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Abstract. Let OK be a complete discrete valuation ring of residue characteristic p > 0,
and G be a finite flat group scheme over OK of order a power of p. We prove in this
paper that the Abbes-Saito filtration of G is bounded by a linear function of the degree
of G. Assume OK has generic characteristic 0 and the residue field of OK is perfect.
Fargues constructed the higher level canonical subgroups for a “near from being ordinary”
Barsotti-Tate group G over OK . As an application of our bound, we prove that the
canonical subgroup of G of level n ≥ 2 constructed by Fargues appears in the Abbes-
Saito filtration of the pn-torsion subgroup of G.

Let OK be a complete discrete valuation ring with residue field k of characteristic p > 0
and fraction field K. We denote by vπ the valuation on K normalized by vπ(K×) = Z. Let
G be a finite and flat group scheme over OK of order a power of p such that G⊗K is étale.
We denote by (Ga, a ∈ Q≥0) the Abbes-Saito filtration of G. This is a decreasing and
separated filtration of G by finite and flat closed subgroup schemes. We refer the readers
to [AS02, AS03, AM04] for a full discussion, and to section 1 for a brief review of this
filtration. Let ωG be the module of invariant differentials of G. The generic étaleness of G
implies that ωG is a torsion OK-module of finite type. There exist thus nonzero elements
a1, · · · , ad ∈ OK such that

ωG '
d⊕
i=1

OK/(ai).

We put deg(G) =
∑d

i=1 vπ(ai), and call it the degree of G. The aim of this note is to prove
the following

Theorem 0.1. Let G be a finite and flat group scheme over OK of order a power of p
such that G⊗K is étale. Then we have Ga = 0 for a > p

p−1 deg(G).

Our bound is quite optimal when G is killed by p. Let Eδ = Spec(OK [X]/(Xp − δX))
be the group scheme of Tate-Oort over OK . We have deg(Eδ) = vπ(δ), and an easy
computation by Newton polygons gives [Fa09, Lemme 5]

Eaδ =

{
Eδ if 0 ≤ a ≤ p

p−1 deg(Eδ)

0 if a > p
p−1 deg(Eδ).

1
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However, our bound may be improved when G is not killed by p or G contains many
identical copies of a closed subgroup. In [Hat06, Thm. 7], Hattori proves that if K has
characteristic 0 and G is killed by pn, then the Abbes-Saito filtration of G is bounded by
that of the multiplicative group µpn , i.e., we have Ga = 0 if a > en + e

p−1 where e is
the absolute ramification index of K. Compared with Hattori’s result, our bound has the
advantage that it works in both characteristic 0 and characteristic p, and that it is good if
deg(G) is small.

The basic idea to prove 0.1 is to approximate general power series over OK by linear
functions. First, we choose a “good” presentation of the algebra of G such that the defining
equations of G involve only terms of total degree m(p− 1) + 1 with m ∈ Z≥0 (Prop. 1.6).
The existence of such a presentation is a consequence of the classical theory on p-typical
curves of formal groups. With this good presentation, we can prove that the neutral
connected component of the a-tubular neighborhood of G is isomorphic to a closed rigid
ball for a > p

p−1 deg(G) (Lemma 1.9), and the only zero of the defining equations of G in
the neutral component is the unit section.

The motivation of our theorem comes from the theory of canonical subgroups. We
assume that K has characteristic 0, and the residue field k is perfect of characteristic
p ≥ 3. Let G be a Barsotti-Tate group of dimension d ≥ 1 over OK . If G comes from an
abelian scheme over OK , the canonical subgroup of level 1 of G was first constructed by
Abbes and Mokrane in [AM04]. Then the author generalized their result to the Barsotti-
Tate case [Ti06]. We actually proved that if a Barsotti-Tate group G over OK is “near
from being ordinary”, a condition expressed explicitly as a bound on the Hodge height of
G (cf. 2.1), then a certain piece of the Abbes-Saito filtration of G[p] lifts the kernel of
Frobenius of the special fiber of G [Ti06, Thm. 1.4]. Later on, Fargues [Fa09] gave another
construction of the canonical subgroup of level 1 using Hodge-Tate maps, and his approach
also allowed us to construct by induction the canonical subgroups of level n ≥ 2, i.e., the
canonical lifts of the kernel of n-th iteration of the Frobenius. He proved that the canonical
subgroup of higher level appears in the Harder-Narasihman filtration of G[pn], which was
introduced by him in [Fa07]. It is conjectured that the canonical subgroup of higher level
also appears in the Abbes-Saito filtration of G[pn]. In this paper, we prove this conjecture
as a corollary of 0.1 (Thm. 2.5). Fargues’s result on the degree of the quotient of G[pn] by
its canonical subgroup of level n (see Thm. 2.4(i)) will play an essential role in our proof.

0.2. Acknowledgement. This research was supported by a grant DMS-0635607 from the
National Science Foundation. I would like to thank Ahmed Abbes for his comments on an
earlier version of this paper. I also express my deep gratitude to the anonymous referee
for his careful reading, and useful suggestions to clarify some arguments.

0.3. Notation. In this paper, OK will denote a complete discrete valuation ring with
residue field k of characteristic p > 0, and with fraction field K. Let π be a uniformizer
of OK , and vπ be the valuation on K normalized by vπ(π) = 1. Let K be an algebraic
closure of K, Ksep be the separable closure of K contained in K, and GK be the Galois
group Gal(Ksep/K). We denote still by vπ the unique extension of the valuation to K.
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1. Proof of Theorem 0.1

We recall first the definition of the filtration of Abbes-Saito for finite flat group schemes
according to [AM04, AS03].

1.1. For a semi-local ring R, we denote by mR its Jacobson radical. An algebra R over
OK is called formally of finite type, if R is semi-local, complete with respect to the mR-adic
topology, Noetherian and R/mR is finite over k. We say an OK-algebra R formally of finite
type is formally smooth, if each of the factors of R is formally smooth over OK .

Let FEAOK
be the category of finite, flat and generially étale OK-algebras, and SetGK

be the category of finite sets endowed with a discrete action of the Galois group GK . We
have the fiber functor

F : FEAOK
→ SetGK ,

which associates with an object A of FEAOK
the set Spec(A)(K) equipped with the

natural action of GK . We define a filtration on the functor F as follows. For each object
A in FEAOK

, we choose a presentation

(1.1.1) 0→ I → A → A→ 0,

where A is an OK-algebra formally of finite type and formally smooth. For any a =
m
n ∈ Q>0 with m prime to n, we define A a to be the π-adic completion of the subring
A [In/πm] ⊂ A ⊗OK

K generated over A by all the f/πm with f ∈ In. The OK-algebra
A a is topologically of finite type, and the tensor product A a⊗OK

K is an affinoid algebra
over K [AS03, Lemma 1.4]. We put Xa = Sp(A a ⊗OK

K), which is a smooth affinoid
variety overK [AS03, Lemma 1.7]. We call it the a-th tubular neighborhood of Spec(A) with
respect to the presentation (1.1.1). The GK-set of the geometric connected components of
Xa, denoted by π0(Xa(A)K), depends only on the OK-algebra A and the rational number
a, but not on the choice of the presentation [AS03, Lemma 1.9.2]. For rational numbers
b > a > 0, we have natural inclusions of affinoid varieties Sp(A ⊗OK

K) ↪→ Xb ↪→ Xa,
which induce natural morphisms Spec(A)(K) → π0(Xb(A)K) → π0(Xa(A)K). For a
morphism A → B in FEAOK

, we can choose properly presentations of A and B so that
we have a functorial map π0(Xa(B)K)→ π0(Xa(A)K). Hence we get, for any a ∈ Q>0, a
(contravariant) functor

F a : FEAOK
→ SetGK

given by A 7→ π0(Xa(A)K). We have natural morphisms of functors φa : F → F a, and
φa,b : F b → F a for rational numbers b > a > 0 with φa = φb,a ◦φb. For any A in FEAOK

,
we have F (A)

∼−→ lim←−a∈Q>0
F a(A) [AS02, 6.4]; if A is a complete intersection over OK ,

the map F (A)→ F a(A) is surjective for any a [AS02, 6.2].

1.2. Let G = Spec(A) be a finite and flat group scheme over OK such that G⊗K is étale
over K, and a ∈ Q>0. The group structure of G induces a group structure on F a(A), and
the natural map G(K) = F (A)→ F a(A) is a homomorphism of groups. Hence the kernel
Ga(K) of G(K) → F a(A) is a GK-invariant subgroup of G(K), and it defines a closed
subgroup scheme GaK of the generic fiber G ⊗K. The scheme theoretic closure of GaK in
G, denoted by Ga, is a closed subgroup of G finite and flat over OK . Putting G0 = G,
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we get a decreasing and separated filtration (Ga, a ∈ Q≥0) of G by finite and flat closed
subgroup schemes. We call it Abbes-Saito filtration of G. For any real number a ≥ 0, we
put Ga+ = ∪b∈Q>aG

a.
Assume G is connected, i.e., the ring A is local. Let

(1.2.1) 0→ I → OK [[X1, · · · , Xd]]→ A→ 0

be a presentation of A by the ring of formal power series such that the unit section of
G corresponds to the point (X1, · · · , Xd) = (0, · · · , 0). Since A is a relative complete
intersection over OK , I is generated by d elements f1, · · · , fd. For a ∈ Q>0, the K-valued
points of the a-th tubular neighborhood of G are given by

(1.2.2) Xa(K) =
{

(x1, · · · , xd) ∈ md
K
| vπ(fi(x1, · · · , xd)) ≥ a for 1 ≤ i ≤ d

}
,

where mK is the maximal ideal of OK . The subset G(K) ⊂ Xa(K) corresponds to the
zeros of the fi’s. Let Xa

0 be the connected component of Xa containing 0. Then the
subgroup Ga(K) is the intersection of Xa

0 (K) with G(K).
The basic properties of Abbes-Saito filtration that we need are summarized as follows.

Proposition 1.3 ([AM04] 2.3.2, 2.3.5). Let G and H be finite and flat group schemes,
generically étale over OK , f : G→ H be a homomorphism of group schemes.

(i) G0+ is the connected component of G, and we have (G0+)a = Ga for any a ∈ Q>0.
(ii) For a ∈ Q>0, f induces a canonical homomorphism fa : Ga → Ha. If f is flat and

surjective, then fa(K) : Ga(K)→ Ha(K) is surjective.

Now we return to the proof of Theorem 0.1.

Lemma 1.4. Let R be a Zp-algebra, X be a formal group of dimension d over R such
that Lie(X ) is a free R-module of rank d. Then

(i) the ring Zp acts naturally on X , and its image in EndR(X ) lies in the center of
EndR(X );

(ii) there exist parameters (X1, · · · , Xd) of X , such that we have [ζ](X1, · · · , Xd) =
(ζX1, · · · ζXd) for any (p− 1)-th root of unity ζ ∈ Zp.

Proof. This is actually a classical result on formal groups. In the terminology of [Haz78],
the formal group X comes from the base change of X univ defined by the d-dimensional
universal p-typical formal group law (denoted by FV (X,Y ) in [Haz78, 15.2.8]) over Zp[V ] =
Zp[Vi(j, k); i ∈ Z≥0, j, k = 1, · · · , d], where the Vi(j, k)’s are free variables. So we are
reduced to proving the Lemma for X univ. If X and Y are short for the column vectors
(X1, · · · , Xd) and (Y1, · · · , Yd) respectively, the formal group law on X univ is determined
by

FV (X,Y ) = f−1
V (fV (X) + fV (Y )), with fV (X) =

∞∑
i=0

ai(V )Xpi ,

where ai(V )’s are certain d×dmatrices with coefficients inQp[V ] with a1(V ) invertible,Xpi

is short for (Xpi

1 , · · · , X
pi

d ), and f−1
V is the unique d-tuple of power series in (X1, · · · , Xd)

with coefficients in Qp[V ] such that f−1
V ◦fV = 1 [Haz78, 10.4]. We note that FV (X,Y ) is a

d-tuple of power series with coefficient in Zp[V ], although fV (X) has coefficients in Qp[V ]
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[Haz78, 10.2(i)]. Via approximation by integers, we see easily that the multiplication by an
element ξ ∈ Zp can be well defined as [ξ](X) = f−1

V (ξfV (X)). This proves (i). Statement
(ii) is an immediate consequence of the fact that fV (X) involves just p-powers of X. �

Remark 1.5. The referee gives the following alternative proof of this Lemma via the
Cartier theory of formal groups. Let X be the formal group over R as in the Lemma. We
denote by X (R[[T ]]) the group of R[[T ]]-valued points of X whose reduction modulo T
is the neutral element 0 ∈X (R). A formal group law over X is a datum (X ; γ1, · · · , γd),
where γ1, · · · , γd ∈ X (R[[T ]]) are such that their image in X (R[T ]/T 2) forms a basis
of Lie(X ). In particular, (γi)1≤i≤d establish an isomorphism of formal schemes over R
X ' Spf(R[[X1, · · · , Xd]]). Recall that X (R[[T ]]) is the Cartier module associated with
X over the big Cartier ring (denoted by Cart(R) in [Ch94, 2.3]). Since R is a Zp-algebra,
the Cartier theory [Ch94, 4.3, 4.4] implies that there exists a p-typical formal group law
(X ; γ1, · · · , γd) over X , i.e. we have εp · γi = 0, where

εp =
∏

` prime
(`,p)=1

(1− 1

`
V`F`)

is Cartier’s idempotent in Cart(R) (see [Ch94, 4.1]). Let ∆ : Zp = W (Fp) → W (Zp)
be the Cartier homomorphism given by (x0, x1, . . .) 7→ ([x0], [x1], . . .), where xn ∈ Fp and
[xn] denotes its Teichmüller lift. Then we get a natural map u : Zp

∆−→ W (Zp) → W (R).
For a (p − 1)-th root of unity ζ ∈ Zp, we have u(ζ) = [ζ] ∈ W (R). Note that for any
a ∈ R and 1 ≤ i ≤ d, the p-typical curve [a] · γi is the image of γi under the map
X (R[[T ]])→X (R[[T ]]) induced by T 7→ aT . Applying this fact to u(ζ) · γi = [ζ] · γi, one
obtains the Lemma immediately.

Proposition 1.6. Let G = Spec(A) be a connected finite and flat group scheme over OK
of order a power of p. Then there exists a presentation of A of type (1.2.1) such that the
defining equations fi for 1 ≤ i ≤ d have the form

fi(X1, · · · , Xd) =

∞∑
|n|≥1

ai,nX
n with ai,n = 0 if (p− 1) - (|n| − 1),

where n = (n1, · · · , nd) ∈ (Z≥0)d are multi-indexes, |n| =
∑d

j=1 nj, and X
n is short for∏d

j=1X
nj

j .

Proof. By a theorem of Raynaud [BBM82, 3.1.1], there is a projective abelian variety V
over OK , and an embedding of group schemes j : G ↪→ V . Let V ′ be the quotient of V by
G. Let X , Y be respectively the formal completion of V and V ′ along their unit sections.
They are formal groups over OK . Since G is connected, it’s identified with the kernel of
the natural isogeny φ : X → Y . Let (X1, · · · , Xd) (resp. (Y1, · · · , Yd)) be parameters of
X (resp. Y ) satisfying the preceding lemma. The isogeny φ is thus given by

(X1, · · · , Xd) 7→ (f1(X1, · · · , Xd), · · · , fd(X1, · · · , Xd)),
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where fi =
∑
|n|≥1 ai,nX

n ∈ OK [[X1, · · · , Xd]]. Since for any (p − 1)-th root of unity
ζ ∈ Zp we have fi(ζX1, · · · , ζXd) = ζfi(X1, · · · , Xd), it’s easy to see that ai,n = 0 if
(p− 1) - (|n| − 1).

�

Remark 1.7. As pointed out by the referee, we can avoid using Raynaud’s deep theorem
to realize G as the kernel of an isogeny of formal groups over OK . In fact, by the biduality
formula G ' (GD)D, where GD denotes the Cartier dual of G, we have a canonical closed
embedding u : G ↪→ U = ResGD/S(Gm) of group schemes over S = Spec(OK). Here,
“ResGD/S” means Weil’s restriction of scalars, so U is an affine smooth group scheme
over S. Since the quotient of an affine scheme by a finite flat group scheme is always
representable by a scheme [Ra67], we can consider the quotient U ′ = U/G and the formal
groups X ,Y associated with U and U ′, so that G is the kernel of the natural isogeny
φ : X → Y .

1.8. Proof of Theorem 0.1. Let H = G0+ be the connected component of G. By
1.3(i), we have Ga = Ha for a ∈ Q>0. The exact sequence of finite flat group schemes
0→ H → G→ G/H → 0 induces a long exact sequence of finite OK-modules

0→ H−1(`G/H)→ H−1(`G)→ H−1(`H)→ ωG/H → ωG → ωH → 0,

where `G means the co-Lie complex of G [BBM82, 3.2.9]. Since the generic fiber of G/H is
étale, it’s easy to see that H−1(`H) = 0. It follows thus that 0→ ωG/H → ωG → ωH → 0
is exact. Since G/H is étale, we have ωG/H = 0 and hence deg(G) = deg(H). Up to
replacing G by H, we may assume that G = Spec(A) is connected.

We choose a presentation of A as in Prop. 1.6 so that we have an isomorphism of
OK-algebras

A ' OK [[X1, · · · , Xd]]/(f1, · · · , fd)
where

fi(X1, · · · , Xd) =
d∑
j=1

ai,jXj +
∑
|n|≥p

ai,nX
n.

As A is finite as an OK-module, we have

Ω1
A/OK

= Ω̂1
A/OK

'
( d⊕
i=1

A dXi

)
/(df1, · · · , dfd).

Since ωG ' e∗(Ω1
A/OK

), where e is the unit section of G, we get

ωG '
(
⊕di=1OKdXi

)
/(
∑

1≤j≤d
ai,jdXj)1≤i≤d.

In particular, if U denotes the matrix (ai,j)1≤i,j≤d, then we have deg(G) = vπ(det(U)).
For any rational number λ, we denote byDd(0, |π|λ) (resp. D̊d(0, |π|λ)) the rigid analytic

closed (resp. open) disk of dimension d over K consisting of points (x1, · · · , xd) with
vπ(xi) ≥ λ (resp. vπ(xi) > λ) for 1 ≤ i ≤ d; we put Dd(0, 1) = Dd(0, |π|0) and D̊d(0, 1) =

D̊d(0, |π|0). Let a > p
p−1 deg(G) be a rational number,Xa be the a-th tubular neighborhood



AN UPPER BOUND FOR ABBES-SAITO FILTRATION AND APPLICATIONS 7

of G with respect to the chosen presentation. By (1.2.2), we have a cartesian diagram of
rigid analytic spaces

(1.8.1) Xa � � //

f
��

D̊d(0, 1)

f=(f1,··· ,fd)
��

Dd(0, |π|a) � � // D̊d(0, 1),

where horizontal arrows are inclusions, and f(y1, · · · , yd) = (f1(y1, · · · , yd), · · · , fd(y1, · · · , yd)).
Let Xa

0 be the connected component of Xa containing 0. By the discussion below (1.2.2),
we just need to prove that 0 is the only zero of the fi’s contained in Xa

0 .
Let V = (bi,j)1≤i,j≤d be the unique d × d matrix with coefficients in OK such that

UV = V U = det(U)Id, where Id is the d × d identity matrix. If Ad
K denotes the d-

dimensional rigid affine space over K, then V defines an isomorphism of rigid spaces

g : Ad
K → Ad

K ; (x1, · · · , xd) 7→ (
d∑
j=1

b1,jxj , · · · ,
d∑
j=1

bd,jxj).

It’s clear that g(D̊d(0, 1)) ⊂ D̊d(0, 1), so that f is defined on g(D̊d(0, 1)). The composite
morphism f ◦ g : D̊d(0, 1)→ D̊d(0, 1) is given by

(1.8.2) (x1, · · · , xd) 7→ (det(U)x1 +R1, · · · ,det(U)xd +Rd),

where Ri =
∑
|n|≥p ai,n

∏d
j=1(

∑d
k=1 bj,kxk)

nj involves only terms of order ≥ p for 1 ≤ i ≤ d.
For 1 ≤ i ≤ d, we have basic estimations

(1.8.3) vπ(det(U)xi) = deg(G) + vπ(xi) and vπ(Ri) ≥ p min
1≤j≤d

{vπ(xj)}.

Lemma 1.9. For any rational number a > p
p−1 deg(G), the map g induces an isomorphism

of affinoid rigid spaces
g : Dd(0, |π|a−deg(G))

∼−→ Xa
0 .

Assuming this Lemma for a moment, we can complete the proof of 0.1 as follows. Con-
sider the composite

h = f ◦ g|Dd(0,|π|a−deg(G)) : Dd(0, |π|a−deg(G))
∼−→ Xa

0 ↪→ Xa f−→ Dd(0, |π|a).

In order to complete the proof of 0.1, we just need to prove that the inverse image h−1(0) =

{0}. Let (x1, · · · , xd) be a point of Dd(0, |π|a−deg(G)), and (z1, · · · , zd) = h(x1, · · · , xd).
We may assume vπ(x1) = min1≤i≤d{vπ(xi)}. We have vπ(x1) ≥ a− deg(G) > 1

p−1 deg(G)

by the assumption on a. It follows thus from (1.8.3) that

vπ(R1) ≥ pvπ(x1) > deg(G) + vπ(x1) = vπ(det(U)x1).

Hence, we deduce from (1.8.2) that vπ(z1) = deg(G) + vπ(x1). In particular, z1 = 0 if and
only if x1 = 0. Therefore, we have h−1(0) = {0}. This achieves the proof of Theorem 0.1.
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Proof of 1.9. Let ε be any rational number with 0 < ε < p−1
p a − deg(G). We will prove

that
Dd(0, |π|a−deg(G)) = Dd(0, |π|a−deg(G)−ε) ∩ g−1(Xa).

This will imply that Dd(0, |π|a−deg(G)) is a connected component of g−1(Xa). Since g :
Ad
K → Ad

K is an isomorphism, the lemma will follow immediately.
We prove first the inclusion “⊂”. It suffices to show g(Dd(0, |π|a−deg(G))) ⊂ Xa.

Let (x1, · · · , xd) be a point of Dd(0, |π|a−deg(G)). By (1.8.1), we have to check that
(z1, · · · , zd) = f(g(x1, · · · , xd)) lies in Dd(0, |π|a). We get from (1.8.3) that vπ(det(U)xi) =
deg(G)+vπ(xi) ≥ a and vπ(Ri) ≥ p(a−deg(G)). As a > p

p−1 deg(G), we have vπ(Ri) > a.
It follows from (1.8.2) that

vπ(zi) ≥ min{vπ(det(U)xi), vπ(Ri)} ≥ a.

This proves (z1, · · · , zd) is contained in Dd(0, |π|a), hence we have g(Dd(0, |π|a−deg(G))) ⊂
Xa.

To prove the inclusion “⊃”, we just need to verify that every point in Dd(0, |π|a−deg(G)−ε)

but outside Dd(0, |π|a−deg(G)) does not lie in g−1(Xa). Let (x1, · · · , xd) be such a point.
We may assume that

(1.9.1) a−deg(G)−ε ≤ vπ(x1) < a−deg(G) and vπ(xi) ≥ a−deg(G)−ε for 2 ≤ i ≤ d.

Let (z1, · · · , zd) = (det(U)x1 +Rd, · · · ,det(U)xd +Rd) be the image of (x1, · · · , xd) under
the composite f ◦ g. According to (1.8.1), the proof will be completed if we can prove
that (z1, · · · , zd) is not in Dd(0, |π|a). From (1.8.3) and (1.9.1), we get vπ(det(U)x1) =
deg(G) + vπ(x1) < a and vπ(R1) ≥ p(a− deg(G)− ε). Thanks to the assumption on ε, we
have p(a− deg(G)− ε) > a, so vπ(z1) = vπ(det(U)x1) < a. This shows that (z1, · · · , zd) is
not in g−1(Xa), hence the proof of the lemma is complete.

�

2. Applications to Canonical subgroups

In this section, we suppose the fraction field K has characteristic 0 and the residue field
k is perfect of characteristic p ≥ 3. Let e be the absolute ramification index of OK . For
any rational number ε > 0, we denote by OK,ε the quotient of OK by the ideal consisting
of elements with p-adic valuation greater or equal to ε.

2.1. First we recall some results on the canonical subgroups according to [AM04], [Ti06]
and [Fa09]. Let vp : OK/p → [0, 1] be the truncated p-adic valuation (with vp(0) = 1).
Let G be a truncated Barsotti-Tate group of level n ≥ 1 non-étale over OK , G1 = G⊗OK

(OK/p). The Lie algebra of G1, denoted by Lie(G1) is a finite free OK/p-module. The
Verschiebung homomorphism VG1 : G

(p)
1 → G1 induces a semi-linear endomorphism ϕG1

of Lie(G1). We choose a basis of Lie(G1) over OK/p, and let U be the matrix of ϕ under
this basis. We define the Hodge height of G, denoted by h(G), to be the truncated p-adic
valuation of det(U). We note that the definition of h(G) does not depend on the choice of
U . The Hodge height of G is an analog of the Hasse invariant in mixed characteristic, and
we have h(G) = 0 if and only if G is ordinary.
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Theorem 2.2 ([Fa09] Théo. 4). Let G be a truncated Barsotti-Tate group of level 1 over
OK of dimension d ≥ 1 and height h. Assume h(G) < 1

2 if p ≥ 5 and h(G) < 1/3 if p = 3.
(i) For any rational number ep

p−1h(G) < a ≤ ep
p−1(1 − h(G)), the finite flat subgroup Ga

of G given by the Abbes-Saito filtration has rank pd.
(ii) Let C be the subgroup G

ep
p−1

(1−h(G)) of G. We have deg(G/C) = eh(G).
(iii) The subgroup C ⊗ OK,1−h(G) coincides with the kernel of the Frobenius homomor-

phism of G ⊗OK,1−h(G). Moreover, for any rational number ε with h(G)
p−1 < ε ≤ 1 − h(G),

if H is a finite and flat closed subgroup of G such that H ⊗OK,ε coincides with the kernel
of Frobenius of G⊗OK,ε, then we have H = C.

The subgroup C in this theorem, when it exists, is called the canonical subgroup (of level
1) of G.

Remark 2.3. (i) The conventions here are slightly different from those in [Fa09]. The
Hodge height is called Hasse invariant in loc. cit., while we choose to follow the terminolo-
gies in [AM04] and [Ti06]. Our index of Abbes-Saito filtration and the degree of G are e
times those in [Fa09].

(ii) Statement (iii) of the theorem is not explicitly stated in [Fa09, Théo. 4], but it’s an
easy consequence of loc. cit. Prop. 11.

For the canonical subgroups of higher level, we have

Theorem 2.4 ([Fa09] Théo. 6). Let G be a truncated Barsotti-Tate group of level n over
OK of dimension d ≥ 1 and height h. Assume h(G) < 1

3n if p = 3 and h(G) < 1
2pn−1 if

p ≥ 5.
(i) There exists a unique closed subgroup of G that is finite and flat over OK and satisfies
• Cn(K) is free of rank d over Z/pnZ.
• For each integer i with 1 ≤ i ≤ n, let Ci be the scheme theoretic closure of Cn(K)[pi]
in G. Then the subgroup Ci ⊗ OK,1−pi−1h(G) coincides with the kernel of the i-th
iterated Frobenius of G⊗OK,1−pi−1h(G).

(ii) We have deg(G/Cn) = e(pn−1)
p−1 h(G).

The subgroup Cn in the theorem above is called the canonical subgroup of level n of G.
Fargues actually proves that Cn is a certain piece of the Harder-Narasimhan filtration of
G. The aim of this section is to show that Cn appears also in the Abbes-Saito filtration.

Theorem 2.5. Let G be a truncated Barsotti-Tate group of level n over OK satisfying the
assumptions in 2.4, and Cn be its canonical subgroup of level n. Then for any rational
number a satisfying ep(pn−1)

(p−1)2
h(G) < a ≤ ep

p−1(1− h(G)), we have Ga = Cn.

Proof. We proceed by induction on n. If n = 1, the theorem is 2.2(i). We suppose
n ≥ 2 and the theorem is valid for truncated Barsotti-Tate groups of level n − 1. For
each integer i with 1 ≤ i ≤ n, let Gi denote the scheme theoretic closure of G(K)[pi]
in G, and Ci the scheme theoretic closure of Cn(K)[pi] in Cn. By Theorem 2.4(i), it’s
clear that Ci is the canonical subgroup of level i of Gi. Let a be a rational number with
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ep(pn−1)
(p−1)2

h(G) < a ≤ ep
p−1(1 − h(G)). By the induction hypothesis and the functoriality of

Abbes-Saito filtration 1.3(ii), we have Cn−1(K) = Gan−1(K) ⊂ Ga(K), and the image of
Ga(K) in G1(K) is exactly C1(K) = Ga1(K). Note that we have a commutative diagram
of exact sequences of groups

0 // Cn−1(K) //
� _

��

Cn(K) //
� _

��

C1(K) //
� _

��

0

0 // Gn−1(K) // G(K)
×pn−1

// G1(K) // 0,

where vertical arrows are natural inclusions. So we have Cn(K) ⊂ Ga(K). On the other
hand, Theorems 0.1 and 2.4(ii) imply that (G/Cn)a(K) = 0 as a > ep(pn−1)

(p−1)2
h(G) =

p
p−1 deg(G/Cn). Therefore, we get Ga(K) ⊂ Cn(K) by 1.3(ii). This completes the proof.

�
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