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Abstract. — Let F be a totally real field in which p is unramified. We prove that, if a cuspidal
overconvergent Hilbert cuspidal form has small slopes under Up-operators, then it is classical.
Our method follows the original cohomological approach of Coleman. The key ingredient of
the proof is giving an explicit description of the Goren-Oort stratification of the special fiber of
the Hilbert modular variety. A byproduct of the proof is to show that, at least when p is inert,
of the rigid cohomology of the ordinary locus has the same image as the classical forms in the
Grothendieck group of Hecke modules.
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1. Introduction

The classicality results for p-adic overconvergent modular forms started with the pioneer
work of Coleman [Co96], where he proved that an overconvergent modular form of weight &
and slope < k — 1 is actually classical. Coleman proved his theorem using p-adic cohomology
and an ingenious dimension counting argument. Later on, Kassaei [Ks06|] reproved Cole-
man’s theorem based on an analytic continuation result by Buzzard [Bu03]. In the Hilbert
case, Sasaki [Sas10] proved classicality of small slope overconvergent Hilbert modular forms
when the prime p is totally split in the concerning totally real field. With a less optimal
slope condition, such classicality result for overconvergent Hilbert modular forms was proved
by the first named author [Till] in the quadratic inert case, and by Pilloni and Stroh in
the general unramified case [PS11]. The methods of [Sas10, followed that of
Kassaei, and used the analytic continuation of overconvergent Hilbert modular forms.

In this paper, we will follow Coleman’s original cohomological approach to prove the
classicality of cuspidal overconvergent Hilbert modular forms. Let us describe in detail
our main results. We fix a prime number p > 2. Let F be a totally real field of degree
g =[F : Q] > 2 in which p is unramified, and denote by p1,...,p, the primes of F' above p.
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Let Yo be the set of archimedean places of F'. We fix an isomorphism ¢, : C = @p. For each
pi, we denote by X/, the archimedean places T € Y such that ¢, o 7 induce the prime p;.
We fix an ideal N of O coprime to p We consider the following level structures:

K1 () = { <if Z) € GLy(Op)la=1,c=0 (mod m)};

K1 (M)PLw, = { (‘CL Z) e Ki(M)e=0 (mod p)}.

Consider a multiweight (k,w) € Z> > x Z)|such that w > k, > 2 and k, = w (mod 2) for
all 7. Our first main theorem is the following

Theorem 1 (Theorem . — Let f be a cuspidal overconvergent Hilbert modular form
of multiweight (k,w) and level K1(IMN), which is an eigenvector for all Hecke operators. Let
Ap; denote the eigenvalue of f for the operator Uy, for 1 < i < r. If the p-adic valuation of
each My, satisfies

w—kr .
(1.0.1) val,(Ap,) < 5+ min {k; —1},

TEY oo /b

oo /p;

then f is a classical (cuspidal) Hilbert modular eigenform of level Ki(N)PIw,.

Here the p-adic valuation val, is normalized so that val,(p) = 1. The term ) _ w_QkT
is a normalizing factor that appears in the definition of cuspidal overconvergent Hilbert
modular forms; any cuspidal overconvergent Hilbert eigenform has U,,-slope greater
than or equal to this quantity. Up to this normalizing factor, Theorem [I] was proved
in [PS11] (and also in [Till] for the quadratic case) with slope bound val,()p,) <
ZTEZpi wgkr +minres (kr — [Fp, : @p)). The slope bound (1.0.1)), believed to be optimal,
was conjectured by Breuil in a unpublished note [Brll-|, which inspires this work a lot.
Actually, in Theorem we also give some classicality results using theta operators if the
slope bound is not satisfied, as conjectured by Breuil in loc. cit. Finally, Christian
Johansson [Jo12| also obtained independently in his thesis similar results for overconvergent
automorphic forms for rank two unitary group, but under a even less optimal slope bound.

We now explain the proof of our theorem. As in [Co96], the first step is to relate the
cuspidal overconvergent Hilbert modular forms to a certain p-adic cohomology group of the
Hilbert modular variety.

We take the level structure K to be hyperspecial at places above p; and K*PIw), the cor-
responding level structure with Iwahori group at all places above p. Let X be the integral
model of the Hilbert modular variety of level K defined over the ring of integers of a fi-
nite extension L over Q,. We choose a toroidal compactification X*" of X. Let X' and
X denote respectively the special fibers of X% and X over Fp, and D be the boundary
Xtor — X Let Xtorord he the ordinary locus of X', Let .Z %) denote the corresponding
overconvergent log-F-isocrystal sheaf of multiweight (k,w) on X' and let S(Tkw
the space of cuspidal overconvergent Hilbert modular forms. We consider the ?igid coho-
mology of .# (Ew) oyer the ordinary locus of X' with compact support at cusps, denoted
by H;‘ig(Xtor")rd, D;.Z(Ew)) (see Subsection for its precise definition). Using the dual
BGG-complex and a cohomological computation due to Coleman [C096], we show in Theo-
rem that, the cohomology group above is computed by a complex consisting of cuspidal
overconvergent Hilbert modular forms.

) denote

MW1n this paper, we choose a convention on weight that is better adapted for arithmetic applications. So
each archimedean component of the automorphic representation associated to a cuspidal Hilbert eigenform
of multiweight (k,w) has central character t — t* 2. This agrees with [Sa09].
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Let us explain more explicitly this result in the case when F' is a real quadratic field and
p is a prime inert in F//Q. Then the result of Theorem says that the cohomology group

nig(X torord 'y, gz (kw)) (together with its Hecke action) is computed by the complex
(©1,02)

. gt T —©2801, ot

o. of
AR o122 ko) D S0k o) 7 ket o)

(2—Fk1,2—ka,w)
where the ©,’s are essentially (k; — 1)-times composition of the Hilbert analogues of the well-
known #-operator for the elliptic modular forms. We refer the reader to Subsection and
Remark for the precise expression of ©;’s, and to for the definition of the complex
%* in the general case. Here we emphasize that the natural construction of the complex €™
is automatically Hecke equivariant; this Hecke action on its terms SI differs from those given
in [KLO5| by a twist, except for the last term x = (k1, k2). This can be seen using the explicit
formulas for ©;, as given in Remark An important fact for us is that, under this new
Hecke action on SI, the slope condition can be satisfied only for eigenforms in the

T
last term S(kl,kg)'

In other words, if an eigenform f € Sgkhk_%w) satisfies the slope condition,
then it has nontrivial image in the cohomology group Hfig(X torord 1. g2 (kw)) " This result on
Up-action is explained in Proposition Moreover, the cohomological approach allows us
to prove the following strengthen version of Theorem [1} if a cuspidal overconvergent Hilbert
modular form f of multiweight (k,w) and level K does not lie in the image of all ©-maps,
then f is a classical (cuspidal) Hilbert modular form.

The second step of the proof of Theorem [I| is to compute 111';*ig(X‘“)1"’°1”d7 D; # (E’“’)) using
the Goren-Oort stratification of X. A key ingredient here is the explicit description of these
GO-strata of X given in [TX13al. In the quadatic inert case considered above, the main
results of [TX13a] can be described as follows. Let X; and X5 be respectively the vanishing
loci of the two partial Hasse-invariants on X', Then the ordinary locus Xtorord C xtor
is the complement of the union X; U X5 of the two divisors. Put X9 = X7 N X5. The
subvarieties X1, X2, and X5 are known to be proper smooth subvarieties of X" which do
not meet the cusps. The main result of [TX13a] says that X; and X» are both P'-bundles
over Shg (BOXOLOOQ)FP, the special fiber of the discrete Shimura variety of level K associated to
the quarternion algebra By, o0, over F' ramified exactly at both archimedean places. Their
intersection X1 may be identified with the Shimura variety Sh ey, (B;(ol,oog)Fp for the same
group but with Iwahori level structure at p. Moreover, these isomorphisms are compatible
with tame Hecke actions.

In the general case, for each subset T C X, one has the closed GO-stratum Xt defined
as the vanishing locus of the partial Hasse invariants corresponding to T. This is a proper
and smooth closed subvariety of X of codimension #T. The main result of [TX13a] shows
that Xr is a certain (P!)V-bundle over the special fiber of another quaternionic Shimura
variety. In fact, this result is more naturally stated for the Shimura variety associated to the
group GLa(F) X px E* with E a quadratic CM extension. We refer the reader to Section
for more detailed discussion. Using this result and the Jacquet-Langlands correspondence,
one can compute the cohomology of each closed GO-stratum. General formalism of rigid
cohomology then produces a spectral sequence which relates the desired cohomology group
H% (Xtorord D, 7 (E’w)) to those of closed GO-strata. In the general case, we prove the

rig
following

Theorem 2 (Theorems and [6.1)). — For a multiweight (k,w), we have the follow-
ing equalities of modules in the Grothendieck group of modules of the tame Hecke algebra

H(KP,L):

Yo (EFIUSE )P = [Hig (X000, D FE)] = (—1)9 [S (g ) (KPTwy)],
JCY 0

for T sufficiently large, where
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— € takes k; to itself if T € J and to 2—k, if T ¢ J (for the precise definition of S:J(k,w)’
see and ([2.15.1) );

— the superscript slope< T means to take the finite dimensional subspace where the slope
of the product of the Uy-operators is less than or equal to T'; and

— S(k,w) (KPTwy,) is the space of classical cuspidal Hilbert modular forms of level KPIw,.

At this point, there are two ways to proceed to get Theorem The first approach is
unconditional. We first use Theorem [2|to prove the classicality result when the slope is much
smaller the weight (Proposition . Then we improve the slope bound by studying global
crystalline periods over the eigenvarieties (Theorem . In fact, we can prove something
much stronger: if an eigenform f does not lie in the image of the ©-maps in the complex
%*, then f is a classical Hilbert modular eigenform (Theorem . This approach, to some
extent, relies on the strong multiplicity one of overconvergent Hilbert modular forms. This
approach is explained in Section [0}

The second approach is more involved, and we need to assume

(1) either p is inert in F, i.e. p stays as a prime in Op,
(2) or the action of the “partial Frobenius” on the cohomology of quaternionic Shimura
variety are as expected by general Langlands conjecture. (See Conjecture

We defer the definition of partial Frobenius to the context of the paper. Under this assump-
tion, we can strengthen Theorem [2] as

Theorem 3. — Assume the assumption above, the equality in Theorem[d is an equality in
the Grothendieck group of modules of 7 (KP, L)[Uﬁ;p € X,

This theorem is proved in Section [7 using a combinatorially complicated argument.

The reason that Theorem (3| is stated for the action of squares of U, is the following:
the description of GO strata is proved in [TX13a] using unitary Shimura varieties, where
only the twisted partial Frobenius (instead of partial Frobenius itself) has a group theoretic

0
interpretation, which is, morally, the Hecke operator given by (? ol ), where w, denotes
P

the idele of F' which is a uniformizer at p and 1 at other places. One might be able to fix this
small defect by modify the PEL type unitary moduli problem slightly differently to define
the moduli problem for GLg p X px E* directly. However, we do not plan to pursue this
approach.

Now it is a trivial matter to deduce Theorem [I| from Theorem 3| (under the assumption
above). In fact, we only need f to be a generalized eigenvector for all the Up,-operators
satisfying the slope condition (i.e. f does not have to be an eigenvector for the tame Hecke
actions). The upside of this approach is that one may avoid using the strong multiplicity one
for overconvergent Hilbert modular forms. This is crucial when studying other quarternionic
Shimura varieties when strong multiplicity one is not available. Moreover, Theorem [3| has its
own interest; as it gives a quite concrete description of the rigid cohomology of the ordinary
locus.

Another related intriguing question is whether Hr*ig(X,zzr’ord, D; # (E’“’)) is concentrated in
degree g. We shall address this question in the forthcoming paper [TX13b]. It turns out
that the result depends on the Satake parameter at p of the corresponding automorphic
representation.

Our consideration of the cohomology group H:ig(X,z(;r’Ord, D; % (E’“’)) was stimulated by
a conversation with Kaiwen Lan in December 2011, and he explained to us the vanishing
result Lemma After we finished the first version of the paper and talked to Lan again,
we found htat the same cohomology group (in a more general context) was used in his recent
joint work with M. Harris, R. Taylor and J. Thorne [HLTT13].

Structure of the paper. — Section[2reviews basic facts about Hilbert modular varieties,
as well as the dual BGG complex. We define cuspidal overconvergent Hilbert modular forms
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in Section [3] and show that the cohomology of the complex %* of cuspidal overconvergent
Hilbert modular forms agrees with the rigid cohomology of the ordinary locus (Theorem [3.5]).
Moreover, we show that the slopes of Uy-operators are always greater or equal to the nor-
malizing factor in Theorem [1| (Corollary . After this, we set up the spectral sequence
that computes the rigid cohomology of the ordinary locus in Section [dl Entire Section [f] is
devoted to give description of the cohomology of each GO-strata; this uses the earlier work
[TX13a]. The last two sections each gives an approach to prove classicality; one uncondi-
tional but with some help from eigenvarieties; one is more straightforward but relying on
some conjecture on partial Frobenius actions.

Acknowledgements. — We express our sincere gratitude to Kai-Wen Lan for his invalu-
able help on the compactification of Hilbert modular variety. We thank Ahmed Abbes,
Matthew Emerton, Jianshu Li, Yifeng Liu, and Wei Zhang, for useful discussions.

We started working on this project when we were attending a workshop held at the Insti-
tute of Advance Study at Hongkong University of Science and Technology in December 2011.
The hospitality of the institution and the well-organization provided us a great environment
for brainstorming ideas. We especially thank the organizers Jianshu Li and Shou-wu Zhang,
as well as the staff at IAS of HKUST.

Notation. — For a scheme X over a ring R and a ring homomorphism R — R’, we use
Xp to denote the base change X Xgpec g SPec R

For a field F, we use Galp to denote its Galois group.

For a number field F, we use Ap to denote its ring of adeles, and A (resp. AR") to
denote its finite adeles (resp. finite adeles away from places above p). When F = Q, we

suppress the subscript F' from the notation. We put 7)) = Hl?ép Z; and @gﬂo) = H[@ O,. For
each finite place p of F, let F, denote the completion of F' at p, O, the ring of integers of
F,, and k, the residue field of Op. We put d, = [k, : F,]. Let w, denote a uniformizer of
Oy, which we take to be the image of p when p is unramified in F//Q. We normalize the
Artin map Artg : FX\A% — Gal3 so that for each finite prime p, the element of A% whose
p-component is @, and other components are 1, is mapped to a geometric Frobenius at p.

We fix a totally real field F' of degree ¢ > 1 over Q. Let 0p be the different of F'. Let X
denote the set of places of F', and ¥, the subset of all real places. We fix a prime number
p which is unramified in F', and let ¥, denote the set of places of F' above p. We fix an
isomorphism ¢, : C ~ @p; this gives rise to a natural map i, : Yoo — X given by 7+ 1,0 7.
For each p € X, we put ¥, = z';l(p).

For S an even subset of places of F', we use Bg to denote the quaternion algebra over F
ramified at S.

A multiweight is a tuple (k,w) = ((kr)res.,w) € N9T! such that w > k, > 2 and
w = k; (mod 2) for each 7. Let 7y, denote the set of irreducible cuspidal automorphic
representations m of GLg(Ap) whose archimedean component 7, for each 7 € Y is a
discrete series of weight k, — 2 with central character x — 2% ~2. For such 7, let pr, denote
the associated [-adic Galois representation, normalized so that det(p, ;) is (1 — w)-power of
the cyclotomic character.

For A an abelian scheme over a scheme S, we denote by AV the dual abelian scheme, by
Lie(A/S) the Lie algebra of A, and by w,,g the module of invariant 1-differential forms of
A relative to S. We sometimes omit S from the notation when the base is clear.

We shall frequently say Grothendieck group of modules of a ring R (resp. group ring
of a topological group G); for that, we mean the Grothendieck group of finitely generated
R-modules (resp. smooth admissible representations of G).
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2. Preliminary on Hilbert Modular Varieties and Hilbert Modular Forms

In this section, we review the construction of the integral models of Hilbert modular
varieties and their compactifications. We also recall the construction of the automorphic
vector bundles, using the universal abelian varieties.

2.1. Shimura varieties for GLg r. — Let G be the algebraic group Resp/q(GLz r) over
Q. Consider the homomorphism

h: S(R) = Resc/g Gm(R) 2 C* G(R) = GLy(F ® R)

a+v=Th) ((_“b 2)(_“b 2))

The space of conjugacy classes of h under G(R) has a structure of complex manifold, and is
isomorphic to (h*)¥> where h* = P!(C) — P}(R) is the union of the upper half and lower
half planes. For any open compact subgroup K C G(A*) = GL2(A%), we have the Shimura
variety Shg (G) with complex points

Shi (G)(C) = G(Q\(h*)™> x G(A®)/K

It is well known that Shx(G) has a canonical structure of quasi-projective variety defined
over the reflex field Q. For g € G(A*) and open compact subgroups K, K/ C G(A™) with
¢ 'K'g C K, there is a natural surjective map

(2.1.1) lg] : Shg/(G) — Shi(G)

whose effect on C-points is given by (z,h) — (z,hg). Thus we get a Hecke correspondence:

(2.1.2) Shycrgrg1(G)

/ 1

Shg (G) Shg (G),

where the left downward arrow is induced by the natural inclusion K N gKg~! < K, and
the right downward one is given by [g]. Taking the project limit in K, we get a natural right
action of G(A*°) on the projective limit Sh(G) := m Shi (G).

2.2. Automorphic Bundles. — Let (k,w) be a multiweight. We consider the algebraic
representation of G¢:

. _ w—kr
pew): — ® <Symk72(StT)®detT 2 >

TGEOO

where St, : G & (GLQ’C)EOO — GLy ¢ is the contragradient of the projection onto the 7-th

factor, and det, is the projection onto 7-th factor composed with the determinant map.

N
Consider the subgroup Zs = Ker(Resg/q(Gm) e, Gn) of the center Z = Resp/qg(Gyy) of

G; let G¢ denote the quotient of G by Z,. Then the representation p&%) factors through
GG. Let L be a subfield of C that contains all the embeddings of F. The representation
p(ﬁ’“’) descends to a representation of G, on an L-vector space V(Ew),

We say an open subgroup K C G(A™) is sufficiently small, if the following two properties

are satisfied:
1. The quotient (g7 KgN GLa(F))/(gKg~ N F*) does not have non-trivial elements of

finite order for all g € G(A*).
2. Npjg(KNFX)“=2 =1,
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If K is sufficiently small, it follows from [Mil90al, Chap. III 3.3] that p&®) gives rise to an
algebraic vector bundle .%# 7 (Ew) on Shx (G) equipped with an integrable connection

Vg 5 gE gl o

The theory of automorphic bundles also allows us to define an invertible sheaf on Shx (G)
for K sufficiently small as follows. Consider the compact dual (P&)*< of the Hermitian
symmetric domain (h*)%. It has a natural action by G¢ = (GLac)*<. Let w be the dual
of the tautological quotient bundle on IP’}C. Then the line bundle w has a natural GLy c-
equivariant action. We define

(2.2.1) wh): = &) pry(wt—2

=)

TGEOO
and a Gc- equivariant actlon on w®®) ag follows. For each 7 € Yo, the action of G¢ on
pr: (w®(kT 2) @ det™ ) factors through the 7-th copy of GLa ¢, which in turn acts as the

product of det™ “3 and the (kr — 2)-th power of the natural action on w. One checks easily
that the action of G¢ on w®™) factors through G, and thus w®®) descends to an invertible
sheaf on Shx (G) for K sufficiently small by [Mil90a]. As usual, the invertible sheaf w(®®)
on Shi(G) has a canonical model over L.

We define the space of holomorphic Hilbert modular forms of level K with coefficients in
L to be

(2.2.2) Mg (K, L): = H(Shg(G)p,w® )®QShK<G))

Note here that the canonical bundle Qgh accounts for a parallel weight two automorphic
kx(G)

line bundle; so our definition is equivalent to the usual notion of holomorphic Hilbert modular
forms. (In fact, we will see later that our formulation is more natural in various ways.)
Explicitly, an element of My (K, C) is a function f(z,g) on ((hF)¥ =, G(A>)) such that

1. f(z,g) is holomorphic in z and locally constant in g; and
2. one has f(z,gk) = f(z,g) for any k € K, and

Crzr T kr
(1)) = ( 11 (iﬁk}g)ﬂz,g),

TEX 0o det('%')

where v € G(Q), and v, = (ZT ZT> € GL2(R) is the image of v via G(Q) —

GLy(F ® R) 5 GLy(R), and y(z) = (22=fbe)
We denote by S, (K, L) C M) (K, L) be the subspace of cusp forms. For each
g € G(A>) and open compact subgroups K, K’ C G(A*) with g~ K’g C K, by construction,
there exists a natural isomorphism of coherent sheaves on Shg/(G):

o] (@) = ),

Together with the map , one deduces a map S ) (K, L) = Sgu)(K’, L). Passing to
limit, one obtains a natural left action of G(A®) on S, ) (L) = i Sk,w) (K, L), such that
S(k,w) (K, L) is identified with the invariants of S(j.,)(L) under K. Let &/} ., be the set of
cuspidal automorphic representations m = 7y ® 7o, of GL2(AF), such that each archimedean
component w, of m for 7 € X, is the discrete series of weight k, and central character
x +— %2, Then we have canonical decompositions

S (C) = P 7 and S (K,C) = D (7)) K
T=T® @ o0 EX ks, w) T=T® QMoo EX (k. w)

where 7 denotes the finite part of =.
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2.3. Moduli interpretation and integral models. — Recall that p is a rational prime
unramified in F'. We consider level structures of the type K = KPK,,, where K? C G(A>P)
is an open compact subgroup, and K, is hyperspecial, i.e. K, ~ GL2(Of ® Z;). For every
finite place v, we denote by K, C GLa(F,) the v-component of K. We will use the moduli
interpretation to define integral models of Shx (G), for sufficiently small KP.

We start with a more transparent description of Shi (G)(C). The determinant map det :
G — Resp/q(Gy) induces a bijection between the set of geometric connected components of
Shx (G) and the double coset space

LK) = F AR/ det(K),

where F}* denotes the subgroup of F* of totally positive elements. Since det(K) C
oo O, there is a natural surjective map cd(K) — cf, where cl} is the strict
ideal class group of F. The preimage of each ideal class [¢] is a torsor under the group
I:= (’)I?/det(K)(’)§+.

We fix fractional ideals ¢q, - -  Ont coprime to p, which form a set of representatives of
clf. For each ¢ = ¢j, we choose a subset [¢]Jx = {g;|i € I} C G(A™) such that the
fractional ideal associated to every det(g;) is ¢ and {det(g;)|i € I} is a set of representatives
of the pre-image of ¢ in ¢/} (K). By the strong approximation theorem for SLo f, we have
G(A>®) = Hcecljg Hyepx G(Q)T¢;K, where G(Q)T is the subgroup of G(Q) with totally
positive determinant. This gives rise to a decomposition

Shi(G)(C) = G(Q)M\b7> x G(A™)/K = [] Shi(G)(C),

cEcl;

(2.3.1)  where Sh(G)(C) = [ T(g:K)\b™> with I(g;, K) = g:Kg; ' nG(Q)*.
9i€ldx

We note that Shi (G) does not depend on the choice of the subset [¢]x = {g; : ¢ € I}, and

descends to an algebraic variety defined over Q. We will interpret Sh% (G) as a moduli space

as follows.

Assume that ¢ is coprime to p. Let ¢ be the cone of totally positive elements of ¢. Let S

be a connected locally noetherian Z,)-scheme.

— A Hilbert-Blumenthal abelian variety (HBAV for short) (A,¢) over S is an abelian
variety A/S of dimension [F : Q] together with a homomorphism ¢ : Op — Endg(A)
such that Lie(A) is a locally free (Og ®z Op)-module of rank 1.

— If (A, ) is an HBAV over S, then AV has a natural action by Op. Let Hom%};m(A, AY)

denote the group of symmetric homomorphisms of A to AV, and Hom%y;n(A, AV)T be
the cone of polarization. A c-polarization on A is an Op-linear isomorphism

At (e, ct) 5 (Homgy™ (A, AY), Homgy™ (A4, AY) )
preserving the positive cones on both sides; in particular, A induces an isomorphism of
HBAVs: A®p, ¢~ AY.
— We define first the level structure for K = K(INV), the principal subgroup of GL2(OF)
modulo an integer N coprime to p. A principal level-N (or a level-K(N)P) structure on

a c-polarized HBAV (A, (, A) is an Op-linear isomorphism of finite étale group schemes
over S

QN (OF/N)®2 1} A[N]

Note that there exists a natural Op-pairing A[N|x AV[N] — un®z05". Its composition
with 1 ® X gives an Op-linear alternating pairing A[N] x A[N] — puny ®z ¢*. Hence, ay
determines an isomorphism

I/(QN) : OF/NOF = /\?QF((QF/]\/V)692 = A?QFA[N] = UN Kz .
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For a general open compact subgroup K C GLQ(@F) with K, = GL2(Of ® Zp), we
define a level-K? structure on (A, ¢, A) as follows. Choose an integer N coprime to p
such that K(N) C K, and a geometric point s of S. The finite group GL2(Or/N) acts
naturally on the set of principal level-N structures (ans, v(ans)) of As by putting

9: (ans v(ans)) = (anz o g,det(g)v(ans)).
Then a level-KP structure agr on (A, ¢, \) is an 71 (S, 3)-invariant K /K (N )-orbit of the
pairs (ans, v(ans)). This definition does not depend on the choice of N and 5.

We consider the moduli problem which associates to each connected locally noetherian
Zp)y-schemes S, the set of isomorphism classes of quadruples (A, 1, A\, akr) as above. If KP
is sufficiently small so that any (A,:, A\,axr) does not admit non-trivial automorphisms,
then this moduli problem is representable by a smooth and quasi-projective Z,-scheme
M [RaT8), ICh90]. After choosing a primitive N-th root of unity (x for some integer N

coprime to p such that K(N) C K, the set of geometric connected components of M. is in
natural bijection with [Ch90l 2.4]

Isom(Op, Op ® ¢*)/ det(K) ~ H Op. / det(K,).
v|N

Let OE 4 be the group of totally positive units of Op. It acts on Mj as follows. For
€€ (’)E+ and an S-point (A, ¢, A\, akr), we put € - (A, i, \,axr) = (A,1,1(e) o A\, agr). We
point out that this action will take v(ans) to ev(ans). We will denote by (A4, ¢, A, @kr) the
associated O , -orbit of (4, ¢, A, axr). The subgroup (K NO})? acts trivially on M, where
Oy is considered as a subgroup of the center of GL2(A). Indeed, if e = u? with u € Knoy,
the endomorphism ¢(u) : A — A induces an isomorphism of quadruples (A, ¢, \, axr) ~
(A 1,t(€) o A\, agr). Hence, the action of O§7+ on MY, factors through the finite quotient
Op /(KN O3)?. The equivalent classes of the set of geometric connected components of

M under the induced action of OF /(K NOF)? is in bijection with (5;/ det(K)Op .,

the stabilizer of each geometric connected component is (det(K)NOF ) /(K NOf)%.

and

Proposition 2.4. — There exists an isomorphism between the quotient of MS-(C) by
Op /(KN 03)? and Shi (G)(C). In other words, Shy (G)(C) is identified with the coarse
moduli space over C of the quadruples (A, 1, \, &xr). Moreover, if det(K)NOL | = (KNOZ)?,
then the quotient map M$. — Shix(G)(C) induces an isomorphism between any geometric
connected component of MS, with its image.

Proof. — We fix an idele a € A%O’X whose associated fractional ideal is ¢. Let A C (’3; be a
complete subset of representatives of O/ det(K), and let I C A be a subset of representa-

tives of @;/det(K)O;Jr. We put gs = <(50a (1]> for 6 € A, and I'(g, K) = gKg~ ' N G(Q)*

and I'!(g, K) = T'(g, K) N SLy(F). Then it is well known that
Mi(C) = [ T" (g, K)\b™
deA

The case for K = K(N) is proved in [Ra78] or [Hil, 4.1.3], and the general case is similar.
For e € OF ., it sends a point I''(gs, K)z in I'(gs, K)\b>> to T''(gse, K)ez. Hence the

quotient of M (C) is isomorphic to

TT (0, KN\ /et () 0 OF )/ 0 O ).

oel

On the other hand, taking [c]x = {gs,d € I}, one gets (2.3.1): Shi;(G)(C) = [Is¢; (g5, K)\b>.
Note that for each 6 € I, I'(gs, K)\h™> is identified with the natural quotient of
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I'(gs, K)\b>> by the group
F*T(gs, K) /T (g5, K)F* ~T(gs5, K)/(F* NT(gs, K))T' (g5, K).

By the strong approximation for SLy r, one sees that det : I'(gs, K) — det(K) N OZMF is
surjective. Hence, the group above is isomorphic to (det(K) N Of,)/(K N Of )% The
Proposition follows immediately. O

We define Shi(G) to be the quotient of M by the action of the finite group det(K) N

Fa/ (KN 07)?, and we put Shg(G) = e+ () Shic(G). In general, this is just a
coarse moduli space that parametrizes the quadruples (A, :, \, &x»). However, we have the
following:

Lemma 2.5. — For any open compact subgroup KP C G(A*P), there exists an open com-
pact normal subgroup K C KP? of finite index, such that det(K"?K,) N O, = (KPK,N
0%)?.

Proof. — By a theorem of Chevalley (see for instance [Ta03, Lemma 2.1]), every finite index
subgroup of O contains a subgroup of the form UNO;;, where U C O is an open compact
subgroup with U, = (’);v for all v|p. Therefore, one can choose such an open compact
U C det(K) such that U N (det(K) N OF") = UN (K NOF)? Let K’ C KP denotes the
inverse image of UP via determinant map. Then it is easy to check that this choice of K'P
answers the question. O

Remark 2.6. — Tn general, det(K)NOg , /(KNOF)? is non-trivial even for K7 sufficiently
small. For instance, if K = K(N) for some integer N coprime to p, then K N O is the
subgroup of units congruent to 1 modulo N, and det(K) N (9; s subgroup of K N Oy of
positive elements. By the theorem of Chevalley cited in the proof of the Lemma, we have
det(K) N Of , = KN Op for N sufficiently large, and hence det(K) N Of /(K N O5)? ~
(z./22,)F-Q-1,

From now on, we always make the following
Hypothesis 2.7. — KP? is sufficiently small and det(K) N Of = (KN OF)>.

By Lemma this hypothesis is always valid up to replacing KP by an open compact
subgroup. Under this assumption, Proposition shows that each geometric connected
component is identified with a certain geometric connected component of M$.. Therefore,
Shx (G) is quasi-projective and smooth over Zpy- We can also talk about the universal
family of HBAV over Shi (G).

Remark 2.8. — In the construction of Shi (G), the set of representatives {cy, - - - ,ch;} of

cl} are assumed to be coprime to p. This assumption is used to prove the smoothness of each
M}g, hence that of Sh?{(G) using deformation theory. However, dropping this assumption
will not cause any problems in practice. Suppose we are given a quadruple (A, ¢, A\, akr)
over a connected locally noetherian Z,)-scheme S, where A : q = Hom%y;n(A, AVY) is an
isomorphism preserving positivity for a not necessarily prime-to-p fractional ideal q. Then
there exists a unique representative ¢; and a { € F such that multiplication by ¢ defines
an isomorphism € : ¢; — q. We put N = £o \. Let (ans,v(ans)) be a representative of
isomorphisms in the level- K7 structure agr for some integer N coprime to p with K(N) C K.
We define oy, to be the K /K (N)-orbit of the pairs (ans,§ - v(ans)), where € - v(ans) is
the composite isomorphism

v(a ,E) * *
Op/NOp —22 UNs Rz, 5, UN Rz, €.
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We then get a new quadruple (A,¢, N, o/, ). Since & is well determined up to Op ., the
OF -orbit (A, 1, X, &,) well defines an S-point in Shg (G). By abuse of notation, we also

use (A, 1, \, agr) to denote this point.

2.9. Hecke actions on Shi (G). — Suppose we are given g € G(A*P), and open compact
subgroups K?, K'P C G(A®P) with g~!K’?g C KP. We let K = KPK,,, K' = KK, with
K, = Kz/> = GL2(OF ®z Zp). Then we have a finite étale map

(2.9.1) [g] : ShK/(G) — ShK(G)

that extends the Hecke action (2.1.1)). If K? and g are both contained in GLQ(@;—P)), the
morphism [g] is given by (A, ¢, X, agw) — (A, 1, \, [ o glk), where [ o g]i denotes the
KP-level structure associated to ag» o g. To define [g] in the general case, it is more natural
to use the rational version of the moduli interpretation of Mg as in [Lal3al, 6.4.3], i.e. we
consider My as the classifying space of certain isogenies classes of HBAVs instead of the
classifying space of isomorphism classes of HBAV. For more details on these two types of
moduli interpretation for Mg and their equivalence, we refer the reader to [Lal3al Section
1.4] and [Hi, Section 4.2.1].

2.10. Compactifications. — Let K = K?K, C G(A*) be an open compact subgroup
with K, hyperspecial and satisfying Hypothesis We recall some results on the arithmetic
toroidal compactification of Shi (G). For more details, the reader may refer to [Ra78,[Ch90]
and more recently [Lal3al Chap. VI].

By choosing suitable admissible rational polyhedral cone decomposition data for Shx (G),
one can construct arithmetic toroidal compactifications Sh'*(G) satisfying the following
conditions.

1. The schemes Shi'(G) are projective and smooth over Z,).

2. There exists natural an open immersion Shy (G) < Sh''(G) such that the boundary
Sh'?"(G) —Shg(G) is a relative simple normal crossing Cartier divisor of Shi2"(G) with
respect to the base.

3. There exists a polarized semi-abelian scheme A% over Sh'*(G) equipped with an action
of Op and a KP-level structure, which extends the universal abelian scheme A on
Shx (G) and degenerates to torus at cusps.

4. Suppose we are given an element g € G(A*?), and open compact subgroups K?, K'P? C
G(A>®P) with g7 ' K'?g C KP. We put K = KPK,, K' = K’pK]’D with K, = KIQ =
GL2(OF ®z Zy). Then by choosing compatible rational polyhedral cone decomposition

data for Shx (G) and Shg(G), we have a proper surjective morphism [Lal3al 6.4.3.4]:
(2.10.1) [9]*" : Sh'(G) — Shi2*(G),

whose restriction to Shg/(G) is defined by the Hecke action of g. Moreover,
[g]t°" is log-étale if we equip with Sh'(G) and Sh''(G) the canonical log-structures
given by their toroidal boundaries. Each double coset KPgKP? with g € GLg(AP)
defines an extended Hecke correspondence

(2.10.2) Shigh, k.1 (G)
ShiZ"(G) ShiZ"(G),
which extends (2.1.2)).
We put w = 6*(Q,l4w/8ht°f(c))’ where e : Shi?"(G) — A% denotes the unit section. It
K
is an (OSh'}?r ®z Op)-module locally free of rank 1, and it extends the sheaf of invariant 1-
differentials of A over Shg (G). We define the Hodge line bundle to be det(w) = A% w.

Sht}gr(G) -
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Following [Ch90|] and |[Lal3al Section 7.2], we put
Shi(G) = Proj(@ T(Shig"(G), det(w)®™)).

n>0
This is a normal and projective scheme over Z,), and det(w) descends to an ample line

bundle on Shi (G). Moreover, the inclusion Shy(G) < Sh¥%'(G) induces an inclusion
Shy (G) — Shi(G). Although Sh'?"(G) depends on the choice of certain cone decom-
positions, Sh}(G) is canonically determined by Shg(G). We call Sh}(G) the minimal
compactification of Shy(G). The boundary Shi (G) — Shg(G) is finite flat over Z,), and

its connected components are indexed by the cusps of Shx (G).

2.11. de Rham cohomology. — Let FS? be the Galois closure of F' in Q. Let R be an
Opcal (p)-algebra. In practice, we will need the cases where R equals to C, a finite field k of
characteristic p sufficiently large, or a finite extension L/Q, that contains all the embeddings
of F' into @p, or the ring of integers of such L. Let X be the set of the g distinct algebra
homomorphisms from Op to R. Hence, we have ¥, = X in this notation. To simplify the
notation, we put Shg r := Shg(G)r and Shi2'z := Sh"(G)g, and we write Shg(C) and
Sh'2"(C) for the associated complex manifolds respectively. For a coherent (OSh?’rR ®z OF)-
module M, we denote by M = ®T€ER M. the canonical decomposition, where M, is the
direct summund on which Op acts via7: Op - R — OShtor .

Let D denote the boundary Shto}r — Shg g, and QShtor /R(log D) be the sheaf of 1-

differentials on Shtor over Spec(R) with logarithmic poles along the relative normal crossing
Cartier divisor D. Usmg a toroidal compactification of the semi-abelian scheme A% on Sh}?fR,
there exists a unique (OSh;?’rR ® Op)-module H! locally free of rank 2 satisfying the following
properties [Lalll 2.15, 6.9]:

1. The restriction of H! to Shx g is the relative de Rham cohomology ’HéR(A/ Shx r)
of the universal abelian scheme A. Actually, H! is called the canonical extension of
H1x(A/Shk g) in [Lalll 6.9].

2. There exists a canonical Op-equivariant Hodge filtration

0— w— H' — Lie((A%)Y) = 0.
Taking the T-component gives
(2.11.1) 0w, - H - A2HHY 2wt =0

The line bundle A2(H1) can be trivialized over Sh} K. using the prime-to-p polarization,
but we will not need this fact.
3. There exists an Op-equivariant integral connection with logarithmic poles

vV H ! ®Oshtor QShm /R(log D),
which extends the Gauss-Manin connection on H}g (A/Shg g).
4. Let KS be the map

KS:we H' Y 1 9o QL

Shtor Shtor /R(log D) — Lie((Asa)V) ®O Ql

smior, °Shig'y, /r(log D).

It induces an eztended Kodaira-Spencer isomorphism |[Lal3al, 6.4.1.1]

(2.11.2) Kod : QShm (logD) = w ®(0 Osnign, 20r) Lie A~ P 9,
TEER
where Q. = w2 ® A2(HL)7L. For J C Zg, we put Q7 =@, ., Q2.
Let A7 (Z[XR]) be the exterior algebra of the Z-module Z[Xg], and (e;)rex,, denote

the natural basis. We fix an order on ¥p = {r,...,75}. We put ey =1 and e;j =
eiy A -+ A ey, for any subset J = {7,..., 7} with i1 < --- < 4;. We call these
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ey Cech symbols. Using them, we can write more canonically Kod : Qéhmr (logD) ~
K,R

@TEZR Q_e;. It induces an isomorphism of graded algebras

° J
(2.11.3) Upeor, /r(108D) = P QShm _pllogD) =~ (P Qe
0<j<g JCYR
2.12. Integral models of automorphic bundles. — For a multiweight (k,w), we put

FE) = (NP2 @ Sym* PHL, and FEY): = Q) FlEw),

TEXR
The extended Gauss-Manin connection on H! induces by functoriality an integrable connec-
tion

v - (k w) N (g'(k w) X Qshtor (IOg D)

By considering the associated local system (.Z&©)V=0 on Shg(C), it is easy to see that
(FEw) ) on Sh}?roF, » gives an integral model of the corresponding automorphic bundle
’ (P

on Shg (C) considered in Subsection Similarly, we define a line bundle on Sh}?fR

wht): = Q) ((A?Hb%’” @wﬁf—Q),

TEER

which is an integral model of the automorphic bundle ( . WE define the space of Hilbert
modular forms of weight (k,w) and level K with coeﬁﬁczents in R to be

M) (K, R): = H(ShiZs, w®™) @ QghmR (log D)),

and the subspace of cusp forms to be

Sy (K, R): = H(ShiZp, w®™) @ Qgh%TR).
By Koecher’s principle, one has My, .,y (K, R) = HY(Shg g, wEw) ®Qghx,g)’ which coincides
the definition when R is a subfield of C.
Suppose we are given g € G(A*P), and open subgroups K7, KP C G(A*P) with
g 'K"g C KP. Let K' = K?K} and K = Kpr with K, = K, = GLy(Of ® Z;). Let
[g]tor : Sh'% r — Shi¥'s denote the morphism (2 . Then according to [Lal3a, Theorem
2.15(4)], we have canonical isomorphisms of vector bundles on Shtor

(2121) [g]ton*(ﬁ\(kvw)) i y(kvw)7

compatible with the connection V on .Z &%) and the Hodge filtration to be defined in Sub-
section [2.14] Similarly, we have an isomorphism on Shtor R [g]tor (W) = k),

Remark 2.13. — Intuitively, the bundle #! on Sh}?fR “should be” the automorphic vector
bundle corresponding to the representation St, of G¢ = (GLQ’(C)EOO in the sense of [Mil90al,
Chap. III]. But actually the representation St does not give rise to an automorphic vector
bundle, because it does not factor through the quotient group G% as explained in loc. cit..
Similarly, a line bundle of the form

Q) (WH)™ @ wh)
TEEOO

with m,,k, € 7Z, is an automorphic vector bundle in the sense of loc. cit. if and only if
2m; + kr = w is an integer independent of 7.
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2.14. De Rham complex and Hodge filtrations. — We denote by DR®(.Z&®)) the
de Rham complex

v

Flhw) ¥, gkv) g ol logD) % ... Ly Flkw) g

Shtor /R( Shtor /R(IOg D) *

For a coherent sheaf # on Sh}?fR, we denote by £ (—D) the tensor product of L with the
ideal sheaf of D. For 0 <4 < g — 1, V induces a map

v: ZzE (D )@QShmr /R(logD)%y(Ew)( D) ® QZS;{M _p(logD).

We denote by DRS(.Z®w) the resulting complex by tensoring DR®(.Z &) with
OShtor (—-D).

The complex DR*(.#®&®)) (and similarly for DRS(.Z®®))) is equipped with a natural
Hodge filtration. Let (w,,7,) be a local basis of H1 adapted to the Hodge filtration .
We define F"?T(E’w) to be the submodule generated by the vectors

w —

{(wT/\nT) "W ®17;21:n— T <i<k —2}

if woke <p < wohr 4k — 2 and

(kw) . ks
(2141) F'fltgz(k,w) — J\T ifn g w 5
i 0 ifnzw_kT+kT_1.

The filtration does not depend on the choice of (wr, 1;), and the graded pieces of the filtration
are
(/\27_[71_)w—n—2 ® g72_71—&-2—111 ifne [wEkT’ wEkT _ 2]

0 otherwise.

Grp 7 lEw) ~ {

Now consider the sheaf .Z &%) We endow it with the tensor product filtration induced

by (F"ﬁ‘}(&w),n € Z) for T € L. The F-filtration on .Z &) satisfies Griffiths’ traversality
for V, i.e. we have

V :Frg k)  prol glkw) g ol log D).

Shtor /R(
We define F*DR®*(.# %)) as the subcomplex F*~*.% &) @ Q'hmr/R(log D) of DR® (.7 (w)),

and call it the F-filtration (or Hodge filtration) on DR®*(.Z&®)).  The F-filtration on
DR*(.Z &) induces naturally an F-filtration on DRS(.% &),

2.15. The dual BGG-complex. — Assume that (k; — 2)! is invertible in R for every
7 € Yg. It is well known that DR®(.Z®&®)) (resp. DR2(.F®w)) is quasi-isomorphic to a
much simpler complex BGG®*(.# &) (resp. BGGS(.F &), called the dual BGG-complexes
of Z#&w) Here, we tailor the discussion for later application and refer the reader to [Fa82,
§3 and §7] and [LP11] for details.

The Weyl group of Gr = (Resg/g GL2)r is canonically isomorphic to Wg = {£1}*®. For
a subset J C Xg, let e; € W = {£1}*% be the element whose T-component is —1 for 7 ¢ .J
and is 1 for 7 € J. In particular, ex, is the identity element of Wg. We define

(2.15.1) geJ(E,w); - <(®( A2y )w+k7 2®g72.7k7) ® (®( AZH1 ) ®wk7 2)>

T¢J TeJ
This is an integral model of an automorophic vector bundle (See Remark [2.13)). For any
0<j<g, weput

(2.15.2) BGG/H(FEW) = @B w7 EW) @ Qe

JCSR
#J=j
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There exists a differential operator &/ : BGG/ (.FEw)) — BGGJH( 7 (Ew)) described as
follows: for a local section f of w® &) @ Q7 C BGGJ(,?(* ) with #J = j, we define

(2.15.3) & fey— Z @To,kfo_l(f)em Ney.
T0¢J
Here, O, -1 is a certain differential operator of order k,, — 1 (See Remark (1))

and it is an analog of the classical theta operator. We define a decreasing F-filtration on
BGG*(.Z Ew) by setting:

FnBGGO( (k w) @ QEJ(E7W) ®QJ eJ[—#J]

JCX R
ny>n

where ny: =3 (kr = 1)+ o5, w_TkT It is easy to see that F"BGG®(.Z &) is stable
under the differentials d’, and the graded pieces

(2.15.4) GipBGG(ZE) = B w ) @ Q7 e[

JCYR
nj=n

have trivial induced differentials.
Finally, the differential d’ preserves cuspidality, i.e. it induces a map

& : BGGI (FEw))(~D) — BAGI!(FEw))(_D).

we will denote by BGGS(.Z &) the resulting complex. The F-filtration on BGG®(.% &)
induces an F-filtration on BGGS(.Z®®)) and the graded pieces Grf(BGGS(.ZEw)) are

given by (2.15.4) twisted by OSh}?,rR(_D)'

Theorem 2.16 (Faltings; cf. [Fa82] §3 and §7, [FC90|Chap. §5, [LP11] §5)
Assume that (k; — 2)! is invertible in R for each 7 € ¥ . Then there is a canonical
quasi-isomorphic embedding of F-filtered complexes of abelian sheaves on Shtor

BGG*(ZEw) — DR (F &),
Similarly, we have a canonical quasi-isomorphism of F-filtered complezes

BGGe(FEw)) s DRY(FEW),

Remark 2.17. — (1) It is possible to give an explicit formula for the operator 6707;%4
appearing in (2.15.3)). Let f be a local section of w7 EW) @ O with g-expansion

f=> actt
3
tor

at a cusp of Shy'p, where { runs through 0 and the set of totally positive elements in a
lattice of F'. Using the complex uniformization, one can show that

67’071%—071(-](.) — 2 | ZT kTO

The denominator (kr, —2)! explains the assumption that (k, —2)! is invertible in R for every
7. The main results of this paper do not use this formula on g-expansions.

(2) The embedding BGG®(.Z&Ew)) < DR*(.Z &%) is constructed using reprensentation
theory, and the morphisms in each degree are given by differential operators rather than
morphisms of Ogpter-modules (cf. [Fa82l §3] and [FC90, Chap. VI §5]). When k; =

for all 7 € ¥, the embedding BGG*(.F Ew)) — F#Ew) gplits the Hodge filtration on H!
globally as abelian sheaves over Sh}grR, and it is certainly not Ogptor -linear.
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(3) Assume R = C. Let L&) denote the local system .Z (&%)(C)V=0 on the complex man-
ifold Shy (C), and j : Shg(C) < Sh"(C) be the open immersion. Then by the Riemann-
Hilbert-Deligne correspondence, DR®(.# %)) resolves Rj, (L&™)), and DRS(.% &%) resolves
the sheaf j;(L&®)) [FC90, Chap. VI. 5.4].

3. Overconvergent Hilbert Modular Forms

3.1. Notation. — We fix a number field L C C containing 7(F') for all 7 € ¥,. The fixed

isomorphism ¢, : C = @p determines a p-adic place p of L. We denote by L, the completion,
Oy, the ring of integers, and kg the residue field. The isomorphism ¢, also identifies Y, with
the set of p-adic embeddings Homg(F, @p) = Homy(Op, ko). The natural action of the
Frobenius on Homz(OF, ko) defines, via the identification above, a natural action on ¥.:
7+ o o 7. We have a natural partition: Y., = Hpezp Yo /p» Where Yo, consists of the 7’s
such that ¢, o 7 induces the place p. For any O -scheme S and a coherent (Og ® Op)-sheaf
M, we have a canonical decomposition M = 697'6200 M., where M is the direct summand
of M on which Of acts via 7: O = O, — Og.

Unless stated otherwise, we take the open compact subgroups K = KPK,, C G(A*) so that
K, = GL2(Of ® Zy,) and that K? satisfies Hypothesis then the corresponding Shimura
variety Shy (G) is a fine moduli space of abelian varieties over Z,). We choose a toroidal
compactification Sh'*(G), and let Shi; (G) be the minimal compactification as in Subsection
To simplify notation, let Xg, X%, and X3 denote the base change to W(kg) of
Shy(G), Shi'(G), and Shj(G), respectivley. Let Xx, X' and X} be respectively their
special fibers. Denote by X' the formal completion of X" along X", and X%, the
base change to L, of the associated rigid analytic space over W(ko)[1/p]. For a locally
closed subset Uy C X, let |Uy[ be the inverse image of Uy under the specialization map
sp : X, — X' Similarly, we have the evident variants Xj., Xj, for the minimal
compactification X*. If there is no risk of confusion, we will use the same notation D to
denote the toroidal boundary in various settings: X% — X and X" — Xp.

3.2. Hasse invariant and ordinary locus. — Let A}® be the semi-abelian scheme over
X1 that extends the universal abelian variety Ay, over Xx. The Verschiebung homomor-
phism Ver : (AZ‘;)(I’) — Aj? induces an Op-linear map on the module of invariant differential
1-forms:
h: w — Q(p),
which induces, for each 7 € ¥, (identified with the set of p-adic embeddings of F'), a map
hr:tw, — gﬁ_lo_r. This defines, for each 7 € X, a section
hr EHO(X;?raQP ®£:1)-

o~ lor

We put h = ®rexnhr € DX, det(w)P1). We call h and h, respectively the (total) Hasse
twvariant, and the partial Hasse invariant at 7.

Let Yi and Yk » be the closed subschemes of X}?r defined by the vanishing locus of A
and h,. Each Y - is reduced and smooth, and Y = |J, Yk ; is a normal crossing divisor in

X1er [GO00]. We call the complement X;?r’ord = X" — Yk the ordinary locus. This is the
open subscheme of the moduli space X" where the semi-abelien scheme Ask% is ordinary.
We point out that Yx does not intersect the toroidal boundary D = X}?r — Xk.

Similarly, for the minimal compactification Xe put X}z’ord = X} — Yk. Since det(w)

is an ample line bundle on X7, (See Subsection [2.10)), X;gord is affine.

3.3. Overconvergent Cusp Forms. — Let j : ]X}?r’ord [— %g‘gfﬁg be the natural inclusion

of rigid analytic spaces. When it is necessary, we write jx instead to emphasize the level K.
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For a coherent sheaf F on f{}?frig, following Berthelot [Be96], we define jTF to be the sheaf

t . t
on X [?frig such that, for all admissible open subset U C X I?ﬁ.lg, we have

LU, j'F) = imD(V N U, F),
14

where V runs through a fundamental system of strict neighborhoods of | X "™ in Xl An

explicit fundamental system of strict neighborhoods of ]X;?r’ord[ in .’{}?frig can be constructed

as follows. Let E be a lift to characteristic 0 of a certain power of the Hasse invariant
h. For any rational number r > 0, we denote by ]X}?r’ord [ the admissible open subset of
%t[‘()frig defined by |E| < p~". Then the admissible open subsets ]X}?r’ord[T with » — 0T
form a fundamental system of strict neighborhoods of ] X 1"°"[ in n X3, For the minimal
compactification X%, we can define similarly admissible open subsets ]X}k(’ord [, which also
form a fundamental system of strict neighborhoods of ]X}Ord[ in X%, . We again point out

rig”
that ] X 2], are affinoid subdomains of X% rige While Jx oo are not.
For a multiweight (k,w), we define the space of cuspidal overconvergent Hilbert modular
forms (overconvergent cusp forms for short) with coefficients in L, to be
ST (K? L@) L= Ho(x}?rrlg7 j w(k w) ® Qgtor

(k) xien

/Lp)'

When there is no risk of confusions, we write S’( w) for S(k w) (K,Ly).

The space of overconvergent cusp forms contains all classical cusp forms with Iwahoric
level structure at p: we denote by Iw, = Hp‘p Iwy, C GL2(OF ®z Zyp) the Iwahoric subgroup,
where

(3.3.1) Iw, = {g = <CCL Z) € GL2(OF,) | c=0 mod p}.

Let S(j,w) (KPIwy, L) be the space of classical cusp forms of multiweight (k,w) and of prime-
to-p level KP and Iwahoric level at all places above p. By the theory of canonical subgroups,
there is a natural injection

L Sy (KPTwy, Ly) = Sl ) (K, Ly).

An overconvergent cusp form f € ST )(K , L) is called classical, if it lies in the image of ¢.

(kyw
For each subset J C Y, recall that e; € {1}*> is the element which is 1 at 7 € .J and
—lat ¢ J. We put

(3.3.2) st

GJ(IC ’LU) (K7 L@) = thO(U, QGJ(EJU) ® QJ(_D))’
. U

where w &) is defined in ([2.11.3) and Q7 is defined just below ([2.11.3). As usual, when
the context is clear, we write SEJ(]C w) = S:J(k w)(K, L). In particular, when J = ¥ we

have 5’ ) = S(k w)"
We remark that, by Kodaira-Spencer isomorphism ([2.11.2f), we can identify S:J (k,10) with
s

(K )’ where k), = k; if 7 € J and k. =2—k, if 7 ¢ J. But we prefer to use (3.3.2)) because
keeping the differential forms reminds us the sheaf is part of the dual BGG complex.

Recall that the dual BGG- complex BGG:(# Z (&, “’)) is quasi-isomorphic to the de Rham
complex DR®(.Z &%) (Theorem [2.16). By applying 51 to BGG®(.Z %)) and taking global
sections, we get a complex € of overconvergent cusp forms concentrated in degrees [0, g]
with

(3.3.3) = D S (K Loes.

JCEe
#J=J
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Here, e; is the symbol introduced in (2.11.3) in order to get the correct signs, and the
differential map &’ : €5 — ‘5[]{“ is given by (2.15.3)).

3.4. Rigid cohomology of the ordinary locus.— We denote by jTDR'(ﬁ(E’“’)) the
complex of sheaves on %E?gr by applying jf to each component of DRS(.% FEw)) We define
RTyig(Xi"", D FE)) 1= RI (X}, DR (F )

as an object in the derived category of L-vector spaces, and its cohomology groups will be
denoted by

Hig (X3, D5 ) = HY (X2, 5 DR(F ),

where the left hand side denotes the hypercohomology of the complex jTDRS(.% (E’“’)). In

Section 4, we will interpret Hp, (Xj torord By, (Ew)) as the rigid cohomology of a certain

tor,ord
isocrystal over the ordinary locus X 2"

and with compact support in D C X',

Theorem 3.5. — The object RFrig(X;?r’ord, D;ﬁ(&w)) in the derived category of L-vector
spaces is represented by the complex €y defined in (3.3.3). In particular, we have an iso-
morphism

HE (X", 0, FE) = T ) > 7 O a(S] )

rig €500\ {7} (Ksw)
TEEoo

The following Lemma is due to Kai-Wen Lan.

Lemma 3.6 ([La13b] Theorem 8.2.1.3). — Let 7 : X'} — X1, be the natural projec-
tion. Then for any subset J C Yo, we have Rim, (ws & “’) ®Q‘]( D)) =0 for ¢ > 0.

Proof of Theorem — Since the complex BGGS (.7 F (& “’)) is quasi-isomorphic to the com-

pact supported de Rham complex DR®(.Z &%) we have

RTyig (X307, D; 7B = RO (X1, i1 BGGE (7 E))) = RD(X%,, Rr.jTBGGE(F &),

rig»

Since the boundary D C f{ﬁf’gr is contained in the ordinary locus ]X;?r’ord[

jTRm.. By Lemma we have RmBGGS(.FEW) = 7, BGGS(FEW). Let | X1, for
rational 7 > 0 be the strict neighborhoods of | X 7 Ord[ considered in Subsection Since the

] X527’ are affinoid and form a fundamental system of strict neighborhoods of ] X 32°™[ in

X% ., we deduce that

rig»

, we have ijT =

Hn(:{;(,rigvaﬂ-*QeJ(&w) ® Q‘](—D))

0 for n # 0,
ling H™ ()X 327, mw &) @ 97 (-D)) = { t
ﬁ SEJ(E,w) for n = 0.
It follows that
RI (X g 'm0 B 0 07(-D)) = 8T,

and hence
RT4ig(X (7", Dy DRE(F &) = R (X pig 5 7 BGGE(F EW))) = G

This finishes the proof of the theorem.
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3.7. Prime-to-p Hecke actions. — Let J(KP,L,) = Ly KP\G(A*P)/KP] be
the prime-to-p Hecke algebra of level KP. We will define actions of J#(KP?,L,) on

Hi (X torord iy, g7 (kw)) and on the complex € such that the actions are compatible via

Theorem [3.5]
Consider the double coset [KPgKP]. We put K'? = KP N gKPg~! and K’ = K'’K,,. By
choosing suitable rational polyhedral cone decomposition data, we have the following Hecke

correspondence ([2.10.2)):

Xior

m[i]”/ ma=[g]*"

Xt Xtor,
In view of the isomorphism ([2.11.3)), one has a natural map of complexes of sheaves
my: my \DRS(FZEW))  DRE(F &),

which is compatible with the F-filtration. For each J C Y., the sheaf we (Bw) & Q‘](—DK)
appears as a direct summand of GrgDR? (% F (&, w)) by Theorem m The morphism above
induces a map of abelian sheaves:

71';: W;l(gel](ﬁ,w) ® QJ(—DK)) N QGJ(E/U}) ® QJ(—DK/).

Here, to avoid confusions, we use subscripts to distinguish the toroidal boundaries Dg of
X% and Dk of Xt°¥ respectively. It is clear that, by construction, the resulting morphism
of BGG complexes

:my 'IBCGe(ZEw)) - BGGE (7 Ew))
is compatible with the natural quasi-isomorphic inclusion BGGS(.7 %)) <3 DR(.F kw)),

Lemma 3.8. — Under the above notation, we have qu,*(’)x?g = 0 for ¢ > 0, and
7717*((’)}(33;) is finite flat over Oxtor.

Proof. — The statement is clear over X, since 7 is finite étale there. Therefore, it is enough
to prove the lemma after base change 71 to the completion of X'%" along Dy = X% — X .
Then the morphism 7, over the completion is étale locally given by equivariant morphisms
between toric varieties, the results follow from similar arguments as in [KKMS| Ch. I
§3]. O

Corollary 8.9. — There exist natural trace maps Try, : Ry ,DRE(F &) — DRe(F k)
and

Try, : Ry« (ge"(ﬁ’w) ® Q‘](—DK/)) — wEY) g QJ(_DK)

for each J C ¥, such that the induced map Trr, on BGG'( Z (&, w)) is compatible with that
on DRY(F Z & w)) via the quasi-isomorphism of Theorem .

Proof. — By (2.12.1), each term M’ = DRZ(Z %)) or w7 &) @ Q7 (D) on X is the
pullback via m; of the corresponding object on X'%", i.e. M’ has the form M’ = 7f(M). By
the projection formula and Lemma above, we have Rmy (M') ~ M ®Ox3gr R']Tl’*(OXtKo5) =
M ®Oxt1?r
finite flatness of 7T1,*((9X§?;). O

7T17*OxtK05. The existence of the trace map Wl,*(OXtKoQ — Oxtor follows from the

We can describe now the action of the double coset [KPgKP] on HJ, (X xtorerd . g (kw))

and €. Since the partial Hasse invariants depend only on the p—lelSlble group asso-

ciated with the universal abelian scheme, it is clear that the inverse image of X" sord
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by both m and m are identified with X;o° ©rd " We define the action of [KPgK?] on
RI(Xf% Hg,j}(DR’(ﬁ(k “))) to be the composite map:

RT (X, /i DRE(F E))) —= RD (X} 5y 1 DR(F E)))

\ J/Trﬂ—l
[KPgKP].

RT (%? Trig? JKDR.(‘Q(E’UJ)))’

where Try, is induced by the trace map Try, : Rry «(DRE(F®w))) — DR(FEw). Taking
cohomology, one gets the actions of [K?gK?] on the cohomology groups Hp, (X’ torord 'y, gr(kw))
hence the action of J#(KP?, L) by linear combinations.

Similarly, for each J C Y., we define the action of [KPgKP] on S:J(@,w)(K? L) =

HO(R32,,. w5 © 7 (D)) to be

KLy 2 st (K, L) T 8t

[KPgK?].: S l ) K., Ly).

J(k, w)( J(k, w)(

Putting together all S () (K, L), one gets the action of [K?gKP] on the complex €. By

construction, this action is compatible with the action on H:lg(X tor,ord .D; (& w))

3.10. The operator S,. — We now define the Hecke actions at p. We start with the
operator Sy for p € ¥,. We define [wy] : X" — X' to be the endomorphism whose effect
at non-cusp points are given by

Spr (A, X ake) = (A®o, p71 VN, Gr),
where the induced structures on A®@p~! =2 A/A[p] are given as follows: The action /' by Op
on A® p~!is evident. The polarization X is given by
N ep? = Homsoy;l(A, AY) ®0op p? = Homsym(A ®op p L, (A®op p_l)v).

Finally, the level-K? structure ag» on A induces naturally a level KP-structure o/y, on
A®o, p~ L, since A and A®p, p~! have naturally isomorphic prime-to-p Tate modules. This
well defines a point (A ®o, p~1, ¢/, N, @) on Xk with the convention in Remark

The automorphism Sy, preserves the ordinary locus X - tor,ord , since A and A®p~! have iso-
morphic p-divisible groups and hence the same partial Hasse invariants. We have a canonical
isogeny

[wp]: A5 S;(Asa) — A% ®0F p—l’

with kernel A%*[p]. It induces a map on the relative de Rham cohomology [wwp]*: Sy HY — HE,
hence a morphism of vector bundles

[wp]*: Sy F W) 5 g (k)

compatible with all the structures. The morphism [w,]* on .F# (k) descends to X% and
induces a map on the de Rham complex

[wp]*; DRZ(S;{Q‘(E,W)) SN DR;(ﬁ(k’w))’

compatible with the F-filtrations. We define the action of Sy on H (X torord py. Z(kw)) g0
be the composite

*

Sy
DR (FE)) > HY (X0, 4 DRE(S; 7 5))

x \L[w)’]*

H* (X, 5TDRE(F E)))

(3.10.1) H* (X507
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*

Similarly, the morphism [wy]* on the de Rham complexes induces a map of the BGG-

complexes
[wp]* : BGGZ([WP]*Q(E’“’)) N BGGZ(g(E,w))'

Using this, one defines an action of S, on each S:](k ) (K, L) for J C ¥, such that its

resulting action on €% is compatible with that on H} (X;?r’ord, D; .7 (kw)),

rig
w,' 0
0 wgl ) ’

where w, € A%O’X is a finite idele which is a uniformizer of F}, at p and is 1 at other places.

In the classical adelic language, the operator Sy is the Hecke action given by (

tor

3.11. The p-canonical subgroup. — For a rigid point € X}2';, and 7 € X, Goren
and Kassaei defined in [GK09, 4.2] the T-valuation of x, denoted by v, (x), as the truncated
p-adic valuation of the 7-th partial Hasse invariant h,(Z), where Z denotes the reduction
modulo p of z. Then v, (z) is a well defined rational number in [0, 1], and x belongs to the
ordinary locus | X (2" if and only if v, (z) = 0 for all 7 € . Let 1 = (rg) € [0,p)™» with
rq € Q. Following [GKO09, 5.3], we put

X" = {2 € Xihig | vr(@) + prp-10r(2) < 7q VT € Sogyq}

Then we have | X2 =]X 12" for r = 0, and ]X "], form a fundamental system
of strict neighborhoods of ] X ("™ in X4, as rq — 0T for all g € X, We put | X4[,=

X i [N]XGE
Now we fix a prime ideal p € ¥, and choose r = (rq)4ex, as above with 0 < r, < 1. Goren-
tor,ord
s

Kassaei proved that there exists a finite flat subgroup scheme C, C A%*[p] over | X
called the universal p-canonical subgroup, satisfying the following properties [GKO09l 5.3,
5.4]:

tor,ord

1. Locally for the étale topology on | X, ”""[,, we have C, ~ Op/p.
2. The restriction of C, to the ordinary locus | X i7" is the multiplicative part of A%[p].
3. We equip A**/C, with the induced action of Op, polarization and KP-level structure.

The quotient isogeny my: A% — A% /C, over | Xi""[. induces a finite flat map

(3111) SOP : ]X;?r,ord [£_> ]X;?r,ord [z/

such that p* A% ~ A%2/C, together with all induced structures, where 1’ € [0,p)*r is
given by ry = pry and ry = rq for q # p. The restriction of ¢, to the non-cuspidal part

] X9, is finite étale of degree N /o).

tor,ord

In the sequel, for any point (A,:, A, &x») lying in the locus 1 X5 [, we denote by
C, C A[p] the p-canonical subgroup of A.
The isogeny 7, induces a map on the relative de Rham cohomology

(3.11.2) Ty gy = Hig (A 1X ) = Hig (A )X ) = 1

compatible with the Hodge filtration, the action of O, and the connections V on both sides.

3.12. Partial Frobenius Fr,. — Let (k,w) be a multiweight. The morphisms ¢, and
Ty oh(H') — H' induce a map of vector bundles on D

* * k k
- @py(,ﬁw) - g (kw)
compatible with all structures on both sides, and hence a morphism of de Rham complexes:

i DRY(¢ 7 Ew)) — DRe(F Ew)).
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We define Fry to be the composite map on the cohomology group

H*(]X;(Or,ord [217 DR;(ﬁ.(E’w))) (’DP H* (}Xtor OrdL DRQ 90*9 (k,w ))

X lw;

H* (X", DRY(F E1)).

Taking direct limit as » — 0T, one gets
(3.12.1) Fry: H* (X, JIDRE(F E)) — H* (X[, TDRE(F ).

We call Fry the partial Frobenius at p. To define the action of Fr, on overconvergent cusp
forms, we note that each w7 (kW) Q‘](—D)eJ for J C ¥ appears as a direct summand
of GrgDR2(F®Ew)). Since the m,-action on de Rham complexes is compatible with the
F-filtrations, it induces a map

m: ) © 07(—D) - W) @ 07(-D),

such that the resulting my : W;BGGZ(ﬂ(E’w)) — BGGS(F &) is compatible with the quasi-
isomorphism BGGS(.ZEw)) < DRS(FEw) Taking overconvergent sections, one gets a
composite map

HO(Xorerd],, werkw) @ 07 (D)) > HO( XM, yerbe) © 07 (—D))
T |
HO (]X;?r,ord [D gej(k,w) ® Q‘I(—D))

Letting r — 07, one gets the action of Fry on overconvergent cusp forms:

o
(K7 LKJ) Hp S:J(E,’UJ

By construction, these morphisms commute with the differential @’ in the complex Cres
and define an endomorphism of complexes Fry : €3 — €, which is compatible with the

Frp: S o) (K, Ly, ) 5y st oy (B L),

Frp-action on H*(X%2 rlg,jTDR‘(ﬁ(’“ ©))) via Theorem ﬁ
3.13. Study of ¢, over the ordinary locus. — The ordinary locus ]X}?r’ord[ is stable

under ,. The restriction of ¢, to ] X" can be defined over the formal model X",

The morphism ¢, induces a map on the differentials

(3131) SD SOP (Q tor ord (log D)) _> Q}{tOI‘,OYd (log D)
K
By (2.11.2]), we have Q;mr,ord (logD) ~ P, cx_ Q,¢r. For any q € ¥, we put
K

Q tor,ord IOgD @ Q +E7.

Xy
TeEm/q

This is the direct summand of Q;tor,ord(log D), where the action of O factors through OF,.
K
The action of p} preserves Q;tor’ord (logD)[q] for all q € X,,.
K

Lemma 3.14. — 1. The action of ¢, on Ol xorord (logD)[q] is an isomorphism for q #

p. On Q! xtor ora(logD)[p], in a suitable local basis, the action of ¢y is given by the
multzplzcatzon by p.



p-ADIC COHOMOLOGY AND CLASSICALITY 23

2. If we regard O xtorord 05 @ finite flat algebra over gop((’) tor ord ), then we have
[Fp:Qp], %
Tr(’pp (Oxggr,ord) gp poep Q@p(ox?r,ord).

To prove this Lemma, we need some preliminary on the Serre-Tate local moduli.
Let T : Spec(F,) — XO“d be a geometric point in the ordinary locus, and Az be the HBAV

at T. We denote by Oz the completion of the local ring Oxrorora - at 7. Let Defo, (Az[p™])

Xk W (Fp)’
be the deformation space of Az[p™], i.e. the formal scheme over W (F,) that classifies the
Op-deformations of Az[p™] to noetherian complete local W (FF,)-algebras with residue field
Fp. By the Serre-Tate’s theory, we have a canonical isomorphism of formal schemes

(3.14.1) Spf(Oz) = Defo, (Alp™]).

The p-divisible group Az[p>°] has a canonical decomposition
_ OO] — H Ag[qoo
qep
where each Az[q*°] is an ordinary Barsotti-Tate Of,-group of height 2 and dimension f; =
[Fy : Qp]. This induces a canonical decomposition of deformation spaces

(3.14.2) Defo, (A > [[ Defor, (Azla>)),
q€Xp

where Defo,, (Az[q*]) denotes the deformation space of Az[q™] as a Barsotti-Tate Op,-

modules, and the product is in the category of formal W(Fp)—schemes. Since Az is ordinary,
for each q € ¥, we have a canonical exact sequence

0 — Ag[a™]" — Az[a>] — Az[q]" — 0,
where Az[q™]# and Az[q™]®" denote respectively the multiplicative part and the étale part
of Az[g>]. By Serre-Tate’s theory, the deformation space Defo,, (Az[q9*°]) has a natural
formal group structure, and is canonically isomorphic to the formal group associated to the
p-divisible

Homoy, (T,(Az[4]%), Az[4)) = e @2, O,

Here, the last step used the fact that both Az[q™]* and Az[q*°]°" has both height 1 as
Barsotti-Tate Op,-modules. Therefore, we have

Defoy, (A0 = G ®2, OF, ~ Gy

We choose an isomorphism
(3.14.3) Defo,(Az[q°°]) ~ Spf(W (Fp))[[tq,1s- - - ta. ]
so that the multiplication by p on De fo,, (Az[q>]) is given by

[p] (tq,i) =(1+ tq,i)p - L

. (1 < i < fy) are invariant differentials, and they form a basis of

T+tq;
01
QpefoF (Az[q>])/ W (F, By m, we have

Oz =~ W(F)[{tgi: g€ p,1<i< f}.

Therefore,

The direct summand Ql of the differential module Ql is generated over (’) by

dtq,i
].-i-tqﬂ'

6w (F,) 1)

1 <i < fu)
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Proof of Lemma — (1) Since my : A — A/C, induces an isomorphism on the g-divisible
groups for q # p, ¢, induces a canonical isomorphism between the local moduli:

Defor, (Azp™]) = Defog, (Ap, @ [P™))-

It follows that ¢ acts isomorphically on the direct summand Q;tor,ord (logD)[q] for q # p.
K

To prove the second part of the Lemma, we take a geometric point Z as above, and let ¢, ()
be its image under ¢,. Let Az the base change of the universal HBAV to Spf (@f) Then
Az[p>] is the universal deformation of Az over Defo,, (Az[p>]). It is an ordinary Barsotti-
Tate Op,-modules, i.e. an extension of its étale part by its multiplicative part. The isogeny

mp 1 Az = Ay, @) = Az/Cpz induces an exact sequence of p-divisible groups

0 ——— Az[p>]* Az[q™] Az[p™]* ——0

0 —— Ay, @ [P —= Ay, @) [h™] — Ay, @) [PF] —0

Since the p-canonical subgroup C,z coincides with the p-torsion of Az[p>]#, the isogeny ﬂ{)‘
is identified with the multiplication by p up to isomorphism, and wgt is an isomorphism. This
implies that, there exists an isomorphism

¢: Defop, (Az[p™]) = Defor, (Ap@ [p™])

such that ¢, = p - ¢. Hence, the map induced by ¢, on the invariant differentials on
De fon (Ap@ [p*°]) is given by the multiplication by p composed with the isomorphism

induced by ¢. The Lemma follows from the fact that Q;mr,ord (log D)[p] around ¢,(T) is

K
generated by the invariant differentials of De f@Fp (Ag, @ [P*°]) via the isomorphism (3.14.1).
(2) The problem is local. Let T and ¢,(Z) as above. It suffices to show that

Tty (Oz) € 703 (Op, )

We always use (3.14.1)) to identify Spf(Oz) with Defo, (Az[p™]). Let ¢ denote the endo-
morphism on De fo, (Az[p™]) that gives the multiplication by p on De for, (Az[p*°]) and the

identity on Defop, (Az[q*°]) with q # p. By the discussion above, there exists an isomor-
phism ¢ : Defo, (Az[p™]) — Defo, (Az[p™]) such that ¢, = ¢o . Thus it suffices to prove
that TY%* is divisible by p/». Then we may further reduce the problem to showing that the
trace map of the multiplication by p on De fon (Az[p]) is divisible by pf*. This follows
from an easy computation using the canonical coordinates {t,; : 1 <i < f,} in . O

3.15. Uy-correspondence. — Let 7 = (rq)q € ((0,p) NQ)** be a tuple with 7, < 1 as in
Subsection and 1’ = (rg)q € [0, p)*® be such that ry = pry and 1} = rq with q # p. Let
A% be the family of abelian schemes over ] X" [/, and | X (2"*"[°, be the rigid analytic

space that classifies the Op-stable finite flat group schemes H C A%*[p] which is disjoint with

the p-canonical subgroup Cy, i.e. outside the toroidal boundary, ]X}?r’ord [i, parametrizes the

tuples (A, t, \, agr, H) -

— (A, 1, N\, akr) is a point of ]X;?r’ord[r/,

— H C Alp] is a subgroup stable under Op, étale locally isomorphic to Op/p and disjoint
with the p-canonical subgroup C, C Alp].
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We have two projections

Jord
(3.15.1) JX RO,

]X;(or,ord [z’ ]X;?r,ord E’

whose effect on non-cuspidal points are given by
prl(A7 L, 5‘7 dea H) = (Av L, 5‘7 de)
pr?(A7 Ly 5\7 &va H) = (A/H7 [‘/7 5‘/7 all(p)'
Here, (A/H,!,N,aY,) denotes the quotient rigid analytic HBAV A/H with the induced

polarization and KP-level structure. In the terminology of [GKO09|, the subgroups H are
anti-canonical at p, and [GK09| 5.4.3] implies that image of pry lies in ]X;?r’ord [r-

Lemma 3.16. — The morphism pry is finite étale of degree Npg(p). The map pry is an
isomorphism of rigid analytic spaces, with the inverse map 5},4 °© @p, where

@pl (A, L,, X, O_CKP) — (A/Cp7z7 5\/7 &}{P7A[p]/cp)
S’p*l - S’p_l (A’ L) 5\5 de7 H) = (A ®0F p’ l’”’ x”’ O_/],(p, H ®OF p)

Here, (', N, &) and (", N, &},) denote the natural induced structures on the correspond-
ing objects. In particular, we have

(3.16.1) pry = Sy—1 0 @y 0 Pry,
where @y is defined in (3.11.1)), and by abuse of notation, S,—1 = Sp_l denotes the automor-

phism on ]X}?r’ord[f given by (A, 1, \,axr) = (A®o, p, ", N, at,).
Proof. — The statement for pr; is clearly. To see pry is an isomorphism, we take a point
(A, H) := (A1, A, ager, H) in ]X307P,. We have pry(A, H) = A/H, and Alp]/H is the

p-canonical subgroup of A’ = A/H. So we have
Gp(A") = (A'/(Alp)/H), A'lp]/(Alp)/H)) = (A/Alp), H) = (A®0, p~' H ®0, p ).

with all the induced structures. The Lemma now follows immediately. O

We put D? = pr, ID. Then the correspondence (3.15.1)) induces isomorphisms of differen-
tials

pri: prm]lngr,ord[ (log D) = Q;X?r,ord[p (log DP)

r/ i

r

pry: prZQ;X;?r,ord[ (log D) = Q]l)(;?*’ord[p, (log DP),

which preserves the natural action of O on both sides induced from the extended Kodaira-
Spencer isomorphism (2.11.2)). In particular, for each subset J C ¥, these isomorphisms
induce an isomorphism

(3.16.2) p12: praQle; = prile;.

3.17. Norms. — We recall the construction of p-adic norms on rigid analytic varieties.
Suppose we are given an admissible formal scheme 3 over Of,_, and a vector bundle & on 3.
Let 3.z denote the rigid analytic space over L, associated to 3, and &z be the associated
vector bundle on 3,,. We denote by |- | the non-archimedean norm on C, normalized by
Ip| = p~!. For a quasi-compact open subset U C 3,4, one can define a norm || - || on
I'(U, &ig) such that ||X-s||y = |A|-||s|lv for A € Cp, and s € I'(U, &4g) as follows. Recall that

a point x € 3y defined over an extension pr, /Ly, is equivalent to a morphism of Or, -formal
schemes x : Spf(Op; ) — 3. Given a section s € I'(U, &1ig) and a point « € U defined over
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Lty /Ly, we denote by z*(s) € & ®o_, L, the inverse image of s by z. We define |s(z)| to
be the maximum of [A| where A € L{, such that A - s € &, and put

Isllo = max |s(z)].

We apply the construction above to the integral model X% and Q7 over it. For a quasi-

compact admissible open subset U C] X[/, we have a well defined norm | - || on the
space of sections I'(U, Q7). For a section s of Q! (log DP) over a quasi-compact subset

]X‘;(or,ord[zl

tor,ord o
V CIX R, we put [[sllv = [|(pr5) 7 (8) | pry(v)-

Lemma 3.18. — Let s be a local section of Qe defined over a quasi-compact admissible
open subset U contained in the ordinary locus ]%t[?r’ord[. We have

1927 (8) et 0y = 2= 5.

Proof. — We can easily reduce to the case where J = {7} contains only one element. We
have to show that

. Isllu i 7 & Yooy
I, (S - =
P71 () o1 0 {leSHU if 7€ o p-

By definition, we have Hpr’f(s)”pr;lw) = H(prg)—lprf(s)||pr2(pr;1(U)). By (3.16.1)), we have
(pr5)'pri = (pr5) ' o (pryo gy 0 Si1) = @50 Sy
It follows from Lemma [3.14] that

. ) sl if 7 ¢ Yoo /p
tor

Since Sy-1 is an automorphism defined over the integral model X7%", S;‘,l has norm 1.
This concludes the proof. ]

P

!
Tp: priA™ — pry A = A% /H,

whose H C A®*[p] is the tautological subgroup scheme disjoint from C,. It induces a morphism
on the relative de Rham cohomology

We have an isogeny of semi-abelian schemes over ] X f"°"[

Tyt pri#t — pri#!
compatible with all the structures on both sides. In particular, for each 7 € X, it in-

duces a morphism 7,: HL — HL compatible with the Hodge filtration 0 — w, — HL —
Lie((A%)Y); — 0.

Lemma 3.19. — Let x = (A, 1, \,axr, H) be a rigid point in ]X;?r’ord[f,, defined over the

ring of integers Oy of a finite extension L;J,/L@, and 7ty 4t A — Al = A/}I be the canonical
isogeny. Assume that A has ordinary good reduction. Let w; and n, (resp. ) and n.) be a
basis of HE(A/Oy) (resp. HE(A'/O)) over Oy adapted to the Hodge filtration, and write
fr;,:;:(“”;-) = QrWr, fr;,:(:(n;) = anT mod Wr.
Then we have valy(a;) = 0 for all T € X, valp(by) = 0 if 7 ¢ Y/, and valy(br) = 1 if
T € Yo )p- In particular, we have
Ty 2 (Wh ANL) = arbrwr Ay,
with valp(a;br;) = 0 if 7 ¢ Yo )y and valy(azbr) =1 if 7 € S jp-
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Proof. — The problem depends only on the p-divisible group A[p*>°]. The isogeny 7, in-
duces an isomorphism of the p-divisible groups A[q>°] = A’[q>] over Oy for q # p. Thus,
the statements for 7 ¢ X/, are evident. The subgroup H C Alp] with H # C, is neces-
sarily étale, since A has good ordinary reduction. Therefore, 7, , is étale and induces an

isomorphism
wipe = D war > D war =wape

TGEOO/‘, TEEOO/‘,
It follows immediately that aT are units in Oy for 7 € ¥ . To show that valy(b;) = 1, we

consider the dual isogeny 7, ,: A" — AY. Let A"[p>]* and AY[p>®]" be respectively the
multiplicative part of A’ [p™ ] and AV[p>]. We have an induced isogeny

(Fqa) AV [P)" — A",
The kernels of 7, and (7, )" are both H", which is identified with the p-torsion of A" [p>]*
(since p is unramified). Hence, the induced map on Lie(A" [p>]#) — Lie(AY[p>]*) is given

by the multiplication by p up to units, whence val,(b;) = 1 for all 7 € X /,. Now the Lemma

follows from the fact that Lie(A"), = Lie(A" [p>®]#), for T € ¥ g, since A’ is ordinary. [

3.20. Up-operator. — We now define the Up-operator on HY (Xtorrd D; #®&w)) and on

rig
the complex €. The map 7} : pr3H! — priH! induces a map Ty PraF Z kw) _y pri.# F (kw)

and hence a map of de Rham complexes
(3.20.1) i DRe(pry.Z &)y — DR (pr.7 &)
compatible with the F-filtrations on both sides defined in Subsection [2.14]

We define Up-operator to be the composite map on the cohomology groups

H*(]X;?r,ord [ﬁ, DR; (ﬁ(&w) )) ,,,,,,, - H* (]X;?r,ord [ﬁla DR; (ﬂ&w)) ’

lpr% Trpry T
*

H* (X2, DR (pry# Ev))) ———— H*(| X" [, DR (pr] 7 )))

where the existence of the trace map Try,, follows from similar arguments as in Corollary
By letting r — 0" (so r’ — 0% as well), we get a map

(3202 Up: H' (%i2ig:§TDRE(F 1)) = H* (X 5 DRY(F ).

We now define the Up-action on the complex %% which is compatible with that on

Hy, (Shie ™, D; 7)) by Theorem [3.5]

We come back to the map m By the canonical isomorphic embedding BGG? (% Z (&, “’))

DR(F kW) & 7, on the de Rham complex induces a commutative diagram

v*

(3.20.3) BGG? (pr3.7 kw)) BGG? (prt.Z (Ew))

DR (prs(# ) DRe (prt 7 (),

Note that BGGI(pr;.# &) = priBGGI(FEW) for i = 1,2 and 0 < j < ¢ by ([@2.12.1).
Explicitly, the induced map by 7 on the each term of the complex BGGS(prs.# (5’“’)) has
the following description. Since is compatible with the F-filtrations, it induces, for
each n € Z, a map

5 GrE (DR (pr3 7 5))) — Gr (DR? (pry 7 E0))).
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By Theorem [2.16|and ([2.15.4)), we have

Grf (DR} (pr;.Z &) = Gy BGGe (pr; &) = (B wvEY) @ Qe [—44],
JCY o
nj=n

where ny == > (ks — 1) + > o5, w=kr  This induces, for each subset J C ¥, an

O] Xtor,ord[p—linear map on the J-component:
K r

Tp®P12

iy st - 3w B @ priQ? (—DF) —— priw ") @ priQ’ (-DP),

where ¢19 is the isomorphism defined in (3.16.2)). By putting the J-summands with |J| = j
together, we get

#alpaai : PraBGGL(FEY)) — priBGGH(# E).,
induced from the diagram (3.20.3]).

Let Uy )X (7" and Us C]X (27", be quasi-compact admissible open subsets such
that pr; ' (U1) C pry ' (Us). We denote by resya : pry* (Uz) — pry* (U1) the natural restriction
map. For every J C Y, we have a composite map U,

D(Up, &™) © Q(~D)) = = - = = == - - - = D(U1, w7 ) @ Q7 (-D))

l’pr; Trpry T

ﬁ'; oresia

D(pry ' (Ua), prjw &) @ 97 (~DP)) ———T(pry ' (U1), priw &) @ Q7 (~DP))
Taking Uy =] X7, and U =] X (2", and making r — 0", one gets an endomorphism

Up: St

D oy (K L) = st

GJ(va) (K7 ng)

Since ] X (2" [,/ is a strict neighborhood of | X j2"°"[,., the endomorphism U, on S:J(k wy G L)

is completely continuous. As in the case of ®,, U, commutes with the differential d? of the
complex € by its very construction. By putting all J C X, together, one obtains actually
an endomorphism of complexes Uy,: €5 — €. By our construction, it is clear that the U,
on H*(¢}) is canonically identified with the one defined in via Theorem

Remark 3.21. — On S(T,g w)

operator defined as in [KLO05] i.e. it induces the classical normalized Up-operator on classical
forms Sy ) (KPIwp, Ly,). However, for J C Yoo with ¥/, N J # X, our Up-operator on

S:J (k w)(K , L), which is induced from the action of U,-correspondence on DRS(.FEw)) s

not the usual U, studied by Kisin-Lai [KLO05]. Actually, it is easy to check that Kisin-Lai’s
Up-operators does not commute with &/ : €7, — ‘KIJ(H. If p is inert in F', our definition of U,

on SZJ(E,W)(K , L) coincides with pXr¢s 7=V times Kisin-Lai’s U,,.

(K, L), our definition Up-operator coincides with the usual Uy-

There exists a simple relationship between the partial Frobenius Fr, and the operator Uy:

Lemma 3.22. — As operators on the cohomology groups H* (X;?r’ord, D; 9(5’“’)) or on 6,

rig
we have
UpFrp = Niyg(p)Sp,
where the action of Sy is defined in (3.10.1)).

Proof. — By the definition, we have

*

_ ~ ok * * * ~ * * *
UpFry = Trpy o7ty o prg o my 0 ¢y = Trpy, 07 07y 0 pry o .
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Here, the second step is because the morphism induced by isogeny commutes with base

change. We note that for a point (A, H) e]Mtfgszrd[’;/’

the composite isogeny
A AJH T (AJH)/Cy = AJAlp) = A®o, p "
is by definition the isogeny [zy]. Hence, we have 7 o m; = [omp]*, and
UpFry = Trpy, o [wp]” 0 prj o ¢y
By , we have prj o ¢y = prj o Sy. It follows that
UpFrp = Trpr, o [0p]" 0 pri o Sy = Np/g(p)[@p]" Sy = Npyg(p)Sp-

O

For an analytic function ¢ defined over a quasi-compact open subset V' C]X}?r’ord ['TJ,, we

define the norm -
lgllv: = 11(pr3) ™" gllpr, @)
Here, the norm || e ||, () is defined by using the integral model X%".
Lemma 3.23. — Let U C]X}?r’ord[ be a quasi-compact admissible open subset, and g be a
section of Oprl—l(U). We have
ITror, (Dl < 2~ 9llpr-1 (),

where dy = [Fy : Qp), and Tryy, : T(pry ' (U), Op-1vy) = L'(U, Op) is the trace map.
Proof. — Since pry is an isomorphism, one may write g = pry(h). Then, by definition,
we have g1y = ||h|]pr2(pr;1(U)). We may assume that ||h|]| = 1. Thus, h can be

defined over the integral formal model Zﬁgr’ord. By pr; = S,-1 0 ¢y 0 pry (3.16.1]), we have
Trpr, = Trsp_lTr% Trpr,. Note that Tryy, is the inverse of pr3, since pry is an isomorphism.
Thus, we have Try, (9) = Trs _, (Try, (R)). Since Sy-1 is an automorphism of the integral
model X%, we have

ITr -1 0 Tre, (R) v = [ Trg, (9) |5y 0r)-
It thus suffices to show that [Try, (9)| s, @) < p~fv. This follows from Lemma (2) O

Proposition 3.24. — Let Uy,Us C]X}?r’ord[ be quasi-compact admissible open subsets in
the ordinary locus such that pry*(Uy) C pry "(Us), and f be a section of w® &) @ Q7 (—D)
over Uy. We have

10Nl <o [1f e,

Proof. — Up to shrinking U; and Us, we may assume that, for each 7 € X, there exist

— a basis (wr;,7r;) of HL over Uz adapted to the Hodge filtration 0 — w,. — HI —
A (HL) ® wr! — 0 and statisfying

w—kr
(Zrezoo/p TJ’_ZTE(EOO/pf‘])(kT_]‘))

lwrillv; = lInrillv, = 15 and
— a basis dzy; of Q7 over U; with ||dzz||y, = 1.
We denote by 7, ; the image of 7 ; in A2(HL) @ witl. We write
w—kr _ L
F=9( @ (ora ) ¥ @uk o @57 @ e

TEY oo TEJ T¢J

where g € I'(Us, Oy, ). By definition, we have
* “k_ ok w—ky kr—2 —kr—2 *

Up(f) = Trpr, (pr2(9’pr11(Ul))prr2( ® (wr2/Anr2) 2 ®WT,2 7.2 )®Pr2(dzJ,2))~

TEX o TeJ T¢J
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There exist rigid analytic functions a,, b, on pry }(U;) such that
1
ﬁg‘pr’é(wnz) = a-pri(wr,1),
ﬁ-gprg(ﬁ‘r,Z) = prrT(ﬁT,1)7
ﬁ;prg(w’rﬂ A 77T,2) = a;b;prj (wT,l A 777,1)-
By Lemma we have HaT|]pr1_1(U1) =1forall 7 € ¥, ||bT||pr1_1(U1) =1for 7 ¢ X, and
||bTHpr1_1(U1) =plforTe Yoo /p- Similarly, there exists a rigid analytic function c; such that

pri(dzy2) = cjpri(dz;1). By Lemma [3.18) we have \|cJ||pr;1(U1) = pl’™=ko/vl So we obtain

* w—kr _ ko —
Up(f) = Trprl (prQ(g)h)((@TEEoo (Wr,l A 777—,1) 2 ®reJ wfﬁ 2 SreJ 775—?1 2) ® dZJ,la

w—kr

where b = ] o5 _(asbr) 2 [[.c, ab 2 [Tr¢s bF=2¢c;. Now it follows from Lemma [3.23
that

10 (Hllor = Trpr, (pr3(9)R) oy

—dp—3 ey Lk S em -y (Fr=2)+#(JN a0 )
<p Soo/p 2 oc/p= ) ||g||pr2(pr—1(U1))

- ZT Wk 727’ — (kT*l)
Sp EEOO/p 2 E(Eoo/p J) HfHU2
We deduce immediately from Proposition the following

Corollary 3.25. — Let f € S:J(&w)(K, L) be a generalized eigenform for U, with eigen-
value Ay # 0. Then we have

val,(h) > Y w;kﬂr > (k1)

T€Xoo/p T€(Xoo/p—)

4. Formalism of Rigid Cohomology

In this section, we will relate the cohomology group H:ig(X;?r’ord, D;.Z &) to the rigid

cohomology of the Goren-Oort strata of the Hilbert modular variety.

4.1. A brief recall of rigid cohomology. — We recall what we need on the rigid co-
homology. For more details, we refer the reader to [Be96| and [Ts99]. Let L, be a finite
extension of Q,, O, the ring of integers and ko the residue field. Let P be a proper smooth
formal scheme over W (kg), P its special fiber, and P, the associated rigid analytic space.
We have a natural specialization map sp: Pz — P. For a locally closed subscheme Z C P,
we put |Z[p=sp~!(Z). When it is clear, we omit the subscript P from the notation.

For X be a locally closed subscheme of P, jx : X — X an open subset, and £ a sheaf of

abelian groups defined over some strict neighborhood of | X[ in | X[, we put
ke = lim jy.ji €
\%

where V' runs through a fundamental system of strict neighborhoods of | X[ inside ] X[ on
which € is defined, and jy : V —] X[ is the natural inclusion.

An overconvergent F-isocrystal & on X/L,, can be viewed as a locally free coherent sheaf
defined over some strict neighborhood V of | X[ inside | X[, equipped with an integrable
connection V : & — & ®o,, Q%/ satisfying certain (over)convergence conditions [Be96l Chap.
2], and, Zariski locally, an isomorphism F*& — & where F' is a Zariski local lift of the
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absolute Frobenius to P. Let DR*(&) = & ® €}, be the associated de Rham complex. The
rigid cohomology of & is defined to be

RDyig(X/Ly, &): = RU(X[,jLDR*(#)).
When & is the constant F-isocrystal, we simply put RI'vig(X/L,) = RT}ig(X/Ly,, &). For a

sheaf £ of abelian groups over a strict neighborhood of | X[, we define a sheaf on | X[ by
Dix((€): = Ker(j& — i.i*€),

where i : |X — X[—]X|[ denotes the canonical immersion. Following Berthelot, the rigid
cohomology with compact support of X with values in & is given by

RT¢yig(X/ Ly, &): = RU(IX[,L)x((DR*(£))).

There is a natural map RI'c,ig(X, &) = RIyig(X, &) in the derived category, which induces
maps on cohomology groups H} ;. (X,&) — H (X/L,, &).

c,rig rig

Similarly, if Z is a closed subscheme of X, we define the functor E]T 7 by
Ll (€): =Ker(ji& — 5k _,€)

for any sheaf of abelian groups £ defined over a strict neighborhood of ] X[ on ] X[. The functor

rf

Ly is exact. The rigid cohomology with support in Z of the F-isocrystal & is defined to be

RTZ1g(X/Ly, &): = R (X[, L], (DR*(£))).

There is a canonical distinguished triangle
1
RUz4ig(X/ Ly, &|7) = Rlyig(X/Ly, &) = RUyig(X — Z/ Ly, | x_7) -
In particular, one has canonical maps of cohomology groups

(411> Hg,rig(X/Lth) — Hr*lg(X/LPaéa)

If Z is closed in X (equivalently, Z is proper over kp), then this map factor through
Hy io(X/Lg, &) = H 1, (X/Lg, &). 1t is standard that Hf, (X/Lg, &) and Hy ;. (X/Ly, &)
are independent of the embedding X — P and the choice of formal model P. We remark
that if U is an open subscheme of X containing Z, then we have a natural isomorphism
Hy o(X/Lg, &) = Hy 1, (U/Lg, &) [Ts99, Proposition 2.1.1].

When X is smooth of pure dimension dy, then there exists a perfect Poincaré duality
between Hy ;. (X/Ly, &) and Hf’fféf*(Z/Lp,éav) [Ke06, Theorem 1.2.3]. Let dz be the
dimension of Z and put ¢ = dx — dz. We denote by ¢(Z) € H%frig(X/Lp) the cohomolgy
class via Poincaré duality corresponding to the trace map Try : Hffrlizg(Z /Ly) — L. We call
it the cycle class of Z in X.

If Z is also smooth, then the cup product by ¢(Z) defines a natural Gysin isomorphism
(4.1.2) H}y(Z/ Ly, &\ z) = Hy0(X/ Ly, &).

Actually, this is proved in [Ts99, Theorem 4.1.1] under the additional assumption that X
and Z are both affine, and can be lifted to smooth admissible formal schemes X and 3 over
W (ko) and such that 3 is globally the intersection of d normal crossing smooth divisors of
X. To prove the statement in the general case, one can proceed in two ways: either one
covers X by open affine subsets {U, : @ € I} such that each (Z N U,,U,) satisfies the
additional assumption above, then one computes the both sides of with certain Cech
complex with respect to {U, : @ € I'}; or one can use the Poincaré duality proved in [Ke06),
Theorem 1.2.3] to identify the both sides of with the dual of HQdZ_*(Z/Lp, &V), the

c,rig
rigid cohomology with compact support of the dual isocrystal &V.
Combining (4.1.1)) and (4.1.2]), we get a Gysin map

Gr.e: Hiiy(Z/ Ly, 8l2) — HEPUX/ Ly, 6)(d).
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If Z is proper over kg, this map factors through the natural morphism Hz;ﬁd(X /L, &)(d) —
+2d

4.2. Formalism of dual Cech complex. — Let ¥ denote a finite set. Assume that, to
each subset T C X, there is an associated Q-vector space My such that for each inclusion
of subsets Ty C To, we have an (ordering reversing) Q-linear map ity ¢ Mr, — My,
satisfying the natural cocycle condition. We consider some formal symbols e, called the
Cech symbols, indexed by elements 7 € 3, and their formal wedge products in the sense that
er Ney = —ep Nep for 7,7/ € 3. For a subset T = {7,...,7;} of ¥, we fix an order for it
and write et for e;, A--- Aer. The dual Cech complex associated to My is then given by

Msey, — -+ — @MTeT—> @MTeT—>-~—>M@,

#T=1 #T=2
where the connecting homomorphism is given by, for T = {7,..., 7},
mreq A Aer — Z Yirr_ (ry(mr)en A-over  Ner oy A Aer,.

It is clear from the construction that this is a complex. Note that when My = M for all
T C ¥ and i1, 1, = Idps for all Ty C Tg, the dual Cech complex associated to Mr is acyclic.

Lemma 4.3. — Let the notation be as in Subsection |{.1. Let Y = |J .5 Ys be a finite
union of closed subschemas of X. For any subset T C X, we put Yr = (), o1 Y7, and let
r: X — Y — X denote the natural immersion. For any sheaf £ of abelian groups defined
on a strict neighborhood of | X — Y[, the sequence

(4.3.1) 0— 325 ey — @]Z\{ }5 es\{r} = = @jL}E er — j%_yg eg — 0.
TEY TEX

giwen with dual Cech complex is exact. Here, we place jTyiyg ep at degree 0, and the (—i)-th

term is a direct sum, over all subsets T C X with #T = i, of j;é' er, and all the morphisms
are natural restriction maps.

Proof. — We prove the Lemma by induction on #3%. When #X = 1, the statement is trivial.
Assume now that the Lemma holds for #X = n — 1, and we need to prove it for #% = n.
For each 7 € %, let V; be a strict neighborhood of | X — Y;[. Then (|, 5, V7)U]Yx[ form an
admissible covering of | X|. The restriction of the sequence in question to |Yx[ is identically
zero, it suffices to prove its exactness when restricted to each V.. By standard arguments
of direct limits, it is enough to prove the exactness of after applying »7‘}7}' Note that

J}T}j; = J'L} if 7 €T, and jL}j%_Y = j%_y. It is easy to see that after applying j}T},

the resulting complex is the direct sum of a complex of type (4.3.1) but with X replaced by
X'=X-Y,and Y replaced by Y' = ., 62\ (r} Y7/, and the dual Cech complex concentrated

in degrees [—n, —1] with constant group j {r }5 By the last remark of the previous Subsection,
the latter is acyclic. Hence, the desired exactness follows from the induction hypothesis. [

4.4. Setup of Hilbert modular varieties. — Let L, L,, O, and kg be as in Subsec-
tion We fix an open subgroup K = K,K? such that K, = GL2(Of ®z Z,), and KP
satisfies Hypothesis To simplify notation, let X denote the base change to W (kg) of
the integral model of Shimura variety Shy (G) considered in Subsection n Let X'%T be a
toroidal compactification of X as in Subsection “ We use X and X' to denote their
special fibers over kg. Let X' be the formal completion of X along its special fiber, and %ﬁfgr
denote the base change to L, of the rigid analytic spaces associated to X'**. Let X C X'**
denote the open formal subscheme corresponding to X. For a sub variety Z C X'%T, we

denote by |Z[=]Z|xtor the tube of Z in X5}
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For 7 € ¥, let Y, denote the vanishing locus of the partial Hasse invariant h, at 7 € ¥
defined in Subsection Note that Y, has no intersection with the toroidal boundary D.
We put Y = U,y Y7, and Xtorord — xtor _y and Xord = Xtorord 0 X For a subset
T C Yoo, we put Y7 = NyerYr. Then it is a smooth closed sub-variety of X" of codimension
#T, and we call it a closed Goren-Oort stratum (or GO-stratum for short) of codimension
#T. By convention, we also put Yy = X.

4.5. Isocrystals on the Hilbert modular varieties. — Let A% denote the fam-
ily of semi-abelian varieties over X' which extends the universal HBAV A on X. Let
(X/W (ko))eris denote the crystalline site of X relative to the natural divided power structure
on (p) € W(kg). Then the relative crystalline cohomology H!. (A/X) is an F-crystal over

Cris
(X/W (ko))eris- The evaluation of H.. (A/X) at the divided power embedding X — X
is canonically identified with the relative de Rham cohomology H2g (A/X), where A also
denotes the universal HBAV over X by abuse of notation. We denote by Z(.A) the (overcon-
vergent) F-isocrystal on X /W (ko)[1/p] (hence also an isocrytsal over X/L, by base change)
associated to Hl . (A/X). The action of Op on A induces an action of O on Z(A), and
we have a natural decomposition

D(A) = Sres Z(A)r,

where each Z(A), is a log-isocrystal of rank 2.
For a multiweight (k,w), we put

&) = & (A22(A),) 7" ® Symh 29 A),.

TEY 0o

This is an F-isocrystal over X/L,, and its evaluation on X is the vector bundle . (k,w)

defined in Subsection on the rigid analytic variety X,i;. Note that .7 (Ew) extends to a
vector bundle over %ﬁfgr equipped with an integrable connection with logarithmic poles along
D (Subsection . For each sub-variety Z C X, the rigid cohomology of Z with values in
2Ew)) can be computed as

H}y(Z/ Ly, 2%)) = H*(Z[, jEDR* (F &),

where jz denote the canonical inclusion ] Z[— X}
4.6. Partial Frobenius on X. — Let S be a connected locally noetherian F)-scheme,
and x = (A, ¢, >‘1de) be an S-valued point of X. For each p € 3, we construct a new point
wp(x) = (A", N, dl,) of X as follows:
— Let Kery denote the p-component of the kernel of the relative Frobenius homomorphism
Fry: A — AP We put A’ = A/ Kery, and equip it with the induced action ¢/ of Op.
Let mp : A — A’ denote the canonical isogeny.
— If X is a ¢-polarization on A, then it induces a natural cp-polarization on A" determined
by the commutative diagram:

! p
A" ®o, tp —= ARp, ¢

xl% )\i%
\v

AV gy,

Here, 7, is the unique map such that the composite A®o,, cp SNy Rop p LN A®op ¢
is the canonical quotient map by A[p].

— The KP-level structure of, on A’ is the unique one induced by isomorphism
Tps: TP(A) =5 TP)(A') of prime-to-p Tate modules.
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With the convention in Remark (A", /', N, &) well defines a point on X. We denote
by ¢y : X — X the obtained endomorphism of the Hilbert modular variety. It is finite
and flat of degree plEr:Qol, By choosing appropriate cone decompositions, one may assume
that ¢, extends to an endomorphism of X'*". It is clear that the restriction of ¢, to the
ordinary locus X% coincides with the reduction of Pp : xtorord _y xytorord copgidered
in Subsection since the p-canonical subgroups there lift Ker,. Note that ¢, and ¢
with p # g commute with each other, and the product Fyp, = Hpezp pp : X = X is
the Frobenius endomorphism of X relative to F,. We call ¢, the p-partial Frobenius. Let
Op Yoo — Yoo be the map defined by

o(7) = ot if 7€ Xy p-

{7’ if 7 ¢ Yoo /ps

For an subset T C X, we denote by o,T its image under oy.

Lemma 4.7. — Let x = (A, 1, \,ax») be a point of X with values in a ko-scheme S, and
op(z) = (A, N, dl,). Then T-th partial Hasse invariant h,(¢p(z)) is canonically identified
with he () if T ¢ Yoo jp, and with h,-1,(x)®P if T € Yosps i particular, if S is the spectrum
of a perfect field, then h.(py(x)) = 0 if and only if hO_p—IT(ZU) =0.

Proof. — The statement is clear for 7 ¢ ¥, /,. Now suppose that 7 € X /. As p is
unramified, A’'[p>°] is the quotient of A[p°°] by its kernel of Frobenius, hence there exists an
isomorphism of p-divisible groups A’[p>] ~ (A[p>°])®). There exists thus an isomorphism

WA /57 = WA pe) /S, = w1(4p/)S,a_1‘r
compatible with the morphism induced by the Verschiebung. It follows that h,(A’) is
identified with the base change of h,-1,(A) via the absolute Frobenius on S, whence the
Lemma. O

Corollary 4.8. — For a subset T C Y, the restriction of the partial Frobenius ¢, to Yt
defines a finite flat map @y : Yr — Yo 1 of degree p#Foc/n=T) - yyith, Tp = Xeep NT. If
gop_l(Y(,pT) be the fiber product of @y : X — X with the closed immersion Yy, — X, then we
have an equality [go;l(ngT)} = p*™[Yz] in the group algebraic cycles on X of codimension

4T.

Proof. — The Lemma implies that ¢, sends Yt to Y5 7. We note that Hpezp Op Y — YT(p)
is the relative Frobenius of Y7, which is finite flat. The flatness criterion by fibres implies
the finite flatness of ¢p|y;. By the Lemma, ¢, 1(Y%T) is the closed subscheme of X defined
by vanishing of h,’s for 7 € T — T, and h&P’s for 7 € Ty. Hence, Y7 is the closed subscheme
of py 1(Y%T) defined by the vanishing of h;’s for 7 € T,. Since Yt is smooth, the equality
[op 1Y%T] = p#Tr[Yy] follows immediately. Note that ©0p 1(YUPT) is finite flat of degree plf»:Ql
over Y, r. Hence, the flat map ,|y; must have degree p[FP:QP]/p#Tp = p#(zf’o/"*T"). ]

We have the isogeny m, : A* — @[ A% by quotienting the subgroup Kery of A%. This
induces an isomorphism of F-isocrystals:

w5 gEI(A) = D(eA) S D(A),

and hence an isomorphism 7y : Lp;@(ﬁ’“’) ~ 9Ew)  This gives rise to an operator Fry, on the
rigid cohomology for each Y7 with T C Y:

Fry: H!

c,rig

90* N *
(YT/va @(E,w) ‘YT) _p> H* (ng_lT/L@’ @p@(ﬁ,w)‘yap_l_r) _p> H*

c,rig c,rig

(Vor1e/Lo, 7%y ).

p T
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Here, we put Yy means X by convention, and H’ rél (Yr/Lg,, 2E)y,) is the same as the

usual rigid cohomology without compact support if T # (). Similarly, we have an operator
Frp on H;:“i?T(X 2k w)) such that the following diagram is commutative:

(481) Hc rlg(YT/L@7 ‘@(k s |Y:r) G;in H*+2#T(X/L -@(&w))

p#Tp Fl"p Ffp

k, >~ *4+2#T k,
H:rlg( Ul:lT/LKM @(7 w)‘Yffp_lT) Gysin Hyo;;l-r (X/va @(7 w))
Here, p™ appears on the left vertical arrow, because the inverse image of cycle class ¢(Y7) €

Hf,fﬁg(X /L) under ¢y is the class

ppe(Yr) = ey (V1) = p*e(Y, aq) € HY'T (X L),

—1p rig
Tp

where we used Corollary and basic properties of class cycle map [Pe03].
Recall that we have, for each p € ¥, an automorphism S, on X' defined in Subsec-
tion We have an natural isogeny

[yt A= SfA= Ao, p!

which induces an isomorphism of isocrystals [cwp]* : Sy kw) ~ gEw)  Since Yr is stable
under Sy, for each T C ¥, Sy induces an automorphism

SP crlg(YT/L@’-@(kw |Y) — H\; (YT/va-@(E7w)|YT)‘

c,rig

4.9. Twisted partial Frobenius. — In order to compare with the unitary setting later,
we define the twisted partial Frobenius to be

Sp2 = gog o S;l  Xtor — xtor,
Note that §p2 sends a point (A, 1, \, axr) to ((A/ Kery2) ®o, b, VN, ahe,), where Kery is

the p-component of the kernel of the relative p>-Frobenius A4 — AP Tt is clear that Sp2
send a GO-stratum Y7 to YagT. Weusen: A— 3;2/1 to denote the canonical quasi-isogeny

A — A/ Kerps = §oA = (A/Kerp2) @0, p.
;29(./4) =9( ;Q.A) = 2(A), and hence an
isomorphism 7, : 8’;2@(5’“’) = 9kw) For T C oo we define the operator P,2 on the rigid

cohomology to be
(4.9.1)

It induces an isomorphism of F-isocrytals 7 :

*

S
(I) H:rlg(YT/L@’ ‘@(&w)h‘r) —> H:rlg( J;ZT/L@7$;2‘@(E’W)’Y%—2T) H:rlg( U;ZT/LKW @(E’w)‘ygp_%)_

It is clear that ®,2 = Fr%Sp_l, and ®,2 commute with @ for p, g € 3. Similarly to the case
for Fry, we also have an operator ®,2 on H *+2#T(X @(k w)) such that the following diagram

Yr,rig
is commutative:

= *+2 w

(4.9.2) HY 3y (Ve Loy 980 y) —— = BT/ L, 950)
pQ#quDPQ q>p2

w o~ 2 w

H iy (Vpan/ Loy 780y ) —o B (X Ly, 960,
P

Recall that we have defined the cohomology group H;‘lg(X torord 1. ) in Subsection

Its relation with the rigid cohomology of the strata Yt is given by
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Proposition 4.10. — (1) There exists a spectral sequence in the second quadrant
— ‘7 y 21 R
(4.10.1) EY = @D HI 2 (Y1/Ly, 2%y )er = HE (X orord, Dy 7 (Bw)),
#T=i

Here, the er’s are the Cech symbols from Subsection @ and the transition maps
di": By e E1 "I are direct sums of the Gysin maps H’.2(Yr/L,2®Ew)|y,)

c,rig

Hg H?H( Yr /L, 9 E“’)\YT,) with T C T and #T = #T—1 = i— 1 using the dual Cech complex
formalism in Subsection [{.3

(2) The spectral sequence is equivariant under the natural action of tame Hecke alge-
bra € (KP,L,) = Lo[KP\GL2(A>P)/KP], and the actions of Fry for each p € %, if we

let Fry act on Hlflg(Xtor ord p. (kW) g5 in Subsection and on the spectral sequence

(Efi’J,Ch 7Y as follows: for T = {ry,--- Ty}, we define

FrP:HJ 2Z(YT/L@79(E’W)’YT)€T4>HJ 21( 0;1T/L@7-@(E’w)|Y 71T)e —1
p

c,rig c,rig op, T

mr - eq Ao A €y ——— Fry(mr) - p#Te €orlr ARRRIA Colr
where Ty = TN X . Similarly, the spectral sequence is equivariant for the action of Sy and
Dpe = Frg . Sp_l on both sides.
Proof. — We put % = % (Ew) ¢ simplify the notation. For any open subset U C X*'%T let
ju : U < X' denote the canonical immersion. By Lemma we have the following right
resolution of thor,ordDRg (F):
(4.10.2)
1 . 4 . p o
oy DRE(F)es. = a Ixtor_yy_ DR )en \r = oo = P sy, DRI(F)er

TEZoo Tezoo

Here, the (—i)-th term is a direct sum, over a subset S C X such that #T = i, of
j}tor DR'( Z )er; and all connection maps are natural restrictions. Hence, using the re-
mark at the end of Subsection we see that the following double complex, denoted by
K.,.’

DR (F)es,,

P DR:(F)es - & DR:(F)e

TEY 0o TEY

| |

oy, DR F)en. = P j}wriyzoo\TDR;(ﬂ)egw\T9...9 P sy, DRS(F)e-

TGZoo TEEOO
is quasi-isomorphic to
Cone [DR(F) = juur0ra DR(F)] [-1]:

In other words, if s(K**) denote the simple complex associated to K*°, then we have a
quasi-isomophism

(4.10.3) (s(K **) = DRY(F )) = Y iorera DRE(F),

where s(K**) — DRZ2(.F) is induced by the sum of identity maps P, v DRL(F)e, —
DR?2(.#). Taking global sections on %ffgr , one obtains a spectral sequence in the second
quadrant:

(4.10.4) E—m = HI~ ’(xﬁlg,thor aDRS(F)) = Hgng(Xtorord D:.7),



p-ADIC COHOMOLOGY AND CLASSICALITY 37

where B} = HJ (X', DR2(Z)) and

W — @ HI(2, Cone [DRY(F) = jhu . DRA(F)]|[~1])er, fori> 1.
#T=i

We observe that, for each non-empty subset T C ¥, we have a quasi-isomorphism of
complexes

Cone [DR(F) = jkior_y. DRE(F)][~1] = Cone [/} DR*(F) — j_,.DR*(F)][-1]

tor

by the excision. After taking global sections over X7,

with support in Y7:

RUy, 4ig(X/ Ly, %)) = Rr(aegjg,cone [DRE(F) — jhor_ . DRE(Z)][-1)).

one obtains the rigid cohomology

Therefore, via the Gysin isomorphism (4.1.2] , the term £ 1 in for ¢ > 1 is isomor-
phic to the direct sum of H{, ffg(X 74 w)) for all T C ¥4 with #T = .

Now statement (1) of the Proposition follows from and Lemma below. By
functoriality of the construction, the spectral sequence is clearly equivariant under the action
of #(KP?, L,,). For the equivariance under the actlons of Fry and @2, it suffices to note that
the action of Fry on the spectral sequence (4.10.1)) has already taken account of the Frobenius
twist given by the Gysin isomorphism. O
Lemma 4.11. — The cohomology H* (X%, DR2(.F)) is canonically isomorphic to the rigid

rig?

cohomology with compact support cng(X/Lp» gk “’)).

Proof. — This is well-known to the experts, but unfortunately it is not well written down
in the literature. To give a sketch of a short proof, we can pass to the dual. By [BC94l
2.6], we have an isomorphism H*(X}%y, DR*(F")) = H (X/L,, 2wV By [Ke06), The-
orem 1.2.3], H} ;,(X/Ly, 2®E:)) is in natural Poicaréd duality with Hrzé *(X/Lg, 2Ew)V).

The proof of the Lemma will be finished, if we can show that H *(%g’gr ,DR2(%)) and

H?7*(X%Y, DR®*(ZY)) are in natural Poincaré duality. By rigid GAGA theorems, it is

the same thing to prove that the algebraic de Rham cohomology H *(X’“L(’;;,Df{;(gZ )) and
H 29‘*(X‘3L°;:, DR*(.#V)) are in Poincaré duality. Unfortunately, this is only available in the
literature [BCF04] when .% equals to the constant sheaf. One can either modifies the proof
of loc. cit. for the general case; or alternatively, using the embedding L, < @p &G,
one reduces to show that H*(X'™r(C),DRe(#)) and H*~*(X"*(C),DR*(F")) are in
Poincaré duality. Let L = (F|x(c)Y " denote the local system of horizontal sec-
tions of .# on X(C). By the Riemann-Hilbert-Deligne correspondence and classical
GAGA, H?97*(X'r(C),DR*(#")) is canonically isomorphic to the singular cohomol-
ogy H*~*(X(C),LY). By the same arguments as in [FC90, Chap. VI 5.4], one sees
that H*(X'™"(C),DR(.F)) is the same as H*(X'™'(C),;(L)) = H}(X(C),L), where
J : X(C) — X'*(C) denotes the natural immersion. The desired duality now follows from
the classical Poincaré theory for manifolds. O

4.12. Etale Cohomology. — In order to compute the cohomology groups H} rlg(YT/Lp7 @(E’“’)),
we compare it with its étale analogues. Let [ # p be a fixed prime, and fix an isomor-
phism ¢; : C = Q;. This defines an Il-adic place of the number field L; denote by L its
completion. Post-composition with ¢; identifies ¥, with the [-adic embeddings of F'. Let
a: A — Shgi(G) be the structural morphism of the universal abelian scheme. The relative

étale cohomology R'a.(L;) has a canonical decomposition:

Rla.(Li) = P R'a.(L)-

TEZOO
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where Rla. (L), is the direct summand on which F acts via ¢ o 7. For a multiweight (k, w),
we put

25 = @ ((@Rau(10,)"5 &Syt Rla. (L), ).
TEY o
Note that .,2” )‘X is a lisse Lj-sheaf pure of weight g(w — 2). We have a natural action
of the prime-to-p Hecke operators J¢(KP, L) on H} (Yt, .,2”[( )) for each T C X. For each
p € X, consider Fry : X — X. The isogeny m, : A — ¢y A induces an isomorphism

W;Z(E’w) = Z(E’w). This gives rise to an action of the partial Frobenius on cohomology
groups:

c.et c,et

,W (’D * * YW ﬂ' +* W
(4121) Fry: Hiq(Yep, Z8) D5 H (Y, 05, 00 ZE") ™ (Y, 05, 45").

As usual, we put Y = X. Similarly, we have morphisms ®,2 and S, on H . (Y; Fp,.,?j(k’w)),
as in the case of rigid cohomology. For simplicity, we use Y ) to denote the disjoint union
of the GO-strata Yr for #T = ¢. Then, for a fixed integer ¢ > 0, Hc*et( () .,S,”(k w)) =

Dyr=i Heer(Yr F, Z(E’w)) and its rigid analogue is stable under the action of Frp for each p.
Proposition 4.13. — We identify both Q; and @p with C using the isomorphisms v; and

tp- Then for an integer i > 0, we have an equality in the Grotendieck group of modules over
H(KP,C)[Fry, Sp, Sp 'sp € By

29—21 2g—21

kaw) w ray
Z @ cet Y:I'? ’g( )®L[ Ql] Z @ crlg Y:I'/LKN‘@(E7 )) ®Lg> Qp]
n=0 H#T=i n=0 #T=1i

Moreover, if i # 0, we have an equality for each n:

kaw W
(P Hew(Veg, LE5) 00, Q) = [ED Hlig(Yr/ Lo, 25) @1, Q)
#T=1 #T=1

Proof. — Note that ‘g{(&,w) and 2% on X are pure of weight g(w — 2) in the sense of
Deligne and [AC13] respectively. As Y7 is proper and smooth for T # (), Hg‘t(YTF ’ x(&,w))

and Hgg(YT/L kw)) are both pure of weight g(w —2)+n by Deligne’s Weil IT and its rigid

analogue (loc. czt.). Since [ [y, Frp is the Frobenius endomorphism of X, the weight can be
detected by the action of Hpezp Fry, the second part of the Proposition follows immediately
from the first part.

To prove the first part, we follow the strategy of [Sa09) §6]. We consider F ®q L =~
HTezm L;, where L; is the copy of L with embedding 7 : F — L. Let e; € F'®q L
denote the projection onto L;. Since F' ®q L is generated over L by 1+ pOp, we may write
e, as a linear combination of elements in 1 + pOp. Hence, e, is a linear combination of
endomorphisms of A over X of degrees prime to p.

Using the Vandermonde determinant, one can find easily a Q-linear combination e! of
multiplications by prime-to-p integers on A such that the induced action of e! on R'a,(Q;)
is identity, and is 0 on R%a,Q; for ¢ # 1. Consider the fiber product a¥=2 : A¥~? — X.
Consider the fiber product a¥~2 : A¥~2 — X. Then e£%~2. (e!)®¥~2 acts as an idemponent
on R%a¥~2(L;), we get (R'a.(L)-)®®=2) if g = w — 2, and 0 if ¢ # w — 2. One finds also
easily an idemponent ekm%) ¢ Q[Sy—2] in the group algebra of the symmetric group with
w — 2 letters such that

et ) (Rlay (L)) 2@ = (A2Ray(Ly),) "2 " ® Sym* 2R a. (L)

Note the action of &,,_» on R'a. (L[)f?(w* ) is induced by its action on A¥~2.
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Consider the fiber product a(®=29 : A®w=2)9 _, X Taking the product of the previous
constructions, we get a L-linear combination e®&%) of algebraic correspondences on A(®=2)9
satisfying the following properties:

L. It is an L-linear combination of permutations in &,,_3), and endomorphisms of Alw=2)g
an an abelian scheme over X whose degrees are prime to p,

2. The action of e=%) on the cohomology Rqagﬁw_Q)g (Ly) is the projection onto the direct

(kw) 5 q = (w —2)g and is equal to 0 if ¢ # (w — 2)g.
(kyw)

summand .7

with coefficients in L acts also on HY?

The algebraic correspondence e coet

-2
(A%iw )7 L[)
Using Leray spectral sequence for a(*=2)9, one sees easily that, for any locally closed sub-
scheme Z C X, we have

(4.13.1) e IR (A0D) sy Ze L) = HY

cet cet

(Zg,, L),

Similarly, let (A®=2)9 /W (kg))eis over (X/W(kg))eis denote respectively the small crys-
talline sites of A®~2)9 and X with respect to W (ko), and Rgrisaiw_Q)g(OA(Wz)g/W(kO)) be

the relative crystalline cohomology. This is an F-crystal over (X/W (ko))eris, and we de-
note by ’Hfig(A(w_Q)g /X)) the associated overconvergent isocrystal on X/L,. The algebraic

correspondence e®®) acts on Hfig(A(w_Q)g /X) as an idempotent, and we have

PE)if ¢ = (w —2)g,

ne 0 otherwise.

elbw)  yl (AW=29)x) = {

Consequently, we have
eew) DI Q9002) s Z/L ) = HP oo (Z/ Ly, 2E)

c,rig c,rig

for any subscheme Z C X.

As KP varies, the Hecke action of GL2(A*P) on Shg(G) lifts to an equivariant
action on A. Then, for each double coset [KPgKP| with g € GLy(A°P), there exists a
finite flat algebraic correspondence on AW=2)9 guch that, after composition with e®®) its
induced actions on H(w_2)9+n(¢4(w*2)9 xx Y% , L) and Hn+(w_2)g(.,49(w*2) xx Yr/L) give

c,et T,Fp? c,rig
the Hecke action of [KPgK?] on H[.(Y; E,Z(E’w)) and H';. (Yr/Lg, 2E)) yespectively.

Consider the partial Frobenius ¢, : X — X for each p € X,. The isogeny Tréwfz)g :

Aw=2g ga;,f(.A(w*Q)g) = Lp;f(A)(w”)g defines an algebraic correspondence on A(W~2)9
whose composition with e®®) induces the action of Fr, on H, et (YF(Z),.,?[(E’"))) and on
P
ngig(Y(i)/Lp, 2Ew). Similarly, we see also that the action of S, and Sp_1 on the étale and
rigid cohomology groups of Y are also induced by algebraic correspondences on A®~2)9.
In summary, the action of J#(K?, L)[Fry, Sy, Sy Lpe ¥, on the étale and rigid cohomolgy
groups are linear combinations of actions induced by algebraic correspondences on A®=2)9.
Therefore, in order to prove the first part of the Proposition, it suffices to show, for any
algebraic correspondence T’ of A®=2)9 and an integer i > 0, we have the following equality:
S (D), HE (A9 % VD L)) = 3 (<) T, H g (A9 5 x YO /L)),
p

c,rig
n n
Ifi > 1, Aw=29 x + Y& ig proper and smooth over kg. Since the cycle class map is well
defined for étale and rigid cohomology [Pe03], the Lefschetz formula is valid and the both
sides are equal to the intersection number (I', A), where A is the diagonal of (A®“=2)9 x y
Y @) x (AW=2)9 x x Y (). If i = 0, the desired equality still holds thanks to [Mi09] Corollary
3.3], whose proof uses Fujiwara’s trace formula [Fu97] and its rigid analogue due to Mieda.

d
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Remark 4.14. — Even though it will not be used in this paper, it is interesting to consider
the étale counterpart of H;*ig(Xtomrd, D; Z&w)) Let t: X — X' and j : Xtorord _ xtor

be the natural open immersions. Then X%*"°'d can be viewed as a partial compactification of

the ordinary locus X°'4. We consider the cohomology group Hgt(XIthr ord tg(.iﬂ[(ﬁ’w) | yord)) =

H gt(Xior Rj.ti(Z£ (k) | xora)). Similarly to the rigid case, it is equipped with a natural action
of the algebra JC(KP, Ly)[Fry, Sy, S ;p € ¥,]. Using the cohomological purity for smooth
pairs [SGA 4, XVI Théoreme 3.3], 1t is easy to prove that

t(ZE) if b =0,

Dz L5 ha(—b), ifb> 1,

One deduces immediately a spectral sequence

Ey" = HG (G Rjn(G0) = @ Hia(Yeg, L5 ) (-b) = HEP OG0 (45)),
#T=b

which is 2 (KP, L()[Fry, Sp, Sp_l;p € ¥,]-equivariant if we define an action of J(KP, Ly),
Fr, and Sy, on the left hand side in a similar way as its rigid analogue (4.10.1). Then
by Proposition @.13] we have an equality in the Grothendieck group of modules over

‘%ﬂ(vac)[Frpaspasp_l;p € 21)]:

SO HGXE 645 05, Q) = Y (=) [Hi (x4 Dy FEY) @, Ty,

n n

R%mg%%p@:{

As usual, we identify both Q; and @p with C via ¢; and ¢, respectively.

5. Quaternionic Shimura Varieties and Goren-Oort Stratification

As shown in Proposition the cohomology group Hp, (X torord 'py. Z2(Ew)) can be com-
puted by a spectral sequence consisting of rigid cohomology on the GO—strata of the (special
fiber of) Hilbert modular variety; computing this is further equivalent to computing the étale
counterparts, as shown in Proposition The aim of this section is to compute the corre-
sponding étale cohomology groups together with the actions of various operators. The first
step is to relate the étale cohomology of the GO-strata to the étale cohomology of analogous
GO-strata of the Shimura variety for the group G’@’ = GLg p X px E* for certain CM extension
E of F (Proposition . The next step is to apply the main theorem in the previous paper
[TX13a] of this sequel which states that each such a GO-stratum is isomorphic to a P!-power
bundle over some other Shimura varieties (Theorem . Combining these two, we arrive
at an explicit description of those étale cohomology groups appearing in Proposition [£.13]
(which contains similar information as each term of the spectral sequence does); this
is done in Propositions and One subtlety is that, in general, we do not have full
information on the action of twisted partial Frobenius on these spaces (Conjecture .
This is why a complete description is only available when p is inert. Nonetheless, we can
still prove our main theorem on classicality, as shown in the next section.

This section will start with a long digression on introducing quaternionic Shimura varities
and certain unitary-like Shimura varieties; the reason for this detour is that the description
of the GO-strata does naturally live over the special fiber of Hilbert modular varieties but
rather the unitary-like ones.

5.1. Quaternionic Shimura variety. — We shall only recall the quaternionic Shimura
varieties that we will need. For more details, see [TX13al, §3]. Let S be an even subset of
places of F'. Put Soo = SNYs. We denote by Bs be the quaternionic algebra over F' ramified
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exactly at S, and Gg = ResF/Q(BSX) be the associated Q-algebraic group. We consider the
homomophism
hs : C* = Gs(R) ~ (H*)5% x GLgy(R)¥~~5x

Yoo —Seo
Y

given by he(x + yi) = (ZZ;S)TGEOO such that 27, = 1 for 7 € Soo and 2g, = <$ Z/) for

T € Yoo — Seo. Then the Gs(R)-conjugacy class of hg is isomorphic to $5 = (hT)

where h* = P!(C) — P}(R). For an open compact subgroup Ks C Gs(A>), we put
Shis(Gs)(C) = Gs(Q)\Hs x Gs(A™)/Ks.

The Shimura variety Shg,(Gs) is defined over its reflex field Fs, which is a subfield of the

Galois closure of F' in C. We have a natural action of the group Gs(A*) on Sh(Gg) =

W Shg(Gs). When S = (), this is the Hilbert modular varieties Sh(G) considered in

Section 2
For each p, we put S/, = ¥/, N S. In this paper, we will consider only S satisfying

Hypothesis 5.2. — We have S C £, UX,. (Put S, =SNX,.) Moreover, for a p-adic place
p e Zp,

L. if p € S, then the degree [F, : Q] is odd and ¥/, C S;

2. if p ¢ S, then S/, has even cardinality.

We fix an isomorphism Gg(A>®?) ~ GLy(A%""), so that the prime-to-p component KE
will be considered as an open subgroup of GLa(A%"). In this paper, we will only encounter
primes p € 3, and open compact subgroups Kg, C Bg (F}) of the following types:

— Type o and a# The degree [F} = Qp) is even, so Bg splits at p by Hypothesis Fix
an isomorphism Bg (F,) ~ GLg(F},). We will only consider Ks to be either GL2(OF,)
or the Iwahoric subgroup I, C GL2(OF,) , and the latter case may only happen
when Y/, = Soo/p. We will say p is of type a if Ksp = GL2(OF,) is hyperspecial, and
is of type o if Ks is Iwahoric. Note that when X/, # S p, P is necessarily of type
a, but when X, ; = 8, /p, both types are possible.

— Type 3 and B# The degree [F, : Q] is odd. There are two cases:

e When S/, # X/, Bs splits at p by Hypothesis We fix an isomorphism
Bg (Fy) ~ GLy(Fy). We consider only the case Kgp = GL2(OF,). We say p is of
type 5.

e When S/, = X /p, Bs is ramified at p. Then Bsy := Bs®p F} is the quaternion
division algebra over Fj,. Let Opg, be the maximal order of Bsy. We will only
allow Kg, = OES,,@' We say p is of type S7.

Let Ks = K¥ - Hp Ks, C Gs(A™) be an open compact subgroup of the types considered

above. The isomorphism ¢, : C ~ @p determines a p-adic place g of the reflex field Fs. Let
O, be the valuation ring of Fg,, and p its residue field.

Theorem 5.3 ([TX13a, Cor 3.18]). — For KY sufficiently small, there exists a smooth
quasi-projective scheme Shi,(Gs) over O such that

Sth(GS) X(/)@ Fs,p >~ Sth(GS) X Fs Fs,p-

If S =0, then Shi(G) (we omit O from the notation) is isomorphic to the integral models of
Hilbert modular varieties considered in Subsection [2.5; if S # 0, Shy(Gs) is projective.

The construction of Shg,(Gs) in loc. cit. makes uses of an auxiliary choice of CM
extension E/F such that Bs ®p E is isomorphic to Ma(E). (We fix such an isomorphism
from now on.) When p > 3, the integral model Shg; ,(Gs) satisfies certain extension property
(see [TX13al 2.4]) and hence does not depend on the choice of such E. The basic idea of
the construction follows the method of “modeles étranges” of Deligne [De71] and Carayol
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[Ca86]|, but we allow certain p-adic places of F' to be inert in E so that the construction
may be used to describe Goren-Oort strata.

5.4. Auxiliary CM extension. — Let E/F be a CM extension that is split over all
p € X, of type a or a and is inert over all p € ¥, of type 3 or B7#. Denote by Y E,co the
set of archimedean embeddings of F, and ¥ g o, — ¥ the natural two-to-one map given by
restriction to F. Our construction depends on a choice of subset S, consisting of, for each
T € Sso, & choice of exactly one 7 extending the archimedean embedding of F' to F. This is
equivalent to the collection of numbers sz € {0, 1,2} for each 7 € ¥ o such that

— if 7 € ¥ oo — Soo, We have sz = 1 for all lifts 7 of 7;
— if 7 € S and T is the lift in Sy, we have sz = 2 and szc = 0, where 7€ is the conjugate
of 7.
Put T 5 = Resg)q Gy, where the subscript S = (S,S4) indicates that our choice of the
homomorphism:

hgs: S(R) = C*

TES(R) = @TGEOO (E ®F»T R)X = @rezm Ccx

Zt (ZE,T)T'

Here zp , = 1if 7 ¢ S and zg » = 2z if T € S, in which case, the isomorphism (E®pR)* ~
C* is given by the lift 7 € Sy. The reflex field Fg is the field of definition of the Hodge

cocharacter

hpoa
D S(€) = ©F x € =5 T (),
where the first copy C* in S(C) is given by the identity character of C*, and the second by
complex conjugation. More precisely, Fj is the subfield of C corresponding to the subgroup
of Aut(C/Q) which stabilizes the set S.; it contains Fs as a subfield. The isomorphism
tp: C~ @p determines a p-adic place @ of E5; we use Og to denote the valuation ring and
kg the residue field.

We take the level structure K to be K2 Kp,,, where K, = (Op ®z Z,)*, and K%, is
7p7><

pes: Gme

an open compact subgroup of A%o . This then gives rise to a Shimura variety Shg,, (TEé)
and its limit Shr, (Tgs) = @Kg Shre,, K2, (T 3); they have integral models Shk, (Ty 5)

and Shg, (T g) over Og. The set of C-points of the limit is given by

Shiy., (Trs)(€) = Tps(QN\Tps(A®)/Kpy = AF* /055,

where the superscript cl denotes the closure in the appropriate topological groups. The
geometric Frobenius Frobg in the Galois group Galy, = Gal(Og'/Og) acts on Shy, (T 5)
by multiplication by the image of local uniformizer at © in the ideles of E5 under the following
reciprocity map

rE, o)
Recp: A(;;X/ng x OF = Tps(AE,)/Tps(Es)Tp5(0p)

NE. /0 0o ~ 0 c
Y, T (M%) T s( Q)T 5(Zy) =5 AZP JO5E

For later use, we record the notation on the action of oy for p € X}, on Xg oo: for 7 € X o,
we put

(5.4.1) opF = {” °of T EXpoo,

T if 7 ¢ YE oo/ps

where ¥/, denotes the lifts of places in ¥, /,. Note that this o action is compatible with
the one on Y, given in Subsection Let apé = (Sp U 0pS, apéoo) with S, the image of
0pSeo under op,. The product o = Hpezp oy is the usual Frobenius action, and we define oS
similarly.
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5.5. Auxiliary Shimura varieties. — We also consider the product group Gs X T 5
with the product Deligne homomorphism
hg =hs x hgg: S(R) = C* — (Gs x T 5)(R).
This gives rise to the product Shimura variety:
Sth,pXKE,p (GS X TE,@) = ShKS,p(GS) X0, ShKE,p (TE,é)‘

Let Z = Resp/(@ G,,, denote the center of Gg. Put G’é’ = Gy XZTE,é which is the quotient of
Gs x T 5 by Z embedded anti-diagonally as z — (2,271). We consider the homomorphism
hy : S(R) — GZ(R) induced by hs. We will consider open compact subgroups K% C G5 (A™)
of the form K{PK{ ,, where Kg" is an open compact subgroup of G%(A*P) and K, is the
image of Kg, x Kg , under the natural projection Gs(Q)) % TE~7§ (Qp) = G%(Qp). (Note here
that the level structure at p only depends on S but not its lift S; this is why we suppress the
tilde from the notation.) For Kg¥ C G%(A>P) sufficiently small, the corresponding Shimura
variety admits a smooth integral model Shg(G%) over Og [TX13a, Corollary 3.18]. Taking

14

the limit for prime-to-p levels, we get Shyy (G§) = lim K Shyem Ky (GY)-

For p € ¥, we use S, denote the Hecke action on Sh KY, (G’é’ ) given by multiplication by
(1, w;l), where @y is the uniformizer of Oy embedded in (Op ®o, Op)* C Tp 5(A™).

Let a: Gs X Tpg — Gé’ denote the natural projection. The homomorphisms of algebraic
groups induces a diagram of (projective systems of) Shimura varieties:

(5.5.1) Shi, , (Gs) <—— Shis iy, (Gs X Tg) —*= Shyey (G
lprz
Shky, ,(Tgs)

Note that the corresponding Deligne homomorphism is compatible for all morphisms of the
algebraic groups.

5.6. Automorphic sheaves on Shimura varieties. — Let L be the number field as in
Subsection Note that Gs xg L = erzw GLg 1, where F* acts on the 7-component
through 7. Given a multiweight (k,w), we consider the following algebraic representation of
GS XQ L:

w—kr

p = Q) ) opr, with pfr) = Symb 2 @ det 7
TEY 0o

where pr, is the contragradient of the natural projection to the 7-component of GgxgL. The
representation p®) factors through the quotient group G§ = Gs/ Ker(Res F/Q Gm — Gp).
By [Mil90al, Ch. III, § 7], the representation p&®) gives rise to an Q;-lisse sheaf ZS(%’U)) on
Shg,(Gs) which naturally extends to its integral model Shg,(Gs).

For the [-adic local system on ShKé/(Gg ), we need to fix a section of the natural map

Y B0 — Yoo, that is to fix a lift 7 for each 7 € X; use ¥ = Yo to denote the image of the
section. Till the end of this subsection, we use 7 to denote this chosen lift of 7. Consider
the injection

Gg XQ L= (BSX X px EX) XQ L— ResE/@(Bs (S E)X XQ L= H GL27L’7~— X GL27L77-c,
TEY o

where E* acts on GLg 1, 7 (resp. GLg 1, 7¢) through 7 (resp. complex conjugate of 7). For a
multiweight (k,w), we consider the following representation of G§ xq L:

w—kr
)

11(k, kr, S . ferw) o
péfi ¥ = ® P; w) opr: with PS- w) _ Sym* 2 @ det 3
TEY o



44 YICHAO TIAN & LIANG XIAO

where pr: is the contragradient of the natural projection to the 7-component of G’é’ xqQL —

Resp g Dg X L. By [Mil90al, Ch. ITI, § 7], the representation p’s/%’w) gives rise to an Q;-lisse
sheaf.f (k w) on Shy (G%).

We also consider the following one-dimensional representation of Resg/gGm xq L =

HTEZOO m,T X szc
2—w
= EB x °Pre#

TEY 0o
where prg - is the projection to the 7-component and 22~ is the character of C* given
by raising to (2 — w)th power. These representations give rise to a lisse Q;-sheaf .,waz g on
Shiy, (Tg3)-

We have an isomorphism of representations of Gg x T’ 5

//(@,w)

X = (pék’w) opr) ® (p’]gi opry) for any 5,

and hence an isomorphism of Q;-étale sheaves on Shp, oxKp,(Gs X Tp3):

(5.6.1) gEw) o ) pr’l‘,i”s(f’w) ® pryLY for any 3.

33 53 ES,l

Remark 5.7. — The Q;-étale sheaves s (k w) gs//(zklw) ,,2”;;“ 5 and .,5??5 l) are base change of

Li-sheaves on the corresponding Shimura Varletles where [ is the l-adic place of L determined
by the isomorphism ¢; : C ~ Q;. For the computation of cohomology in terms of automorphic
forms, it is more convenient to work with Q;-coefficients.

5.8. Family of Abelian varieties. — We summarize the basic properties of certain
abelian varieties over Sh Ké/p(G’g’ ) constructed in [TX13al.

1. [TX13al §3.20] There is a natural family of abelian varieties A” = AZ of dimension 4g
over Shyey (GY%) equipped with a natural action of Ma(Of) and satisfies some Kottwitz’s
determinant condition. There is a (commutative) equivariant action of G’é’ (A°P) on
A" so that for sufficiently small Kg* C G5 (A>P), the abelian scheme A" descends to
Sh KIPKY, (GY).

2. [TX13a §3 21] Let a” : A" — Shgy(GY) be the structural morphism. The direct
image R'a’(Q;) has a canonical decomposition:

R'al(@) = P (R'a(@)r & R'al(@)s)
TEY oo

where R'a”(Q,)7 (resp. R'a’(Q))z) is the direct summand where O acts via 7 (resp.
via 7). Let e = (3 8) € My(Op). We put R'a(L()% = eR'a/(Q))7 for 7 € Sso. This
is a Q-lisse sheaf over ShKé/p(Gg) of rank 2. For a multiweight (k,w), we have an

isomorphism of Q;-lisse sheaves:

(k) (Syka 2 pl a!(@)2 & (A 2p1, "(Q );)wEkT)_

§,5.1
TGEOO

3. [TX13al Proposition 3.23] For each p € ¥, we have a natural GZ(A®P)-equivariant
twisted partial Frobenius morphism and an qausi-isogeny of family of abelian varieties.

(581) 3;’2: Sth’p(G/g/)k@ — ShKé’p (Gggg)]% and 77;/2: Ag,k — g//*(A//QS s )

This induces a natural G%(A°P)-equivariant homomorphism of étale cohomology
groups:

* /1(kyw) * 1(k,w)
by B (St (Gl Z1588)) — H (S, (@), 2
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where oy is as defined at the end of Subsection @ Moreover, we have an equality of

morphisms
H cI>p2 = OF‘2 H:t (ShKu(G 2S)]F ,Dg/ﬂ 2(§ )l) — H (ShK”(GH)]Fp ggfé%}w))’
peXp

where F? is the relative p?>-Frobenius, ¢ is as defined at the end of Subsection and
S, is the Hecke action given by the central element p~t € A% C G"(A™). Here, p is
the idele which is p at all p-adic places of ¥ and 1 otherwise.

4. When S = ), let A denote the universal abelian variety over the Hilbert modular variety
Shp,(G). One has an isomorphism of abelian schemes over Shrg ,x i ,(Gs X T 5)
[TX13al Corollary 3.26]:

(5.8.2) oA’ ~ (priA®e, Op)%?,
compatible with Ma(Op)-actions, where « is defined in (5.5.1). Moreover, the mor-
phism o and the isomorphism (/5.8.2]) are compatible with the action of twisted partial
Frobenius [TX13al, Cor 3.28].

5. [TX13al 4.7, 4.8, 4.10] Let kg be a finite extension of F,, containing all residue fields of
E of characteristic p. The special fiber ShKu (G@)ko admlts a GO-stratification, that
is a smooth Gij(A>P)-stable subvariety ShKu (G@)ko 7 for each subset T C 3, (given
by the vanishing locus of certain variants of partlal Hasse invariants). We refer to loc.
cit. for the precise definition. The twisted partial Frobenius morphism S;)’Q in (5.8.1))
takes the subvariety ShKé:p(G%’)ko,T to Sth{p(Gggg)ko,o,%T‘ Here, we view K{ also as a
subgroup of G” ~(A°°7p) via a fixed isomorphism G%(A%P) >~ G”, (A*P).

%p
The GO- stratlﬁcatlon on Sh Ky (G@) ko is compatible with the Goren-Oort stratifica-
tion on the Hilbert modular Varlety Shp, (G)k, recalled in Subsection in the sense

that
(5.8.3) o (Shgy (Gfker) = pry ' (Shi, (G)ryr) for all T C T
5.9. Tensorial induced representation. — We recall the definition of tensorial induced

representation. Let G be a group and H a subgroup of finite index. Let (p, V) be a finite
dimensional representation of H. Let ¥ C G/H be a finite subset. Consider the left action
of G on the set of left cosets G/H. Let H' be the subgroup of G that fixes the subset ¥ of
G/H. Fix representatives si,...,s, of G/H and we may assume that ¥ = {s1H,...,s,H}
for some 7.

The tensorial induced representation, denoted by ®x- Indg V', is defined to be ®;_,V;,
where V; is a copy of V. The action of H' is given as follows: for a given h/ € H' and for
each i € {1,...,7}, there exists a unique j(i) € {1,...,7}, we have h's;; € s;H; then we
define

W (v @@ o) = (s W's51) (1) @ - @ p(s, 18509 (Vj))-
One can easily check that this definition of ®x-Ind% V does not depend on the choice of
coset representatives.

We will need the following two instances of the construction above: (1) G = Galg, H =
Galp, and ¥ = Yoo — Soo € Yo =~ G/H. Then the subgroup H' is Galp; (2) G = Galg,
H = Galg, and X = Y- Seo (see Subsection , viewed as a subset of ¥ oo ~ G/H. Then
the subgroup H' is Galg;.

5.10. Automorphic representations of GLy p. — For a multiweight (k,w), let Ak w)
denote the set of irreducible cuspidal automorphic representations m of GLo(Ap) whose
archimedean component 7, for each 7 € ¥, is a discrete series of weight k. — 2 with central
character x — 2 ~2. It follows that the central character wy : A% /F* — C* for such 7 can
be written as wy = x| - |2 %, with &, a finite character Hecke character trivial on (F @ R)*.



46 YICHAO TIAN & LIANG XIAO

Given m € 9y, ), the finite part 7 of 7 can be defined over a number field (viewed as a
subfield of C). For an even subset S C 3, we use 7g to denote the Jacquet-Langlands transfer
of m to an automorphic representation over Bg (Ap); it is zero if m does not transfer.

Thanks to the work of many people [Ca86bl, [Ta89, BR93|, we can associate to 7 a
2-dimensional Galois representation pr; : Galp — GL2(Q;). We normalize p,; so that
det(pry) = 5 L. X}:y_cw, where Yy is the l-adic cyclotomic character and e, is the finite
character above, viewed as a Galois representation with values in Q; via class field theory
and the isomorphism ¢; : C = Q,. If 7™ is defined over a number field L C C, then Pr, 18
rational over L;, where | denotes the l-adic place of L determined by ¢;.

When k; = 2 for all 7, w > 2 is an even integer. We denote by 4, the set of irreducible
automorphic representations 7 of GLa(Afr) which factor as

GLy(Ap) &% AX/F* 5 ¢,

. . . . . w_
where Y is an algebraic Hecke character whose restriction to F; for each 7 € Yo isx — x2 L

With the fixed isomorphism ¢ : C = Q;, we define an [-adic character on A7 given by

w
2

Xi: 2+ (X(x) - Npjg(2ee)'™2) - Npjglan) 2 ' € Q)

where 2o, € (F ® R)* (resp. x; € (F ® Q;)*) denote the archimedean components (resp.
l-components of x). Note also that x; is trivial on F'*, and hence by class field theory gives
rise to a l-adic Galois character on Galp. We put pr; = Xfl. Also note that the map
x> X(a:)NF/@(xoo)lf% on A has values in a number field. We may choose a number field
L C C large enough so that pr; is rational over L. Given m € %, and an even subset
S, we denote by ms the one-dimensional automorphic representation of Gg that factors as
Gs(A) =% A% /F>* — C*, where vg is the reduced norm map.

5.11. Cohomology of Shg,(Gs). — Let S be an even subset of places of F satisfying
Hypothesis Let Kg C Gs(A®) be an open compact subgroup. We fix an isomorphism
Gs(A%P) ~ GLo(AP). For a field M of characteristic 0, let (KL, M) denote the prime-
to-p Hecke algebra M[KE\GL2(A>)/K{].

For each ™ € ) or ™ € By, let (w5°)5s = (7P)KS @ (ms,p) 57 be the Ks-invariant
subspace of 75°. We consider it as a (K}, C)-module with the natural Hecke action of
(KB, C) on (75>")5s and trivial action on (g ,,)%%#. The following result is well-known.

Theorem 5.12. — In the Grothendieck group of modules over 5 (Ks,Q;)[Galg], we have
an equality

[H o (Shie (Gs)g, Z35)] = (—1)77#8= 3™ [(n)s @ pS )]

WG,QK(E’UJ)
ria 3 [0 0] @ (1@ e Q1)) - 530[0))
TERBw
Here, for each m in Ay, ) or B, we put Pfr,z‘ = Qs _s. -Indgzig (pr1) where pr; denotes

the l-adic representation of Galp defined above, 02 equals 1 if k = (2,...,2) and 0 otherwise,
and dgg =1 if S=0 and 0 otherwise.

Proof. — For S # (), this is proved in [BL84] §3.2]. When S = (), the contributions from
cuspidal representations and one-dimensional representations are computed in the same way
as above in loc. cit.; the subtraction by @, when k& = (2,...,2) comes from the fact that
HY(Shg (G)g: @;) = 0. We explain now why there is no contributions from Eisenstein series
in the Grothendieck group. Actually, according to [MISYZ], the Eisenstein spectra appear
in H! only when k is of parallel weight. In that case, each possible Eisenstein series will only
appear in H! with multiplicity (gzl) for 1 <i < g, and none in H? with i =0 or i > g + 1.
Hence, their contributions cancel out when passing to the Grothendieck group. O
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5.13. Cohomology of Shy, p(TE §). — Let w € Z and Y=g 00 be as in Subsection
Let o7, denote the set of Hecke characters x of A% /E* such that x| pr T =2 for all
TE Eoo and X is unramified at places above p. Here, the isomorphism F; = E ®@p, R = C
is defined with the embedding 7 : £ — C.

We fix an isomorphism ¢; : C 2 Q; as before. Then we can identify each 7 € Yg o with
an embedding 7 of E into Q,. Define an l-adic character on A7 associated to x:

xit e (x@) - [[7@) - T a@ 2 e Q.
Fen Fes
This character factors through E*\Ay/Eg and hence induces a Galois representation

: Galg — Ql via class field theory. We put p, ; = Xl .
leen S and S as in Subsection we view So, as a subset of Yoo = Galp /Galg,
where Galg acts on the left by postcomposition. The construction in Subsection gives
rise to a representation of Galg,

Galg
Py 31 = ® IndGalE Pxl-

Lemma 5.14. — We have an Q [AOEO’X] x Galy,; -equivariant isomorphism:
0
(5.14.1) Hey (Shicy, (T 8)5,» L) = &y X ® Py slcal,
xe,gzigj

where AOEO’X acts on the right hand side via (the finite part) of x, and Galy, acts via Pyl

Proof. — According to Deligne’s definition of Shimura varieties for tori, the action of
Froby, is the same as the Hecke action of the element Recy 5(ws), where the map Recp
is the reciprocity map defined in Subsection [5.4] It follows that the Galois action on
HY (Shg,, (TE,é)va ngEl) is as described. O
The following lemma will be used later.
Lemma 5.15. — Keep the notation as above. Put ds = [kg : Fp]. Let dy denote the inertia
degree of a p-adic place q € X, in E/Q. Let S q denote the set of places in Ss inducing
the place q of E via ¢, : C ~ @p. Let Frobg denote the geometric Frobenius for kgs. Then

P (Prob) = Tlyes,, () o5l

Proof. — This is a straightforward calculation. For each q € Xg,, let Frob; denote a
geometric Frobenius of Galg at q. Then we have

px,é,l(FrOb@) = ® <® InngiE pxl|Ga1E )(FTObg})

qezE,p goo/q
TT oa(Frobg)etstte = T samq)s#5sal
qezE,p CIEEE,p

U
When relating the étale cohomology of Sh K;fp<Gg ) and Shp, (G), we need the following.
Proposition 5.16. — Let x € /Y, and xr be its restriction to A%O’X. Then the following

B’
hold:
1. We have a natural Gs(A*P) x Galg, -equivariant isomorphism

k, 00X — ~ E’ o0 X —
(5.16.1) H}o(Shi,,(Gs)g,, Loy )7 XF®pX7§7l:Héet(ShKé(p(Gg)Fp,.,%g’j(ilw))% X
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where the superscripts mean to take the subspaces where the Hecke actions are given as
described.
2. When S =0, we have analogous GLa(A%P)-equivariant isomorphisms for all T C Yo :
1(k,w) A X =
FPJ"‘;%@,EJ ) “ X.
Moreover, (5.16.2) is equivariant for the action of ®,2 on both sides (see Subsectz’ons
and[5.8(6) for the definition of the action).

(5.16.2) H:,et(Sth(G)E,,Tygs(’%’w))A?’X:XF ~ Hg*

c,et

(Shgy (Gf)

Proof. — (1) We first claim that the quotient o : G's X Tz 5 — G induces an isomorphism
of Shimura varieties
(5.16.3) (Shis, (Gs) x Shi, ,(T5)) /AR = Shyy (GY),

where AZP " acts by the anti-diagonal Hecke action. For this, it is enough to show that the
product

00 ,cl ,C
AT (G < 057

is already closed in the Gg(A®P) x AOEO’p X where the superscript means to take closure inside

the corresponding adelic group, A%O’p " embeds in the product anti-diagonally, and Gs(@)f)
denote p-integral element of Gs(Q) with totally positive determinant. For this, we take an
open compact subgroup U} of Gs(A>P) and intersect the product above with UL x @g’)’x;

we are left to prove that the product
O ((Gs(@P NUL) x 05

is closed in U§ x @%}),x. But Dirichlet’s unit Theorem implies that O is a finite index

subgroup of O5; it follows that the above product is a finite union of @g)’x (Gs (Q)S?)ﬂUg)d-,

which is obviously closed in UL x @g),x‘ This proves the claim.

This claim in particular implies that for any Q;-lisse sheaf .#” on Sh K}/}/(Gg )kg» We have a
natural isomorphism

H; ot (Shicy (GE)g, 2") = Hi (S x i, (Gs X Tpg)g, o £)midios A7 =1,

c,et c,et

where the superscript means subspace where the anti-diagonal A?’p X acts trivially.

Applying this to (5.6.1]), and further taking the subspace where A%"P"* acts via y (note
that the restriction of a Hecke character to finite ideles away from p already determines its
value at places above p), we get

(k) A X =
H;et(Sth,p(Gg)Fp’Zgé’lw)) E X

~ kw) AR XA =xrxX
= 1} (Shis, (Gs)g, X5, ShKEyp(TES)Fp,a*.,%g(’if:'Z)) plxRET=XE

= E67) kw) | ASS X — A% —
—== H}(Sh, (Gs)z,, ,géjw) a XF®H§t(ShKE’P(TE,§)EJ, 52,1) B =x

~ (5.14.1) =
H* (Sth’p(Gs)Fp,f(E,w))AF XF ®px,§,l'

c,et S,

This proves (5.16.1]).
(2) Assume now S = (). Consider the base change to kg of the isomorphism ((5.16.3)). Since

the GO-stratification on Shg, (G)x, and that on ShKéf’p (G§)w, are compatible (5.8.3]), we
have an isomorphism

(Sth (G)ko,T X ShKE,p (TEyq))ko)/A%o’p’X & ShKé’,p (Gg)koy'r,

for all subset T C ¥,,. Then the same argument as above applies to the cohomology of
ShKé{,p(Gg)FmT' This then proves (5.16.2). Here, note that the Galois representation p, s,
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is trivial, since the Deligne homomorphism hp ¢ is trivial. The compatiblility with twisted
partial Frobenius follows from Subsection [5.8[(5). O

Notation 5.17. — Let x € ,Q{é”i be a Hecke character, and put xr = x| c0.x. We denote
) F

by (1) [XF] the subset of cuspidal automorphic representations 7 € 27,y for which the
central character wy = xp. When k = (2,...,2), w > 2 is an even integer. We also denote
by %, [xr] be the set of one-dimensional automorphic representations m of GLy  such that
Wr = XF-

We remark that every Hecke character yr whose archimedean component is xo, —
Npjg(te) extends to a Hecke character x € .5275)2 Indeed, we may first fix an arbitrary

Hecke character x’/, and then wg = )’ &i - XF is a finite character trivial on (F' ® R)*.
F

Since A% /F* injects into A% /E*, we may always find a finite character yo of A" /E*
extending wp. Then x’xo is a Hecke character of A%,/E* extending xp.

The following conjecture on the action of twisted partial Frobenius on the cohomology of
Shimura varieties is well-known to the experts.

Conjecture 5.18 (Partial Frobenius). — For eachp € X, let ny, be the smallest positive
number n such that 0y/Sec = Sec. Let dy denote the inertia degree of p in F/Q. Assume that
for any p-adic place p € X, that splits into two primes q and q in E/, we have #éoo/q = #éoo/ﬁ'

Then, for any Hecke character x € szfgi, we have the following equality in the Grothendieck

group of (finite generated) modules over Q;[GLg(AP)][(®y2)";p € 5p].
. kaw 00, X _ S, 0 ~
[Hc,et(ShKéip(Gg)ﬁpr’%gléil ))AE X] = (_1)9 #S [ @ (ﬂ-S )Ks,p ®p§r,l]
TEX k) X F]

(5.18.1) e Y [ e ] <[(Ql ® Qy(—1))Fe8=)] — 5s,@[<@ﬂ)-

TE€ERBw|XF]

Here, for each m in <y, .\ [XF] or Bulxr], we take ﬁ?r,l to have the same underlying Q;-vector

space as
Gal
S . Q
Prl = ® ( ® 'IndGaIFZpWJ‘Gale)?
pezp 2oo/pfsoo/p

on which @:’2'“ acts as p*™ -th (geometric) Frobenius Frob on, times the number Wy (o ) (1 #800/p/dp)
Gal
on the factor ) —IndGzl?;z (prilGaiy, ), and acts trivially on the other factors. Here, wq € A%

is an idele which is a uniformizer at q and 1 otherwise. The action of (®y2)™ on the Q;(—1)’s

indexed by Yo, /p — Sooyp 18 the multiplication by p?, and is trivial on the other Q;(—1)’s.
Remark 5.19. — This Conjecture provides certain refinement of Langlands’ philosophy on
describing Galois representation appearing in the cohomology of Shimura varieties. Unfortu-
nately, to our best knowledge of literature, only the action of “total Frobenius” was addressed
using trace formula. It might be possible to modify the proof to understand the action of
partial Frobenius; but this would go beyond the scope this paper. We leave it as a conjecture
for interesting readers to pursue.

An alternative way to establish such a result is to generalize the Eichler-Shimura relations
to our case. We are informed that Cornut and Nekovai have made progress along this line,
but we do not know their hypothesis on p.

Conjecture holds when we take the product of all twisted partial Frobenii.

de

b2 - We

Proposition 5.20. — Put dy = [k, : Fp| and let ®2 denote the product [[,cs, @
fix a Hecke character x € ,Qfé“i
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1. Then the equality (5.18.1)) holds in the Grothendieck group of modules of Q;[GL2(AP)][® »].
Here, for each m in o}, [XF] or in Bu|xF], @2 acts on ﬁ%l as pfr’l(Frob;) multiplied

by
H X(wq)_2dKJ#§’oo/q/dq
qezE,p

where p € A} denotes the idéle element u which equals p at all p-adic places and 1
otherwise.

2. Assume that for any p-adic place p € X, that splits into two primes q and q in E, we
have #goo/q = #éoo/gl. Then the number in (1) is equal to

wﬂ_(g)dﬁ . H wﬂ_(wp)_dﬁ#soo/p/dp =Uu p(w_Q)(#SOO_g)dF7
peS,

for u some root of unity.
3. Conjecture holds if p is inert in F.

Proof. — (1) Combining ([5.16.1]) and Theorem we get an equality in the Grothendieck
group of modules over Q; [GLQ(AOO’T))H(I)KJQ]:

kaw X=
[ cet(ShK”(G”)F ’gs”;)l )) *]

* kaw) A X =
[HC et (ShKS,p (GS)Fzﬂ "?S(j ))AF xr ® vagal]

= (17> N (@)@, @ p, 8]
TEH 1o, w) [XF]

tore Y. () vl 0p5]® ([(@l @ Qy(—1))BFem5=)] — g5y @})

TERBw [XF]

Note that @2 acts on the cohomology as Frob;-Sp_ do by Subsection (4) Let Frobg denote
the geometric Frobenius element of the residue field kg of Og5. We have either Frobgs = Frob,,
and Frobg = Frobé. In both cases, it follows from Lemma

Py, sl Frob2 H X(w Qd@#ém/q/d‘*.
quE N2

Since the action of S, is the given by the central ideéle element p -1 ¢ A%, @ o2 acts on

(s

)P Py @ py g, for each 7 € Ay ) [xF] as p5 l(Frobz) multiplied by

wﬁ(gdp) H X(wq)ﬂdp#soo/q/dq
quE,p

Similarly, one proves the statement for m € B, [xr|.

(2) Let p € X,. If there is a unique prime q of E above p, we have dy = 2d, and

X(wq) = wx(wy) since wy = xp. If p splits into q and g, under the assumption of the
statement, we have #S./q = #5505 = %#Soo/p. It follows immediately that the number to
be multiplied in (1) is

wr (p%) H wr (o) Ao Boosp/dp — (gﬂ(p)dp H Ew(wp)d@#sw/p/dp>pd@(WQ)(#Soog)‘

peXp peXp

Here, e 1= wy|- |%_“’ is a Hecke character of finite order, hence the expression in the bracket

is

a root of unity.
(3) The last statement is clear because, when p is inert, Conjecture is the same

statement as what we have just proved. O
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5.21. Description of GO-stratification of Shy» (Gy)r,- — Let ko be a finite field

containing all residue fields of O of characteristic p. The main result of [TX13a] says that
the GO-stratum Sh Ky (Gg)ko,T, for T C Y4, is naturally isomorphic to a P'-power bundle
P

over the special fiber of another Shimura variety: ShKé’(T) (Gg ko, for some appropriate
P

)
(T)
S(T). We now recall this result in more details as follows.
We recall first the definition of S(T) C ¥ U X, given in [TX13al 5.1] for our case (i.e.,
S = ) using the notation from loc. cit.) It suffices to specify S(T)/, = S(T) N (X0 U {p})
for each p € Xy, since S(T) = ey, S(T)/p- According to the convention of loc. cit., we have
several cases:

(Case al) [Fy, : Q] is even, and Ty := TN X ), & Xog/p- In this case, we write T, = [[C; as
disjoint union of chains. Here, by a chain, we mean there exists a 7; € ¥/, and an
integer r; > 1 such that C; = {o7%; : 1 < a < r;} with 7,077y ¢ Seo/p- For each
cycle Cj, if r; is even, we put C} = Cj; if r; is odd, we put C] = C; U {o~"i7;}. Then,
we define S(T) , = [[ C;.

For example, if ¥/, = {70,070, .., o°79} and S, = {00, 0379, 0%79}, then we have
S(T) o = {70,070, 010, 070}

(Case a2) [Fy : Qp] is even and Ty = X . In this case, we put S(T)/, = Yoo /-

(Case B1) [Fy : Q] is odd and T, C ¥ /p- In this case, we define S(T), in the same rule as Case
al.

(Case B2) [Fy : Qp] is odd and Ty = X /,. We put S(T)/, = Yoo /p U {p}-

It is clear from the definition that o, (S(T)) = S(op(T)).

We do not recall the precise choice of the lifts S(T)wo, as it is combinatorially complicated.
We refer interesting readers to loc. cit. for the construction. In this paper, we only need to
know that S(T)w satisfies the condition in Proposition (2), i.e. if a prime p € X, splits
into two places q and q in E, then #éoo/q = #éoo/q.

To specify the subgroup Ké'(T)’p C Gg(T)(@p), we define first a subgroup Kgry, =
[Lies, Ksrp C© Gsn)(Qp) = Ilpes,(Bs ®p F})* as follows. We fix an isomorphism
(Bs(r) ®F Fy)* =~ GLa(F,) for each p ¢ S(T), i.e. if we are in cases al, a2 and S1.

— In Case al and 1, we take Kg(1), = GL2(OF,).

— In Case a2, we take Kg(r), = Iwy, where Iw, C GL2(OF,) is the Iwahoric subgroup

(3.3.1)).

— In Case 52, Bgr) is ramified at p, and we take Kgr), = (@ . Here, OBs(r),p denotes

s(T),
the unique maximal order of Bg(1)p = Bs(r) ®F Fy.

We put then
Ké/(T)vp = KS(T)J) X(0F®Zp)>< (OE ® ZP)X C G/S,(T) (Qp)
Now we can recall the main result of [TX13al in the case for Sh Ky (G§)ko-
sP

Theorem 5.22 (loc. cit. Corollary 5.11). — 1. The GO-stratum ShKé/ (Gp)ko 18
(@ i
P 5

isomorphic to a (P')T-bundle over ShK§’<T ko, Where the index set is

) (T))

It =8(T)oo = T= | 8(T)oosq — Ty.
q€Xp
2. The natural projection mr : ShKé’yp(Gg)kO,T — ShKé’(T),p(Gg(T))ko given in (1) is equiv-
ariant for the action of Gjj(A>P) = Gg(T) (A°°P). In particular, for a sufficiently small
compact subgroup Kgp C Gy(A>P), the projection mr descends to a (PYHYI-fibration

mr: Shcy (Gror — ShKé'm(Gg(T))kO’ where Ki = K"Ky, and Ky = K(ngg(T),p'

Here, we have fived an isomorphism between Gij(A*P) and G/S/(T) (A°P), and view also

Kgp also as a subgroup of the latter.
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3. Let Aj, , (resp. A/S/(T) ko ) be the family of abelian varieties over ShK// (Gy)ko (Tesp.
0,p
" 2
Sth’(T) (GS(T)) ko) discussed in Subsection . Then the restriction of Ay, = to
ShKu (G(Z))ko T 18 isogenous to my (A”( )ko)
4. For each p € X,, we have a commutative diagram:
SpQ,Q)
Shiy (G)ko pe= Spzs(n)(Shry, (Golky 1) — 5 ” Shiy (Gf)kgo2r
P,
\ l l”o;ﬁ
S 2 é(T)
h 1 {~/ p% h 4 " ~
Shic,, (Csm)ho S 2s(T>p(Ga.%s<T>)’f0

where the square is cartesian, 3'p2 0 (resp. 3;;2 s T)) 18 the twisted partial Frobenius on

Sth (Gko (resp. ShKér() (G;’(T)) ko) [TX13al 3.23], and & is a morphism whose
P

restriction to a fiber g *(z) = (PL) is the product of the relative p-Frobenius of the
Py ’s indexed by It N Yo sy = S(T)oosp — Tp, and the identity on the other P} ’s.

We list a few special cases of the theorem for the convenience of the readers.

Ezxample 5.23. — The prime-to-p level of all Shimura varieties below are taken to be the
same as K, é’p (they can be naturally identified); unless specified otherwise, the level structure

KI’,’ at p is taken to be “maximal”’. To simplify notation, we use Xt to denote the GO-

stratum Shcy (G})ko,r and Shg to denote the Shimura variety Shyy (G%)k, (note that we
P )

have suppressed the choice of signature here.)

(1)

When F' is a real quadratic field in which p splits into two places p; and ps, the
chosen isomorphism ¢, : C =N @p associates to each place p; an archimedean place
oo; of F. Then the non-trivial closed GO-strata are X{ool}, X{OOQ}, and X{o<>1 002}
Then Theorem [5.22| says that each X{oo } 1s isomorphic to Sh{p o0} and X{001 00z} 18
isomorphic to Sh{pl p2,001,002} -

When F' is a real quadratic field in which p is inert, we label the two archimedean places
of F' to be co; and ocoy. Then Theorem @ says that each X {o0;} 1s isomorphic to a

P!-bundle over ﬁ{ml’mz}, and X{OOLOOQ} is isomorphic to Sh{ool’ooz} with an Twahori
level structure at p.

When F' is a real cubic field in which p is inert, the chosen isomorphism ¢, : C =N @p
makes Yo = {00p, 001,002} into a cycle under the action of the Frobenius o, i.e.
000 F> 001 B 009+ 003 = 00g. The stratum f({ooi} is isomorphic to a P'-bundle
over ﬁ{mi—l,ooi}? the stratum X{ooi_hooi} is isomorphic to ﬁ{ooi_hooi}; the stratum
X{oo1,002,003) 18 isomorphic t0 Ship o, 00,003} -

When F is a totally real field of degree 4 over Q in which p is inert, we may label the
archimedean places of F' to be coq, ..., 004 such that the Frobenius o takes each oco; to
00;+1, Where 00; = 00; mod4. We have the following list of the non-trivial strata.
Strata Description

X{o0;} for each i P'-bundle over ﬁ{ooi_h

X{oozq,ooz-} for each ¢ ﬁ{ooi,l,ooi}

X{oor,003) AN X{ooy 00,1 (PY)2-bundle ovelﬁh{ooh_”’o%}
Xt with #T =3 P!-bundle over Shisoy,....00a}
X{oo1,.,004} ﬁ{oolw,o%} with Iwahori level at p
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We fix an open compact K = KPK,, C GL2(A™®) with K, = GL2(Of ®z Zp) and KP
sufficiently small. For T C Y, we denote by Y7 the closed GO-stratum Shg (G)g, 1 as in
Subsection We put Kgry = KPKgr), with Kgry, just defined before Theorem

Here, we fix an isomorphism Ggr)(A*P) ~ GL2(A°P), and regard K? as an subgroup of
Gs(n) (A°°P). We will put all the results in this section together to computer the cohomology
of YT.

Proposition 5.24. — Let Fyr) be the reflex field of Shi, (Gg(r)), ky be the residue field
of OFS(T) at the p-adic place given by the isomorphism v, : C ~ @p, and d, = [ky : Fp]. In
the Grothendieck group of modules of 7 (KP,Q;)[Sy, Sp_l 1 p € Bp)[P2], we have an equality
(5.24.1)

[H} oYy, £ = ()7 #50= [ @ (x50 0 577 @ (@ & Qi(-1))°"]
TE s, w)
+ Ok2] @ (WS?T))KS(T) ® ~S(T)} <[(@z @ Q(—1))F="1] - 5T(Drl]>
TERBw
where

— Og,2 15 equal to 1 if all k; = 2, and 0 otherwise,

— o1 is equal to 1 if T =), and 0 otherwise,

— On each Q(—1), S (KP?,Q;)[Sy, Sp_l;p € ¥,] acts trivially, and @z acts by multipli-
cation by p>®e.

— ®2 acts on the left hand side of by Hpezp(q)'g)dp with @2 = Frg - Syt as
defined in

—fOTT['EJZ{kw 07‘7‘(’6%11,, S(M)
(k,w)

7rl

s(T)

is isomorphic to p_;” as a vector space, and is equipped

with a ®2-action given by p7r(7l)(15‘1r0b@)2 multiplied by the number

do . T waloop) #SMeerp/dy — oy pl- @M —0)ds
peEL,

with w a root of unity. Note that when m € Py, P2 acts trivially on ﬁfr(;r).

Moreover, if C’onjectm“e holds the equality holds in the Grothendieck group
of modules ijf(Kp,Ql)[ Sp,S ip € X, where
— ny is the smallest posztwe number n such that o) T =T,
— In (Q; ® Q(-1))®" and (Q, @ Q;(—1))2E=T), B2 acts trivially on Q; and on the
copies of Q;(—1) which are labeled with elements not in ¥, /,; on the copies of Q;(—1)’s
labeled by elements in Yy, the action of CIJZZ" is the multiplication by p>™

- @;2" acts on ﬁi(;r) (resp. pm1) by p*™-Frobenius at p on pfr(;r) (resp. pr1) times the

number wy (top) """ (1=#800/p/dp ).

Proof. — We first remark that the Hecke action of F'* (viewed as a subgroup of the center
AT C GL2(A¥)) on H,

oot (Y7 E,iﬂl(&’w)) is given by (2 — w)nd power of the norm. Hence,
to prove the equality above, we may consider the submodules on both sides on which AOFO’X
acts via the restriction of a fixed Hecke character xr of F' whose all archimedean components
are given by x — 2% ~2. By the discussion in Notation there exists a Hecke character

X € dgi whose restriction is just xg. Then it follows from ([5.16.2]) that

(65242)  Hio(Yyg, L5 2 = Hy(Shic, (G)g, 4, )7 2xm K =tivia
—H*

1(k,w) AT =y, KP=trivial
c,et Z ) F )

(Shiy (Go)g, .1 s
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By Theorem [5.22(1) and (2), we see that k) (k)

0,5, |ShKé/7p(G8)Fp,T = 7TT( g(T),i,l)’ and hence
(5.24.3)

//(kw
n 1(kyaw)
R (XQ)EZ ‘ShK” (Gos, T) - {0 "

Therefore, in the Grothendieck group of 7 (KP,Q;)[S,, Sp '+ p € 5] [®,2]-modules, we have

) @ Ty(-i) o) if n = 2i with 0 < < #I;

otherwise.

[H} o (Yo, B0 h " =xr)

= [ cet(ShK") (Ggm))F,» i1 (Xé/zklw)|ShKN @ ))AOEOvX:x,KP:trivialJ
= [Ha(Shig, (Clm)s, Lam g )'E K= @ (@ & Qi(-1))*"]
= (1) O=[ P (1) @, @ @ eT-1)%"]
TED ks, w) [XF]
tosl P ()R e 20 e ([(@l@@m—l»@@““ )] = b5(0)0[@ l]) (@ © u(-1))2"]
TEBw([XF]

Here, we used Theorem in the last equality. We remark that S(T) = () if and only if
T = (), and in which case It = (). Now it is clear that the expression above is exactly the
X F-component of . The description of the action of @2 is immediate from the fact
that @ . = Frob?pSp_ % and Proposition @

The second part of the Theorem follows from exactly the same argument by using Con-
jecture [5.18] in place of Proposition [5.20) ]

6. Computation of the Rigid Cohomology 1

We will use the same notation as in Subsection [£.4 and Proposition [5.24] We consider the
cohomology group Hr*lg(X torord 1y g7 (E’“’)) as defined in Subsection Note that we have
fixed an open compact subgroup K = K?K,, C GL2(A¥) with K, = GL2(Of ® Z,), and
omitted K from the notation. In this section, we will first use the results in Section 4 and 5
to compute it as an element in a certain Grothendieck group. Then, combining the results
in Subsection 3, especially Proposition we prove our main theorem on the classicality
of overconvergent cusp forms.

The second part of the following theorem will not be used later, but it provide a good
sense of what to expect and it is also a baby version of the computation in the next section.

So we keep it here.

Theorem 6.1 (Weak cohomology computation). — Let (k,w) be a multiweight.

1. For each integer n, in the Grothendieck group of finitely generated modules over
H(KP,Q,), [Hﬁg(Xtor ord D g (kw)) ®r, Q) is a sum of Hecke modules coming from
classical automorphic representatzons of GLQ(AF) (including cuspidal representations,
one-dimensional representations and Eisenstein series) whose central character is an
algebraic Hecke character with archimedean component N},“/TQ?

2. We have the following isomorphism of modules in the Grothendieck group of modules

of #(KP,Q,).
(6.1.1) [H (Xm0 Dy ZE)) @, Q) = (—1)7 - [S(gyw) (KPTwp, Q).
Proof. — (1) By the Hecke equivariant spectral sequence (4.10.1f), each Hgg(Xord D; .7 (k)

is a sub-quotient of rigid cohomology groups of GO-strata Yt’s. It suffices to prove that, for
all T C ¥, each individual rigid cohomology group of Yt is a sum of Hecke modules coming
from classical automorphic representations. For T = (), this is clear by standard comparison
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between rigid and de Rham cohomology and classical theory. For T # (), we may reduce to a
similar problem for étale cohomology of Yt by Proposition Then the required statement
follows from Theorem and the proof of Proposition This proves statement (1).

(2) We also identify C with Q; via a fixed ¢; : C ~ Q;. Computing the tame Hecke action
on the ordinary locus is straightforward:

[H;(lg(ytor jord D tg-(k w)) L L, Qp]

4.10.1 % w —
- Z #T Hc rlg(YT/L@’ ‘@(& )) ®Lp QP]

TCY o
Prw@ Z #T ngt(Y Fp’ipl(k,w)) ®L, @l]
TCY
ZBEL S () # e T @Y (a3 ] (20T — o) [ D) ()]
TCY o WE'Q((E,UJ) TERBw
(6.1.2)
— Z °0.P) K” H Z #Tp 1)#200/;3—#5(1")00/;3.Q#EW/p—#Tp [(WS(T)7p)KS(T),p]
nesz@,w) PEX, Ty S0 /p
+op2 > (@] (=14 D (~1)FT20#T)
TERw TCY 0o

Here when quoting Proposition we have turned the vector space for @ 2-action into
their dimensions. The last equality is just to separate out the contribution from each prime
p € ¥, (note that (mg (T ))KS(T> is isomorphic to (7°P)K"),

We separate the computation for each ™ € #}, ) U Bu-

For 7 € %, note that D rcy, (—1)#T29=#T = (2-1)9 = 1 by binomial expansion. So the
contribution of 7 € 4, to [Hr*lg(Ytor ord ;g7 (kw ))] is trivial. This agrees with the right
hand side of -, where none of such 7 appears.

For 7 € 9y, ), we need to compute each factor of the product over p.

— When 7, is not unramified, (WS(T)m)KS(T)m is nonzero if and only if Ty = ¥/, and m
is Steinberg. In this case, (WS(T)m)KS(T)vP is one dimensional. So the factor for p in
the product is nontrivial only when T, = ¥, ,. It has total contribution of
multiplicity (—1)#¥=/¢ in this case.

— When 7, is unramified, (FS(T)’p)KS(T)’p is one dimensional, unless T, = ¥ /,. In the latter
case, it is zero if #%, /, is odd and is 2 if ¥ /,, is even, i.e. it is 1+4(—1)#Fee/». Also note
that #S(T) , is always even unless S(T)/, = X/, and it is an odd set. But the latter
case is exactly when (TrS(T%p)KS(T)’P vanishes. So we may ignore the term (—1)#5T/ in
computation. The factor for p in the product has total contribution

Z (_U#Tp(_l)#zw/p 9 Voo/p—H#Tp 4 (1 + (_1)#200/,;)

Tpgzw/p

=((2 = 1)#Fec/p — 1) + (1 + (=1)#ec/v) = 2 x (—1)#Fecss,

This means that the end contribution of 7, from (4.10.1) agrees with its contribution to
S(k,w) (KPIwy, C). Putting all places above p together proves the Theorem. ]

Remark 6.2. — (1) By a careful check of cancelations in the spectral sequence ,
it is possible to show that each individual cohomology group [Hj, (X torord py. gz (kw))] does
not contain one-dimensional automorphic representations. However, it may indeed contain
the tame Hecke spectrum of some Eisenstein series, because the Eisenstein spectrum in
H". (X, 2®%w)) can not be canceled out by cohomology groups of Yz with T # 0.

c,rig



56 YICHAO TIAN & LIANG XIAO

(2) In the proof above, we have dropped the action of twisted partial Frobenius. We will
get to a more delicate computation in the next subsection which involves matching the action
of partial Frobenius with the action of Uy-operators.

We first arrive at the following very weak version of the classicality of overconvergent cusp
forms, where we do not attempt to optimize the bound on slopes. The sole purpose is to
prove that the classical cusp forms are Zariski dense in the Kisin-Lai eigencurve.

Proposition 6.3 (Weak classicality). — Let f € Sgk w)(K,@p) be an overconvergent

etgenform for @p[Up, S, S{l 1p € Xy]. Forp e Xy, let Ay denote the eigenvalue of f for the
operator Uy,. Assume that

(6.3.1) Z (valp(/\p) - Z L _2 kT) +9< ! mln (k -1).

pED, 7€ 0 gre
Then f is a classical cusp form of level KPIwy,.
Proof. — The basic idea is that, when the slope is very small comparing to the weights,

there is essentially one term in the spectral sequence which can possibly contribute
to the corresponding slope. Moving between various normalizations unfortunately makes the
proof look complicated.

We use superscript [ [, Uy-slope = 3, val,(Ap) to denote the subspace where the eigenval-
ues of [[ ey, Up all have p-adic valuation s valy(Ap). We aim to show that, under the
weight-slope condition , the natural embedding

(632) S(E,w) (KpIWp, @p)np Up-slope=3_, valp(Ap) N Ssz ) (K, @p)np Up-slope=3_, valp(Ap)

is in fact an isomorphism. It suffices to show that both sides have the same dimension. The
Proposition then follows from this.

Let € be the complex (3.3.3)) of overconvergent cusp forms. Consider its subcomplex
formed by taking the isotypical part with J[, Uy-slope = }, valy(A,). By Corollary
only the last term (ST w))HF Up-slope=3_p, valp(p) i5 nonzero. Hence, it follows from Theorem

(k,
that in the Grothendieck group of (finited generated) @p[Up, Sy, S{l 1 p € Xp]-modules, we
have
(6.3.3)
(Szrk w))Hp Up-slope=3_, valp(Ap) _ (_1)9 [H*(%')(Hp Up)-slope=3_, valp()\p)}

:( 1) [H:lg(Xtorord D; (kw))(l_[p Up)-slope= vaalp()\p)]

We need to show that the dimension of this (virtue) @p
hand side of (6.3.2]) times (—1)9.

Put N = g! (a very divisible number). We put ® :=J[ oy, © pQ with ®,» = F1r2/Sp Then
the slope condition above on Hp Uy is equivalent to ®-slope = Nwg — 2N Zp val,(Ap), by
Lemma, Now we argue as in Theorem . ): fixing an isomorphisms Q; & C = (@p, we
have equahtles in the Grothendieck group of Q,[®]:

-vector space is the same as the left

[H* (Xtor ,ord .D; .7 a (k, w))@ slope=Nwg—2N 3_, valp()\p)]

rig
(4.10.1) Z (—1)" #T [H:rlg(YT/Lp’g(k,w))<I>—lep6:NU}g—2N#T—2NZp valp(Ap) ®r, @p]
TCEoo
(6.3.4)
_Prop 13 Z “HIH2  (Yog 7a%(k,w))@-slope:ng—zN#T—mZp valp ()],

TCY o
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Here, we have to modify the ®-slope starting from the first equality by —2N#T in order
to take account of the action of ®,2’s on Cech symbols as described in Proposition M(Q),
which in turn comes from the commutation relation between ®,2 and Gysin isomorphisms
(14.9.2).

We first claim that all terms in (6.3.4) with T # () vanishes. Note that the slope condition
(6.3.1) implies that k # (2,...,2). Thus, Proposition says that, in the Grothendieck

group of Q;[®]-modules, we have

[Hi o (Yog,, L5 = 3 (—1)7#50= [(zge)sm @ 557 @ (@ @ Qu(-1)) "]

TEA o, w)

where the action of ® on each of Q;(—1) by multiplication by p?, and the action of ® on

p (;r) as p (l)(Frob o) times u - pN(@W=2)#8(N—9) with u a root of unity. We will show that,

for each 7 € 3, ), the slope of ® on p ® (Q®Q;(—1))®'r is always strictly smaller than

2N
N Y ke +2N#Ir — — min (k, — 1),
TEE g Tezoo

which is easily seen to be strictly smaller than Nwg — 2N#T — 2N }_, val,()y) under our

assumption (and with the fact that #T 4+ 0 < #T + #It = #S(T)e < g¢). This
would then imply that all terms in with T # () is zero. Since the p-adic valuation
of the number u - p™V(W=2#8(Mee=9) i (1p — 2)(#S(T)os — g) N, it remains to show that the
P, ST )(Frob an) has slope strictly smaller than

(6.3.5) N(w—2)(g—#S(T)oo) + N kr — — min (k; — 1).

resa g T€¥

We claim that, for each p € ¥, with S(T)y/y # Yoo/p, the slope of Frob,n on the

G
unramified l-adic Galois representation ®Eoo/p—s("r)/p -Ind, (p7r l|Ga1F ) of Galg , is less

than or equal to
TGEoo/p

Indeed, let ay, B, denote the eigenvalues of Frob, on p.; with val,(ay) < val,(5,). Using the
admissibility condition of the corresponding p-adic representation of Galg,, we have

w+kr—2
(6.3.6) valy(By) < > —
Tezoo/p
Therefore, the slope of Frob,.n acting on ®y,_ =SV oo /p -In dgai@ pr, is less than or equal to
dp — #8(T) #8(T)oo/p
szdippvalp(ﬁp) SN DY (wAk—2)(1— 0 ).

TEEOO/p

Note that the expression above is automatically trivial if 8./, = Y /,- Hence, summing
s(T)

over all p € X, we see that the eigenvalues of p_;’(Frob,2vy) have slopes smaller than or
equal to

N(w—2)(g—#8(Tec) + N 3 ks —NZ#S Joos 3 ke

€00 pES, dy T€S 00 /p
which is strictly smaller than (6.3.5)) due to the very loose inequality
N#S(T 2N
ZM kr > — min (k; —1).

d €00
peES, P T€ 00 /p g T€%eosn
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Therefore, all terms in (6.3.4)) with T # () are zero. Hence, in view of (6.3.3)), we get

[(ST )Hp Up-slope=3_, valp()\p)] _ ( ) [H*

b o (XFP7 %(E,w))(b—slope:ng—ZN > valp()\p)] ’

where the action of ® on the left hand side is given by p29%V (I, Se/ UHN
Similar to the argument above, Proposition implies that (note that k # (2,...,2))

(—1)°[ H;

c.et

(637) = [ @ (T‘.OO,p)KP ® ng ® (ﬁ?ﬂl)@-slope:ngfQNZp valp()\p)]’
7TEJM(}C w)

(XF 7 %(E,w) )<I>-slope:Nw972N > valp()\p)]

where p 2 Qs —Indgi (pry) with ®-action given by Frob,~ times a number

w - p-(w- 29N . In order to conclude that (6.3.2) is an isomorphism, we need to show
that the right hand side above has the same dimension as

[S(k w) (Kplwp, @p)np Up—slope:zp Valp(/\p)] _ [ @ (7r<>o,p)KP® (WZI)WP)Hp Up-slopezz:p valp()\p)] .
regof (ksw)

It suffices to show that we have

(6.3.8) dim (ﬂ.;{p ® (ﬁ?r’lyb—slope:ng—QN Zp valp()\p)) — dim (ﬂll)wp)np Up—slope:Z:'J valp(Ap)

for every 7 € /&) Note that if 7 is Steinberg or supercuspidal at some places p € Xp
then the both sides above equals to 0 due to the slope condition (6.3.1]). Assume therefore

that 7 is hyperspecial at p. Then 7r£( " is one-dimensional. Let oy and B, be the eigenvalues
of Frob, on pr; with val,(ap) < valy(By) for any p € ¥,,. Then oy and f, also coincide with

eigenvalues of U, on W;W" by Eichler-Shimura congruence relation. Hence, the Hp U,-slopes

on 7Tp 7 take values in &(Up,) = {>pes, valp(p) % € {op, By}, p € Ep}, and the slopes of
® take values in the set

= {2N Z {Val o )ip + (dp — z'p)valp(ﬁp)] — Ng(w —2) : iy € ZN[0,dy]}.
peES,
Then if 3, val,()p) is not in the set

S(U,) := )U {Z val,(ay) Z i (val,(B,) — val,(cp)) : iy € ZN [0, dy],Vp € Bp}

then both sides of (6.3.7) are equal to 0. Assume therefore 3, val,(\y) € S(U,) and (6.3.1)
is satisfied. Note that val,(cy) < val,(5,) for all p € 3, since val,(cy,) +val, (ﬁp) (w—1)d,.
We claim that val,(\,) = >, valp(ap), which is the minimal element of G(U ). It follows

that both sides of (| - ) have dimension 1, and the proof will be finished. To prove the
claim, it suffices to show that

Z val,(ap) + m1n dlp (val,(Bp) — valp(oy)) > Z

peX, TEY o

w— k-
2

1
+ —min(k, — 1) —
S min(k, = 1)

where the right hand side is greater than Zp val,(Ap) by assumption. Let pg € 3, so that the
w—kr

minimal of the left hand side is achieved. Since valp,(cy) > Zrezw/p by admissibility

condition and valy(ay,) + valy(By,) = dp, (w — 1), we are easily reduced to showing that

k-—1 1 1 1
TEEZ 5 (5 - d—m)[valp(ﬁpo) - Valp(%o)] > ;Trélilo(k’f —1)—g,

oo/po

which is trivially true if dy, < 2, and follows easily from val,(8y,) — val,(ap,) <
sy, (e = 1) if dg > 2. 0
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6.4. Overconvergent Eigenforms of level K;(). — Let 91 be an integral ideal of Op
prime to p. We put

Ki(M) = { <CCL Z) € GLy(Op)la=1,c=0 mod ‘)"(},

and let K7 ()P be the prime-to-p part. Since K1(M)P does not satisfy Hypothesis the

theory in Section 3 does not apply directly. By Lemma [2.5] we choose an open compact
subgroup K? C K; ()P that satisfies Hypothesis Consider the space S(Tk ) (K, L) of
overconvergent cusp forms of level K = KPK), for a sufficiently large finite extension L,/Q,.

We have a natural action of I' := K;(9)?/KP? on SZw(K, Ly). We define the space of
overconvergent cusp forms of level K7(91) to be the invariant subspace

ST

ley (K1(M), Ly) = S|

{s.) (K, L)

It is easy to see that the definition does not depend on the choice of KP. The Hecke algebra

J(K1(M)?P, L) and the operators Uy, S, for p € X, acts naturally on Sgg,w)(Kl (N), Ly).

We say f € Sgk,w) (K1(M), Ly,) is a (normalized) overconvergent eigenform if f is a common
eigenvector for all the Hecke operators in (K1 (M)P, L,)[Up, Sy, Sp_1 :p € Xy, and the first
Fourier coefficient (the coefficient indexed by 1 € Op) is 1. Note that J€(K(M)P, L) is
generated by the usual Hecke operators T, for v { pN, U, for v|M, together with S, and S;!
for all v 1 p.

Let §(E,w)(K 1(O)PIwy, L) denote the subspace of classical Hilbert modular forms which
vanishes at unramified cusps of the Hilbert modular variety of level K;(91)PIw,. There are
natural Hecke equivariant injections

Sty (K1 (W)PTwy, L) < Sy (K1 (M) Twy, L) < Sh o (K1(N), L),

where S, ) (K1 (9)PIwy, L) is the space of the classical Hilbert cusp forms. We

will say a form f € Szrk w)(Kl(‘ﬁ),L@) is a classical Hilbert modular form if it lies in

SEw) (fgy (M)PIwy, Ly,), and is a classical Hilbert cusp form if it is in Sy ) (K1(M)PIwy, Ly,).

Note that if (k,w) is not of parallel weight, then Sy . (K1(91)PIw,, L) coincides with
S () (K1 (M)PLwy, Ly, ); but if (k,w) is of parallel weight k, then g(&w)(Kl (N)PIwy, L) will
contain as well some Eisenstein series of level K (9)PIw), of Up-slope dy(k —1) for all p € X,,.
Actually, let x be an algebraic Hecke character of F' with archimedean component given by
N 11276 and of conductor ¢ dividing 9. Write y = €|-|*~2 with € a finite Hecke character. Then
there exists an Eistenstein series F, of weight k such that E, is a common eigenvector of T
with eigenvalue 1 —i—e(q_1)]\7F/(Q&)(C|)”“_1 for all prime ideals q { ¢. We take the p-stablization E
of Ey such that E} has level K1(91)PTw), and it is a common eigenvector of U, with eigenvalue

e(p " )Npjg(p)“~'forall p € ¥),. Then E, vanishes at all unramified cusps at p of the Hilbert

modular variety of level K7(0)PIw,, and hence is contained in Sy ) (K1(9)PIwy, Ly,).

Recall that Kisin and Lai constructed in [KLO5| various eigencurves C ) (p) that
parametrize (normalized) overconvergent eigenforms with different weights. The points on
the Kisin-Lai eigencurves that correspond to classical Hilbert eigenforms are called classical
points.

Theorem 6.5. — On the Kisin-Lai eigencurves for overconvergent cusp forms, classical
points are Zariski dense.

Proof. — This follows immediately from Proposition by the same arguments as [Tilll,
Theorem 2.20]. O
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Remark 6.6. — This Theorem also follows of course from the main results of [PS11], where
Pilloni and Stroh proved the classicality of overconvergent Hilbert modular forms using the
method of analytic continuation.

The following is the combination of the work of many people.

Proposition 6.7. — Let f € Sgk: w)(Kl(‘ﬁ),Lp) be an overconvergent eigenform. Then
there exists a p-adic Galois representation py of G attached to f such that the following
properties are satisfied:

— For every finite place 11 pN, if A\ denotes the eigenvalue of the Hecke operator Ty on f,
then py is unramified at [ and the characteristic polynomial of p¢(Froby) is T2 - \T +
e([)NF/Q[(wfl), where €(l) is a root of unity, and equals to the eigenvalue of S; on f
divided by Npo(D)@=2.

— For a place p € X, if A\ is the eigenvalue of the Uy-operator, then the local Ga-

w—kr wtkr—2
2 2

=M is nonzero and its image in

lois representation pf|Gale is Hodge-Tate with Hodge-Tate weights in

the T-direction for each T € Xy, Dcris(pf|GaIFp)FrObp

Dar.-(pflcalr,) lies in Fi ") 2Dyg - (pf|Galy)-
— If f is classical, then py is semistable (including crystalline) at all places p € 3.

Proof. — When f is classical, the construction of p; is due to Carayol [Ca86b], Taylor
[Ta89] and Blasuis-Rogowski [BR93]. The verification of the properties for py was done
by Carayol [Ca86b] for places outside p and by Saito [Sa09] (plus a special case handled
independently by Tong Liu [Lil2] and Christopher Skinner [Sk09]) at places above p. For a
general f, we consider an Kisin-Lai eigencurve C that passes through f. Then the continuity
of the Hecke eigenvalues define a pseudo-representations over the reduced subscheme of C.
Specializing this pseudo-representation to the point corresponding to f provides f with a
Galois representation of Galp.

The existence of crystalline periods can be proved using the recent work of Kedlaya,
Pottharst and the second author [KPX12|, or independently R. Liu [Lil24] on global
triangulation. Both works generalize prior work of Kisin [Kil2]. O
Corollary 6.8. — Let f € S(Tk’w)(Kl (M), L,) be an overconvergent eigenform. Assume that
there ezists a classical eigenform f € g(&w) (K1 (O)PIwy, L) such that f and f have the same

eigensystem for A (K1(M)P, Ly,). Then f lies in S ) (K1 (9)PIwy, Ly,).

Proof. — Let 7 7 be the automorphic representation generated by f . Then 7 7 has conductor
¢ dividing p9. We denote by A () the set of K;(9)PIwy-eigenforms contained in 7, i.e.
the set of the various g-stablizations of the newform in 7 7 with q dividing p9t/c. Since f and
f have the same tame Hecke eigensystem, the p-adic Galois representation pf is isomorphic
to pj (or more canonically p,,f) by Chebotarev density. In particular, Dcris(pf|Gale) ~
Deris(pflaly, ) for every p € X, If Ay(f) denotes the eigenvalue of Uy, on f, then Ay(f)
appears as an eigenvalue of Frob, on Deris(p f|Ga1pp) by Proposition W Then there exists
freA 7 such that Ap(f) = Ap(f’) for all primes p € 3,. We conclude by the g-expansion

principle that f = f. O
Theorem 6.9 (Strong classicality). — Let f be a cuspidal overconvergent Hilbert eigen-
form of multiweight (k, w) of level K = KPK,, with K, = GLa(Of ® Zj). Let
-1, -1 __ T Zq—ezoo Orkr—1 ot
e @ Sezoo—{T}'(E,w) (K, Lp) =07 = 84, (K, Ly)
TELo

denote the (g — 1)-th differential morphism of the complex €* (3.3.3).
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1. If f is not in the image of 9=, then f lies in §(E,w)(K1(‘ﬂ)pIWp,Lp).
2. For each p € ¥, let Ay denote the eigenvalue of f for the operator U,. If

w — kT .
(6.9.1) val,(\p) < Te; S+ Ter%gl/p{kT -1}

oo/p

for each p € %y, then f is lies in Sy ) (K1 (DM)PIwy, Ly,).

Proof. — (1) By Corollary it suffices to prove the tame Hecke eigenvalues of f coincide
with those of a classical cuspidal eigenform. By Theorem f gives rise to a non-zero coho-
mology class in Hfig (xtorord p. Z(Ew)) Tt follows then from Theorem (1) that the tame
Hecke eigenvalues of f come from an automorphic representation 7 of GLa r whose central
character is an algebraic Hecke character with archimidean part N;,”_Q? Such a 7 might be
cuspidal, one-dimensional or Eisenstein. We have to exclude the case of one-dimensional
representation, and then (1) would follow from Corollary Assume in contrary that f has
the same tame Hecke spectrum as a one-dimensional automorphic representation:

GLy(Ap) 2% A% X €%

Then x is an algebraic Hecke character whose restriction to (F' ® R)*° is Ng//é_l. Via the

fixed isomorphism ¢, : C ~ @p, we have a well defined p-adic character on A

Xp: T (x(v)- NF/Q(-TOO)I_%)NF/Q($Z7)%_1 € Q;

where x, and x, are respectively the archimedean and p-adic component of x. Note that
Xp is trivial on (F' ® R)*° . F*. By class field theory, it defines a p-adic character of Galg.
We put prp = x, 1. Then prp is a one-dimensional Galois representation of Galg such that
if [1pMN is a place of F, Tr(px p(Froby)) equals to the eigenvalue of the Hecke operator T} on
f. However, Proposition implies that there is a two dimensional p-adic representation py
of Galr satisfying the same property. Hence, we have Tr(px ,(Froby)) = Tr(ps(Froby)) for all
unramified primes [. By Chebotarev density, this implies that the semi-simplification of p
is equal to pr p, which is absurd. This finishes the proof of the first part.

(2) If f satisfies the condition (6.9.1]), then Proposition implies that f is not in the
image of d9~1. Hence, f is a classical (cuspidal) Hilbert eigenform by the first part of the
Theorem. Such an f can not be Eisenstein either, because an Eisenstein series of (parallel)
weight (k,w) appearing in H?_ (X', D; .7 &) must have Hpezp Up-slope (w—1)g. This

rig
shows that f must be a classical cuspidal Hilbert modular form. O

7. Computation of the Rigid Cohomology II

We keep the notation of the previous section. If we assume that Conjecture holds (e.g.
when p is inert in F' by Theorem [5.12)), we can strengthen the weak cohomology computation
Theorem to a stronger version by including the action of UpQ’s.

Theorem 7.1 (Strong cohomology computation). — Assume Conjecture . We
have the following isomorphism of modules in the Grothendieck group of modules of

%(Kp’f@)[smsp_laljg;p € Ep]

(7.1.1) [Hy, (X or0rd Dy FEUN)] = (=1)9 - [Sg0) (KPTwp, Ly)].

Before giving the proof of this theorem, we deduce a corollary which slightly strengthens
Theorem on classicality of overconvergent cusp forms.

Corollary 7.2. — Assume Conjecture . Let (k,w) be a multiweight. For every p € ¥y,

we put sy = ZTGZOO/;J wobr mines_  {k- —1}. Then the natural injection

S(E,w)(KpIWp,Lp)Up-810pe<sp gl

A )(K Lp)Up-SlOp€<Sp
kyw ’
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is an isomorphism, where the superscript means taking the part of Uy-slope strictly less than
sp for every p € ¥,. In particular, if f is an overconvergent cusp form of multiweight (k, w)
and level KPK), with K, = GL2(Op ®Zy,), which is a generalized eigenvector of U, with slope
strictly less than sy for every p € X, then f is classical.

Proof. — It suffices to compare the dimensions. First of all, Theorem implies that
(7 2 1) ((g.)Up-SlOpe<Sp ~ (RF . (Ytor,ord [}<g~(k,w))Up—slope<sp
o = rig » U3 .

By the slope inequality (Proposition [3.25)), the left hand side of ([7.2.1) has only one term
(Szr/,c w))UP‘Sl°pe<S° in degree g. So the right hand side of (7.2.1) is also concentrated in
degree g. By Theorem above, the right hand side of ([7.2.1)) in the Grothendieck group

of modules of Ly[UZ;p € ¥,] equals to (—1)9 - [S (1) (K PLwy, ) Upslope<se] Tt follows that

[(Sgk w))UF'51°pe<SP] = [S(kw) (KPLw,,)Urslope<se] and in particular

dlm(SErk w))UP_SIOpe<SP = dim S(va) (KpIWp)Up-SIOpe<Sp ]

Therefore, the natural inclusion S ,,) (KPIw,)Ur-slope<se S(Tk w)(Kpr)UP‘51°pe<SP must be

an isomorphism. ]

The proof of Theorem [7.1] will occupy rest of the paper. We start by breaking up the
theorem into a local computation at each place p € ¥,,.

7.3. Reduction of the proof of Theorem — Recall that we have introduced Cech
symbols e, and er in and to encode the action of Fry, and ®,. We need more Cech
symbols for the second relative cohomology of the P!-bundle and the ®,2-action on them. For

each 7 € Yo, we introduce a Cech symbol f, of degree 2. This means that fr A frr = fr A fr
and fr Aer =ep A fr forall 7,77 € ¥ For a subset T C Yo, we put fr = A g fr. The

action of ®,> on the formal Cech symbols is defined to be

Dy2(er) = pPey—2, and Ppa(fr) = p*fy-2s,

for 7 € ¥y jp, and is trivial on e, and f; for 7 ¢ X /. For a subset T C Y, let S(T) be the
subset defined in Subsection and put It = S(T)eo—T and I1y = ItN¥,,. We fix isomor-
phisms @p =~ C = Q, as usual. Under the assumption of Conjecture we have a more del-
icate computation than Theorem in the Grothendieck group of (K7, Q,)[®y2;p € Ly):
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( 1) [H:lg(ytor jord .D; <g-(kw ) ®Lp @p]

g
@-10.1) i —
D (VTP Hersg(Va/ Lo, 7%) 1, Qpen]
i=0 #T=i
g
P k,
mp@ Z g Z @ cet l( w))eT]
1=0 #T=i
9 i
SRS ) D e D @) end o Q@ e U]
i=0 j=0 #T=i, wemk,w) relr
s.t.#Ir=j -
g
+ (1) 0[P er B (s 0 @ (@ (@z@@m)—éw@l)])
=0 #T=i TERBW TEY oo —T
dp  ip
, _S(T) -
= > (@I XD 0P B enphnpl” @ (msmp) <@ @ Q) (@ Q)]
TEA 1o ) pES, ip=0 jp=0 #T )y =ip, €l
S.t.#]Typ:jp
dp
(-0 > [N (@ [0 P e, ® @els)])
TERBW peEp Zp:O #T/p:ip Tezoo/pr/p
G
where pﬂ( /v is isomorphic to ®Eoo/p_sm/p In dGZIF pﬂ—l’GalF but it carries an action of
<I>:2" ; which is the same as the action of Frob, 2., on the tensorial induction representation

multiplied with the number wﬂ(wp)""(d"_#sm/ﬁ)/ 4. Here np denotes the minimal number
such that O';LPT/p =Ty
We will show that the long expression above equals to

Yo @) = 3 (@) ()]

WE,Q{(E’W) NEEQZ(E’U)) peEX,

For this, we need only to discuss separately for each ™ € 3, ,,) and #*. We start with the
latter where the computation is much easier.

7.4. Contribution of the one-dimensional representations. — We fix 7 € #"“. By
the discussion in the Subsection above, we need to show that the contribution of the =-

component to [Hr*lg(Ytomrd, D;ﬁ(&w))] is trivial. For this, it is enough to show that, for

each p € ¥, we have, in the Grothendieck group of Q;[®,],

dyp
(7.4.1) SEV P e, QK @oQf)
1p=0 #T/p:il’ TEEOO/P_T/P

is equal to [Q;], where ®, acts on Q; trivially and
Py (er) = Pyt and ®y(f;) = pfang

(We get back to our original statement by matching the action of .2 with @g.) Since the
argument will be independent for each place; we will suppress the subscript p for the rest of
this subsection. We also label e, and f;’s as e1,...,eq and fi,..., fg with the convention
that the subscripts are taken modulo d and ®(e;) = pe;—1, ®(fi) = pfi—1.

This will follow from some abstract nonsense of tensorial induction. Recall the setup in
Subsection G a group, H a subgroup of finite index, ¥ C G/H a finite subset, and H’ the
stabilizer group of ¥ under the action of G on G/H. We fix representatives s1,..., s, of G/H
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and assume that ¥ = {s1H,...,s,H} for some r. Instead of starting with a representation
of H, we start with a bounded complex C*® of Z[H]-modules. The tensorial induced complex,
denoted by ®x-Ind$; C*, is defined to be ®}_, C#, where C$ is a copy of C*. The action of H’
on this complex is given as follows: for each b’ € H’, there exists a permutation j of r letters
(depending on h') such that for each i € {1,...,r}, j(i) € {1,...,r} is the unique element
with h'sj;) € s;H. We define the action of A’ on ®x- Ind$ C*® by the linear combination of

W:OP @@ Cor Vg

sgn(j) - (Sl_lhlsj(l))(vj(l)) ® - @ (570 s (Vj(r))-

Note that the sign function for j is inserted to account for the sign convention in the definition
of tensor product of complexes. Such a construction is functorial in C*® and it takes quasi-
isomorphic complexes to quasi-isomorphic complexes (this is because when checking quasi-
isomorphism one can forget about the group action.)

We will consider a particular case of tensorial induction: G = Z, H = dZ, ¥ = G/H =
7./dZ, and the complex is given by Q; ® Q;f — Qe in degrees 0 and 1, where the element
d € H acts trivially on Q; and acts by multiplication by 1/p on both e and f, and the map
is given by sending the first copy of Q; to zero and sending f to e. It is clear that we have a
quasi-isomorphism

Q, = ®s-Indf Q ®z-Indf; (@ & Qf - Qe).
The upshot is that if we think of the action of —1 € G is the action of ® from (7.4.1), the
expression (7.4.1)) is exactly the image of the complex ®yx- Indg (Ql eQf —» @le) in the
Grothendieck group of @Q;[®]. Then Theorem for one-dimensional 7 would follow from
this.
We now explain carefully the construction of the tensorial induction for Q ®Q,f - Qe.
It is first of all isomorphic to ®%_, (Ql ® Q,fi — @lei). To properly account for the sign

(v ® - ® o)

quasi-isom

involved in tensorial induction, we need to declare that e; has degree 1 as a Cech symbol.
The statement is now clear.

7.5. Contribution of the cuspidal representations. — To prove the final statement
in Subsection for a representation m € %7} ,,), we need to prove that, for each p € ¥, in

the Grothendieck group of Q, [@y2], we have an equality

(7.5.1) [(mp)™] = ZZ &y eT/pﬁW(;){p@( 1) 02 @ (X) (QoQfr)]

1p=0 jp=0 #T/P:ip7 T€lT )
s.t. It p=Jp
where @2 acts on (m,)'™? by Np/g(p)2S,/U,

When 7, is ramified, the left hand side is nonzero if and only if m, is Steinberg, in
which case it is one-dimensional with trivial ®y2-action. All terms on the right hand side of
is zero except when T,, = ¥/, and hence It = S(T)oo/p — T/, = 0, in which case the
contribution is one-dimensional with trivial ®,2 if m, is Steinberg and zero otherwise. Both
sides agree.

It is then left to prove when 7, is unramified. Let o and 3 be two eigenvalues of
Frob, action on pr; and let {v,w} be a (generalized) eigenbasis corresponding to the two
eigenvalues respectively; thus the Sy-eigenvalue on 7y is wr(w, 1) = af/p®. We take a
square root A of af3/p® and put ap = a/A and By = B/ so that apfy = p®. Then ®,2 acts
on (my)™"» with eigenvalues a3 and 2. We need to match this with the right hand side of

7.5.
% write d = dp, i = iy and j = j, and ® = P, to simplify the notation. We label
Yoosp BY {71,...,74} so that o(r;) = Tiy1 and 4 = T (mod q)- We now try to rewrite the
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right hand of (7.5.1) so that it is easier to work with. We write ﬁfr(g)l as the vector space
Ores o /p—5(T)oop (Qv, ® Qw, ), with the convention that the operator ® acts on symbols by

Ur. ifi £ 1, wy, , if1#1,
q’(””):{ o ifz’il and (D(w”):{ﬁowT1 ifz’il.

aoUr,

(T)
. 7 7p7l o
OreSs /p—5(T)oo (Quur ® Qqw,) given as above. We also view these v;’s and w;’s as Cech

It is straightforward to check that the action of @gz on ﬁi is exactly the action of ®%¢ on

symbols of degree 0; namely, it commutes with other Cech symbols.
We can rewrite the right hand side of (7.5.1)) as

(7.5.2)

d i
I P e X (@ur ® Qur) @ (m3(n),p) @ @ Q) (@ & Qufr)],
1=0 5=0 #T/p:iv TEEoo/p_S(T)oo/p T€lrp

S.t.#[’r,pzj

where ® sends e, to pe,—1, and f: to pf,—1,, and it acts trivially on (WS(T)yp)KS(T)aP. We need

to show that , in the Grothendieck group of Q;[®], is equal to the two dimensional
Qj-vector space where ® acts with eigenvalues o and .

We quickly point out that in each term appearing in the expression above is of the form
Qibry A-++ Aby,, where each by, is exactly one of e,,, fr., Ur,, Wy, OF empty.

7.6. Cyclic words. — We now introduce some combinatorial way to describe terms and
their contribution in ([7.5.2)). For each such expression above, we associated a cyclic word (of
length d), that is a word (ay - - - ag) composed with letters of the following kinds:

— single letters a and 3,

— or short combinations: o/, a3, and o/,
with the understanding that the last letter is considered adjacent to the first one, and the
convention that a, = a, (mod q)- The short combinations are viewed as two letters which

always come together. For example, (Baafa) is a cyclic word, but (@afa3) is not. We may
rotate each cyclic word by changing it from (a; - - - ag) to (az - - -agay). The period of a cyclic
word w, denoted by per(w), is the minimal » € N such that r times rotation of w gives w
back. In this case, (a;...a,) can be also viewed as a cyclic word. We always have per(w)|d.
Two words are called equivalent if one may be turned into another using rotations. For a
cyclic word w, we use [w] to denote its equivalence class.

Now to each term Q;by, A -+ A b, of , we associate a cyclic word as follows:

— if by, = vy, we put a; = a;

— if by, = wy;, we put a; = 3;

— if by, = 0, then b, = er,, (ie. 741 € T) and we put a;a;41 = afs;

— if by, = fr,, then b, =e;,,, (ie. 7,41 € T) and we put a;a;41 = o/3';

— by the description of GO-strata, the only unassigned a;’s (for which we must have
by, = er) can be partitioned into disjoint union of pairs aja;i1, to which we assign
o/f’. (When d is even and T /p = Xoo/ps We have exactly two such partitions; we assign
two cyclic words in this case. In contrast, when d is odd and T, = X, /,, the term in

(7.5.2)) is trivial because (WS(T),p)KS“)’P—term is zero; this agrees with the fact that there
is no cyclic words just consisting of short expressions o/’ since d is odd.)

It is somewhat tedious but straightforward to check that this establishes a one-to-one corre-
spondence between terms in with all cyclic words of length d discussed above.

We now discuss the contribution of the corresponding terms in to the Grothendieck
group of @Q;[®]. For a cyclic word w with period r = per(w), the contribution of the terms
of corresponding to all elements of [w] is given by an r-dimensional representation

(7.6.1) Ry, = (1) [Q[@]/(@" - N)],
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where a is the number of short combinations a8 and /3’ in the cyclic word (a; - - - aq), and
the number A is the product of

— ap for each « in the cyclic word (a; - - - ay),

— o for each f in the cyclic word (ay - - - a,),

— apfo = p? for each af in the cyclic word (ay - - - a,),

— p?? for each o/’ and each o/ in the cyclic word (ay - - - a,), and

— a sign, which is nontrivial if and only if d/r is even and there are odd number of pairs

of af and &/ in (a; - - - a;).
This does not depend on the choice of the representative w in the equivalent class [w].
For example, the representation associated to the equivalence class of (aa/B'aBad’f'aB) is
©[0)/(9° + p¥a).

We now need to prove that the total contribution of all cyclic words to is simply
Riqg...a) + Rg...5, which agrees with the contribution from [(mp)™*]. In other words, we need
to show that the contribution of all cyclic words except (a---«) and (5--- ) cancel with
each other. For this, we need to properly group cyclic words together. We introduce some
new terminology.

— For a cyclic word w, its primitive form, denoted by prim(w) is the cyclic word obtained
by replacing all a3 by af and all o/ 3’ by o 8’. Equivalent cyclic words have equivalent
primitive forms. We note that a cyclic word always has (nonstrictly) a bigger period
than its primitive form, i.e. per(w) > per(prim(w)). The upshot of this terminology
is that adding overline to either a8 or /3" will not change the absolute value on \ in

(7.6.1) but it will change the sign of Ry,
— We think of the difference between a3 and o3 as being “conjugate of each other”. The

same applies to o/ and o/ . Hence we introduce the convention that af3 = af and

aff = aff. The key observation is that, taking the conjugation of a short combination

af or o/ B" will not change the absolute value of A in ((7.6.1]) but it will change the sign
of Ry,). This allows us to cancel the contribution to (7.5.2)

Claim: We group all cyclic words into packages with the same primitive forms up to
equivalence. For any equivalent class of primitive forms [wg] with period per(wg) = r # 1,
all cyclic words w with [prim(w)] = [wo] have zero total contribution to the sum ((7.5.2]).

Since the only cyclic words with period 1 are (a---«a) and (8--- ), this claim would
exactly prove our Theorem in the cuspidal case.

Since the Claim can be easily checked when d = 1,2, We assume d > 3 from now on.
Before proving the claim, we first indicate some simple cases to give the reader some feeling
of the argument.

When r = d, the claim can be easily deduced as follows. Let wg be as in the claim. In this
case, every cyclic word w such that prim(w) = wy will also have period equal to d. Moreover,
wp must have at least one adjacent a3 or a short combination o/3’. We fix one such, say at
ith and (7 4+ 1)st places. Among all cyclic words whose primitive form is wgy, we may pair
those which are identical at all places except at the ith and the (i + 1)st, where they are
conjugate of each other. Their equivalent classes contribute the same representation to the
sum , but with different signs (since the signs are determined by the number of pairs
of aB and o/f’). So the total sum would be trivial.

A variant argument of this also works if d/r is odd, as follows. Let wp be as in the claim.
In this case, if a cyclic word w satisfies prim(w) = wq, then we only know r|per(w). But this
will not concern us. We fix an adjacent a8 or o/’ in wy, say at ith and (i + 1)st places.
Without loss of generality, we assume that ¢ € {1,...,r}. Then we have adjacent a3 or o/’
at (sr+i)th and (sr + i+ 1)st places of wy for any s € Z. For a cyclic word w = (a; - - - a,)
whose primitive form is wg, we define its dual w" to be the following cyclic word

\Y
w' = (ar - iGig1 " CigrGigrg1 - Qitd—rOitd—rt1 """ 0d)-
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In other words, we take the conjugation of w at (sr + ¢)th and (sr + i + 1)st places for all
s € Z. Note that the period of w is still the same as w". Hence their cyclic equivalent
classes have the same contribution to the right hand side of , but with signs differed
by (—=1)%" = —1. So the total contribution is trivial again.

Clearly, a direct generalization of this argument would not work if d/r is even. We
look at an example first. Let wg = (aﬂaﬁaﬁaﬁ) Then the list of cyclic words w with

[prim(w)] = [wp] and the contribution to of their equivalence class is given as follows:

(i) equivalence class of (afafafBa) contributes rl /(®% — q)],
(ii) equivalence class of (aSaSaBaf3) contributes — Q] ] /(@ —¢*)],
(iii) equivalence class of (afBaBaBa) contributes rl 1/(®8 — q4)],
(iv) equivalence class of (aBaBaBaf3) contributes rl 1/(®* + q2)],
(v) equivalence class of (aSafafBaf) contributes — rl ]/ (P® — q4)], and
(vi) equivalence class of (afafaBaf) contributes [Q;[®]/(®* + q)],

where g = p8. Note that, in (iii) and (v), the sign on power of p is changed according to the
last rule in (7.6.1). One sees that the factorization ®°® — ¢* = (®* + ¢*)(®* + ¢)(®? — ¢) is
used to prove that the total contribution to the sum is zero.

We now handle the most general case of the claim. We fix an adjacent af or a short
combination o/’ in wy, at ith and (i + 1)st places. Without loss of generality, we assume
that i € {1,...,r}. Assume that d/r = 2!'s for t € N and s odd. We fix a positive divisor s”
of s, and write s’ = s/s”. Let CWgr(wp) denote the subset of the cyclic words w of length
d whose primitive form is wg and its period is of the form per(w) = 2!"s"r for some integer
0 <" <t For each j € {0,...,2" — 1}, we define an operator r; on CWy(wp) as follows:
for w = (a1 ---aq) € CWyr(wp), rj(w) = (b1 -bg) is given by b(mmat4j)sr1ibmat +j)sr+it1 =
A (m2t+5)s" r+i@(m2t4j)s"r4it1 for 0 < m < s’ — 1, and b, = a, for any other n’s. It is easy
to see that r;j(w) € CWr(wp), and two elements of CW 4 (wp) are equivalent if and only if

there images under r; are equivalent. Note that r; has order 2. Let &o: ~ (Z/ 27,)%" denote
the group generated by r; for 0 < j < 2! — 1. We now group the cyclic words in CW g (wy)
into By:-orbits, and as well as their equivalence classes. We have the following

Subclaim: Let W C CWgyr(wg) be a Bqyi-orbit, and let [W] be the associated set of
equivalence classes. Then the contribution of [W)] to the sum (7.5.2) is zero.

It is clear the claim would follow this Subclaim. From now on, we fix such a WW. Among
all periods of cyclic words in W, there is a minimal one, which we denote by 7 = 2t"s”r. Put
t' =t —t" so that d = (2!'¢')7. For any w € W, per(w)/7 is a power of 2. We fix an cyclic
word w* € W with period 7.

The case when t' = 0 is simple, which we handle first. This is the case when d/7 is odd.
Hence the periods for all cyclic words w € W are in fact the same. We consider the action
of rg, for example. The Q;[®]-module associated to the equivalence class of w is the same as
that of ro(w). But their contributions in differ by a sign since rg takes conjugation
at s’ places. The claim is proved in this case.

From now on, we assume that ¢ > 0. We will have to do an explicit computation. For
k=0,...,t', we consider the following set of operators

. t” k‘
Opk:{rjorj+2t//+kO-"Orj+2t_2t//+k ‘j:0,72 + —1},

and let (Op;) C &y denote the subgroup generated by Op;,. We have (Op,_;) € (Op;) and
(Opy) = Bgt. Let Oby, denote the orbit of w* under the action of (Opy). It is not hard to
see that, for each k, Oby, consist of exactly those w € W such that per(w)|2¥+"s"r. Put
Obg = Obg and Obj; = Oby — Obg_; for & > 1, and let [Obg] denote the associated set
of equivalence classes. Thus Oby, consists of exactly those cyclic words w € W such that

per(w) = 2" tFs"r and we have [W] = UZZO[Obi}. It is clear that the cardinalities of these
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sets are . . .
#0by =22 | #oby =22 T 2 T o k=1, 1.
We first look at the contribution from [Oby] to the sum (7.5.2)). The equivalent class w*
corresponds to a representation Q;[®]/(®" — \) for some A € ;. Then among all the cyclic
words in Obyg, half of them (i.e. those obtained by applying even number of operators in
Opg to w*) correspond to the same representation as w*, while the other half correspond
to @[®]/(®" + ). The change of the sign is a result of the last rule in (7.6.1). We note

moreover that any two cyclic words in Obg are not equivalent unless they are equal. Hence,
the total contribution of [Oby] to is 221 copies of Q;[®]/(®" — \) and 92" -1 copies
of Q;[®]/(P" + A).

Similarly, among the elements of Ob for k =1,...,¢' — 1 of them are obtained
g2t Hk—1 _ gat+k-1

22t”+)€_1
)

by applying odd number of operators in Op,, to w*, while of them are
obtained by using even number of operators. By the rules in , the representation
corresponding to the elements in the first case is Q;[®]/ (®2"7 + A2"), and that for the second
case is Q[®]/ (‘PQW — )\Qk). Since every 2 elements in Obj give rise to one equivalence class
in [Oby], we see that the multiplicities of the two representations above given by [Oby] are

"tk " vk . kg tfk—1_ .
22 1/ok = 92 k=1 and 22 k=1 _ 92 k respectively.

For k = t/, the representation associated to a cyclic equivalent class of a cyclic word w*

from Oby, is always Q; [@]/(@Qt/’: — )\Qt,) (note that the index of the period is an odd number

s” now). But the contribution to the sum (7.5.2) is the same as the contribution of w* if and

only if this element is obtained from w* by applying even number of operators from Op, .
In summary, we list all the representations we see in the following table.

k Representation Multiplicity Sign of the Contribution
0| @Qo)/(2" - 92" —1 same as w*

0] Q[®]/(@"+ ) 22" 1 same as w*

1| Qo]/(2* —N?) R same as w*

1 @z [‘I)]/(‘I)QF + >\2) 92" T1-1-1 same as w*

v Qe]/(@27 - a2 20t g2 same as

| Q) (@7 —\¥) 92'—t'~1 opposite to w*

Then using the factorization
2T N2 = (¥ T AT ) (@7 + A) (DT — ),

it follows immediately that the total contribution of all [Obg] for 0 < k < ¢’ to (7.5.2) is zero.
This finishes the proof of the Subclaim, and hence also Theorem [7.1

Remark 7.7. — Our proof of Theorem in the cuspidal case is rather combinatorial,
basically by brutal force. It would be great if one can give a more conceptual or geometric
proof.

If one needs only the action of high power of @2, the proof can be significantly simplified.
In fact, this suffices for the application to proving classicality result as stated in Corollary[7.2]
Nonetheless, we feel that Theorem has its own importance; it deserves a trying for the
most optimal statement.
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