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CLASSICALITY OF OVERCONVERGENT HILBERT EIGENFORMS:
CASE OF QUADRATIC RESIDUE DEGREES

YICHAO TIAN

Abstract. Let F be a real quadratic field, p be a rational prime inert in F , and N ≥ 4
be an integer coprime to p. Consider an overconvergent p-adic Hilbert eigenform f for F
of weight (k1, k2) ∈ Z2 and level Γ00(N). We prove that if the slope of f is strictly less
than min{k1, k2}− 2, then f is a classical Hilbert modular form of level Γ00(N)∩Γ0(p).

1. Introduction

1.1. We fix a prime number p > 0. A famous theorem of Coleman says that an over-
convergent p-adic (elliptic) modular eigenform of small slope is actually classical. More
precisely, let N ≥ 5 be an integer coprime to p, and X1(N)an be the rigid analytification
of the usual modular curve of level Γ1(N) over Qp. We denote by X1(N)an

ord the ordinary
locus of X1(N)an. For p ≥ 5, X1(N)an

ord is simply the locus where Ep−1 (Eisenstein series
of weight p − 1), the standard lift of the Hasse invariant, has non-zero reduction modulo
p. For any integer k ∈ Z, Katz [Ka73] defined the space M†k(Γ1(N)) of overconvergent
p-adic modular forms of weight k. An element in M†k(Γ1(N)) is a section of the modular
line bundle ωk defined over a strict neighborhood of X1(N)an

ord in X1(N)an. Moreover,
Katz also defined a completely continuous operator Up acting on M†(Γ1(N)). There is
a natural injection from Mk(Γ1(N) ∩ Γ0(p)) to M†k(Γ1(N)), where Mk(Γ1(N) ∩ Γ0(p)) is
the space of classical modular forms of weight k and level Γ1(N) ∩ Γ0(p), that is, sec-
tions of ωk over the modular curve X(Γ1(N) ∩ Γ0(p)). In [Col96], Coleman proved that if
f ∈ M†k(Γ1(N)) is a Up-eigenvector with eigenvalue ap and vp(ap) < k− 1, then f actually
lies in Mk(Γ1(N) ∩ Γ0(p)). Coleman’s original proof for this deep result was achieved by
an ingenious dimension counting argument. Later on, Buzzard [Bu03] and Kassaei [Ks06]
reproved Coleman’s theorem by an elegant analytic continuation process. The basic idea
of Buzzard-Kassaei was to extend successively the section f by the functional equation
f = 1

ap
Up(f) to the entire rigid analytic space X(Γ1(N) ∩ Γ0(p))an. Actually, Buzzard

proved that f can be extended to the union of ordinary locus and the area with supersin-
gular reduction of X(Γ1(N) ∩ Γ0(p))an. Then Kassaei constructed another form g on the
complement to Buzzard’s area, and showed that f and g glue together to an analytic section
of ωk over X(Γ1(N)∩Γ0(p))an. The rigid GAGA theorem [Ab11, 7.6.11] then implies that
this is indeed a genuine section of ωk over the algebraic modular curve X(Γ1(N)∩ Γ0(p)).
In this process, the theory of canonical subgroups for elliptic curves developed in [Ka73]
due to Lubin and Katz plays a fundamental role.
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There have been many efforts in generalizing the classical theory on overconvergent
p-adic modular forms to other situations. First of all, to generalize overconvergent p-
modular forms and the Up-operator, we need to construct canonical subgroups in more
general context. This has been done by many authors. For instance, [KL05], [GK09]
consider the Hilbert case, and [AM04], [AG07] treat the general case for abelian varieties,
and finally in [Ti10], [Fa09], [Ra09] and [Ha10] the canonical subgroups are constructed for
general p-divisible groups. Using the canonical subgroups, overconvergent p-adic modular
forms and the Up-operators can be constructed similarly in various settings. However,
the generalization of Coleman’s classicality criterion need more hard work. As far as I
know, this criterion has been generalized in the following cases. In [Col97a], Coleman
himself generalized his results to modular forms of higher level at p. Kassaei considered in
[Ks09] the case of modular forms defined over various Shimura curves. In [Sa10], Sasaki
generalized it to the case of Hilbert eigenforms when p totally splits in the totally real
field defining the Hilbert-Blumenthal modular variety. Finally, Pilloni proved in [Pi09] the
classicality criterion for overconvergent Siegel modular forms of genus 2. In this paper, we
will follow the idea of Buzzard-Kassaei to study overconvergent Hilbert modular forms in
the quadratic inert case.

1.2. To simplify the notation, let’s describe our result in a special but essential case. Let
F be a real quadratic number field in which p is inert, and OF be its ring of integers. We
put κ ' Fp2 ,W = OFp and Qκ = W [1/p]. We denote by B = {β1, β2} the two embeddings
of F into Qκ. Let N ≥ 4 be an integer coprime to p. We consider the Hilbert-Blumenthal
modular variety X over Spec(W ) that classifies prime-to-p polarized abelian schemes A
with real multiplication byOF of level Γ00(N). Let Y be the moduli space that classifies the
same data and together with an (OF /p)-cyclic subgroup of A[p]. For each pair of integers
~k = (k1, k2) ∈ ZB, we have the modular line bundle ω~k over X and Y (See 2.3 for its precise
definition). For each finite extension L of Qκ, we put M~k

(Γ00(N)∩Γ0(p), L) = H0(YL, ω
~k),

and call it the space of (geometric) Hilbert modular forms of level Γ00(N) ∩ Γ0(p) and
weight ~k with coefficients in L. This is a finite dimensional vector space over L by classical
Koecher principle, and the theory of arithmetic compactifications of Hilbert-Blumenthal
modular varieties [Rap78, Ch90, DP94] implies that it actually descends to a finite flat
Z[1/N ]-module.

Let X and Y be respectively the completion of X and Y along their special fibers, and
Xrig and Yrig be their rigid analytic generic fibers à la Raynaud [Ab11, Ch. 4]. We still
have a natural forgetful map π : Yrig → Xrig. For each ~k ∈ ZB, we denote still by ω

~k

the rigidification of the line bundle ω~k. Let Xord
rig be the ordinary locus of Xrig, i.e. the

locus where the universal rigid Hilbert-Blumenthal abelian variety Arig over Xrig has good
ordinary reduction. Then the multiplicative part of the universal finite flat group scheme
Arig[p] defines a section s◦ : Xord

rig → Yrig of the projection π over Xord
rig . We denote by

Yord
rig the image of s◦, so that π|Yord

rig
: Yord

rig
∼−→ Xord

rig is an isomorphism of quasi-compact
rigid analytic spaces. For a finite extension L of Qκ, Kisin and Lai [KL05] defined an
overconvergent Hilbert modular form of level Γ00(N) and weight ~k with coefficients in L
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to be a section of ω~k over Xord
rig that extends to a strict neighborhood of Xord

rig,L. We denote
by M†~k

(Γ00(N), L) the space of such forms. This is a direct limit of infinite dimensional
Banach spaces over L. Moreover, the theory of canonical subgroups for Hilbert modular
varieties allows them to define a completely continuous Up-operator on M†~k

(Γ00(N), L).
Note that a relatively weak formulation of the existence of canonical subgroups says that
the section s◦ : Xord

rig → Yord
rig extends to a strict neighborhood of Xord

rig , or equivalently the
isomorphism π|Yord

rig
extends to a strict neighborhood. Therefore, there exists a natural

injection
M~k

(Γ00(N) ∩ Γ0(p), L)→ M†~k
(Γ00(N), L).

We say an element f in M†~k
(Γ00(N), L) is classical if it lies in the image of this injection.

The main result of this paper is the following

Theorem 1.3. Let f ∈ M†~k
(Γ00(N), L) be a Up-eigenvector with eigenvalue ap. If vp(ap) <

min{k1, k2} − 2, then f is classical.

Actually, we prove our main Theorem in a slightly more general setting 2.17. Note that
our results imply that, in the quadratic inert case, the classical points are Zariski dense
in the eigencurve for overconvergent Hilbert modular forms of level Γ00(N) constructed in
[KL05] (See Theorem 2.21).

Let’s indicate the ideas of the proof. First, by rigid GAGA and a rigid version of Koecher
principle (Prop. 2.7), we just need to extend f analytically to the entire rigid space Yrig.
To achieve this, the key point is to understand the dynamics of the Hecke correspondence
Up on Yrig (2.15). Three ingredients from the work of Goren and Kassaei [GK09] will be
important for us. The first one is the stratification on the special fiber Yκ defined by them;
the second is their valuation on Yrig via local parameters; and the third one is the so-called
“Key Lemma” [GK09, 2.8.1], which relates the partial Hasse invariants with the certain
local parameters of Yκ. In this paper, we will interpret their valuation on Yrig in terms of
partial degrees (cf. 4.7, 4.8). They are natural refinements in the real multiplication case
of the usual degree function, which has been introduced by Fargues [Fa10] and applied by
Pilloni [Pi09] to the analytic continuation of p-adic Siegel modular forms. Actually, our
work originates from an effort to understand the geometric meaning of Goren-Kassaei’s
valuation. Compared with the totally split case, our difficulty comes from the fact that
the p-divisible group associated with a Hilbert-Blumenthal abelian variety (HBAV) with
RM by OF is a genuine p-divisible group of dimension 2, so its group law can not be
explicitly described by one-variable power series. We overcome this by using Breuil-Kisin
modules to compute the partial degrees of the p-torsion of a HBAV. This approach is
motivated by the recent work of Hattori [Ha10]. These local computations via Breuil-Kisin
modules combined with Goren-Kassaei’s “Key Lemma” will give us enough information
to understand the dynamics of the Hecke correspondence Up except the case mentioned
in Prop. 4.16 and 5.11. In this exceptional case, we have to study in detail the local
moduli of deformations of a superspecial HBAV. This is achieved in Appendix B by using
Zink’s theory on Dieudonné windows [Zi01]. Finally, we can prove that the form f extends
to an admissible open subset of Yrig that contains the tube over the complement to the
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codimension 2 stratum in Goren-Kassaei’s stratification on Yκ ( Prop. 5.14). By a useful
trick invented by Pilloni in [Pi09, §7], this allows us to conclude that f extends indeed to
the entire Yrig (Prop. 4.15).

1.4. This paper is organized as follows. In Section 2, we review the facts that we need
on the Hilbert-Blumenthal modular varieties and state the main theorem 2.17 and its
consequence on the Zariski density of classical points in the eigencurves for overconvergent
Hilbert modular forms. In Section 3, we perform the computations mentioned above on
the (OF /p)-cyclic subgroups of a HBAV over a complete discrete valuation ring via Breuil-
Kisin modules. In particular, we give an alternative proof (Thm. 3.14) for the existence of
canonical subgroups in the Hilbert case proven in [GK09]. Section 4 is mainly dedicated
to the review on Goren-Kassaei’s work, and we provide also another proof of their “Key
Lemma” using Dieudonné theory (Prop. 4.5). Section 5 is the heart of this work, and it
contains a complete proof of Theorem 1.3. Finally, we prove our general main theorem
2.17 in Section 6. The proof of the general case is a combination of the split case treated
by Sasaki [Sa10] and the case in Section 5. We have two appendices. In the first one,
we gather some general results on the extension and gluing of sections in rigid geometry.
In Appendix B, we study the local deformation space of a superspecial p-divisible group
with formal real multiplication by Zpg , where g ≥ 1 is an integer and Zpg is the ring of
integers of the unramified extension of Qp of degree g. As a by-product, we see that the
local moduli admits some canonical choices of local parameters T1, · · · , Tg such that the
p-divisible groups corresponding to Ti = 0 admits “formal complex multiplication” by Zp2g
or Zpg ⊕ Zpg according to the parity of g (cf. Remark B.6). These p-divisible groups
(or those isogenous to them) seem to deserve more study, and should be considered as
the canonical lifting (or quasi-canonical lifting) of the superspecial p-divisible group in the
formal real multiplication case. We hope that we can return to the problem in the future.

1.5. After I finished a preliminary version of this paper and distributed it among a small
circle, Vincent Pilloni showed me a draft of his joint work [PS11b] with Benoit Stroh, where
similar results were obtained independently. The influence of the works [Ks06], [GK09]
and [Pi09] on this work will be obvious for the reader. I express my hearty gratitude to
their authors. I am especially grateful to Christophe Breuil for his careful reading of a
preliminary version of this paper, and for his valuable suggestions. I also would like to
thank Ahmed Abbes, Liang Xiao, Kaiwen Lan and Tong Liu for helpful discussions during
the preparation of this paper.

Finally, I would like to thank the anonymous referee who pointed out two errors of
earlier version of this paper.

1.6. Notation. Let F be a totally real number field with g = [F : Q] > 1, OF be its
ring of integers, dF the different of F . Let p be a fixed prime number unramified in F .
For a prime ideal p of OL above p, we put κ(p) = OL/p and denote by |κ(p)| = pfp the
cardinality of κ(p). Let N ≥ 4 be a fixed integer coprime to p. Let κ be a finite subfield
of Fp containing all κ(p) and a primitive N -th root of unity, W = W (κ) be the ring of
Witt vectors with coefficients in κ and Qκ = W [1/p]. Let B be the set of embeddings of
F into Qκ. For each prime ideal p of OF dividing p, let Bp ⊂ B be the subset consisting
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of embeddings β such that β−1(pW ) = p. So we have B =
∐

p|p Bp. If σ denotes the
Frobenius on Qκ, then β 7→ σ ◦ β defines a natural cyclic action of Frobenius on each Bp.

In general, for a finite set I, we denote by |I| its cardinality.
Let Cp be the completion of an algebraic closure of Qκ. All the finite extensions of Qκ

are understood to be subfields of Cp. We denote by vp the p-adic valuation on Cp, and by
| · |p : C×p → R>0 the non-archimedean absolute value |x|p = p−vp(x).

2. Hilbert modular varieties, Hilbert modular forms and the Statement
of the main theorem

2.1. Let S be a scheme. A Hilbert-Blumenthal abelian variety by OF (or a HBAV for
short) over S is an abelian scheme A over S equipped with an embedding of rings ι :
OF ↪→ EndS(A) such that Lie(A) is an OS ⊗ OF -module locally free of rank 1. If A is a
HBAV over S, the dual of A, denoted by A∨, has a canonical structure of HBAV over S. We
denote by P(A) the fppf-sheaf over S of symmetric OL-linear homomorphisms of abelian
schemes A→ A∨, and by P(A)+ ⊂ P(A) the cone consisting of symmetric polarizations.

We fix a positive integer N ≥ 4 coprime to p. Let c be a fractional ideal of F prime to
p, and c+ ⊂ c be the cone of totally positive elements. Consider the functor

Fc : ALGW −→ SETS

which associates to each W -algebra R the set of isomorphism classes of triples (A, λ, ψN )
where:

• A is a HBAV over Spec(R);
• λ is a c-polarization of A, i.e., an OF -linear homomorphism λ : c→ P(A) sending
c+ to P(A)+ such that the induced map of fppf-sheaves on Spec(R)

A⊗OF c
1A⊗λ−−−→ A⊗OF P(A) −→ A∨ : a⊗ x 7→ a⊗ λ(x) 7→ λ(x)(a)

is an isomorphism.
• ψN is an embedding of abelian fppf-sheaves of OF -modules µN ⊗ d−1

F ↪→ A[N ].
It is well known that this functor is representable by a smooth and quasi-projective scheme
Xc over Spec(W ) of relative dimension g, which we usually call the c-Hilbert modular
variety over W of level Γ00(N) [Go01, Ch. 4, §3.1]. By a result of Ribet, the fibers of Xc

are geometrically irreducible [Go01, Ch. 3 §6.3].

2.2. Let R be a W -algebra, and (A, λ, ψN ) be an object in X(R). An isotropic (OF /p)-
cyclic subgroup H of A is a closed subgroup scheme H ⊂ A[p] which is stable under OF ,
free of rank 1 over OF /p as abelian fppf-sheaf over Spec(R), and isotropic under the γ-Weil
pairing

A[p]×A[p]
1×γ−−→ A[p]×A∨[p]→ µp

induced by a γ ∈ P(A)+ of degree prime to p. So when A is defined over a perfect field
k of characteristic p, a subgroup H ⊂ A[p] is (OF /p)-cyclic if and only if its Dieudonné
module is a free (k⊗OF )-module of rank 1. Let Gc be the functor which associates to each
W -algebra R the set of isomorphism classes of 4-tuples (A, λ, ψN , H), where (A, λ, ψN )
is an object in Fc(R), and H ⊂ A[p] is an isotropic (OL/p)-cyclic subgroup of A. The
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functor Gc is representable by a scheme Yc over Spec(W ). We call Y the c-Hilbert modular
variety of level Γ00(N)∩Γ0(p). The natural forgetful map (A, λ, ψ,H) 7→ (A, λ, ψ) defines
a morphism of W -schemes π : Yc → Xc, which is finite étale of degree

∏
p|p(p

fp + 1) on the
generic fibers over Qκ.

Note that, for an object (A, λA, ψA,N , H) in Yc(R), the quotient B = A/H is naturally
equipped with a structure of HBAV. Let f : A→ B be the natural isogeny and f t : B → A
be the unique isogeny such that f ◦f t = p·1B and f t◦f = p·1A. If λ : A⊗OF c

∼−→ A∨ is the
isomorphism given by λA : c→ P(A), we define a c-polarization on B by λB = 1

p(f t)∗◦λA :

c→ P(A)→ P(B), where (f t)∗ : P(A)→ P(B) is given by φ 7→ (f t)∨◦φ◦f t. Finally, since
H has order prime to N , the isogeny f : A→ B induces an isomorphism f : A[N ]

∼−→ B[N ].

We define ψB,N as µN ⊗ d−1
F

ψA,N−−−→ A[N ]
∼−→ B[N ]. We get an object (B, λB, ψB,N ) in

Xc(R).
Fix a finite set {c1, · · · , ch+} of fractional ideals of F prime to p, which form a set of

representatives for the narrow class group Cl+F of F . We put

X =
h+∐
i=1

Xci and Y =
h+∐
i=1

Yci .

We call X (resp. Y ) the Hilbert modular varities of level Γ00(N) (resp. of level Γ00(N) ∩
Γ0(p)). In the sequel, an object (A/R, λ, ψN , H) in Y (R) will be usually omitted as (A,H),
if there is no confusions on the polarization λ and the level structure ψN .

2.3. Let T be the algebraic group (ResOF /ZGm) ⊗Z W over W , and X(T ) be the group
of characters of T . For any β ∈ B = EmdQ(F,Qκ), let χβ ∈ X(T ) be the character

T (R) = (R⊗OF )× → R× = Gm(R) given by r ⊗ a 7→ rβ(a).

Then (χβ)β∈B form a basis of X(T )
∼−→ ZB over Z. For an element (kβ)β∈B =

∑
β∈B kββ ∈

ZB, we denote by χ~k =
∏
β∈B χ

kβ
β the corresponding character of T .

Let A → X be the universal HBAV over X, and ω = e∗Ω1
A/X where e : X → A is the

unit section of A. This is a locally free OX ⊗OF -module of rank 1, and we have

ω =
⊕
β∈B

ωβ,

where ωβ is the submodule of ωA/X whereOF acts via χβ . For any character ~k = (kβ)β∈B ∈
ZB, we define a line bundle

ω
~k =

⊗
β∈B

ω
⊗kβ
β .

By abuse of notation, we denote still by ω~k its pull-backs over Y via π∗.

Definition 2.4. For a W -algebra R0, we call the elements of H0(X ⊗ R0, ω
~k) (resp.

H0(Y ⊗R0, ω
~k)) (geometric) Hilbert modular forms with coefficients in R0 of weight ~k =∑

β kβ · β and level Γ00(N) (resp. of level Γ00(N) ∩ Γ0(p)) over R0.
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We have the following modular interpretation of (geometric) Hilbert modular forms à la
Katz. For eachR0-algebraR, we consider 5-tuples (A/R, λ, ψN , H, ω), where (A/R, λ, ψN , H)
is an element in Y (R) and ω is a generator of ωA/R = e∗Ω1

A/R as an R⊗OF -module. Then

a Hilbert modular form f of level Γ00(N) ∩ Γ0(p) and weight ~k over R0 is equivalent to a
rule that assigns to each R0-algebra R, each 5-tuple (A, λ, ψN , H, ω) as above, an element
f(A,H, ω) ∈ R satisfying the following properties:

• f(A,H, a · ω) = χ~k(a)−1f(A,H, ω) for a ∈ (R⊗OF )×;
• if φ : R→ R′ is a homomorphism of R0-algebras and (A′, λ′, ψ′N , H

′, ω′) is the base
change to R′ of (A, λ, ψN , H, ω), then f(A′, H ′, ω′) = φ(f(A,H, ω)).

We have a similar description of Hilbert modular forms of level Γ00(N) over R0, and we
leave the details to the reader.

2.5. We recall some well known facts on the toroidal compactifications of Hilbert modular
varieties (cf. [Rap78, Ch90, DT04]). Let (c, c+) be a prime-to-p fractional ideal of OF . A
Γ00(N)-cusp C of Xc is an equivalence class of the following data:

(1) Projective OF -modules a and b of rank 1.
(2) An isomorphism of OF -modules b−1a

∼−→ c.
(3) An exact sequence of projective OF -modules

0→ d−1
F a−1 → Λ→ b→ 0.

(4) An embedding of OF -modules:

iC : a−1d−1
F /Nc−1d−1

F ↪→ Λ/NΛ.

Set MC = ab = b2c, and M∗C = HomZ(M,Z) ' a−1b−1d−1
F = d−1

F a−2c. The positivity on
c and that on dF induce natural positivities on MC and M∗C . For each Γ00(N)-cusp C, we
choose a rational polyhedral cone decomposition {σα}α∈IC of M∗,+C ∪ {0} that is invariant
under the natural action by U2

F,N such that the quotient {σα}α∈IC/U2
F,N is finite. Here,

UF,N ⊆ O×F denotes the subgroup of units congruent to 1 modulo N .
We put R = W [qξ : ξ ∈ 1

NMC ], and UC = Spec(W [qξ : ξ ∈ 1
NMC ]). Let UC ↪→ Sσα

be the embedding corresponding to σ, and Ŝσα = Spf(Rσα) denote the completion of Sσα
along Zσα = Sσα − UC . Let UC ↪→ S({σα}) be the toric embedding given by {σα}α∈IC ,
and Ŝ({σα}) be the completion of S({σα}) along S({σα})−UC . So Ŝ({σα}) has an affine
open covering by the Ŝσα ’s.

Put Spec(R0
σα) = Spec(Rσα) ×Sσα UC with R0

σα = Rσα [qξ : ξ ∈ 1
NMC ]. We have a

morphism of schemes over Spec(R0
σα):

ι : b ↪→ Gm ⊗ a−1d−1
F = Spec(R[Xα : α ∈ a])

given by Xα(ι(β)) = qαβ . By Mumford’s construction, we have a semi-abelian scheme
Tate(a, b) = (Gm ⊗ a−1d−1

F )/ι(b) over Spec(Rσα) equipped with a natural action of OF ,
which is a c-polarized abelian scheme over Spec(R0

σα), and degenerates into Gm ⊗ a−1d−1
F
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over Zσα . As explained in [KL05, 1.6.1], the data iC : a−1d−1
F /Na−1d−1

F ↪→ Λ/NΛ de-
fines a Γ00(N)-level structure on Tate(a, b) over Spec(R0

σα). Thus, one gets a morphism
Spec(Rσα)→ Xc.

By “gluing” the local charts Ŝσα to Xc along Ŝσα ×Sσα UC (cf. [Rap78] and [Ch90]), one
gets a toroidal compactification Xc ↪→ Xc, and an isomorphism of formal schemes

X
∧ ∼=

∐
C

Ŝ({σα})/U2
F,N ,

where X∧ denotes the completion of X along the boundary X −X. There exists a semi-
abelian scheme A with real multiplication by OF over Xc which extends the universal
HBAV A over Xc, and whose restriction to each Ŝσα is Tate(a, b). We put X =

∐
cXc,

where (c, c+) runs through a set of prime-to-p representatives of the strict ideal class group
of F . The (OX ⊗OF )× torsor ω extends to X; hence, for any ~k ∈ ZB, the line bundle ω~k

extends uniquely to a line bundle on X, which we still denote by ω~k.
We define a Γ00(N) ∩ Γ0(p)-cusp (C,H) on Y to be a Γ00(N)-cusp C = (a, b,Λ, iC)

as above together with an (OF /p)-cyclic subgroup H ⊂ Λ/pΛ. By choosing a rational
polyhedral cone decomposition for each cusp (C,H) compatible with that for X, one
generalizes the previous construction to get an toroidal compactification Y of Y in the same
manner as the Siegel case treated by Stroh [St10a]. Then Y is a proper smooth scheme
over W , which contains Y as an open dense subscheme. We have a similar description
of Y ∧ in terms of local charts. The natural projection Y → X extends to a morphism
Y → X.

2.6. Let X andY be the respectively the formal completions ofX and Y along their special
fibers. The formal scheme X represents the functor that attaches, to each admissible p-adic
formal scheme over Spf(W ), the set of polarized HBAV with a Γ00(N)-level structure; and
we have a similar interpretation for Y. Let Xrig and Yrig be the associated rigid analytic
spaces in the sense of Raynaud, Xan

Qκ
and Y an

Qκ
be the analytic spaces over Qκ associated

with the Qκ-schemes XQκ and YQκ . Similarly, we have formal schemes X, Y for toroidal
compactifications, and their associated rigid analytic spaces Xrig, Yrig. Then we have
natural inclusions of rigid analytic spaces

Xrig ⊂ Xan
Qκ
⊂ Xrig, Yrig ⊂ Y an

Qκ
⊂ Yrig.

For any extension of valuation fields L/Qκ, we use a subscript L to denote the base change
of a rigid space over Qκ to L, e.g. Xrig,L, Xan

Qκ,L
= Xan

L , ... For any weight ~k ∈ ZB, by an

obvious abuse of notation, we still denote by ω~k the modular line bundles of weight ~k on
the formal schemes X and Y, and on rigid spaces Xrig, Yrig.
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Proposition 2.7 (Koecher’s Principle). For any finite extension L over Qκ, we have a
commutative diagram of canonical isomorphisms

H0(Y L, ω
~k)

∼= //

∼=
��

H0(YL, ω
~k)

∼=
��

H0(Yrig,L, ω
~k)

∼= // H0(Y an
L , ω

~k)
∼= // H0(Yrig,L, ω

~k),

where the horizontal arrows are natural restriction map, and the vertical arrows are ana-
lytification maps.

Proof. The diagram above is clearly commutative. The top horizontal isomorphism is the
classical Koecher principle [Ch90, Thm. 4.3(i)]. The left vertical isomorphism follows from
rigid GAGA [Ab11, 7.6.11]. The lower horizontal arrows are clearly injective. To finish
the proof, it suffices to show that the restriction map

H0(Yrig,L, ω
~k)→ H0(Yrig,L, ω

~k)

is an isomorphism. Since both W -formal schemes Y and Y are admissible, we have
H0(Yrig,L, ω

~k) ∼= H0(Y, ω
~k) ⊗W L and similarly for H0(Yrig,L, ω

~k). We are thus reduced
to proving the similar statement for formal schemes Y and Y, then further reduced to
showing that restriction map

H0(Y ⊗W W/pn, ω
~k)→ H0(Y ⊗W W/pn, ω

~k)

is an isomorphism for all n ≥ 1. By the construction of Y , it suffices to prove that, for
every f ∈ H0(Y ⊗W W/pn, ω

~k), the q-expansion of f around each cusp has no poles. This
follows from the same computation as in [Ra74, 4.9]. �

2.8. Up-operators. Let {c1, · · · ch+} be the fixed set of prime-to-p representatives of the
strict ideal class group Cl+F . Fix a prime p of F above p. For each ci, there exists unique
1 ≤ j ≤ h+ and a totally positive element ξi ∈ F×,+ such that cip = (ξi)cj . Note that ξi
is only determined up to elements of U+

F , the group of totally positive units in F ; if p is
not inert in F , then there is no canonical choice for such a ξi. We fix such a ξi for each
1 ≤ i ≤ h+.

If A is a HBAV over a W -algebra R, we have a decomposition of finite and locally free
group schemes over R

A[p] =
∏
p|p

A[p],

where p runs through all the prime ideals of OF dividing p, and A[p] is the subgroup scheme
killed by all a ∈ p. Then A[p] is a group scheme of (OF /p)-vector spaces of dimension 2.
We fix a prime ideal p of OF above p, and put κ(p) = OF /p. Let C(p) be the scheme over
Qκ which represents the functor that attaches to a Qκ-algebra R the set of isomorphism
classes of 5-tuples (A, λ, ψN , H,H

′) where:
• (A, λ, ψN , H) is an object in Y (R);
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• H ′ ⊂ A[p] is a closed (OF /p)-cyclic isotropic subgroup scheme such that H ′ ∩H =
{0}.

We will two maps

(2.8.1) C(p)
π1

||

π2

""
YQκ YQκ

given respectively as follows:

π1(A, λ, ψN , H,H
′) = (A, λ, ψN , H)

π2(A, λ, ψN , H,H
′) = (B, λB, ψB,N , (H

′ +H)/H ′),

where B is the quotient abelian scheme A/H ′, ψB,N is the induced level structure on
B such that f ◦ ψN = ψB,N if f : A → B denotes the canonical quotient isogeny. It
remains to describe the polarization λB on B. Assume that λ induces an isomorphism
λ : A⊗OF ci

∼−→ A∨ for 1 ≤ i ≤ h+. Let ξi ∈ F×,+ be the element chosen above such that
cip = (ξi)cj for a unique 1 ≤ j ≤ h+. Let g : B → A ⊗OF p−1 be the canonical quotient
isogeny with kernel A[p]/H ′ ⊆ B[p]. It is easy to check that the quasi-isogeny

B ⊗OF cj
1⊗ξi−−−→ B ⊗OF cip

g⊗1−−→ A⊗OF ci
λ−→ A∨

g∨−→ B∨ ⊗OF p−1 ← B∨

is a genuine isogeny, and it gives the desired polarization λB. Here, the last arrow B∨ →
B∨ ⊗OF p−1 ∼= B∨/B∨[p] is the canonical quotient with kernel B[p].

Since we are in characteristic 0, both π1 and π2 are finite étale of degree |κ(p)|. Let
(A, λ, ψN , H,H ′) be the universal object on C(p), and φ : A → B = A/H ′ be the canonical
isogeny. We have a commutative diagram

A

f
��

A

f1
��

oo φ // B

f2
��

// A

��
YQκ C(p)

π1oo C(p)
π2 // YQκ ,

where both the left and right squares are cartesian. We have a natural morphism of
(OC(p) ⊗OF )×-torsors:

π∗2(ωA/YQκ )
∼−→ f2∗(Ω

1
B/C(p))

φ∗−→ f1∗(Ω
1
A/C(p))

∼←− π∗1(ωA/YQκ ),

which induces a natural morphism of line bundles

φ∗ : π∗2(ω
~k) −→ π∗1(ω

~k)

for any ~k ∈ ZB. For a finite extension L/Qκ, we define the Up-operator on the space
H0(YL, ω

~k) as the composite
(2.8.2)

Up : H0(YL, ω
~k)

π∗2−→ H0(C(p)L, π
∗
2(ω

~k))
φ∗−→ H0(C(p)L, π

∗
1(ω

~k))
1
|κ(p)| tr−−−−→ H0(YL, ω

~k),
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where “tr” is induced by the trace map π1∗π
∗
1(ω

~k) → ω
~k. Explicitly, if L′/L is a finite

extension such that (A,H) = (A, λ, ψN , H) ∈ Y (L), and ω is a generator of ωA = e∗Ω1
A/L′

as an (L′ ⊗OF )-module, then we have

(2.8.3) (Upf)(A,H, ω) =
1

|κ(p)|
∑

H′⊂A[p]
H′∩H=0

f(A/H ′, (H ′ +H)/H ′, p−1φ̂∗(ω)),

where H ′ runs over all the OF -subgroups of A[p] of order |κ(p)| with H ∩ H ′ = 0, and
φ̂ : A/H ′ → A is the canonical isogeny with kernel A[p]/H ′.

Remark 2.9. As pointed by the referee of this paper, our definition of Up-operators has
the obviously disadvantage that it depends on the choices of the ξi’s, which are only
canonically determined up to elements of U+

F , although it is harmless for the proof of our
main theorem. This ambiguity disappears when we restrict to so-called arithmetic Hilbert
modular forms, which are the forms giving rise to Galois representations.

Actually, there is a natural action of U+
F on Y given by [ε] : (A, λ, ψN , H) 7→ (A, ε ·

λ, ψN , H). Let UF,N ⊆ O×F be the subgroup of units congruent to 1 modulo N . Then the
subgroup U2

F,N acts trivially, because the endomorphism u : A → A induces an isomor-
phism of tuples (A, λ, ψN , H) ' (A, ε · λ, ψN , H) if ε = u2 with u ∈ U2

F,N . Thus the action
of U+

F factors through the finite quotient U+
F /U

2
F,N . We have also an equivariant action of

U+
F /U

2
F,N on ω~k so that we get a natural action of U+

F /U
2
F,N on the H0(YL, ω

~k). The space

of arithmetic Hilbert modular forms is defined to be the invariant subspace of H0(YL, ω
~k)

under U+
F /U

2
F,N . Then for those forms, the ambiguity coming from the choices for ξi’s will

disappear. For more discussion on this issue, see [KL05, 1.11] and [DT04].

2.10. Norms. We fix a weight ~k =
∑

β∈B kβ ∈ ZB and a finite extension L/Qκ. Let
L′/L be a finite extension, and Q = (A,H) ∈ Yrig(L′) be a rigid point, i.e. a morphism
of formal schemes Q : Spf(OL′) → Y such that Q∗(A,H) = (A,H), where (A,H) is the
universal formal HBAV together with its universal isotropic (OF /p)-cyclic subgroup over
Yrig. Let ω be a generator of the free (OL′ ⊗ OF )-module ωA = H0(A,Ω1

A/OL′
), and ωβ

be its β-component for any β ∈ B. Then

ω
~k = ⊗β∈B ω

kβ
β

is a basis of the OL′-module Q∗(ω~k). For any element f ∈ Q∗(ω
~k) ⊗OL′ L

′, we write
f = f(A,H, ω)ω

~k with f(A,H, ω) ∈ L, and define

|f | = |f(A,H, ω)|p.

For any admissible open subset V ⊂ Yrig,L, and a section f ∈ H0(V, ω
~k), we define

|f |V = sup
Q∈|V |

|f(Q)| ∈ R>0 ∪ {∞},

where |V | denotes the set of rigid points of V . If V is quasi-compact, then |f |V ∈ R>0

by the maximum modulus principle in rigid analysis, and H0(V, ω
~k) is an L-Banach space



12 YICHAO TIAN

with the norm | · |V . If V is clear from the context, we usually omit the subscript V from
the notation.

2.11. Hasse Invariants. Let R be a κ-algebra, and A be a HBAV over R. Let ωA/R =

H0(A,Ω1
A/R), and Lie(A) be the Lie algebra of A; so we have Lie(A) = HomR(ωA/R, R).

The Verschiebung homomorphism VA : A(p) → A induces a map of R-modules HW :
Lie(A)(p) → Lie(A), where Lie(A)(p) is the base change of Lie(A) via the absolute Frobenius
endomorphism FR : a 7→ ap of R. Equivalently, we have a canonical map

h : ωA/R → ω
(p)
A/R.

Note that ωA/R is a locally free R⊗OF -module of rank 1, and let ωA/R =
⊕

β∈B ωA/R, β ,
where ωA/R,β is the direct summand on which OF acts via the character χβ . Thus we have
a decomposition h = ⊕β∈Bhβ , where

(2.11.1) hβ : ωA/R, β → ω
(p)
A/R, σ−1◦β.

The morphism hβ thus defines a Hilbert modular form (with full level) of weight p·σ−1◦β−β
over κ, and we call it the β-partial Hasse invariant. The product E =

∏
β∈B hβ is thus a

Hilbert modular form of weight (p−1)
∑

β∈B β over κ, called simply the Hasse invariant. If
A is a HBAV over an algebraically closed field containing κ, the Hasse invariant E(A) 6= 0 if
and only if A is ordinary in the usual sense, i.e., the finite group scheme A[p] is isomorphic
to µgp × (Z/pZ)g.

2.12. Let Xκ, Yκ be the special fibers of X and Y , and Xord
κ be the locus where the Hasse

invariant h does not vanish, or equivalently the open subscheme of Xκ parametrizing
polarized ordinary HBAV. For a HBAV A over a κ-algebra R, the kernel of the Frobenius
homomorphism of A is naturally an (OF /p)-cyclic isotropic subgroup of A[p]. In other
words, the kernel of Frobenius defines a section s : Xκ → Yκ of the projection π : Yκ → Xκ.
We put Y ord

κ = s(Xord
κ ). In particular, Y ord

κ is isomorphic to Xord
κ .

Let Xord and Yord be respectively the open formal subschemes of X and Y corresponding
to the open subsets Xord

κ ⊂ Xκ and Y ord
κ ⊂ Yκ, and Xord

rig and Yord
rig be the associated rigid

analytic generic fibers. Then Xord
rig and Yord

rig are respectively quasi-compact admissible open
subsets of Xrig and Yrig. Let (A, λ, ψN ) be the universal formal HBAV over X. Over the
ordinary locus Xord, we have an extension of finite flat OF -group schemes

0→ A[p]µ → A[p]→ A[p]ét → 0,

where A[p]ét is étale of order pg, and A[p]µ is of multiplicative type and lifts the kernel of
Frobenius of A⊗W κ. The finite flat subgroup A[p]µ is (OF /p)-cyclic and isotropic for the
Weil pairing induced by the polarization λ, and it defines thus an section s◦ : Xord → Yord

lifting the section s : Xord
κ → Y ord

κ given by the kernel of Frobenius. In particular, the
natural projections Yord → Xord and Yord

rig → Xord
rig are canonical isomorphisms.

Definition 2.13. Let L be a finite extension of Qκ.
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(i) For ~k ∈ ZB, an element of H0(Xord
rig,L, ω

~k) is called a p-adic Hilbert modular form of
level Γ00(N) and weight ~k with coefficients in L.

(ii) We say an element f ∈ H0(Xord
rig,L, ω

~k) is overconvergent if f extends to a strict
neighborhood V of Xord

rig,L in Xrig,L. We put

M†~k
(Γ00(N), L) = lim−→

V

H0(V, ω
~k)

where V runs over the strict neighborhoods of Xord
rig,L in Xrig,L, and we call it the space of

overconvergent p-adic Hilbert modular forms of level Γ00(N) and weight ~k.

Remark 2.14. By the theory of canonical subgroups (cf. [KL05, §3] and [GK09, Thm.
5.3.1]), the isomorphism of ordinary loci π : Yord

rig → Xord
rig extends to a strict neighborhood

of Yord
rig in Yrig. Therefore, the natural notion of (overconvergent) p-adic Hilbert modular

forms of level Γ00(N)∩Γ0(p) is the same as its counterpart of level Γ00(N). Hence, we can
always consider an element f ∈ M†~k

(Γ00(N), L) as a section of ω~k over a strict neighborhood
of Yord

rig,L.

We refer the reader to [Be96] for the definition of strict neighborhood. Here we construct
an explicit fundamental system of strict neighborhoods of Xord

rig,L in Xrig,L by using the Hasse

invariant. Let Ẽk0 be a lift in H0(X∗, ωk0(p−1)~1), where ~1 = (1, · · · , 1) ∈ ZB, of k0-th power
of the Hasse invariant Ek0 for some integer k0 ≥ 1. The existence of such a lift follows
from Koecher’s principle and the fact that ω~1 is ample on the minimal compactification
X∗. For any rational number 0 < r ≤ 1, we denote by Xord

rig,L(r) the admissible open subset

of Xrig,L where |Ẽk0 | ≥ rk0 . Since the Hasse invariant is well-defined modulo p, the subset
Xrig,L(r) does not depend on the choice of the lift Ẽk0 if p−1/k0 < r ≤ 1. It is clear that
Xrig,L(1) = Xord

rig,L, and the Xrig,L(r)’s form a fundamental system of strict neighborhoods
of Xord

rig,L in Xrig,L. Hence, we have

M†~k
(Γ00(N), L) = lim

r→1−
H0(Xord

rig,L(r), ω
~k).

Note that each H0(Xord
rig,L(r), ω

~k) is a Banach space over L, and the natural restriction map

H0(Xord
rig,L(r), ω

~k)→ H0(Xord
rig,L(r′), ω

~k)

for 0 < r < r′ < 1 is compact [KL05, 2.4.1]. Therefore, M†~k
(Γ00(N), L) is (compact) direct

limit of Banach spaces over L.
By Remark 2.14, we have a natural injective map

H0(YL, ω
~k) ' H0(Yrig,L, ω

~k)→ M†~k
(Γ00(N), L),

where we have used Prop. 2.7 for the first isomorphism. We denote its image by M~k
(Γ00(N)∩

Γ0(p), L), and call it the space of classical Hilbert modular forms.
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2.15. For a prime ideal p of OF above p, let C(p)an be the rigid analytification of the
scheme C(p) over Qκ considered in 2.8. Then just as C(p), the rigid space C(p)an represents
an analogous functor in the rigid analytic setting, and we still have a universal object
(Aan, λ, ψN , H,H

′) over C(p). We have analogous morphisms π1, π2 : C(p)an → Y an
Qκ

. We
put

C(p)rig = π−1
1 (Yrig) = π−1

2 (Yrig).

The rigid analytic space C(p)rig is the locus of C(p)an where Aan has good reduction, it
classifies the objects (A,H,H ′), where (A,H) is a rigid point of Yrig, and H ′ ⊂ A[p] is a
group scheme of (OF /p)-vector space of dimension 1 with H ∩ H ′ = 0. We have a rigid
version of the Hecke correspondence:

C(p)rig

π1

{{

π2

##
Yrig Yrig

given by π1(A,H,H ′) = (A,H) and π2(A,H,H ′) = (A/H ′, (H + H ′)/H ′). We have also
a set theoretical Hecke correspondence between the rigid points of Yrig

Up : Yrig → Yrig(2.15.1)

Q 7→ π2(π−1
1 (Q)).

Here, it is an obvious notation for convenience, because Up is not really a morphism of
rigid analytic spaces. If U and V are admissible open subsets of Yrig such that Up(U) ⊂ V ,
i.e. π−1

1 (U) ⊂ π−1
2 (V ). A rigid version of the formula (2.8.3) defines the Up-operator

Up : H0(V, ω
~k)

π∗2−→ H0(π−1
2 (V ), π∗2ω

~k)
φ∗−→ H0(π−1(U), π∗1ω

~k)
1
|κ(p)| tr−−−−→ H0(U, ω

~k).

Lemma 2.16. The ordinary locus Yord
rig is stable under the Hecke correspondence Up, i.e.

we have π2(π−1
1 (Yord

rig )) ⊂ Yord
rig .

Proof. Let L be a finite extension of Qκ, (A,H) ∈ Yord
rig (L) be a rigid point, i.e. A is a

HBAV over OL with ordinary reduction, and H ⊂ A[p] is the multiplicative part. We have
to show that (A/H ′, (H + H ′)/H ′) still lies in Yord

rig for any isotropic (OF /p)-subgroup
H ′ ⊂ A[p] with H ′ ∩H = 0. Actually, such a H ′ is necessarily étale over OL. Therefore,
the isogeny A→ A/H ′ is étale, and the subgroup (H +H ′)/H ′ is the multiplicative part
of the HBAV A/H ′. �

This easy Lemma implies immediately that a Up-operator analogous to the classical case
can be defined on the spaceH0(Yord

rig,L, ω
~k) for any weight ~k ∈ ZB and any finite extension L

of Qκ. In order to show that overconvergent p-adic Hilbert modular forms are stable under
Up, we need to extend canonically the section s◦ : Xord

rig → Yord
rig to a strict neighborhood

of Xord
rig . As already mentioned in Remark 2.14, this is the theory of canonical subgroups,

and it has been developed by many authors (cf. for instance [KL05] and [GK09]). The
main result of this paper is the following



CLASSICALITY OF OVERCONVERGENT HILBERT EIGENFORMS 15

Theorem 2.17. Let f be an element of M†~k
(Γ00(N), L). Assume that for every prime ideal

p of OF above p, we have [κ(p) : Fp] ≤ 2 and Up(f) = apf with vp(ap) < minβ∈Bp{kβ} −
[κ(p) : Fp], then f is classical, i.e., f ∈ M~k

(Γ00(N) ∩ Γ0(p), L).

Remark 2.18. It is reasonable to expect that the theorem is also true without the re-
striction [κ(p) : Fp] ≤ 2. The main obstacle to this generalization is that the geometry
of Y in the higher dimensional case is too complicated, and we don’t well understand the
dynamics of the Up-operator.

In the reminder of this section, we suppose p ≥ 3, and indicate some consequences of
our results on eigencurves for overconvergent Hilbert eigenforms.

2.19. We follow the treatments in [KL05]. Let L be a finite extension of Qκ, and R be a
Banach algebra over L with a submultiplicative norm |·|, and Z ∈ R such that |Z| < p

− 2−p
p−1 .

We fix an integer k0 > 0 coprime to p such that the k0-th power of the Hasse invariant lifts
to Ẽk0 ∈ H0(X,ωk0(p−1)~1). For ~k ∈ ZB, Kisin and Lai defined in [KL05, 4.2.3] the space
of overconvergent Hilbert modular forms over R of level Γ00(N) and weight ~k + Z to be
space

(2.19.1) M†~k+Z
(Γ00(N), R) = lim−→

V

H0(V, ω
~k)⊗̂QκR,

where V runs over a fundamental system of quasi-compact strict neighborhoods of Xord
rig

in Xrig. This space is equipped with an action of the Hecke operators Ta (resp. Ua) for
each ideal a ⊂ OF coprime to pN (resp. not coprime to pN). We point out that Kisin-

Lai’s definition of these operators involves the lift Ẽk0
t
, and if Z = 0, we come back to

the definition (2.13). We denote by T†~k+Z
(µN ) the ring of endomorphisms generated by

these operators as a runs over the ideals of OF . Let f ∈ M†~k+Z
(Γ00(N), R). We say f

is an eigenform if it is non-zero and a simultaneous eigenvector of all the operators in
T†~k+Z

(µN ). We say an eigenform f has finite slope if it is an eigenform and the eigenvalue
of U(p) =

∏
p|p Up is non-zero, i.e. U(p)(f) 6= 0.

According to [KL05, 4.2.8], the space M†~k+Z
(Γ00(N), R) interpolates the p-adic over-

convergent modular forms of integer weights in the following sense. Let L′/L be a finite
extension, ψ : R→ L′ be a homomorphism of L-algebras sending Z to (p− 1)k0t for some
t ∈ Z>0. Then for each Hecke operator T = Ta or T = Ua, ψ induces a commutative
diagram

M†~k+Z
(Γ00(N), R)

ψ //

T

��

M†~k
(Γ00(N), L′)

·Ẽk0
t

// M†~k+(p−1)k0t~1
(Γ00(N), L′)

T

��

M†~k+Z
(Γ00(N), R)

ψ // M†~k
(Γ00(N), L′)

·Ẽk0
t

// M†~k+(p−1)k0t~1
(Γ00(N), L′).
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2.20. Let S be the set of infinity places and all the finite places of F dividing pN , and
GF,S be the Galois group of the maximal algebraic extension of F in C which is unramified
outside S. Let f be a Hilbert cusp eigenform of level Γ00(N) ∩ Γ0(p) and weight ~k ∈ ZB,
where the integers kβ ’s are all ≥ 2 and have the same parity. We may suppose that the
Fourier coefficients of f at cusps are contained in Of ⊂ OCp , where Of is the normalization
of Zp in a finite extension Kf of Qp. Let Ff = Of/mOf be the residue field of Of . Then
by the work of many people [Ca86, Ta89, BR93], we know how to associate to f a 2-
dimensional Galois representation (ρf , Vf ) of GF,S over Kf . The representation ρf is
characterized by the condition that, for every prime ideal q /∈ S of OF , trace(ρf (Frobq))
coincides with the eigenvalue of Tq on f , where Frobq denotes an arithmetic Frobenius
element in GF,S at q.

If Lf ⊂ Vf be a GF,S-stable Of -lattice of Vf , we put V f = Lf ⊗Of Ff by the abuse
of notation, and denote by ρf the resulting representation of GF,S over Ff . Note that, in
general, the isomorphism class of ρf is only determined by ρf up to semi-simplification. We
call such a ρf p-modular residual representation of GF,S , and call the pseudo-representation
associated with the semi-simplification of ρf a p-modular pseudo-representation.

Let ρ be a p-modular pseudo-representation of GF,S over a finite field F. We denote by
Runiv(ρ) the universal deformation ring of ρ, whose existence is proved in the same way
as [CM98, 5.1.3], and by ρuniv the universal pseudo-representation of GF,S over Runiv(ρ).
Let Z(ρ) be the rigid analytic space over L attached to Runiv(ρ) ⊗W (F) L, and W be the
weight space over L of ResOF /ZGm, i.e. the rigid space over L which to an affinoid algebra
A over L assigns the set of continuous A×-valued characters of (OF ⊗ZZp)

×. By the local
class field theory, the determinant det(ρuniv) defines a character (OF ⊗ZZp)

× → Runiv(ρ),
i.e. a map of rigid analytic spaces Z(ρ)→W.

Fix a weight ~k ∈ ZB such that all the kβ ’s have the same parity. We denote by W~k
the

subspace of W whose points in a complete subfield L′ ⊂ Cp containing L, correspond to
characters χ : (OF ⊗Z Zp)

× → L′× such that there exists z0 ∈ L′ with vp(z0) > 1
p−1 − 1

and χ = χ~k · 〈Nm〉z0 , where Nm = χ~1 : (OF ⊗ Zp)
× → Z×p is the natural norm map, and

a 7→ 〈a〉 is the canonical projection Z×p → (1 + pZp) defined by

Z×p ' (Z/pZ)× × (1 + pZp).

Then W~k
is a one-dimensional rigid closed subspace of W. We denote by

χuniv : (OF ⊗ Zp)
× → O(W~k

)×

the universal character, and by Z the rigid analytic function on W~k
such that χuniv =

χ~k · 〈Nm〉Z . We have |Z| < p
− 2−p
p−1 , and Z establishes an isomorphism of rigid spaces over

L

Z :W~k

∼−→ DL(0, p
− 2−p
p−1 ) = {x ∈ Cp|vp(x) >

1

p− 1
− 1}.

We denote by Z~k(ρ) the inverse image of W~k
in Z(ρ). We put Y~k(ρ) = Z~k(ρ) ×Gm,L ×∏

q∈S A
1
L, and denote by xp the canonical coordinate on Gm,L, xq the coordinate on the
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q-th copy of A1
L for q ∈ S. We denote still by Z the rigid analytic function on Y~k(ρ)

induced by the canonical projection Y~k(ρ) → W~k
, and by the same notation the analytic

function on Y~k(ρ) induced by that on Z~k(ρ).
Kisin and Lai proved in [KL05, 4.5.4] that there exists a rigid analytic closed subspace

C~k(ρ) ⊂ Y~k(ρ) that interpolates p-adic overconvergent Hilbert eigenforms of finite slope.
More precisely, it satisfies the following properties:

(1) For any closed subfield L′ ⊂ Cp containing L and any c ∈ C~k(ρ)(L′), there exists
an eigenform fc ∈ M†~k+Z(c)

(Γ00(N), L′) of finite slope, such that, if λc,T denotes the

eigenvalue of T ∈ T†~k+Z(c)
(µN ) on fc, we have λc,U(p)

= xp(c), and for all primes q
of OF

λc,Tq = trace(ρuniv(Frobq)) if q /∈ S and λc,Uq = xq(c) if q ∈ S.

(2) For any z0 ∈ L′ with vp(z0) > 1
p−1 − 1, and c ∈ C~k(ρ)(L′), the association c 7→

{λT,c}T∈T†
~k+Z(c)

(µN )
induces a bijection between c ∈ C~k(ρ)(L′) with Z(c) = z0,

and systems of T†~k+z0
(µN )-eigenvalues arising from the eigenforms of finite slope in

M†~k+z0
(Γ00(N), L′).

We say a point c ∈ C~k(ρ)(L′) is classical, if Z(c) = (p− 1)k0t for some integer t ∈ Z≥0,
and the image of fc under the composite map

M†~k+Z(c)
(Γ00(N), L′) ' M†~k

(Γ00(N), L′)
·Ẽk0

t

−−−→ M†~k+(p−1)k0t~1
(Γ00(N), L′)

comes from an element of M~k+(p−1)k0t~1
(Γ00(N) ∩ Γ0(p), L′).

Theorem 2.21. Assume p ≥ 3 and [κ(p) : Fp] ≤ 2 for all prime ideal p ⊂ OF above p.
Then the classical points are Zariski dense in C~k(ρ).

Proof. Let C be an irreducible component of C~k(ρ). It suffices to prove that C contains
infinitely many classical points. Let π~k(ρ) : C~k(ρ) → W~k

be the natural projection to
the weight space. By the same argument as [CM98, Thm. B], the morphism π~k(ρ) is
component-wise almost surjective in the sense that, for every irreducible component of
C~k(ρ), the complement of its image in W~k

consists of at most a finite number of weights.
Therefore, there exists an admissible affinoid subdomain B ⊂ C such that its image W0 in
W~k

is an affinoid domain containing a closed disk with center z0 = (p−1)k0t0 ∈W0 of radiu
p−n for certain n ∈ Z>0. By the maximum modulus principle, there exists a real number
α > 0 such that the slopes vp(xp(c)) < α for any prime p of F dividing p and any c ∈ B(L),
where L denotes the algebraic closure of L in Cp. Hence, there are infinitely many points
c ∈ B(L) such that we have Z(c) = (p− 1)k0t, and kβ + (p− 1)k0t > α+ 2 for all β ∈ B.
By property (1) of the eigencurve C~k(ρ) and Theorem 2.17, such a point c corresponds to
classical Hilbert modular forms of level Γ00(N) ∩ Γ0(p) and weight ~k + (p− 1)k0t~1. �
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3. Finite flat group schemes with RM and Breuil-Kisin modules

3.1. We recall first the theory of Breuil-Kisin modules for finite flat group schemes. Let k
be a perfect field of characteristic p > 0,W (k) be its ring of Witt vectors, and K be a finite
totally ramified extension of K0 = W (k)[1/p] of degree e, and OK be its ring of integers.
Fix a uniformizer π of K with Eisenstein polynomial E(u), and put S = W (k)[[u]]. We
equip S with the endomorphism ϕ which acts on W (k) via Frobenius and sends u to up.
A finite torsion Breuil-Kisin module (of height 1) is a finite S-module M equipped with a
ϕ-linear endomorphism ϕ : M→M verifying the following properties:

(1) M has p-power torsion.
(2) M has projective dimension 1 as S-module, i.e. there is a two term resolution of

M by finite free S-modules.
(3) The cokernel of the linearized map

1⊗ ϕ : ϕ∗(M) = S⊗S,ϕ M
1⊗ϕ−−→M

is killed by E(u).
We denote by Modtors

S the category of finite torsion Breuil-Kisin modules (of height 1).
Note thatS is regular local ring of dimension 2, a finiteS-module has projective dimension
1 if and only if it has depth 1. Therefore, condition (2) in the definition above is equivalent
to saying that M has no u-torsion. Similarly, a finite free Breuil-Kisin module (of height
1) is a finite free S-module M equipped with a ϕ-linear endomorphism ϕ : M →M such
that the third condition above is satisfied. We denote by Modfr

S the category of finite free
Breuil-Kisin modules (of height 1). By a Breuil-Kisin module, we mean an object M in
either Modtors

S or Modfr
S depending on the situation. For a Breuil-Kisin module M, the

map 1⊗ϕ : ϕ∗(M)→M is necessarily injective [Ki09a, 1.1.9], and we denote its image by
(1⊗ ϕ)ϕ∗(M).

The main motivation of studying Breuil-Kisin modules in this paper is the following
theorem due to Kisin [Ki06, 0.5] when p ≥ 3, to Eike Lau [La10, 7.6, 7.7] and Tong Liu
[Li10, 1.0.1, 1.0.2] independently when p = 2.

Theorem 3.2. There is a natural anti-equivalence between the category of commutative fi-
nite and flat group schemes over OK of p-power order and the category Modtors

S . Similarly,
the category of p-divisible groups is naturally anti-equivalent to the category Modfr

S.

The following Proposition will be fundamental for our application of Breuil-Kisin mod-
ules to the analytic continuation of Hilbert modular forms.

Proposition 3.3. Let G be a finite and flat group scheme (or a p-divisible group) over
OK . Let M be the Breuil-Kisin module associated with G. Then there is a canonical
isomorphism of OK-modules

ωG
∼−→M/(1⊗ ϕ)ϕ∗(M),

where ωG is the module of invariant differentials of G.

To prove this proposition, we need Breuil’s filtered S-modules. Let S be the p-adic
completion of the divided power envelop of W (k)[u] with respect to the principal ideal
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(E(u)), i.e. S is the completion of subringW (k)[u,E(u)i/i! : i ≥ 1] ofK0[u], and Fil1S ⊂ S
be the kernel of the natural surjection S → OK sending u 7→ π. We note that S is
naturally a subring of S, and the endomorphism ϕ on S extends to S. We check easily
that ϕ(Fil1S) ⊂ pS, and we put ϕ1 = 1

pϕ |Fil1S and c = ϕ1(E(u)). A filtered S-module
(M,Fil1M, ϕ1) consists of the following data:

(1) A finite generated S-moduleM and a submodule Fil1M with E(u)M⊂ Fil1M.
(2) A ϕ-linear morphism ϕ1 : Fil1M → M such that, for s ∈ Fil1S and x ∈ M, we

have ϕ1(sx) = 1
cϕ1(s)ϕ1(E(u)x), and the image of ϕ1 generatesM as an S-module.

We denote by MFS the category of filtered S-modules. It has a natural structure of an
exact category. A sequence is short exact if it is short exact as a sequence of S-modules,
and induces a short exact sequence on Fil1’s.

Let M be an object in Modtors
S or Modfr

S. We can associate covariantly with M a
filtered S-module as follows. We putM(M) = S⊗S,ϕM, and define Fil1M(M) to be the
submodule ofM(M) whose image under the morphism of S-modules

S ⊗S,ϕ M
1⊗ϕ−−→ S ⊗S M

lies in Fil1S⊗SM. The morphism ϕ1 : Fil1M(M)→M(M) is defined to be the composite

Fil1M(M)
1⊗ϕ−−→ Fil1S ⊗S M

1
p
ϕ⊗1
−−−−→ S ⊗S,ϕ M =M(M).

By [La10, 8.1], (M(M),Fil1M(M), ϕ1) is an object in MFS , and the functor M 7→ M(M)
is exact. By definition of Fil1M(M), we have an embedding [Ki09a, 1.1.15]

M(M)/Fil1M(M)
1⊗ϕ−−→ S ⊗S M/(Fil1S ⊗S M)

∼−→M/E(u)M,

which induces an isomorphism

(3.3.1) M(M)/Fil1M(M)
∼−→ (1⊗ ϕ)ϕ∗(M)/E(u)M.

If M is an object in Modfr
S, then (1 ⊗ ϕ)ϕ∗(M) is free over S. So the S-module (1 ⊗

ϕ)ϕ∗(M)/E(u)M has projective dimension 1, hence depth 1. It follows thatM(M)/Fil1M(M)
and (1⊗ ϕ)ϕ∗(M)/E(u)M are actually finite free OK-modules.

Lemma 3.4. Let M be an object in Modtors
S or Modfr

S as above. We have a canonical
isomorphism

Fil1M(M)/Fil1SM(M) 'M/(1⊗ ϕ)ϕ∗(M).

Proof. The following construction was indicated to me by Tong Liu. Consider the map
1⊗ ϕ : ϕ∗(M)→M. Motivated by the definition ofM(M), we put

Fil1ϕ∗(M) = {x ∈ ϕ∗(M) | (1⊗ ϕ)(x) ∈ E(u)M}.
Thus 1⊗ ϕ induces an isomorphism

(3.4.1) ϕ∗(M)/Fil1ϕ∗(M)
∼−→ (1⊗ ϕ)ϕ∗(M)/E(u)M.

We denote by
ϕ#

1 : Fil1ϕ∗(M)→M
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the natural map given by x 7→ (1⊗ ϕ)(x)/E(u). Then ϕ#
1 induces an isomorphism

(3.4.2) Fil1ϕ∗(M)/E(u)ϕ∗(M)
∼−→M/(1⊗ ϕ)ϕ∗(M).

On the other hand, the natural inclusion S ↪→ S induces an inclusion ι : ϕ∗(M) ↪→M(M).
We check easily that ι(Fil1ϕ∗(M)) ⊂ Fil1M(M), and we have a commutative diagram of
exact sequences

0 // Fil1ϕ∗(M)/E(u)ϕ∗(M) //

��

ϕ∗(M)/E(u)ϕ∗(M) //

∼
��

ϕ∗(M)/Fil1ϕ∗(M)

∼
��

// 0

0 // Fil1M(M)/Fil1SM(M) //M(M)/Fil1SM(M) //M(M)/Fil1M(M) // 0,

where the vertical arrows are induced by ι. The middle vertical arrow is easily seen to be
an isomorphism, and so is the right vertical map because of (3.3.1) and (3.4.1). It follows
that the left vertical one is also an isomorphism. In view of (3.4.2), the lemma follows.

�

Proof of Prop. 3.3. Let M = M(M) be the filtered S-module associated with G. By
Lemma 3.4, it suffices to prove that we have a canonical isomorphism

ωG
∼−→ Fil1M/Fil1SM.

If G is a p-divisible group, this follows from [BBM82, 3.3.5] or [La10, 8.1] and the fact
thatM is the evaluation of the Dieudonné crystal of G at the PD-thickening Spec(OK) ↪→
Spec(S). If G is finite flat group scheme over OK , then G can be embedded as a closed
subgroup scheme into a p-divisible group G0 over OK [BBM82, 3.1.1]; we put G1 = G0/G.
We denote respectively byM0 andM1 the filtered S-modules associated with G0 and G1.
Since all the constructions are functorial in G, the exact sequence of groups 0 → G →
G0 → G1 → 0 induces a commutative diagram of exact sequences of OK-modules

0 // ωG1
//

∼
��

ωG0
//

∼
��

ωG //

��

0

0 // Fil1M1/Fil1SM1
// Fil1M0/Fil1SM0

// Fil1M/Fil1SM // 0.

Since the left two vertical arrows are isomorphisms, it follows that so is the right one.
�

3.5. Zpg-groups. Let g > 0 be an integer,Qpg be the unramified extension ofQp of degree
g, Zpg be its ring of integers. We assume k contains Fpg . We identify EmdZp(Zpg ,OK),
the set of embeddings of Zpg into OK , with Z/gZ, and the natural action of Frobenius on
EmdZp(Zpg ,OK) is identified with i 7→ i + 1. For an (OK ⊗ Zpg)-module M , we have a
canonical splitting M = ⊕i∈Z/gZMi, where Zpg acts on Mi via the i-th embedding. If N is
a finite torsion OK-module, we choose an isomorphism N ' ⊕di=1OK/(ai) with ai ∈ OK ,
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and define the degree of N to be

deg(N) =

d∑
i=1

vp(ai).

A Zpg -group over OK is a commutative finite and flat group scheme over OK endowed
with an action of Zpg . Fargues [Fa10] defined the degree function of a finite flat group
scheme over OK . We give a refinement of this function for Zpg -groups over OK .

Definition 3.6. Let G be a Zpg -group over OK , and ωG = ⊕i∈Z/gZ ωG,i be its module of
invariant differential forms. We put

degi(G) = deg(ωG,i),

and we call it the i-th degree of G.

Hence, the degree function of Fargues is deg(G) =
∑

i∈Z/gZ degi(G). If 0 → G1 →
G → G2 → 0 is an exact sequence of Zpg -groups over OK , we have an exact sequence of
OK ⊗ Zpg -modules

0→ ωG2 → ωG → ωG1 → 0;

hence we have degi(G) = degi(G1) + degi(G2) for any i ∈ Z/fZ.
Recall that a scheme of 1-dimensional Fpg -vector spaces over OK is a Zpg -group G over

OK such that G(K) is an Fpg -vector space of dimension 1, where K is an algebraic closure
of K. According to Raynaud’s classification of such finite flat group schemes [Ra74, 1.5.1],
we have an isomorphism of schemes

(3.6.1) G ' Spec
(
OK [Ti : i ∈ Z/gZ]/(T pi−1 − aiTi)i∈Z/gZ

)
,

for some ai ∈ OK with 0 ≤ vp(ai) ≤ 1. Using this isomorphism, we have degi(G) = vp(ai)
for i ∈ Z/gZ. This following Lemma is a refinement of [Fa10, Cor. 3].

Lemma 3.7. Let φ : H → G be a homomorphism of schemes of 1-dimensional Fpg -vector
spaces over R that induces an isomorphism on the generic fibers. Then for any i ∈ Z/gZ,
we have

g−1∑
j=0

pj degi−j(G) ≥
g−1∑
j=0

pj degi−j(H).

Moreover, all the equalities hold if and only if φ is an isomorphism.

Proof. Let (ai)i∈Z/gZ (resp. (bi)i∈Z/gZ) be respectively the elements in OK appearing in
an isomorphism as (3.6.1) for G (resp. for H). We have degi(G) = vp(ai) and degi(H) =
vp(bi). The existence of φ implies that there exist ui ∈ OK for all i ∈ Z/gZ such that
aiui = biu

p
i−1 [Ra74, 1.5.1]. Hence, we have

g−1∏
j=0

(
ai−j
bi−j

)pj
=

g−1∏
j=0

up
j+1

i−j−1

up
j

i−j
= up

g−1
i .

The lemma follows immediately from the fact that vp(ui) ≥ 0, and that φ is an isomorphism
if and only if vp(ui) = 0 for all i ∈ Z/gZ. �
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3.8. We describe the Zpg -groups over OK in terms of Breuil-Kisin modules. A Zpg -Breuil-
Kisin module is an object M in Modtors

S together with an action of Zpg commuting with
ϕ. Equivalently, a Zpg -Breuil-Kisin module M is an (S ⊗ Zpg)-module M = ⊕i∈Z/gZMi

satisfying the following properties:
(1) each Mi is killed by some power of p;
(2) each Mi has projective dimension 1, i.e. Mi has a two term resolution by finite

free S-modules;
(3) there is a ϕ-linear endomorphism ϕ : M → M such that ϕ(Mi) ⊂ Mi+1 and the

cokernel of the linearization 1⊗ ϕ : ϕ∗(Mi)→Mi+1 is killed by E(u).
We denote by Modtors

S⊗Zpg the category of Zpg -Breuil-Kisin modules, and the morphisms
in Modtors

S⊗Zpg are homomorphisms of (S ⊗ Zpg)-modules commuting with ϕ. Let M be
an object of Modtors

S⊗Zpg . We define the i-th degree of M as

degi(M) =
1

e
leng

(
Mi/(1⊗ ϕ)ϕ∗(Mi−1)

)
,

Here, “leng” denotes the length, and the factor 1
e will be justified in Lemma 3.9. If 0 →

L → M → N → 0 is an exact sequence in Modtors
S⊗Zpg , it follows from an easy diagram

chasing that
degi(M) = degi(L) + degi(N)

for any i ∈ Z/gZ.
From Theorem 3.2, it follows easily that the category of Zpg -groups over OK is anti-

equivalent to the category Modtors
S⊗Zpg .

Lemma 3.9. Let G be Zpg -group over OK , and M be its corresponding Zpg -Breuil-Kisin
module. Then we have degi(G) = degi(M) for i ∈ Z/gZ.

Proof. Since the isomorphism in Prop. 3.3 is canonical, it necessarily commutes with
Zpg -actions. We have an isomorphism of (OK ⊗ Zpg)-modules

ωG =
⊕

i∈Z/gZ

ωG,i 'M/(1⊗ ϕ)ϕ∗(M) =
⊕

i∈Z/gZ

Mi/(1⊗ ϕ)ϕ∗(Mi−1).

The lemma follows immediately. �

Definition 3.10. Let n ≥ 1 be an integer, G be a truncated Barsotti-Tate group of level n
over OK equipped with an action of Zpg . We say G has formal real multiplication (or just
RM for short) by Zpg if G has dimension g and height 2g and ωG is a free (OK/pn⊗Zpg)-
module of rank 1; in particular, we have degi(G) = n for i ∈ Z/gZ.

By [Ki06, 2.3.6], an object M of Modtors
S⊗Zpg correpsonds to a truncated Barsotti-Tate

group of level n over OK with RM by Zpg if and only if
(a) M is a free (S/pn ⊗ Zpg)-module of rank 2g;
(b) M/(1⊗ ϕ)ϕ∗(M) is a free (OK/pn ⊗ Zpg)-module of rank g.
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Let M = ⊕i∈Z/gZMi be such a Zpg -Breuil-Kisin module. For each i ∈ Z/gZ, we have a
filtration of free OK/pn-modules

0→ (1⊗ ϕ)ϕ∗(Mi−1)/E(u)Mi →Mi/E(u)Mi →Mi/(1⊗ ϕ)ϕ∗(Mi−1)→ 0.

We say a basis (δi, εi)i∈Z/gZ of M over S/pn is adapted if δi ∈ (1 ⊗ ϕ)ϕ∗(Mi−1) and the
image of εi generates Mi/(1 ⊗ ϕ)Mi−1 over OK/pn. Then under such an adapted basis,

there exists
[
ai bi
ci di

]
∈ GL2(S/pn) such that

(3.10.1) ϕ(δi−1, εi−1) = (δi, εi)

[
ai bi

E(u)ci E(u)di

]
.

3.11. Let G be a truncated Barsotti-Tate group of level 1 over OK with RM by Zpg , and
G1 = G⊗OK OK/p be its reduction modulo p. The Lie algebra of the Cartier dual of G1,
denoted by Lie(G∨1 ), is a free (OK/p⊗ Zpg)-module of rank 1. Let

Lie(G∨1 ) =
⊕

i∈Z/gZ

Lie(G∨1 )i

be the decomposition according to the action of Zpg . The Frobenius homomorphism FG1 :

G1 → G
(p)
1 induces a Frobenius linear endomorphism

HW : Lie(G∨1 )→ Lie(G∨1 )

with HW : Lie(G∨1 )i−1 ⊂ Lie(G∨1 )i. We choose a basis δi for each Lie(G∨1 )i over OK/p,
and write HW(δi−1) = tiδi. Let vp : OK/p→ [0, 1] be the truncated p-adic valuation. We
define the i-th partial Hodge height of G to be wi(G) = vp(ti) ∈ [0, 1]. It is clear that the
definition does not depend on the choice of the basis δi. Note that G is ordinary if and
only if wi(G) = 0 for all i ∈ Z/gZ.

Lemma 3.12. Let G be as above, and M be its corresponding Breuil-Kisin module. We
choose an adapted basis of M so that ϕ is represented by matrices of the form (3.10.1).
Then we have wi(G) = 1

e min{e, vu(ai)}, where ai is the image of ai in S1 = k[[u]], and
vu denotes the u-adic valuation.

Proof. LetM =M(M) be the filtered S-module associated with G. By [La10, 8.1], there
is a canonical isomorphism of (OK/p)-modules Lie(G∨1 ) ' M/Fil1M. Combining with
(3.3.1), we have an isomorphism

Lie(G∨1 ) ' (1⊗ ϕ)ϕ∗(M)/E(u)M,

where the second term is considered as anOK/p-module via the isomorphismS1/E(u)S1 '
OK/p given by u 7→ π. Since everything is functorial in G, this is actually an isomor-
phism of (OK/p ⊗ Zpg)-modules. Since the endomorphisms HW on Lie(G∨1 ) and ϕ on
(1⊗ϕ)ϕ∗(M)/E(u)M are both induced by Frobenius homomorphism of G1 [Ki09b, 1.1.2],
one checks easily that HW and ϕ coincide with each other via the canonical isomorphism
above. The Lemma follows immediately. �
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Let G be a truncated Barsotti-Tate group of level 1 over OK with RM by Zpg . We
say a finite flat closed subgroup scheme H ⊂ G is Zpg -cyclic or Fpg -cyclic, if H(K) is a
one-dimensional Fpg -subspace of G(K).

Lemma 3.13. If H,H ′ are two distinct Zpg -cyclic subgroups of G, then for all i ∈ Z/gZ,
we have

g−1∑
j=0

pj(degi−j(H) + degi−j(H
′)) ≤ pg − 1

p− 1
.

Proof. The Lemma follows from 3.7 applied to the homomorphism H ↪→ G→ G/H ′. �

The following theorem is a slightly generalized version of [GK09, Thm. 5.4.3]. The proof
is motivated by [Ha10, 3.4].

Theorem 3.14. Let G be a truncated Barsotti-Tate group of level 1 with RM by Zpg , and
denote wi = wi(G). Assume that wi+pwi−1 < p for all i ∈ Z/gZ. Then there exists a Zpg -
cyclic subgroup C ⊂ G such that degi(C) = 1 − wi; moreover, C is the unique Zpg -cyclic
subgroup of G satisfying

degi(C) + pdegi−1(C) > 1 for any i ∈ Z/gZ.

Proof. Let M = ⊕i∈Z/gZMi be the Breuil-Kisin module associated with G. We choose
an adpated basis (δi, εi)i∈Z/gZ of M so that ϕ is represented by matrices (3.10.1). Note
that wi+1 + pwi < p implies that wi < 1; so by Lemma 3.12, we have vu(ai) = ewi. By
Lemma 3.9, we have to show that there exists a quotient N = ⊕i∈Z/gZNi of M such that
degi(N) = 1 − wi and it is the unique quotient satisfying degi(N) + p degi−1(N) > 1 for
i ∈ Z/gZ.

We prove first the existence of N. We construct a direct summand L = ⊕i∈Z/gZLi of M
such that Li is the submodule of Mi generated by

ηi = (δi, εi)

[
1

ue(1−wi)zi

]
,

where zi ∈ S1 is some element to be determined. If we require that L is an sub-oject of
M, there should exists a certain Ai ∈ S1 such that ϕ(ηi−1) = Aiηi. Using the equation
(3.10.1), we get

(3.14.1)

{
ai + biu

ep(1−wi−1)zpi−1 = Ai

ue(ci + uep(1−wi−1)diz
p
i−1) = ue(1−wi)ziAi

Since vu(ai) = ewi, there exists a unit âi ∈ S1 such that aiâi = uewi . Then we have
zi = gi(zi−1), where

gi(z) =
ci + uep(1−wi−1)diz

p

âi + ue(p−pwi−1−wi)bizp
.

Note that 1− wi−1 > 0 and p− pwi−1 − wi > 0 by assumption. We get therefore

zi = gi ◦ gi−1 ◦ · · · ◦ gi−g+1(zi).
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By iteration, it is easy to see that the equation admits a unique solution in S1 for zi. This
well defines the sub-oject L ⊂M. From

ewi = vu(ai) < ep(1− wi−1) ≤ vu(biu
ep(1−wi−1)zpi−1)

by assumption, we deduce that degi(L) = 1
evu(Ai) = wi. We can take N to be M/L.

For the uniqueness of N, we assume that N′ is a quotient of M with degi+1(N′) +
p degi(N

′) > 1 for i ∈ Z/gZ. We have to show that N = N′. Since degi+1(N′) ≤ 1, we
have degi(N

′) > 0, i.e. N′i/(1 ⊗ ϕ)ϕ∗(N′i−1) 6= 0. Let L′ be the kernel of M → N′. We
have for each i ∈ Z/gZ an exact sequence of OK/p-modules

0→ L′i/(1⊗ ϕ)ϕ∗(L′i−1)→Mi/(1⊗ ϕ)ϕ∗(Mi−1)→ N′i/(1⊗ ϕ)ϕ∗(N′i−1)→ 0.

Because Mi/(1⊗ϕ)ϕ∗(Mi−1) ' S1/u
eS1 · εi, we see that N′i is generated by the image of

εi in N′i. Hence there exists xi ∈ S×1 such that η′i = δi + xiεi ∈ L′i. We put ri = 1
evu(xi).

As ϕ(L′i−1) ⊂ L′i, there exists A′i ∈ S1 such that ϕ(ηi−1) = A′iηi. We have

vu(A′i) = e degi(L
′) = e(1− degi(N

′)),

where the second equality comes from the additivity of the degree function and the fact
that degi(M) = 1. Therefore, we get

(3.14.2) vu(A′i) + pvu(A′i−1) = e(p+ 1− degi(N
′)− p degi−1(N′)) < ep.

On the other hand, using (3.10.1) as above, we have equations

ai + bix
p
i−1 = A′i(3.14.3)

ue(ci + dix
p
i−1) = xiA

′
i.(3.14.4)

We claim that ri ≥ 1 − wi for any i ∈ Z/gZ. Admitting this claim for the moment, we
can write xi = ue(1−wi)z′i. Then the z′i’s will satisfy the equations (3.14.1). But we have
seen that (3.14.1) admits a unique solution zi for each i ∈ Z/gZ. So we have z′i = zi,
and hence L = L′. It remains to prove the claim. We deduce first from (3.14.4) that
vu(A′i) ≥ e(1− ri). In view of (3.14.2), we get

(3.14.5) ri + pri−1 > 1 for all i ∈ Z/gZ.

If ri < 1− wi for some i ∈ Z/gZ, we have vu(A′i) ≥ e(1− ri) > ewi. Because of (3.14.3),
we have

ewi = vu(ai) = vu(bix
p
i−1) ≥ epri−1.

So we have 1− ri > wi ≥ pri−1, i.e. ri + pri−1 < 1, which contradicts with (3.14.5). This
completes the proof.

�

Remark 3.15. The subgroup C ⊂ G given by the theorem is called the canonical subgroup
of G. By the same argument as in [GK09, Thm. 5.4.2], it is not hard to see that the
subgroup C verifies the “Frobenius lifting property”: If we denote w = maxi∈Z/gZ{wi} < 1,
then C⊗OK (OK/p1−wOK) coincides with the kernel of Frobenius of G⊗OK (OK/p1−wOK),
where p1−w denotes any element in OK with p-adic valuation 1− w.
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Let I be a subset of Z/gZ, Ic be its complement, and |I| be the cardinality. We denote
by σ(I) the image of I under the action of Frobenius σ : Z/gZ→ Z/gZ given by i 7→ i+1.
Let G be a truncated Barsotti-Tate group of level 1 with RM by Zpg over OK . We say that
a Zpg -cyclic subgroup H of G is special of type I if degi(H) = 1 for i ∈ I and degi(H) = 0
for i ∈ Ic.

Proposition 3.16. Let the notation be as above.
(a) Assume that G admits a special subgroup H of type I.
(1) The group H is necessarily a truncated Barsotti-Tate group of level 1 of height g

and dimension |I| over OK . Moreover, we have wi(G) = 1 for i ∈ σ(I) ∩ Ic, and
wi(G) = 0 for i ∈ (σ(I) ∩ I) ∪ (σ(Ic) ∩ Ic).

(2) If H ′ be another Zpg -cyclic subgroup of G distinct from H, then we have

degi(H
′) ≤ 1

p− 1
(1− 1

pg−1
) for all i ∈ I.

In particular, if I 6= ∅, then G admits at most one special subgroup of type I.
(3) If G admits another special subgroup H ′ of type I ′ with H ′ 6= H, then either I =

I ′ = ∅, or I ′ = Ic and the natural map H ×H ′ → G is an isomorphism of finite
flat group schemes over OK . In the second case, if H ′′ is a Zpg -cyclic subgroup of
G distinct from H and H ′, then we have

degi(H
′′) ≤ 1

p− 1
(1− 1

pg−1
) for all i ∈ Z/gZ.

(b) Conversely, assume that σ(Ic) ⊂ I, wi(G) = 1 for i ∈ σ(I) ∩ Ic, wi(G) = 0 for
i ∈ σ(I) ∩ I, and wi(G) > 0 for i ∈ σ(Ic). Then G admits a special subgroup of type I.

Proof. (a) First, by Raynaud’s explicit classification (3.6.1), a group scheme H of Fpg -
vector spaces of dimension 1 over OK is a truncated Barsotti-Tate group of level 1 if and
only if degi(H) ∈ {0, 1} for all i ∈ Z/gZ. Let M = ⊕i∈Z/gZMi be the Breuil-Kisin module
associated to G, and (δi, εi) be an adapted basis of Mi so that (1⊗ ϕ)ϕ∗(Mi−1) = S1δi ⊕
E(u)S1εi. Let L = ⊕i∈Z/gZLi be the Breuil-Kisin submodule ofM attached to the quotient
G/H, and N = M/L be associated to H. By Lemma 3.9, we have degi(N) = degi(H) = 1
for i ∈ I, i.e.

Ni/(1⊗ ϕ)ϕ∗(Ni−1) = Mi/((1⊗ ϕ)ϕ∗(Mi−1) + Li) ' S1/u
eεi.

Since Li is a direct summand of Mi, there exists xi ∈ S1 such that Li = S1(δi + uexiεi).
Up to replacing δi by δi +uexiεi, we may assume that Li = S1δi for i ∈ I. Similarly, since
degi(N) = degi(H) = 0 for i ∈ Ic, we see that

Mi = Li + (1⊗ ϕ)ϕ∗(Mi−1).

Up to modifying εi, we may assume that Li = S1εi if i ∈ Ic. The following facts follow
easily from the condition that ϕ(Li−1) ⊂ Li.

• If i ∈ I ∩ σ(I), there exists ai ∈ S1 such that ϕ(δi−1) = aiδi. As degi(L) =
1− degi(H) = 0, we have ai ∈ S×1 . In particular, we have wi(G) = 0 by 3.12.
• If i ∈ Ic ∩ σ(I), there exists ci ∈ S1 such that ϕ(δi−1) = ueciεi. In particular,
wi(G) = 1 by 3.12.



CLASSICALITY OF OVERCONVERGENT HILBERT EIGENFORMS 27

• If i ∈ Ic ∩ σ(Ic), there exists di ∈ S1 such that ϕ(εi−1) = uediεi. As (1 ⊗
ϕ)ϕ∗(Mi−1) = S1δi + E(u)S1εi, we see that if ϕ(δi−1) = aiδi + ueciεi, then ai is
a unit in S1. In particular, wi(G) = 0.

This prove statement (1).
For (2), it follows from Lemma 3.13 that

pg−1(1 + degi(H
′)) = pg−1(degi(H) + degi(H

′)) ≤ pg − 1

p− 1
for i ∈ I,

whence statement (2). For (3), we note first (2) implies I ′ ⊂ Ic, or equivalently I ⊂ I ′c.
We have to show that if I ′ 6= Ic, then I = I ′ = ∅. Let i ∈ Ic ∩ I ′c. If i− 1 were in I ⊂ I ′c,
then i ∈ σ(I) ∩ Ic and (1) would imply that wi(G) = 1. But we have also i ∈ σ(I ′c) ∩ I ′c,
so (1) applied to H ′ implies that wi(G) = 0. This is a contradiction, hence i− 1 ∈ Ic. In
the same way, we have i − 1 ∈ I ′c. Repeating this argument with i replaced by i − 1, we
see that Z/gZ = Ic ∩ I ′c, i.e. I = I ′ = ∅. Note that the natural map f : H × H ′ → G
is an isomorphism over the generic fibers. If I ′ = Ic, then deg(H) + deg(H ′) = deg(G).
Therefore, f is an isomorphism by [Fa10, Cor. 3]. The second part of (3) follows directly
from (2).

(b) We may assume ϕ is given by the matrices (3.10.1) such that
[
ai bi
ci di

]
is invertible

for i ∈ Z/gZ. Under the assumption of statement (b), Lemma 3.12 implies that ai ∈ S×1
for i ∈ σ(I)∩ I, and hence bi, ci ∈ S×1 if i ∈ (σ(I)∩ Ic)∪ σ(Ic). Up to modifying the basis
vectors, we may assume δi = ϕ(δi−1) if i ∈ σ(I)∩I, and δi = ϕ(εi−1) if i ∈ (σ(I)∩Ic)∪σ(Ic).
Then the matrices of ϕ can be simplified as

ϕ(δi−1, εi−1) = (δi, εi)

[
1 bi
0 uedi

]
if i ∈ σ(I) ∩ I;

ϕ(δi−1, εi−1) = (δi, εi)

[
ai 1
ueci 0

]
if i ∈ (σ(I) ∩ Ic) ∪ σ(Ic).

We write ai = uea′i if i ∈ σ(I) ∩ Ic. The existence of H is equivalent to the existence
of a Breuil-Kisin submodule L = ⊕i∈Z/gZLi of M such that degi(L) = 0 if i ∈ I, and
degi(L) = 1 if i ∈ Ic. By the discussion in (a), we may assume Li = (δi + uexiεi)S1 for
i ∈ I and Li = (εi + xiδi)S1 for i ∈ Ic, where the xi’s are some elements in S1 to be
determined later.

• If i ∈ σ(I)∩ I, then ϕ(δi−1 + uexi−1εi−1) = (1 + uepxpi−1bi)δi + uep+1xpi−1diεi. The
condition ϕ(Li−1) ⊂ Li implies that

xi = Fi(xi−1) =
uepxpi−1di

1 + uepxpi−1bi
.

• If i ∈ σ(I) ∩ Ic, then a similar computation shows that

xi = Fi(xi−1) =
1

ci
(ue(p−1)xpi−1 + a′i).



28 YICHAO TIAN

• If i ∈ σ(Ic) ⊂ I, we have

xi = Fi(xi−1) =
xpi−1ci

1 + aix
p
i−1

.

By iteration, we have xi = Fi ◦ Fi−1 ◦ · · · ◦ Fi−g+1(xi) for all i ∈ Z/gZ. Since all the
functions Fi are contracting for the u-adic topology on S1, there exists a unique solution
for every xi. This proves the existence of L, whence the special subgroup H of type I.

�

Remark 3.17. Note that the condition in 3.16(b) is stronger than the converse of 3.16(a)(1):
we made the extra assumption that σ(Ic) ⊂ I. I don’t know whether statement 3.16(b)
still holds without this assumption.

An interesting special case of the Proposition is the following

Corollary 3.18. Assume g is even. Let G be a truncated Barsotti-Tate group of level 1
with RM by Zpg over OK with wi(G) > 0 for i ∈ Z/gZ. Put I+ ⊂ Z/gZ be the subset
consisting of elements i ≡ 0 mod 2, and I− = Ic+. Then G admits a unique special
subgroup H+ (resp. H−) of type I+ (resp. I−) if and only if wi(G) = 1 for all i ∈ I− (resp.
for all i ∈ I+). In particular, G admits both special subgroups H+ and H− of type I+ and
I− if and only if wi(G) = 1 for all i ∈ Z/gZ.

Remark 3.19. In appendix B, we will give a family version of Cor. 3.18 over the deforma-
tion space of a superspecial p-divisible group with RM by Zpg (cf. Prop. B.8 and Remark
B.9).

Now we focus on the case g = 2, and we identify Z/2Z ' {1, 2}. The following Propo-
sition refines the preceding corollary in the case g = 2.

Proposition 3.20. Let G be truncated Barsotti-Tate group of level 1 over OK with RM
by Zp2. Assume that w1 = w1(G) and w2 = w2(G) are both > 0. Let i ∈ Z/2Z.

(a) We have wi = 1 if and only if there exists a unique special subgroup H ⊂ G of type
{i+ 1}, i.e. we have degi(H) = 0 and degi+1(H) = 1.

(b) If wi = 1 and p
p+1 < wi+1 ≤ 1, then there exists a unique Zp2-cyclic subgroup H ′ ⊂ G

disjoint from the H in (a) such that degi(H
′) = 1−p(1−wi+1) and degi+1(H ′) = 1−wi+1.

Proof. We may assume that i = 1 to simplify the notation. Statement (a) is a special
case of the preceding corollary. If w1 = w2 = 1, then (b) follows also from the preceding
proposition. In the sequels, we assume that w1 = 1 and p

p+1 < w2 < 1. Let M = M1⊕M2

be the Breuil-Kisin module attached to G. Let (δj , εj)j=1,2 be an adapted basis of M so
that (1 ⊗ ϕ)ϕ∗(Mj−1) is free over S1 with basis δj and ueεj . Let L ⊂ M be the Breuil-
Kisin module corresponding to the quotient G/H given in (a). By Lemma 3.9, we have
deg1(L) = 1−deg1(H) = 1 and deg2(L) = 0. As in the proof of the preceding proposition,
we may assume L1 = S1ε1 and L2 = S2δ2. Then we have

ϕ(δ1, ε1) = (δ2, ε2)

[
a2 1
uec2 0

]
ϕ(δ2, ε2) = (δ1, ε1)

[
0 1

uec1 0

]
,
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with vu(a2) = ew2 and c1, c2 ∈ S×1 . To prove the existence of H ′, it suffices to construct a
Breuil-Kisin submodule K = K1⊕K2 ofM such that deg1(K) = p(1−w2) and deg2(K) = w2.

We assume that K1 and K2 are respectively generated over S1 by

ξ1 = δ1 + ue(1−p(1−w2))y1ε1 and ξ2 = δ2 + ue(1−w2)y2ε2,

and we will prove that there exist y1, y2 ∈ S1 such that K becomes the required Breuil-Kisin
submodule of M. We have{

ϕ(ξ1) = (a2 + uep(1−p(1−w2))yp1)δ2 + uec2ε2,

ϕ(ξ2) = uep(1−w2)yp2δ1 + uec1ε1.

In order for ϕ(ξ1) ∈ K2 and ϕ(ξ2) ∈ K1, we should have

(a2 + uep(1−p(1−w2))yp1)y2 = uew2c2(3.20.1)
y1y

p
2 = c1.(3.20.2)

As vu(a2) = ew2, there exists â2 ∈ S×1 such that a2 = uew2 â2. It follows from the equality
(3.20.1) that

(3.20.3) y2 =
c2

â2 + u
e(p2−1)(w2− p

p+1
)
yp1

.

In view of (3.20.2), we get

y1 =
c1

cp2
(âp2 + u

ep(p2−1)(w2− p
p+1

)
yp

2

1 ).

Since w2 >
p
p+1 by assumption, it is easy to see that the above equation admits a unique

solution for y1 ∈ S×1 , and so y2 ∈ S×1 is uniquely determined by (3.20.3). With these
solutions for y1 and y2, we see that{

ϕ(ξ1) = uew2(â2 + u
e(p2−1)(w2− p

p+1
)
yp1)ξ2

ϕ(ξ2) = uep(1−w2)yp2ξ1.

Therefore, we have deg1(K) = p(1− w2) and deg2(K) = w2.
For the uniqueness of H ′, we assume that H̃ ′ is a Zp2-cyclic subgroup scheme of G with

deg1(H̃ ′) = 1− p(1 − w2) and deg2(H̃ ′) = 1− w2. Let J̃ = M/K̃ be the quotient module
of M corresponding to H̃ ′. By the definition of degree, we have

deg(J̃1/(1⊗ ϕ)ϕ∗(J̃2)) = deg
(
M1/(K̃1 + (1⊗ ϕ)ϕ∗(M2))

)
= 1− p(1− w2) > 0.

Since M1/(1⊗ϕ)ϕ∗(M2) is generated by the image of ε1 and J̃1 is free of rank 1 over S1,
we see by Nakayama that J̃1 = S1ε1, where ε1 denotes the image of ε1 in J̃1. In the same
way, we see that J̃2 = S1ε2. Consider the image δ1 of δ1 in J̃1. As δ1 ∈ ϕ∗(M2), so we
have

δ1 ∈ ϕ∗(J̃2) = ue(1−p(1−w2))S1ε1,

i.e. there exists ỹ1 ∈ S1 such that ξ̃1 = δ1 +ue(1−p(1−w2))ỹ1ε1 ∈ K̃1. In the same way, there
exists ỹ2 ∈ S2 such that ξ̃2 = δ2 +ue(1−w2)ỹ2 ∈ K̃2. Then it follows that ξ̃1 and ξ̃2 generate
respectively K1 and K2, and ỹ1, ỹ2 satisfy the same equations as y1 and y2; hence we must
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have ỹ1 = y1 and ỹ2 = y2 as these equations admit a unique solution. This implies K̃ = K
and hence H̃ ′ = H ′.

�

Proposition 3.21. Let G be a truncated Barsotti-Tate group of level 1 over OK with RM
by Zp2. Assume that w1 = w1(G) > 0 and w2 = w2(G) = 0.

(a) If there exists a Zp2-cyclic closed subgroup scheme H ⊂ G with deg1(H) = 0 and
deg2(H) ≥ 1

p , then we have w1 = 1.
(b) Conversely, if w1 = 1, then any Zp2-cyclic subgroup H ⊂ G has deg1(H) = 0 and

1/p ≤ deg2(H) ≤ 1. More precisely, we have the following two possibilities:
(1) There is exactly one such subgroup H with p+1

p2+1
< deg2(H) ≤ 1, and all the other

p2 cyclic subgroups H ′ ⊂ G satisfy 1
p ≤ deg2(H ′) < p+1

p2+1
and

deg2(H ′) =
1

p2
(1 + p− deg2(H)).

(2) All the (p2 + 1) Zp2-cyclic subgroups H ⊂ G has deg2(H) = p+1
p2+1

.

Proof. The proof is similar to the preceding Lemma. Note that w1 > 0 implies that G has
no multiplicatitve part. Up to replacing K by a finite extension, we may assume that p
divides e and all the Zp2-cyclic closed subgroup schemes of G are defined over OK . Let
M = M1 ⊕M2 be the Breuil-Kisin module of G. Choose an adapted basis (δi, εi) of Mi,
we have

ϕ(δ1, ε1) = (δ2, ε2)

[
a2 b2
uec2 ued2

]
, ϕ(δ2, ε2) = (δ1, ε1)

[
a1 b1
uec1 ued1

]
.

We have vu(a2) = ew2 = 0 and vu(a1) > 0 by assumption, hence b1, c1 ∈ S×1 . Up to
replacing δ2 by ϕ(δ1) and δ1 by ϕ(ε2), we may assume

ϕ(δ1, ε1) = (δ2, ε2)

[
1 b2
0 ued2

]
, ϕ(δ2, ε2) = (δ1, ε1)

[
a1 1
uec1 0

]
with d2, c1 ∈ S×1 . Let H ⊂ G be a Zp2-cyclic subgroup. Let N = N1⊕N2 be the quotient
of M corresponding to H, and L = L1 ⊕ L2 be the kernel corresponding to G/H.

(a) First, we suppose that deg1(H) = 0 and deg2(H) ≥ 1
p . According to Lemma 3.12,

we have to prove that vu(a1) ≥ e. We have deg1(N) = deg1(H) = 0 and deg2(N) =
deg2(H) ≥ 1/p by 3.9. In particular, the S1-module

N2/(1⊗ ϕ)ϕ∗(N1) = M2/((1⊗ ϕ)ϕ∗(M1) + L2)

is non-zero. As M2/(1 ⊗ ϕ)ϕ∗(M1) = (S1/u
eS1)ε2, we see by Nakayama that the image

of ε2 generates N2. There exists thus y2 ∈ S1 such that η2 = δ2 + y2ε2 is a basis of L2

over S1. An easy computation shows that vu(y2) = edeg2(N) ≥ e/p. Similarly, from
deg1(N) = 0, we deduce that the image of ϕ(ε2) = δ1 generates N1. Therefore, there is
y1 ∈ S1 such that η1 = ε1 + y1δ1 forms a basis of L1. We have

(3.21.1)

{
ϕ(η1) = (yp1 + b2)δ2 + ued2ε2,

ϕ(η2) = (a1 + yp2)δ1 + uec1ε1.
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Since ϕ(η2) ∈ L1 = S1η1, we see that

(3.21.2) a1 + pp2 = y1u
ec1.

Since vu(y2) ≥ e/p, we have vu(a1) ≥ e.
(b) Now we suppose w1(G) = 1. By 3.12, we can write a1 = uea′1 with a′1 ∈ S1. We

claim first that L1 contains no element of the form δ1 + x1ε1 with x1 ∈ uS1. Indeed, if
this were not the case, we would have

ϕ2(δ1 + x1ε1) = ue[(1 + xp
2

1 b
p
2)a′1 + ue(p−1)dp2]δ1 + ue(1 + xp

2

1 b
p
2)c1ε1 ∈ L1.

Since L1 is free of rank 1 over S1, we should have

(1 + xp
2

1 b
p
2)c1 = x1[(1 + xp

2

1 b
p
2)a′1 + ue(p−1)dp2].

This is impossible, since the left hand side is a unit in S1 but x1 ∈ uS1. This proves the
claim.

To prove deg1(H) = 0, we suppose conversely that deg1(H) > 0. Then

N1/(1⊗ ϕ)ϕ∗(N2) = M1/((1⊗ ϕ)ϕ∗(M2) + L1) 6= 0.

Since M1/ϕ
∗(M2) is generated by the image of ε1, we see that the image of ε1 is a basis of

N1. As δ1 = ϕ(ε2) ∈ ϕ∗(M2), we see that there exists x1 ∈ S1 such that η1 = δ1 + x1ε1 ∈
L1. But η1 must be a basis of L1, since L1 is a direct summand of L1. It follows from
deg1(N) = deg1(H) > 0 that vu(x1) > 0. By the claim above, this is absurd.

Next we show that deg2(H) > 0. Otherwise, we would have deg2(N) = deg2(H) = 0,
i.e.

N2/(1⊗ ϕ)ϕ∗(N1) = M2/((1⊗ ϕ)ϕ∗(M1) + L2) = 0.

Since (1⊗ϕ)ϕ∗(M1) = S1δ2⊕S1E(u)ε2, we see easily that L2 contains an element of the
form ε2 + x2δ2 with x2 ∈ S1. Then we have

ϕ(ε2 + x2δ2) = (1 + uexp2a
′
1)(δ1 +

xp2u
ec1

1 + uexp2a
′
1

ε1) ∈ L1.

This contradicts with the claim mentioned above.
In summary, we have proved that deg1(H) = deg1(N) = 0 and deg2(H) = deg2(N) > 0.

The same arguments as in part (a) show that there exist y1, y2 ∈ S1 such that η1 = ε1+y1δ1

and η2 = δ2+y2ε2 form a basis of L1 and L2. Thus the same equations (3.21.1) and (3.21.2)
are satisfied. It follows that vu(y2) ≥ 1

p min{vu(a1), e} = e
p , hence deg2(H) ≥ 1/p. Recall

that we have assumed p|e. Let’s write y2 = ue/pz2. We get from (3.21.2) that

y1 =
1

c1
(a′1 + zp2).

On the other hand, we deduce from (3.21.1) and ϕ(η1) ∈ L2 that y2(yp1 + b2) = ued2.
Substituting y1 and y2, we get finally

zp
2+1

2 + (b2c
p
1 + (a′1)p)z2 = cp1u

e(1− 1
p

)
d2.
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It is clear that the p2 + 1 roots of z2 correspond to the (p2 + 1) Zp2-cyclic closed subgroup
schemes of G, and by our hypothesis on K, all the roots of z2 are in S1. If H is the closed
subgroup corresponding to a root z2, then we have

deg2(H) = deg2(N) = 1− deg2(L)

= min{1, 1

e
vu(y2)} = min{1, 1

p
+

1

e
vu(z2)}.

We put α = vu(b2c
p
1 + (a′1)p)/e and recall that c1, d2 ∈ S×1 . By considering the Newton

polygon of the equation of z2, we deduce that

• if α < p(p−1)
p2+1

, there is exactly one root z2 with vu(z2) = e(1 − 1
p − α) and all the

other p2 roots of z2 with vu(z2) = e
p2
α;

• if α ≥ p(p−1)
p2+1

, all the p2 + 1 roots of z2 satisfy vu(z2) = e p−1
p(p2+1)

.

Now the proposition follows easily from the correspondence between the Zp2-cyclic sub-
groups of G and the roots of z2. �

4. Goren-Kassaei’s Stratification and Canonical Subgroups

We will use the notation in 1.6.

4.1. We recall briefly the Dieudonné theory for HBAV. Let R be a κ-algebra, A be a HBAV
over R equipped with a prime-to-p polarization. In [BBM82, Ch. 3], the authors defined
the (contravariant) Dieudonné crystal associated with the finite and locally free group
scheme A[p] over R. We denote by D(A[p]) the evaluation of this crystal on the trivial
divided power immersion Spec(R) ↪→ Spec(R). This is a locally free (R ⊗OF )-module of
rank 2 equipped with two natural morphisms of (R⊗OF )-modules

F : D(A[p])(p) → D(A[p]) and V : D(A[p])→ D(A[p])(p),

called respectively the Frobenius and the Verschiebung, where (_)(p) denotes the base
change by the absolute Frobenius endomorhism FR : a 7→ ap on R. We have a decomposi-
tion

D(A[p]) =
⊕
β∈B

D(A[p])β,

where each D(A[p])β is a locally free R-module of rank 2 and OF acts on it via χβ . For
each β ∈ B, we have an exact sequence of R-modules

· · · V // D(A[p])
(p)
β

F // D(A[p])σ◦β
V // D(A[p])

(p)
β

F // · · · .

Let ωA/R be the modules of invariant differentials of A relative to R, and Lie(A) be the
Lie algebra of A. They are both locally free (R ⊗ OF )-modules of rank 1, and we have
similar decompositions:

ωA/R =
⊕
β∈B

ωA/R,β and Lie(A) =
⊕
β∈B

Lie(A)β.
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For each β ∈ B, we have the β-component of the Hodge filtration

(4.1.1) 0→ ωA/R,β → D(A[p])β → Lie(A)β → 0.

Here, the quotient is canonically Lie(A∨)β , but we have identified Lie(A)β with Lie(A∨)β
using the polarization on A. Since the Frobenius induces the zero map on differential
forms, we have a commutative diagram

(4.1.2) D(A[p])
(p)
σ−1◦β

F //

��

D(A[p])β

��
Lie(A)

(p)
σ−1◦β

HWβ //

ιβ

66

Lie(A)β,

where HWβ is the β-component of the usual Hasse-Witt map. Note that ιβ is injective,
since it is the case if R is a perfect field and the diagram commutes with any base change.
The morphism HWβ is just the dual map of the partial Hasse invariant hβ defined in
(2.11.1). This fact will be used later to compute partial Hasse invariants.

4.2. We recall Goren-Oort’s stratification of Xκ defined in [GO00]. Let A be a HBAV over
a field containing κ. We put

τ(A) = {β ∈ B | hβ(A) = 0},

where hβ(A) is the partial Hasse invariant of A (2.11.1). For any subset τ ⊂ B, let Zτ be
the closed subsubset of Xκ where hβ vanishes for any β ∈ τ , i.e., we have

Zτ = {x ∈ Xκ | τ ⊂ τ(Ax)},

where Ax is the fiber of the universal HBAV at x. It is clear that Zτ ′ ⊆ Zτ for any subsets
τ ′ ⊇ τ . We put

Wτ = Zτ\
⋃
τ ′)τ

Zτ ′ = {x ∈ Xκ | τ(Ax) = τ}.

Goren and Oort showed that {Wτ}τ⊆B form a stratification of X, and each stratum Wτ is
smooth and equidimensional of dimension g − |τ |, where |τ | denotes the cardinality of τ .
We note that W∅ = Xord

κ , and WB is the set of superspecial points of Xκ, i.e., the points
where the p-divisible group of the corresponding HBAV is isomorphic to a product of g
copies of the p-divisible group of a supersingular elliptic curves.

4.3. Goren and Kassaei defined a similar stratification on Yκ in [GK09]. If S is a subset
of B, we denote by σ−1(S) the subset of B formed by σ−1 ◦β for β ∈ S, by σ(S) the subset
formed by σ ◦β for β ∈ S, and by Sc the complement B\S. We say a pair (ϕ, η) of subsets
of B is admissible if η ⊃ σ−1(ϕc) or equivalently ϕ ⊃ σ(ηc). For an admissible pair (ϕ, η),
we have decompositions

η = σ−1(ϕc)
∐

I and ϕ = σ(ηc)
∐

σ(I)

with I = η ∩ σ−1(ϕ).
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Admissible pairs of subsets of B arise naturally from the points of Yκ. Let k be a perfect
field containing κ, (A,H) be a k-point of Yκ, f : A → B = A/H be the natural isogeny,
and

D(f) : D(B[p])→ D(A[p])

be the morphism induced on contravariant Dieudonné modules. For a k vector space M ,
we identify M with M (p) = M ⊗σ k by x 7→ x ⊗ 1; so we regard the Frobenius F on
the Dieudonné modules as σ-linear maps, and the Verschiebung as σ−1-linear. We have a
commutative diagram of exact sequences

· · · F // D(B[p])σ◦β
V //

D(f)σ◦β
��

D(B[p])β

D(f)β
��

F // D(B[p])σ◦β

D(f)σ◦β
��

V // · · ·

· · · F // D(A[p])σ◦β
V // D(A[p])β

F // D(A[p])σ◦β
V // · · · .

Since H = Ker(f) is a (OF /p)-cyclic subgroup scheme, Im(D(f)β) ⊆ D(A[p])β is a one-
dimensional vector space over k. Note that there are two special k-lines in D(A[p])β , namely
(KerF )β = (ImV )β and (ImF )β = (KerV )β , where (_)β means the β-component. We
put

ϕ(A,H) = {β ∈ B | Im(D(f))β = (KerV )β = (ImF )β}
η(A,H) = {β ∈ B | Im(D(f))β = (KerF )β = (ImV )β}.

The pair (ϕ(A,H), η(A,H)) is then admissible [GK09, 2.3.3]. If we denote by f t : B → A
the unique isogeny with f ◦ f t = p · 1B and f t ◦ f = p · 1A, then we have [GK09, 2.3.2]

ϕ(A,H) = {β ∈ B | Lie(f)σ−1◦β = 0},(4.3.1)

η(A,H) = {β ∈ B | Lie(f t)β = 0},
I(A,H) = η(A,H) ∩ σ−1(ϕ(A,H)) = {β ∈ B | Lie(f)β = Lie(f t)β = 0}.

We call the elements of I(A,H) the critical indexes. If x = (Ax, Hx) is an arbitrary point
of Yκ, we define respectively ϕ(x) and η(x) as ϕ(Ax ⊗ k,Hx ⊗ k) where k is a perfect
extension of the residue field κ(x). It is easy to see that the definition is independent of
the choice of k.

For an admissible pair (ϕ, η), we put

Zϕ,η = {x ∈ Yκ | ϕ(x) ⊇ ϕ, η(x) ⊇ η}.
The subset Zϕ,η is closed in Yκ [GK09, 2.5.1]. Let (ϕ′, η′) and (ϕ, η) be two admissible pairs.
We write (ϕ′, η′) ⊇ (ϕ, η) if ϕ′ ⊇ ϕ and η′ ⊇ η. We have Zϕ′,η′ ⊆ Zϕ,η if (ϕ′, η′) ⊇ (ϕ, η).
We put

Wϕ,η = Zϕ,η\
⋃

(ϕ′,η′))(ϕ,η)

Zϕ′,η′ .

Goren and Kasseai show that [GK09, 2.5.2]:
• each Wϕ,η is non-empty and its Zariski closure is Zϕ,η;
• the collection {Wϕ,η} with (ϕ, η) admissible forms a stratification of Yκ;
• each stratum Wϕ,η is smooth and equi-dimensional of dimension 2g − |ϕ| − |η|.
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Note that there are 3g strata in this stratification of Yκ. The relation between the strati-
fications on Xκ and Yκ recalled above are given as follows. For an admissible pair (ϕ, η),
we have [GK09, 2.6.16]

π(Wϕ,η) =
⋃

(ϕ∩η)⊂τ
τ⊂[(ϕ\η)∪(η\ϕ)]c

Wτ ;

in particular, for any point x = (A,H) ∈Wϕ,η, we have (ϕ∩η) ⊂ τ(A) ⊂ [(ϕ\η)∪ (η\ϕ)]c.

4.4. Local coordinates. Let P be a closed point of Xκ, ÔX,P be the local ring of X at P
with the maximal ideal mP , and ωβ,P be the pull-back of ωβ to Spec(ÔX,P /p). We choose
a basis eβ of ωβ,P for each β ∈ B. Then the partial Hasse invariant hβ : ωβ,P → ω

(p)
σ−1◦β,P ,

where ω(p)
σ−1◦β,P denotes the base change by the absolute Frobenius, is given by

hβ(eβ) = tβe
(p)
σ−1◦β

for some tβ ∈ OXκ,P /p. Note that tβ ∈ mP if and only if β ∈ τ(P ), where mP denotes the
maximal ideal of ÔY,P /p. By Kodaira-Spencer isomorphism, the elements {tβ : β ∈ τ(P )}
form part of a system of regular parameters of the regular local ring OXκ,P /p. Let tβ ∈
ÔX,P be a lift of tβ . Then if x ∈WB, we have ÔXκ,P 'W (κ(P ))[[{tβ : β ∈ B}]].

Let Q be a closed point of Yκ, ÔY,Q be the completion of the local ring of Y at Q with
the maximal ideal mQ. We denote by (AQ,HQ) the base change of the universal object
on Y to Spec(ÔY,Q), and by f : AQ → BQ = AQ/HQ the canonical quotient, and by
f t : BQ → AQ the unique isogeny with f t ◦ f = p · 1AQ and f ◦ f t = p · 1BQ . Let ωAQ,β and
ωBQ,β be respectively the β-components of the invariants differentials of AQ and BQ. They
are both free ÔY,Q-modules of rank 1; we choose generators eβ ∈ ωAQ,β and εβ ∈ ωBQ,β .
For each β ∈ B, there are elements xβ, yβ ∈ ÔY,Q such that

(4.4.1) f t∗(eβ) = xβεβ and f∗(εβ) = yβeβ.

We have xβyβ = p because of f∗ ◦ f t∗ = p, and xβ, yβ ∈ mQ if and only if β is critical,
i.e. β ∈ I(Q) = σ−1(ϕ(Q)) ∩ η(Q). Actually, Stamm [St97] showed that we have an
isomorphism
(4.4.2)
ÔY,Q 'W (κ(Q))[[{xβ, yβ : β ∈ I(Q)}, {zγ : γ ∈ B− I(Q)}]]/({xβyβ − p : β ∈ I(Q)}).

The following proposition, proved in [GK09, 2.8.1] and referred as “Key Lemma” there,
will play an important role in the proof of our main results. We give here another proof
using Dieudonné theory.

Proposition 4.5 (Goren-Kassaei). Let Q be a closed point of Y , P = π(Q), β ∈ ϕ(Q) ∩
η(Q) ⊂ τ(P ), and π∗ : ÔX,P → ÔY,Q be the natural induced morphism.

(a) If σ ◦ β ∈ ϕ(Q) and σ−1 ◦ β ∈ η(Q), we have

π∗(tβ) ≡ uxβ + vyp
σ−1◦β mod p,
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where u, v are some units in ÔY,Q.
(b) If σ ◦ β ∈ ϕ(Q) and σ−1 ◦ β /∈ η(Q), we have

π∗(tβ) ≡ uxβ mod p

for some unit u ∈ ÔY,Q.
(c) If σ ◦ β /∈ ϕ(Q) and σ−1 ◦ β ∈ η(Q), we have

π∗(tβ) ≡ vyp
σ−1◦β mod p

for some unit v ∈ ÔY,Q.
(d) If σ ◦ β /∈ ϕ(Q) and σ−1 ◦ β /∈ η(Q), we have π∗(tβ) ≡ 0 mod p.

Proof. It suffices to prove the corresponding equalities in R = ÔY,Q/p = ÔYκ,Q. By abuse
of notation, we still denote by tβ , xβ and yβ their image in R. Let (A,H) be the universal
HBAV over Spec(R), f : A → B = A/H and f t : B → A be the canonical isogenies,
(A0,H0), f0 : A0 → B0 and f t0 : B0 → A0 be the corresponding fibers at the closed point.
We have the Dieudonné modules D(A[p]) = ⊕γ∈BD(A[p])γ and D(B[p]) = ⊕γ∈BD(B[p])γ ,
and a commutative diagram of exact sequences
(4.5.1)

· · · // D(B[p])σ−1◦γ
D(f)σ−1◦γ //

F
��

D(A[p])σ−1◦γ
D(f t)σ−1◦γ //

F
��

D(B[p])σ−1◦γ //

F
��

· · ·

· · · // D(B[p])γ
D(f)γ // D(A[p])γ

D(f t)γ // D(B[p])γ // · · ·

for each γ ∈ B. Let {eγ , dγ} and {εγ , δγ} be respectively a basis of D(A[p])γ and D(B[p])γ
such that the cotangent modules ωA/R and ωB/R are generated respectively by eγ and εγ .
So we have F (eγ) = 0 and F (εγ) = 0. By (4.4.1), we may assume

(4.5.2) D(f t)(eγ) = xγ · εγ and D(f)(εγ) = yγ · eγ .

For an element z in D(A[p]) (or D(B[p])), we denote by z0 its image in D(A0[p]) (or
D(B0[p])). If γ ∈ η(Q), then we have

KerD(f t0)γ = ImD(f0)γ = (ImV )γ = κ(Q)eγ,0.

Up to modifying δγ , we may assume D(f0)(δγ,0) = eγ,0 and even D(f)(δγ) = eγ +Uγdγ for
some Uγ ∈ mR. If γ ∈ σ−1(ϕ(Q)), it follows from (4.3.1) that

KerD(f0)γ = ImD(f t0)γ = (ImV )γ = κ(Q)εγ,0.

Hence, we may assume D(f t0)(dγ,0) = εγ,0 and therefore D(f t)(dγ) = εγ + Vγδγ for some
Vγ ∈ mR. If γ ∈ I(Q) = η(Q)∩σ−1(ϕ(Q)), i.e., γ is critical, we deduce from D(f)◦D(f t) =
0 that

D(f)(εγ) = −VγD(f)(δγ) = −Vγ(eγ + Uγdγ)

D(f t)(eγ) = −UγD(f t)(dγ) = −Uγ(εγ + Vγδγ).
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In view of (4.5.2), we have Uγ = −xγ and Vγ = −yγ . In summary, if γ is critical, we have

(4.5.3) D(f)(δγ) = eγ − xγdγ and D(f t)(dγ) = εγ − yγδγ .

Let β ∈ B be in the statement of the proposition. Assume that

(4.5.4)

{
F (dσ−1◦β) = −ueβ + tβdβ

F (δσ−1◦β) = −vεβ + sβδβ

for some u, v, tβ, sβ in R. By the remark below (4.1.2), tβ, sβ compute the partial Hasse
invariants of A and B respectively. Note that tβ ∈ mR since β ∈ ϕ(Q) ∩ η(Q) ⊂ τ(Q)
by assumption. Hence u has to be a unit in R, because (ImF )β is a direct summand of
D(A[p])β . Similarly, at least one of v and sβ is invertible in R. We distinguish the four
cases in the statement:
Case (a). In this case, both β and σ−1 ◦β are critical, hence the formula (4.5.3) applies

to γ = β, σ−1 ◦ β. It results from (4.5.4) that{
D(f t)(F (dσ−1◦β)) = (−uxβ + tβ)εβ − tβyβδβ
D(f)(F (δσ−1◦β)) = (−vyβ + sβ)eβ − sβxβdβ.

On the other hand, it follows from the commutative diagram (4.5.1) that

(4.5.5)

{
D(f t)(F (dσ−1◦β)) = F (D(f t)(dσ−1◦β)) = −yp

σ−1◦β(−vεβ + sβδβ)

D(f)(F (δσ−1◦β)) = F (D(f)(δσ−1◦β)) = −xp
σ−1◦β(−ueβ + tβdβ).

Comparing the coefficients of εβ and eβ , we get{
tβ = uxβ + vyp

σ−1◦β
sβ = vyβ + uxp

σ−1◦β.

We see that sβ ∈ mR, and it follows that v is a unit in R as remarked above. This completes
the proof in case (a).
Case (b). In this case, β is critical. The fact σ−1 ◦ β /∈ η(Q) implies that

ImD(f0)σ−1◦β 6= (ImV )σ−1◦β = κ(Q)eσ−1◦β.

Therefore, up to modifying dσ−1◦β , we may assume dσ−1◦β ∈ ImD(f) = KerD(f t). Since
F commutes with D(f t), we have

0 = F (D(f t)(dσ−1◦β)) = D(F (dσ−1◦β)) = D(f t)(−ueβ + tβdβ).

Now the equality tβ = uxβ follows from (4.5.3) applied to γ = β.
Case (c). In this case, σ−1 ◦ β is critical. The assumption σ ◦ β /∈ ϕ(Q) implies that

KerD(f0)β 6= (ImV )β = κ(Q)εβ,0.

It follows that D(f0)(εβ,0) = yβeβ,0 6= 0, i.e. yβ is invertible and xβ = py−1
β = 0 in

R. Therefore, KerD(f t)β = ImD(f)β = Reβ . Up to modifying δβ , we may assume
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D(f t)(dβ) = δβ . As in case (a), it follows from (4.5.4) that{
D(f t)(F (dσ−1◦β)) = D(f t)(−ueβ + tβdβ) = tβδβ

D(f)(F (δσ−1◦β)) = D(f)(−vεβ + sβδβ) = −vyβeβ.

Using the fact that F commutes with D(f) and D(f t) and that σ−1 is critical, we get the
same formula (4.5.5) as in case (a). Comparing the coefficients, we obtain

v = −uy−1
β xp

σ−1◦β and tβ = −yp
σ−1◦βsβ.

To complete the proof in case (c), we note that v ∈ mR, hence sβ is invertible in R.
Case (d). The same argument as in case (b) shows that tβ = uxβ (we didn’t use the

fact that β is critical to get this). Now the same argument as in case (c) shows that xβ = 0.
�

4.6. We recall the valuations on the rigid spaces Xrig and Yrig defined by Goren-Kassaei
[GK09, 4.2]. Let Cp be the completion of an algebraic closure of Qκ, and vp be the
valuation on Cp normalized by vp(p) = 1. We define

ν(x) = min{vp(x), 1}.

Let L be a finite extension of Qκ, OL be its ring of integers, and P be an L-valued rigid
point of Xrig, i.e. P corresponds to a polarized HBAV A with Γ00(N)-level structure over
OL. For any β ∈ B, let tβ be a local lift of the β-partial Hasse invariant around P . We
define the β-th partial Hodge height of P (or of A) to be

(4.6.1) wβ(P ) = wβ(A) = ν(tβ(P )).

It is easy to see that the definition does not depend on the lift tβ . We have wβ(P ) > 0 if
and only if β ∈ τ(P ), where P ∈ Yκ is the specialization of P . Therefore P ∈ Xord

rig if and
only if wβ(P ) = 0 for all β ∈ B. Let p be a prime ideal of OF dividing p, and OFp ' Zpfp
be the completion of OF of its localization at p. Note that Bp ⊂ B is identified with the
set of embeddings of OFp into OL. Then the finite flat group scheme A[p] is a truncated
Barsotti-Tate group of level 1 with RM by OFp over OL in the sense of 3.10, and the β-th
partial Hodge height of A coincides with that of A[p] defined in 3.11.

4.7. Partial degrees. Let L be as above, G be a finite flat group scheme over OL
equipped with an action of OF , and ωG be the invariant differential module of G. Similarly
as 3.6, we define, for each β ∈ B, the β-degree of G to be

degβ(G) = deg(ωG,β),

where ωG,β is the direct summand of ωG on which OF acts via χβ . The “total” degree of
G defined in [Fa10] is thus

deg(G) =
∑
β∈B

degβ(G).

Let Q = (A,H) be an L-valued rigid point of Yrig. We put νY(Q) = (νβ(Q))β∈B with

(4.7.1) νβ(Q) = degβ(H).
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This definition is slightly different from that in [GK09, 4.2], and their relationship is given
by the following

Proposition 4.8. Let Q = (A,H) ∈ Yrig be a rigid point defined over a finite extension
L/Qκ, and Q ∈ Yκ be its specialization. Then our definition of νβ(Q) is 1 minus that of
Goren-Kassaei, i.e., we have

νβ(Q) =


0 if β ∈ η(Q)\I(Q),

ν(yβ(Q)) if β ∈ I(Q),

1 if β /∈ η(Q),

where yβ is the local parameter around Q introduced in (4.4.1).

Proof. Let f : A → B = A/H be the canonical isogeny, and f t : B → A be the isogeny
with kernel A[p]/H. We have exact sequences of invariant differential modules:

0→ ωB
f∗−→ ωA −→ ωH → 0, 0→ ωA

f t∗−−→ ωB −→ ωA[p]/H → 0.

So by the definitions of xβ, yβ , we have

degβ(A[p]/H) = deg(ωB,β/f
t∗ωA,β) = vp(xp(Q)),

degβ(H) = deg(ωA,β/f
∗ωB,β) = vp(yp(Q)).

Thus the case where β ∈ I(Q) follows immediately. If β ∈ η(Q)\I(Q), we have Lie(fQ)β 6=
0, where fQ denotes the special fiber of f . It follows that f∗β : ωB,β → ωA,β is surjective,
hence νβ(Q) = degβ(H) = 0. If β /∈ η(Q), then we have β ∈ ηc(Q) ⊂ σ−1(ϕ(Q)), i.e.,
Lie(f t

Q
)β 6= 0 by (4.3.1). This means f t∗β : ωA,β → ωB,β is surjective, hence we have

degβ(A[p]/H) = 0 and

νβ(Q) = degβ(H) = degβ(A[p])− deg(A[p]/H) = 1.

�

It follows from this Proposition that Q ∈ Yord
rig if and only if νβ(Q) = 1 for all β ∈ B.

Following [GK09, 5.3], we define an admissible open subset of Xrig or of Yrig by

Up = {P ∈ Xrig | wβ(P ) + pwσ−1◦β(P ) < p,∀β ∈ Bp},
Vp = {Q ∈ Yrig | νβ(Q) + pνσ−1◦β(Q) > 1, ∀β ∈ Bp},(4.8.1)
Wp = {Q ∈ Yrig | νβ(Q) + pνσ−1◦β(Q) < 1, ∀β ∈ Bp}.(4.8.2)

Theorem 4.9 (Goren-Kassaei). (a) For every prime ideal p of OF above p, we have
π−1(Up) = Vp ∪Wp.

(b) Let L be a finite extension of Qκ, and P ∈ Up(L) be rigid point corresponding to a
HBAV A over OL. For every rigid point Q = (A,H) of Vp above P , the p-component H[p]
of H is the canonical subgroup of A[p] given by Theorem 3.14.

This theorem is essentially [loc. cit. 7.1.3], and statement (b) is also a direct consequence
of Theorem 3.14. Let Q = (A,H) be a rigid point of Yrig, and H[p] be the subgroup killed
by p ⊂ OF , so that H =

∏
p|pH[p]. Following [loc. cit. 5.4.1], we say H (or Q) is
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• canonical at p if Q ∈ Vp;
• anti-canonical at p if Q ∈ Wp;
• canonical if it is canonical at all primes p above p;
• anti-canonical if it is anti-canonical at p at all primes p above p;
• too singular at p is it is neither canonical nor anti-canonical at p.

We put

Ucan =
⋂
p|p

Up, Vcan =
⋂
p|p

Vp,

W =
⋃

∅6=S⊆{p|p}

[⋂
p∈S
Wp ∩

⋂
p/∈S

Vp
]

(4.9.1)

Then Ucan and Vcan are respectively strict neighborhoods of Xord
rig and Yord

rig . The following
theorem is a consequence of Theorem 4.9.

Theorem 4.10. [GK09, 5.3.1, 5.3.7] With the notation above, we have π−1(Ucan) = Vcan∪
W, and the restriction π|Vcan : Vcan → Ucan is an isomorphism, i.e., there exists a section
s† : Ucan → Vcan extending the section s◦ : Xord

rig → Yord
rig defined in 2.12.

We call Vcan (resp. Ucan) the canonical locus of Yrig (resp. Xrig). The following Proposi-
tion describes the dynamics of Hecke correspondence over the canonical and anti-canonical
locus.

Proposition 4.11 (Goren-Kassaei). Let p be a prime ideal of OF dividing p, Up be the set
theoretic Hecke correspondence (2.15.1) on Yrig, and Q = (A,H) ∈ Yrig be a rigid point.

(a) Assume that Q is canonical at p. Then for every (OF /p)-cyclic subgroup H ′ of A[p]
distinct from H[p], we have

degβ(H ′) =
1

p
(1− νσ◦β(Q)) for β ∈ Bp;

or equivalently all Q1 ∈ Up(Q) are canonical at p, and we have νβ(Q1) = p−1
p + 1

pνσ◦β(Q)

for β ∈ Bp.
(b) Assume Q is anti-canonical at p. Let C ⊂ A[p] be its canonical subgroup. For any

(OF /p)-cyclic subgroup H ′ ⊂ A[p] distinct from H[p], we have

degβ(H ′) =

{
1− pνσ−1◦β(Q) if H ′ = C;

νβ(Q) if H ′ 6= C

for all β ∈ Bp. Equivalently, if Q1 = (A/H ′, (H +H ′)/H ′) ∈ Up(Q), we have

νβ(Q1) =

{
pνσ−1◦β(Q) if H ′ = C;
1− νβ(Q) if H ′ 6= C.

In particular, if H ′ 6= C, Q1 is canonical at p.

This is essentially contained in [GK09, 5.4.3]. For the convenience of the reader, we
reproduce its proof here.
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Proof. The equivalence between the statement on H ′ and that on Q1 ∈ Up(Q) follows from
the fact that

νβ(Q1) = degβ(A[p]/H ′) = 1− degβ(H ′),

since degβ(A[p]) = 1 for all β ∈ Bp.
(a) Since Q is canonical at p, we have 1− νβ(Q) < pνσ−1◦β(Q) for all β ∈ Bp. It follows

thus from Prop. 4.5 and 4.8 that

wβ(A) = ν(xβ(Q)) = 1− νβ(Q),

where xβ is the local parameters on Y introduced in 4.4. The subgroup H ′ must be anti-
canonical at p by Theorem 4.9, i.e., we have p degσ−1◦β(H ′) < 1− degβ(H ′) for β ∈ Bp. It
follows from 4.5 that

wβ(A) = p degσ−1◦β(H ′).

Hence degσ−1◦β(H ′) = 1
p(1− νβ(Q)), i.e. degβ(H ′) = 1

p(1− νσ◦β(Q)).
(b) We proceed in the same way as in (a). Since Q is anti-canonical at p, we have

wβ(A) = pνσ−1◦β(Q) for β ∈ Bp. If H ′ = C, we have wβ(A) = 1 − degβ(H ′). Thus the
equality

degβ(H ′) = 1− pνσ−1◦β(Q)

follows immediately. If H ′ 6= C, then H ′ is anti-canonical at p by Theorem 4.9, so we have
wβ(A) = p degσ−1◦β(H ′) for β ∈ Bp. We deduce immediately that degβ(H ′) = νβ(Q). �

Recall that for any weight ~k ∈ ZB and any admissible open subset U ⊂ Yrig, we have
defined in 2.10 |f |U for the space f ∈ H0(U, ω

~k). Note that if U is not quasi-compact, it
is possible that |f |U = ∞. We have the following basic estimation of norms under Hecke
correspondence.

Lemma 4.12. Let Q = (A,H) be a rigid point of Yrig defined over a finite extension K of
Qκ, and ω be a basis of the free (OK ⊗OF )-module ωA/OK . Let p be a prime ideal of OF
dividing p, H ′ ⊂ A[p] be a (OF /p)-cyclic closed group disjoint from H, and φ̂ : A/H ′ → A
be the canonical isogeny with kernel A[p]/H ′. Let V be an admissible open subset containing
the rigid point Q′ = (A/H ′, (H +H ′)/H ′). If f is a section of ω~k over V such that |f |V is
finite, we have

|f(Q′)| = |f(A/H ′, (H +H ′)/H ′, p−1φ̂∗ω)| ≤ p−
∑
β∈Bp kβ degβ(H′) |f |V .

Proof. Let ω′ be a basis of ωA′/OK as (OK ⊗ OF )-module, where A′ = A/H ′. Then it is
easy to see that p−1φ̂∗ω = aω′ for some a ∈ (K ⊗ F )× with |χβ(a)| = pdegβ(H′) for all
β ∈ B. Note that degβ(H ′) = 0 if β /∈ Bp. Therefore, we have

|f(A/H ′, (H +H ′)/H ′, p−1φ̂∗ω)| = |(
∏
β∈B

χ
−kβ
β (a))f(A/H ′, (H +H ′)/H ′, ω′)|

= p
−

∑
β∈Bp kβ degβ(H′) |f(A/H ′, (H +H ′)/H ′, ω′)|

≤ p−
∑
β∈Bp kβ degβ(H′) |f |V .

�
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From the formula 2.8.3, we deduce immediately that

Corollary 4.13. Let f be a section of ω~k defined over an admissible open subset V of Yrig

with |f |V finite, and p be a prime ideal of OF above p with fp = [κ(p) : Fp]. Let Q = (A,H)
be a rigid point of Yrig such that Up(Q) ⊂ V . Assume that kβ0 = minβ∈Bp{kβ}, and there
exists c > 0 such that

∑
β∈BB

degβ(H ′) ≥ c for any (OF /p)-cyclic subgroups of H ′ ⊂ A[p]
different from H. Then we have

|Up(f)(Q)| ≤ pfp−kβ0c|f |V .

Proof. By the the definition of Up(f) (2.8.3) and the preceding Lemma, we have

|Up(f)(Q)| ≤ pfp sup
H′⊂A[p]
H′∩H=0

|f(A/H ′, (H +H ′)/H ′)|

≤ pfp sup
H′⊂A[p]
H′∩H=0

{p−
∑
β∈Bp kβ degβ(H′)}|f |V .

The corollary follows from the fact that∑
β∈Bp

kβ degβ(H ′) ≥ kβ0
∑
β∈Bp

degβ(H ′) ≥ ckβ0 .

�

Now we prove the first result on analytic continuation of p-adic Hilbert modular forms.

Proposition 4.14. Let f be an overconvergent p-adic Hilbert modular form of weight
~k ∈ ZB. Assume that for all prime p|p, we have Up(f) = apf with ap ∈ C×p . Then f

extends uniquely to a section of ω~k over Vcan such that Up(f) = apf remains true for all
p|p. Moreover, |f |Vcan = supQ∈Vcan |f(Q)| is finite.

Proof. For any rational number 0 < r < p and any prime ideal p of OF dividing p, we put

Vcan(p; r) = {Q ∈ Vcan | νβ(Q) + pνσ−1◦β(Q) ≥ p+ 1− r for all β ∈ Bp}.

Vcan(r) =
⋂
p|p

Vcan(r).

Note that Vcan(r) is a quasi-compact admissible open subset of Vcan, and {Vcan(r)}r→0+

form a fundamental system of strict neighborhoods of Yord
rig . Using Prop. 4.11(a), it is easy

to check that Up(Vcan(p; r)) ⊂ Vcan(p; r/p), and hence

(
∏
p|p

Up)(Vcan(r)) ⊂ Vcan(r/p).

We may assume that f is defined over some Vcan(r0). Let n ≥ 1 be the minimal integer
such that pnr0 > p, then we have (

∏
p|p Up)(Vcan) ⊂ Vcan(r0). Therefore, (

∏
p

1
anp
Unp )f is a

well-defined section of ω~k over Vcan extending f . It is clear that the (extended) form f still
satisfy the functional equations Up(f) = apf . The finiteness of |f |Vcan follows immediately
from Corollary 4.13.
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�

The following useful Proposition is motivated by [Pi09, §7].

Proposition 4.15. Let Z be any closed scheme of Yκ with codimYκ(Z) ≥ 2, and ]Yκ −Z[
be the rigid analytic tube in Yrig of the open subset Yκ − Z. Then for any finite extension
L/Qκ and any weight ~k ∈ ZB, the natural restriction map

H0(Yrig,L, ω
~k)→ H0(]Yκ − Z[L, ω

~k)

is an isomorphism. Moreover, for any f ∈ H0(Yrig,L, ω
~k), we have |f |Yrig,L

≤ |f |]Yκ−Z[L.

Proof. We will just work in the case L = Qκ to simplify the notation, as the general case
can be treated in the same way. Let Q be a closed point of Yκ, and ÔYκ,Q be the completion
of the local ring of Yκ at Q. Then with the notation in (4.4.2), we have

ÔYκ,Q ' κ(Q)[[{xβ, yβ : β ∈ I(Q)}, {zγ : γ ∈ B− I(Q)}]]/({xβyβ : β ∈ I(Q)}).

We see that ÔYκ,Q is Cohen-Macaulay, in particular it satisfy the condition S2. Since
Yκ is excellent by [EGAIV, 7.8.3(ii)], it follows from [loc. cit. 7.8.3(v)] that OYκ,Q also
Cohen-Macaulay. Now the Proposition follows directly from Corollary A.5 and Remark
A.7. �

The following proposition is an analogue of [Pi09, 2.4] in the Hilbert case.

Proposition 4.16. Let p be a prime ideal of OF dividing p, fp = [κ(p) : Fp], n ≥ 1 be
an integer, Up : Yrig → Yrig be the set theoretic Hecke correspondence (2.15.1). Let L
be a finite extension of Qκ, Q = (A,H) be an L-valued rigid point of Yrig, and Qn =
(An, Hn) ∈ Unp (Q) defined over a finite extension of L. Assume that the p-divisible group
A[p∞] is not ordinary. Then we have νβ(Qn) = νβ(Q) for β /∈ Bp, and

(4.16.1)
fp−1∑
i=0

piνσ−i◦β(Qn) ≥
fp−1∑
i=0

piνσ−i◦β(Q)

for β ∈ Bp. The equalities above hold for all β ∈ Bp if and only if the following properties
are verified:

(a) The subgroup scheme H[p] is a truncated Barsotti-Tate group of level 1. Moreover,
there exists a subset Ip ( Bp such that νβ(Q) = 1 for β ∈ Ip and νβ(Q) = 0 for β ∈
Icp = Bp − Ip, wβ(A) = 0 for β ∈ (σ(Ip) ∩ Ip) ∪ (σ(Icp) ∩ Icp), and wβ(A) = 1 for β ∈
(σ(Ip) ∩ Icp) ∪ (σ(Icp) ∩ Ip).

(b) There exists a truncated Barsotti-Tate subgroup Gn ⊂ A[pn] of level n defined over
OL, stable under the action of OF , such that the natural maps

Gn ×H[p]→ A[pn]

is a closed embedding.
(c) We have Qn = (A/Gn, H) ∈ Yrig, where we have considered H as a subgroup via

(b). In particular, Qn can be defined over L.
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(d) Let Q′n ∈ Unp (Q) distinct from Qn = (A/Gn, H). If p ≥ 3, we have

νβ(Q′n) ≥ p− 2

p− 1
+

1

pg−1(p− 1)
for any β ∈ Bp;

in particular, Q′n is canonical at p.

Proof. We have a canonical decomposition of p-divisible groups

A[p∞] =
∏
q|p

A[q∞].

Since the Hecke correspondence Up concerns only the p-component, the natural isogeny
A→ A′ induces an isomorphism of finite flat group schemes

H[q]
∼−→ H ′[q]

for q 6= p, hence νβ(Q′) = νβ(Q) if β /∈ Bp. There exists a finite extension L′/L, and
a sequence Q0 = Q, Q1, . . . , Qn ∈ Yrig defined over L′ such that Qm ∈ Up(Qm−1) for
1 ≤ m ≤ n. Assume Qm = (Am, Hm) and Am ' Am−1/Dm for some closed subgroup
Dm ⊂ Am−1[p] with Dm distinct from Hm−1 for 1 ≤ m ≤ n (H0 = H). We have a sequence
of homomorphisms of group schemes of 1-dimensional (OF /p)-vector spaces over OL′ :

H[p]→ H1[p]→ H2[p]→ · · · → Hn[p]

which are generically isomorphisms. The first part of the proposition follows from Lemma
3.7.

For the second part, the “if” direction is trivial. Assume now the equalities in (4.16.1)
hold for all β ∈ Bp. Lemma 3.7 implies that the natural morphism H[p] → Hn[p] is an
isomorphism, hence so is H[p]→ Hm[p] for 1 ≤ m ≤ n. It follows that the exact sequence
0→ Dm → Am−1[p]→ Hm[p]→ 0 splits for 1 ≤ m ≤ n, i.e.
(4.16.2) Am−1[p] = Hm[p]×Dm ' H[p]×Dm.

As direct summands of a Barsotti-Tate group of level 1, both H[p] and Dm are truncated
Barsotti-Tate groups of level 1. Moreover, since ωA[p] = ωH[p] ⊕ ωD1 and ωA[p] is a free
OL ⊗ (OF /p)-module, we have νβ(Q) = degβ(H) ∈ {0, 1} for β ∈ Bp. Therefore, there
exists a subset Ip ⊂ Bp such that H[p] (resp. D1) is a special subgroup of A[p] of type Ip
(resp. of type Icp) in the sense of Prop. 3.16. The hypothesis that A[p∞] is not ordinary
implies that Ip 6= Bp. Condition (a) follows immediately from 3.16(a).

To simplify notation, we denote simply by H and A their base change to OL′ . To prove
(b) and (c), we construct inductively a sequence of closed subgroup schemes Gm ⊂ A[pm]
for 1 ≤ m ≤ n such that Gm ⊂ Gm+1 and Am = A/Gm. We put G1 = D1, and assume
that m ≥ 2 and Gm−1 has been constructed. We have a left exact sequence

0→ Gm−1(L)→ A[pm−1](L)→ Am−1[pm−1](L),

where L is an algebraic closure of L. We define Gm to be the scheme theoretic closure
in A[pm−1] of the inverse image of Dm(L) ⊂ Am−1[p](L). Since the image of A[p] in
Am[p] is Hm[p] ' H[p], we have Gm(L) ∩ A[p](L) = G1(L) ' OF /p. It follows that
Gm(L) ' OF /pm for any 1 ≤ m ≤ n. Now we show Gn is a truncated Barsotti-Tate group
of level n, i.e. the natural map Gm+1/G1 → Gm induced by the multiplication by p is an
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isomorphism for any m. It is clearly an isomorphism on the generic fibers, so we just need
to prove that deg(Gm+1) = deg(G1) + deg(Gm) by [Fa10, Cor. 3]. This results from the
splitting (4.16.2):

deg(Gm+1)− deg(Gm) = deg(Am[p])− deg(H)

= deg(A[p])− deg(H)

= deg(G1).

In this same way, the natural map Gn ×H[p]→ A[pn] is clearly a closed embedding over
the generic fibers, and it is an isomorphism over OL′ because the degree of Gn × H[p]
equals that of its image. This proves (b) and (c) except for the rationality of Gn over OL.
Actually, Dm is the unique special subgroup of Am−1[p] of type Icp 6= ∅ by 3.16(a). In
particular Dm is defined over OL. By induction, all Am = Am−1/Dm for 0 ≤ m ≤ n are
defined over OL, so is Gn.

For condition (d), note that there exists a sequence of rigid points Q′0 = Q,Q′1, · · · , Q′n
such that Q′m ∈ Up(Q

′
m−1) for 1 ≤ m ≤ n. Let r ≤ n be the minimal integer such

that Q′r 6= Qr. We have Q′r = (Ar−1/H
′, (H + H ′)/H ′) for some (OF /p)-cyclic subgroup

H ′ ⊂ Ar−1[p] distinct from H and Dr. Note that H[p] and Dr are respectively special
subgroups of Ar−1[p] of type Ip and Icp . It follows from 3.16(a)(3) that

νβ(Q′r) = 1− degβ(H ′) ≥ p− 2

p− 1
+

1

pg−1(p− 1)
;

in particular, νβ(Q′r) + pνσ−1◦β(Q′r) > 1 for β ∈ Bp if p ≥ 3. By definition, Q′r is canonical
at p. This finishes the proof if r = n. If r < n, Prop. 4.11(a) implies that

νβ(Q′m) =
p− 1

p
+

1

p
νσ◦β(Q′m−1) >

p− 2

p− 1
+

1

pg−1(p− 1)

for any r < m ≤ n and β ∈ Bp. �

Corollary 4.17. Let Ip ⊂ Bp be a subset, and Icp be its complement in Bp. Let Q = (A,H)
be a rigid point of Yrig with νβ(Q) = 1 for β ∈ Ip and νβ(Q) = 0 for β ∈ Icp . Assume that
σ(Ip) ⊂ Icp . Then there exists a rigid point Q1 ∈ Up(Q) such that νβ(Q1) = νβ(Q) for all
β, i.e. the equivalent conditions in the Proposition are satisfied for n = 1, if and only if
wβ(A) = 1 for β ∈ σ(Icp) ∩ Ip.

Proof. From 4.16(a), the condition that wβ(A) = 1 for β ∈ σ(Icp) ∩ Ip is clearly necessary.
We note that H[p] is a special subgroup of A[p] of type Ip. It follows from Prop. 3.16(a)
that wβ(A) = 0 for β ∈ σ(Icp)∩ Icp , and wβ(A) = 1 for β ∈ σ(Ip)∩ Icp = σ(Ip). If wβ(A) = 1
for β ∈ σ(Icp) ∩ Ip, then 3.16(b) implies that there exists a special subgroup D1 ⊂ A[p] of
type Icp . The point Q1 = (A/D1, (H +D1)/D1) satisfies the required property. �

5. Proof of Theorem 1.3: Case of 2.17 when g = 2.

In this section, we assume g = 2, and p is inert in F so that OF /p ' Fp2 . We identify
B = EmdQ(F,Qκ) with Z/2Z = {1, 2}.
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5.1. We start with the stratifications on Xκ and Yκ described in the previous section.
To simplify the notation, we drop the symbol “{_}” in the subscript, when there is only
one element in the set. For example, we denote W{1} and W{1},{1} simply by W1 and
W1,1. There are 4 strata in Xκ: W∅,W1,W2 and WB. The 2-dimensional stratum W∅
is the ordinary locus, W1 and W2 are the loci where the fibers of the universal HBAV
are supersingular and with a-number equal to 1, and WB is the discrete set consisting of
superspecial points. There are 9 strata in the Goren-Kassaei stratification of Yκ. Here is a
list of the strata according to their dimensions:

• 2-dimensional: WB,∅, W∅,B, W1,1, W2,2.
• 1-dimensional: WB,1, WB,2, W1,B,WB,2.
• 0-dimensional: WB,B.

We have π(WB,∅) = π(W∅,B) = WB, π(WB,i) = π(Wi,B) = Wi for i ∈ Z/2Z, π(WB,B) = WB,
and finally π(Wi,i) = Wi ∪WB. In particular, the projection π is not quasi-finite on the
strata W1,1 and W2,2. For i ∈ Z/2Z, we put

W sg
i,i = Wi,i ∩ π−1(Wi), W ss

i,i = Wi,i ∩ π−1(WB).

We call

(5.1.1) Y sg
κ = W sg

1,1 ∪W
sg
2,2

the supergeneral locus, and

Y ss
κ = π−1(WB) = W ss

1,1 ∪W ss
2,2 ∪WB,B.

the superspecial locus.

5.2. Let k be an algebraically closed field containing Fp2 . For a finite group scheme G
over k, we denote by ωG its module of invariant differentials. If G is equipped with an
action of OFp ' Zp2 , we have a decomposition ωG = ωG,1 ⊕ ωG,2, where OF acts on ωG,βi
via χβi .

In [Pi09, 4.1], Pilloni classified the commutative finite group schemes of order p2 over
k. There are only 4 isomorphism classes: αp × αp, αp2 , α∨p2 and α. Here, αpn = Ker(Fn :

Ga → Ga) is the kernel of n-th iterated Frobenius of the additive group for n = 1, 2,
α∨p2 is the Cartier dual of αp2 , and α is the p-torsion of a supersingular elliptic curve over
k. The groups αp × αp and α are isomorphic to their Cartier dual. These groups can be
characterized by the dimension of their invariant differential modules and those of their
duals:

dimk(ωαp×αp) = 2 dimk(ωα) = 1

dimk(ωαp2 ) = 1 dimk(ωα∨
p2

) = 2.

Lemma 5.3. Let P be a k-valued point of the stratum W1 ⊆ Xκ, and A be the correspond-
ing HBAV. Then we have π−1(P )red ' P1

k with two distinguished points corresponding
to

H = Ker(FA : A→ A(p)) and H = Ker(V
A(p−1) : A→ A(p−1)).
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In the first distinguished case, we have H ' α∨p2 and (A,H) ∈ WB,1; in the second dis-
tinguished case, we have (A,H) ∈ W1,B; otherwise, we have H ' α and (A,H) ∈ W1,1.
Moreover, we have dimk(ωH,2) = 1 in all the cases, and

dimk(ωH,1) =

{
0 if H ' α or αp2

1 if H ' α∨p2 .

Proof. Up to isomorphisms, the contravariant Dieudonné module of A[p] can be described
as D(A[p]) = D(A[p])1 ⊕ D(A[p])2 with D(A[p])i = kei ⊕ kdi, and the Frobenius and
Verschiebung are given by

F (e1, d1) = (e2, d2)

[
0 1
0 t2

]
, F (e2, d2) = (e1, d1)

[
0 1
0 0

]
,

V (e1, d1) = (e2, d2)

[
0 1
0 0

]
, V (e2, d2) = (e1, d1)

[
−t1/p2 1

0 0

]
,

where t2 ∈ k× is the value of the partial Hasse invariant h2 at A with respect to certain
basis. Giving an (OF /p)-cyclic subgroup H ⊂ A[p] corresponds to giving a k-line Li =
D(A[p]/H)βi ⊂ D(A[p])i for each i = 1, 2 satisfying

F (Li) ⊆ Li+1 and V (Li) ⊆ Li+1.

It is easy to see that the only choice for L1 is ke1 = (KerF )1 = (KerV )1, and the
choices for L2 are k(ae2 + b(e2 + t2d2)) with (a : b) ∈ P1

k. If (a : b) = (1 : 0), we have
L2 = (ImV )2 and H = Ker(V

A(p−1)) ' αp2 . If (a : b) = (0 : 1), we have L2 = (ImF )2 and
H = Ker(FA) ' α∨p2 . Otherwise, L2 is neither (ImV )2 nor (ImF )2, we have H ' α. The
“moreover” part of the Lemma follows from the fact that D(H)i = D(A[p])i/Li.

�

Lemma 5.4. Let P be a k-point of WB ⊂ Xκ, and A be the corresponding HBAV.
(a) The reduced fiber π−1(P )red consists of two copies of P1

k, denoted respectively by P1
k,1

and P1
k,2, intersecting transversally at a single point Q.

(b) We have π−1(P )red ∩Wi,i = P1
k,i\{Q} for i ∈ Z/2Z, and π−1(P )red ∩WB,B = {Q}.

(c) For a point (A,H) ∈ π−1(P )red, we have (A,H) ∈ P1
k,i if and only if H ' α and

ωH,i 6= 0, and we have (A,H) = Q, if and only if H = Ker(FA) = Ker(VA(1/p)) ' αp × αp.

The proof of this lemma is quite similar to the previous one, and will be left to the
reader as an exercise.

5.5. Consider the valuation νY = (ν1, ν2) : Yrig → [0, 1] × [0, 1] defined in 4.7.1. Let
sp : Yrig → Yκ be the specialization map. If Z ⊂ Yκ is a locally closed subset, we denote



48 YICHAO TIAN

by ]Z[ = sp−1(Z) the tube of Z in Yrig. By Prop. 4.8, we have, for i ∈ Z/2Z, that

Q ∈ ]WB,∅[⇔ νY(Q) = (1, 1);

Q ∈ ]W∅,B[⇔ νY(Q) = (0, 0);

Q ∈ ]WB,i[⇔ 0 < νi(Q) < 1 and νi+1(Q) = 1;

Q ∈ ]Wi,i[⇔ νi(Q) = 0 and νi+1(Q) = 1;

Q ∈ ]Wi,B[⇔ νi(Q) = 0 and 0 < νi+1(Q) < 1;

Q ∈ ]WB,B[⇔ 0 < ν1(Q), ν2(Q) < 1.

In summary, the 4 vertices of the square [0, 1]× [0, 1] correspond to the strata of dimension
2, the 4 edges correspond to the 1-dimensional strata, and the interior corresponds to the
unique stratum of dimension 0. We have the following graph:

-

6

0

ν2(Q)

ν1(Q)

(1, 1)

1

1

B
B
B
B
B
B

1
p

PPPPPP

1
p

Vcan

W

Here, the two line segments with end points {(0, 1), (1/p, 0)} and {(0, 1/p), (1, 0)} are
respectively pν1(Q) + ν2(Q) = 1 and ν1(Q) + pν2(Q) = 1. They intersect at the point
( 1
p+1 ,

1
p+1). The anti-canonical locus W is strictly below these two lines, and the canonical

locus Vcan is strictly above them. Note that Vcan contains ]WB,∅[ and ]WB,i[ for i ∈ Z/2Z.
Let Up : Yrig → Yrig be the set theoretic Hecke correspondence (2.15.1). We want to

understand the dynamics of Up on the too-singular locus.

Proposition 5.6. Let Q = (A,H) ∈ Yrig be a rigid point, i ∈ Z/2Z.
(a) If Q ∈ ]W sg

i,i [ , then we have

νi(Q1) = 1 and νi+1(Q1) = 1− 1

p

for all Q1 ∈ Up(Q). In particular, the orbit Up(Q) is contained in the canonical locus Vcan.
(b) If Q ∈ ]Wi,B[ with p+1

p2+1
≤ νi+1(Q) < 1, we have νβi(Q1) = 1 and νi+1(Q1) =

1− 1
p −

1
p2

(1− νi+1(Q)) for all Q1 ∈ Up(Q). In particular, the orbit Up(Q) is contained in
Vcan.

(c) If Q ∈ ]Wi,B[ with 1
p ≤ νi+1(Q) < p+1

p2+1
. Then there is a unique point Q1 ∈ Up(Q)

with νi(Q1) = 1 and νi+1(Q1) = p2(νi+1(Q) − 1
p), and the all the other (p2 − 1) points

Q′1 ∈ Up(Q) satisfy νi(Q′1) = 1 and νi+1(Q′1) = 1− νi+1(Q). In particular, if νi+1(Q) > 1
p ,

we have Up(Q) ⊂ Vcan; and if νi+1(Q) = 1
p , then there is a unique point Q1 ∈ Up(Q)

contained in ]Wi,i[ , and the other points of Up(Q) are all in Vcan.
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Proof. If Q1 = (A/H ′, A[p]/H ′) is the rigid point corresponding to a (OF /p)-cyclic closed
subgroup scheme H ′ of A[p], then we have

(5.6.1) νi(Q1) = degi(A[p]/H ′) = 1− degi(H
′).

Now the Proposition is a direct consequence of Prop. 3.21.
�

To describe the dynamics of Up on ]W ss
i,i [ for i ∈ Z/2Z, we need the following

Proposition 5.7. Let K be a finite extension of Qκ, and Q = (A,H) be a K-valued rigid
point of ]W ss

i,i [ . Then we have wi(A) = 1, 0 < wi+1(A) ≤ 1, and all the (OF /p)-cyclic
closed subgroup schemes H ′ of A[p] different from H satisfy

(5.7.1) degi(H
′) + p degi+1(H ′) = 1.

Moreover,
(a) if 0 < wi+1 ≤ p

p+1 , all the p
2 (OF /p)-cyclic subgroups H ′ ⊂ A[p] different from H

satisfy

degi(H
′) =

wi+1(A)

p
and degi+1(H ′) =

1

p
− wi+1(A)

p2
;

(b) if p
p+1 < wi+1(A) ≤ 1, there is a unique (OF /p)-cyclic subgroup H ′0 different from

H with

degi(H
′
0) = 1− p(1− wi+1(A)) and degi+1(H ′0) = 1− wi+1(A),

and all the other p2 − 1 subgroups H ′ satisfy deg1(H ′) = deg2(H ′) = 1
p+1 .

Proof. The fact that wi(A) = 1 follows from Prop. 4.5(d) or Prop. 3.20(a), and that
wi+1(A) > 0 follows from the definition of ]W ss

i,i [ . Let H ′ be an (OF /p)-cyclic subgroup
of A[p] different from H, and put Q′ = (A,H ′). Lemma 5.4 implies that Q′ lies either in
]W ss

i,i [ , or in ]W ss
i+1,i+1[ , or in ]WB,B[ . Since Prop. 3.20(a) implies that H is the unique

(OF /p)-cyclic subgroup of A[p] in ]W ss
i,i [ , the first case is excluded. If Q′ ∈]W ss

i+1,i+1[, we
have degi+1(H ′) = 0 and degi(H

′) = 1; in particular, (5.7.1) holds for H ′. If Q′ ∈ ]WB,B[ ,
then Prop. 4.5(a) implies that there exists units u, v ∈ OK such that

1 = wi(A) = min{1, vp(uxi(Q′) + vypi+1(Q′))},
where xi, yi+1 are the local parameters defined in 4.4. Since 0 < vp(xi(Q

′)), vp(yi+1(Q′)) <
1, we see that 1−vp(yi(Q′)) = vp(xi(Q

′)) = vp(y
p
i+1(Q′)), i.e. vp(yi(Q′)) +pvp(yi+1(Q′)) =

1. We deduce (5.7.1) from Prop. 4.8. It remains to prove the “Moreover” part of the
Proposition. Applying Prop. 4.5(a) to the (i + 1)-th partial Hasse invariant, we see that
there exist units r, s ∈ OK with

wi+1(A) = min{1, vp(rxi+1(Q′) + sypi (Q
′))}.

It follows from Prop. 4.8 and (5.7.1) that

vp(xi+1(Q′)) = 1− degi+1(H ′) = 1− 1

p
+

degi(H
′)

p
,

vp(y
p
i (Q

′)) = p degi(H
′).
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We have three cases:

• If 0 < degi(H
′) < 1

p+1 , we have vp(xi+1(Q′)) > vp(y
p
i (Q

′)). Therefore, we have

wi+1(A) = vp(y
p
i (Q

′)) = pdegi(H
′) <

p

p+ 1
,

i.e. degi(H
′) = wi+1(A)

p and degi+1(H ′) = 1
p(1− degi(H

′)) = 1
p −

1
p2
wi+1(A).

• If degi(H
′) = 1

p+1 , we have vp(xi+1(Q′)) = vp(y
p
i+1(Q′)) = p

p+1 , and consequently
wi+1(A) ≥ p

p+1 and degi+1(H ′) = p
p+1 .

• If degi(H
′) > 1

p+1 , we have vp(xi+1(Q′)) < vp(y
p
i (Q

′)). Hence, we have

wi+1(A) = vp(xi+1(Q′)) = 1− 1

p
+

degi(H
′)

p
,

i.e. degi(H
′) = 1− p(1− wi+1(A)) and degi+1(H ′) = 1− wi+1(A).

From this list, statement (a) is clear. For (b), we have seen that if p
p+1 < wi+1(A) ≤ 1,

the possible values for degi(H
′) are 1

p+1 and 1− p(1−wi+1(A)). On the other hand, Prop.
3.20(b) implies that there is exactly one H ′0 with degi(H

′
0) = 1−p(1−wi+1(A)) (note that

this is even true when wi+1(A) = 1). Hence statement (b) follows.
�

Corollary 5.8. Let Q = (A,H) be a rigid point of ]W ss
i,i [ . Then all the points Q1 ∈ Up(Q)

satisfy

(5.8.1) νi(Q1) + pνi+1(Q1) = p.

More precisely, we have two cases:
(a) If 0 < wi+1(A) ≤ p

p+1 , then we have

νi(Q1) = 1− wi+1(A)

p
and νi+1(Q1) = 1− 1

p
+

1

p2
wi+1(A)

for all Q1 ∈ Up(Q). In particular, we have Up(Q) ⊂ Vcan.
(b) If p

p+1 < wi+1(A) ≤ 1, there is a unique point Q1 ∈ Up(Q) with

νi(Q1) = p(1− wi+1(A)) and νi+1(Q1) = wi+1(A),

and all the other points Q′1 ∈ Up(Q) satisfy ν1(Q′1) = ν2(Q′1) = p
p+1 . In particular, we

have Up(Q) ⊂ Vcan execpt when wi+1(A) = 1; in the exceptional case, there is exactly one
Q1 ∈ Up(Q) contained in ]Wi,i[ , and all the other Q1’s are contained in Vcan.

Proof. Let H ′ be a Zp2-cyclic subgroup of A[p] disjoint from H corresponding to Q1 =
(A/H ′, A[p]/H ′). We have νi(Q1) = degi(A[p]/H ′) = 1 − degi(H

′) by the definition
(4.7.1). The Corollary follows immediately from the Proposition. �
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5.9. We can interpret the results above geometrically as follows. For i ∈ Z/2Z and any
rational number ε with 0 < ε ≤ 1, we put

Ui(ε) = {P ∈ Xrig | wi(P ) = 1, wi+1(P ) ≥ ε}.
Then every rigid point in Ui(ε) has necessarily superspecial reduction. Similarly, we put

Vi(ε) = {Q ∈ ]Wi,i[ | wi+1(Q) ≥ ε}
They are respectively quasi-compact admissible open subsets of Xrig and Yrig. Prop. 5.7
implies that the natural projection π : Yrig → Xrig induces an isomorphism

π|V (ε) : Vi(ε)→ Ui(ε).

Let P ∈WB, i.e. a superspecial point of Xκ, and ÔX,P be the completion of the local ring
of X at P . We choose local lifts tP ,1, tP ,2 ∈ ÔX,P of the partial Hasse invariants. Then we
have an isomorphism (4.4)

ÔX,P 'W (κ(P ))[[tP ,1, tP ,2]].

Let DP be the 2-dimensional rigid open unit disk associated with the formal scheme
Spf(ÔX,P ). Then we have

DP ,i(ε) = Ui(ε) ∩DP = {P ∈ DP | vp(tP ,i(P )) ≥ 1, vp(tP ,i+1(P )) ≥ ε},

and Ui(ε) is a disjoint union of the closed polydisks DP ,i(ε) for all P ∈ WB. Composed
with the isomorphism π|Vi(ε), we see that tP ,1, tP ,2 for each superspecial point P establish
an isomorphism

(5.9.1) Vi(ε)
∼−→

∐
P∈WB

DP (ε).

Now suppose p
p+1 < ε ≤ 1. Let π1 : C(p)rig → Yrig be the first projection of the Hecke

correspondence 2.15. Then π−1
1 (Vi(ε)) is a disjoint union of two rigid analytic spaces

π−1
1 (Vi(ε)) = C(p)◦rig|Vi(ε)

∐
C(p)srig|Vi(ε),

where C(p)srig|Vi(ε) corresponds to the unique (OF /p)-cyclic subgroup H ′0 ⊂ A[p] disjoint
from H given by Prop. 5.7(b), and C(p)◦rig|Vi(ε) corresponds to the remaining (OF /p)-cyclic
subgroups. Correspondingly, we have a decomposition of set theoretic Hecke correspon-
dences Up = U◦p

∐
U sp from Vi,1(ε) to Yrig, given by

U◦p (Q) = π2((π◦1)−1(Q)) and U sp (Q) = π2((πs1)−1(Q)).

By Corollary 5.8, we have U◦p (Q) ⊂ Vcan, U sp (Q) ⊂ Vcan for Q ∈ Vi(ε) − Vi(1), and
U sp (Q) ⊂]Wi,i[ for Q ∈ Vi(1). We have a diagram

C(p)srig|Vi(ε)

∼
πs1

yy

π2

%%
Vi(ε) Yrig,
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where πs1 is an isomorphism of rigid analytic spaces. Hence, the correspondence U sp comes
from a genuine morphism of rigid analytic spaces:

πs12 = π2 ◦ (πs1)−1 : Vi(ε)→ V∪ ]W1,1[∪ ]W2,2[ .

Note that πs12(Vi(1)) ⊂]Wi,i[, and πs12(Vi(ε) − V1(1)) ⊂ Vcan for p
p+1 < ε < 1. Let Q =

(A,H) be a rigid point of Vi(ε) over a finite extension L/Qκ, and H ′0 ⊂ A[p] be the unique
(OF /p)-cyclic subgroup distinct from H given by Prop. 5.7(b). Let f be a section of ω~k
defined over a neighborhood of Q′ = (A/H ′0, A[p]/H ′0). Then U sp (f) is defined at Q, and
we have

(5.9.2) U sp (f)(A,H, ω) =
1

p2
f(A/H ′0, A[p]/H ′0, p

−1φ̂∗ω),

where ω is a basis of ωA/OL as a (OL ⊗OF )-module, and φ̂ : A/H ′0 → A is the canonical
isogeny with kernel A[p]/H ′0. Similarly, we can define a section U◦p (f) of ω~k over Vi(ε)
whenever f is defined over Vcan.

5.10. Fix a rational number ε with p
p+1 < ε < 1. We slightly change our notation by

putting Vi,1(ε) = Vi(ε), Vi,1 = Vi(1). For any integer n ≥ 2, we define inductively

Vi,n(ε) = (πs12)−1(Vi,n−1(ε)), and Vi,n = (πs12)−1(Vi,n−1).

We have natural inclusions

Vi,1(ε) ⊃ Vi,1 ⊃ Vi,2(ε) ⊃ Vi,2 ⊃ · · · ⊃ Vi,n(ε) ⊃ Vi,n ⊃ · · · .

By composing πs12 with itself n-times, we get a morphism of rigid analytic spaces

(πs12)n : Vi,n → ]Wi,i[ .

Lemma 5.11. Let K be a finite extension of Qκ, and Q = (A,H) be a K-valued rigid
point of ]Wi,i[.

(a) For any integer n ≥ 1, we have Q ∈ Vi,n if and only if there exists a unique (OF /pn)-
cyclic truncated Barsotti-Tate closed subgroup Gn ⊂ A[pn] of level n such that the natural
morphism

Gn ×H → A[pn]

is a closed embedding. In that case, we have (πs12)n(Q) = (A/Gn, H), i.e. the set (U sp )n(Q)
consists of the unique rigid point Qn = (A/Gn, H), where we have identified H with its
image in A/Gn.

(b) For any integer n ≥ 2, we have Q ∈ Vi,n(ε) if and only if the point Qn−1 =
(A/Gn−1, H) ∈ Vi,1(ε).

Proof. This lemma is a consequence of Prop. 4.16. �

The following technical Lemma will play an important role in the sequel, and it relies
largely on the results proven in Appendix B.



CLASSICALITY OF OVERCONVERGENT HILBERT EIGENFORMS 53

Lemma 5.12. Let κ be an algebraic closure of κ, P be a superspecial closed point of
Xκ, DP (1) ⊂ Vi,1 be the corresponding closed polydisc by (5.9.1). Then there exist local
parameters tP ,1, tP ,2 of DP (1) defined over W [κ][1/p] such that we have, for any n ≥ 2,

DP (1) ∩ Vi,n(ε) = {Q ∈ DP (1) | vp(tP ,i+1(Q)) ≥ n− 1 + ε}
DP (1) ∩ Vi,n = {Q ∈ DP (1) | vp(tP ,i+1(Q)) ≥ n}.

In particular, Vi,n(ε) is a strict neighborhood of Vi,n.

Proof. We may assume i = 1 ∈ Z/2Z to simplify the notation. We consider first the case
n = 2. Let A be the HBAV corresponding to P . We will consider A as a HBAV over
κ. Let GP = A[p∞] be the associated p-divisible group. In the terminology of Appendix
B.5, GP is a superspecial p-divisible group with RM by Zp2 . By Serre-Tate’s theory on the
deformations of abelian varieties, the completion of the local ring ÔXκ,P 'W (κ)[[tP ,1, tP ,2]]

is canonically identified with the universal deformation ring Runiv of GP . We take local lifts
of partial Hasse invariants tP ,1 = T1, tP ,2 = T2 in ÔXκ,P as in B.5. The subdisc DP (1) is
the rigid subspace D(1, 1) defined in B.9 of the rigid generic fiber of the deformation space
of GP . Let K be a finite extension of W (κ)[1/p] with ring of integers OK , Q = (A,H)
be a K-valued rigid point of DP (1). We denote by (A,H,H ′0) the unique point above Q
in C(p)srig, and by Q1 = (A/H ′0, A[p]/H ′0) the unique rigid point in U sp (Q). By Remark
B.9, the subgroup H, H ′0 are respectively just the pull-back to OK via Q of the subgroup
H1,1

+ , H1,1
− obtained in B.8. Now Prop. B.8(b) implies that ptP ,1(Q) and tP ,2(Q)/p lifts

the partial Hasse invriants of (A/H ′0) ⊗OK OK/p; in particular, we have w1(Q1) = 1
and w2(Q1) = max{1, vp(tP ,2(Q)/p)}. By definition, we have Q ∈ V2,i(ε) if and only if
Q1 ∈ V1,i(ε), i.e. vp(tP ,2(Q)) ≥ 1 + ε. Similarly, we have Q ∈ V2,i if and only if Q1 ∈ V1,i.
This proves this Lemma for n = 2. The general case follows by an easy induction on n.

�

Lemma 5.13. Let ~k = (k1, k2) ∈ Z2 with k1 ≥ k2, and f be a section of ω~k over Vcan such
that |f |Vcan is finite.

(a) For any integer n ≥ 1, the form gn = 1
anp

(U sp )n(f) is a well-defined section of ω~k over
Vi,n(ε)− Vi,n. We have

|gn|Vi,n(ε)−Vi,n ≤ p
−n(k2−vp(ap)−2)+(1−ε)(p−1)k2 |f |Vcan .

(b) For any integer n ≥ 1, the form hn = 1
anp

(U sp )n−1(U◦p (f)) is a well-defined section of

ω
~k over Vi,n(ε). We have

|hn|Vi,n(ε) ≤ p−n(k2−vp(ap)−2)+(p−1)k2/(p+1)|f |Vcan .

Proof. (a) By definition, we have

(πs12)n(Vi,n(ε)− Vi,n) ⊂ πs12(Vi,1(ε)− Vi,1) ⊂ Vcan,
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where the second inclusion used Corollary 5.8(b). Therefore, gn is well-defined over Vi,n(ε)−
Vi,n. To finish the proof of (a), it suffices to show that

|g1|Vi,1(ε)−Vi,1 ≤ p
−(k2−2−vp(ap))+(1−ε)(p−1)k2 |f |Vcan ;

|gn|Vi,n(ε)−Vi,n ≤ p
−(k2−2−vp(ap))|gn−1|Vi,n−1(ε)−Vi,n−1

for n ≥ 2.

Let Q = (A,H) be a rigid point of Vi,n(ε)− Vi,n over a finite extension L/Qκ, H ′0 be the
unique (OF /p)-cyclic subgroup of A[p] given by 5.7(b), and ω be a basis of ωA/OL as a
(OL ⊗OF )-module. Consider first the case n = 1. By (5.9.2) and Lemma 4.12, we have

|g1(A,H, ω)| = | 1

p2ap
f(A/H ′0, A[p]/H ′0, p

−1φ̂∗ω)|

≤ p2+vp(ap)−(k1 deg1(H′0)+k2 deg2(H′0))|f |Vcan
≤ p2+vp(ap)−k2(deg1(H′0)+deg2(H′0))|f |Vcan .

By Prop. 5.7(b), we have

deg1(H ′0) + deg2(H ′0) ≥ 1− (p− 1)(1− ε).

from which the desired estimation for |g1|Vi,1(ε)−Vi,1 follows. For n ≥ 2 , we have similarly

|gn(A,H, ω)| ≤ p2+vp(ap)−k2(deg1(H′0)+deg2(H′0))|gn−1|Vi,n−1(ε)−Vi,n−1
,

and the estimation follows from the fact that deg1(H ′0) + deg2(H ′0) = 1.
(b) Since we have

U◦p (U sp )n−1(Vi,n(ε)) ⊂ U◦p (Vi,1(ε)) ⊂ Vcan,

we see that hn is well defined over Vi,n(ε). To prove the estimation for hn, it suffices to
show that

|h1|Vi,1(ε) ≤ p−(k2−vp(ap)−2)+(p−1)k2/(p+1)|f |Vcan = p2+vp(ap)−2k2/(p+1)|f |Vcan ,

|hn|Vi,n(ε) ≤ p−(k2−vp(ap)−2)|hn−1|Vi,n−1(ε) for n ≥ 2.

The estimation for n ≥ 2 is exactly the same as in (a). For the case n = 1, we can conclude
in the same way by using the fact that, if Q = (A,H) ∈ Vi,1(ε), then all the subgroups
H ′ ⊂ A[p] with H ′ 6= H corresponding to U◦p have deg(H ′) = deg1(H ′) + deg2(H ′) =
2/(p+ 1). �

Now we prove Theorem 1.3, i.e Theorem 2.17 in the case g = 2 and p inert in F . Since
the scalar extension by a finite extension L/Qκ is not essential, we may assume L = Qκ

in Theorem 1.3. We have the following

Proposition 5.14. Let f be an overconvergent p-adic Hilbert modular form of level Γ00(N)∩
Γ0(p) and weight ~k = (k1, k2) ∈ Z2 with k1 ≥ k2, and Up(f) = apf for some ap ∈ C×p . We
put V = ]W1,1[∪ ]W2,2[∪Vcan, and

V1 =
∐

i∈Z/2Z

Vi,1 = {Q = (A,H) ∈]W1,1 ∪W2,2[ | w1(A) = w2(A) = 1}.
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(a) The form f extends uniquely to a section of ω~k over V − V1 such that Up(f) = apf
remains true, |f |V−V1 is finite and

(5.14.1) |f |V−V1 ≤ max{1, p2+vp(ap)−k2/p}|f |Vcan .

(b) Assume that vp(ap) < k2 − 2. Then f extends further to a section of ω~k over
]Yκ −WB,B[∪Vcan. Moreover, we have Up(f) = apf and

(5.14.2) |f |]Yκ−WB,B[∪Vcan ≤ p
2+vp(ap)|f |Vcan .

Before proving this Proposition, we note that Theorem 1.3 follows immediately from
Prop. 4.15 and 2.7.

Proof. (a) By Prop. 4.14, the form f can be uniquely extended to a section of ω~k over the
canonical locus Vcan, and |f |Vcan is finite. We first define the candidate extension of f in a
strict neighborhood of

]W1,1 ∪W2,2[−V1 =
∐

i∈Z/2Z

( ]Wi,i[−Vi,1)

in V − V1, and show that it coincides with the old f over the overlap with Vcan. Let
0 < ε ≤ 1/2 be a rational number. We put for i ∈ Z/2Z

]Wi,i[
◦
ε= {Q = (A,H) ∈ Yrig | 0 ≤ νi(Q) ≤ ε, νi+1(Q) = 1, 0 ≤ wi+1(A) < 1.}

This is a strict neighborhood of ]Wi,i[−Vi,1 in V − V1. Then the admissible open subsets
{Vcan, ]W1,1[◦ε , ]W2,2[◦ε} form an admissible open covering of V − V1. By Prop. 5.6(a) and
5.8, the image of ]Wi,i[

◦
ε under the Hecke correspondence Up is contained in Vcan. Hence,

the form Fi = 1
ap
Up(f) is well-defined on ]Wi,i[

◦
ε , and we have

Fi| ]Wi,i[◦ε∩Vcan = f |]Wi,i[◦ε∩Vcan .

In particular, the sections {f, F1, F2} glue together to a section, still denoted by f , of ω~k
over V−V1. By our construction, it is clear that Up(f) = apf still holds. To prove (5.14.1),
it suffices to show that for i ∈ Z/2Z

|f |]Wi,i[−Vi,1 = sup
Q∈]Wi,i[−Vi,1

| 1

ap
Up(f)(Q)| ≤ p2+vp(ap)− k2

p |f |Vcan .

By 3.21 and 5.7, for any Q = (A,H) ∈ ]Wi,i[−Vi,1 and (OF /p)-cyclic subgroup H ′ ⊂ A[p]
with H ′ ∩ H = 0, we have deg1(H ′) + deg2(H ′) ≥ k2/p. By our construction of f , the
required estimation above follows from Cor. 4.13. This finishes the proof of (a).

(b) The proof will be divided into 3 steps. At each step, we will always denote by f the
extension obtained in the previous step.
Step 1. Extension to V. We fix a rational number ε with p

p+1 < ε < 1 as in 5.10.

We have to show that, for i ∈ Z/2Z, there exists a section F ∈ H0(Vi,1(ε), ω
~k) such that

F |Vi,1(ε)−Vi,1 = f |Vi,1(ε)−Vi,1 and

(5.14.3) |F |Vi,1(ε) ≤ p
2+vp(ap)− 2

p+1
k2 |f |Vcan .
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We prove first that, for any integer n ≥ 2, there exists a form Fn ∈ H0(Vi,1(ε)− Vi,n, ω
~k)

with Fn|Vi,1(ε)−Vi,1 = f |Vi,1(ε)−Vi,1 . We put G1 = f |Vi,1(ε)−Vi,1 and

Gn =

n−1∑
m=1

1

amp
(U sp )m−1U◦p (f) +

1

an−1
p

(U sp )n−1(f)

for any integer n ≥ 2. We note that Gn is a well-defined section of ω~k over Vi,n−1(ε)−Vi,n.
Indeed, the first n− 1 terms are even well defined over Vi,n−1(ε) by 5.13(b). To justify the
last term, we note that

(U sp )n−1(Vi,n−1(ε)− Vi,n) ⊂ U sp (Vi,1(ε)− Vi,2) ⊂ Vcan ∪ (]Wi,i[−Vi,1) ⊂ V − V1.

The same argument as in Lemma 5.13 shows that

| 1

an−1
p

(U sp )n−1(f)|Vi,n−1(ε)−Vi,n ≤ p
−(n−1)(k2−2−vp(ap))|f |V−V1 < |f |V−V1 ,

where the last step uses the assumption k2 > 2 + vp(ap). On the other hand, (5.13)(b)
implies that the first n− 1 terms in definition of Gn are bounded by

max
1≤m≤n−1

{p−m(k2−2−vp(ap))+k2(p−1)/(p+1)}|f |Vcan = p
2+vp(ap)− 2

p+1
k2 |f |Vcan .

Therefore, for any n ≥ 1, we have

|Gn|Vi,n−1(ε)−Vi,n ≤ max{p2+vp(ap)− 2
p+1

k2 |f |Vcan , |f |V−V1}

≤ max{1, p2+vp(ap)−k2/p}|f |Vcan ,
where we have used (5.14.1) in the last step. Using the functional equation Up(f) = apf ,
it is easy to check that

Gn|Vi,n−1(ε)−Vi,n−1
= Gn−1|Vi,n−1(ε)−Vi,n−1

.

Since {Vi,m−1(ε) − Vi,m}2≤m≤n form an admissible open covering of Vi,1(ε) − Vi,n, we see
that the forms {Gm}2≤m≤n glue together to a section Fn of ω~k over V1,i(ε) − Vi,n whose
restriction to Vi,1(ε)− Vi,1 coincides with f . By the estimation above for Gn, we get

(5.14.4) |Fn|V1,i(ε)−Vi,n ≤ max{1, p2+vp(ap)−k2/p}|f |Vcan
To obtain a form F over V1,i(ε), we define

F ′n =

n∑
m=1

1

amp
(U sp )m−1U◦p (f)

over Vi,n(ε). Then it follows from Lemma 5.13(a) that

|Fn − F ′n|Vi,n(ε)−Vi,n = | 1

anp
(U sp )n(f)|Vi,n(ε)−Vi,n ≤ p

−n(k2−vp(ap)−2)+(1−ε)(p−1)k2 |f |Vcan .

Since vp(ap) + 2 < k2, the estimation above tends to 0 as n tends to ∞. Note that Lemma
5.13(b) implies that

|F ′n|Vi,n(ε) ≤ p
2+vp(ap)− 2

p+1
k2 |f |Vcan ≤ max{1, p2+vp(ap)− 1

p
k2}|f |Vcan .
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Applying the gluing lemma A.8 to U0 = Vi,1(ε), we get a unique section F of ω~k over
Vi,1(ε) whose restriction to Vi,1(ε) − Vi,n coincides with Fn. Moreover, in view of the
estimations for |Fn|Vi,1−Vi,n and |F ′n|Vi,n(ε), lemma A.8 also implies that |F |Vi,1(ε) is bounded

by max{1, p2+vp(ap)− 1
p
k2 |f |Vcan}. This extends the form f to V. Combining (5.14.1), we

obtain

(5.14.5) |f |V ≤ max{1, p2+vp(ap)− 1
p
k2}|f |Vcan .

Step 2: Extension to V∪]W1,B[∪]W2,B[. For an interval I ⊂ (0, 1] and i ∈ Z/2Z, we
put

]Wi,B[I = {Q ∈ ]Wi,B[∪ ]W sg
i,i [ | νi(Q) = 0, νi+1(Q) ∈ I},

]W?,B[I =]W1,B[I∪]W2,B[I .

By Prop. 5.6, the image of ]W?,B[( 1
p
,1] under the Hecke correspondence Up is contained in

Vcan. The form 1
ap
Up(f) is thus well defined over ]W?,B[( 1

p
,1], and it extends naturally f .

For any rigid point Q = (A,H) in ]W?,B[( 1
p
,1], Prop. 3.21 implies that

deg(H ′) = deg1(H ′) + deg2(H ′) ≥ 1

p

for any (OF /p)-cyclic subgroup H ′ ⊂ A[p] with H ∩ H ′ = 0. Therefore, it follows from
Cor. 4.13 that

(5.14.6) |f |]W?,B[
( 1p ,1]

= sup
Q∈]W?,B[

( 1p ,1]

| 1

ap
(Upf)(Q)| ≤ p2+vp(ap)−k2/p|f |Vcan .

Next, we extend f to the remaining part of ]W1,B[∪ ]W2,B[. Let εn = p+1
pn(p2+1)

for any
integer n ≥ 0. The quasi-compact open subsets { ]W?,B[[εn,εn−1] }n≥1 form an admissible
open covering of ]W?,B[(0,ε0]. Note that ε0 > 1

p , and that ]W?,B[[εn,εn−1] for n ≥ 2 is contained
in the anti-canonical locus (4.9.1)

W = {Q ∈ Yrig | νi(Q) + pνi−1(Q) > 1 ∀i ∈ Z/2Z.}

By Prop. 5.6 and 4.11, the Up sends ]W?,B[[ε1,ε0] into

V∪ ]W?,B[[ε0,1]= Vcan∪ ]W1,1[∪ ]W2,2[∪]W?,B[[ε0,1],

where the form f has been defined, and it sends ]W?,B[[εn+1,εn] into ]W?,B[[εn,εn−1] for n ≥ 1.

Therefore, we can define inductively a form fn on ]W?,B[[εn,εn−1] by putting f1 = 1
ap
Up(f)

and fn+1 = 1
ap
Up(fn) for n ≥ 1. It is easy to see that

f1|]W?,B[
( 1p ,ε0]

= f |]W?,B[
( 1p ,ε0]

,

and the forms {fn}≥1 coincide with each other over the overlaps of their definition domains.
This proves that f extends to a section of ω~k over V∪ ]W?,B[(0,1]. By 4.11(b) and (3.21),
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for any rigid point Q = (A,H) ∈]W?,B[[ε1,ε0], every (OF /p)-cyclic subgroup H ′ ⊂ A[p] with
H ′ ∩H = 0 has degree

deg(H ′) = deg1(H ′) + deg2(H ′) ≥ ε1.

It results from Cor. 4.13 that

|f |]W?,B[[ε1,ε0]
= sup

Q∈]W?,B[[ε1,ε0]

| 1

ap
(Upf)(Q)|(5.14.7)

≤ p2+vp(ap)−ε1k2 |f |V∪ ]W?,B[[ε0,1]

≤ p2+vp(ap)−ε1k2 max{1, p2+vp(ap)− 1
p
k2}|f |Vcan ,

where we have used (5.14.5) and (5.14.6) in the last inequality.
Step 3. It remains to extend f to ]W∅,B[. We denote by C(p)rig|W the inverse image of

the anti-canonical locus W by π1 : C(p)rig → Yrig. Prop. 4.11(b) implies that we have a
decomposition of rigid analytic spaces

C(p)rig|W = C(p)crig
∐
C(p)arig.

Here, for every rigid point Q = (A,H) ∈ W, π−1
1 (Q) ∩ C(p)crig consists of the single point

(A,H,C), where C ⊂ A[p] is the canonical subgroup; and π−1
1 (Q)∩ C(p)arig corresponds to

the other p2 − 1 anti-canonical subgroups. Correspondingly, we have a decomposition of
Hecke correspondences Up = U cp + Uap . For εn = p+1

pn(p2+1)
as above, we put

]W∅,B[εn= ]W∅,B[∪ ]W?,B[(0,εn].

They are strict neighborhoods of ]W∅,B[ in ]Yκ −WB,B[. By Prop. 4.11, we have

U cp(]W∅,B[εn) ⊂]W∅,B[εn−1 for n ≥ 1,

and Uap (]W∅,B[εn) ⊂ Vcan. We define a section of ω~k on ]W∅,B[εn by

gn =
n∑

m=1

1

amp
(U cp)m−1Uap (f).

By Prop. 4.11, for any rigid point Q = (A,H) ∈]W∅,B[εn , the canonical subgroup C ⊂ A[p]
has degree

deg(C) = deg1(C) + deg2(C) ≥ 2− pεn > 1.

We deduce from 4.12 that, for m > 1 and Q ∈]W∅,B[εn ,

| 1

amp
(U cp)m−1(Uap )(f)(Q)| ≤ p2+vp(ap)−(k1 deg1(C)+k2 deg2(C))| 1

am−1
p

(U cp)m−2(Uap )(f)|]W∅,B[εn−1

≤ p2+vp(ap)−k2(2−pεn)| 1

am−1
p

(U cp)m−2(Uap )(f)|]W∅,B[εn−1
.
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Since 2 + vp(ap)− k2(2− pεn) < 2 + vp(ap)− k2 < 0, we get

| 1

amp
(U cp)m−1(Uap )(f)|]W∅,B[εn

≤ p2+vp(ap)−k2(2−pεn)| 1

am−1
p

(U cp)m−2(Uap )(f)|]W∅,B[εn−1

(5.14.8)

< | 1

am−1
p

(U cp)m−2(Uap )(f)|]W∅,B[εn−1
.

Moreover, it follows trivially from 4.12 that | 1
ap
Uap (f)|]W∅,B[εn

≤ p2+vp(ap)|f |Vcan . Hence, we
get

|gn|]W∅,B[εn
≤ max

1≤m≤n
| 1

amp
(U cp)m−1Uap (f)|]W∅,B[εn

= | 1

ap
Uap (f)|]W∅,B[εn

(5.14.9)

≤ p2+vp(ap)|f |Vcan .

Using f = 1
ap
Up(f), we see that gn − f = 1

anp
(U cp)n(f). A similar argument as in (5.14.8)

shows that for any n ≥ 1

|f − gn|]W?,B[[εn+1,εn]
= | 1

anp
(U cp)n(f)|]W?,B[[εn+1,εn]

≤ p2+vp(ap)−k2(2−pεn)| 1

an−1
p

(U cp)n−1(f)|]W?,B[[εn,εn−1]

≤ pn(2+vp(ap))−k2(2n−p
∑n
r=1 εr)|f |]W?,B[[ε1,ε0]

.

As 2 + vp(ap) < k2, we check easily for any n ≥ 1 that

n(2 + vp(ap))− k2(2n− p
n∑
r=1

εr) < −k2n+ k2
(p+ 1)p

(p2 + 1)(p− 1)
(1− 1

pn
) < 0.

Therefore, we get |f − gn|]W?,B[[εn+1,εn]
≤ |f |]W?,B[[ε1,ε0]

and

|f − gn|]W?,B[[εn+1,εn]
→ 0 as n→∞.

From (5.14.7), it follows that

|f − gn|]W?,B[[εn+1,εn]
< p2+vp(ap)|f |Vcan .

In view of (5.14.9), we deduce that |f |]W?,B[[εn+1,εn]
≤ p2+vp(ap)|f |Vcan for every n ≥ 1.

Combining with the estimations (5.14.5), (5.14.6) and (5.14.7), we see that

|f |V∪]W?,B[(0,1] ≤ p
2+vp(ap)|f |Vcan .

Now the assumptions of Lemma A.8 are satisfied for XK = Yrig with U0 =]Yκ −WB,B[,
Un =]W∅,B[εn for n ≥ 1, Vn = Un+1, Fn = f |]Yκ−WB,B[−Vn , F

′
n = gn and C = p2+vp(ap)|f |Vcan .

We deduce that there exists a unique section f of ω~k over ]Yκ −WB,B[, hence also over
]Yκ−WB,B[∪Vcan, which extends f and is bounded by p2+vp(ap)|f |Vcan . This completes the
proof.

�
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6. The general case of Theorem 2.17

In this section, we indicate how to generalize the arguments in the preceding section to
prove Theorem 2.17 in the general case.

6.1. We denote by Σ the set of all prime ideals of OF above p, and we assume [κ(p) :
Fp] ≤ 2 for all p ∈ Σ. Let Σ1 ⊂ Σ be the subset consisting of primes of degree 1, and
Σ2 ⊂ Σ be the subset of primes of degree 2. Since Theorem 2.17 in the case Σ = Σ1 was
treated by Sasaki [Sa10], we always suppose that Σ2 6= ∅. We have a partition

B = (
∐
p∈Σ1

Bp)
∐

(
∐
q∈Σ2

Bq).

For p ∈ Σ1, we denote by βp the unique element of Bp, and νp the corresponding valuation of
Yrig (4.7.1); for q ∈ Σ2, we denote by Bq = {βq,1, βq,2}, and νq,1, νq,2 be the corresponding
two valuations. Let I = [0, 1] and J = [0, 1]2. We have a valuation map

νY = ((νp)p∈Σ1 , (νq,1, νq,2)q∈Σ2) : Yrig → IΣ1 × JΣ2 .

In general, if Ω is a subset of IΣ1 × JΣ2 , we put

Yrig(Ω) = {Q ∈ Yrig | νY(Q) ∈ Ω}.

Let {Sp : p ∈ Σ} be a collection of non-empty subsets of either I or J. If all the
Sp are closed and connected in the usual real topology, the corresponding rigid subspace
Yrig(

∏
p∈Σ Sp) is a quasi-compact admissible open subset of Yrig. For example, if ~1 =

(1, 1, · · · , 1) ∈ IΣ1 × JΣ2 , then Yrig(~1) is the ordinary locus Yord
rig . Hence, if

∏
p∈Σ Sp is a

neighborhood of ~1 in IΣ1×JΣ2 , then Yrig(
∏

p∈Σ Sp) is a strict neighborhood of the ordinary
locus Yord

rig in Yrig.

Lemma 6.2. Let I = [0, 1], and J� be the boundary of [0, 1]2, i.e. the union of its four
closed edges. Then Yrig(IΣ1×JΣ2

� ) is the tube over an open subset of Yκ whose complement
has codimension 2.

Proof. We consider Goren-Kassaei’s stratification {Wϕ,η} on Yκ defined in (4.3), where
(ϕ, η) runs through all the admissible pairs of subsets of B. For each p ∈ Σ, we put
ϕp = ϕ∩Bp and ηp = η ∩Bp. Then we have ϕ =

∐
p∈Σ ϕp and η =

∐
p∈Σ ηp. Similarly, for

each prime p, the pair (ϕp, ηp) of subsets of Bp can be called admissible in the sense that
ϕp ⊃ σ(ηcp), where ηcp denotes the complementary subset Bp − ηp, and σ : Bp → Bp is the
action of the Frobenius. In particular, we have

|ϕp|+ |ηp| ≥ |Bp| = [κ(p) : Fp].

Now, let Z be the union of all the strata Wϕ,η such that there exists at least one p ∈ Σ2

with (ϕp, ηp) = (Bp,Bp). By [GK09, 2.5.2] (or cf. 4.3), Z is closed in Yκ, and each stratum
Wϕ,η in Z has dimension

2g − |ϕ| − |η| = 2g −
∑
p∈Σ

(|ϕp|+ |ηp|) ≤ g − 2,
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i.e. Z has codimension 2 in Yκ. Now one checks easily that Yrig(IΣ1 × JΣ2
� ) identifies with

the tube over Yκ − Z. This proves the Lemma. �

6.3. We fix a prime p ∈ Σ1 of degree 1. We describe the Hecke correspondence Up on Yrig.
Let L be a finite extension of Qκ, and P be a L-valued rigid point of Xrig corresponding to
a HBAV over OL. We denote by wp(A) the partial Hodge height of A (4.6.1) corresponding
to the unique element of Bp, and A[p∞] be the p-component of A[p∞]. This is a p-divisible
group of dimension 1 and height 2, since p has degree 1. Thus for any (OF /p)-cyclic
isotropic subgroup H of A[p], its p component H[p] is just a subgroup of order p in the
p-divisible groups A[p∞]. The possibilities for such subgroups are well analyzed by Katz
and Lubin [Ka73], and widely used in the work of [Bu03], [Ks06] and [Sa10]. We summarize
the results in our language as follows.

Lemma 6.4 (Lubin-Katz). Let p ∈ Σ1 as above, Q = (A,H) be an L-valued rigid point of
Yrig. Then we have the following possibilities:

(a) Assume 1
p+1 < νi(Q) ≤ 1, i.e. Q is canonical at p in the sense of Theorem 4.9. Then

we have wp(A) = 1 − νp(Q) < p
p+1 , and all the subgroups H ′ ⊂ A[p] of order p different

from H[p] has deg(H ′) = 1
p(1− νp(Q)). Or equivalently, all the points Q1 ∈ Up(Q) satisfy

1− νp(Q1) = 1
p(1− νp(Q)), i.e.

νp(Q1) =
p− 1

p
+

1

p
νp(Q) >

p

p+ 1
.

(b) Assume νp(Q) = 1
p+1 , i.e. Q is too-singular at p. Then we have wp(A) ≥ p

p+1 , and
all the subgroups H ′ ⊂ A[p] of order p different from H has deg(H ′) = 1

p+1 , or equivalently,
we have νi(Q1) = p

p+1 for all Q1 ∈ Up(Q).
(c) If 0 ≤ νp(Q) < 1

p+1 , i.e. Q is anti-canonical at p in the sense of Theorem 4.9.
Then we have wp(A) = pνp(Q) < p

p+1 . There exists a unique subgroup C ⊂ A[p] of
order p different from H with deg(C) = 1 − pνp(Q), and the other subgroups H ′ ⊂ A[p]
has deg(H ′) = νp(Q). Equivalently, there exists a unique point Q1 ∈ Up(Q) with νp(Q1) =
pνp(Q) < p

p+1 , and all the other p−1 points Q′1 ∈ Up(Q) satisfy νp(Q′1) = 1−νp(Q) > p
p+1 .

Proof. Indeed, all these results are direct consequences of [Ka73, 3.10.7]. Statement (a)
and (c) are also special cases of Prop. 4.11. �

We have the following proposition on the analytic continuation of a Up-eigenform form,
due to essentially Kassaei [Ks06].

Proposition 6.5. Let p ∈ Σ1 as above, and
∏

q∈Σ Sq ⊂ IΣ1×JΣ2 be a closed and connected

neighborhood of ~1. Let ~k ∈ ZB, kp ∈ Z be its p-th component, and f be a section of ω~k

over Yrig(
∏

q∈Σ Sq). Assume that f is a Up-eigenform of weight ~k with eigenvalue ap 6= 0.
(a) The form f extends uniquely to an eigenform of Up with eigenvalue ap over Yrig(I>0×∏
q 6=p Sq), where I>0 = (0, 1] is considered as a subset of the p-th copy of I.
(b) If vp(ap) < kp− 1, then f extends uniquely to an eigenform of Up with eigenvalue ap

over Yrig(I×
∏

q6=p Sq).
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Proof. The arguments are the same as in [Ks06, 4.1] and [Sa10]. We include a proof here
for completeness.

(a) For any integer n ≥ 0, we put εn = 1
pn−1(p+1)

. By assumption, Sp is a neighborhood
of 1 ∈ I = [0, 1]. We may assume thus [1− εN ] ⊂ Sp for some integer N > 0. By Lemma
6.4(a) and (b), the image of Yrig([1 − εn, 1] ×

∏
q6=p Sq) under the correspondence Up is

contained in Yrig([1− εn+1, 1]×
∏

q6=p Sq). Therefore, the form 1
aNp
UNp is well defined over

Yrig([1− ε0, 1]×
∏

q6=p Sq). Note that 1− ε0 = ε1 = 1
p+1 . This gives the unique extension

of f over Yrig([ε1, 1]×
∏

q 6=p Sq). By Lemma 6.4(c), we have

Up

(
Yrig([εn+1, 1]×

∏
q6=p

Sq)
)
⊂ Yrig([εn, 1]×

∏
q6=p

Sq).

Using the functional equation f = 1
ap
Up(f), we can extend inductively f to Yrig([εn, 1] ×∏

q 6=p Sq) for any n ≥ 1. As the quasi-compact admissible open subsets of {Yrig([εn, 1] ×∏
q 6=p Sq) : n ≥ 1} form an admissible covering of Yrig(I>0 ×

∏
q6=p Sq), this finishes the

proof of (a).
(b) We proceed in the same way as in Step 3 of Prop. 5.14. We put Vanti = Yrig([0, 1

p+1)×∏
q 6=p Sq). This is the analogue of the anti-canonical locus in our situation. Denote by
C(p)rig|Vanti the inverse image of Vanti via the first projection of Hecke correspondence
π1 : C(p)rig → Yrig (2.15.1). By Lemma 6.4(c), we have a decomposition

C(p)rig|Vanti = C(p)crig
∐
C(p)arig,

where C(p)crig corresponds to the canonical subgroup C ⊂ A[p] above a point Q = (A,H) ∈
Vanti via π1, and C(p)arig corresponds to the remaining subgroups. Consequently, we have
a similar decomposition for the Up-operator Up = U cp + Uap . By Lemma 6.4(c), we have

U cp (Yrig([0, εn]×
∏
q6=p

Sq)) ⊂ Yrig([0, εn−1]×
∏
q 6=p

Sq) for any n ≥ 2,

Uap (Yrig([0, εn]×
∏
q6=p

Sq)) ⊂ Yrig([ε0, 1]×
∏
q 6=p

Sq).

Hence, the section

gn =

n∑
m=1

1

amp
(U cp )m−1Uap (f)

is well defined over Yrig([0, εn+1] ×
∏

q 6=p Sq) for n ≥ 2. By 6.4(c), for any rigid point
Q = (A,H) ∈ Yrig([0, εn+1]×

∏
q 6=p Sq), the canonical subgroup C ⊂ A[p] has degree

(6.5.1) deg(C) = 1− pνp(Q) ≥ 1− pεn+1 = 1− εn.



CLASSICALITY OF OVERCONVERGENT HILBERT EIGENFORMS 63

Using Lemma 4.12, we deduce that for 2 ≤ m ≤ n∣∣ 1

amp
(U cp )m−1Uap (f)

∣∣
Yrig([0,εn+1]×

∏
q6=p Sq)

≤ p1+vp(ap)−kp(1−εn)| 1

am−1
p

(U cp )m−2Uap (f)|Yrig([0,εn]×
∏

q 6=p Sq)

≤ p(m−1)(1+vp(ap)−kp)+kp
∑n
i=n−m+2 εi | 1

ap
Uap (f)|Yrig([0,εn−m+2]×

∏
q6=p Sq)

Moreover, it follows trivially from 4.12 that

| 1

ap
Uap (f)|Yrig([0,εn−m+2]×

∏
q 6=p Sq) ≤ p1+vp(ap)|f |Yrig([ε0,1]×

∏
q 6=p Sq).

Combining these two estimations above and using
∑n

i=n−m+2 εi <
∑∞

i=2 εi = 1
p2−1

, we get
finally∣∣ 1

amp
(U cp )m−1Uap (f)

∣∣
Yrig([0,εn+1]×

∏
q 6=p Sq)

< p
m(1+vp(ap)−kp)+kp(1+ 1

p2−1
)|f |Yrig([ε0,1]×

∏
q6=p Sq)

for all 1 ≤ m ≤ n. Thanks to the assumption kp > 1 + vp(ap), the estimation above tends
to 0 as m→∞, so there exists a constant M > 0 independent of n such that

(6.5.2) |gn|Yrig([0,εn+1]×
∏

q6=p Sq) ≤ max
1≤m≤n

| 1

amp
(U cp )m−1Uap (f)|Yrig([0,εn+1]×

∏
q6=p Sq) < M.

On the other hand, via the functional equation Up(f) = apf , it is easy to see that

f − gn =
1

anp
(U cp )n(f).

By (6.5.1) and a similar argument as in Lemma 4.12, we get

|f − gn|Yrig([εn+2,εn+1]×
∏

q6=p Sq)

≤ p1+vp(ap)−kp(1−εn)| 1

an−1
p

(U cp )n−1(f)|Yrig([εn+1,εn]×
∏

q6=p Sq)

≤ pn(1+vp(ap)−kp)+kp
∑n
i=1 εi |f |Yrig([ε2,ε1]×

∏
q6=p Sq).

As
∑n

i=1 εi <
p

p2−1
, we see that |f − gn|Yrig([εn+2,εn+1]×

∏
q6=p Sq) tends to 0 when n→∞. By

(6.5.2), up to modifying the constant M , we may assume that |f |Yrig([εn+2,εn+1]×
∏

q6=p Sq) <

M , and even |f |Yrig(I>0×
∏

q 6=p Sq) < M . Now applying Lemma A.8 to U0 = Yrig(I ×∏
q 6=p Sq), Un = Yrig([0, εn+1] ×

∏
q 6=p Sq), Vn = Un+1, Fn = f |U0−Vn , F ′n = gn, we get a

Up-eigenform f defined over Yrig(I×
∏

q6=p Sq) extending f . �

6.6. Let p ∈ Σ2, and Bp = {βp,1, βp,2}. Here, the subscripts 1, 2 should be considered as
elements in Z/2Z, so that if i is one of them then i + 1 denotes the other. We indicate
how to generalize the results of Section 5 to our situation. We start with generalizing the
9 strata (5.1) of Yκ. As in the proof of Lemma 6.2, we say a pair (ϕp, ηp) of subsets of
Bp is admissible if ϕp ⊃ σ(Bp − ηp). If (ϕ, η) is an admissible pair of subsets of B, then
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(ϕ ∩ Bp, η ∩ Bp) is an admissible pair of subsets of Bp, and we denote it by (ϕ, η)p. For an
admissible pair (ϕp, ηp) of subsets of Bp, we put

Wϕp,ηp =
⋃

(ϕ,η)p=(ϕp,ηp)

Wϕ,η,

where Wϕ,η is the usual Goren-Kassaei stratum defined in 4.3. We have a similar list of
strata in Yκ as in 5.1.

• 0-codimensional: WBp,∅,W∅,Bp
,Wβp,1,βp,1 ,Wβp,2,βp,2 .

• 1-codimensional: WBp,βp,1 ,WBp,βp,2 ,Wβp,1,Bp ,Wβp,2,Bp .
• 2-codimensional: WBp,Bp .

The graph in 5.5 generalizes to our case, so that under the valuations (νp,1, νp,2) the loci
of codimension 0, 1 and 2 correspond respectively to the four vertices, the four edges and
the interior of the square J = [0, 1]2. For i ∈ Z/2Z, we can define similarly the supergeneral
locus W sg

βp,i,βp,i
of Wβp,i,βp,i to be the region where the a-number of the universal p-divisible

group A[p∞] equals to one, and the superspecial locus W ss
βp,i,βp,i

to be the area where the
universal p-divisisible group A[p∞] is superspecial. Now, Propositions 5.6, 5.7 and 5.8
generalize word by word to the tubes ]W sg

βp,i,βp,i
[ and ]W ss

βp,i,βp,i
[, because all the proofs have

only used the properties on the p-divisible group A[p∞].
To state the generalization of Prop 5.14, we introduce

Scan = {(x1, x2) ∈ [0, 1]2 | x1 + px2 > 1 and x2 + px1 > 1}
So the locus canonical at p in (4.8.1) is also denoted by Vp = Yrig(IΣ1 × JΣ2−{p} × Scan).

Proposition 6.7. Let
∏

q∈Σ Sq ⊂ IΣ1 × JΣ2 be a closed and connected neighborhood of
~1. Fix a prime ideal p ∈ Σ2 as above. Let ~k ∈ ZB, and f be a Up-eigenform defined
over Yrig(

∏
q∈Σ Sq) with eigenvalue ap. Assume that vp(ap) < min{kp,1, kp,2} − 2. Then f

extends uniquely to a Up-eigenform over Yrig(
∏

q 6=p Sq × (Sp ∪ Scan ∪ J�)).

Proof. First, the same argument as in Prop. 4.14 applied to the Up-operator shows that f
extends to Yrig(

∏
q6=p Sq× (Sp∪Scan)). Since Prop. 5.6 and 5.8 generalize naturally to our

case, we just need to copy the proof of Prop. 5.14 word by word. The only place that needs
more justification is Step 2 of 5.14, where we used Lemma 5.12. We can define similarly the
quasi-compact open subsets Vi,n and Vi,n(ε) as in 5.10. In general, their global structures
maybe be complicated. However, what we really need from 5.12 is the fact that Vi,n(ε) is a
strict neighborhood of Vi,n. This is certainly true in the general case, because the universal
p-divisible group A[p∞] is exactly the same as in Lemma 5.12, and the generalized Vn and
Vn,ε are cut out by certain special local lifts of the partial Hasse invariants at p in the same
way. �

6.8. Proof of Thm. 2.17. Let f be an overconvergent eigenform as in the statement of
2.17. We choose a closed and connected neighborhood

∏
p∈Σ Sp ⊂ IΣ1 × JΣ2 of ~1 where

f is defined. Applying successively Prop. 6.5 and 6.7 for all p ∈ Σ, we get an eigenform
f defined over Yrig(IΣ1 × JΣ2

� ). Now Theorem 2.17 follows immediately from Lemma 6.2,
Prop. 4.15 and Prop. 2.7.
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Appendix A. Some results on the extension of sections in rigid geometry

The purpose of this appendix to summarize some general results on the extension or
gluing of sections in rigid geometry. The basic ideas of the proofs are already contained in
the work of Kassaei [Ks06] and Pilloni [Pi09].

A.1. Let OK be a complete discrete valuation ring with uniformizer π, k = OK/(π), and
K be the fraction field of OK . We say a topological OK-algebra A is admissible if it is
topologically of finite type and flat over OK , i.e. A is a π-torsion free quotient algebra
of the usual Tate algebra of convergent power series in several variables over OK . An
admissible formal scheme over OK is a quasi-compact and separated formal scheme over
Spf(OK) which is locally the formal spectrum of an admissible OK-algebra. An affine
formal scheme Spf(A) is admissible over OK if and only if A is an admissible topological
OK-algebra.

LetX be an admissible formal scheme over OK . According to Raynaud, we can associate
to X a quasi-compact rigid analytic space XK over K, called the rigid generic fiber of X.
Similarly, to each coherent sheaf F over X, we can attach a coherent rigid analytic sheaf
FK over XK . We denote by X0 the special fiber of X, and we have a natural specialization
map sp : XK → X0 of topological spaces (cf. [Be96] Chap. 1). If U0 is a locally closed
subset of X0, we put ]U0[ = sp−1(U0), and call it the tube over U0 in XK . If U ⊂ X is the
open formal subscheme with special fiber U0, then we have ]U0[= UK .

Lemma A.2 (cf. [Pi09], Lemme 7.1). Let X = Spf(A) be an admissible affine formal
scheme over OK , U0 ⊂ X0 be an open subset of its special fiber, F be a coherent OX-
module flat over OK , and F0 = F/πF . If the restriction map H0(X0,F0)→ H0(U0,F0)
is an isomorphism, then the restriction map

H0(XK ,FK)→ H0(]U0[,FK)

is also an isomorphism.

Proof. Let U be the formal open subscheme of X corresponding to U0. The the exact
sequence 0→ F

×π−−→ F → F0 → 0 of sheaves on X induces a commutative diagram

H0(X,F )

ι
��

// // H0(X0,F0)

∼
��

H0(U,F ) // // H0(U,F )/πH0(U,F ) �
� // H0(U0,F0),

where the horizontal maps are natural reductions, and the vertical arrows are restrictions.
Since the right vertical arrow is an isomorphism and H0(U,F ) has no π-torsion, an easy
diagram chase shows that ι is injective. On the other hand, since H0(U,F )/πH0(U,F )
is a finite over A/πA, Nakayama lemma implies that H0(U,F ) is a finite A-module, and
the image of ι generates H0(U,F ). Hence, the restriction map ι is an isomorphism. The
Lemma follows immediately by inverting π.

�
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Lemma A.3. Let X be an admissible formal scheme over OK , U0 ⊂ X0 be an open dense
subscheme of the special fiber, and F be a coherent OX-module flat over OK . Then the
restriction map

H0(XK ,FK)→ H0(]U0[,FK)

is injective.

Proof. Let U ⊂ X be the open formal subscheme corresponding to U0. Since X is quasi-
compact and separated, we have a natural isomorphism H0(XK ,FK) ' H0(X,F ) ⊗OK
K; and similar statement holds with X replaced by U . Hence, it suffices to prove that
the restriction map H0(X,F ) → H0(U,F ) is injective. Let X =

⋃
i∈I Vi be a finite

open covering of X by affine admissible formal schemes over OK . Since H0(X,F ) →∏
i∈I H

0(Vi,F ) is injective, we are reduced to proving that H0(Vi,F ) → H0(U ∩ Vi,F )
is injective for all i ∈ I. The density of U0 implies that

H0(Vi,F )⊗OK k = H0(Vi,0,F/πF )→ H0(U0 ∩ Vi,0,F/πF )

is injective. Let f ∈ H0(Vi,F ) such that f |U∩Vi = 0. Then there exists f1 ∈ H0(Vi,F )
with f = πf1. Since F has no π-torsion, we deduce that f1|U∩Vi = 0. Repeating this
process, we see that f = 0, because H0(Vi,F ) is π-adically separated. �

In general, if X0 is a locally noetherian scheme and F is a coherent sheaf on X0, we
denote by depthX0

(Fx) the depth of Fx as an OX0,x-module for any x ∈ X0.

Proposition A.4. Let X be an admissible formal scheme over OK , Y0 ⊂ X0 be a closed
subscheme, F be a coherent OX-module on X flat over OK , F0 = F/πF . Assume that
for any x ∈ Y0, we have depthX0

(F0,x) ≥ 2. Then the restriction map

ι : H0(XK ,FK)→ H0(]X0 − Y0[,FK)

is an isomorphism.

Proof. First, we have dim(OX0,x) ≥ depthX0
(F0,x) ≥ 2 for all x ∈ Y0 by [Ma86, Thm.

17.2], i.e. Y0 has at least codimension 2 in X0. In particular, X0 − Y0 is dense in X0. The
morphism ι is therefore injective by Lemma A.3. Let X =

⋃
i∈I Ui be a finite covering

of X by affine open admissible formal subschemes. By [SGA2, II 3.5], the natural map
H0(Ui,0,F0)→ H0(Ui,0 − Y0,F0) is an isomorphism. It results from Lemma A.2 that

H0(Ui,K ,FK)→ H0(]Ui,0 − Y0[,FK)

is an isomorphism for all i ∈ I. Let f ∈ H0(]X0 − Y0[,FK), and fi be its restriction to
]Ui,0−Y0[. By the previous discussion, fi extends naturally to Ui,K . We have to show that
the fi|Ui,K∩Uj,K = fj |Ui,K∩Uj,K for i, j ∈ I. As Ui,0 ∩ Uj,0 − Y0 is dense in Ui,0 ∩ Uj,0 and
fi|]Ui,0∩Uj,0−Y0[ = fj |]Ui,0∩Uj,0−Y0[, we conclude by Lemma A.3.

�

Recall that we say a noetherian local ring A satisfy the condition S2, if depth(A) ≥
min{2, dim(A)}. For instance, all the normal rings or Cohen-Macaulay noetherian local
rings satisfy the condition S2.
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Corollary A.5. Let X be an admissible formal scheme over OK , and F be an OX-module
locally free of finite type. Let Y0 ⊂ X0 be a closed subscheme of codimension ≥ 2 such that
for any x ∈ Y0, the local ring OX0,x satisfy the condition S2. Then the restriction map

H0(XK ,FK)→ H0(]X0 − Y0[,FK)

is an isomorphism.

Proof. The condition S2 implies that depthX0
(F0,x) = depthX0

(OX0,x) ≥ 2 for x ∈ Y0.
The Corollary follows immediately form the Proposition. �

A.6. Norms. Let | · | : K → R≥0 be a non-archimedean absolute value on K with
valuation ring OK . We fix an algebraic closure K of K. Note that | · | extends uniquely
to K. If L is a finite extension of K, we always consider L as a subfield of K by choosing
a K-embedding, and we denote by OL the ring of integers in L. The following treatment
on norms follows [Pi09, 5.3].

Let X be an admissible formal scheme over OK , and F be an OX -module locally
free of finite type. Let x be a rigid point of XK with values in a finite extension L/K.
Then x comes from a morphism x̃ : Spf(OL) → X of formal schemes over OK . Let
(ei)i∈I be a basis for the finite free OL-module x̃∗(F ). We have a natural identification
x∗(FK) = x̃∗(F ) ⊗OK K. For f =

∑
i∈I ai ei ∈ x∗(FK) with ai ∈ L, we put |f | =

maxi∈I{|ai|}. It is easy to check that this definition does not depend on the choice of
the basis (ei)i∈I . Let U ⊂ XK be an admissible open subset, and f ∈ H0(U,FK). We
put |f |U = supx∈U(K) |x∗(f)|. Note that it is possible that |f |U = +∞ if U is not quasi-
compact. If U is quasi-compact and reduced, it follows from the maximality principle that
|f | < +∞, and we have |f | = 0 if and only if f = 0. Therefore, in this case, H0(U,FK) is
a Banach space over K.

Remark A.7. In Corollary A.5, if f is a section of FK over ]X0−Y0[ with |f |]X0−Y0[ ≤ C
for some C ≥ 0, then it is easy to see from the proof that its natural extension to XK still
satisfy |f |XK ≤ C.

This following lemma is a variant of [Ks06, Lemma 2.3], and the proof is of also quite
similar.

Lemma A.8. Let X be an admissible formal scheme over OK such that its rigid generic
fiber XK is smooth, and F be an OX-module locally free of finite type. Let U0 be a quasi-
compact admissible open subset of XK , and

U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ · · ·
U0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ · · ·

be two infinite sequences of quasi-compact admissible open subsets such that Un is a strict
neighborhood of Vn. Assume that no connected component of U0 is contained in

⋂
n≥1 Vn.

Let Fn ∈ H0(U0 − Vn,Frig) and F ′n ∈ H0(Un,Frig) satisfying the following condition.
(a) Fn|U0−Vn−1 = Fn−1 for n ≥ 2;
(b) |Fn − F ′n|Un−Vn tends to 0 as n→∞;
(c) there exists a constant C > 0 such that |Fn|U0−Vn , |F ′n|Un ≤ C for all n ≥ 1;
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Then there exists a unique section F ∈ H0(U0,FK) such that F |U0−Vn = Fn and |F |U0 ≤
C.

Proof. By assumption, each connected component of U0 has a non-empty intersection with
U0 − Vn for n sufficiently large. The uniqueness of F with F |U0−Vn = Fn follows from
the principle of analytic continuation in rigid geometry [Be96, 0.1.13]. We note also that
the estimation |F |U0 ≤ C is trivial. It remains to prove the existence of F . This is a
local problem for the Grothendieck topology on XK . By choosing a finite open affinoid
covering of XK over which FK is trivial, we reduce to the case where U0 is affinoid and
FK = OXK . Let ÕXK be the subsheaf of OXK consisting of sections with norm at most
1. Up to renormalization, we may assume that Fn, F ′n are sections of ÕXK and

|Fn − F ′n|Un−Vn ≤ |π|n.

Consider the quotient sheaf ÕXK/πnÕXK . Then Fn, F ′n glue together to a section Gn ∈
H0(XK , ÕXK/πnÕXK ) for each n ≥ 1. Note that the exact sequences

0→ ÕXK
×πn−−−→ ÕXK → ÕXi/π

nÕXK → 0

induce an exact sequence of cohomology groups

0→ H0(U0, ÕXK )→ lim←−
n

H0(U0, ÕXK/π
nÕXK )→ H1(U0, ÕXK ).

By a result of Bartenwerfer [Ba78, Thm. 2] (which uses the smoothness ofXK), there exists
c ∈ OK with c 6= 0 such that cH1(U0, ÕXK ) = 0. Therefore, the sections {cGn;n ≥ 1}
come from a certain G ∈ H0(U0, ÕXK ). Then we can take F = G

c . �

Appendix B. Zink’s theory on Dieudonné windows and canonical local
coordinates at superspecial points

In this appendix, we prove some results needed in Lemma 5.12. We fix a prime number
p > 0.

B.1. Recall first the definition of windows in [Zi01] and the extension to p-adic complete
rings in [Ki09b]. Let R be a p-adically complete and separated ring. A frame for R,
denoted by (S, J, ϕ) or simply by S, is a surjective ring homomorphism S → R with kernel
J , where

(1) S is a p-adic ring flat over Zp, equipped with an endomorphism ϕ lifting the
Frobenius on S/pS.

(2) J is an ideal equipped with divided powers compatible the natural divided power
structure on pS.

For a frame (S, J, ϕ) for R, a Dieudonné S-window over R is a finitely generated pro-
jective S-moduleM together with the following data:

(1) a submodule Fil1M containing JM such thatM/Fil1M is a projective R-module;
(2) a ϕ-linear map ϕ :M→M such that ϕ(Fil1M) ⊂ pM andM is generated over

S by ϕ(M) and ϕ/p(Fil1M) .
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It is easy to see from (2) that 1 ⊗ ϕ is injective and pM ⊂ (1 ⊗ ϕ)(ϕ∗M). So there
exists a unique morphism ψ :M→ ϕ∗(M) of S-modules such that the compositeM ψ−→
ϕ∗(M)

1⊗ϕ−−→M is the multiplication by p. We say a Dieudonné S-window (M,Fil1M, ϕ)
is an S-window if the image of

ϕn−1∗(ψ) ◦ · · · ◦ ϕ∗(ψ) ◦ ψ :M→ ϕn∗(M)

is contained in (p, J)ϕn∗M for sufficiently large n.

B.2. Let R be a p-adic complete and separated ring. A divided power surjection over R is
a surjective ring homomorphism S′ → R′ with kernel J ′, where R′ is a R-algebra and J ′ is
equipped with a divided power structure and consists of elements topologically nilpotent
in the p-adic topology. Let G be a p-divisible group over R, and put G0 = G⊗R (R/p). By
[BBM82], we can associate contravariantly with G a crystal D(G) over the big crystalline
site of R. That is, to each divided power surjection S′ → R′ over R, we associate a
finite locally free S′-module D(G)(S′ → R′), such that for a morphism of divided power
surjections over R

S′ //

��

S′′

��
R′ // R′′,

we have D(G)(S′′ → R′′) = S′′ ⊗S′ D(G)(S′ → R′).
Now let (S, J, ϕ) be a frame for R. We put M(G) = D(G)(S → R). By [BBM82],

we have a canonical isomorphism of S-modules M(G) = D(G0)(S → R/p). Since the
crystal D(G) commute with base change, we deduce from the morphism of divided power
surjections

S
ϕ //

��

S

��
R/p

FrobR/p // R/p

a canonical isomorphism

D(G
(p)
0 )(S → R/p) ' S ⊗ϕ,S D(G0)(S → R/p) = ϕ∗M(G).

Therefore, the Frobenius homomorphism FG0 : G0 → G
(p)
0 and the Verschiebung VG0 :

G(p) → G0 induce respectively homomorphisms of S-modules

1⊗ ϕ : ϕ∗M(G)→M(G) and ψ :M(G)→ ϕ∗M(G).

We have (1⊗ϕ) ◦ψ = p since VG0 ◦FG0 = pG0 . Note that R⊗SM(G) = D(G)(R
IdR−−→ R)

by the base change property of the crystal D(G). Let ωG denote the module of invariant
differentials of G relative to R, and Lie(G∨) be the Lie algebra of the dual of G. By
[BBM82], we have a Hodge filtration

0→ ωG → R⊗SM(G)→ Lie(G∨)→ 0.
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We define Fil1M(G) to be the inverse image of ωG in M(G). Then we claim that
ϕ(Fil1M(G)) ⊂ pM(G) and M(G) is generated by ϕ(M(G)) and ϕ/p(Fil1M(G)). In-
deed, if R is an algebraically closed field k of characteristic p and S = W (k), this is well
known in the classical Dieudonné theory. Since the formation of the crystal M(G) com-
mutes with arbitrary base change, the general case of claim follows from this special case.
Therefore, we get a Dieudonné S-window (M(G),Fil1M(G), ϕ). Since ψ is induced by
VG0 , it is easy to see that (M(G),Fil1M(G), ϕ) is an S-window, i.e. the extra nilpotent
condition on ψ is verified, if and only if G has no multiplicative part.

Theorem B.3 ([Zi01], Thm. 4). Assume R is excellent. Then the contravariant functor

G 7→ (M(G),Fil1M(G), ϕ)

constructed above induces an anti-equivalence between the category of p-divisible groups
over R without multiplicative part and the category of S-windows over R.

We point out that, since we have used contravariant Dieudonné theory, the p-divisible
group corresponding to an S-window (M,Fil1M, ϕ) in our sense is the dual of the p-
divisible group associated with (M,Fil1M, ϕ) in the sense of Zink.

B.4. Let k be an algebraically closed field of characteristic p, and W = W (k). Let g ≥ 2
be an integer, Fpg be the finite field with pg elements, Zpg = W (Fpg). We identify the set
of embeddings of Zpg into W (k) with Z/gZ. Let R be a W -algebra. We say a p-divisible
group G over R has formal real multiplication (or simply RM) by Zpg if G has dimension
g and height 2g, and is equipped with action of Zpg such that Lie(G) is a locally free
R⊗Zp Zpg -module of rank 1.

Let (S, J, ϕ) be a frame for R, and G be a p-divisible group with RM by Zpg over
R. The action of Zpg on G induces a natural action of Zpg on the Dieudonné S-window
(M(G),Fil1M(G), ϕ) such that M(G) becomes a locally free S ⊗Zp Zpg -module of rank
2. Hence, we have canonical decompositions

M(G) =
⊕

i∈Z/gZ

M(G)i and Fil1M(G) =
⊕

i∈Z/gZ

Fil1M(G)i,

and ϕ(M(G)i−1) ⊂M(G)i. Note that we have canonical isomorphisms of free R⊗Zp Zpg -
modules of rank 1:

ωG =
⊕

i∈Z/gZ

ωG,i
∼−→ Fil1M(G)/JM(G) =

⊕
i∈Z/gZ

Fil1M(G)i/JM(G)i,(B.4.1)

Lie(G∨) =
⊕

i∈Z/gZ

Lie(G∨)i
∼−→M(G)/Fil1M(G) =

⊕
i∈Z/gZ

M(G)i/Fil1M(G)i.(B.4.2)
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Assume now R has characteristic p. Then for each i ∈ Z/gZ, we have a commutative
diagram of ϕ-semi-linear maps

(B.4.3) M(G)i−1
ϕ //

��

M(G)i

��
Lie(G∨)i−1

HWG,i // Lie(G∨)i,

where the vertical arrows are natural quotient maps and HWG,i is the i-th component of
the usual Hasse-Witt map on Lie(G∨). If fi is a basis of Lie(G∨)i over R for i ∈ Z/gZ,
there exists ti ∈ R such that HWG,i(fi−1) = tifi. We call ti the i-th partial Hasse invariant
of G (for the basis (fi)1≤i≤g).

B.5. Let G0 be a superspecial p-divisible group with RM by Zpg over k. That is, G0

is isomorphic to the p-divisible group of a product of supersingular elliptic curves of k.
Then by [GO00, 5.5.4], such a G0 is unique up to isomorphism, and the (contravariant)
Dieudonné module M(G0) = ⊕i∈Z/gZM(G0)i of G0 can be explicitly described as follows:
Each M(G0)i is a free W -module of rank 2 with basis ei, fi, and the Frobenius is given by

ϕ(ei−1, fi−1) = (ei, fi)

[
0 1
p 0

]
.

In particular, in the Hodge filtration 0 → ωG0 → M(G0) ⊗W k → Lie(G∨0 ) → 0, ωG0 is
generated by the image of (ei)i∈Z/gZ, and Lie(G∨0 ) is generated by the image of (fi)i∈Z/gZ.

By [GO00, 2.3.4], the formal scheme which classifies that the deformations of G0 as
p-divisible groups with RM by Zpg is given by Spf(Runiv) with Runiv = W [[T1, · · · , Tg]].
We equip Runiv with an endomorphism ϕ which acts on W via Frobenius and sends Ti to
T pi . Then (Runiv, 0, ϕ) becomes a frame of Runiv itself. Let (Muniv,Fil1Muniv, ϕ) be the
Dieudonné Runiv-window of the universal deformation Guniv over Runiv. By [loc. cit.] and
the relation between displays and Dieudonné windows, the universal Runiv-window has the
following description: In the canonical decomposition

Muniv =
⊕

i∈Z/gZ

Muniv
i ,

each Muniv
i is a free Runiv-module of rank 2 with basis ei, fi, and we have Fil1Muniv

i =
Runiv · ei. The Frobenius map onMuniv is given by

(B.5.1) ϕ(ei−1, fi−1) = (ei, fi)

[
0 1
p Ti

]
,

and the morphism ψ :Muniv → ϕ∗(Muniv) is thus given by

(B.5.2) ψ(ei, fi) = (ϕ∗ei−1, ϕ
∗fi−1)

[
−Ti 1
p 0

]
.

Note that the image of fi in Lie(Guniv)∨i forms a basis. Therefore by (B.4.3), the i-th
partial Hasse invariant of Guniv ⊗Runiv (Runiv/p) is just the image of Ti in Runiv/p.
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Remark B.6. Let G̃0 be the base change of Guniv to W via the map Ti 7→ 0. The p-
divisible group G̃0 has many interesting properties, and can be considered as the canonical
lifting of G0 to W . For example, if g is odd, then G̃0 has an action by Zp2g extending the
RM by Zpg . If g is even, then G̃0 has a decomposition G̃0 = H+ ×Spec(W ) H−, where H+

and H− are p-divisible groups of dimension g/2 and height g. Moreover, there are natural
actions of Zpg on H+ and H− satisfying the properties of “formal complex multiplication”
by Zpg .

B.7. Assume that g is even. For any integer m,n ≥ 1, let Rm,n = W{t1, · · · , tg} be
the p-adic completion of the polynomial ring W [t1, · · · , tg], ιm,n : Runiv → Rm,n be the
homomorphism of W -algebras given by

Ti 7→

{
pmti for i odd,
pnti for i even.

Similarly to Runiv, we equip Rm,n with the endomorphism ϕ that acts as Frobenius on W
and ϕ(ti) = tpi . This makes (Rm,n, 0, ϕ) a frame forRm,n itself. LetGm,n be the base change
of Guniv to Rm,n. Since ιm,n is compatible with Frobenius, the Dieudonné Rm,n-window
(Mm,n,Fil1Mm,n, ϕm,n) associated toGm,n is just the base change of (Muniv,Fil1Muniv, ϕ)
via ιm,n. For i ∈ Z/gZ, let ei, fi denote the image of ei, fi in Mm,n by an obvious abuse
of notation. We have Fil1Mm,n = ⊕i∈Z/gZRm,nei and

ϕm,n(e2i−1, f2i−1) = (e2i, f2i)

[
0 1
p pnt2i

]
, ϕm,n(e2i, f2i) = (e2i+1, f2i+1)

[
0 1
p pmt2i+1

]
.

The following proposition can be considered as a relative version of 3.20(a) in a more
general setting.

Proposition B.8. (a) There exists two finite and flat closed group schemes Hm,n
+ ⊂

Gm,n[pm] and Hm,n
− ⊂ Gm,n[pn] stable under the action of Zpg , and such that we have

(B.8.1) ωHm,n
+,i
'

{
0 for i odd
Rm,n/p

mRm,n for i even,
ωHm,n
−,i
'

{
Rm,n/p

nRm,n for i odd
0 for i even.

(b) Let (Lm,n+ ,Fil1Lm,n+ , ϕ+) (resp. (Lm,n− ,Fil1Lm,n− , ϕ−) ) be the Dieudonné Rm,n-
window over Rm,n associated with the quotient Gm,n/Hm,n

+ (resp. Gm,n/Hm,n
− ). Then

they are actually Rm,n-windows, and Lm,n+ (resp. Lm,n− ) is naturally identified with the free
Rm,n-submodule ofMm,n genearated by (e2i−1, p

mf2i−1, p
me2i, f2i) (resp. by (pne2i−1, f2i−1, e2i, p

nf2i))
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for 1 ≤ i ≤ g/2 with the induced Fil1 and ϕ-structures. In particular, we have

ϕ+(e2i−1, p
mf2i−1) = (pme2i, f2i)

[
0 1
p pm+nt2i

]
,

ϕ+(pme2i, f2i) = (e2i+1, p
mf2i+1)

[
0 1
p t2i+1

]
;

ϕ−(pne2i−1, f2i−1) = (e2i, p
nf2i)

[
0 1
p t2i

]
,

ϕ−(e2i, p
nf2i) = (pne2i+1, f2i+1)

[
0 1
p pm+nt2i+1

]
.

Proof. Let Lm,n+ denote the submodule ofMm,n described in (b). We have

Fil1Lm,n+ = Fil1Mm,n ∩ Lm,n+ =
⊕

1≤i≤g/2

(
Rm,n · e2i−1 ⊕Rm,n · pme2i

)
.

From the formulas of ϕ+ on Lm,n+ given above, it is easy to see that (Lm,n+ ,Fil1Lm,n+ , ϕ+)
is indeed a Rm,n-window. We have to prove that it is indeed a Rm,n-window. From the
formulas of ϕ+, it is easy to see that the morphism ψ+ : Lm,n+ → ϕ∗Lm,n+ is given by

ψ+(pme2i, f2i) = (ϕ∗e2i−1, ϕ
∗pmf2i−1)

[
−pm+nt2i 1

p 0

]
,

ψ+(e2i+1, p
mf2i+1) = (ϕ∗e2i, ϕ

∗pmf2i)

[
−t2i+1 1
p 0

]
.

Now it is direct to check that the image of the morphism

ϕ(2g−1)∗(ψ+) ◦ · · · ◦ ϕ∗(ψ+) ◦ ψ+ : Lm,n+ −→ ϕ2g∗Lm,n+

is indeed contained in pϕ2g∗Lm,n+ . This proves (Lm,n+ ,Fil1Lm,n+ , ϕ+) is indeed a Rm,n-
window, and it thus corresponds to a quotient of Gm,n by a certain kernel Hm,n

+ by Zink’s
theorem B.3. Similar arguments apply to (Lm,n− ,Fil1Lm,n− , ϕ−) and Hm,n

− . This proves
statement (b). By our construction, the p-divisible group Gm,n/Hm,n

+ is clearly equipped
with RM by Zpg . Therefore, the finite flat closed subgroup scheme Hm,n

+ of Gm,n is stable
under Zpg . From the exact sequence of groups over Rm,n

0→ Hm,n
+ → Gm,n → Gm,n/Hm,n

+ → 0,

we get an exact sequence of Rm,n ⊗Zp Zpg -modules

0→ ωGm,n/Hm,n
+
→ ωGm,n → ωHm,n

+
→ 0.

In view of the relations (B.4.1), we have a canonical isomorphism of Rm,n⊗Zp Zpg -modules

ωHm,n
+
' Fil1Mm,n/Fil1Lm,n+ =

⊕
1≤i≤g/2

Rm,n/p
m · e2i,

from which (B.8.1) for ωHm,n
+

results immediately. Similarly arguments work for ωHm,n
−

. �
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Remark B.9. (a) Let Spf(Runiv)rig and Spf(Rm,n)rig be the associated rigid generic fibers
of the corresponding formal schemes [Be96, 0.2]. Then Spf(Runiv)rig is isomorphic to the
open unit polydisc D of dimension g with parameters T1, · · · , Tg. Via the morphism of
rigid spaces induced by ιn, Spf(Rm,n)rig is identified with the closed sub-disc

D(m,n) = {x ∈ D | vp(T2i−1(x)) ≥ m, vp(T2i(x)) ≥ n for 1 ≤ i ≤ g/2}.

The associated rigid p-divisible group Gm,nrig is just the restriction of Guniv
rig to D(m,n).

(b) Let us relate the results of the Proposition above to the results in Section 3 proven
via Breuil-Kisin modules. Let K be a finite extension of W [1/p] with ring of integers
OK . Let x be a K-valued rigid point of D(1, 1), i.e. x comes from a morphism of formal
schemes Spf(OK)→ Spf(Runiv) factoring through Spf(R1,1). We denote by Gx, H+,x, H−,x
respectively the pullbacks of G1,1, H1,1

+ and H1,1
− over OK via x. We have

degi(H+,x) =

{
0 if i is odd,
1 if i is even;

degi(H−,x) =

{
1 if i is odd,
0 if i is even.

On the other hand, Gx[p] is clearly a truncated Barsotti-Tate group of level 1 with RM by
Zpg over OK defined in 3.10 with partial Hodge heights wi(G) = 1 for all i ∈ Z/gZ. Then
the closed subgroup schemes H+,x, H−,x are just the group schemes H+ and H− obtained
by applying Cor. 3.18 to Gx[p]. Now Prop. B.8(b) allows us to compute the partial Hasse
invariants of the quotients (Gx/H+,x)⊗OK OK/p and (Gx/H−,x)⊗OK OK/p.
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