manin’s classification
of isocrystals [Dem, Chap.IV §4], any BT-group over k is isogenous to a fi-
nite product of Gλ’s; moreover, any connected one-dimensional BT-group over
k of height r is necessarily isomorphic to G1/r [Dem, Chap.IV §8], hence in
particular HW-cyclic.

Proposition 4.11. Let k be an algebraically closed field of characteristic p > 0,
R be a noetherian complete regular local k-algebra with residue field k, and
S = Spec(R). Let G be a connected HW-cyclic BT-group over R of dimension
d ≥ 1 and height c+ d,

h =


0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3

...
. . .

...
0 0 · · · 1 −ac

 ∈ Mc×c(R)

be a matrix of ϕG.
(i) If G is versal over S, then {a1, · · · , ac} is a subset of a regular system of
parameters of R.
(ii) Assume that d = 1. The converse of (i) is also true, i.e. if {a1, · · · , ac}
is a subset of a regular system of parameters of R then G is versal over S.
Furthermore, G is the universal deformation of its special fiber if and only if
{a1, · · · , ac} is a system of regular parameters of R.

Proof. Let (M(G), FM ,∇) be the finite free OS-module equipped with a semi-
linear endomorphism FM and a connection ∇ : M(G) → M(G) ⊗OS Ω1

S/k,
obtained by evaluating the Dieudonné crystal of G at the trivial immersion
S ↪→ S (cf. 3.1). Recall that we have a commutative diagram

(4.11.1) M(G)(p)
FM //

pr

��

M(G)

pr

��
Lie(G∨)(p)

fϕG //
( �

φG

66llllllllllllll
Lie(G∨),

where φG is universally injective (3.1.3). Let {v1, · · · , vc} be a basis of Lie(G∨)
over OS under which ϕG is expressed by h, i.e. we have ϕi−1

G (v1) = vi for
1 ≤ i ≤ c and ϕcG(v1) = ϕG(vc) = −

∑c
i=1 aivi. Let f1 be a lift of v1 to

Γ(S,M(G)), and put fi+1 = φG(v(p)
i ) for 1 ≤ i ≤ c− 1, where v(p)

i = 1⊗ vi ∈
Γ(S,Lie(G∨)(p)). The image of fi in Γ(S,Lie(G∨)) is thus vi for 1 ≤ i ≤ c by
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(4.11.1). We put

(4.11.2) e1 = φG(v(p)
c ) + a1f1 + · · ·+ acfc ∈ Γ(S,M(G)).

The image of e1 in Γ(S,Lie(G∨)) is ϕG(vc) +
∑c
i=1 aivi = 0; so we have e1 ∈

Γ(S, ωG). By 4.4(ii), we notice that a1, · · · , ac belong to the maximal ideal

mR of R, as G is connected. Hence, we have e1 = φG(v(p)
c ), where for a R-

module M and x ∈ M , we denote by x the canonical image of x in M ⊗ k.
Since φG commutes with base change and is universally injective, we get e1 =

φG(v(p)
c ) = φG⊗k(v(p)

c ) 6= 0. Therefore, we can choose e2, · · · , ed ∈ Γ(S, ωG)
such that (e1, · · · , ed) becomes a basis of ωG over OS , so (e1, · · · , ed, f1, · · · , fc)
is a basis of M(G). Since FM is horizontal for the connection ∇ (cf. 3.1(ii)),
we have

∇(φG(v(p)
c )) = ∇(FM (f (p)

c )) = 0.
In view of (4.11.2), we get

∇(e1) =
c∑
i=1

fi ⊗ dai +
c∑
i=1

ai∇(fi)

≡
c∑
i=1

fi ⊗ dai (mod mR).(4.11.3)

Let KS0 and Kod0 be respectively the reductions modulo mR of (3.2.1) and
(3.2.2). Since (vi)1≤i≤c is a base of Lie(G∨)⊗ k, we can write

KS0(ej) =
c∑
i=1

vi ⊗ θi,j for 1 ≤ j ≤ d,

where θi,j ∈ ΩS/k ⊗ k. From (4.11.3), we deduce that θi,1 = dai. By the
definition of Kod0, we have

(4.11.4) Kod0(∂) =
d∑
j=1

c∑
i=1

< ∂, θi,j > ej
∗ ⊗ vi

where ∂ ∈ TS/k ⊗ k, < •, • > is the canonical pairing between TS/k ⊗ k and
Ω1
S/k⊗k, and (ei∗)1≤i≤d denotes the dual basis of (ei)1≤i≤d. Now assume that

G is versal over S, i.e. Kod0 is surjective by definition (3.2). In particular,
there are ∂1, · · · , ∂c ∈ TS/k ⊗ k such that Kod0(∂i) = e1

∗ ⊗ vi for 1 ≤ i ≤ c,
i.e. we have

(4.11.5) < ∂i, daj >=

{
1 if i = j

0 if i 6= j
for 1 ≤ i, j ≤ c,

and
< ∂i, θj,` >= 0 for 1 ≤ i, j ≤ c, 2 ≤ ` ≤ d.

From (4.11.5), we see easily that da1, · · · , dac are linearly independent in ΩS/k⊗
k ' mR/m

2
R; therefore, (a1, · · · , ac) is a part of a regular system of parameters

of R. Statement (i) is proved.
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For statement (ii), we assume d = 1 and that (a1, · · · , ac) is a part of a regular
system of parameters of R. Then the formula (4.11.4) is simplified as

Kod0(∂) =
c∑
i=1

< ∂, dai > e1
∗ ⊗ vi.

Since da1, · · · , dac are linearly independent in Ω1
S/k⊗k, there exist ∂1, · · · , ∂c ∈

TS/k⊗k such that (4.11.5) holds, i.e. (e1
∗⊗vi)1≤i≤c are in the image of Kod0.

But the elements (e1
∗⊗vi)1≤i≤c form already a basis of H omOS (ωG,Lie(G∨))⊗

k. So Kod0 is surjective, and hence G is versal over S by Nakayama’s lemma.
Let G0 be the special fiber of G. It remains to prove that when d = 1, G is the
universal deformation of G0 if and only if dim(S) = c and G is versal over S.
Let S be the local moduli in characteristic p of G0. By the universal property
of G (3.7), there exists a unique morphism f : S → S such that G ' G×S S.
Since S and S are local complete regular schemes over k with residue field k of
the same dimension, f is an isomorphism if and only if the tangent map of f at
the closed point of S, denoted by Tf , is an isomorphism. By the functoriality
of Kodaira-Spencer maps (3.2.2), we have a commutative diagram

TS/k ⊗OS k

Tf

��

KodS0 // Homk(ωG0 ,Lie(G∨0 ))

TS/k ⊗OS
k

KodS
0 // Homk(ωG0 ,Lie(G∨0 ))

,

where horizontal arrows are the Kodaira-Spencer maps evaluated at the closed
points (3.3.1). Since KodS0 and KodS

0 are isomorphisms according to the first
part of this propostion, we deduce that so is Tf . This completes the proof. �

5. Monodromy of a HW-cyclic BT-group over a Complete Trait
of Characteristic p > 0

5.1. Let k be an algebraically closed field of characteristic p > 0, A be a com-
plete discrete valuation ring of characteristic p, with residue field k and fraction
field K. We put S = Spec(A), and denote by s its closed point, by η its generic
point. Let K be an algebraic closure of K, Ksep be the maximal separable
extension of K contained in K, Kt be the maximal tamely ramified extension
of K contained in Ksep. We put I = Gal(Ksep/K), Ip = Gal(Ksep/Kt) and
It = I/Ip = Gal(Kt/K).
Let π be a uniformizer of A; so we have A ' k[[π]]. Let v be the valuation on
K normalized by v(π) = 1; we denote also by v the unique extension of v to K.
For every α ∈ Q, we denote by mα (resp. by m+

α ) the set of elements x ∈ Ksep

such that v(x) ≥ α (resp. v(x) > α). We put

(5.1.1) Vα = mα/m
+
α ,

which is a k-vector space of dimension 1 equipped with a continuous action of
the Galois group I.
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5.2. First, we recall some properties of the inertia groups Ip and It [Se1, Chap.
IV]. The subgroup Ip, called the wild inertia subgroup, is the unique maximal
pro-p-group contained in I and hence normal in I. The quotient It = I/Ip
is a commutative profinite group, called the tame inertia group. We have a
canonical isomorphism

(5.2.1) θ : It
∼−→ lim←−

(d,p)=1

µd,

where the projective system is taken over positive integers prime to p, µd is the
group of d-th roots of unity in k, and the transition maps µm → µd are given
by ζ 7→ ζm/d, whenever d divides m. We denote by θd : It → µd the projection
induced by (5.2.1). Let q be a power of p, Fq be the finite subfield of k with q
elements. Then µq−1 = F×q , and we can write θq−1 : It → F×q . The character
θd is characterized by the following property.

Proposition 5.3 ([Se3] Prop.7). Let a, d be relatively prime positive integers
with d prime to p. Then the natural action of Ip on the k-vector space Va/d
(5.1.1) is trivial, and the induced action of It on Va/d is given by the character
(θd)a : It → µd. In particular, if q is a power of p, the action of It on V1/(q−1)

is given by the character θq−1 : It → F×q and any I-equivariant Fp-subspace of
V1/(q−1) is an Fq-vector space.

5.4. Let G be a BT-group over S. We define h(G) to be the valuation of the
determinant of a matrix of ϕG if dim(G∨) ≥ 1, and h(G) = 0 if dim(G∨) = 0.
We call h(G) the Hasse invariant of G.
(a) h(G) does not depend on the choice of the matrix representing ϕG. Indeed,
let c be the rank of Lie(G∨) over A, h ∈ Mc×c(A) be a matrix of ϕG. Any
other matrix representing ϕG can be written in the form U−1 · h · U (p), where
U ∈ GLc(A), U−1 is the inverse of U , and U (p) is the matrix obtained by
applying the Frobenius map of A to the coefficients of U .
(b) By 2.11, the generic fiber Gη is ordinary if and only if h(G) < ∞; G is
ordinary over T if and only h(G) = 0.
(c) Let 0→ G′ → G→ G′′ → 0 be a short exact sequence of BT-groups over T ,
then we have h(G) = h(G′) + h(G′′). Indeed, the exact sequence of BT-groups
induces a short exact sequence of Lie algebras (cf. [BBM] 3.3.2)

0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,

from which our assertion follows easily.

Proposition 5.5. Let G be a BT-group over S. Then we have h(G) = h(G∨).

Proof. The proof is very similar to that of Lemma 4.6. First, we have

h(G) = leng
(
Lie(G∨)/ϕ̃G(Lie(G∨)(p))

)
,

where ϕ̃G is the linearization of ϕG, and “ leng” means the length of a finite
A-module (note that this formulae holds even if dim(G∨) = 0). By the com-
mutative diagram (3.1.3), we have

h(G) = leng M(G)/(φG(Lie(G∨)(p)) + ωG).
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On the other hand, by applying the functor HomA(_, A) to the A-linear map
ϕ̃G∨ : Lie(G)(p) → Lie(G), we obtain a map ψG : ωG → ω

(p)
G . If U is a matrix

of ϕ̃G∨ , then the transpose of U , denoted by U t, is a matrix of ψG. So we have

h(G∨) = v(det(U)) = v(det(U t)) = leng
(
ω

(p)
G /ψG(ωG)

)
.

By diagram 3.1.3, we get

h(G∨) = leng M(G)/(φG(Lie(G∨)(p)) + ωG) = h(G).

�

5.6. Let G be a BT-group over S, c = dim(G∨). We put

(5.6.1) Tp(G) = lim
←−
n

G(n)(K)

the Tate module of G, where G(n) is the kernel of pn : G → G. It is a free
Zp-module of rank ≤ c, and the equality holds if and only if the generic fiber Gη
is ordinary. The Galois group I acts continuously on Tp(G). We are interested
in the image of the monodromy representation

(5.6.2) ρ : I = Gal(Ksep/K)→ AutZp(Tp(G)).

We denote by

(5.6.3) ρ : I = Gal(Ksep/K)→ AutFp
(
G(1)(K)

)
its reduction mod p.

Theorem 5.7 (Reformulation of Igusa’s theorem). Let G be a connected BT-
group over S of height 2 and dimension 1. Then G is versal (3.2) if and only if
h(G) = 1; moreover, if this condition is satisfied, the monodromy representation
ρ : I → AutZp(Tp(G)) ' Z×p is surjective.

Proof. Since Lie(G∨) is an OS-module free of rank 1, the condition that h(G) =
1 is equivalent to that any matrix of ϕG is represented by a uniformizer of A.
Hence the first part of this theorem follows from Proposition 4.11(ii).
We follow [Ka2, Thm 4.3] to prove the surjectivity of ρ under the assumption
that h(G) = 1. For each integer n ≥ 1, let

ρn : I → AutZ/pnZ(G(n)(K)) ' (Z/pnZ)×

be the reduction mod pn of ρ, Kn be the subfield of Ksep fixed by the kernel
of ρn. Then ρn induces an injective homomorphism Gal(Kn/K)→ (Z/pnZ)×.
By taking projective limits, we are reduced to proving the surjectivity of ρn for
every n ≥ 1. It suffices to verify that

| Im(ρn)| = [Kn : K] ≥ pn−1(p− 1)

(then the equality holds automatically).
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We regard G as a formal group over S. Then by [Ka2, 3.6], there exists a
parameter X of the formal group G normalized by the condition that [ξ](X) =
ξ(X) for all (p− 1)-th root of unity ξ ∈ Zp. For such a parameter, we have

[p](X) = a1X
p + αXp2

+
∑
m≥2

cmX
p(1+m(p−1)) ∈ A[[X]],

where we have v(a1) = h(G) = 1 by [Ka2, 3.6.1 and 3.6.5], and v(α) = 0, as G
is of height 2. For each integer i ≥ 0, we put

V (pi)(X) = ap
i

1 X + αp
i

Xp +
∑
m≥2

cp
i

mX
1+m(p−1) ∈ A[[X]];

then we have [pn](X) = V (pn−1) ◦ V (pn−2) ◦ · · · ◦ V (Xpn). Hence each point
of G(n)(K) is given by a sequence y1, · · · , yn ∈ Ksep (or simply an element
yn ∈ Ksep) satisfying the equations

V (y1) = a1y1 + αyp1 + · · · = 0;
V (p)(y2) = ap1y2 + αpyp2 + · · · = y1;
...
V (pn−1)(yn) = ap

n−1

1 yn + αp
n−1

ypn + · · · = yn−1.

Let yn ∈ Ksep be such that y1 6= 0. By considering the Newton polygons of
the equations above, we verify that

v(yi) =
1

pi−1(p− 1)
for 1 ≤ i ≤ n.

In particular, the ramification index e(Kn/K) is at least pn−1(p − 1). By the
definition of Kn, the Galois group Gal(Ksep/Kn) must fix yn ∈ Ksep, i.e. Kn

is an extension of K(yn). Therefore, we have [Kn : K] ≥ [K(yn) : K] ≥
e(K(yn)/K) ≥ pn−1(p− 1). �

Proposition 5.8. Let G be a HW-cyclic BT-group over S of height c+ d and
dimension d such that G⊗K is ordinary,

h =


0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3

...
. . .

...
0 0 · · · 1 −ac


be a matrix of ϕG. Put q = pc, ac+1 = 1, and P (X) =

∑c
i=0 ai+1X

pi ∈ A[X].
(i) Assume that G is connected and the Hasse invariant h(G) = 1. Then the
representation ρ (5.6.3) is tame, G(1)(K) is endowed with the structure of an
Fq-vector space of dimension 1, and the induced action of It is given by the
character θq−1 : It → F×q .
(ii) Assume that c > 1, v(ai) ≥ 2 for 1 ≤ i ≤ c − 1 and v(ac) = 1. Then the
order of Im(ρ) is divisible by pc−1(p− 1).
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(iii) Put i0 = min0≤i≤c{i; v(ai+1) = 0}. Assume that there exists α ∈ k such
that v(P (α)) = 1. Then we have i0 ≤ c− 1 and the order of Im(ρ) is divisible
by pi0 .

Proof. Since G is generically ordinary, we have a1 6= 0 by 2.11(d). Hence
P (X) ∈ K[X] is a separable polynomial. By 4.4, G(1)(K) ' (KerVG)(Ksep)
is identified with the additive group consisting of the roots of P (X) in Ksep.
(i) By definition of the Hasse invariant, we have v(a1) = h(G) = 1. By 4.4(ii),
the assumption that G is connected is equivalent to saying v(ai) ≥ 1 for 1 ≤
i ≤ c. From the Newton polygon of P (X), we deduce that all the non-zero
roots of P (X) in Ksep have the same valuation 1/(q − 1). We denote by

ψ : G(1)(K)→ V1/(q−1)

the map which sends each root x ∈ Ksep of P (X) to the class of x in V1/(q−1) =
m1/(q−1)/m

+
1/(q−1) (5.1.1). We remark that G(1)(K) is an Fp-vector space of

dimension c. Hence G(1)(K) is automatically of dimension 1 over Fq once
we know it is an Fq-vector space. By 5.3, it suffices to show that ψ is an
injective I-equivariant homomorphism of groups. By 4.4(i), ψ is obviously an
I-equivariant homomorphism of groups. Let x0 be a root of P (X), and put
Q(y) = P (x0y). Then the polynomial Q(y) has the form Q(y) = xq0Q1(y),
where

Q1(y) = yq + bcy
pc−1

+ · · ·+ b2y
p + b1y

with bi = ai/x
(q−pi−1)
0 ∈ Ksep. We have v(bi) > 0 for 2 ≤ i ≤ c and v(b1) = 0.

Let b1 be the class of b1 in the residue field k = m0/m
+
0 . Then the images of

the roots of P (X) in V1/(q−1) are x0b
1/(q−1)

1 ζ, where ζ runs over the finite field
Fq. Therefore, ψ is injective.
(ii) By computing the slopes of the Newton polygon of P (X), we see that P (X)
has pc−1(p − 1) roots of valuation 1/(pc − pc−1). Let L be the sub-extension
of Ksep obtained by adding to K all the roots of P (x). Then the ramification
index e(L/K) is divisible by pc−1(p − 1). Let L̃ be the sub-extension of Ksep

fixed by the kernel of ρ (5.6.3). The Galois group Gal(Ksep/L̃) fixes the roots
of P (x) by definition. Hence we have L ⊂ L̃, and | Im(ρ)| = [L̃ : K] is divisible
by [L : K]; in particular, it is divisible by pc−1(p− 1).
(iii) Note that the relation i0 ≤ c − 1 is equivalent to saying that G is not
connected by 4.4(ii). Assume conversely i0 = c, i.e. G is connected. Then we
would have

P (X) ≡ Xq mod (πA[X]).
But v(P (α)) = 1 implies that αp

c ∈ πA, i.e. α = 0; hence we would have
P (α) = 0, which contradicts the condition v(P (α)) = 1.
We put Q(X) = P (X + α) = P (X) + P (α). As v(P (α)) = 1, then (0, 1) and
(pi0 , 0) are the first two break points of the Newton polygon of Q(X). Hence
there exists pi0 roots of Q(X) of valuation 1/pi0 . Let L be the subextension
of K in Ksep generated by the roots of P (X). The ramification index e(L/K)
is divisible by pi0 . As in the proof of (ii), if L̃ is the subextension of Ksep
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fixed by the kernel of ρ, then it is an extension of L. Therefore, we have
| Im(ρ)| = [L̃ : K] is divisible by [L : K], and in particular, divisible by pi0 . �

5.9. Let G be a BT-group over S with connected part G◦, and étale part Gét

of height r. We have a canonical exact sequence of I-modules

(5.9.1) 0→ G◦(1)(K)→ G(1)(K)→ Gét(1)(K)→ 0

giving rise to a class C ∈ Ext1
Fp[I](G

ét(1)(K), G◦(1)(K)), which vanishes if
and only if (5.9.1) splits. Since I acts trivially on Gét(1)(K), we have an
isomorphism of I-modules Gét(1)(K) ' Frp. Recall that for any Fp[I]-module
M , we have a canonical isomorphism ([Se1] Chap.VII, §2)

Ext1
Fp[I](Fp,M) ' H1(I,M).

Hence we deduce that

(5.9.2) C ∈ Ext1
Fp[I](G

ét(1)(K), G◦(1)(K)) ' H1(I,G◦(1)(K))r.

Proposition 5.10. Let G be a HW-cyclic BT-group over S such that h(G) = 1,
ρ (5.6.3) be the representation of I on G(1)(K). Then the cohomology class C
does not vanish if and only if the order of the group Im(ρ) is divisible by p.

First, we prove the following result on cohomology of groups.

Lemma 5.11. Let F be a field, Γ be a commutative group, and χ : Γ→ F× be a
non-trivial character of Γ. We denote by F (χ) an F -vector space of dimension
1 endowed with an action of Γ given by χ. Then we have H1(Γ, F (χ)) = 0.

Proof. Let C be a 1-cocycle of Γ with values in F (χ). We prove that C is a
1-coboundary. For any g, h ∈ Γ, we have

C(gh) = C(g) + χ(g)C(h),

C(hg) = C(h) + χ(h)C(g).

Since Γ is commutative, it follows from the relation C(gh) = C(hg) that

(5.11.1) (χ(g)− 1)C(h) = (χ(h)− 1)C(g).

If χ(g) 6= 1 and χ(h) 6= 1, then
1

χ(g)− 1
C(g) =

1
χ(h)− 1

C(h).

Therefore, there exists x ∈ F (χ) such that C(g) = (χ(g) − 1)x for all g ∈ Γ
with χ(g) 6= 1. If χ(g) = 1, we have also C(g) = 0 = (χ(g) − 1)x by (5.11.1).
This shows that C is a 1-coboundary. �

Proof of 5.10. By 4.3(ii) and 5.4(c), the connected part G◦ of G is HW-cyclic
with h(G◦) = h(G) = 1. Assume that Tp(G◦) has rank ` over Zp, and Tp(Gét)
has rank r. Then by 5.8(a), G◦(1)(K) is an Fq-vector space of dimension 1 with
q = p`, and the action of I on G◦(1)(K) factors through the character χ : I →
It

θq−1−−−→ F×q . We write G◦(1)(K) = Fq(χ) for short. If the cohomology class
C is zero, then the exact sequence (5.9.1) splits, i.e. we have an isomorphism
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of Galois modules G(1)(K) ' Fq(χ)⊕ Frp. It is clear that the group Im(ρ) has
order q − 1.
Conversely, if the cohomology class C is not zero, we will show that there exists
an element in Im(ρ) of order p. We choose a basis adapted to the exact sequence
(5.9.1) such that the action of g ∈ I is given by

(5.11.2) ρ(g) =
(
χ(g) C(g)

0 1r

)
,

where 1r is the unit matrix of type (r, r) with coefficients in Fp, and the map
g 7→ C(g) gives rise to a 1-cocycle representing the cohomology class C. Let
I1 be the kernel of χ : I → F×q , Γ be the quotient I/I1, so χ induces an
isomorphism χ : Γ ∼−→ F×q . We have an exact sequence

0→ H1(Γ,Fq(χ))r Inf−−→ H1(I,Fq(χ))r Res−−→ H1(I1,Fq(χ))r,

where “Inf” and “Res” are respectively the inflation and restriction homomor-
phisms in group cohomology. Since H1(Γ,Fq(χ))r = 0 by 5.11, the restriction
of the cohomology class C to H1(I1,Fq(χ))r is non-zero. Hence there exists
h ∈ I1 such that C(h) 6= 0. As we have χ(h) = 1, then

ρ(h)p =
(
1` pC(h)
0 1r

)
= 1`+r.

Thus the order of ρ(h) is p. �

Corollary 5.12. Let G be a HW-cyclic BT-group over S,

h =


0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3

...
. . .

...
0 0 · · · 1 −ac


be a matrix of ϕG, P (X) = Xpc + acX

pc−1
+ · · · + a1X ∈ A[X]. If h(G) = 1

and if there exists α ∈ k ⊂ A such that v(P (α)) = 1, then the cohomology class
(5.9.2) is not zero, i.e. the extension of I-modules (5.9.1) does not split.

Proof. Since v(a1) = h(G) = 1, the integer i0 defined in 5.8(iii) is at least 1.
Then the corollary follows from 5.8(iii) and 5.10. �

6. Lemmas in Group Theory

In this section, we fix a prime number p ≥ 2 and an integer n ≥ 1.

6.1. Recall that the general linear group GLn(Zp) admits a natural exhaustive
decreasing filtration by normal subgroups

GLn(Zp) ⊃ 1 + pMn(Zp) ⊃ · · · ⊃ 1 + pmMn(Zp) ⊃ · · · ,
where Mn(Zp) denotes the ring of matrix of type (n, n) with coefficients in Zp.
We endow GLn(Zp) with the topology for which (1 + pmMn(Zp))m≥1 form a
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fundamental system of neighborhoods of 1. Then GLn(Zp) is a complete and
separated topological group.

6.2. Let G be a profinite group, ρ : G→ GLn(Zp) be a continuous homomor-
phism of topological groups. By taking inverse images, we obtain a decreasing
filtration (FmG,m ∈ Z≥0) on G by open normal subgroups:

F 0G = G, and FmG = ρ−1(1 + pmMn(Zp)) for m ≥ 1.

Furthermore, the homomorphism ρ induces a sequence of injective homomor-
phisms of finite groups

ρ0 : F 0G/F 1G −→ GLn(Fp)(6.2.1)

ρm : FmG/Fm+1G→ Mn(Fp), for m ≥ 1.(6.2.2)

Lemma 6.3. The homomorphism ρ is surjective if and only if the following
conditions are satisfied:
(i) The homomorphism ρ0 is surjective.
(ii) For every integer m ≥ 1, the subgroup Im(ρm) of Mn(Fp) contains an
element of the form 

x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


with x 6= 0; or equivalently, there exists, for every m ≥ 1, an element gm ∈ G
such that ρ(gm) is of the form

1 + pma1,1 pm+1a1,2 · · · pm+1a1,n

pm+1a2,1 1 + pm+1a2,2 · · · pm+1a2,n

...
...

. . .
...

pm+1an,1 pm+1an,2 · · · 1 + pm+1an,n

 ,

where ai,j ∈ Zp for 1 ≤ i, j ≤ n and a1,1 is not divisible by p.

Proof. We notice first that ρ is surjective if and only if ρm is surjective for every
m ≥ 0, because G is complete and GLn(Zp) is separated [Bou, Chap. III §2
n◦8 Cor.2 au Théo. 1]. The surjectivity of ρ0 is condition (i). Condition (ii) is
clearly necessary. We prove that it implies the surjectivity of ρm for all m ≥ 1,
under the assumption of (i). First, we remark that under condition (i), if A
lies in Im(ρm), then for any U ∈ GLn(Fp) the conjuagate matrix U · A · U−1

lies also in Im(ρm). In fact, let Ã be a lift of A in Mn(Zp) and Ũ ∈ GLn(Zp) a
lift of U . By assumption, there exist g, h ∈ G such that

ρ(g) ≡ 1+pmÃ mod (1+pm+1Mn(Zp)) and ρ(h) ≡ Ũ mod (1+pMn(Zp)).

Therefore, we have ρ(hgh−1) ≡ (1 + pmŨ · Ã · Ũ−1) mod (1 + pm+1Mn(Zp)).
Hence hgh−1 ∈ FmG and ρm(hgh−1) = U ·A · U−1.
For 1 ≤ i, j ≤ n, let Ei,j ∈ Mn(Fp) be the matrix whose (i, j)-th entry is
0 and the other entries are 0. The matrices Ei,j(1 ≤ i, j ≤ n) form clearly
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a basis of Mn(Fp) over Fp. To prove the surjectivity of ρm, we only need
to verify that Ei,j ∈ Im(ρm) for 1 ≤ i, j ≤ n, because Im(ρm) is an Fp-
subspace of Mn(Fp). By assumption, we have E1,1 ∈ Im(ρm). For 2 ≤ i ≤ n,
we put Ui = E1,i − Ei,1 +

∑
j 6=1,iEj,j . Then we have Ui ∈ GLn(Zp) and

Ui · E1,1 · U−1
i = Ei,i ∈ Im(ρm). For 1 ≤ i < j ≤ n, we put Ui,j = I + Ei,j

where I is the unit matrix. Then we have Ui,j ·Ei,i ·U−1
i,j = Ei,i+Ei,j ∈ Im(ρm),

and hence Ei,j ∈ Im(ρm). This completes the proof.
�

Remark 6.4. By using the arguments in [Se2, Chap. IV 3.4 Lemma 3], we can
prove the following stronger form of Lemma 6.3: If p = 2, condition (i) and
(ii) for m = 1, 2 are sufficient to guarantee the surjectivity of ρ; if p ≥ 3, then
(i) and (ii) just for m = 1 suffice already.

A subgroup C of GLn(Fp) is called a non-split Cartan subgroup, if the subset
C∪{0} of the matrix algebra Mn(Fp) is a field isomorphic to Fpn ; such a group
is cyclic of order pn − 1.

Lemma 6.5. Assume that n ≥ 2. We denote by H the subgroup of GLn(Fp)

consisting of all the elements of the form
(
A b
0 1

)
, where A ∈ GLn−1(Fp) and

b =

 b1
...

bn−1

 with bi ∈ Fp(1 ≤ i ≤ n − 1). Let G be a subgroup of GLn(Fp).

Then G = GLn(Fp) if and only if G contains H and a non-split Cartan subgroup
of GLn(Fp).

Proof. The “only if” part is clear. For the “if” part, let C be a non-split Cartan
subgroup contained in G. For a finite group Λ, we denote by |Λ| its order. An
easy computation shows that |GLn(Fp)| = |H| · |C|. So we just need to prove
that U∩C = {1}; since then we will have |GLn(Fp)| = |G|, hence G = GLn(Fp).
Let g ∈ H ∩ C, and P (T ) ∈ Fp[T ] be its characteristic polynomial. We fix an
isomorphism C ' F×pn , and let ζ ∈ F×pn be the element corresponding to g. We
have P (T ) =

∏
σ∈Gal(Fpn/Fp)(T − σ(ζ)) in Fpn [T ]. On the other hand, the fact

that g ∈ H implies that (T − 1) divises P (T ). Therefore, we get ζ = 1, i.e.
g = 1. �

Remark 6.6. E. Lau point out the following strengthened version of 6.5: When
n ≥ 3, a subgroup G ⊂ GLn(Fp) coincides with GLn(Fp) if and only if G

contains a non-split Cartan subgroup and the subgroup
(

GLn−1(Fp) 0
0 1

)
. This

can be used to simplify the induction process in the proof of Theorem 7.3 when
n ≥ 3.
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7. Proof of Theorem 1.3 in the One-dimensional Case

7.1. We start with a general remark on the monodromy of BT-groups. Let X
be a scheme, G be an ordinary BT-group over a scheme X, Gét be its étale
part (2.10.1). If η is a geometric point of X, we denote by

Tp(G, η) = lim←−
n

G(n)(η) = lim←−
n

Gét(n)(η)

the Tate module of G at η, and by ρ(G) the monodromy representation of
π1(X, η) on Tp(G, η). Let f : Y → X be a morphism of schemes, ξ be a
geometric point of Y , GY = G ×X Y . Then by the functoriality, we have a
commutative diagram

(7.1.1) π1(Y, ξ)
π1(f) //

ρ(GY )

��

π1(X, f(ξ))

ρ(G)

��
AutZp(Tp(GY , ξ)) AutZp(Tp(G, f(ξ)))

In particular, the monodromy of GY is a subgroup of the monodromy of G. In
the sequel, diagram (7.1.1) will be refereed as the functoriality of monodromy
for the BT-group G and the morphism f .

7.2. Let k be an algebraically closed field of characteristic p > 0, G be the
unique connected BT-group over k of dimension 1 and height n+ 1 ≥ 2 (4.10).
We denote by S the algebraic local moduli of G in characteristic p, by G the
universal deformation of G over S, and by U the ordinary locus of G over S
(3.8). Recall that S is affine of ring R ' k[[t1, · · · , tn]] (3.7), and that G and
G are HW-cyclic (cf. 4.3(i) and 4.10). Let η be a geometric point of U over
its generic point. We put

Tp(G, η) = lim←−
m∈Z≥1

G(m)(η)

to be the Tate module of G at the point η. This is a free Zp-module of rank
n. We have the monodromy representation

ρn : π1(U, η)→ AutZp(Tp(G, η)) ' GLn(Zp).

The following is the one-dimensional case of Theorem 1.3.

Theorem 7.3. Under the above assumptions, the homomorphism ρn is surjec-
tive for n ≥ 1.

7.4. First, we assume n ≥ 2. By Proposition 4.11(ii), we may assume that

(7.4.1) h =


0 0 · · · 0 −t1
1 0 · · · 0 −t2
0 1 · · · 0 −t3
...

. . .
...

0 0 · · · 1 −tn


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is a matrix of the Hasse-Witt map ϕG. Let p be the prime ideal of R generated
by t1, · · · , tn−1. Then the closed subscheme of S defined by p is just the locus
where the p-rank of G is ≤ 1 by 4.4(ii). Let K0 ' k((tn)) be the fraction
field of R/p, R′ = R̂p be the completion of the localization of R at p, and
GR′ = G ⊗R R′. Since the natural map R → R′ is injective, for any a ∈ R,
we will denote also by a its image in R′. Since the Hasse-Witt map commutes
with base change, the image of h in Mn×n(R′), denoted also by h, is a matrix
of ϕGR′ . We see easily that the étale part of GR′ has height 1 and its connected
part G ◦R′ has height n. We have an exact sequence of BT-groups over R′

(7.4.2) 0→ G ◦R′ → GR′ → G ét
R′ → 0.

We fix an imbedding i : K0 → K0 of K0 into an algebraically closed field. Put
G ∗
K0

= G ∗R′ ⊗K0 for ∗ = ∅, ét, ◦. We have G ét
K0
' Qp/Zp, and G ◦

K0
is the unique

connected one-dimensional BT-group over K0 of height n (cf. 4.10). We put
R̃′ = K0[[x1, · · · , xn−1]], and

(7.4.3) Σ = {ring homomorphisms σ : R′ → R̃′ lifting R′ → K0
i−→ K0}

Let σ ∈ Σ. We deduce from (7.4.2) by base change an exact sequence of
BT-groups over R̃′

(7.4.4) 0→ G ◦fR′,σ → GfR′,σ → G étfR′,σ → 0,

where we have put G ∗fR′,σ = G ∗R′ ⊗σ R̃′ for ∗ = ◦, ∅, ét. Due to the henselian

property of R̃′, the isomorphism G ét
K0
' Qp/Zp lifts uniquely to an isomorphism

G étfR′,σ ' Qp/Zp . Assume that G ◦fR′,σ is generically ordinary over S̃′ = Spec(R̃′).

Let Ũ ′σ ⊂ S̃′ be its ordinary locus, and x be a geometric point over the generic
point of Ũ ′σ. The exact sequence (7.4.4) induces an exact sequence of Tate
modules

(7.4.5) 0→ Tp(G ◦fR′,σ, x)→ Tp(GfR′,σ, x)→ Tp(G étfR′,σ, x)→ 0

compatible with the actions of π1(Ũ ′σ, x). Since we have Tp(G étfR′,σ, x) '
Tp(Qp/Zp, x) = Zp, this determines a cohomology class

(7.4.6) Cσ ∈ Ext1
Zp[π1( eU ′σ,x)]

(Zp,Tp(G ◦fR′,σ, x)) ' H1(π1(Ũ ′σ, x),Tp(G ◦fR′,σ, x)).

We consider also the “mod-p version” of (7.4.5)

0→ G ◦fR′,σ(1)(x)→ GfR′,σ(1)(x)→ Fp → 0,

which determines a cohomology class

(7.4.7) Cσ ∈ Ext1
Fp[π1( eU ′σ,x)]

(Fp,G ◦fR′,σ(1)(x)) ' H1(π1(Ũ ′σ, x),G ◦fR′,σ(1)(x)).

It is clear that Cσ is the image of Cσ by the canonical reduction map

H1(π1(Ũ ′σ, x),Tp(G ◦fR′,σ, x))→ H1(π1(Ũ ′σ, x),G ◦fR′,σ(1)(x)).
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Lemma 7.5. Under the above assumptions, there exist σ1, σ2 ∈ Σ satisfying the
following properties:
(i) We have G ◦fR′,σ1

= G ◦fR′,σ2
, and it is the universal deformation of G ◦

K0
.

(ii) We have Cσ1 = 0 and Cσ2 6= 0.

Before proving this lemma, we prove first Theorem 7.3.

Proof of 7.3. First, we notice that the monodromy of a BT-group is inde-
pendent of the base point. So we can change η to any geometric point of U
when discussing the monodromy of G. We make an induction on the codimen-
sion n = dim(G∨). The case of n = 1 is proved in Theorem 5.7. Assume that
n ≥ 2 and the theorem is proved for n− 1. We denote by

ρn : π1(U, η)→ AutFp(G(1)(η)) ' GLn(Fp)

the reduction of ρn modulo by p. By Lemma 6.3 and 6.5, to prove the surjec-
tivity of ρn, we only need to verify the following conditions:
(a) Im(ρn) contains a non-split Cartan subgroup of GLn(Fp);
(b) Im(ρn) contains the subgroup H ⊂ GLn(Zp) consisting of all the elements

of the form
(
B b
0 1

)
∈ GLn(Zp), with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp);

For condition (a), let A = k[[π]], T = Spec(A), ξ be its generic point, ξ be a
geometric point over ξ, and I = Gal(ξ/ξ) be the absolute Galois group over
ξ. We keep the notations of 7.4. Let f∗ : R → A be the homomorphism of
k-algebras such that f∗(t1) = π and f∗(ti) = 0 for 2 ≤ i ≤ n. We denote by
f : T → S the corresponding morphism of schemes, and put GT = G×S T . By
the functoriality of Hasse-Witt maps,

hT =


0 0 · · · 0 −π
1 0 · · · 0 0
...

. . .
...

0 0 · · · 1 0


is a matrix of ϕGT . By definition 5.4, the Hasse invariant of GT is h(G) = 1.
Hence GT is generically ordinary; so f(ξ) ∈ U. Let

ρT : I = Gal(ξ/ξ)→ AutFp(GT (1)(ξ))

be the mod-p monodromy representation attached to GT . Proposition 5.8(i)
implies that Im(ρT ) is a non-split Cartan subgroup of GLn(Fp). On the other
hand, by the functoriality of monodromy, we get Im(ρT ) ⊂ Im(ρn). This verifies
condition (a).
To check condition (b), we consider the constructions in 7.4. Let S′ = Spec(R′),
f : S′ → S be the morphism of schemes corresponding to the natural ring
homomorphism R→ R′, U ′ be the ordinary locus of GR′ , and ξ be a geometric
point of U ′. From (7.4.2), we deduce an exact sequence of Tate modules

(7.5.1) 0→ Tp(G ◦R′ , ξ)→ Tp(GR′ , ξ)→ Tp(G ét
R′ , ξ)→ 0.
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Let ρG ′ : π1(U ′, ξ)→ AutZp(Tp(GR′ , ξ)) ' GLn(Zp) be the monodromy repre-
sention of GR′ . Under any basis of Tp(GR′ , ξ) adapted to (7.5.1), the action of
π1(U ′, ξ) on Tp(GR′ , ξ) is given by

ρGR′ : g ∈ π1(U ′, ξ) 7→

(
ρG ◦

R′
(g) ∗

0 ρG ét
R′

(g),

)
where g 7→ ρG ◦

R′
(g) ∈ GLn−1(Zp) (resp. g 7→ ρG ét

R′
(g) ∈ Z×p ) gives the action

of π1(U ′, ξ) on Tp(G ◦R′ , ξ) (resp. on Tp(G ét
R′ , ξ)). Note that f(U ′) ⊂ U. So by

the functoriality of monodromy, we get Im(ρG ′) ⊂ Im(ρn). To complete the
proof of Theorem 7.3, it suffices to check condition (b) with ρn replaced by ρGR′

under the induction hypothesis that 7.3 is valide for n−1. Let σ1, σ2 : R′ → R̃′

be the homomorphisms given by 7.5. For i = 1, 2, we denote by fi : S̃′ =
Spec(R̃′)→ S′ = Spec(R′) the morphism of schemes corresponding to σi, and
put Gi = GfR′,σi = GR′ ⊗σi R̃′ to simply the notations. By condition 7.5(i), we

can denote by G ◦ the common connected component of G1 and G2. Let Ũ ′ ⊂ S̃′
be the ordinary locus of G ◦. Then we have fi(Ũ ′) ⊂ U ′ for i = 1, 2. Let x be
a geometric point over the generic point of Ũ ′. We have an exact sequence of
Tate modules

(7.5.2) 0→ Tp(G ◦, x)→ Tp(Gi, x)→ Tp(Qp/Zp, x)→ 0

compatible with the actions of π1(Ũ ′, x). We denote by

ρGi : π1(Ũ ′, x)→ AutZp(Tp(Gi, x)) ' GLn(Zp)

the monodromy representation of Gi. In a basis adapted to (7.5.2), the action
of π1(Ũ ′, x) on Tp(Gi, x) is given by

ρGi : g 7→
(
ρG ◦(g) Cσi(g)

0 1

)
,

where ρG ◦ : π1(Ũ ′, x) → GLn−1(Zp) is the monodromy representation of G ◦,
and the cohomology class in H1(π1(Ũ ′, x),Tp(G ◦)) given by g 7→ Cσi(g) is
nothing but the class defined in (7.4.6). By 7.5(i) and the induction hypothesis,
ρG ◦ is surjective. Since the cohomology class Cσ1 = 0 by 7.5(ii), we may assume
Cσ1(g) = 0 for all g ∈ π1(U ′, x). Therefore Im(ρG1) contains all the matrix of

the form
(
B 0
0 1

)
with B ∈ GLn−1(Zp). By the functoriality of monodromy,

Im(ρGR′ ) contains Im(ρG1). Hence we have

(7.5.3)
(

GLn−1(Zp) 0
0 1

)
⊂ Im(ρG1) ⊂ Im(ρGR′ ).

On the other hand, since the cohomology class Cσ2 6= 0, there exists a
g ∈ π1(Ũ ′, x) such that b2 = Cσ2(g) 6= 0. Hence the matrix ρG2(g) has the

form
(
B2 b2
0 1

)
such that B2 ∈ GLn−1(Zp) and the image of b2 ∈ M1×n−1(Zp)

Documenta Mathematica 14 (2009) 281–324



316 Yichao Tian

in M1×n−1(Fp) is non-zero. By the functoriality of monodromy, we have

Im(ρG2) ⊂ Im(ρGR′ ); in particular, we have
(
B2 b2
0 1

)
∈ Im(ρGR′ ). In view

of (7.5.3), we get

(7.5.4)
(

GLn−1(Zp) 0
0 1

)(
B2 b2
0 1

)(
GLn−1(Zp) 0

0 1

)
⊂ Im(ρGR′ ).

But the subset of GLn(Zp) on the left hand side is just the subgroup H
described in condition (b). Therefore, condition (b) is verified for ρGR′ , and
the proof of 7.3 is complete.

The rest of this section is dedicated to the proof of Lemma 7.5.

Lemma 7.6. Let k be an algebraically closed field of characteristic p > 0, A
be a noetherian henselian local k-algebra with residue field k, G be a BT-group
over A, and Gét be its étale part. Put

Lie(G∨)ϕ=1 = {x ∈ Lie(G∨) such that ϕG(x) = x}.

Then Lie(G∨)ϕ=1 is an Fp-vector space of dimension equal to the rank
of Lie(Gét∨), and the A-submodule Lie(Gét∨) of Lie(G∨) is generated by
Lie(G∨)ϕ=1.

Proof. Let r be the rank of Lie(Gét∨), G◦ be the connected part of G, and s
be the height of Lie(G◦∨). We have an exact sequence of A-modules

0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,

compatible with Hasse-Witt maps. We choose a basis of Lie(G∨) adapted to

this exact sequence, so that ϕG is expressed by a matrix of the form
(
U W
0 V

)
with U ∈ Mr×r(A), V ∈ Ms×s(A), and W ∈ Mr×s(A). An element of

Lie(G∨)ϕ=1 is given by a vector
(
x
y

)
, where x =

x1

...
xr

 and y =

y1

...
ys

 with

xi, yj ∈ A, satisfying

(7.6.1)
(
U W
0 V

)
·
(
x(p)

y(p)

)
=
(
x
y

)
⇔

{
U · x(p) +W · y(p) = x

V · y(p) = y.

where x(p) (resp. y(p)) is the vector obtained by applying a 7→ ap to each xi(1 ≤
i ≤ r) (resp. yj(1 ≤ j ≤ s)). By 2.9, the Hasse-Witt map of the special fiber of
G◦ is nilpotent. So there exists an integer N ≥ 1 such that ϕNG◦(Lie(G◦∨)) ⊂
mA · Lie(G◦∨), i.e. we have V · V (p) · · ·V (pN−1) ≡ 0 (mod mA). From the
equation V · y(p) = y, we deduce that

y = V · V (p) · · ·V (pN−1) · y(pN ) ≡ 0 (mod mA).
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But this implies that y(pN ) ≡ 0 (mod mpN

A ). Hence we get y = V · y(p) ≡
0 (mod mpN+1

A ). Repeting this argument, we get finally y ≡ 0 (mod m`
A)

for all integers ` ≥ 1, so y = 0. This implies that Lie(G∨)ϕ=1 ⊂ Lie(Gét∨),
and the equation (7.6.1) is simplified as U · x(p) = x. Since the linearization
of ϕGét is bijective by 2.11, we have U ∈ GLr(A). Let U be the image of
U in GLr(k), and Sol be the solutions of the equation U · x(p) = x. As k is
algebraically closed, Sol is an Fp-space of dimension r, and Lie(Gét∨) ⊗ k is
generated by Sol (cf. [Ka2, Prop. 4.1]). By the henselian property of A, every
elements in Sol lifts uniquely to a solution of U ·x(p) = x, i.e. the reduction map
Lie(G∨)ϕ=1 ∼−→ Sol is bijective. By Nakayama’s lemma, Lie(G∨)ϕ=1 generates
the A-module Lie(Gét∨). �

7.7. We keep the notations of 7.4. Let CompK0
be the category of noetherian

complete local K0-algebras with residue field K0, DGK0
(resp. DG ◦

K0
) be the

functor which associates to every object A of CompK0
the set of isomorphsm

classes of deformations of GK0
(resp. G ◦

K0
) . If A is an object in CompK0

and
G is a deformation of GK0

(resp. G ◦
K0

) over A, we denote by [G] its isomorphic
class in DGK0

(A) (resp. in DG ◦
K0

).

Lemma 7.8. Let Σ be the set defined in (7.4.3).
(i) The morphism of sets Φ : Σ→ DGK0

(R̃′) given by σ 7→ [GfR′,σ] is bijective.
(ii) Let σ ∈ Σ. Then there exists a basis of Lie(G ◦∨fR′,σ) such that ϕG ◦fR′,σ is
represented by a matrix of the form

(7.8.1) h◦σ =


0 0 · · · 0 a1

1 0 · · · 0 a2

...
. . .

...
0 0 · · · 1 an−1


with ai ≡ α · σ(ti) (mod m2fR′) for 1 ≤ i ≤ n− 1, where α ∈ R̃′

×
and mfR′ is the

maximal ideal of R̃′. In particular, G ◦fR′,σ is the universal deformation of G ◦
K0

if and only if {σ(t1), · · · , σ(tn−1)} is a system of regular parameters of R̃′.

Proof. (i) We begin with a remark on the Kodaira-Spencer map of GR′ . Let
TS/k = H omOS

(Ω1
S/k,OS) be the tangent sheaf of S. Since G is universal,

the Kodaira-Spencer map (3.2.2)

Kod : TS/k
∼−→H omOS

(ωG,Lie(G∨))

is an isomorphism. By functoriality, this induces an isomorphism of R′-modules

(7.8.2) KodR′ : TR′/k
∼−→ HomR′(ωGR′ ,Lie(G ∨R′)),

where TR′/k = HomR′(Ω1
R′/k, R

′) = Γ(S,TS/k)⊗R R′.
For each integer ν ≥ 0, we put R̃′ν = R̃′/mν+1fR′ , Σν to be the set of liftings of

R→ K0 → K0 to R→ R̃′ν , and Φν : Σν → DGK0
(R̃′ν) to be the morphism of
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sets σν 7→ [GR′⊗σν R̃′ν ]. We prove by induction on ν that Φν is bijective for all
ν ≥ 0. This will complete the proof of (i). For ν = 0, the claim holds trivially.
Assume that it holds for ν − 1 with ν ≥ 1. We have a commutative diagram

Σν

��

Φν // DGK0
(R̃′ν)

��
Σν−1

Φν−1 // DGK0
(R̃′ν−1),

where the vertical arrows are the canonical reductions, and the lower arrow
is an isomorphism by induction hypothesis. Let τ be an arbitrary element of
Σν−1. We denote by Σν,τ ⊂ Σν the preimage of τ , and by DΦν−1(τ)(R̃′ν) ⊂
DGK0

(R̃′ν) the preimage of Φν−1(τ). It suffices to prove that Φν induces a

bijection between Σν,τ and DΦν−1(τ)(R̃′ν). Let Iν = mνfR′/mν+1fR′ be the ideal of

the reduction map R̃′ν → R̃′ν−1. By [EGA, 0IV 21.2.5 and 21.9.4], we have
Ω1
R′/k ' Ω̂1

R′/k, and they are free over A of rank n. By [EGA, 0IV 20.1.3], Σν,τ
is a (nonempty) homogenous space under the group

HomK0(Ω1
R′/k ⊗R′ K0, Iν) = TR′/k ⊗R′ Iν .

On the other hand, according to 3.5(i), DΦν−1(τ)(R̃′ν) is a homogenous space
under the group

HomK0
(ωGK0

,Lie(G ∨
K0

))⊗K0
Iν = HomR′(ωGR′ ,Lie(G ∨R′))⊗R′ Iν .

Moreover, it is easy to check that the morphism of sets Φν : Σν,τ →
DΦν−1(τ)(R̃′ν) is compatible with the homomorphism of groups

KodR′ ⊗R′ Id : TR′/k ⊗R′ Iν → HomR′(ωGR′ ,Lie(G ∨R′))⊗R′ Iν ,
where KodR′ is the Kodaira-Spencer map (7.8.2) associated to GR′ . The bijec-
tivity of Φν now follows from the fact that KodR′ is an isomorphism.
(ii) The second part of the statement follows immediately from 4.11. It remains
to compute the Hasse-Witt map of G ◦fR′,σ. We determine first the submodule

Lie(G ét∨fR′,σ) of Lie(G ∨fR′,σ). We choose a basis of Lie(G∨) over OS such that ϕG

is expressed by the matrix h (7.4.1). As GfR′,σ derives from G by base change

R → R′
σ−→ R̃′, there exists a basis (e1, · · · , en) of Lie(G ∨fR′,σ) such that ϕG fR′,σ

is expressed by

hσ =


0 0 · · · 0 −σ(t1)
1 0 · · · 0 −σ(t2)
...

. . .
...

0 0 · · · 1 −σ(tn)

 .

By Lemma 7.6, Lie(G ét∨fR′,σ) is generated by Lie(G ∨fR′,σ)ϕ=1. If
∑n
i=1 xnen ∈

Lie(G ∨fR′,σ)ϕ=1 with xi ∈ R̃′ for 1 ≤ i ≤ n, then (xi)1≤i≤n must satisfy the
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equation hσ ·

x
p
1
...
xpn

 =

x1

...
xn

 ; or equivalently,

(7.8.3)



x1 = −σ(t1)xpn
x2 = −σ(t2)xpn − σ(t1)pxp

2

n

· · ·
xn−1 = −σ(tn−1)xpn − · · · − σ(t1)p

n−2
xp

n−1

n

σ(t1)p
n−1

xp
n

n + σ(t2)p
n−2

xp
n−1

n + · · ·+ σ(tn)xpn + xn = 0.

We note that σ(ti) ∈ mfR′ for 1 ≤ i ≤ n − 1 and σ(tn) ∈ R̃′
×

with image
i(tn) ∈ K0, where i : K0 → K0 is the fixed immbedding. By Hensel’s lemma,
every solution inK0 of the equation i(tn)xpn+xn = 0 lifts uniquely to a solution
of (7.8.3). As Lie(G ét∨fR′,σ) has rank 1, by Lemma 7.6, these are all the solutions
of (7.8.3). Let (λ1, · · · , λn) be a non-zero solution of (7.8.3). We have

(7.8.4) λn ∈ R̃′
×

and λi ≡ −λpnσ(ti) (mod m2fR′).
We put v = λ1e1 + · · · + λnen; so v is a basis of Lie(G ét∨fR′,σ) by 7.6. For
1 ≤ i ≤ n, let fi be the image of ei in Lie(G ◦∨fR′,σ). Then f1, · · · , fn clearly

generate Lie(G ◦∨fR′,σ). By the explicit description above of Lie(G ét∨fR′,σ), we have
fn = −λ−1

n (λ1f1 · · ·+λn−1fn−1). Hence f1, · · · , fn−1 form a basis of Lie(G ◦∨fR′,σ).
By the functoriality of Hasse-Witt maps, we have ϕG ◦fR′ (fi) = fi+1 for 1 ≤ i ≤
n− 1, or equivalently,

ϕG ◦fR′,σ (f1, · · · , fn−1) = (f1, · · · , fn−1) ·


0 0 · · · 0 −λ−1

n λ1

1 0 · · · 0 −λ−1
n λ2

...
. . .

...
0 0 · · · 1 −λ−1

n λn−1

 .

In view of (7.8.4), we see that the above matrix has the form of (7.8.1) by
setting α = λp−1

n ∈ R̃′
×
. The second part of statement (ii) follows immediately

from Proposition 4.11(ii) and the description above of ϕG ◦fR′,σ . �

Now we can turn to the proof of 7.5.

7.9. Proof of Lemma 7.5. First, suppose that we have found a σ2 ∈ Σ
such that Cσ2 6= 0 and G ◦fR′,σ2

is the universal deformation of G ◦
K0

. Since

Φ : Σ ∼−→ DGK0
(R̃′) is bijective by 7.8(i), there exists a σ1 ∈ Σ corresponding to

the deformation [G ◦fR′,σ2
⊕Qp/Zp] ∈ DGK0

(R̃′). It is clear that G ◦fR′,σ1
' G ◦fR′,σ2

.
Besides, the exact sequence (7.4.5) for σ1 splits; so we have Cσ1 = 0. It
remains to prove the existence of σ2. We note first that K0 can be canonically
imbedded into R̃′, since it is perfect. Since R′ is formally smooth over k and
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(t1, · · · , tn) is a p-basis of R′ over k, by [EGA, 0IV 21.2.7], there is a σ ∈ Σ
such that σ(ti) (1 ≤ i ≤ n− 1) form a system of regular parameters of R̃′ and
σ(tn) ∈ K0 ⊂ R̃′. We claim that σ2 = σ answers the question. In fact, Lemma
7.8(ii) implies that G ◦fR′,σ is the universal deformation of G ◦

K0
. It remains to

verify that Cσ 6= 0.
Let A = K0[[π]] be a complete discrete valuation ring of characteristic p with
residue field K0, T = Spec(A), ξ be the generic point of T , ξ be a geometric
over ξ, and I = Gal(ξ/ξ) the Galois group. We define a homomorphism of
K0-algebras f∗ : R̃′ → A by putting f∗(σ(t1)) = π and f∗(σ(ti)) = 0 for
2 ≤ i ≤ n − 1. This is possible, since (σ(t1), · · · , σ(tn−1)) is a system of
regular parameters of R̃′. Let f : T → S̃′ be the homomorphism of schemes
corresponding to f∗, and GT = GfR′,σ×fS′ T . By the functoriality of Hasse-Witt
maps,

hT =


0 0 · · · 0 −π
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 −f∗(σ(tn))

 ∈ Mn×n(R̃′)

is a matrix of ϕGT . By definition (5.4), the Hasse invariant of GT is h(GT ) = 1.
In particular, GT is generically ordinary. Let Ũ ′σ ⊂ S̃′ be the ordinary locus
of GfR′,σ. We have f(ξ) ∈ Ũ ′σ. By the functoriality of fundamental groups, f
induces a homomorphism of groups

π1(f) : I = Gal(ξ/ξ)→ π1(Ũ ′σ, f(ξ)) ' π1(Ũ ′σ, x).

Let G ◦T be the connected part of GT , and G ét
T be the étale part of GT . Then

G ét
T ' Qp/Zp. We have an exact sequence of Fp[I]-modules

0→ G ◦T (1)(ξ)→ GT (1)(ξ)→ G ét
T (1)(ξ)→ 0,

which determines a cohomology class CT ∈ H1(I,G ◦T (1)(ξ)). We notice that
GT (1)(ξ) is isomorphic to GfR′,σ(1)(x) as an abelian group, and the action of I
on GT (1)(ξ) is induced by the action of π1(Ũ ′σ, x) on GfR′,σ(1)(x). Therefore,
CT is the image of Cσ by the functorial map

H1
(
π1(Ũ ′σ, x),G ◦fR′,σ(1)(x)

)
→ H1

(
I,G ◦T (1)(ξ)

)
.

To verify that Cσ 6= 0, it suffices to check that CT 6= 0. We consider the
polynomial P (X) = Xpn + f∗(σ(tn))Xpn−1

+ πX ∈ A[X]. According to 5.12,
it suffices to find a α ∈ K0 ⊂ A such that P (α) is a uniformizer of A. But by
the choice of σ, we have σ(tn) ∈ K0 and σ(tn) 6= 0; so f∗(σ(tn)) 6= 0 lies in K0.
Let α be a pn−1(p − 1)-th root of −f∗(σ(tn)) in K0. Then we have α ∈ K×0 ,
and P (α) = απ is a uniformizer of A. This completes the proof of 7.5.
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8. End of the Proof of Theorem 1.3

In this section, k denotes an algebraically closed field of characteristic p > 0.

8.1. First, we recall some preliminaries on Newton stratification due to F.
Oort. Let G be an arbitrary BT-group over k, S be the local moduli of G in
characteristic p, and G be the universal deformation of G over S (3.8). Put
d = dim(G) and c = dim(G∨). We denote by N (G) the Newton polygon of
G which has endpoints (0, 0) and (c + d, d). Here we use the normalization of
Newton polygons such that slope 0 corresponds to étale BT- groups and slope
1 corresponds to groups of multiplicative type.
Let NP(c + d, d) be the set of Newton polygons with endpoints (0, 0) and
(c + d, d) and slopes in (0, 1). For α, β ∈ NP(c + d, d), we say that α � β
if no point of α lies below β; then “�” is a partial order on NP(c + d, d).
For each β ∈ NP(c + d, d), we denote by Vβ the subset of S consisting of
points x with N (Gx) � β, and by V ◦β the subset of S consisting of points x
with N (Gx) = β. By Grothendieck-Katz’s specialization theorem of Newton
polygons, Vβ is closed in S, and V ◦β is open (maybe empty) in Vβ . We put

♦(β) =
{(x, y) ∈ Z×Z | 0 ≤ y < d, y < x < c+d, (x, y)lies on or above the polygon β},
and dim(β) = #(♦(β)).

Theorem 8.2 ([Oo2] Theorem 2.11). Under the above assumptions, for each
β ∈ NP(c + d, d), the subset V ◦β is non-empty if and only if N (G) � β. In
that case, Vβ is the closure of V ◦β and all irreducible components of Vβ have
dimension dim(β).

8.3. Let G be a connected and HW-cyclic BT-group over k of dimension d =
dim(G) ≥ 2. Let β ∈ NP(c + d, d) be the Newton polygon given by the
following slope sequence:

β = (1/(c+ 1), · · · , 1/(c+ 1)︸ ︷︷ ︸
c+1

, 1, · · · , 1︸ ︷︷ ︸
d−1

).

We have N (G) � β since G is supposed to be connected. By Oort’s Theorem
8.2, Vβ is a equal dimensional closed subset of the local moduli S of dimension
c(d− 1). We endow Vβ with the structure of a reduced closed subscheme of S.

Lemma 8.4. Under the above assumptions, let R be the ring of S, and
0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3

...
. . .

...
0 0 · · · 1 −ac

 ∈ Mc×c(R)

be a matrix of the Hasse-Witt map ϕG. Then the closed reduced subscheme Vβ
of S is defined by the prime ideal (a1, · · · , ac). In particular, Vβ is irreducible.
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Proof. Note first that {a1, · · · , ac} is a subset of a system of regular parameters
of R by 4.11(i). Let I be the ideal of R defining Vβ . Let x be an arbitrary
point of Vβ , we denote by px the prime ideal of R corresponding to x. Since
the Newton polygon of the fibre Gx lies above β, Gx is connected. By Lemma
4.4, we have ai ∈ px for 1 ≤ i ≤ c. Since Vβ is reduced, we have ai ∈ I.
Let P = (a1, · · · , ac), and V (P) the closed subscheme of S defined by P.
Then V (P) is an integral scheme of dimension c(d− 1) and Vβ ⊂ V (P). Since
Theorem 8.2 implies that dimVβ = c(d−1), we have necessarily Vβ = V (P). �

We keep the assumptions above. Let (ti,j)1≤i≤c,1≤j≤d be a regular system of
parameters of R such that ti,d = ai for all 1 ≤ i ≤ c. Let x be the generic point
of the Newton strata Vβ , k′ = κ(x), and R′ = ÔS,x. Since R is noetherian
and integral, the canonical ring homomorphism R → OS,x → R′ is injective.
The image in R′ of an element a ∈ R will be denoted also by a. By choosing a
k-section k′ → R′ of the canonical projection R′ → k′, we get a (non-canonical)
isomorphism of k-algebras R′ ' k′[[t1,d, · · · , tc,d]]. Let k′′ be an algebraic
closure of k′, and R′′ = k′′[[t1,d, · · · , tc,d]]. Then we have a natural injective
homomorphism of k-algebras R′ → R′′ mapping ti,d to ti,d for 1 ≤ i ≤ c.
Let S′′ = Spec(R′′), x be its closed point. By the construction of S′′, we have
a morphism of k-schemes

(8.4.1) f : S′′ → S

sending x to x. We put G = G×S S
′′. By the choice of the Newton polygon β,

the closed fibre Gx has a BT-subgroup Hx of multiplicative type of height d−1.
Since S′′ is henselian, Hx lifts uniquely to a BT-subgroup H of G . We put
G ′′ = G /H . It is a connected BT-group over S′′ of dimension 1 and height c+1.

Lemma 8.5. Under the above assumptions, G ′′ is the universal deformation in
equal characteristic of its special fiber.

This lemma is a particular case of [Lau, Lemma 3.1]. Here, we use 4.11(ii) to
give a simpler proof.

Proof. We have an exact sequence of BT-groups over S′′

0→H → G → G ′′ → 0,

which induces an exact sequence of Lie algebras 0 → Lie(G ′′∨) → Lie(G ∨) →
Lie(H ∨)→ 0 compatible with Hasse-Witt maps. Since H is of multiplicative
type, we get Lie(H ∨) = 0 and an isomorphism of Lie algebras Lie(G ′′∨) '
Lie(G ∨). By the choice of the regular system (ti,j)1≤i≤c,1≤j≤d, there is a basis
(v1, · · · , vc) of Lie(G ′′∨) over OS′′ such that ϕG ′′ is given by the matrix

h =


0 0 · · · 0 −t1,d
1 0 · · · 0 −t2,d
0 1 · · · 0 −t3,d
...

. . .
...

0 0 · · · 1 −tc,d

 .
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Now the lemma results from Proposition 4.11(ii). �

8.6. Proof of Theorem 1.3. The one-dimensional case is treated in 7.3.
If dim(G) ≥ 2, we apply the preceding discussion to obtain the morphism
f : S′′ → S and the BT-groups G = G×S S

′′ and G ′′, which is the quotient of
G by the maximal subgroup of G of multiplicative type. Let U ′′ be the common
ordinary locus of G and G ′′ over S′′, and ξ be a geometric point of U ′′. Then
f maps U ′′ into the ordinary locus U of G. We denote by

ρG : π1(U ′′, ξ)→ AutZp(Tp(G , ξ))

the monodromy representation associated to G , and the same notation for ρG ′′ .
By the functoriality of monodromy, we have Im(ρG ) ⊂ Im(ρG). On the other
hand, the canonical map G → G ′′ induces an isomorphism of Tate modules
Tp(G , η) ∼−→ Tp(G ′′, η) compatible with the action of π1(U ′′, η). Therefore,
the group Im(ρG ) is identified with Im(ρG ′′). Since G ′′ is one-dimensional, we
conclude the proof by Lemma 8.5 and Theorem 7.3.
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