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CLASSICALITY OF OVERCONVERGENT HILBERT EIGENFORMS:
CASE OF QUADRATIC RESIDUE DEGREES

YICHAO TIAN

ABSTRACT. Let F be a real quadratic field, p be a rational prime inert in F', and N > 4
be an integer coprime to p. Consider an overconvergent p-adic Hilbert eigenform f for F’
of weight (k1,k2) € Z* and level T'go(N). We prove that if the slope of f is strictly less
than min{k1, k2} — 2, then f is a classical Hilbert modular form of level I'oo(N) N To(p).

1. INTRODUCTION

1.1. We fix a prime number p > 0. A famous theorem of Coleman says that an over-
convergent p-adic (elliptic) modular eigenform of small slope is actually classical. More
precisely, let N > 5 be an integer coprime to p, and X;(N)®" be the rigid analytification
of the usual modular curve of level I'{ (V) over Q,,. We denote by X; (V)22 the ordinary
locus of X1 (N)*. For p > 5, X{(IN)2, is simply the locus where E,_; (Eisenstein series
of weight p — 1), the standard lift of the Hasse invariant, has non-zero reduction modulo
p. For any integer k € Z, Katz |[KaT73| defined the space MJ,L(Fl(N)) of overconvergent

p-adic modular forms of weight k. An element in ML (T'1(N)) is a section of the modular
line bundle w* defined over a strict neighborhood of Xi(N)2, in X;(N)®. Moreover,

ord

Katz also defined a completely continuous operator U, acting on MT(T';(N)). There is
a natural injection from My (I'1(N) NTo(p)) to ML(IH(N)), where My (I'1(N) N To(p)) is
the space of classical modular forms of weight k& and level I'y (V) N Iy(p), that is, sec-
tions of w* over the modular curve X (I';(N) NTo(p)). In [Col96], Coleman proved that if
fe ML (T'1(N)) is a Up-eigenvector with eigenvalue a, and v,(a,) < k— 1, then f actually
lies in Mg (I'1(N) N Ty(p)). Coleman’s original proof for this deep result was achieved by
an ingenious dimension counting argument. Later on, Buzzard [Bu03| and Kassaei [Ks06]
reproved Coleman’s theorem by an elegant analytic continuation process. The basic idea
of Buzzard-Kassaei was to extend successively the section f by the functional equation
f= éUp(f) to the entire rigid analytic space X(I'1(N) N Ty(p))**. Actually, Buzzard
proved that f can be extended to the union of ordinary locus and the area with supersin-
gular reduction of X (I';(N) NTy(p))*". Then Kassaei constructed another form ¢ on the
complement to Buzzard’s area, and showed that f and g glue together to an analytic section
of w* over X(T'1(N)NTo(p))*. The rigid GAGA theorem [Ab11, 7.6.11] then implies that
this is indeed a genuine section of w* over the algebraic modular curve X (T'1(N) N To(p)).
In this process, the theory of canonical subgroups for elliptic curves developed in [KaT73]
due to Lubin and Katz plays a fundamental role.

1Partially supported by a grant DMS-0635607 from the National Science Foundation.
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There have been many efforts in generalizing the classical theory on overconvergent
p-adic modular forms to other situations. First of all, to generalize overconvergent p-
modular forms and the U,-operator, we need to construct canonical subgroups in more
general context. This has been done by many authors. For instance, [KLO05|, [GKO09]
consider the Hilbert case, and [AMO04], [AGO7] treat the general case for abelian varieties,
and finally in |Ti10], [Fa09], [Ra09| and |[Hal0] the canonical subgroups are constructed for
general p-divisible groups. Using the canonical subgroups, overconvergent p-adic modular
forms and the Up-operators can be constructed similarly in various settings. However,
the generalization of Coleman’s classicality criterion need more hard work. As far as I
know, this criterion has been generalized in the following cases. In [Col97al, Coleman
himself generalized his results to modular forms of higher level at p. Kassaei considered in
[Ks09] the case of modular forms defined over various Shimura curves. In [Sal0]|, Sasaki
generalized it to the case of Hilbert eigenforms when p totally splits in the totally real
field defining the Hilbert-Blumenthal modular variety. Finally, Pilloni proved in [Pi09] the
classicality criterion for overconvergent Siegel modular forms of genus 2. In this paper, we
will follow the idea of Buzzard-Kassaei to study overconvergent Hilbert modular forms in
the quadratic inert case.

1.2. To simplify the notation, let’s describe our result in a special but essential case. Let
F be a real quadratic number field in which p is inert, and O be its ring of integers. We
put kK ~ Fp2, W = OF, and Q, = W[1/p]. We denote by B = {1, B2} the two embeddings
of F into Q. Let N > 4 be an integer coprime to p. We consider the Hilbert-Blumenthal
modular variety X over Spec(WW) that classifies prime-to-p polarized abelian schemes A
with real multiplication by Of of level I'gg(N). Let Y be the moduli space that classifies the
same data and together with an (Op/p)-cyclic subgroup of A[p|. For each pair of integers

k= (k1, ko) € ZB, we have the modular line bundle w”* over X and Y (See 2.3 for its precise

definition). For each finite extension L of Qs, we put Mz(Too(N)NLo(p), L) = HO(Yz, wk),
and call it the space of (geometric) Hilbert modular forms of level I'go(N) N T'o(p) and
weight k with coefficients in L. This is a finite dimensional vector space over L by classical
Koecher principle, and the theory of arithmetic compactifications of Hilbert-Blumenthal
modular varieties [Rap78, Ch90, DP94| implies that it actually descends to a finite flat
Z[1/N]-module.

Let X and %) be respectively the completion of X and Y along their special fibers, and
Xrig and 2yig be their rigid analytic generic fibers & la Raynaud [Ab11, Ch. 4]. We still

have a natural forgetful map 7 : 9y — Xiig. For each ke 7B, we denote still by gE

the rigidification of the line bundle wk. Let .’{?irgd be the ordinary locus of X, i.e. the
locus where the universal rigid Hilbert-Blumenthal abelian variety 21z over X,iz has good
ordinary reduction. Then the multiplicative part of the universal finite flat group scheme

Arig [p] defines a section s° : %firgd — Drig of the projection 7 over .’{?irgd. We denote by

@?fgd the image of s°, so that W’@?irgd : firgd — %firgd is an isomorphism of quasi-compact
rigid analytic spaces. For a finite extension L of Q, Kisin and Lai [KLO05| defined an
overconvergent Hilbert modular form of level I'go(N) and weight k with coefficients in L
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to be a section of g’; over .’{‘r)irgd that extends to a strict neighborhood of %?fg - We denote
by M;%(FOO(N ), L) the space of such forms. This is a direct limit of infinite dimensional
Banach spaces over L. Moreover, the theory of canonical subgroups for Hilbert modular
varieties allows them to define a completely continuous Up-operator on M%(FOO(N ),L).
Note that a relatively weak formulation of the existence of canonical subgroups says that
the section s° : %f{; — 2)?{; extends to a strict neighborhood of %f{g, or equivalently the
isomorphism 7T|@;)irgd extends to a strict neighborhood. Therefore, there exists a natural
injection
Mz (Foo(N) NTo(p), L) — M%(FOO(N)a L).

We say an element f in M}%(FOO(N ), L) is classical if it lies in the image of this injection.
The main result of this paper is the following

Theorem 1.3. Let f € ME(FOO(N), L) be a Uy,-eigenvector with eigenvalue a,. If vy(ap) <
min{ky, ko} — 2, then f is classical.

Actually, we prove our main Theorem in a slightly more general setting 2.17. Note that
our results imply that, in the quadratic inert case, the classical points are Zariski dense
in the eigencurve for overconvergent Hilbert modular forms of level T'go(N) constructed in
[KLO05] (See Theorem 2.21).

Let’s indicate the ideas of the proof. First, by rigid GAGA and a rigid version of Koecher
principle (Prop. 2.7), we just need to extend f analytically to the entire rigid space Qyig.
To achieve this, the key point is to understand the dynamics of the Hecke correspondence
Up on QYig (2.15). Three ingredients from the work of Goren and Kassaei [GK09| will be
important for us. The first one is the stratification on the special fiber Y, defined by them:;
the second is their valuation on )i, via local parameters; and the third one is the so-called
“Key Lemma” [GK09, 2.8.1], which relates the partial Hasse invariants with the certain
local parameters of Y,. In this paper, we will interpret their valuation on 2),iz in terms of
partial degrees (cf. 4.7, 4.8). They are natural refinements in the real multiplication case
of the usual degree function, which has been introduced by Fargues [Fal0] and applied by
Pilloni [Pi09] to the analytic continuation of p-adic Siegel modular forms. Actually, our
work originates from an effort to understand the geometric meaning of Goren-Kassaei’s
valuation. Compared with the totally split case, our difficulty comes from the fact that
the p-divisible group associated with a Hilbert-Blumenthal abelian variety (HBAV) with
RM by Op is a genuine p-divisible group of dimension 2, so its group law can not be
explicitly described by one-variable power series. We overcome this by using Breuil-Kisin
modules to compute the partial degrees of the p-torsion of a HBAV. This approach is
motivated by the recent work of Hattori [Hal0|. These local computations via Breuil-Kisin
modules combined with Goren-Kassaei’s “Key Lemma” will give us enough information
to understand the dynamics of the Hecke correspondence U, except the case mentioned
in Prop. 4.16 and 5.11. In this exceptional case, we have to study in detail the local
moduli of deformations of a superspecial HBAV. This is achieved in Appendix B by using
Zink’s theory on Dieudonné windows [Zi01]. Finally, we can prove that the form f extends
to an admissible open subset of ).z that contains the tube over the complement to the
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codimension 2 stratum in Goren-Kassaei’s stratification on Y, ( Prop. 5.14). By a useful
trick invented by Pilloni in [Pi09, §7], this allows us to conclude that f extends indeed to
the entire 9yiz (Prop. 4.15).

1.4. This paper is organized as follows. In Section 2, we review the facts that we need
on the Hilbert-Blumenthal modular varieties and state the main theorem 2.17 and its
consequence on the Zariski density of classical points in the eigencurves for overconvergent
Hilbert modular forms. In Section 3, we perform the computations mentioned above on
the (Op/p)-cyclic subgroups of a HBAV over a complete discrete valuation ring via Breuil-
Kisin modules. In particular, we give an alternative proof (Thm. 3.14) for the existence of
canonical subgroups in the Hilbert case proven in [GK09]. Section 4 is mainly dedicated
to the review on Goren-Kassaei’s work, and we provide also another proof of their “Key
Lemma” using Dieudonné theory (Prop. 4.5). Section 5 is the heart of this work, and it
contains a complete proof of Theorem 1.3. Finally, we prove our general main theorem
2.17 in Section 6. The proof of the general case is a combination of the split case treated
by Sasaki [Sal0O] and the case in Section 5. We have two appendices. In the first one,
we gather some general results on the extension and gluing of sections in rigid geometry.
In Appendix B, we study the local deformation space of a superspecial p-divisible group
with formal real multiplication by Zps, where g > 1 is an integer and Z,s is the ring of
integers of the unramified extension of Q, of degree g. As a by-product, we see that the
local moduli admits some canonical choices of local parameters T1,---, T, such that the
p-divisible groups corresponding to 7T; = 0 admits “formal complex multiplication” by Z,2,
or Zys & Zys according to the parity of g (cf. Remark B.6). These p-divisible groups
(or those isogenous to them) seem to deserve more study, and should be considered as
the canonical lifting (or quasi-canonical lifting) of the superspecial p-divisible group in the
formal real multiplication case. We hope that we can return to the problem in the future.

1.5. After I finished a preliminary version of this paper and distributed it among a small
circle, Vincent Pilloni showed me a draft of his joint work [PS11b] with Benoit Stroh, where
similar results were obtained independently. The influence of the works [Ks06|, [GK09]
and [Pi09] on this work will be obvious for the reader. I express my hearty gratitude to
their authors. I am especially grateful to Christophe Breuil for his careful reading of a
preliminary version of this paper, and for his valuable suggestions. I also would like to
thank Ahmed Abbes, Liang Xiao, Kaiwen Lan and Tong Liu for helpful discussions during
the preparation of this paper.

Finally, I would like to thank the anonymous referee who pointed out two errors of
earlier version of this paper.

1.6. Notation. Let F' be a totally real number field with ¢ = [F' : Q] > 1, Op be its
ring of integers, 0p the different of F. Let p be a fixed prime number unramified in F.
For a prime ideal p of Of, above p, we put x(p) = Or/p and denote by |x(p)| = p’» the
cardinality of x(p). Let N > 4 be a fixed integer coprime to p. Let k be a finite subfield
of F,, containing all x(p) and a primitive N-th root of unity, W = W (k) be the ring of
Witt vectors with coefficients in k£ and Q, = W[1/p]. Let B be the set of embeddings of
F into Q. For each prime ideal p of O dividing p, let B, C B be the subset consisting
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of embeddings 3 such that f~!1(pW) = p. So we have B = ]_[p‘p B,. If o denotes the
Frobenius on Q, then 8+ o o 3 defines a natural cyclic action of Frobenius on each By.
In general, for a finite set I, we denote by |I| its cardinality.
Let C, be the completion of an algebraic closure of Q. All the finite extensions of Q
are understood to be subfields of C,,. We denote by v, the p-adic valuation on C,, and by
|- |p : C; — Rxo the non-archimedean absolute value |z, = pur(®),

2. HILBERT MODULAR VARIETIES, HILBERT MODULAR FORMS AND THE STATEMENT
OF THE MAIN THEOREM

2.1. Let S be a scheme. A Hilbert-Blumenthal abelian variety by Op (or a HBAV for
short) over S is an abelian scheme A over S equipped with an embedding of rings ¢ :
OF — Endg(A) such that Lie(A) is an Og ® Op-module locally free of rank 1. If A is a
HBAV over S, the dual of A, denoted by AV, has a canonical structure of HBAV over S. We
denote by P(A) the fppf-sheaf over S of symmetric Or-linear homomorphisms of abelian
schemes A — AV, and by P(A)T C P(A) the cone consisting of symmetric polarizations.

We fix a positive integer N > 4 coprime to p. Let ¢ be a fractional ideal of F' prime to
p, and ¢ C ¢ be the cone of totally positive elements. Consider the functor

Z.: ALGy — SETS

which associates to each W-algebra R the set of isomorphism classes of triples (A, \, ¥n)
where:

e Ais a HBAV over Spec(R);
e )\ is a c¢-polarization of A, i.e., an Op-linear homomorphism A : ¢ — P(A) sending
¢t to P(A)T such that the induced map of fppf-sheaves on Spec(R)

A®o, ¢ 225 A @0, P(A) — A: a®@z = a® Az) = Mz)(a)

is an isomorphism.
e ¢y is an embedding of abelian fppf-sheaves of Op-modules uy ® 0131 — A[N].

It is well known that this functor is representable by a smooth and quasi-projective scheme
X, over Spec(W) of relative dimension g, which we usually call the c¢-Hilbert modular
variety over W of level I'go(N) [GoO1, Ch. 4, §3.1]. By a result of Ribet, the fibers of X
are geometrically irreducible [Go01, Ch. 3 §6.3].

2.2. Let R be a W-algebra, and (A, \,%¥n) be an object in X(R). An isotropic (Op/p)-
cyclic subgroup H of A is a closed subgroup scheme H C A[p] which is stable under Op,
free of rank 1 over Op/p as abelian fppf-sheaf over Spec(R), and isotropic under the y-Weil
pairing
Ix~y v
Alp] x Alp] — Alp] x A%[p] = pp

induced by a v € P(A)T of degree prime to p. So when A is defined over a perfect field
k of characteristic p, a subgroup H C A[p] is (Op/p)-cyclic if and only if its Dieudonné
module is a free (k ® Op)-module of rank 1. Let G, be the functor which associates to each
W-algebra R the set of isomorphism classes of 4-tuples (A4, \, ¥, H), where (A, \,¥n)
is an object in Z#(R), and H C A[p] is an isotropic (O /p)-cyclic subgroup of A. The
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functor G, is representable by a scheme Y; over Spec(W). We call Y the ¢-Hilbert modular
variety of level I'go(IN) NTy(p). The natural forgetful map (A, A, v, H) — (A, A, ¢) defines
a morphism of W-schemes 7 : Y; — X, which is finite étale of degree Hp‘p(pfp + 1) on the
generic fibers over Q.

Note that, for an object (A, Aa,94 N, H) in Y:(R), the quotient B = A/H is naturally
equipped with a structure of HBAV. Let f : A — B be the natural isogeny and f!: B — A
be the unique isogeny such that fof! = p-1g and flof =p-14. If \: A®p, ¢ — AV is the
isomorphism given by A4 : ¢ — P(A), we define a c-polarization on B by Ap = %(ft)* oAg :
¢ = P(A) — P(B), where (f*)* : P(A) — P(B) is given by ¢ — ()" ogo f'. Finally, since
H has order prime to N, the isogeny f : A — B induces an isomorphism f : A[N] = B[N].

We define ¢p v as puy @ 05" Pan, A[N] = B[N]. We get an object (B, Ap,¥p ) in

X(R).
Fix a finite set {c1,---,¢,+} of fractional ideals of F' prime to p, which form a set of
representatives for the narrow class group CI;C of F. We put

ht

ht
X=][X, and Y=]]¥.
i=1 i=1
We call X (resp. Y') the Hilbert modular varities of level T'oo(IN) (resp. of level I'gp(IN) N
To(p)). In the sequel, an object (A/R, A\, ¢¥n, H) in Y (R) will be usually omitted as (A4, H),
if there is no confusions on the polarization A and the level structure ¥y .

2.3. Let T be the algebraic group (Resp, /zGm) ®z W over W, and X(T') be the group
of characters of T'. For any € B = Emdq(F, Qx), let xg € X(T') be the character

T(R)=(R® Op)* - R* = G, (R) given by r®aw rB(a).
Then (x3)sep form a basis of X(T') = ZB over Z. For an element (kg)sep = > pen kB €

Z® . we denote by Xi = HBeJB X];ﬂ the corresponding character of T'.
Let A — X be the universal HBAV over X, and w = e*Q}MX where e : X — A is the
unit section of A. This is a locally free Ox ® Op-module of rank 1, and we have

w= @ng

BeB

where wg s the submodule of WA X where OF acts via xg. For any character k= (kg)peB €
Z®, we define a line bundle

-

Rk
k _ wore

“ =Y
BeEB

By abuse of notation, we denote still by g’; its pull-backs over Y via 7*.

Definition 2.4. For a W-algebra Ry, we call the elements of H*(X ® RO,QE) (resp.

H(Y ® Ry, w")) (geometric) Hilbert modular forms with coefficients in Ry of weight k =
> p ks - B and level 'og(IV) (resp. of level T'go(N) N 'o(p)) over Ro.
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We have the following modular interpretation of (geometric) Hilbert modular forms a la
Katz. For each Ryp-algebra R, we consider 5-tuples (4/R, A\, ¥, H,w), where (A/R, X\, ¥n, H)
is an element in Y (R) and w is a generator of w,,p = e*Q}q/R as an R® Op-module. Then
a Hilbert modular form f of level Tgo(N) N To(p) and weight & over Ry is equivalent to a
rule that assigns to each Rp-algebra R, each 5-tuple (A, A\, ¥y, H,w) as above, an element
f(A, H,w) € R satistying the following properties:

e f(AH,a w)=xz(a) ' f(A H, w) for a € (R® Op)*;
e if ¢ : R — R’ is a homomorphism of Ry-algebras and (A’, N, ¢y, H',w’) is the base
change to R’ of (A, \,¢¥n, H,w), then f(A", H' ') = ¢(f(A, H,w)).

We have a similar description of Hilbert modular forms of level T'go(N) over Ry, and we

leave the details to the reader.

2.5. We recall some well known facts on the toroidal compactifications of Hilbert modular
varieties (cf. [Rap78, Ch90, DT04]). Let (¢, ct) be a prime-to-p fractional ideal of Op. A
Coo(NN)-cusp C of X, is an equivalence class of the following data:

(1) Projective Op-modules a and b of rank 1.

(2) An isomorphism of Op-modules b=ta = c.

(3) An exact sequence of projective Op-modules

0—=ola! > A—b—0.
(4) An embedding of Op-modules:
icta R /Ne ot — A/NA.

Set Mc = ab = b%c, and My, = Homgz(M,Z) ~ a~'b~19.' = 9.'a %c. The positivity on
¢ and that on d9r induce natural positivities on M¢ and M. For each I'go(N)-cusp C, we
choose a rational polyhedral cone decomposition {o4 }acr, of MZJ+ U {0} that is invariant
under the natural action by U%’ ~ such that the quotient {oq}acr,/ Ul%’, y is finite. Here,
Urn C OF denotes the subgroup of units congruent to 1 modulo N.

We put R = W[¢* : £ € £ Mc¢], and Uo = Spec(W[¢® : £ € +Mc]). Let Uo < S,
be the embedding corresponding to o, and S’ga = Spf(Ry,) denote the completion of S,
along Z,, = S,, —Uc. Let Uc — S({on}) be the toric embedding given by {oq}acre:
and S({oa}) be the completion of S({o4}) along S({va}) — Uc. So S({oa}) has an affine
open covering by the S'Ua’s.

Put Spec(RY ) = Spec(Ro,) xs,, Uc with RS = R, [¢° : € € +M¢]. We have a
morphism of schemes over Spec(RJ, ):

L1 b= Gy ®@a 05t = Spec(R[X, : a € a)

given by X, (t(8)) = ¢*®. By Mumford’s construction, we have a semi-abelian scheme
Tate(a, b) = (G, @ a~105')/u(b) over Spec(R,,,) equipped with a natural action of Op,
which is a ¢-polarized abelian scheme over Spec(Rga), and degenerates into G, ® a_lbgl
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over Zy,. As explained in [KLO05, 1.6.1], the data ic : a='0x'/Na='o.! < A/NA de-
fines a go(IN)-level structure on Tate(a, b) over Spec(RY ). Thus, one gets a morphism
Spec(R,,) — X..

By “gluing” the local charts Sy, to X, along Sy, x5, Uc (cf. [Rap78] and [Ch90]), one
gets a toroidal compactification X, < X, and an isomorphism of formal schemes

X" =[] 8(0a})/ Uy,
C

where X" denotes the completion of X along the boundary X — X. There exists a semi-
abelian scheme A with real multiplication by Op over X, which extends the universal
HBAV A over X, and whose restriction to each S, is Tate(a,b). We put X = . X,
where (¢, ¢™) runs through a set of prime-to-p representatives of the strict ideal class group
of F. The (Ox ® OF)* torsor w extends to X; hence, for any ke Z® the line bundle w*
extends uniquely to a line bundle on X, which we still denote by w*.

We define a T'go(IN) N To(p)-cusp (C, H) on Y to be a Tyo(N)-cusp C = (a,b,A,ic)
as above together with an (Op/p)-cyclic subgroup H C A/pA. By choosing a rational
polyhedral cone decomposition for each cusp (C,H) compatible with that for X, one
generalizes the previous construction to get an toroidal compactification Y of Y in the same
manner as the Siegel case treated by Stroh [St10a]. Then Y is a proper smooth scheme
over W, which contains Y as an open dense subscheme. We have a similar description
of Y" in terms of local charts. The natural projection ¥ — X extends to a morphism

Y = X.

2.6. Let X and Q) be the respectively the formal completions of X and Y along their special
fibers. The formal scheme X represents the functor that attaches, to each admissible p-adic
formal scheme over Spf(1/), the set of polarized HBAV with a I'go(N)-level structure; and
we have a similar interpretation for ). Let X,i; and iz be the associated rigid analytic
spaces in the sense of Raynaud, X¢&' and Y§" be the analytic spaces over Q, associated
with the Q,-schemes Xq, and Yq,. Similarly, we have formal schemes X, ) for toroidal
compactifications, and their associated rigid analytic spaces ?rig, @rig. Then we have
natural inclusions of rigid analytic spaces

:{rig C Xall C ¥r1g7 @rig - Yaﬁ C grig'

For any extension of valuation fields L/Q,, we use a subscript L to denote the base change
of a rigid space over Q, to L, e.g. Xyig 1, XQ.. = X", ... For any weight k € ZB. by an

obvious abuse of notation, we still denote by g’; the modular line bundles of weight k on
the formal schemes X and ), and on rigid spaces Xyig, ,ig-
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Proposition 2.7 (Koecher’s Principle). For any finite extension L over Q, we have a
commutative diagram of canonical isomorphisms

o

HO(Y 1, wF) HO(Y, wF)

S |

HO(@rig,La@k) — HO(YEH’Qk) — Ho(fgrig,bﬂk)v

where the horizontal arrows are natural restriction map, and the vertical arrows are ana-
lytification maps.

Proof. The diagram above is clearly commutative. The top horizontal isomorphism is the
classical Koecher principle [Ch90, Thm. 4.3(i)]. The left vertical isomorphism follows from
rigid GAGA |Abll, 7.6.11]. The lower horizontal arrows are clearly injective. To finish
the proof, it suffices to show that the restriction map

—

HO (@rig,L? Qk) — HO (gjrig,La Qk)

is an isomorphism. Since both W-formal schemes 2) and 2 are admissible, we have
HO(@rigyL,gk) ~ %9, w") ®w L and similarly for H°(Q)yig 1, w"). We are thus reduced

to proving the similar statement for formal schemes %) and %), then further reduced to
showing that restriction map

HOY @w W/p™,wh) = HO(Y @w W/p",wF)

is an isomorphism for all n > 1. By the construction of Y, it suffices to prove that, for

every f € HO(Y ®@w W/p",w"), the g-expansion of f around each cusp has no poles. This
follows from the same computation as in [Ra74, 4.9]. O

2.8. Up-operators. Let {ci,--- ¢+ } be the fixed set of prime-to-p representatives of the
strict ideal class group ClJPC. Fix a prime p of F' above p. For each ¢;, there exists unique
1 <j < h* and a totally positive element & € F** such that ¢;p = (&)c;. Note that &
is only determined up to elements of U;E, the group of totally positive units in F'; if p is
not inert in F', then there is no canonical choice for such a &;. We fix such a &; for each
1<i<h™.

If A is a HBAV over a W-algebra R, we have a decomposition of finite and locally free
group schemes over R

Alp) = [ Alp,
plp
where p runs through all the prime ideals of O dividing p, and A[p] is the subgroup scheme
killed by all @ € p. Then A[p] is a group scheme of (Op/p)-vector spaces of dimension 2.
We fix a prime ideal p of Op above p, and put k(p) = Op/p. Let C(p) be the scheme over
Q. which represents the functor that attaches to a Q-algebra R the set of isomorphism
classes of 5-tuples (A, \, ¥, H, H') where:

o (A, N\, 9N, H) is an object in Y (R);
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e H' C Alp] is a closed (Op/p)-cyclic isotropic subgroup scheme such that H' N H =
{0}.

We will two maps

(2.8.1)

C(p)
N
Yaq. Yq.
given respectively as follows:

Wl(AaA,¢N7H7H,) = (A7>\a¢N>H)
mo(A N\, YN, H, H') = (B, \p, YN, (H + H)/H'),

where B is the quotient abelian scheme A/H’, ¢p n is the induced level structure on
B such that foyy = ¢pn if f: A — B denotes the canonical quotient isogeny. It
remains to describe the polarization A on B. Assume that A induces an isomorphism
N A®o, ¢ — AV for 1 <i < h't. Let & € FT be the element chosen above such that
¢ip = (&)e; for a unique 1 < j < hT. Let g: B — A®p, p~! be the canonical quotient
isogeny with kernel A[p]/H' C Bip|. It is easy to check that the quasi-isogeny

B ®o, ¢ 1(8;&>B®(9F cp &A@(’)F i i)AV i>BV®(9F p_l «— BY
is a genuine isogeny, and it gives the desired polarization Ag. Here, the last arrow BY —
BY ®0, p~! = BY/B"[p] is the canonical quotient with kernel B[p].
Since we are in characteristic 0, both 71 and my are finite étale of degree |k(p)|. Let
(A, N\, N, H, H') be the universal object on C(p), and ¢ : A — B = A/H’ be the canonical
isogeny. We have a commutative diagram

A A—2 B A
if fll ib l
Yq. < C(p) ==C(p) —> Yq,,

where both the left and right squares are cartesian. We have a natural morphism of
(Oc(p) ® OF)*-torsors:

* ~ ¢* ~ *
T (Wasvg,) = (5 cp) — fl*(QJlat cp)) & T (Wayvg, )
Q /C(p) /C(p) Q

which induces a natural morphism of line bundles

¢* s my(w*) — (W)
for any k € ZB. Tor a finite extension L/Q, we define the Uy-operator on the space

HO(YL,QE) as the composite
(2.8.2)

1

- T - * —- N7131" -
U, - HO(Yz,wF) 225 HO(C(p) 1, (W) L5 HOC(p) 1, 7 () 20 HO(Y7, W),



CLASSICALITY OF OVERCONVERGENT HILBERT EIGENFORMS 11

where “tr” is induced by the trace map w7} (gq) — wk. Explicitly, if L'/L is a finite
extension such that (A, H) = (A, \, ¥y, H) € Y(L), and w is a generator of w, = e*Qh/L,
as an (L' ® Op)-module, then we have

(2.83) (Up f)(A, H,w) = |ﬁ(1p)| SO FAJH(H + H)JH, p~ 6 (w)),
H'CA[p]
H'NH=0

where H' runs over all the Op-subgroups of A[p] of order |k(p)| with H N H' = 0, and
¢: A/H" — A is the canonical isogeny with kernel A[p]/H’.

Remark 2.9. As pointed by the referee of this paper, our definition of Up-operators has
the obviously disadvantage that it depends on the choices of the &;’s, which are only
canonically determined up to elements of U}, although it is harmless for the proof of our
main theorem. This ambiguity disappears when we restrict to so-called arithmetic Hilbert
modular forms, which are the forms giving rise to Galois representations.

Actually, there is a natural action of U}t on Y given by [¢] : (4, N\, ¢n,H) — (A,€-
A\, n, H). Let Upy C OF be the subgroup of units congruent to 1 modulo N. Then the
subgroup UI%’ y acts trivially, because the endomorphism v : A — A induces an isomor-
phism of tuples (A, \, ¢y, H) ~ (A, e\, ¢¥n, H) if € = u? with u € U}%’N. Thus the action
of U;E factors through the finite quotient U;E / U%’ ~- We have also an equivariant action of
U;E/UI%,N on w* so that we get a natural action of U;/U}%—”N on the H%(Yz,w"). The space
of arithmetic Hilbert modular forms is defined to be the invariant subspace of H O(YL,QE)
under Uljf / U%’ ~- Then for those forms, the ambiguity coming from the choices for ;’s will
disappear. For more discussion on this issue, see [KL05, 1.11] and [DT04].

2.10. Norms. We fix a weight k = > sep ks € Z® and a finite extension L/Q,. Let
L'/L be a finite extension, and Q = (A, H) € Drig(L’) be a rigid point, i.e. a morphism
of formal schemes @ : Spf(Or/) — 2 such that Q*(2, $H) = (A, H), where (2, $) is the
universal formal HBAV together with its universal isotropic (O /p)-cyclic subgroup over
2,ig. Let w be a generator of the free (O ® Op)-module w, = HY(A, QZ/OL/), and wpg
be its B-component for any 8 € B. Then

wE = QBeB Wgﬁ
is a basis of theﬁ Op-module Q*(gg). For any element f € Q*(g’;) ®o,, L', we write
f = f(A Hyw)w* with f(A, H,w) € L, and define
[fl = 1F (A H,w)lp.
For any admissible open subset V' C Q)yig,1,, and a section f € H oV, g’;), we define

|flv = sup [f(Q)] € RxoU {oc},
QE|V|

where |V| denotes the set of rigid points of V. If V is quasi-compact, then |f|y € Rsg
by the maximum modulus principle in rigid analysis, and H°(V, gk) is an L-Banach space
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with the norm |- |y. If V' is clear from the context, we usually omit the subscript V' from
the notation.

2.11. Hasse Invariants. Let R be a r-algebra, and A be a HBAV over R. Let wy p =

HO(A, 9}4/3)7 and Lie(A) be the Lie algebra of A; so we have Lie(A) = Hompg(w4 /g, R).

The Verschiebung homomorphism V4 : A® — A induces a map of R-modules HW :
Lie(A)P) — Lie(A), where Lie(A)®) is the base change of Lie(A) via the absolute Frobenius
endomorphism Fg: a— a? of R. Equivalently, we have a canonical map

h: WA/R —>gff/)R.

Note that wy,p is a locally free R ® Op-module of rank 1, and let w4/ = DpgepWa/r, 35
where w 4/ g 1s the direct summand on which OF acts via the character x3. Thus we have
a decomposition h = @gephg, where

(2.11.1) hg :wa/r p = QE};)R,J*%B'

The morphism hg thus defines a Hilbert modular form (with full level) of weight p-otof—p
over k, and we call it the B-partial Hasse invariant. The product E = [] BB hg is thus a
Hilbert modular form of weight (p—1) > e B over £, called simply the Hasse invariant. If
A is a HBAV over an algebraically closed field containing x, the Hasse invariant E(A) # 0 if
and only if A is ordinary in the usual sense, i.e., the finite group scheme A[p] is isomorphic
to pp x (Z/pZ)°.

2.12. Let X, Y, be the special fibers of X and Y, and Xf_,jrd be the locus where the Hasse
invariant A does not vanish, or equivalently the open subscheme of X, parametrizing
polarized ordinary HBAV. For a HBAV A over a k-algebra R, the kernel of the Frobenius
homomorphism of A is naturally an (Op/p)-cyclic isotropic subgroup of A[p]. In other
words, the kernel of Frobenius defines a section s : X, — Y} of the projection 7 : Y, — Xj.
We put Yo' = s(X°), In particular, Y,°¢ is isomorphic to X,

Let X°™ and 9°™ be respectively the open formal subschemes of ¥ and ) corresponding
to the open subsets X% C X,; and Y,2*4 C Y}, and %?{; and 2)?{; be the associated rigid
analytic generic fibers. Then f{ffgd and @?fgd are respectively quasi-compact admissible open
subsets of X,z and Qyig. Let (A, A\, ¥n) be the universal formal HBAV over X. Over the

ordinary locus ¥°', we have an extension of finite flat Op-group schemes
0 — A[p)* — Alp] — Ap)* -0,

where A[p]®* is étale of order p9, and 2A[p]* is of multiplicative type and lifts the kernel of
Frobenius of A @y k. The finite flat subgroup A[p]* is (Op/p)-cyclic and isotropic for the
Weil pairing induced by the polarization X, and it defines thus an section s° : X°'d — g)ord
lifting the section s : X2 — Y4 given by the kernel of Frobenius. In particular, the

natural projections 2°¢ — x¥°'4 and @firgd — %?{g are canonical isomorphisms.

Definition 2.13. Let L be a finite extension of Q.
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(i) For k € ZB, an element of HO(%ffgdL, w*) is called a p-adic Hilbert modular form of
level Dgo(N) and weight k with coefficients in L.

(i) We say an element f € HO(%SI’“;L, q) is overconvergent if f extends to a strict

neighborhood V' of .’{‘r)lrg‘i 1 in Xyg . We put

ML (Too(N), L) = thO(v,@

where V' runs over the strict neighborhoods of %?lrgd 7, in Xyjg 1, and we call it the space of

overconvergent p-adic Hilbert modular forms of level I'go(N) and weight k.

Remark 2.14. By the theory of canonical subgroups (cf. [KLO05, §3] and [GK09, Thm.
5.3.1]), the isomorphism of ordinary loci  : @flrgd — .’{?lrgd extends to a strict neighborhood
of i{)ord in Qyig. Therefore, the natural notion of (overconvergent) p-adic Hilbert modular

forms of level T'og(N) NTo(p) is the same as its counterpart of level 'og(N). Hence, we can
always consider an element f & M., (F 00(IN), L) as a section of w¥ over a strict neighborhood

ord
of erlgL

We refer the reader to [Be96| for the definition of strict neighborhood. Here we construct
an explicit fundamental system of strict neighborhoods of .’fﬁrd 1, in Xyig 1, by using the Hasse
invariant. Let E* be a lift in HO(x*, who— ni ), where T = (1,---,1) € ZPB, of ko-th power
of the Hasse invariant E¥ for some integer ky > 1. The existence of such a lift follows
from Koecher’s principle and the fact that gf is ample on the minimal compactification
X*. For any rational number 0 < r < 1, we denote by %ng 1 (r) the admissible open subset
of X.ig,;, where |]f5kvO] > rko_ Since the Hasse invariant is well-defined modulo p, the subset
X.ig,1(r) does not depend on the choice of the lift Eko if p~Vko < < 1. It is clear that
Xrig, (1) = %?lrgd - and the X, 1,()’s form a fundamental system of strict neighborhoods
of %OrgdL in Xyg 1. Hence, we have

ML(Too(N), L) = lim HO(XZ, (), w").

\r
r—1- e

Note that each H® (%?f; (1), wF ) is a Banach space over L, and the natural restriction map

Ao, (), ) — HOXG, (), o)

for 0 < r <1’ <1 is compact [KLO5, 2.4.1|. Therefore, ME(FOO(N), L) is (compact) direct
limit of Banach spaces over L.
By Remark 2.14, we have a natural injective map

HO(Yp,w") = H®(Yrig 1, w*) = ML(Too(N), L),

where we have used Prop. 2.7 for the first isomorphism. We denote its image by M,;(Poo (N)N
To(p), L), and call it the space of classical Hilbert modular forms.
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2.15. For a prime ideal p of O above p, let C(p)*" be the rigid analytification of the
scheme C(p) over Q, considered in 2.8. Then just as C(p), the rigid space C(p)®" represents
an analogous functor in the rigid analytic setting, and we still have a universal object
(A* A\, 9N, H, H') over C(p). We have analogous morphisms 71,72 : C(p)™ — Y§i. We
put
C(P)rig = Wfl(ﬁjrig) = 7T2_1(2)rig)'

The rigid analytic space C(p)rig is the locus of C(p)** where A*" has good reduction, it
classifies the objects (A, H, H'), where (A, H) is a rigid point of Qyie, and H' C Alp] is a
group scheme of (Op/p)-vector space of dimension 1 with H N H' = 0. We have a rigid
version of the Hecke correspondence:

gjrig QJrig
given by (A, H,H') = (A, H) and m(A,H,H') = (A/H',(H + H')/H'). We have also
a set theoretical Hecke correspondence between the rigid points of 9)ig
(2.15.1) Up : Diig — Drig
Q — ma(m Q).
Here, it is an obvious notation for convenience, because Uy is not really a morphism of

rigid analytic spaces. If U and V are admissible open subsets of 9),ig such that U,(U) C V,
ie. m H(U) C (V). A rigid version of the formula (2.8.3) defines the Up-operator

- o - * —- %tr —-
Up - HO(V,w) 2 HO(my (V) ) &5 HO(n = (U), i) T2 HO(U, ).

; rd
Lemma 2.16. The ordinary locus Yy

we have 71'2(71’1_1( flrgd)) C @?irgd'

is stable under the Hecke correspondence Uy, i.e.

Proof. Let L be a finite extension of Q,, (A, H) € @?fgd(L) be a rigid point, i.e. Ais a
HBAV over Oy, with ordinary reduction, and H C A[p] is the multiplicative part. We have
to show that (A/H',(H + H')/H’) still lies in 2)?{; for any isotropic (Op/p)-subgroup
H' C Alp] with H' N H = 0. Actually, such a H' is necessarily étale over Q. Therefore,
the isogeny A — A/H’ is étale, and the subgroup (H + H')/H' is the multiplicative part

of the HBAV A/H’. 0

This easy Lemma implies immediately that a Up-operator analogous to the classical case

can be defined on the space H( ?{; I g’z ) for any weight k € ZB and any finite extension L
of Q. In order to show that overconvergent p-adic Hilbert modular forms are stable under
U,, we need to extend canonically the section s° : f{‘r’fg — @‘r’fgd to a strict neighborhood
of :{I?fgd As already mentioned in Remark 2.14, this is the theory of canonical subgroups,
and it has been developed by many authors (cf. for instance [KL05] and [GK09]). The

main result of this paper is the following
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Theorem 2.17. Let f be an element ofME(FOO(N), L). Assume that for every prime ideal
p of Or above p, we have [k(p) : Fp] < 2 and Uy(f) = apf with vy(ay) < mingep, {kg} —
[k(p) : Fpl, then f is classical, i.e., f € Mp(Too(N) NTo(p), L).

Remark 2.18. It is reasonable to expect that the theorem is also true without the re-
striction [k(p) : F,] < 2. The main obstacle to this generalization is that the geometry
of Y in the higher dimensional case is too complicated, and we don’t well understand the
dynamics of the Up-operator.

In the reminder of this section, we suppose p > 3, and indicate some consequences of
our results on eigencurves for overconvergent Hilbert eigenforms.

2.19. We follow the treatments in [KLO05|. Let L be a finite extension of Qy, and R be a

2
Banach algebra over L with a submultiplicative norm |-|, and Z € R such that |Z| < p
We Aﬁff an integer kg > 0 coprime to p such that the ko-th power of the Hasse invariant lifts

to Eko € HO(X, gko(p_lﬁ). For k € Z®, Kisin and Lai defined in [KLO05, 4.2.3] the space
of overconvergent Hilbert modular forms over R of level I'go(IN) and weight k + Z to be
space

(2.19.1) ML (Too(N), R) = I%HO(V,J@QHR

where V' runs over a fundamental system of quasi-compact strict neighborhoods of %f{g
in X,ig. This space is equipped with an action of the Hecke operators T, (resp. U,) for

each ideal a C Op coprime to pN (resp. not coprime to p/N). We point out that Kisin-

—t
Lai’s definition of these operators involves the lift E¥o | and if Z = 0, we come back to
the definition (2.13). We denote by T£»+Z(/LN) the ring of endomorphisms generated by

these operators as a runs over the ideals of Op. Let f € M£+Z(F00(N)7R)- We say f
is an eigenform if it is non-zero and a simultaneous eigenvector of all the operators in

T£+Z(u ~). We say an eigenform f has finite slope if it is an eigenform and the eigenvalue

of Ugp) = [1), Up is non-zero, ie. U, (f) # 0.
According to [KLO05, 4.2.8], the space M;%JFZ(FQO(N ), R) interpolates the p-adic over-

convergent modular forms of integer weights in the following sense. Let L’'/L be a finite
extension, ¢ : R — L' be a homomorphism of L-algebras sending Z to (p — 1)kt for some
t € Z~g. Then for each Hecke operator T' = Ty or T' = U,, % induces a commutative
diagram

¥ -EF
ML (Too(N), R) = M{(Tog(N), ') ==~ Mjgﬂp_l)kotf(roo(zv), L)
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2.20. Let S be the set of infinity places and all the finite places of F' dividing pN, and
G s be the Galois group of the maximal algebraic extension of F'in C which is unramified
outside S. Let f be a Hilbert cusp eigenform of level T'go(IN) N To(p) and weight k e 7B,
where the integers kg’s are all > 2 and have the same parity. We may suppose that the
Fourier coefficients of f at cusps are contained in Oy C Og,, where Oy is the normalization
of Z, in a finite extension Ky of Q. Let Fy = Oy/mp, be the residue field of Oy. Then
by the work of many people [Ca86, Ta89, BR93|, we know how to associate to f a 2-
dimensional Galois representation (pf,Vy) of Gpg over Ky. The representation py is
characterized by the condition that, for every prime ideal q ¢ S of Op, trace(ps(Frobg))
coincides with the eigenvalue of Ty on f, where Frob,; denotes an arithmetic Frobenius
element in Grg at q.

If Ly C V; be a Gpg-stable Oy-lattice of Vi, we put Vf = Ly ®o, Fy by the abuse
of notation, and denote by p; the resulting representation of Grg over Fy. Note that, in
general, the isomorphism class of p; is only determined by py up to semi-simplification. We
call such a p; p-modular residual representation of Gr,s, and call the pseudo-representation
associated with the semi-simplification of p; a p-modular pseudo-representation.

Let p be a p-modular pseudo-representation of G g over a finite field F. We denote by
R"VY(5) the universal deformation ring of p, whose existence is proved in the same way
as [CM98, 5.1.3], and by p"™V the universal pseudo-representation of G g over R™V(p).
Let Z(p) be the rigid analytic space over L attached to R™(p) ®y () L, and W be the
weight space over L of Resp,, /zGm, 1.e. the rigid space over L which to an affinoid algebra
A over L assigns the set of continuous A*-valued characters of (Or ®z Z,)*. By the local
class field theory, the determinant det(p"™") defines a character (Or ®z Z,)* — R™(p),
i.e. a map of rigid analytic spaces Z(p) — W.

Fix a weight k& € Z® such that all the kg’s have the same parity. We denote by Wi the
subspace of W whose points in a complete subfield L' C C, containing L, correspond to
characters x : (Op ®z Zp)* — L' such that there exists zp € L’ with v,(29) > p%l -1
and x = xz - (Nm)*0, where Nm = 7 : (O ® Zy)* — Z, is the natural norm map, and
a — (a) is the canonical projection Z; — (1 + pZy) defined by

Z; ~(Z/pZ)" x (1+ pZy,).
Then Wi is a one-dimensional rigid closed subspace of W. We denote by
X"V (OF ® )" — O(Wg)*
the universal character, and by Z the rigid analytic function on W; such that YWY =

2_
X * (Nm)Z. We have |Z| < p_r—zf, and Z establishes an isomorphism of rigid spaces over
L

~ —== 1
Z:W; Sy Dy0.p ) = {x € Cyluy(x) > e e

We denote by Z;(p) the inverse image of Wi in Z(p). We put Vi(p) = Z;(p) X G, X
I1 qes AlL, and denote by x, the canonical coordinate on G, 1, 4 the coordinate on the
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g-th copy of AlL for g € S. We denote still by Z the rigid analytic function on Y;(p)
induced by the canonical projection Vi(p) — W;, and by the same notation the analytic
function on Vi(p) induced by that on Z;(p).

Kisin and Lai proved in [KLO05, 4.5.4] that there exists a rigid analytic closed subspace
Ci(p) C Vi(p) that interpolates p-adic overconvergent Hilbert eigenforms of finite slope.
More precisely, it satisfies the following properties:

(1) For any closed subfield L' C C, containing L and any ¢ € Cz(p)(L'), there exists

an eigenform f, € MIT€+Z (Coo(V), L) of finite slope, such that, if A. 7 denotes the

(c)

eigenvalue of T' € T£+Z (un) on fe, we have Ay = zp(c), and for all primes q

of OF
AT, = trace(p"™"(Froby)) if q¢ S and Ay, = Tq(c) ifqgeS.

(c)

(2) For any zy € L' with v,(zp) > p%l — 1, and ¢ € Cp(p)(L'), the association ¢

{Me}rert ( induces a bijection between ¢ € Cz(p)(L') with Z(c) = =z,
E+2(c) :U'N)

and systems of T;%Jrz (1 )-eigenvalues arising from the eigenforms of finite slope in
0

Mi+ (Too(N), L).

k+zo
We say a point ¢ € C(p)(L') is classical, if Z(c) = (p — 1)kot for some integer t € Z>o,
and the image of f. under the composite map

.Eko
MY Too(N), L) = ME(Too(N), ) == ML - (Too(N), L)

comes from an element of ME+(p—1)k0tT(F00(N) NTo(p),L").

Theorem 2.21. Assume p > 3 and [k(p) : F,] < 2 for all prime ideal p C O above p.
Then the classical points are Zariski dense in Cr(p).

Proof. Let C be an irreducible component of Cy(p). It suffices to prove that C' contains
infinitely many classical points. Let 7z(p) : Ci(p) — Wy be the natural projection to
the weight space. By the same argument as [CM98, Thm. B|, the morphism ;(p) is
component-wise almost surjective in the sense that, for every irreducible component of
C;(p), the complement of its image in W; consists of at most a finite number of weights.
Therefore, there exists an admissible affinoid subdomain B C C such that its image Wy in
Wris an affinoid domain containing a closed disk with center zy = (p—1)kotg € Wy of radiu
p~ " for certain n € Z~g. By the maximum modulus principle, there exists a real number
a > 0 such that the slopes v, (xy(c)) < a for any prime p of F' dividing p and any ¢ € B(L),
where L denotes the algebraic closure of L in C,. Hence, there are infinitely many points

¢ € B(L) such that we have Z(c) = (p — 1)kot, and kg + (p — 1)kot > a+ 2 for all 5 € B.
By property (1) of the eigencurve Cz(p) and Theorem 2.17, such a point ¢ corresponds to

classical Hilbert modular forms of level Too(N) N To(p) and weight & + (p — 1)kot1, O
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3. FINITE FLAT GROUP SCHEMES WITH RM AND BREUIL-KISIN MODULES

3.1. We recall first the theory of Breuil-Kisin modules for finite flat group schemes. Let k
be a perfect field of characteristic p > 0, W (k) be its ring of Witt vectors, and K be a finite
totally ramified extension of Ko = W (k)[1/p] of degree e, and O be its ring of integers.
Fix a uniformizer 7 of K with Eisenstein polynomial E(u), and put & = W (k)[[u]]. We
equip & with the endomorphism ¢ which acts on W (k) via Frobenius and sends u to u?.
A finite torsion Breuil-Kisin module (of height 1) is a finite &-module 9t equipped with a
p-linear endomorphism ¢ : 9t — 9 verifying the following properties:

(1) 9t has p-power torsion.

(2) 9 has projective dimension 1 as G-module, i.e. there is a two term resolution of
I by finite free G-modules.

(3) The cokernel of the linearized map

1®@: (M) :6®e,gpfml®i>fm
is killed by E(u).

We denote by ModE™ the category of finite torsion Breuil-Kisin modules (of height 1).
Note that & is regular local ring of dimension 2, a finite S-module has projective dimension
1 if and only if it has depth 1. Therefore, condition (2) in the definition above is equivalent
to saying that 9 has no u-torsion. Similarly, a finite free Breuil-Kisin module (of height
1) is a finite free &-module 9 equipped with a @-linear endomorphism ¢ : 9t — 9t such
that the third condition above is satisfied. We denote by ModfGr the category of finite free
Breuil-Kisin modules (of height 1). By a Breuil-Kisin module, we mean an object 9t in
either Mod <™ or Modfé depending on the situation. For a Breuil-Kisin module 91, the
map 1® @ : * (M) — M is necessarily injective [Ki09a, 1.1.9], and we denote its image by
(1® @)p™(M).

The main motivation of studying Breuil-Kisin modules in this paper is the following
theorem due to Kisin [Ki06, 0.5] when p > 3, to Eike Lau [Lal0, 7.6, 7.7] and Tong Liu
[Lil0, 1.0.1, 1.0.2] independently when p = 2.

Theorem 3.2. There is a natural anti-equivalence between the category of commutative fi-
nite and flat group schemes over Ok of p-power order and the category Modgrs. Similarly,
the category of p-divisible groups is naturally anti-equivalent to the category Modfé.

The following Proposition will be fundamental for our application of Breuil-Kisin mod-
ules to the analytic continuation of Hilbert modular forms.

Proposition 3.3. Let G be a finite and flat group scheme (or a p-divisible group) over
Ok. Let M be the Breuil-Kisin module associated with G. Then there is a canonical
isomorphism of Ox-modules

we = M/(1® @)™ (M),
where wg is the module of invariant differentials of G.

To prove this proposition, we need Breuil’s filtered S-modules. Let S be the p-adic
completion of the divided power envelop of W (k)[u] with respect to the principal ideal
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(E(u)), i.e. Sis the completion of subring W (k)[u, E(u)"/i! : i > 1] of Ko[u], and Fil'S c S
be the kernel of the natural surjection S — (’)K sending v +— 7. We note that & is
naturally a subring of S, and the endomorphism ¢ on & extends to .S. We check easily
that @(Fil'S) C pS, and we put ¢; = %@\Fﬂls and ¢ = ¢1(E(u)). A filtered S-module
(M, Fil! M, ¢1) consists of the following data:

(1) A finite generated S-module M and a submodule Fil' M with E(u)M C Fil! M.
(2) A ¢-linear morphism ¢; : Fil' M — M such that, for s € Fil'S and z € M, we
have o1 (sz) = L1 (s)¢1(E(u)z), and the image of 1 generates M as an S-module.

We denote by MFg the category of filtered S-modules. It has a natural structure of an
exact category. A sequence is short exact if it is short exact as a sequence of S-modules,
and induces a short exact sequence on Fill’s.

Let 91 be an object in 1\/Iodt§rS or Modfé. We can associate covariantly with 91 a
filtered S-module as follows. We put M(M) = S ®e , M, and define Fil' M(90) to be the

submodule of M (9t) whose image under the morphism of S-modules

S @, M5 S @ M
lies in Fil'S®g M. The morphism ¢; : Fil!M(9) — M (M) is defined to be the composite

1

Fil M) 255 Fills @6 M 2505 § @, M = M(DN).
By [Lal0, 8.1], (M(9M), Fil' M(M), 1) is an object in MFg, and the functor Mt s M (90)
is exact. By definition of Fil! M(901), we have an embedding [Ki09a, 1.1.15]
M) /Fil' M) 2295 S @6 M/(Fil'S @ M) = M/E(u)M
which induces an isomorphism
(3:3.1) M) /FILM(R) 5 (1@ )" (M) B(u) 9

If M is an object in Mod, then (1 ® )p*(IM) is free over &. So the G-module (1 ®
©)p* (M) /E(u)M has projective dimension 1, hence depth 1. It follows that M (90) /Fil* M (90)
and (1 ® ¢)p*(IM)/E(u)M are actually finite free Ox-modules.

Lemma 3.4. Let M be an object in ModteorS or Modfér as above. We have a canonical
1somorphism
Fill M(ON) /FilLSM (M) ~ M/ (1 @ )™ (M).

Proof. The following construction was indicated to me by Tong Liu. Consider the map
1® @ e*(IM) — M. Motivated by the definition of M (), we put

Fil'o* (M) = {z € " (M) | (1 © ¢)(z) € E(u)M}.
Thus 1 ® ¢ induces an isomorphism
(3.4.1) " (M) /Fil' ™ (M) = (1® 0)¢" (M) /E(u)M
We denote by
# . Fillp* (M) — M
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the natural map given by z — (1 ® ¢)(z)/E(u). Then go?f induces an isomorphism
(3.4.2) Fill* (M) / E(u)p* (M) = M/ (1 © @)™ (M).

On the other hand, the natural inclusion & < S induces an inclusion ¢ : *(9) — M(IM).
We check easily that «(Fil'o*(90)) € Fil! M(9M), and we have a commutative diagram of
exact sequences

0 —— Fil'e*(9) /B (u)p* (M) ——= " (M) /E(u)p* (M) ——= ¢* (M) /Fil' * (M) ——= 0

0 —— Fil! M(9) /Fill S M (90) —— M(9N) /Fil S M (9) —— M (9N) /Fil M (901) — 0,

where the vertical arrows are induced by ¢. The middle vertical arrow is easily seen to be
an isomorphism, and so is the right vertical map because of (3.3.1) and (3.4.1). It follows
that the left vertical one is also an isomorphism. In view of (3.4.2), the lemma follows.

O

Proof of Prop. 3.3. Let M = M(9M) be the filtered S-module associated with G. By
Lemma 3.4, it suffices to prove that we have a canonical isomorphism

wa = Fil* M /Fill SM.

If G is a p-divisible group, this follows from [BBM82, 3.3.5] or [Lal0, 8.1] and the fact
that M is the evaluation of the Dieudonné crystal of G at the PD-thickening Spec(Og) —
Spec(S). If G is finite flat group scheme over Ok, then G can be embedded as a closed
subgroup scheme into a p-divisible group Gy over O [BBM82, 3.1.1|; we put G1 = Go/G.
We denote respectively by Mg and M the filtered S-modules associated with Gy and G.
Since all the constructions are functorial in G, the exact sequence of groups 0 — G —
Gy — G1 — 0 induces a commutative diagram of exact sequences of Ox-modules

0 wa, WGy wa 0

0 — Fil! M /Fil!SM; — Fil! My /Fil!SMy — Fil!l M /Fil! SM —— 0.

Since the left two vertical arrows are isomorphisms, it follows that so is the right one.
O

3.5. Zys-groups. Let g > 0 be an integer, Q¢ be the unramified extension of Q,, of degree
g, Zps be its ring of integers. We assume k contains Fps. We identify Emdz, (Zys, Ok ),
the set of embeddings of Z,s into Ok, with Z/gZ, and the natural action of Frobenius on
Emdgz,(Zys, Ok) is identified with i > i + 1. For an (O ® Zys)-module M, we have a
canonical splitting M = @;cz/4zM;, where Z;s acts on M; via the i-th embedding. If N is
a finite torsion Ox-module, we choose an isomorphism N ~ @?:1(’)1( /(a;) with a; € Ok,
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and define the degree of N to be
d
deg(V) = 3" vy(ay).
i=1
A Z,9-group over Ok is a commutative finite and flat group scheme over Og endowed
with an action of Z,s. Fargues [FalO| defined the degree function of a finite flat group
scheme over Of. We give a refinement of this function for Z,s-groups over Og.

Definition 3.6. Let G be a Zys-group over Ok, and wg = Bjcz/4z wa,i be its module of
invariant differential forms. We put

deg;(G) = deg(wa.i),
and we call it the i-th degree of G.

Hence, the degree function of Fargues is deg(G) = > ,cz/,7zdeg;(G). 1f 0 = G —
G — G2 — 0 is an exact sequence of Zps-groups over Ok, we have an exact sequence of
Ok ® Zps-modules

0= wg, =+ wg — wg, —0;
hence we have deg;(G) = deg;(G1) + deg;(G>) for any i € Z/ fZ.

Recall that a scheme of 1-dimensional F,¢-vector spaces over O is a Z,s-group G over
Of such that G(K) is an Fpe-vector space of dimension 1, where K is an algebraic closure
of K. According to Raynaud’s classification of such finite flat group schemes [Ra74, 1.5.1],
we have an isomorphism of schemes

(3.6.1) G ~ Spec(Ok|T; : i € Z/gZ)/ (T} | — aiTi)ieZ/gz),

for some a; € Ok with 0 < v,(a;) < 1. Using this isomorphism, we have deg;(G) = vp(a;)
for i € Z/gZ. This following Lemma is a refinement of [Fal0, Cor. 3.

Lemma 3.7. Let ¢ : H — G be a homomorphism of schemes of 1-dimensional Fps-vector
spaces over R that induces an isomorphism on the generic fibers. Then for any i € Z/gZ,
we have

g—1 g—1
ZPJ deg; ;(G) > ij deg; ;(H).
§=0 §=0
Moreover, all the equalities hold if and only if ¢ is an isomorphism.

Proof. Let (ai)icz/qz (resp. (bi)icz/qz) be respectively the elements in Ok appearing in
an isomorphism as (3.6.1) for G (resp. for H). We have deg,(G) = v,(a;) and deg;(H) =
vp(b;). The existence of ¢ implies that there exist u; € Ok for all i € Z/gZ such that
aju; = byul’_| [Ra74, 1.5.1]. Hence, we have

g—1 pJ g—1 pitl
() ==

b - pI = )
j=0 "7 j=0 Wi—j

The lemma follows immediately from the fact that v,(u;) > 0, and that ¢ is an isomorphism
if and only if vy (u;) = 0 for all i € Z/gZ. O
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3.8. We describe the Z,¢-groups over Ok in terms of Breuil-Kisin modules. A Z,,-Breuil-
Kisin module is an object M in ModE" together with an action of Z,s commuting with
¢. Equivalently, a Zjs-Breuil-Kisin module 90 is an (& ® Zy¢)-module M = @;cz/4zM;
satisfying the following properties:
(1) each 9M; is killed by some power of p;
(2) each 9M; has projective dimension 1, i.e. M; has a two term resolution by finite
free G-modules;
(3) there is a @-linear endomorphism ¢ : 90 — M such that ©(M;) C M; 11 and the
cokernel of the linearization 1 ® ¢ : ¢*(9M;) — M, 41 is killed by E(u).
We denote by Modg’gng the category of Zps-Breuil-Kisin modules, and the morphisms
in Modtgoészp , are homomorphisms of (& ® Zys)-modules commuting with ¢. Let 9 be

an object of Modg’gzp ,- We define the i-th degree of 9 as

dog, (1) = Leng (/1 )" () ).

Here, “leng” denotes the length, and the factor % will be justified in Lemma 3.9. If 0 —
£ — I — N — 0 is an exact sequence in Modtggzp 45 it follows from an easy diagram
chasing that

deg;(90) = deg;(£) + deg;(N)

for any i € Z/gZ.

From Theorem 3.2, it follows easily that the category of Z,q-groups over Ok is anti-
equivalent to the category Modteogzp .
Lemma 3.9. Let G be Zys-group over Ok, and M be its corresponding Z,q-Breuil-Kisin
module. Then we have deg;(G) = deg;(IM) fori € Z/gZ.

Proof. Since the isomorphism in Prop. 3.3 is canonical, it necessarily commutes with
Zs-actions. We have an isomorphism of (Ox ® Z,¢)-modules

we= P wei=M/(A@)e" (M) = @ Mi/(1 )" (Mi1).
i€Z/gZ i€Z/gZ

The lemma follows immediately. O

Definition 3.10. Let n > 1 be an integer, G be a truncated Barsotti-Tate group of level n
over Ok equipped with an action of Z,s. We say G has formal real multiplication (or just
RM for short) by Z,¢ if G has dimension g and height 2¢g and wg is a free (O /p" @ Zy9)-
module of rank 1; in particular, we have deg;(G) = n for i € Z/gZ.

By [Ki06, 2.3.6], an object 9 of Modteogng correpsonds to a truncated Barsotti-Tate
group of level n over Ok with RM by Z,¢ if and only if

(a) M is a free (6/p" ® Zps)-module of rank 2g;

(b) M/(1 ® p)p*(M) is a free (O /p"™ & Zps)-module of rank g.
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Let MM = Bjcz/yzM; be such a Zys-Breuil-Kisin module. For each i € Z/gZ, we have a
filtration of free O /p™-modules

0= (1®p)e"(Mi—1)/E(w)M; — M;/E(uw)M; — N;/(1 @ p)e*(M;—1) — 0.

We say a basis (6, €;)icz/gz of 9 over &/p" is adapted if 6; € (1 ® ¢)p*(M;—1) and the
image of €; generates M; /(1 ® @)M;_1 over O /p". Then under such an adapted basis,

there exists [Zl iﬂ € GL2(6/p™) such that
(2 7

a; bi
(3101) @(51'—1,51'—1) = ((51, 62') |:E(U)CZ E(U)dz:| .
3.11. Let G be a truncated Barsotti-Tate group of level 1 over Ox with RM by Z,s, and
G1 =G ®o, Ok/p be its reduction modulo p. The Lie algebra of the Cartier dual of Gy,
denoted by Lie(GY), is a free (Ok /p ® Zps)-module of rank 1. Let

Lie(GY) = @D Lie(GY):
1€Z/gZ

be the decomposition according to the action of Zys. The Frobenius homomorphism Fg, :

G1 — Ggp ) induces a Frobenius linear endomorphism
HW : Lie(GY) — Lie(GY)

with HW : Lie(GY);—1 C Lie(GY);. We choose a basis ¢; for each Lie(GY); over Ok /p,
and write HW (d;_1) = t;0;. Let v, : O /p — [0, 1] be the truncated p-adic valuation. We
define the i-th partial Hodge height of G to be w;(G) = vp(t;) € [0,1]. It is clear that the
definition does not depend on the choice of the basis ;. Note that G is ordinary if and
only if w;(G) =0 for all i € Z/gZ.

Lemma 3.12. Let G be as above, and M be its corresponding Breuil-Kisin module. We
choose an adapted basis of M so that ¢ is represented by matrices of the form (3.10.1).
Then we have w;(G) = L min{e, v, (a;)}, where @; is the image of a; in &1 = k[[u]], and
v, denotes the u-adic valuation.

Proof. Let M = M(9M) be the filtered S-module associated with G. By [Lal0, 8.1|, there
is a canonical isomorphism of (O /p)-modules Lie(GY) ~ M /Fil! M. Combining with
(3.3.1), we have an isomorphism

Lie(GY) ~ (1® @)™ (M)/E(u) M,

where the second term is considered as an O /p-module via the isomorphism &1 /F(u)&; ~
Ok /p given by u +— m. Since everything is functorial in G, this is actually an isomor-
phism of (Ok/p ® Zys)-modules. Since the endomorphisms HW on Lie(GY) and ¢ on
(12 ¢@)e*(IM)/E(u)M are both induced by Frobenius homomorphism of G [Ki09b, 1.1.2],
one checks easily that HW and ¢ coincide with each other via the canonical isomorphism
above. The Lemma follows immediately. O
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Let G be a truncated Barsotti-Tate group of level 1 over Ok with RM by Z,s. We

say a finite flat closed subgroup scheme H C G is Zys-cyclic or Fpe-cyclic, if H(K) is a
one-dimensional Fs-subspace of G(K).

Lemma 3.13. If H,H' are two distinct Zps-cyclic subgroups of G, then for alli € Z/gZ,
we have

o=l I —1
Zp](degi—j(H) +deg;_;(H')) < 1
j=0

Proof. The Lemma follows from 3.7 applied to the homomorphism H — G — G/H'. O

The following theorem is a slightly generalized version of [GK09, Thm. 5.4.3]. The proof
is motivated by |[Hal0, 3.4|.

Theorem 3.14. Let G be a truncated Barsotti-Tate group of level 1 with RM by Zys, and
denote w; = w;(G). Assume that w;+pw;—1 < p for alli € Z/gZ. Then there exists a Zyq-
cyclic subgroup C C G such that deg;(C') = 1 — w;; moreover, C' is the unique Z,q-cyclic
subgroup of G satisfying

deg,(C) + pdeg;_1(C) >1 foranyic Z/gZ.

Proof. Let M = Djcz/4z9M; be the Breuil-Kisin module associated with G. We choose
an adpated basis (0, €;)icz/gz of MM so that ¢ is represented by matrices (3.10.1). Note
that w;11 + pw; < p implies that w; < 1; so by Lemma 3.12, we have v,(a;) = ew;. By
Lemma 3.9, we have to show that there exists a quotient 9 = @;cz,,z of I such that
deg;(M) = 1 — w; and it is the unique quotient satisfying deg,(M) + pdeg; () > 1 for
i€Z/gZ.

We prove first the existence of 91. We construct a direct summand £ = @;cz/,zL; of M
such that £; is the submodule of 9; generated by

1
ni = (0;, €) [ue(lwi)zi:| )

where z; € G is some element to be determined. If we require that £ is an sub-oject of
M, there should exists a certain A; € &7 such that ¢(n;—1) = A;n;. Using the equation
(3.10.1), we get

, uep(l—wi—1) P — A
(3.14.1) {aﬁbm “ie1 i

ue(ci + ueP(l*wi*l)difol) — ue(lfwi)ziAi

Since vy (a;) = ew;, there exists a unit a; € &1 such that a;a; = u®. Then we have
2 = gi(zi—1), where

¢ + uep(l—wi—l)dizp

a; + ue—pwii—wi)p zp”

9i(z) =
Note that 1 — w;_1 > 0 and p — pw;—1 — w; > 0 by assumption. We get therefore

2i =0i©Gi—1 00 Gi—g+1(%)-
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By iteration, it is easy to see that the equation admits a unique solution in &; for z;. This
well defines the sub-oject £ C 9. From

ew; = vy(a;) < ep(1 — wi_1) < vy (buPI 0P )

by assumption, we deduce that deg;(£) = 2v,(4;) = w;. We can take 91 to be M/ L.

For the uniqueness of M, we assume that 9V is a quotient of M with deg; (M) +
pdeg;(N') > 1 for ¢ € Z/gZ. We have to show that 9 = 9. Since deg; () < 1, we
have deg;(M') > 0, i.e. N,;/(1 ® ¢)p*(N,_;) # 0. Let £ be the kernel of M — N'. We
have for each i € Z/gZ an exact sequence of Ok /p-modules

0= £i/(1 @)™ (€i_1) = Mi/(1 @ )" (Mi1) = N/ (1@ )" (My) — 0.
Because M; /(1 @ @)™ (M;—1) ~ S1/uSq - €;, we see that 91, is generated by the image of
¢; in N,. Hence there exists z; € & such that n} = §; + z;¢; € £,. We put r; = %vu(mz)
As p(£;_1) C £/, there exists A; € &; such that p(n;—1) = Aln;. We have

vu(4j) = edeg;(£') = e(1 — deg; (),

where the second equality comes from the additivity of the degree function and the fact
that deg;(9) = 1. Therefore, we get

(3.14.2) vu(A7) + puu(Ai_1) = e(p+ 1 — deg; (M) — pdeg; ,(MN)) < ep.
On the other hand, using (3.10.1) as above, we have equations

(3.14.3) ai + bzt | = A;

(3.14.4) u(c; + dia?_|) = x; Al

We claim that r; > 1 — w; for any i € Z/gZ. Admitting this claim for the moment, we
can write z; = u =2/ Then the 2/’s will satisfy the equations (3.14.1). But we have
seen that (3.14.1) admits a unique solution z; for each i € Z/gZ. So we have z, = z;,
and hence £ = £. It remains to prove the claim. We deduce first from (3.14.4) that
vy (A]) > e(1 —r;). In view of (3.14.2), we get

(3.14.5) ri+pri-1 >1 forallieZ/gZ.

If ; < 1 — w; for some ¢ € Z/gZ, we have v,(A}) > e(1 — ;) > ew;. Because of (3.14.3),
we have

ew; = vy(a;) = vy (bl ;) > epri_y.
So we have 1 —r; > w; > pri_1, i.e. r; + pri—1 < 1, which contradicts with (3.14.5). This

completes the proof.
O

Remark 3.15. The subgroup C' C G given by the theorem is called the canonical subgroup
of G. By the same argument as in [GK09, Thm. 5.4.2|, it is not hard to see that the
subgroup C verifies the “Frobenius lifting property” If we denote w = max;cg,/gz{wi} < 1,
then C®o, (O /p' ™" Ok) coincides with the kernel of Frobenius of G®o, (O /p' " Ok),
where p'~* denotes any element in Ok with p-adic valuation 1 —w.



26 YICHAO TIAN

Let I be a subset of Z/gZ, I¢ be its complement, and |I| be the cardinality. We denote
by o(I) the image of I under the action of Frobenius o : Z/gZ — Z/gZ given by i — i+ 1.
Let G be a truncated Barsotti-Tate group of level 1 with RM by Z,s over O. We say that
a Zps-cyclic subgroup H of G is special of type I if deg;(H) =1 for i € I and deg;(H) =0
for ¢ € I°.

Proposition 3.16. Let the notation be as above.
(a) Assume that G admits a special subgroup H of type I.

(1) The group H is necessarily a truncated Barsotti-Tate group of level 1 of height g
and dimension |I| over Ok. Moreover, we have w;(G) =1 fori € o(I) N I¢, and
wi(G) =0 forie (c(l)yNI)U (o(I° NI°).

(2) If H' be another Zyps-cyclic subgroup of G distinct from H, then we have

deg;(H) < —— (11— ——) foralliel.

In particular, if I # (), then G admits at most one special subgroup of type I.

(3) If G admits another special subgroup H' of type I' with H' # H, then either I =
I' =0, or I' = I° and the natural map H x H' — G is an isomorphism of finite
flat group schemes over Ok . In the second case, if H" is a Zpo-cyclic subgroup of
G distinct from H and H', then we have

1 1 .
deg,(H") Sﬁ(l—]ﬁ) foralli € Z/gZ.
(b) Conversely, assume that o(I¢) C I, wi(G) =1 fori € o(l) NI wi(G) = 0 for
ieoa(l)nI, and wi(G) >0 fori e o(I¢). Then G admits a special subgroup of type I.

Proof. (a) First, by Raynaud’s explicit classification (3.6.1), a group scheme H of Fo-
vector spaces of dimension 1 over O is a truncated Barsotti-Tate group of level 1 if and
only if deg;(H) € {0,1} for all i € Z/gZ. Let M = ®;cz/,zM; be the Breuil-Kisin module
associated to G, and (d;,¢;) be an adapted basis of 9; so that (1® @)e*(Mi—1) = S16; ®
E(u)&1¢;. Let £ = Djcz/4zLi be the Breuil-Kisin submodule of 9 attached to the quotient
G/H, and M = M/ L be associated to H. By Lemma 3.9, we have deg;(N) = deg;(H) =1
fori e I, ie.
M/ (1® go)cp*(‘ﬁi_l) = gﬁl/((l & go)cp*(i)ﬁi_l) + £;) ~ Gl/ueei.
Since £; is a direct summand of 9;, there exists x; € &1 such that £; = &1(9; + u®z;€;).
Up to replacing d; by d; + u€x;€;, we may assume that £; = &16; for ¢ € I. Similarly, since
deg;(M) = deg;(H) = 0 for i € I°, we see that
M = L+ (1@ )™ (Mi—1).
Up to modifying ¢;, we may assume that £, = Sq¢; if ¢ € I¢. The following facts follow
easily from the condition that p(£,_1) C £;.
o If i € I No(I), there exists a; € & such that ¢(d;i—1) = a;0;. As deg;(£) =
1 —deg;(H) =0, we have a; € &;. In particular, we have w;(G) = 0 by 3.12.
o If i € I°No(l), there exists ¢; € & such that ¢(d;—1) = ucie;. In particular,
w;(G) =1 by 3.12.
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o If i € I°N o(I°), there exists d; € &1 such that p(e—1) = udie;. As (1 ®
V) (Mi—1) = 610; + E(u)Sq¢€;, we see that if ¢(d;—1) = a;0; + uc;e;, then a; is
a unit in &;. In particular, w;(G) = 0.
This prove statement (1).
For (2), it follows from Lemma 3.13 that

p!—1

PP~ (1 + degy(H")) = p?~ ' (deg;(H) + deg;(H")) < fori € I,

whence statement (2). For (3), we note first (2) implies I’ C I¢, or equivalently I C I’
We have to show that if I’ # I¢, then I =1' = (. Let i € I°NI'°. If i — 1 were in I C I'°,
then ¢ € o(I) N I¢ and (1) would imply that w;(G) = 1. But we have also i € o(I"®) N I',
so (1) applied to H' implies that w;(G) = 0. This is a contradiction, hence i — 1 € I¢. In
the same way, we have ¢ — 1 € I’°. Repeating this argument with ¢ replaced by i — 1, we
see that Z/gZ = I°N 1" ie. I =1 = (). Note that the natural map f: H x H — G
is an isomorphism over the generic fibers. If I’ = I then deg(H) + deg(H') = deg(G).
Therefore, f is an isomorphism by [Fal0, Cor. 3]. The second part of (3) follows directly
from (2).

ai b
¢ di
for i € Z/gZ. Under the assumption of statement (b), Lemma 3.12 implies that a; € &7
for i € o(I) N1, and hence b;, ¢; € &7 if i € (o(I)NI°)Uo(I¢). Up to modifying the basis
vectors, we may assume 0; = p(0;—1) ifi € o(I)NI, and ; = p(e;—1) if i € (o(I)NI)Uo(I°).
Then the matrices of ¢ can be simplified as

(b) We may assume ¢ is given by the matrices (3.10.1) such that [ } is invertible

©(0i—1,€-1) = (6i, €) B UZ%J if i € o(I)NI;

a;

(ran) =G | £ | itie@nnruer),

We write a; = u®al if i € o(I) N I°. The existence of H is equivalent to the existence
of a Breuil-Kisin submodule £ = ®;cz/4z£; of M such that deg,(£) = 0 if i € I, and
deg;(£) = 1if i € I¢. By the discussion in (a), we may assume £; = (J; + u‘z;€;)S; for
i €I and £ = (¢ + x;0;)&; for i € I, where the x;’s are some elements in &; to be
determined later.
o Ifjc O’(I) N1, then (p((si_l + uexi_lei_l) = (1 + ueprflbi)éi + u€p+1$f71di€i. The
condition ¢(£;_1) C £; implies that

ep ,.P i
uPx,_d;

= Fr ) = .
mi = Bl = e,

o If i € o(I) N I then a similar computation shows that
1

zi = Fi(wi1) = ;(Ue(p*l)xf_l + a;).
7
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o Ifico(l¢) C I, we have
Ty i

= Fi(x;_q) = ———n.
i 7,(1' 1> 1"‘(11'1’?_1

By iteration, we have z; = F; o F;_jo0---0 F_g(x;) for all ¢ € Z/gZ. Since all the
functions F; are contracting for the u-adic topology on &1, there exists a unique solution

for every x;. This proves the existence of £, whence the special subgroup H of type I.
O

Remark 3.17. Note that the condition in 3.16(b) is stronger than the converse of 3.16(a)(1):
we made the extra assumption that o(I¢) C I. I don’t know whether statement 3.16(b)
still holds without this assumption.

An interesting special case of the Proposition is the following

Corollary 3.18. Assume g is even. Let G be a truncated Barsotti-Tate group of level 1
with RM by Z,s over Ok with wi(G) > 0 fori € Z/gZ. Put I, C Z/gZ be the subset
consisting of elements © = 0 mod 2, and I = I{. Then G admits a unique special
subgroup Hy (resp. H_) of type I (resp. 1_) if and only if w;(G) =1 for all i € I_ (resp.
foralli € I). In particular, G admits both special subgroups H, and H_ of type I, and
I_ if and only if wi(G) =1 for alli € Z/gZ.

Remark 3.19. In appendix B, we will give a family version of Cor. 3.18 over the deforma-
tion space of a superspecial p-divisible group with RM by Z,s (cf. Prop. B.8 and Remark
B.9).

Now we focus on the case g = 2, and we identify Z/2Z ~ {1,2}. The following Propo-
sition refines the preceding corollary in the case g = 2.

Proposition 3.20. Let G be truncated Barsotti-Tate group of level 1 over Ok with RM
by Z,2. Assume that wy = wi(G) and we = wa(G) are both > 0. Leti € Z/2Z.

(a) We have w; = 1 if and only if there exists a unique special subgroup H C G of type
{i+ 1}, i.e. we have deg;(H) =0 and deg; ,(H) = 1.

(b) Ifw; =1 and z% < wi1 < 1, then there exists a unique Zy2 -cyclic subgroup H cG
disjoint from the H in (a) such that deg;(H') = 1—p(1—w;t1) and deg; (H') = 1—wit1.

Proof. We may assume that ¢ = 1 to simplify the notation. Statement (a) is a special
case of the preceding corollary. If w; = wy = 1, then (b) follows also from the preceding
proposition. In the sequels, we assume that w; = 1 and [% < wy < 1. Let M = 9y Mo
be the Breuil-Kisin module attached to G. Let (0;,€;);=12 be an adapted basis of M so
that (1 ® ¢)*(M;_1) is free over & with basis 0; and u;. Let £ C 9 be the Breuil-
Kisin module corresponding to the quotient G/H given in (a). By Lemma 3.9, we have
deg;(£) = 1—deg;(H) =1 and degy (L) = 0. As in the proof of the preceding proposition,
we may assume £1 = G1e; and £9 = G292. Then we have

p(01,€1) = (02, €2) [ b (1)] ©(02, €2) = (01, €1) [ ! (1)] :

uccy U Cy
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with v, (a2) = ewy and ¢, ¢ € 61X. To prove the existence of H', it suffices to construct a
Breuil-Kisin submodule 8 = R&; @82 of M such that deg; (R) = p(1—w2) and degy(R) = wo.
We assume that £ and Ky are respectively generated over &1 by

€1 =6 +u P2y e and & = 6y + w1l ypey,

and we will prove that there exist y1,y2 € &1 such that £ becomes the required Breuil-Kisin
submodule of 9. We have

p(&1) = (az +uPTPUTDy)5) +uerer,
p(&a) = uPU2)yls) +ulerer.

In order for p(&1) € R and ¢(&) € Ky, we should have

(3201) (a2 _|_ uep(lfp(17w2))y]1))y2 — u6w202

(3.20.2) yigh = 1.

As vy (ag) = ews, there exists ag € 61X such that as = u®“2as.