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Abstract. Let G be a connected reductive group over a p-adic local field F . Rémy-
Thuillier-Werner constructed embeddings of the (reduced) Bruhat-Tits building B(G,F )
into the Berkovich spaces associated to suitable flag varieties of G, generalizing the
work of Berkovich in split case. They defined compactifications of B(G,F ) by taking
closure inside these Berkovich flag varieties. We show that, in the setting of a basic local
Shimura datum, the Rémy-Thuillier-Werner embedding factors through the associated p-
adic Hodge-Tate period domain. Moreover, we compare the boundaries of the Berkovich
compactification of B(G,F ) with non basic Newton strata. In the case of GLn and the
cocharacter µ = (1d, 0n−d) for an integer d which is coprime to n, we further construct a
continuous retraction map from the p-adic period domain to the building. This reveals
new information on these p-adic period domains, which share many similarities with the
Drinfeld spaces.
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1. Introduction

Let p be a fixed prime number. In this paper, we continue to study the geometry of
p-adic period domains as initiated from [11]. More precisely, we compare p-adic period
domains with the Bruhat-Tits building ([6, 7]) of the associated p-adic reductive group G.
Both are candidates of the so called “p-adic symmetric spaces” for G, although the p-adic
analogues of symmetric spaces that they show are in different aspects (p-adic Hodge the-
oretic and analytic vs. combinatorial and topological), cf. [35] and [53, 36]. Previously,
the only known relation between p-adic period domains and Bruhat-Tits buildings was in
the Drinfeld case [14, 3]. Here we explore the link between these objects in the general
setting. Our results shed new lights on both theories.

Let F be a finite extension of Qp, G a connected reductive group over F , and {µ}
the geometric conjugacy class of a minuscule cocharacter µ of G. Attached to the
pair1 (G, {µ−1}), we have the flag variety F`(G,µ−1) defined over the reflex field E =

E(G, {µ}), the field of definition of {µ}. Let Ĕ be the completion of maximal unramified

extension of E. We consider the associated p-adic analytic space F`(G,µ−1)ad over Ĕ,

viewed as an adic space in the sense of Huber [21]. Let b ∈ G(F̆ ) be an element up to

2020 Mathematics Subject Classification. Primary: 11E95; Secondary: 14G22.
1Here we work with µ−1 temporarily, as later we will mainly work with an opposite parabolic, so we

reserve (G, {µ}) for later use.
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σ-conjugacy (where F̆ is defined similarly as Ĕ, and σ is the Frobenius for the extension

F̆ |F ), then Scholze constructed an open subspace

F`(G,µ−1, b)adm

of F`(G,µ−1)ad, cf. [44] Theorem 22.6.2 and page 220. See also [11] section 3, where one
describes F`(G,µ−1, b)adm by modifications of G-bundles on the Fargues-Fontaine curve.
The space F`(G,µ−1, b)adm is called the admissible locus, or the p-adic period domain
attached to (G, {µ−1}, b). Here to ensure F`(G,µ−1, b)adm 6= ∅, the data b and {µ−1}
have to be compatible in the sense that the σ-conjugacy class b ∈ B(G,µ−1), cf. [44]
Definition2 24.1.1. Here B(G,µ−1) is the Kottwitz set as introduced in [27] section 6.

For any open compact subgroup K ⊂ G(F ), there is a rigid analytic space MK over Ĕ,
together with an étale morphism (called the de Rham period morphism)

πdR,K :MK −→ F`(G,µ−1, b)adm

which is surjective. By construction, the associated diamond (in the sense of [42]) M3
K

admits an interpretation as a moduli space of p-adic G-shtukas, cf. [44] Lectures 11 and
23. If G = D× with D the division algebra over F of invariant 1

n , µ−1 = (1, · · · , 1, 0),

with the uniquely determined b, then the admissible locus F`(G,µ−1, b)adm and the étale
covers MK were studied by Drinfeld in [15] as moduli spaces of p-divisible groups with
certain additional structure.

Historically, p-adic period domains were studied intensively by Rapoport-Zink in [35]
and Dat-Orlik-Rapoport in [13] (see also [32, 33]), as vast generalizations of the work [15]
of Drinfeld. Attached to the above (G, {µ−1}, b), Rapoport and Zink constructed another
open subspace

F`(G,µ−1, b)wadm

of F`(G,µ−1)ad, the weakly admissible locus, which parametrizes weakly filtered isocrys-
tals (in the sense of Fontaine) with additional structure in this setting. The complement
of F`(G,µ−1, b)wadm in F`(G,µ−1)ad is a profinite union of certain Schubert varieties. By
construction, we have

F`(G,µ−1, b)adm ⊂ F`(G,µ−1, b)wadm.

Moreover, the two have the same classical points, cf. [11] Proposition 3.2. Assume
that b ∈ B(G,µ−1) is basic (cf. [26] section 5). In [11] Chen, Fargues, and the first
author here proved that F`(G,µ−1, b)adm = F`(G,µ−1, b)wadm ⇔ B(G,µ−1) is fully
Hodge-Newton decomposable. Here the right hand side is a group theoretic condition
which roughly says that any non basic element b′ ∈ B(G,µ−1) is decomposable with
respect to {µ−1}. If this condition holds, the admissible locus F`(G,µ−1, b)adm admits
a simpler linear-algebra theoretic description since so does F`(G,µ−1, b)wadm. However,
the classification of fully Hodge-Newton decomposable pairs (G, {µ−1}) shows that this
condition is rather restrictive. For example, the pair (G, {µ−1}) with G = GL5 and
µ−1 = (1, 1, 0, 0, 0) is not fully Hodge-Newton decomposable. In this case, we have

F`(G,µ−1, b)adm ( F`(G,µ−1, b)wadm,

see [24] Example 6.7. So far, beyond the fully Hodge-Newton decomposable case, the
admissible locus F`(G,µ−1, b)adm is still very mysterious.

Assume that b is basic as above. Let Gb be the reductive group over F defined as the
σ-centralizer of b, which is then an inner form of G as b is basic. The group Gb(F ) acts

naturally on F`(G,µ−1)ad by the inclusion Gb(F ) ⊂ G(Ĕ). This Gb(F )-action stabilizes
F`(G,µ−1, b)adm. One of the main results of this paper roughly says that, we can find
the Bruhat-Tits building of Gb

B(Gb, F )

2Note that the sign convention there is different from us.
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“inside” the admissible locus F`(G,µ−1, b)adm.

Let us describe our results more precisely. We slightly change our perspective. Consider
the Bruhat-Tits building B(G,F ) and the Berkovich space F`(G,µ)Berk ([1, 2]) attached
to the flag variety F`(G,µ) over E. Here, it is natural to work with Berkovich flag
variety F`(G,µ)Berk, as the underlying topological space is Hausdorff and compact, thus
more suitable to be compared with the building B(G,F ), which is locally compact and
Hausdorff. In [36] Rémy-Thuillier-Werner constructed a continuous map3 of topological
spaces

θ : B(G,F ) −→ F`(G,µ)Berk.

Roughly, one can view B(G,F ) ⊂ B(G,E) (see [36] 1.3.4), and for any point x ∈ B(G,E),
by [36] Theorem 2.1 there is an affinoid subgroup

Gx ⊂ GBerk
E

which admits a unique Shilov boundary point θ̃(x). Then one defines θ(x) ∈ F`(G,µ)Berk

as the “projection”4 of θ̃(x). This construction generalizes the previous work of Berkovich
[1], who only treated split groups over F and used a different approach. If the conjugacy
class {µ} is non-degenerate, in the sense that it is non trivial on each F -quasi simple
factors of G, then the map θ is an embedding of topological spaces, cf. [36] Proposition
3.29.

On the other hand, in [10] Caraiani-Scholze defined the Newton stratification on the
adic space F`(G,µ)ad over E indexed by B(G,µ−1), which factors through F`(G,µ)Berk.
Thus we have a decomposition of F`(G,µ)Berk into locally closed subspaces

F`(G,µ)Berk =
∐

b∈B(G,µ−1)

F`(G,µ)b,

with the unique open stratum F`(G,µ)b0 given by the basic element b0 ∈ B(G,µ−1),
which we call the Hodge-Tate period domain for the local Shimura datum (G, {µ−1}, b0),
since it serves as the target of the Hodge-Tate period morphism for the local Shimura
variety at infinite level (cf. [45]). Here one can again recover the case of Drinfeld space: by
considering G = GLn and µ = (1, 0, · · · , 0), the space F`(G,µ)b0 is the n− 1 dimensional
Drinfeld space over F .

Now, the natural question is that which Newton strata F`(G,µ)b contain the image
θ(B(G,F )) of the Bruhat-Tits building under the Rémy-Thuillier-Werner map? It turns
out this has a pleasant answer.

Theorem 1.1 (Theorem 3.5). The continuous map θ factors through the open Newton
stratum F`(G,µ)b0, i.e. θ(B(G,F )) ⊂ F`(G,µ)b0.

One key point in the proof is the base change functoriality of the map θ: for any
non-archimedean extension K|E, the following diagram

B(G,K)
θK // F`(G,µ)Berk

K

prK|E
��

B(G,F )
θ //

?�

OO

F`(G,µ)Berk

commutes. This is also the key property of the map θ in the construction in [36]. For
any point x ∈ B(G,F ), let xK ∈ B(G,K) be its image under the embedding B(G,F ) ↪→

3Note that we need the most subtle case of the construction in [36]: the flag variety F`(G,µ) is not
necessary of rational type over E, and we need to work with the building over the subfield F of E.

4More precisely, if G is quasi-split over E, then one can take an E-rational point of F`(G,µ) to identify
F`(G,µ) = GE/Pµ; the definition of θ does not depend on the choice of the E-rational point, cf. [36]
Proposition 2.4. In the general case, one first works over an extension E′|E which splits G, then uses
some descent argument to back to E, cf. [36] 2.4.4.
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B(G,K), and denote y = θK(xK). The next key point is that one can compute y explicitly

for large enough K. Let H(y) be the complete residue field at y, and H̃(y) the residue
field in characteristic p of H(y). By the explicit computation we get

tr.deg(H̃(y)|K̃) = dim F`(G,µ),

where K̃ is the residue field of K. Then we work in adic spaces and consider the quotient
map F`(G,µ)ad

K → F`(G,µ)Berk
K . We view y as a point of F`(G,µ)ad

K (by the natural

discontinuous inclusion from the Berkovich space into adic space) and let {y} be its
closure. By some arguments on dimensions of locally spectral spaces (for example see
[4]), we get

dim {y} = tr.deg(H̃(y)|K̃),

which is thus dim F`(G,µ). By construction, {y} entirely lie in some Newton stratum,

which has to be the open stratum F`(G,µ)b0K by the dimension formula of Newton strata,
cf. Proposition 3.2. Roughly speaking, for any x ∈ B(G,F ), the associated analytic point
θ(x) ∈ F`(G,µ)Berk

K is “very generic” in some sense, so that it can not lie in non basic
Newton strata. Thus, one sees that Theorem 1.1 holds essentially due to a topological
reason.

Even better, we can compare the boundaries of θ(B(G,F )) and F`(G,µ)b0 . Let t be
the type5 of the flag variety F`(G,µ) and denote Bt(G,F ) = θ(B(G,F )). Consider the

closure Bt(G,F ) of Bt(G,F ) inside the compact Hausdorff space F`(G,µ)Berk. If {µ} is

non-degenerate, the space Bt(G,F ) defines a compactification of the building B(G,F ).
By [36] Theorem 4.1, we have a stratification

Bt(G,F ) =
∐

Q∈Par(G)(F )
Q τ -relevant

Bτ (Qss, F ),

where τ is an F -rational type uniquely determined by {µ} (or t), Q runs over the set of τ -
relevant F -parabolic subgroups of G, and Qss is the Levi quotient of Q. For the notion of
τ -relevant parabolic subgroups, see [36] subsection 3.2 or our subsection 2.2. For Q = G,
Bτ (Qss, F ) = Bt(G,F ). The natural G(F )-action on B(G,F ) extends uniquely to an

action on Bt(G,F ). For a proper Q ( G, one may ask which non basic Newton strata
contain the boundary stratum Bτ (Qss, F )?

Theorem 1.2 (Theorem 4.6). With the above notations, we have

Bτ (Qss, F ) ⊂ F`(G,µ)b,

where let MQ be the Levi subgroup of Q, then b ∈ B(G,µ−1) is the image of the basic
element bMQ,0 ∈ B(MQ, µ

−1) under the map B(MQ, µ
−1) → B(G,µ−1) induced by the

inclusion MQ ⊂ G.
Moreover, one can characterize all b ∈ B(G,µ−1) such that the corresponding Newton

stratum F`(G,µ)b contains a boundary stratum of Bt(G,F ).

The proof of this theorem is based on Theorem 1.1, and the functoriality of the New-
ton stratification, cf. Lemma 4.1 and Proposition 4.2. Here, the non basic elements
b ∈ B(G,µ−1) such that the corresponding Newton stratum F`(G,µ)b contains a bound-
ary stratum of Bt(G,F ) are characterized in Definition 4.3, which we call strongly regular
elements. It turns out that for quasi-split G, strongly regular elements are Hodge-Newton
decomposable with respect to {µ−1}. In general, a strongly regular element coming
from a proper Levi is non basic, cf. Lemma 4.4. As a corollary, the subset Bt(G,F ) is
closed in F`(G,µ)b0 . If G is quasi-split, it is also closed in the larger semistable locus6

5See [36] 1.1.3, which means a connected component of the total flag variety Par(G)
6This is the analogue of the previous weakly admissible locus F`(G,µ−1, b0)wadm, for more information

about the precise relation, see [45].
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F`(G,µ)HN=b0 , which is the maximal (open) stratum of the Harder-Narasimhan strati-
fication on F`(G,µ)Berk. For more information of the Harder-Narasimhan stratification,
see [13] and [45]. Here to prove7 the second stronger statement, we apply Theorem 1.3 of
[48].

Consider the case G = GLn and µ = (1d, 0n−d) with (d, n) = 1. In this case, we can
construct a retraction map for the embedding θ : B(G,F ) ↪→ F`(G,µ)b0 .

Theorem 1.3 (Theorem 5.11, Theorem 5.13, Proposition 5.15). Under the above as-
sumptions, there exists a continuous map

r : F`(G,µ)b0 −→ B(G,F )

such that r◦θ = Id. Moreover, for d = 1, this map r coincides with the Drinfeld retraction
map as constructed in [14] using an explicit formula by restriction of norms (see also [3]
and [13] XI.3).

The construction of the map r is inspired from the works of van der Put-Voskuil [29]
and Voskuil [49]. First of all, we have the inclusion

F`(G,µ)b0 ⊂ F`(G,µ)ss := F`(G,µ)HN=b0 ,

cf. [45] Proposition 3.4. On the other hand, we have the subspace of stable locus
F`(G,µ)s ⊂ F`(G,µ)ss. Then under the assumption (d, n) = 1, the semistable locus
coincides with the stable locus

F`(G,µ)s = F`(G,µ)ss.

Moreover, both admit descriptions in terms on geometric invariant theory; for these facts
see [29] sections 1 and 2 (see also [47] and [13] Theorem 9.7.3 for the statement on GIT).
Then it suffices to construct a retraction map r : F`(G,µ)s → B(G,F ) with the desired
properties. To this end, we proceed as [49] by firstly constructing continuous maps rA
for each department A ⊂ B(G,F ), cf. Propositions 5.3 and 5.6. To construct these
continuous rA, we use crucially the fact that the semistable locus coincides with the
stable locus. Moreover, we in fact need to use some GIT arguments over the integral
base OF . Next, we show these maps rA are compatible, cf. Lemma 5.7, which is very
crucial to the following. Based on these careful analysis on Bruhat-Tits buildings and
GIT, we can construct analytic subspaces Yz ⊂ F`(G,µ)s for each z ∈ B(G,F ), such that
F`(G,µ)s =

∐
z∈B(G,F ) Yz as in [49]. Then we define a map

r : F`(G,µ)s −→ B(G,F )

by contracting these Yz, and prove that it is continuous, cf. Theorem 5.11. By restricting
to the open subspace F`(G,µ)b0 , we get a continuous map r. Then we check that this
indeed gives a retraction map for θ, cf. Theorem 5.13, and it coincides with the Drinfeld
map in the case d = 1, cf. Proposition 5.15. Note that in the Drinfeld case, the definition
of r is quite simple, as it is given by an explicit restriction formula of norms, cf. [14, 3].

In [49] under the assumption F`(G,µ)ss = F`(G,µ)s, a map from the rigid analytic
version of F`(G,µ)s to the building B(G,F ) was announced. Here we work with Berkovich
spaces, in contrast with [49]. Moreover, many crucial properties and arguments such as in
Propositions 5.3 and 5.6 and Lemma 5.7 are missing in [49]. Furthermore, in the setting
of [29] and [49], this map could not be called a retraction map, since at that time there
was no embedding of B(G,F ) into F`(G,µ)s at all.

By Theorems 1.1 and 1.3, when {µ} varies, the same building B(GLn, F ) admits em-
beddings and receives retractions to/from different p-adic period domains F`(GLn, µ)b0 .
This reveals that these p-adic period domains admit similar combinatorial structure in

7In fact, by a different approach it may be possible to prove the stronger statement without the quasi-
split assumption, cf. Remark 4.9.
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some sense. To study F`(GLn, µ)b0 , we are reduced to study the fibers of the retraction
map, which are

F`(GLn, µ)b0 ∩ Yz
for z ∈ B(GLn, F ). In the extreme8 case d = 1, we have F`(GLn, µ)b0 = F`(GLn, µ)s and
these fibers are clear; in fact this was one way to construct the p-adic analytic structure
of the Drinfeld space, cf. [14, 38]. On the other hand, the retraction map r may be useful
to offer a new9 approach for computing the `-adic cohomology of the semistable locus
F`(GLn, µ)ss, as what Dat did in [12] in the Drinfeld case d = 1.

So far we mainly state our results in the Hodge-Tate setting. In section 6, we will briefly
translate the previous constructions and results to the de Rham setting, discussing the
relations between the building B(Gb0 , F ) and the admissible locus F`(G,µ−1, b0)adm for a
basic local Shimura datum (G, {µ−1}, b0) as in the very beginning of this introduction. In
particular, in the setting of Theorem 1.3, the whole picture is quite similar to the Drinfeld
case as in [15], although the retraction map is much more complicated in general, and it
is not any more a fully Hodge-Newton decomposable case.

We briefly describe the structure of this paper. In section 2, we review the Berkovich
map θ and Berkovich compactification of the building B(G,F ), following the paper of
Rémy-Thuillier-Werner [36]. In section 3, we introduce the Newton stratification on the
p-adic flag variety F`(G,µ)Berk, and prove Theorem 1.1. In section 4, we compare the
boundary strata of the Berkovich compactification and non basic Newton strata, proving
the Theorem 1.2. In section 5, we consider some special examples, with G = GLn and
µ = (1d, 0n−d) with (d, n) = 1. We construct a continuous retraction map from F`(G,µ)b0

to B(G,F ) inspired by the works [29] and [49], and prove Theorem 1.3. We also make
some remarks about potential applications of such a retraction map. Finally in section
6, we briefly translate the previous results to the de Rham setting, and summarize the
relations between the building B(Gb0 , F ) and the admissible locus F`(G,µ−1, b0)adm for
a basic local Shimura datum (G, {µ−1}, b0). We also discuss some related open problems
on cohomological applications in the setting of Fargues-Scholze [20].

Acknowledgments. We would like to thank the institutes YMSC and BICMR in Bei-
jing, as this work was started after both authors attended some talks in these institutes
during January 2024. We would like to thank Laurent Fargues and Peter Scholze for
helpful conversations during the preparation of this work. The first author was par-
tially supported by the National Key R&D Program of China 2020YFA0712600, the CAS
Project for Young Scientists in Basic Research, Grant No. YSBR-033, and the NSFC
grant No. 12288201.

Notations: We will use the following notions (mainly follow the conventions in [11]
and [36]):

• F is a finite extension of Qp with residue field Fq.
• F is an algebraic closure of F with Galois group Γ = Gal(F |F ).

• F̆ = F̂ ur is the completion of the maximal unramified extension F ur of F .
• G is a connected reductive group over F .
• H is a quasi-split inner form of G, equipped with an inner twisting GF

∼→ HF .
• A ⊂ T ⊂ B are maximal F -split torus, maximal torus, and Borel subgroup of H.

Sometimes we also use A and T to denote the corresponding notions for G.
• (X∗(T ),Φ, X∗(T ),Φ∨) is the absolute root datum of H, with positive roots Φ+

and simple roots ∆ with respect to the choice of B; while (X∗(A),Φ0, X∗(A),Φ∨0 )

8The flag variety = Pn−1 has the minimal dimension, which equals to the dimension of B(GLn, F ).
9The other “standard” approach is to use the combinatorial structure of the complement of the

semistable locus, cf. [13] Chapter X.
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is the relative root datum of H, with positive roots Φ+
0 and simple roots ∆0 with

respect to the choice of B.
• For a standard Levi subgroup M of H, we note by a subscript M the corresponding

roots or coroots appearing in LieM .
• Fix a minimal F -parabolic and F -Levi subgroups M0 ⊂ P0 ⊂ G. Standard F -

parabolic and F -Levi subgroups of G are those containing P0 and M0 respectively.
• Gad is the adjoint group associated to G.
• B(G,F ) denotes the reduced Bruhat-Tits building for G(F ). We have a homeo-

morphism
B(G,F ) ∼= B(Gad, F )

induced by the natural map G→ Gad.
• For a cocharacter µ, we will use {µ} to denote its conjugacy class.
• Let D be the pro-torus with character group X∗(D) = Q. The Newton chamber

of G is defined by

N (G) = [Hom(DF , GF )/G(F )-conjugacy]Γ.

Via the inner twisting between G and H, we have an identification

N (G) = N (H) = X∗(A)+
Q.

This is equipped with the partial order v1 ≤ v2 if and only if v2 − v1 ∈ Q≥0Φ+
0 .

• π1(G) = X∗(T )/〈Φ∨〉 is the algebraic fundamental group of G, and π1(G)Γ is its
Galois coinvariant. Via the inner twisting between G and H, we have identifica-
tions

π1(G) = π1(H), π1(G)Γ = π1(H)Γ.

• For an algebraic variety X over a non-archimedean field k, XBerk is the associated
Berkovich space ([1]), and Xad is the associated adic space ([21]).

2. Bruhat-Tits buildings and p-adic flag varieties

In this section, we review the continuous map from Bruhat-Tits buildings to Berkovich
flag varieties and the Berkovich compactification of buildings constructed in [36]. In loc.
cit. the authors use the language of types for parabolic subgroups to define connected flag
varieties. We will compare it with the language of cocharacters, which is more suitable in
the setting of p-adic Hodge theory. We assume that the reader has some familiarities with
the theory of Berkovich spaces, see [1, 2] (or [36] subsection 1.2 for a very brief review).
For basics on Bruhat-Tits buildings, we refer to [46, 53, 6, 7] (or [36] subsection 1.3 for a
very brief summary). See also [37] for a survey of both theories.

2.1. Embeddings of Bruhat-Tits buildings into Berkovich flag varieties. Let G
be a connected reductive group over F as above. As in [36] section 1.1, let

Par(G)

denote the moduli space of all parabolic subgroups of G. This is a projective and smooth
scheme over F . For any F -scheme S, Par(G)(S) consists of the set of smooth subgroups P
of GS = G×F S such that for any geometric point s of S, the quotient Gs/Ps is a proper
s-scheme (in other words, Ps is a parabolic subgroup of Gs). For a parabolic subgroup
P ⊂ GF , the type of P is the connected component (over F ) of Par(G) containing P .
Sometimes we say also F -types of parabolic subgroups of G, as this notion depends on
the base field. The set of types of parabolic subgroups of G is by definition the set of
connected components of Par(G) over F , which is in natural bijection with the Gal(F/F )-
stable subsets of the simple roots of GF . The connected component corresponding to a
given type t is denoted by

Part(G).

The type t is called F -rational if the flag variety Part(G) contains an F -point, which
corresponds to a parabolic subgroup of G over F equivalently.
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In this paper, we will mainly produce flag varieties from cocharacters. Given a cochar-
acter µ : Gm → GF for GF , we can associate it a parabolic subgroup of GF (see [10]
section 2.1):

Pµ = {g| lim
t→0

ad(µ(t))g exists}.

It has a Levi component being the centralizer of µ:

Mµ = CentGF (µ).

Each parabolic subgroup of GF̄ can be obtained in this way, but two different cocharacters
may correspond to a common parabolic subgroup. For example, if we rescale µ by µ1 = µd

(d is a positive integer), then Pµ = Pµ1 . Passing to conjugacy class, each conjugacy class
{µ} will determine a conjugacy class of Pµ, then a flag variety

F`(G,µ) ∼= GF̄ /Pµ.

It is a connected component of Par(G)F , thus projective and smooth over F . Moreover,
it is defined over the (local) reflex field E = E(G, {µ}), which is by definition the field of
definition for the conjugacy class {µ} (thus a finite extension of F ). In the following, we
still denote by F`(G,µ) the corresponding flag variety over E. If G is quasi-split over F ,
then the flag variety F`(G,µ) contains an E-point by a result of Kottwitz (see [13] Lemma
6.1.5). For any algebraically closed field L|E, the set F`(G,µ)(L) can be described as the
set of G-filtrations over L of type {µ}, cf. [13] Theorem 6.1.4.

Now we make a comparison of notions. Each conjugacy class {µ} determines a flag
variety F`(G,µ), which correspond to a connected component of Par(G)F̄ which is defined
over E, thus an E-type tE for GE or Par(GE)(= Par(G)E). This E-type may or may not
be rational (depending on whether F`(G,µ) has an E-rational point). We will work with
the geometrically connected flag variety F`(G,µ) over E. It determines a unique F -type
t = tµ (which may not be F -rational) by considering all the Galois conjugates of µ (or of
tE). We have a natural morphism

F`(G,µ) ↪→ Part(G)E ,

which realizes F`(G,µ) as a connected component of Part(G)E . On the other hand, we
have a projection map (for algebraic varieties over different base fields)

prE|F : F`(G,µ)→ Part(G).

If E = F , then we have t = tE and F`(G,µ) = Part(G).
Since our base field F is a p-adic local field (locally compact), the functoriality

assumption for Bruhat-Tits buildings in [36] (section 1.3.4) is satisfied: The Bruhat-
Tits building construction forms a functor B(G, ·) from the category Extfd(F ) of non-
archimedean extensions of F to the category of topological spaces, mapping a field exten-
sion F2|F1 to a G(F1)-equivariant continuous injection

iF1,F2 : B(G,F1) ↪→ B(G,F2).

This functorial property is frequently used in [36] and will also be a useful technique for
this paper. It enables us to convert the general case into split case and work with special
vertices.

In section 2.2 of [36], the authors construct a canonical map

θ : B(G,F ) −→ GBerk,

which is continuous and G(F )-equivariant (for the conjugation action of G(F ) on GBerk).
The construction proceeds in two steps: for any x ∈ B(G,F ),

Step 1: One constructs an affinoid subgroupGx ⊂ GBerk such that for any non-archimedean
extension L|F , we have

Gx(L) = StabG(L)(xL),

where xL ∈ B(G,L) is the image of x under the canonical map B(G,F ) ↪→ B(G,L);
see [36] Theorem 2.1.
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Step 2: The affinoid subgroup Gx has a unique Shilov boundary

θ(x) ∈ Gx ⊂ GBerk.

By [36] Proposition 2.4, this defines a continuous map θ : B(G,F ) −→ GBerk.

By [36] Proposition 2.7 this map is functorial with respect to fields extensions: for any
non-archimedean extension L|F , the natural diagram

B(G,L)
θL // GBerk

L

prL|F
��

B(G,F )

iF,L

OO

θ // GBerk

is commutative.
Recall our conjugacy class of cocharacters {µ} and the associated flag variety F`(G,µ)

over E. If this flag variety has an E-rational point P , then through the map

λP : GE −→ GE/P ∼= F`(G,µ),

after passing to the associated morphism of Berkovich spaces and by composing with the
inclusion iF,E : B(G,F ) ↪→ B(G,E), we get a G(F )-equivariant continuous map:

θµ,F,E = λP ◦ θE ◦ iF,E : B(G,F ) −→ F`(G,µ)Berk.

It does not depend on the choice of the E-rational point P . In the general case, take
a finite extension L|E such that F`(G,µ) has an L-rational point. We have θµ,F,L :

B(G,F ) −→ F`(G,µ)Berk
L as above. Then define

θµ,F,E = prL|E ◦ θµ,F,L : B(G,F ) −→ F`(G,µ)Berk.

As in [36] 2.4.4 this does not depend on the choice of L. We call θµ,F,E the Berkovich
map. It is canonical, only relies on the conjugacy class {µ}. It has the following base
change functoriality.

Proposition 2.1. For any non-archimedean extension L|E, the following diagram is
commutative:

B(G,L)
θµ,L,L// F`(G,µ)Berk

L

prL|E
��

B(G,F )

iF,L

OO

θµ,F,E// F`(G,µ)Berk

,

where θµ,L,L is defined similarly as above.

This can be proved exactly as [36] Proposition 2.16. In fact, as in [36] 2.4.2 and 2.4.4,
we can consider the Berkovich map over the same base field F (here t = tµ as above):

θt,F : B(G,F ) −→ Part(G)Berk.

Then there is a similar commutative diagram

B(G,E)
θµ,E,E// F`(G,µ)Berk

prE|F
��

B(G,F )

iF,E

OO

θt,F // Part(G)Berk.

By construction, we have θµ,F,E = θµ,E,E ◦ iF,E and thus θt,F = prE|F ◦ θµ,F,E . The

image θµ,F,E(B(G,F )) is isomorphic to the image θt,F (B(G,F )) under the projection map
prE|F . Indeed, this can be easily deduced from the base change diagram by choosing a
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common Galois extension L of E and F . On the other hand, for any non-archimedean
field extension L|E, as the above we get a map

θµ,F,L : B(G,F ) −→ F`(G,µ)Berk
L ,

which can be seen as a lift for the map θµ,F,E respect to the projection map prL|E . This
already shows that the image of the Bruhat-Tits building is special. For a general subspace
of F`(G,µ)Berk, we do not have such a canonical lift.

Now, it is clear that by base change we can pass to split reductive groups to study the
Berkovich map. In the split setting, we can make the map θµ,F,E more explicitly. Assume
that G is split over F (so that E = F ). We only need to consider F -cocharacters. Let µ
be such a cocharacter, Pµ the corresponding parabolic subgroup over F . Take a maximal
split torus T inside P = Pµ and it is also a maximal split torus for G. It will determine
an apartment A(T, F ) inside the Bruhat-Tits building B(G,F ). On the other hand, let
P op denote the parabolic subgroup of G opposite to P with respect to T and Nop denote
its unipotent radical. Let t be the type of P . The F -morphism

Nop −→ Part(G) ∼= F`(G,µ), g 7→ gPµg
−1

is an isomorphism onto an open subvariety (open Bruhat cell) of F`(G,µ), which we
denote by Ω(T, P ).

Let Φ(G,T ) be the set of roots of G with respect to T and pick a special vertex o in
B(G,F ) compatible with T (o lies in the apartment A(T, F )). Let Ψ = Φ(Nop, T ), the
subset of Φ(G,T ) determined by Nop. The special vertex o will give us an integral model
for G and the choice of an integral Chevalley basis in LieG gives isomorphisms

Ω(T, P ) ∼= Nop ∼= SpecF [(Xα)α∈Ψ].

Proposition 2.2. Under the above assumptions, we have the following statements.

(1) The Berkovich map θt,F sends the point o to the point of Ω(T, P )Berk corresponding
to the multiplicative norm (Gauss point)

F [(Xα)α∈Ψ]→ R≥0,
∑
v∈NΨ

avX
v 7→ max

v
|av|.

(2) Use the point o as the origin to identify the apartment A(T, F ) with the vector
space V (T ) = Hom(X∗(T ),R), the map

V (T ) −→ F`(G,µ)Berk

induced by θt,F sends an element u of V (T ) to the point of Ω(P, T )Berk corre-
sponding to the multiplicative norm

F [(Xα)α∈Ψ]→ R≥0,
∑
v∈NΨ

avX
v 7→ max

v
|av|

∏
α∈Ψ

ev(α)〈u,α〉.

We refer to [36] Proposition 2.17 for the proof.

Remark 2.3. (1) This proposition shows that the Berkovich map will map an apart-
ment into the corresponding open Bruhat cell. Moreover, each point lying in the
image is “very generic”, looks like a generalized Gauss point. This intuition
later will help us to prove Theorems 3.5 and 5.13.

(2) Since B(G,F ) is a union of apartments, the second statement already determines
the image of the Berkovich map. Even better, through the base change map, each
point in B(G,F ) will become a special vertex inside B(G,L) after a suitable non-
archimedean field extension L|F (cf. [36] Proposition 1.6), so the first statement
already suffices for many applications.

Before going on, we discuss when the Berkovich map θt,F : B(G,F ) −→ Part(G)Berk

is an embedding, slightly generalizing the discussions in [36] 3.4.1 and 3.4.2. If G is a
semisimple F -group (in practice, we can pass to Gad, which will not influence the Bruhat-
Tits building or the Newton stratification on the p-adic flag variety to be introduced
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later), then there exists a unique finite family (Gi)i∈I of pairwise commuting smooth,
normal and connected closed subgroups of G, each of them is quasi-simple, such that the
product morphism ∏

i∈I
Gi −→ G

is a central isogeny. These Gi are called the quasi-simple components of G. The isogeny∏
i∈I Gi −→ G induces an isomorphism of buildings∏

i∈I
B(Gi, F ) = B(

∏
i∈I

Gi, F )
∼−→ B(G,F )

and an isomorphism of flag varieties over F∏
i∈I

Par(Gi) = Par(
∏
i∈I

Gi)
∼−→ Par(G).

Let t be an F -type of G. For each Gi, through projection, it determines an F -type ti of
Gi. Then we get Berkovich maps θti,F . We call the type t non-degenerate if each ti is non
trivial, i.e. the component Parti(Gi) is non trivial. Note that this generalizes the notion of
non-degenerate types in [36] subsection 3.1, where it is defined only for F -rational types.
If ti is trivial, the corresponding map θti,F is also trivial:

B(Gi, F ) −→ {∗}.
Therefore, it is mild to restrict to non-degenerate types. Moreover, the Berkovich map
θt,F : B(G,F ) −→ Part(G)Berk is an embedding if the type t is non-degenerate. Indeed, if
t is F -rational, this is [36] Proposition 3.29. In the general case, take a finite Galois exten-
sion L|F to split G. Then for each i, there exists a non trivial L-type ti,L (which is thus
rational) dominating ti. Decomposing each Gi,L and ti,L into quasi-simple components
and using the base change diagram, one easily sees that θt,F is an injection.

2.2. Berkovich compactifications of Bruhat-Tits buildings. Now we discuss the
Berkovich compactification of B(G,F ) with respect to the map

θ = θµ,F,E : B(G,F ) −→ F`(G,µ)Berk.

Recall that we have the associated F -type t = tµ. We denote the image of the Berkovich
map as

Bt(G,F ) = θ(B(G,F )) ⊂ F`(G,µ)Berk,

since it is isomorphic to the image θt,F (B(G,F )) under the projection map prE|F as
discussed above. Let

Bt(G,F )

denote the closure of Bt(G,F ) inside the flag variety F`(G,µ)Berk. It is also the closure10

of Bt(G,F ) inside the flag variety Part(G)Berk. It will be a desired compactification.
An important property of the compactification is that it extends the base change func-

toriality:

Proposition 2.4. (1) Let L|F be an extension of non-archimedean fields, then there

exists a unique G(F )-equivariant continuous map Bt(G,F ) −→ Bt(G,L) making
the following diagram commutes:

B(G,F )
iF,L //

θt,F
��

B(G,L)

θt,L
��

Bt(G,F ) // Bt(G,L)

.

10In [36] there is an equivalent definition by taking the image of the map G(F ) × At(S, F ) →
Part(G)Berk, (g, x) 7→ gxg−1, endowed with the quotient topology, where At(S, F ) is the closure of the
image of some apartment A(S, F ) in Part(G)Berk.
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This map is a homeomorphism onto its image.
(2) The map θt,F : B(G,F ) −→ Bt(G,F ) is continuous, open and its image Bt(G,F )

is dense.

We refer to section 2.4 of [36] for more details. Although their work is about F -rational
type t, but these results indeed also hold for general types (use their arguments in section

2.4 and Appendix C). By section 4 of [36] we can describe the compactification Bt(G,F )
through a stratification indexed by certain parabolic subgroups of G. Each boundary
stratum is isomorphic to the Bruhat-Tits building of the Levi quotient of such a parabolic
subgroup. To introduce these results, we need more notions. We follow the routine of
[36], first assume t = tµ is F -rational, and then deduce the general case.

We first introduce the notions of osculatory and relevant for parabolic groups, following
[36] subsection 3.2. For a group scheme H over a base S, two parabolic subgroups P and
Q are called osculatory if their intersection P ∩ Q is still a parabolic subgroup. For our
fixed reductive group G/F , an F -rational type t, and a parabolic subgroup Q of G over
F , we can define the osculatory variety

Osct(Q),

which is an algebraic variety over F representing the following functor

(Sch/F )op −→ Sets, S 7→ {P ∈ Part(G)(S)|P is osculatory with Q×F S}.
It is a closed subvariety of Part(G). On the other hand, the map Osct(Q) −→ Par(Q)
defined by

Osct(Q)(S) −→ Par(Q)(S), P 7→ P ∩ (Q×F S)

is an isomorphism onto a connected component of Par(Q). Moreover, since the type t
is F -rational, Osct(Q)(F ) is non empty, thus the resulting type for Q is still F -rational
and for simplicity we still denote it by t. Let Qss denote the reductive (or named Levi)
quotient11 of Q. Then Par(Q) = Par(Qss). In summary, we have the following canonical
maps:

Part(Qss) = Part(Q) ∼= Osct(Q) ↪→ Part(G).

Note that different Q and Q′ can represent the same osculatory variety Osct(Q). The F -
parabolic subgroup Q is called t-relevant if it is maximal among all F -parabolic subgroups
Q′ representing Osct(Q).

For later application, it is more convenient to use Levi subgroups. Take a Levi decom-
position for Q = N oM . Pick up an element P ∈ Osct(Q)(F ) compatible with M in the
sense that

M/(M ∩ P ) ∼= Q/(Q ∩ P )

through the natural inclusion M ⊂ Q. Through this identification, we can further identify
Part(M) with Part(Qss) which is compatible with the isomorphism M ∼= Qss. Then
we may replace Qss by the Levi subgroup M and we can rewrite the above canonical
embedding as follows:

Part(M) ∼= M/(M ∩ P ) ↪→ G/P ∼= Part(G).

Now through such map, each Bruhat-Tits building B(Qss, F ) (or equivalently B(M,F ))
will contribute to the compactification of B(G,F ) in the following way:

B(Qss, F )
θt,F−−→ Part(Qss)

Berk = Part(Q)Berk ↪→ Part(G)Berk.

The image of such map is contained in Bt(G,F ) and the compactification consists of such
contributions:

Proposition 2.5 ([36] Theorem 4.1, Propositions 4.5, 4.6). Assume that the type t is
F -rational.

11Our notation Qss is thus different from that in [36], where it means the semisimple quotient. Since
we will use reduced Bruhat-Tits buildings throughout, this difference will disappear when passing to
buildings.
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(1) We have the following stratification (each contribution is a locally closed subspace):

Bt(G,F ) =
∐

Q∈Par(G)(F )
Q t-relevant

B(Qss, F ).

(2) The natural G(F )-action on B(G,F ) extends uniquely to an action on Bt(G,F )
with

gB(Qss, F ) = B(gQssg
−1, F ).

(3) (Base change functoriality) For any non-archimedean extension L|F , the following
diagram is commutative:

B(Qss, F )
iF,L //

��

B(Qss, L)

��

Bt(G,F ) // Bt(G,L)

We may also write the compatification as a union over all F -rational parabolic sub-
groups

Bt(G,F ) =
⋃

Q∈Par(G)(F )

B(Qss, F ).

Now we turn to the general case that t = tµ is not necessary F -rational. As in Appendix
C of [36], we can find an F -rational type τ uniquely determined by t. More precisely,
the type τ is constructed as follows. Take a minimal F -parabolic subgroup P0 of G,
then we get a closed and smooth subscheme Osct(P0) of Part(G). There exists a largest
F -parabolic subgroup

Q0 ⊂ G

stabilizing Osct(P0). The conjugacy class of Q0 does not depend on the choice of P0,
which defines an F -rational type τ . If t is F -rational, then τ = t. If G is quasi-split, then
τ is the largest F -rational type dominated by t. For example, if G = U(3) is the quasi-
split unitary group over F defined by a Hermitian vector space V = E3 with respect to a
quadratic unramified extension E|F , then GE = GL3. Both E-types defined by minuscule
cocharacters µ1 = (1, 0, 0) and µ2 = (1, 1, 0) will correspond to a single F -type t, and the
resulting τ will correspond to the conjugacy class of Borel subgroups of G.

We have the following result, generalizing Proposition 2.5, cf. [36] Appendix C.

Proposition 2.6. We have the following decomposition of the Berkovich compactification

Bt(G,F ) =
∐

Q standard
Qτ -relevant

∐
g∈G(F )

g
(
Bτ (Qss, F )

)
,

where Q runs through the set of standard F -rational parabolic subgroups of G which are
τ -relevant.

Proof. For later applications, during the proof, we reformulate the results of [36] in terms
of Levi subgroups.

First, notice that even if t is not F -rational, the Berkovich compactification still has
the base change functoriality. Take any non-archimedean field extension L|E, through
the Berkovich maps, the closure of the Bruhat-Tits building are the same, cf. Proposition
2.4. Thus we can apply such base change technique. Now assume L|E is a finite Galois
extension that splits G. Let tB denote the L-type corresponding to Borel subgroups of
GL. Pick up an L-type t1 that corresponds to the connected component F`(G,µ)L of
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Part(G)L. Let τ be the F -rational type attached to t as above. We have the following
two natural projection maps among Berkovich flag varieties:

PartB (GL)Berk

vv ((
Parτ (G)Berk

L Part1(GL)Berk.

Note that Part1(GL) = F`(G,µ)L. Through the Berkovich maps and taking the closure
of the Bruhat-Tits building inside these flag varieties, we get

Bt(G,F ) ' Bτ (G,F )

and the following commutative diagram (this is also used in Appendix C of [36] in a
similar way):

BtB (G,F )

xx &&

Bτ (G,F ) ∼= Bt(G,F ).

On the other hand, for any F -parabolic subgroup Q of G and take a Levi subgroup
M for Q, through the osculatory variety OsctB (QL), we enlarge the diagram into the
following one:

B(M,F ) // PartB (ML)Berk // PartB (GL)Berk

vv ((
Parτ (G)Berk

L Part1(GL)Berk

By Proposition 2.5, B(M,F ) ∼= B(Qss, F ) contributes to the compactification Bτ (G,F ).
Let Q run over F -parabolic subgroups for G. The union of these contributions is the
whole space Bτ (G,F ). Through the isomorphism between these two compactifications,

we see that Bt(G,F ) is also a union of such contributions.
We would like to see these contributions inside the p-adic flag variety Part1(GL)Berk =

F`(G,µ)Berk
L in a natural way. To this end, notice that there exists a commutative dia-

gram:

PartB (ML)Berk

��

// PartB (GL)Berk

��
Part1(ML)Berk // Part1(GL)Berk.

Therefore, we may rewrite the contribution from the Bruhat-Tits building B(M,F ) to

the type t compactification Bt(G,F ) through the following map

B(M,F )
θt1,F−−−→ Part1(ML)Berk ↪→ Part1(GL)Berk,

and denote its image by Bτ (M,F ).
To get disjoint unions, one just considers the τ -relevant parabolic subgroups by Propo-

sition 2.5. We have thus verified the proposition. �

In the above proof, the contributions of M are conjugated by G(F )-action. Therefore
the locus ⋃

g∈G(F )

g
(
Bτ (M,F )

)
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only relies on the conjugacy class of M , independent of choices of parabolic subgroups Q
containing M . Thus, we may also write the compactification as a union over all standard
F -rational Levi subgroups

Bt(G,F ) =
⋃

M standard

⋃
g∈G(F )

g
(
Bτ (M,F )

)
.

3. Bruhat-Tits buildings and p-adic period domains

From now on, we will always work with a minuscule cocharacter µ : Gm → GF (and its
conjugacy class {µ}), and discuss the basic relation between Bruhat-Tits buildings and
p-adic period domains.

3.1. Berkovich spaces and adic spaces. Since p-adic period domains are defined more
conveniently using the theory of perfectoid spaces and diamonds (cf. [44] and [42]), we
first briefly review the basic comparison between Berkovich analytic spaces ([1, 2]) and
adic spaces ([21]).

Let k be a complete non-archimedean field with residue field of characteristic p. Recall
that an adic space X over k is called locally of finite type if it is locally of the form
Spa(R,R+), where R+ = R◦ and R is a quotient of the algebra k〈T1, · · · , Tn〉 for some n.
Such an affinoid k-algebra (R,R+) is called topologically of finite type. The adic space
X is called taut if it is quasi-separated and for any quasi-compact open subset U ⊂ X,
the closure U of U in X is also quasi-compact. For example, if X is partially proper over
k (cf. [21] Definition 1.3.3), then it is taut.

Theorem 3.1 ([21] Proposition 8.3.1 and Lemma 8.1.8). There is an equivalence between

• the category of Hausdorff strictly k-analytic Berkovich spaces, and
• the category of taut adic spaces which are locally of finite type over k.

If XBerk is mapped to Xad under this equivalence, then there is an injective map of sets
XBerk ↪→ Xad with image consisting of the subset of rank 1 valuation points. This map is
not continuous in general, but there is a continuous retraction Xad → XBerk, identifying
XBerk as the maximal Hausdorff quotient of Xad.

The underlying topological space of the adic space Xad is locally spectral. Recall that
for a locally spectral space Y , its dimension dim Y is the supremum of the lengths n of
the chains of specializations

x0 � x1 � · · · � xn
of points of X, where the partial order � is defined as x � y ⇔ y ∈ {x}. The underlying
topological space of XBerk is locally compact and Hausdorff. Its dimension dimXBerk is
defined as the supremum of the Krull dimension dim R of the open affinoid subspaces
M(R) ⊂ XBerk. Then we have dim Xad = dim XBerk under the equivalence of Theorem
3.1.

Let x ∈ XBerk be a point. We will also view it as a point of Xad under the above
inclusion XBerk ⊂ Xad. Consider the closure {x} ⊂ Xad of the subset {x} ⊂ Xad. By

definition, this is the set of specializations of x in Xad. Then we have {x} ⊂ π−1(x),
where π : Xad → XBerk is the quotient map.

If X is an algebraic variety (as usual, we refer to a scheme which is separated and
locally of finite type) over k. Then we have the associated Berkovich space XBerk (which
is a Hausdorff strictly k-analytic space, cf. [1]) and adic space Xad (which is taut and
locally of finite type over Spa k, cf. [21]). Then XBerk corresponds to Xad under the
equivalence functor in Theorem 3.1. If U ⊂ Xad is a partially proper (cf. [21] Definition
1.3.3) open subspace, then U is taut, and the associated Hausdorff strictly k-analytic
space UBerk under Theorem 3.1 is given by the maximal Hausdorff quotient of U , which
is an open subspace of XBerk.

Occasionally we will talk about diamonds, so we make a very brief review on the
comparison between analytic adic spaces and diamonds, for details see [42, 44]. Let
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Perf be the category of perfectoid spaces in characteristic p. There are two natural
Grothendieck topologies on it: the pro-étale topology and the v-topology, cf. [42] section
8. By definition, a diamond is a pro-étale sheaf on Perf which can be written as a quotient
X/R, with X ∈ Perf and R a representable pro-étale relation, cf. [42] Definition 11.1. For
any analytic adic space X (see [21] page 39 or [44] subsection 4.3) over SpaZp, one can
associate it a diamond X3 as follows. For any T ∈ Perf, X3(T ) is the set of isomorphism
classes of pairs (T ], T ] → X), where T ] is an untilt of T over Zp, and T ] → X is a
morphism of adic spaces over Zp. For any diamond Y , one has well defined notions of
underlying topological space |Y | and étale site Yet. If Y = X3 for an analytic adic space
X over SpaZp, then we have (cf. [42] Lemma 15.6)

|X3| ∼= |X|, X3
et
∼= Xet.

Moreover, X3 is locally spatial in the sense of [42] Definition 11.17. These discussions on
analytic adic spaces over Zp apply in particular to the above category of taut adic spaces
which are locally of finite type over a complete non-archimedean field k with residue field
of characteristic p.

3.2. Newton and Harder-Narasimhan stratifications of p-adic flag varieties. We
first review two natural stratifications on the p-adic flag variety F`(G,µ)ad (or F`(G,µ)Berk)
in p-adic Hodge theory: Newton and Harder-Narasimhan stratifications.

Let B(G) be the set of σ-conjugacy classes in G(F̆ ). It admits an explanation as the
set of isomorphism classes of isocrytals with G-structure (cf. [26] and [34]). There are
two invariants attached to a σ-conjugacy class, given by the Newton map (cf. [26] section
4)

ν : B(G) −→ N (G)

and the Kottwitz map (cf. [27] 4.9 and 7.5, [34] Theorem 1.15)

κ : B(G) −→ π1(G)Γ.

The induced map

(ν, κ) : B(G) −→ N (G)× π1(G)Γ

is injective (cf. [27] 4.13). On B(G) we have a partial order: b ≤ b′ ⇔ ν(b) ≤ ν(b′). Let
B(G)basic ⊂ B(G) be the subset of basic elements (cf. [26] section 5), which consists of
those b ∈ B(G) such that ν(b) factors through the center of G. Then the restriction of κ
induces a bijection (cf. [26] Proposition 5.6)

κ : B(G)basic
∼−→ π1(G)Γ.

We will view B(G) as the set of isomorphism classes of G-bundles on the Fargues-Fontaine

curve. More precisely, let C|F be an algebraically closed perfectoid field, with tilt C[.
We get the associated Fargues-Fontaine curve X = XC[,F over F , which can be viewed
as either a one dimensional Noetherian scheme over SpecF or an adic space over SpaF .
Fargues proved that there is a bijection of pointed sets (cf. [11] Theorem 1.4):

B(G)
∼−→ H1

et(X,G), b 7→ Eb.
Moreover, the Newton map and Kottwitz map both admit geometric interpretations in
terms of G-bundles, for more details see [11] Theorem 1.10.

Attached to the pair (G, {µ−1}), we have the Kottwitz set (cf. [27] section 6):

B(G,µ−1) = {b ∈ B(G) | v(b) ≤ µ−1,�, κ(b) = µ−1,]},
here we are using Galois average

µ−1,� = [Γ : Γµ−1 ]−1
∑

τ∈Γ/Γµ−1

µ−1,τ ∈ N (G),

and µ−1,] ∈ π1(G)Γ. This is a finite subset of B(G) which contains a unique basic element
(cf. [27] 6.4), and it only depends on the conjugacy class {µ−1}. We will also use the
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generalized Kottwitz set introduced in [11]: for any ε ∈ π1(G)Γ and δ ∈ X∗(A)+
Q such that

ε ≡ δ in π1(G)Γ ⊗Q, we set

B(G, ε, δ) = {b ∈ B(G) |κ(b) = ε, ν(b) ≤ δ}.
Then by definition we have

B(G,µ−1) = B(G,µ−1,], µ−1,�).

A key property of the Kottwitz set is that we can pass to the adjoint group (see [27]
4.11 and 6.5): the natural map G→ Gad induces a bijection

B(G, ε, δ) ∼= B(Gad, εad, δad).

This property is suitable for our application, since some geometric objects like the flag
varieties and the Bruhat-Tits building only depend on Gad.

Now, we introduce the Newton stratification on the p-adic flag variety F`(G,µ)ad (and
F`(G,µ)Berk). It will be indexed by the Kottwitz set B(G,µ−1) (be careful there is a
sign change). Roughly speaking, this is defined by modifying the trivial G-bundle over
the Fargues-Fontaine curve. In particular, this stratification is stable under the natural
G(F )-action on F`(G,µ)ad, as G(F ) is the automorphism group of the trivial G-bundle.

More precisely, the construction actually involves the B+
dR-affine Grassmannian Gr

B+
dR

G
introduced in [44] and the v-stack of G-bundles BunG on the Fargues-Fontaine curve

introduced in [20]. The Gr
B+

dR
G is a small v-sheaf over SpdF = (SpaF )3. For each

geometric conjugacy class {µ} of cocharacters of G, using Cartan decomposition one can

define a sub v-sheaf Gr
B+

dR
G,µ ⊂ Gr

B+
dR

G,E over SpdE, where E = E(G, {µ}), which is the affine

Schubert cell in this setting. See [44] Lecture 19 for more details. Back to our minuscule
µ, the following p-adic Bialynicki-Birula map (cf. [10] Proposition 3.4.3) from the affine
Schubert cell attached to {µ} to the diamond flag variety

πBBG,µ : Gr
B+

dR
G,µ −→ F`(G,µ)ad,3

is an isomorphism, cf. [10] Theorem 3.4.5. On the other hand, there is a natural Beauville-
Laszlo map

BL1 : Gr
B+

dR
G −→ BunG

relating B+
dR affine Grassmannian with BunG by modifying the trivial G-bundle, cf. [20]

III.3. By Fargues’s theorem on the classification of G-bundles over the Fargues-Fontaine
curve, we have a natural identification

|BunG| ∼= B(G)

as sets (cf. [20] Theorem III.2.2); indeed this is also a topological isomorphism with the
order topology on B(G) due to [48]. Combining these maps together, we get the desired
morphism

F`(G,µ)ad,3 −→ BunG.

On topological spaces, we get a map

|F`(G,µ)ad| −→ B(G),

called the Newton map. Explicitly, for any point x ∈ F`(G,µ)ad(C,C+) with C|E alge-
braically closed perfectoid field, by Bialynicki-Birula and Beauville-Laszlo maps, we get a
G-bundle E1,x on the Fargues-Fontaine curve XC[,C+,[ by modifying the trivial G-bundle

using x at the canonical point ∞ ∈ XC[,C+,[ corresponding the untilt C of C[. The
isomorphism class of the G-bundle E1,x defines an element

b(E1,x) ∈ B(G)

by Fargues’s theorem. This is the point-wise description of the Newton map. As in [10]
Proposition 3.5.7 and the paragraph above there, this map is semi-continuous (based on
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the result of Kedlaya-Liu [25] in the case G = GLn). Moreover, it factors through the
maximal Hausdorff quotient, which is exactly the topological space

|F`(G,µ)Berk|

underlying the Berkovich space F`(G,µ)Berk by Theorem 3.1. By [10] Proposition 3.5.3,
the image of the Newton map is contained in B(G,µ−1). For any b ∈ B(G,µ−1), let
F`(G,µ)ad,b denote the fiber over b, then this is a locally closed subspace of F`(G,µ)ad.
In this way we get the Newton stratification for the adic space

F`(G,µ)ad =
∐

b∈B(G,µ−1)

F`(G,µ)ad,b.

This stratification is invariant under the natural G(F )-action on F`(G,µ)ad. We summa-
rize the main properties of the Newton stratification as follows.

Proposition 3.2. (1) For each b ∈ B(G,µ−1), the corresponding stratum F`(G,µ)ad,b

is non empty, in other words the image of BL1 is exactly B(G,µ−1).
(2) For each b ∈ B(G,µ−1), the dimension of the stratum (as a locally spectral space)

is

dim F`(G,µ)ad,b = dim F`(G,µ)− 〈ν(b), 2ρ〉 = 〈µ− ν(b), 2ρ〉,

where ρ is the half of positive absolute roots of G.
(3) For each b ∈ B(G,µ−1), we have the closure relation

F`(G,µ)ad,b =
∐
b′≥b
F`(G,µ)ad,b′ ,

where b′ runs through the element b′ ∈ B(G,µ−1) such that b′ ≥ b for the partial
order ≥.

Proof. (1) is due to Rapoport, see [10] Remark 3.5.8 or [45] Proposition 6.7.
(2) was proved in special case in [10] Proposition 4.2.23, and in general case in [11]

Proposition 5.3 and [45] Proposition 3.1.
(3) was proved in [48] Corollary 6.9. �

For each b ∈ B(G,µ−1), we get a corresponding locally closed subspace F`(G,µ)Berk,b ⊂
F`(G,µ)Berk and a G(F )-invariant stratification of the Berkovich space

F`(G,µ)Berk =
∐

b∈B(G,µ−1)

F`(G,µ)Berk,b.

Recall that the Kottwitz set B(G,µ−1) contains a unique basic element b0, which is min-
imal with respect to the partial order ≤. The corresponding basic stratum F`(G,µ)ad,b0

(resp. F`(G,µ)Berk,b0) is open in F`(G,µ)ad (resp. F`(G,µ)Berk). Moreover, F`(G,µ)Berk,b0

is the Hausdorff strictly Berkovich space corresponding to the adic space F`(G,µ)ad,b0 by
Theorem 3.1. We call both

F`(G,µ)ad,b0 and F`(G,µ)Berk,b0

the p-adic period domains12 attached to (G, {µ−1}, b0). By Proposition 3.2 (3), the sub-
space F`(G,µ)Berk,b0 is dense in F`(G,µ)Berk.

The Harder-Narasimhan stratification on F`(G,µ)ad is based on a semi-continuous
function

HN : |F`(G,µ)ad| −→ B(G,µ−1),

12They arise as the target of the Hodge-Tate period map for the local Shimura variety attached to the
triple (G, {µ−1}, b0) at infinite level. In [48] this is called the admissible locus, although this is slightly
different from the original terminology in the de Rham setting as in [35] or [44]. In section 6, we will
translate back to the de Rham setting by introducing the dual local Shimura datum.
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which can be constructed by13 either the theory of Harder-Narasimhan filtrations of fil-
tered vector spaces as in [13], or the theory of Harder-Narasimhan filtrations of admissible
modifications of vector bundles on the Fargues-Fontaine curve as in [45] section 3. Using
the later approach, for any x ∈ F`(G,µ)ad(C,C+) with C|E algebraically closed perfec-
toid field, HN(x) is given by the HN vector of the modification triple (E1, E1,x, fx), see
[45] for more details. In particular, we get a stratification

F`(G,µ)ad =
∐

b∈B(G,µ−1)

F`(G,µ)ad,HN=b,

with each stratum F`(G,µ)ad,HN=b locally closed in F`(G,µ)ad. Moreover, this strati-
fication is also G(F )-invariant. Unfortunately, we do not know enough information on
this stratification like Proposition 3.2 (neither the non emptiness of F`(G,µ)ad,HN=b, nor
dimension formula, nor closure relation, for example see [45] for more discussions). On
the other hand, there is a unique open stratum F`(G,µ)ad,HN=b0 . All we will need later
is about this stratum, which is relatively easier to study.

Proposition 3.3. We have a G(F )-equivariant inclusion

F`(G,µ)ad,b0 ⊂ F`(G,µ)ad,HN=b0 .

In particular, the open Harder-Narasimhan stratum F`(G,µ)ad,HN=b0 is dense in the adic
flag variety F`(G,µ)ad.

Proof. See [45] subsection 3.3 or [48] Lemma 4.7. �

From the description of the Harder-Narasimhan stratification in terms of admissible
modifications of G-bundles on the Fargues-Fontaine curve, together with the fact that
for any S = Spa(R,R+) ∈ Perf, the categories of G-bundles on the relative Fargues-
Fontaine curves XR,R+ and XR,R◦ respectively are equivalent (also deduced by the work

of Kedlaya-Liu [25]), the map HN factors through the Berkovich flag variety F`(G,µ)Berk.
Therefore, we get a G(F )-invariant stratification

F`(G,µ)Berk =
∐

b∈B(G,µ−1)

F`(G,µ)Berk,HN=b,

with each stratum F`(G,µ)Berk,HN=b locally closed. The stratum F`(G,µ)Berk,HN=b0 at-
tached to b0 is open, which corresponds to the open adic stratum F`(G,µ)ad,HN=b0 under
Theorem 3.1. By Proposition 3.3 we have a G(F )-equivariant inclusion of open subspaces
of F`(G,µ)Berk

F`(G,µ)Berk,b0 ⊂ F`(G,µ)Berk,HN=b0 .

We call

F`(G,µ)ad,HN=b0 (resp. F`(G,µ)Berk,HN=b0)

the semistable locus14 in F`(G,µ)ad (resp. F`(G,µ)Berk). By [13] XI.1 (see also [35] proof
of Proposition 1.36), we can describe the complement:

F`(G,µ)ad \ F`(G,µ)ad,HN=b0 =
⋃
i∈I

G(F )Zi,

where (Zi)i∈I is a finite collection of Zariski closed Schubert varieties. Similarly for the
Berkovich version.

13For both versions, as usual we need the Tannakian formalism to deal with general reductive groups.
14Our terminology is compatible with that in [13]. In [48] it is called weakly admissible locus, although

the setting is slightly different from the original de Rham setting as in [35] Chapter 1 or [13] Part 3.
Again, in section 6 we will translate back to the de Rham setting by introducing the dual local Shimura
datum.
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3.3. Embeddings of Bruhat-Tits buildings into p-adic period domains. After the
above preparations, we can discuss the relation between the Berkovich map

θ : B(G,F ) −→ F`(G,µ)Berk

and the Newton stratification

F`(G,µ)Berk =
∐

b∈B(G,µ−1)

F`(G,µ)Berk,b.

As before we denote Bt(G,F ) = θ(B(G,F )). As said in section 2, the main intuition is
that the image of the Berkovich map consists of very generic points. As a warm up, we
first deduce the following theorem concerning the semistable locus.

Theorem 3.4. Through the Berkovich map, the Bruhat-Tits building B(G,F ) is mapped
into the semistable locus, i.e. Bt(G,F ) ⊂ F`(G,µ)Berk,HN=b0.

Proof. Take a finite field extension L|F that splits the group G. In fact we will prove a

stronger result: θL(B(G,L)) is contained in the F`(G,µ)Berk,HN=b0
L .

Recall Proposition 2.2 which computes the Berkovich map explicitly. We still use those
notions with replacing the base field by L. By Proposition 2.2, each point x inside the
image of the apartment is in fact a norm (instead of merely semi-norm) on the polynomial
ring. Therefore under the natural map Ω(T, P )Berk −→ Ω(T, P ) (taking support), the
point x will correspond to the generic point of that variety.

In the following we will pass to adic spaces. Consider the continuous quotient map
Ω(T, P )ad → Ω(T, P )Berk and the (discontinuous) inclusion Ω(T, P )Berk ⊂ Ω(T, P )ad. We
have the following commutative diagram of continuous maps between locally spectral
spaces:

Ω(T, P )ad

��

� � // F`(GL, µ)ad

��
Ω(T, P ) �

� // F`(GL, µ).

Both horizontal maps are open embeddings. In particular, the map of the bottom line
will send the generic point of Ω(T, P ) to the generic point of F`(GL, µ). Therefore the
point x is generic in the adic space F`(GL, µ)ad, in the sense that it is in the fiber of the
generic point of F`(GL, µ) under the projection F`(GL, µ)ad → F`(GL, µ). In particular,
it can not be contained in any proper Zariski closed subspace. On the other hand, the
semistable locus F`(GL, µ)ad,HN=b0 is an open subspace of F`(GL, µ)ad whose complement
is a profinite union of proper Zariski closed subspaces (some Schubert varieties). Therefore
x lies in such locus.

Passing back to Berkovich spaces, we get x ∈ F`(GL, µ)Berk,HN=b0 . Notice that the
Bruhat-Tits building B(G,L) is a union of apartments. Therefore it lies in this L-
semistable locus. We can view B(G,F ) as a subspace of B(G,L), which is mapped into

the L-semistable locus F`(G,µ)Berk,HN=b0
L . By the base change functoriality of the map

θ (cf. Proposition 2.1), we have Bt(G,F ) = θ(B(G,F )) ⊂ F`(G,µ)Berk,HN=b0 . �

Next, we will prove a stronger theorem, showing that the image Bt(G,F ) = θ(B(G,F ))
in fact totally lies in the p-adic period domain F`(G,µ)Berk,b0 . This relies on some di-
mension arguments and basic geometric properties of the Newton stratification as in
Proposition 3.2.

Theorem 3.5. Through the Berkovich map, the Bruhat-Tits building B(G,F ) is mapped
in to the p-adic period domain, i.e. Bt(G,F ) ⊂ F`(G,µ)Berk,b0.

Proof. The first step is still applying the base change technique, cf. Proposition 2.1. For
any point o of the building B(G,F ), take a suitable non-archimedean field extension L|F
such that GL is split over L and through the natural map B(G,F ) ↪→ B(G,L), the point o
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becomes a special vertex for the later building. In practice, any complete non-archimedean
field containing F̄ with valuation group being the whole real numbers R will satisfy this
requirement.

Again we apply the explicit formula of Proposition 2.2. Then the special vertex o will
correspond to the standard Gauss point of the Berkovich space

Ω(T, P )Berk ∼= AN,Berk,

here N is the cardinality of Ψ and it also equals to the dimension of F`(G,µ). Inside
the Berkovich space, the Gauss point (still denote it by o) corresponds to the following
multiplicative norm:

L[(Xα)α∈Ψ]→ R≥0,
∑
v∈NΨ

avX
v 7→ max

v
|av|

Its valuation residue field is L̃(xα), here L̃ is the residue field for L and α run over roots

in Ψ. It is a field extension of L̃ with transcendence degree N .
Next consider the quotient map π : Ω(T, P )ad → Ω(T, P )Berk, the Gauss point o has a

distinguish lift inside the adic space. We can find this distinguish lift (denoted by o1) by
the (discontinuous) inclusion Ω(T, P )Berk ⊂ Ω(T, P )ad. Or more concretely,we can define
the Gauss point for the N -dimensional disk in a similar way like [41] (which is about one
dimensional case), and view it as a point for the affine AN,ad adic space. Then this Gauss
point is the desired distinguish lift.

From the discussion above, the valuation residue field of o1 is unchanged, still a field

extension of L̃ with transcendence degree N . Then by the dimension formula in Lemma
3.2.2 of [4], we know that the dimension of the spectral space {o1} (closure of o1 inside
Ω(T, P )ad) is

dim {o1} = N.

On the other hand, consider the following commutative diagram:

Ω(T, P )ad

π
��

� � // F`(G,µ)ad
L

γ

��
Ω(T, P )Berk � � // F`(G,µ)Berk

L

Then π−1(o) = γ−1(o) and it is closed in F`(G,µ)ad
L . Thus the previous closure {o1} is

indeed the closure inside the whole space F`(G,µ)ad
L and its dimension is N .

Since the Newton stratification factors through the Berkovich quotient, for each b ∈
B(G,µ−1) and each point y ∈ F`(G,µ)Berk,b

L , its fiber γ−1(y) is closed and is contained

in the same strata F`(G,µ)ad,b
L . In particular, we have o1 ∈ F`(G,µ)ad,b

L ⇔ {o1} ⊂
F`(G,µ)ad,b

L . Since F`(G,µ)ad,b
L is a locally spectral space, its dimension is equal to the

maximal length of specializing chains. Recall the dimension formula for the Newton strata
(see Proposition 3.2 (2))), for each b ∈ B(G,µ−1),

dim F`(G,µ)ad,b = 〈µ− ν(b), 2ρ〉.

In particular, for any non basic b (equivalent to ν(b) is not central), we have

dim F`(G,µ)ad,b < N = 〈µ, 2ρ〉.

Then the dimension of the union of non basic strata is strictly smaller than N . Therefore
o1 lies in the basic stratum. Then o lies in the basic stratum. We are done.

�

Remark 3.6. In the de Rham setting, i.e. the setting of [35] Chapter 1 or [13] Part 3, in
[24] Hartl made a conjecture (Conjecture 6.4 of [24]) comparing the difference at level of
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points: for any non-archimedean field L|Ĕ with a finitely generated valuation group, we
have

F`(G,µ−1, b0)wadm(L) = F`(G,µ−1, b0)adm(L).

This conjecture is a generalization of the classical results that F`(G,µ−1, b0)wadm and
F`(G,µ−1, b0)adm have the same classical points (consequence of the theorem of Colmez-
Fontaine). Hartl proved its analogue for function fields in [23].

In our setting, there is a natural variant15 of Hartl’s conjecture: for any non-archimedean
field L|E with a finitely generated valuation group, we have

F`(G,µ)Berk,HN=b0(L) = F`(G,µ)Berk,b0(L).

Our result is compatible with this conjecture. In fact, we can also give another proof for
Theorem 3.5 by Hartl’s conjecture and Theorem 3.4. The idea is in fact similar.

Take a finite extension L|F to split G. For any apartment of B(G,L), apply the propo-
sition 2.2 to explicit the Berkovich map, then any point x inside the apartment will cor-
respond to a generalized Gauss point θ(x). Its residue field K = H(θ(x)) is an affinoid
extension of L. In particular, the valuation group is still finitely generated. By Theorem
3.4, we have

θ(x) ∈ F`(G,µ)Berk,HN=b0 .

If Hartl’s conjecture holds, then F`(G,µ)Berk,HN=b0(K) = F`(G,µ)Berk,b0(K), and thus
θ(x) lies in F`(G,µ)Berk,b0.

4. Comparison of boundaries

In this section, we extend the comparison of buildings and p-adic period domains to
the boundaries. We keep our notations as before.

4.1. Functorialities of Newton stratifications. First, we point out that the Newton
stratification is functorial.

Let M be an F -Levi subgroup of G. Suppose over F̄ , there is a minuscule cocharacter
µM for MF̄ such that its composition with MF̄ ↪→ GF̄ is the minuscule cocharacter µ.
Then PµM = M

⋂
Pµ and this induces an embedding

F`(M,µM ) ↪→ F`(G,µ)

over E.
We reformulate the above embedding by Bruhat decomposition. Let P be an F -

parabolic subgroup of G with associated Levi subgroup M . Choosing a maximal torus
T and a Borel subgroup B over F , and a dominant representative µ ∈ X∗(T )+ of the
conjugacy class {µ}. Let W be the absolute Weyl group of G, with the subgroups WP

and WPµ corresponding to the parabolic subgroups PF and Pµ. Consider the set of min-

imal length representatives PWPµ ⊂ W for the coset WP \W/WPµ . Let X∗(T )M,+ be
set of M -dominant cocharacters of T , i.e. cocharacters of T dominant for the induced
Borel B ∩MF of MF . Then for each w ∈ PWPµ we get an M -dominant cocharacter
µw := wµ ∈ X∗(T )M,+. The PF -orbits on F`(G,µ)F define the Bruhat decomposition

F`(G,µ)F =
∐

w∈PWPµ

PFwPµ/Pµ,

and for each w ∈ PWPµ , the projection P →M induces a morphism of algebraic varieties
over F

PFwPµ/Pµ −→ F`(M,µw),

which is a fiberation in affine bundles of rank `(w) (for example see [13] Lemma 6.3.6).
In particular, the minimal (closed) stratum which corresponds to w = id is given by
F`(M,µM ), and we get the closed embedding F`(M,µM ) ↪→ F`(G,µ) over F , which
descends to E.

15We will explain how to translate our setting back to the de Rham setting in section 6.
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Lemma 4.1. Let M be an F -Levi subgroup of G, and µM a cocharacter of M over F
with induced cocharacter µ of G under the inclusion M ⊂ G. Then the induced map
B(M)→ B(G) between Kottwitz sets restricts to a map

B(M,µM )→ B(G,µ).

Proof. If G is quasi-split over F , then it is clear that we get an induced map B(M,µM )→
B(G,µ). Indeed, this follows from the definitions of the sets B(M,µM ) and B(G,µ):

under the induced maps π1(M)Γ → π1(G)Γ and N (M) → N (G), we have µ]M 7→ µ] and
µ�M 7→ µ�. Moreover, the partial orders on N (M) and N (G) are compatible, since both
can be described in terms of relative coroots under the quasi-split assumption.

Next, we reduce the general case to the quasi-split case. Assume that G is non quasi-
split, and let H be its quasi-split inner form over F . Then G corresponds to an element

ξ ∈ H1(F,Had) = π1(Had)Γ = [〈Φ〉∨/〈Φ∨〉]Γ.

Moreover, under the bijection

H1(F,Had) ' B(Had)basic,

we get an induced [bG] ∈ B(Had)basic such that Gad = Had,bG . Now, the F -parabolic sub-
groups of Gad corresponds to the F -parabolic subgroups of Had which admit a reduction
of bG, see [11] Definition 2.5 and section 7. Let Mad be the induced Levi of Gad and MH

ad
the corresponding Levi of Had. The isomorphism class of Mad defines an element

ξM ∈ H1(F,MH
ad),

which is given by the class of the reduction bM of bG to MH
ad. Thus under the map

H1(F,MH
ad)→ H1(F,Had) we have ξM 7→ ξ. The inclusion MH

ad ⊂ Had induces a map

B(MH
ad, µ

] +M ξM , µ
�
M )→ B(Had, µ

] + ξ, µ�).

On the other hand, we have natural bijections

B(M,µM ) = B(Mad, µM ) = B(MH
ad, µ

]
M + ξM , µ

�
M )

and similarly

B(G,µ) = B(Gad, µ) = B(Had, µ
] + ξ, µ�).

Here we use the fact that the inner twisting induces bijections (cf. [11] subsection 4.2)

B(G) ∼= B(H), B(G, ε, δ) ∼= B(H, ε+ ξ, δ).

Putting together, we get the induced map B(M,µM )→ B(G,µ). �

In the following, we will use the version of induced map B(M,µ−1
M ) → B(G,µ−1) by

Lemma 4.1. We have the following proposition:

Proposition 4.2. The map F`(M,µM )ad ↪→ F`(G,µ)ad is compatible with Newton strat-
ifications: if bM 7→ b under the map B(M,µ−1

M ) → B(G,µ−1) by Lemma 4.1, then the

stratum F`(M,µM )ad,bM is mapped into the stratum F`(G,µ)ad,b under the morphism
F`(M,µM )ad ↪→ F`(G,µ)ad.

Proof. The observation is that the Newton stratification is defined by composition of
natural maps. More precisely, we have the following commutative diagram:

F`(M,µM )ad,3

��

πBB,−1
M,µM // Gr

B+
dR

M,µM

BL1,M //

��

BunM

��
F`(G,µ)ad,3

πBB,−1
G,µ // Gr

B+
dR

G,µ

BL1,G // BunG.

Now this proposition is obvious. �
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4.2. Strongly regular elements in the Kottwitz set. To compare boundaries of the
Berkovich compactification with non basic Newton strata, we first introduce a notion of
strongly regular elements in B(G,µ−1).

Let P,M and µM be as in the last subsection. We have an embedding F`(M,µM ) ↪→
F`(G,µ) over E. By Lemma 4.1, the group map M ↪→ G induces a map between Kottwitz
sets B(M,µ−1

M )→ B(G,µ−1).

Definition 4.3. The basic element bM for B(M,µ−1
M ) is mapped to an element b of

B(G,µ−1). We call this element b strongly regular. Letting M vary, the subset of strongly
regular elements is denoted by SR(G,µ−1).

In practice to compute this subset, it is sufficient to consider standard F -Levi sub-
groups. Now we explain the name strongly regular. For such a b, let Mb denote the
centralizer of ν(b) in G. Then M ⊂Mb (and implicitly we also determine the compatible
F parabolic subgroup for Mb). The cocharacter µM further induces a cocharacter µ1 for
Mb. Combining together, we have the following maps:

B(M,µ−1
M )→ B(Mb, µ

−1
1 )→ B(G,µ−1)

Then it is easy to see bM is mapped to the basic element bMb
for B(Mb, µ

−1
1 ). In particular,

b is a G-regular element coming from B(Mb)basic. See section 6 of [26]. Our requirement
is much stronger, since we take into account of cocharacters µ−1 and µ−1

M . Indeed, this
additional requirement has the following consequence.

We first make a comparison of strongly regular elements with Hodge-Newton decompos-
able elements. Recall (cf. [48] Definition 7.1) for b ∈ B(G) and δ ∈ X∗(A)+

Q = N (G) with

ν(b) ≤ δ, we say (b, δ) is Hodge-Newton decomposable if there exists a proper standard
Levi subgroup M of the quasi-split inner form H of G which contains the centralizer of
ν(b), such that

δ − ν(b) ∈ 〈Φ∨0,M 〉Q.
For b ∈ B(G,µ−1), it is called Hodge-Newton decomposable if (b, µ−1,�) is Hodge-Newton
decomposable in the above sense. If G = H quasi-split, Lemma 4.11 in [11] gives some
equivalent descriptions about Hodge-Newton decomposable elements b inside B(G,µ−1).
From the above discussion, a strongly regular element b will come from the basic element
of B(Mb, µ

−1
1 ). Thus if G quasi-split, it satisfies the condition of Lemma 4.11 (2) of [11],

so it is a Hodge-Newton decomposable element. In general, we have

Lemma 4.4. If b ∈ SR(G,µ−1) is the image of B(M,µ−1
M )basic → B(G,µ−1) for a proper

F -Levi subgroup M , then it is non basic.

Proof. We pass to the adjoint quotient Gad. This influences nothing. Now G is an adjoint
group over F , then G indeed has a product decomposition∏

i

Gi = G,

where Gi is the quasi-simple component of G. Then the cocharacter µ is also a product
µ =

∏
i µi, where µi is a minuscule cocharacter for Gi. Then

B(G,µ−1) =
∏
i

B(Gi, µ
−1
i ).

Therefore we only need to verify our claim in the quasi-simple case.
Take a maximal split torus S of G, consider the relative root system. Then the resulting

Dynkin diagram is connected. For any parabolic subgroup P together with its Levi M ,
performing the process of defining strongly regular element to get µM , if the basic element
bM ∈ B(M,µ−1

M ) corresponds to the basic element of B(G,µ−1), then from the definition

of B(M,µ−1
M ) we get

µ−1,�
M − νM (bM ) =

∑
ciαi,
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where ci > 0 and αi is a positive coroot of M . Passing to B(G,µ−1), if bM is mapped
to the basic element, then ν(bM ) = 0 (since the center of G is trivial), therefore (by our
choice of µM )

µ−1,� = µ−1,�
M − ν(bM ) =

∑
i

ciαi

lies in the positive chamber. This is nonzero because the type determined by {µ} is
non-trivial. On the other hand, because M is proper, it can not contain all positive

coroots of G. Suppose it does not contain the positive coroot β of G and let β̂ denote

the corresponding positive root. Then for each αi, the product 〈αi, β̂〉 is non-positive.
Because the Dynkin diagram is connected, there exists at least one i with such negative
product. Then

〈µ−1,�, β̂〉 < 0,

which is impossible. �

On the other hand, if G quasi-split over F , the requirement of being strongly regular
is much stronger than being Hodge-Newton decomposable.

Example 4.5. For the group G = GLn, we can view B(G) as a subset of N (G) (since
the Newton map is injective), thus describe an element b through its Newton polygon ν(b).
For non-basic b ∈ B(G,µ−1), the HN decomposable condition requires that ν(b) has a
turning point lying in the Hodge polygon µ−1,�. The strongly regular condition requires
that each turning point of ν(b) also lies in the Hodge polygon of µ−1,�. Obviously this
requirement is much stronger and thus SR(G,µ−1) contains very few elements.

• If µ = (1, ...1, 0.., 0) with d terms 1, then SR(G,µ−1) contains only d(n − d) + 1
elements.
• If d = 1 or d = n−1 or n ≤ 4, then B(G,µ−1) is fully Hodge-Newton decomposable

and each element is also strongly regular.
• When n = 5 and d = 2, there is a single non-Hodge-Newton decomposable element.

Other elements are also strongly regular.
• When n ≥ 6, there will be many elements being Hodge-Newton decomposable but

not strongly regular. To illustrate this more explicitly, we draw a picture showing
an example with n = 7 and d = 4. See the following Figure 1.

0 2 4 6

0

1

2

3

x

y

µ−1,�

ν(b)

Figure 1. Example
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4.3. Boundaries of Berkovich compactifications and non basic Newton strata.
Now we turn to the Berkovich compactification. The conjugacy class of the geometric
minuscule cocharacter {µ} determines an F -type denoted as t. In Theorem 3.5 we proved
that

Bt(G,F ) ⊂ F`(G,µ)Berk,b0 .

By Proposition 2.6, the boundary of Bt(G,F ) in the Berkovich compactification Bt(G,F )
can be described by the Bruhat-Tits buildings of τ -relevant proper Levi subgroups M ,
where τ is the F -rational type uniquely determined by t. We can then write

Bt(G,F ) =
⋃

M standard

⋃
g∈G(F )

g
(
Bτ (M,F )

)
.

On the other hand, the boundary of F`(G,µ)Berk,b0 can be described by non basic Newton
strata by Proposition 3.2. It turns out that the boundaries of Bt(G,F ) and F`(G,µ)Berk,b0

are matched neatly in the following way:

Theorem 4.6. For each proper standard F -rational Levi group M of G, the contribution

of the boundary
⋃
g∈G(F ) g

(
Bτ (M,F )

)
is contained in the Newton stratum correspond-

ing an element bM ∈ SR(G,µ−1). This bM is determined by M , and each elements in
SR(G,µ−1) will appear in this way.

Proof. Since the Newton stratification is invariant under the G(F )-action, for each con-
jugacy class of Levi subgroup, it is sufficient to prove the assertion for Bτ (M,F ).

Recall the proof of the Proposition 2.6. To compute the contribution from M , we
pick up an F -parabolic subgroup P containing M with Levi decomposition P = N oM .
Take a finite extension L|E to split G. Then {µ} determines an L-rational type t1. We

use F`(G,µ)L to compute the Berkovich compactification Bt(G,F ). Choose a L-Borel
subgroup BM of ML such that NLoBM is a Borel subgroup for GL. Also take a maximal
split torus T inside BM , then ML is a standard Levi subgroup and PL is a standard
parabolic subgroup. Take the dominant representative of {µ}, again we still denote it as
µ. Then Pµ is compatible with PL and ML, in other words, the natural inclusion induces
an isomorphism

ML/(ML ∩ Pµ) ∼= PL/(PL ∩ Pµ
and Pµ is osculatory with PL. Then B(M,F ) contributes to the Berkovich compactifica-
tion through the following map:

B(M,F )
θ−→ Part1(ML)Berk ∼= Part1(PL)Berk ∼= Osct1(PL)Berk ↪→ Part1(GL)Berk.

By Theorem 3.5, the morphism θ will send B(M,F ) into the basic stratum of Part1(ML)Berk.
On the other hand, the cocharacter µ induces a minuscule cocharacter µM for ML and
the natural map

F`(ML, µM ) ↪→ F`(GL, µ)

can be identified with the above map

Part1(ML) ↪→ Part1(GL),

thus we can apply the functoriality of the Newton stratification (Proposition 4.2), we see
that the contribution Bτ (M,F ) will lies in the stratum corresponding to bM , which is the
image of B(M,µ−1

M )basic −→ B(G,µ−1).
Finally, the process of computing the contribution Bτ (M,F ) is the same as the process

in the definition of strongly regular elements, so bM ∈ SR(G,µ−1) and each element of
SR(G,µ−1) will appear in such way.

�

Remark 4.7. In practice, to compute SR(G,µ−1) it is sufficient to consider those Levi
M appearing in the τ -relevant parabolic subgroups. In [36] subsection 3.3, there is a
combinatorial description of τ -relevant subgroups in terms of Dynkin diagrams.
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A further study of SR(G,µ−1) will show that the image of the Berkovich map is closed
in the p-adic period domain. It is sufficient to check this in non-degenerate case.

Corollary 4.8. (1) The image of Berkovich embedding Bt(G,F ) is closed in the p-
adic period domain F`(G,µ)Berk,b0.

(2) Assume that G is quasi-split over F . Then the image of Berkovich embedding
Bt(G,F ) is also closed in the open Harder-Narasimhan stratum F`(G,µ)Berk,HN=b0.

Proof. The first statement follows from Lemma 4.4, since for any boundary stratum cor-
responding to a proper M of G, its contribution b ∈ SR(G,µ−1) can not be the basic
element.

For the second assertion, we apply Theorem 1.3 of [48], which implies that if a non
basic Newton stratum F`(G,µ)Berk,b intersects non trivially with the semistable locus
F`(G,µ)Berk,HN=b0 , then b is Hodge-Newton indecomposable. Under the assumption that
G is quasi-split, each non-basic element in SR(G,µ−1) is Hodge-Newton decomposable.
Therefore if a contribution Bτ (M,F ) intersects with F`(G,µ)Berk,HN=b0 , it will lie in the
basic locus. Then previous claim shows that M has to be the whole group G. We are
done.

�

Remark 4.9. One may prove Corollary 4.8 (2) without the quasi-split assumption by
a different approach. More precisely, in Proposition 3.4 we have shown Bt(G,F ) ⊂
F`(G,µ)Berk,HN=b0. One may prove a similar result for each boundary stratum Bτ (M,F ),
by using the parabolic induction results for non basic Harder-Narasimhan strata, cf. [13]
or [45] Theorem 3.9. As we will not need non basic Harder-Narasimhan strata in the
following, we leave the details to the interested reader.

5. Retraction maps for GLn

In this section, we discuss some special examples. We will mainly study the case
G = GLn with n ≥ 2, though some results in fact hold for more general groups. Let µ be a
minuscule cocharacter ofG of the form (1d, 0n−d) such that (d, n) = 1. Since we will always
work with Berkovich spaces in this section, we simply denote F`(G,µ)b0 = F`(G,µ)Berk,b0

and F`(G,µ)HN=b0 = F`(G,µ)Berk,HN=b0 . Inspired by the works of [29] and [49], we will
construct a continuous retraction map

r : F`(G,µ)b0 −→ B(G,F ).

Here “retraction” means that the Berkovich embedding θ : B(G,F ) ↪→ F`(G,µ)b0 by
Theorem 3.5 will be a section of r. This map r will generalize the Drinfeld map (cf.
[14, 3]) in the case d = 1

r : Ωn −→ B(G,F ).

We will also discuss some analogy with tropical geometry and propose a new method to
study the p-adic period domain F`(G,µ)b0 and the semistable locus F`(G,µ)HN=b0 .

5.1. p-adic period domain and the stable locus. We first make a few remarks on
comparison with the setting of [29] and [49]. Both loc. cit. work with semisimple simply
connected groups like SLn. Here we will use the adjoint group PGLn, as we want to use
minuscule cocharacters etc. Moreover, both [29] and [49] use some geometric invariant
theory, which involves choosing a G-equivariant (very ample) line bundle L on the flag
variety G/Pµ to talk about semistable and stable locus. Since SLn → PGLn is an isogeny
with a finite central kernel, we can always rescale L by Ln to get a PGLn-equivalent line
bundle. This will not influence the geometry of semistable or stable locus. In the rest
of this section, we modify our notation by setting G = PGLn, the parabolic P = Pµ is
defined by the induced minuscule cocharacter µ of PGLn.

Take a maximal split torus T together with a Borel subgroup B, and consider the
resulting root system and fundamental (positive) weights ωi. The maximal parabolic
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subgroups Pi containing B are bijection with the fundamental weights ωi. And any
parabolic subgroup containing B is in the form ∩iPi, thus corresponding to a non-empty
subset I of the set of fundamental weights. For such P , one can further consider a positive
weight λ =

∑
i∈I miωi (mi is positive) and thus produce a highest weight representation

V = Vλ with a highest weight vector eλ (well defined up to units).
In our case, the cocharacter µ corresponds to the fundamental weight λ = ωd. Then

we can identify the flag variety (which is the Grassmannian Gr(d, n))

X := F`(G,µ) = G/Pµ

with the orbit G(eλ) inside the projective space P(V ) over F . As in subsection 3.2, we
have the associated p-adic period domain

Xb0 ⊂ XBerk

and semistable locus
Xss := XHN=b0 ⊂ XBerk.

Both are open subspaces of the Berkovich flag variety XBerk. Moreover, by Proposition
3.3 we have

Xb0 ⊂ Xss.

On the other hand, there is a variant of Xss, the stable locus Xs which classifies stable
objects in the corresponding Harder-Narasimhan theory (for filtered vector spaces with
G-structure or admissible modifications of G-bundles). By construction we have an open
immersion

Xs ⊂ Xss.

The closed embedding X ↪→ P(V ) further induces a very ample line bundle L (pullback
of O(1) on P(V )) on the flag variety X and L is also a G-equivariant line bundle. Use
this line bundle L and geometric invariant theory (for the T -action on X), we can study
the semistable and stable locus respect to T

X(T,L)ss and X(T,L)s.

Both are open subschemes of X. When T varies, these describe the above semistable and
stable locus:

Proposition 5.1. We have the following equalities of Berkovich analytic spaces over F

Xss =
⋂
T

X(T,L)ss,Berk, Xs =
⋂
T

X(T,L)s,Berk,

where T runs over all maximal split torus.

Proof. This follows from [29] Proposition 2.6, Corollary 2.8.2, and the discussions in sec-
tion 3 there. Note that in [29], they work with rigid analytic spaces, and they introduced
and studied X(T,L)ss and X(T,L)s first, then proceeded to show there are rigid analytic
structures on the intersections over all T . Moreover, there are moduli interpretations for
the intersections (the right hand side above) given by the semistable and stable objects
(the left hand side above). See also [13] Theorem 9.7.3 (whose proof in turn origins from
[47]; the later proves the conjecture in [35] 1.51, which in turn was motivated by [29]). �

To study X(T,L)ss and X(T,L)s, following [29] we further introduce certain convex
hulls. The action of T on H0(X,L) produce the weight decomposition

V ∗ = H0(X,L) =
⊕
β

H0(X,L)β,

where β ∈ X∗(T ). For any geometric point x ∈ X(k) (k|F an algebraically closed field),
evaluate V ∗ at x, and let

Sx ⊂ X∗(T )⊗ R
be the set of those β with V ∗β being non-vanish at x. Let

Conv(Sx) ⊂ X∗(T )⊗ R



BRUHAT-TITS BUILDINGS AND p-ADIC PERIOD DOMAINS 29

denote its convex hull. The Lemma 1.2 in [29] shows that x ∈ X(T,L)ss if and only
if 0 ∈ Conv(Sx), and x ∈ X(T,L)s if and only if 0 is an interior point of Conv(Sx).
Applying this lemma and Lemma 1.3 of [29], we have

Proposition 5.2. Assume that the cocharacter µ = (1d, 0n−d) satisfies the condition
(d, n) = 1. Then for any maximal split torus T , we have

X(T,L)s = X(T,L)ss.

In particular, under this assumption, by Proposition 5.1 we get

Xss = Xs.

Proof. See [29] Theorem 1.1 and Corollary 2.4. �

The conclusion X(T,L)s = X(T,L)ss is quite strong, which will be crucial for the
following constructions. From now on, we assume that the cocharacter µ = (1d, 0n−d)
satisfies the condition (d, n) = 1. As a corollary, we get a G(F )-equivariant inclusion of
open subspaces of XBerk

Xb0 ⊂ Xs.

To construct a retraction map r : Xb0 → B(G,F ) for the embedding θ : B(G,F ) ↪→ Xb0 ,
it suffices to construct a retraction map

r : Xs −→ B(G,F ).

By restriction to Xb0 , we get the desired map.

5.2. The retraction map for a maximal torus. In section 3 of [29], van der Put and
Voskuil implicitly constructed a map from X(T,L)s to the corresponding apartment AT
inside B(G,F ). Their construction is through a point-wise description, thus they need to
pick up a test field K. We will review their construction, complete their arguments at
some points, and adapt it to the setting of Berkovich spaces.

Let K|F be a non-archimedean extension with K algebraic closed. In [29] only K = Cp
was considered, but it is important to go beyond Cp when working with Berkovich spaces.
A point in the Berkovich space (or the algebraic variety) may be realized as a K-point
for different test fields K, but it will clear from the context that the construction is well
defined.

Let v : K∗ → R denote the additive valuation of K extending the discrete valuation on
F and satisfying v(π) = 1 (here π is a uniformizer of F ). Using the same sign convention
of Tits in [46], we get the following map

vT : T (K) ∼= Hom(X∗(T ),K∗) −→ Hom(X∗(T ),R).

Pick up a special vertex o in the corresponding apartment AT for T , and use o (as the
origin) to identify AT with Hom(X∗(T ),R). The vertex o also defines an integral model
Go over OF for G by the Bruhat-Tits theory, which is a reductive group scheme since
o is special and G = PGLn is adjoint. For simplicity we may also use G to denote this
integral model. Previous discussions (T , P , G/P , ...) hold over OF . In particular, we
have an open subscheme

X(T,L)s ⊂ X
of the scheme X = G/P over OF , which is the (properly) stable locus for the action of T
on X with respect to L. Then we get an analytic subspace

̂X(T,L)s
Berk

η ⊂ X(T,L)s,Berk
η ,

where ̂X(T,L)s is the p-adic completion of X(T,L)s, ̂X(T,L)s
Berk

η is the Berkovich an-

alytic generic fiber of the formal scheme ̂X(T,L)s, and X(T,L)s,Berk
η is the Berkovich

analytification of the generic fiber of the OF -scheme X(T,L)s. In the following we simply
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denote X(T,L)s,Berk = X(T,L)s,Berk
η as the F -analytic space. For the field K as above,

note that we have

̂X(T,L)s
Berk

η (K) = ̂X(T,L)s(OK) = X(T,L)s(OK).

If necessary, replace L by Lk for a suitable positive integer k, so that there exists an
integral basis {f1, ..., fm} for H0(X,L)T over OF with the property

X(T,L)s =
⋃
Xfi ,

where Xfi is the non-vanishing locus of fi and we view everything over OF . This implies

that ̂X(T,L)s
Berk

η is a finite union of affinoids inside XBerk. Let K̃ denote the residue
field. Applying the geometric invariant theory, we can perform the geometric quotient

Z = X(T,L)s/T,

which is a projective scheme over OF , since X(T,L)s = X(T,L)ss by Proposition 5.2 and
our assumption (d, n) = 1. Each K-point of X(T,L)s has a finite stabilizer inside T (K).
As in section 3.4 of [29], we have:

(1) X(T,L)s(OK)/T (OK) = Z(OK) = Z(K) = X(T,L)s(K)/T (K).
(2) T (K)×X(T,L)s(OK) � X(T,L)s(K).

We note that the equality Z(OK) = Z(K) and the surjectivity of (2) hold since Z is
projective over OF , and the other two equalities in (1) hold since Z is a geometric quotient.
These properties determine uniquely a map (which comes essentially from Proposition 5.2
and our assumption (d, n) = 1)

rT,o : X(T,L)s(K) −→ Hom(X∗(T ),R)

with the property

(1) rT,o(X(T,L)s(OK)) = 0, and
(2) for any t ∈ T (K) and x ∈ X(T,L)s(K),

rT,o(t.x) = −vT (t) + rT,o(x).

Through the identification with origin o, we can further view the target as the apartment
AT inside the Bruhat-Tits building B(G,F ). The resulting map is still denoted by

rT,o : X(T,L)s(K) −→ AT .

Letting K vary, we get a T -equivariant map from the associated Berkovich F -analytic
space of X(T,L)s to AT

rT,o : X(T,L)s,Berk −→ AT ,

which we call the apartment retraction map. Here we use the name “retraction” because
its composition with the Berkovich map (restrict to the apartment) is identity, cf. Theo-
rem 5.13 (for the global version of retraction map, which is harder). By construction, we
have

r−1
T,o(o) = ̂X(T,L)s

Berk

η .

For later upgrading into Berkovich space, we will always view the set of pointsX(T,L)s(K)
(and other varieties) as a subspace of the Berkovich flag variety XBerk and equip them
with the subspace topology. Now we will show that the resulting map rT,o is a continuous
map of topological spaces.

To prove such continuous results, we need to introduce more notions. The weight
decomposition holds as OF -modules

H0(X,L) =
⊕
β

H0(X,L)β,
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and the previous integral basis {f1, ..., fm} is the basis for weight 0 space. For other
nonzero β, we also pick up an integral basis {fβ,1, ..., fβ,βm}. For each β and each point
x ∈ X(K), we define the follow notion

||x||β = max{|f(x)|x | f ∈ H0(X,L)β} = max{|fβ,i(x)|i}.

Here we evaluate the line bundle L at x with a norm | |x. It is a one dimensional space
over K, thus the norm is well defined up to positive scalar. In practice we can first put a
reasonable non-archimedean metric on L. The flag variety can be covered by open cells
isomorphic to the affine space AN and the line bundle L is induced by O(1) through the
embedding into the projective space16 P(V ). Since we only need to care about some ratios
like

||x||β
||x||γ

,

which are canonically defined, thus independent of choice of such metric. Here we observe
that under Berkovich topology, for any β, the map |XBerk| → R+, x 7→ ||x||β is continuous.
With the help of this function, we have the following identifications:

X(T,L)s(OK) = r−1
T,o(o)(K) = {x ∈ X(T,L)s(K) | ||x||β ≤ ||x||0, any β}.

Now we can verify the continuous property. Let Fq be the residue field of OF .

Proposition 5.3. This apartment retraction map rT,o is continuous.

Proof. Take a field K|F as above. Apply Lemmas 1.2 and 1.3 in [29] cited previously to
study the set

Sy ⊂ X∗(T )⊗ R

for any K̃-point y ∈ X(K̃) over the residue field K̃|Fq. Here T denotes the reduction to

Fq of the previous integral T . Then we can rescale L by Lk for a sufficient large k, such
that for any y and any root α, some positive multiple αyα will appear in Sy. See the
discussion in section 3.4 of [29] for this fact.

Let T (K) act on Hom(X∗(T ),R) through the translation action t 7→ −vT (t). Then its
actions on both sides are homeomorphisms. Then it is sufficient to show the continuity
at any integral point x ∈ X(T,L)s(OK). Then rT,o(x) = 0 ∈ Hom(X∗(T ),R) ∼= AT .

Then for any β, we know that ||x||β ≤ ||x||0 and ||x||0 is obviously nonzero. Thus

for any positive number ε < 1, by the continuity of the function
||−||β
||−||0 , there exists a

neighborhood Uε of x in X(T,L)s(K) such that for any x0 ∈ Uε, ||x0||0 is nonzero and
for any β, we have

||x0||β
||x0||0

< 1 + ε.

Suppose x0 = t.y with y ∈ X(T,L)s(OK) and t ∈ T (K). Then we have for any β,

||x0||β = |β(t−1)|||y||β.

Due to the beginning discussion for Sȳ (here ȳ is the reduction to the residue field), we
know that for any root α, there is a positive integer αy such that αyα ∈ Sȳ. In particular,
this implies

||y||αyα = ||y||0.
Putting together, we get

|α(t)|αy > 1

1 + ε
> 1− ε,

thus

|α(t)| > 1− ε.

16 The situation is the same as complex geometry, we can endow such metric on L just like the case of
equipping canonical metric for projective space in complex geometry.
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On the other hand, we can do the same argument for the opposite root −α, and we can
the desired control

1

1− ε
> |α(t)| > 1− ε.

Then let ε be small enough. Combining with the fact that the root system span the whole
space X∗(T )⊗ R, this will force rT,o(x0) = −vT (t) close to 0 arbitrarily.

Notice that the set of K = Cp points is dense in the Berkovich space, through the
following lemma, the apartment retraction map

rT,o : X(T,L)s,Berk −→ AT

is continuous. �

Lemma 5.4. Let f : A −→ B be a map between topological spaces. Suppose that there
exists a dense subset A0 of A such that for any point x ∈ A, the restriction A0∪{x} −→ B
is continuous. If B is a regular Hausdorff space, then f is a continuous map.

This is a routine exercise in topology and we omit the proof. The Bruhat-Tits building
B(G,F ) is locally compact Hausdorff, thus it is regular Hausdorff, so we can apply this
lemma to upgrade the pointwise description into the Berkovich setting.

Remark 5.5. (1) In the above proof some base change functoriality is used implicitly.
Through the extension K|F , we can identify B(G,F ) with a subspace of B(G,K).
The original apartment AT of B(G,F ) is identified with the corresponding apart-

ment ÃT for B(G,K). Thus the group T (K) can not act on B(G,F ), but it acts

on AT naturally by the identification AT = ÃT , which is exactly the translation
action defined in the proof.

(2) In fact, one can work with some large enough field K, e.g. certain maximally
complete field in the sense of [30], to avoid the argument using the density of
classical points and Lemma 5.4.

Before going on, we prove some further properties of the map rT,o.

Proposition 5.6. We have the following properties for the apartment retraction map:

(1) For any g ∈ G(F ), let T1 denote the maximal split torus gTg−1 and let õ = g(o),
then the translation by g on the flag variety can identify their stable locus

g(X(T,L)s) = X(T1,L)s.

Moreover, for any x ∈ X(T,L)s(K), we have

g(rT,o(x)) = rT1,õ(g(x)).

(2) The apartment retraction map rT,o is independent of choices of the special vertex
o, and thus we also denote it by rT or rA.

Proof. For the first statement, we first verify the G(F )-equivariant property for integral
points.

Through the identification õ = g(o), the resulting integral model Gõ can be identified
with Go, then the g translation produce the following commutative diagram

X(T,L)s(K)
∼= // X(T1,L)s(K)

X(T,L)s(OK)

OO

∼= // X(T1,L)s(OK)

OO

So the equality holds for x ∈ X(T,L)s(OK). Further for such x and any t ∈ T (K), we
have

g(rT,o(t.x)) = g.t.rT,o(x) = (gtg−1).g.(o) = (gtg−1).rT1,õ(g(x)) = rT1,õ(gtx),

so we have verified the first statement.
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Here we implicitly use the base change functoriality again. We identify the apartment

AT for B(G,F ) with the corresponding apartment ÃT inside B(G,K) and do similar
identification for another apartment AT1 . Then T (K) (resp gT (K)g−1) acts on AT (resp.
AT1) in the natural way.

The second statement follows from the first one. For any other special vertex o1 inside
the apartment AT , there exist t ∈ T (F ) such that t(o) = o1 and such t conjugation will
not change the maximal torus T . Now apply the first statement for any x ∈ X(T,L)s(K),
we get

t.(rT,o(x)) = rT,o1(t.x) = t.rT,o1(x),

therefore rT,o = rT,o1 .
�

5.3. The retraction map for GLn. Now we construct the (global) retraction map to
the whole Bruhat-Tits building. The stable locus Xs is an open analytic subspace of
XBerk. By Proposition 5.1, it is the intersection

Xs =
⋂

g∈G(F )

X(gTg−1,L)s,Berk,

or equivalently, it corresponds to the locus that is stable respect to any F -maximal split
torus T action. In particular, for each apartment A of the Bruhat-Tits building, we have
a map

rA : Xs −→ A.

The problem is to prove that these rA are compatible when A varies. We will prove
it in the following lemma17, which will guarantee some basic finiteness results and the
continuity of the retraction map.

Lemma 5.7 (Compatibility lemma). Let A1 and A2 be two apartments inside the
Bruhat-Tits building B(G,F ). Let z denote an interior point of their intersection A1∩A2

with respect to A1 ∪A2. For any stable point x ∈ Xs, we have

rA1(x) = z ⇐⇒ rA2(x) = z.

Proof. It suffices to show one side implication: rA1(x) = z will imply rA2(x) = z. We will
prove this statement in two steps: first, we deduce it for x coming from some p-adic field;
second, we generalize it to any points.

Recall that the Bruhat-Tits building B(G,F ) has a G(F )-invariant metric, which is
unique up to scalar. We make the normalization of the metric such that two closest
special vertices has distance 1. This is possible because such neighborhoods {z1, z2} are
transitive under G(F )-action. Moreover, for any finite extension F1|F , suppose the ram-
ification index is e, then we require the metric on B(G,F1) satisfying that two closest
special vertices has distance 1

e . Then according to the results of Landvogt in [28] about
functoriality of the Bruhat-Tits building, the embedding B(G,F ) ↪→ B(G,F1) is an isom-
etry after a suitable normalization of the metric on B(G,F1). And our convention on the
metric is compatible, thus no need to renormalize the metric again.

Suppose A1 corresponds to the maximal split torus T1 and A2 corresponds to T2.
Because z is an interior point of A1 ∩A2, there exists a real number ε > 0 such that

D(z, ε) ∩A1 = D(z, ε) ∩A2,

here D(z, ε) is the open ball centered at z with radius ε.
Now suppose the point x comes from p-adic fields, in other words, there exists a finite

extension F1|F such that x ∈ X(T1,L)s(F1). Because our initial construction of X(T1,L)s

17Voskuil wrote this lemma in [49] as Proposition 3.4. But there the proof is too vague and it contains
some mistakes, for example, the reduction will lie in the normalizer of the torus instead of the centralizer.
Here we give a new rigorous proof.
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and its quotient X(T1,L)s/T1 is purely algebraic over OF , use their geometric properties,
we can replace F1 by a finite extension, such that

x = t.x0

with t ∈ T (F1) and x0 ∈ X(T1,L)s(OF1). Then by the definition of the apartment
retraction map, the point z is a special vertex inside B(G,F1). Here we use base change
to identify B(G,F ) with a subspace of B(G,F1). By our choose of metric, this is an
isometry. Thus inside B(G,F1) we still have

D(z, ε) ∩A1 = D(z, ε) ∩A2.

Take a totally ramified extension F2|F1 with large enough ramification index e such
that we have

e >
1

ε
.

By the base change functoriality again, we embed B(G,F1) into B(G,F2). We can define
the apartment retraction map in the same way as over F . And they are compatible. Thus
we can argue over F2.

Now z is a special vertex for the apartment A1, so we can take it as the (new) origin
and perform the apartment retraction rT1,z. Then for this new integral model of G and
thus G/P etc, the point x is an integral point for X(T1,L)s. We will also use z as the
origin for A2 and consider the apartment retraction rT2,z. It is sufficient to show that x
is also an integral point for X(T2,L)s, which is equivalent to require the reduction x lies
in the semistable locus

X(T2,L)s

over the residue field.
Let the distance between two closest special vertices on B(G,F2) be δ. By our assump-

tion on F2, we know that δ < ε. Let D(z, δ) be the closed ball centered at z with radius
δ. We have the following observation:

Claim: the small neighbor D(z, δ)∩A1 will determine the reduction of the maximal
split torus T1 over the residue field.

Now we show this claim. Recall G = PGLn. Let V be a n-dimensional F2-vector space
so that the building B(G,F2) can be identified with equivalent class of norms on V (or
the dual vector space V ∗). Because z is a special vertex, we can pick up a representative
norm inside its equivalence and suppose it corresponds to a lattice LC. The apartment
A1 together with z can determine a decomposition

LC =
⊕
i

OF2ei

(pick up an integral adapted basis). For each point in the Bruhat-Tits building, we
always rescale the norm so that |en| = 1, then we can pick up a representative inside the
equivalent class. Then intersection of the closed ball D(z, δ) with A1 has 1 + 2(n − 1)
special vertices. Besides z itself, there are 2(n−1) special vertices inside this intersection.
Under our convention, we look at the lattices corresponding to them, then there are n−1
special vertices corresponding to lattices Li ⊂ LC with

Li =
⊕
j 6=i
〈ej〉

⊕
〈πOF2

ei〉,

here we consider the integral module and i runs over positive integer smaller than n, and

other n− 1 special vertices corresponds to lattices L̃i ⊃ LC with

L̃i =
⊕
j 6=i
〈ej〉

⊕
〈 1

πOF2

ei〉.
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Let F̃2 denote the residue field and LC denote the reduction of LC, for the first kind

of special vertices. Putting together, we get the following F̃2-linear map

ψ : LC −→
⊕
i

LC/Li.

Its kernel is exactly the line generated by en. For the second kind of special vertices, for
each i, consider the following map

ψi : LC −→ LC/(πOF2
L̃i),

its kernel is the line generated by ei.
In summary, the 2(n − 1) closest special vertices around z can determine the basis

{e1, ..., en} for LC over the residue field, thus determine the reduction of the maximal
split torus T1. So our claim is true.

Then since D(z, δ) ∩A2 = D(z, δ) ∩A1, we get T1 = T2 = T . In particular, this shows
that over the residue field, they define the same semistable locus:

X(T1,L)s = X(T2,L)s.

Therefore the reduction x will lie in the semistable locus, then x is an integral point for
X(T2,L)s. We finish the first step.

For a general point x, suppose rA2(x) = z2 6= z. The space A1 ∪ A2 is Hausdorff, thus
there exists a neighborhood U2 for z2 and a neighborhood U for z such that U2 ∩ U = ∅.
Shrink U to make it being contained in A1 ∩ A2. Because both retraction maps rA1 and
rA2 are continuous, there exists a neighborhood U3 for x such that rA1(U3) ⊂ U and
rA2(U3) ⊂ U2. Because p-adic points are dense, there exists a point x3 ∈ U3 that comes
from a p-adic field. Then rA1(x3) is an interior point of A1 ∩ A2, and the first step tells
us that

rA2(x3) = rA1(x3),

which is a contradiction. Therefore rA2(x) = rA1(x). We are done.
�

Remark 5.8. (1) In the above proof, the first step indeed works for any field with
discrete valuation. If the valuation is non-discrete, we can not talk about the clos-
est pair of special vertices inside the Bruhat-Tits building. They can be arbitrarily
closed to each other.

(2) During the proof of the first step, if we suppose A2 = g(A1) with g also stabilizes
z, then g is integral and its reduction g lies in the normalizer of the maximal split
torus T . This result about image of such reduction is optimal. Any element in
this normalizer has an integral lift g inside the normalizer of the integral torus,
then such g stables z and A1, thus z is obviously the interior point of the intersec-
tion. On the other hand, this also shows the difficulty of proving compatibility for
different apartment retraction maps. If z lies in the boundary of A1 ∩A2, then we
lose control of the reduction g and it may not stabilize the semistable locus over
the residue field.

For any point z in the Bruhat-Tits building B(G,F ), consider a subset (“fiber over z”)
Yz of XBerk:

Yz =
⋂
z∈A

r−1
A (z),

here A runs over all apartments containing z.

Corollary 5.9. The intersection
⋂
z∈A r

−1
A (z) is a finite intersection.

Proof. Indeed, we first define a subset Z∗ (the star set of {z}) of simplices of the simplicial
complex B(G,F ),

Z∗ = {4| 4 ∩{z} 6= φ}.
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Because B(G,F ) is locally compact, this is a finite set. (In practice we can also similarly
define the star set for any compact subset of B(G,F ). Such a notion also appeared in
other works on Bruhat-Tits buildings, like [39, 40, 12].) Any apartment A containing z
will also contain some simplex from Z∗ and thus determine a subset

SA ⊂ Z∗.
Then such subset SA has only finite possibilities. Any two apartment A and B corre-
sponding to the same subset S1 will share a common open subset (only relies on S1) U1

containing z, thus U1 is contained in the interior of A ∩ B. In particular, for any such
subset Si, pick up a representative apartment Ai, then by Lemma 5.7, the intersection⋂
z∈A r

−1
A (z) is just the finite intersection⋂

i

r−1
Ai

(z).

�

We have the following result:

Proposition 5.10. (1) For each z ∈ B(G,F ), Yz is a finite union of affinoid sub-
spaces of XBerk.

(2) Yz ⊂ Xs.
(3) Xs =

⋃
Yz.

Proof. The first statement follows from Corollary 5.9 that Yz =
⋂
z∈A r

−1
A (z) is a finite

intersection, and each r−1
A (z) is a finite union of affinoids of XBerk by constructions in

subsection 5.2.
The assertions (2) and (3) follow from [49] Corollary 3.10, Theorem 3.11 and Proposi-

tion 3.18. �

By Lemma 5.7, for z1 6= z2 in an apartment AT , we have r−1
AT

(z1) ∩ r−1
AT

(z2) = ∅.
Therefore in Proposition 5.10 (2) we actually get a disjoint union

Xs =
∐

z∈B(G,F )

Yz.

Thanks to this decomposition, the retraction map exists obviously now. We just send
points in Yz to the point z ∈ B(G,F ) and get the retraction map

r : Xs −→ B(G,F ).

Then Yz is exactly the fiber r−1(z). Let x ∈ Xs with r(x) = z, i.e. x ∈ Yz, then for
any apartment A containing z, we have r(x) = rA(x). Because of the G(F )-equivariant
property of the apartment retraction map, this retraction map is also G(F )-equivariant.
And it is in fact also continuous.

Theorem 5.11. The retraction map r : Xs −→ B(G,F ) is continuous.

Proof. For any x ∈ Xs, suppose r(x) = z ∈ B(G,F ), then x ∈ Yz.
Consider the star set Z∗ of {z} again, and suppose we have chosen the representatives

of apartments Ai corresponding to subsets Si of Z∗. Then for each Si, there exists a set
Ui containing z such that for any apartment A containing z, if the corresponding subset
is Si, then A contains Ui and Ui is open in A.

For any neighborhood U of z, shrink U if necessary so that U ∩ Ai is contained in Ui
for any i. Now for any i, consider the apartment retraction map

rAi : X(Ti,L)s,Berk −→ Ai.

Since this map is continuous by Proposition 5.3 and Xs ⊂ X(Ti,L)s,Berk with rAi(x) = z,
there exists a neighborhood for x inside Xs such that rAi will map this neighborhood into
U ∩Ai.
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Let Ũ denote the intersection of these neighborhoods of x. For any point y ∈ Ũ ,
suppose r(y) = w. Then there exists an apartment A containing w and z. To see this,
just notice that z (resp. w) is contained in a simplex ∆1 (resp. ∆2), and there exists an
apartment passing through ∆1 and ∆2.

Suppose this apartment A corresponds to the subset S1 of Z∗. Then U1 is contained

in the interior of A ∩A1. Because rA1(Ũ) ⊂ U ∩A1 ⊂ U1, the point rA1(y) is an interior
point of A ∩A1, therefore by Lemma 5.7 we have

rA(y) = rA1(y).

On the other hand, we have w = r(y) = rA(y). Thus w = rA1(y) ∈ U ∩ A1 ⊂ U .

Therefore, we have shown that r(Ũ) ⊂ U . This theorem holds.
�

Remark 5.12. In [29], a formal integral model over OF of Xs was constructed, based on
a gluing procedure which is related to simplicial structure of B(G,F ). We will not need
this integral model, as in general it says nothing about Xb0.

Next we justify the name “retraction”. Recall that by Theorem 3.5 we have the
Berkovich map (which is an embedding in this case)

θ : B(G,F ) ↪→ Xb0

and the inclusion Xb0 ⊂ Xs. We still denote the restriction of r to Xb0 by r : Xb0 →
B(G,F ).

Theorem 5.13. The composition of the Berkovich map θ : B(G,F ) ↪→ Xb0 and the
retraction map r : Xb0 → B(G,F ) is an identity for the Bruhat-Tits building B(G,F ).

Proof. For any point z ∈ B(G,F ), suppose x = θ(z) ∈ Xb0 . We need to show that

x ∈ Yz = r−1(z).

Take an apartment A containing z and pick up a special vertex o for A. Let the test
field K be large enough so that v(K∗) = R and θ(o) ∈ Xb0(K). Using this special vertex
o as the origin, we get an integral model for G etc and we have the continuous map
rA : X(T,L)s,Berk → A by Proposition 5.3. We first show that

rA(θ(o)) = o.

Then, we only need to show that θ(o) ∈ X(T,L)s(OK). Through Proposition 2.2 comput-
ing the Berkovich map, the point θ(o) is the standard Gauss point for the open Bruhat

cell Ω(T, P ). And its reduction θ(o) corresponds to the K̃-point of Ω(T, P ) that is an
injection of the polynomial ring. So it is the generic point of the open Bruhat cell over
Fq, then it is also the generic point of the flag variety X over Fq.

On the other hand, recall that the stable locus X(T,L)s is a union of non-vanishing

locus Xfi . Therefore θ(o) lies in the integral stable locus if and only if θ(o) lies in the
stable locus over the residue field. But over such a field, the stable locus is cutting off a
family of proper Zariski closed subset. In particular, the generic point of the whole flag
variety will certainly lie in this stable locus. Therefore rA(θ(o)) = o.

Note that both maps θ|A : A → X(T,L)s(K) and rA : X(T,L)s(K) → A are T (K)-
equivariant (although T (K)- can not act on the whole Bruhat-Tits building). Because
v(K∗) = R, T (K) acts on A transitively, thus the first map is well defined, and each
point in the apartment will be sent to a K-point. Combining with rA(θ(o)) = o, the
T (K)-equivariant property forces the map rA ◦ θ to be an identity. In particular, we have
rA(x) = z. Since A is an arbitrary apartment containing z, we get r(x) = z.

�

Remark 5.14. There is a significant difference between the Berkovich map θ and the
retraction map r. By [36], we indeed can construct the Berkovich map θ for any non-
archimedean field k satisfying the functoriality assumption. In particular, if G is split,
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then any non-archimedean field k works. But for the retraction map r, we need k to be
locally compact. This fact guarantees that the Bruhat-Tits building is locally compact,
which plays an essential role in the construction of r as above.

Indeed, the basic example of Drinfeld space (see the next subsection) already shows this
difference. We can always use the interpretation of (semi)norms to define a map from
the Drinfeld space to equivalent classes of norms on the dual vector space V ∗. But for
general k, the later space is not the Bruhat-Tits building of PGLn. In terms of norms,
the Bruhat-Tits building corresponds to those norms on V ∗ with an adapted basis (thus
inside an apartment), but for general k, there exist norms on V ∗ without such a basis.

5.4. The case d = 1. Our retraction map is a generalization of the Drinfeld retraction
map

rDr : Ωn −→ B(G,F )

for Drinfeld space [14] in the case d = 1, where one can give a very simple definition by
restriction of norms. In this case, we have X = Pn−1 and

Ωn = Xb0 = Xs = Xss,

which is the complement of the union of all F -rational hyperplanes in Pn−1. The embed-
ding θ : B(G,F ) ↪→ Ωn was previous constructed by Berkovich in [1] (see also [3])

Proposition 5.15. For d = 1, the retraction map r : Ωn −→ B(G,F ) coincides with the
Drinfeld retraction rDr in terms of norms.

Proof. Let V denote the n-dimension F -vector space with identification G = PGL(V ) and
further identify the flag variety X = F`(G,µ) with the projective space P(V ). Let V ∗

denote the dual space. The Drinfeld half-space Ωn is the semistable locus of XBerk cutting
out off those lines lying in an F -rational hyperplane. And the Drinfeld retraction rDr

is a G(F )-equivariant continuous map to equivalent classes of norms on V ∗. Here G(F )
acts on V ∗ through the dual action and then acts on norms on it. We further identify the
Bruhat-Tits building B(G,F ) with the space of equivalent classes of norms on V ∗.

Let x ∈ Ωn and take an apartment A containing the point r(x) and rDr(x). Choose a
special vertex o inside this apartment and take it as the origin. Suppose the apartment
A corresponds to the maximal split torus T . We first show the compatibility over o, i.e.
rDr(r−1(o)) = o.

First, we can also identify B(G,F ) with the space of equivalent classes of norms on V .
Then the origin o together with the apartment A determine an OF -lattice (unique up to
scalar) LC equipped with an integral decomposition

LC =
⊕
i

〈ei〉.

And through the identification with norms on V ∗, the dual basis {e∗1, .., e∗n} for V ∗ is an
integral adapted basis for the apartment A and o is the standard Gauss norm, i.e. each
vector e∗i is norm one. The basis {e1, ..., en} for V gives a (homogeneous) coordinate for
P(V ) and use o to upgrade everything into integral setting. For any point y ∈ r−1(o), there
exists a non-archimedean algebraic closed field K containing F with y being a K-point.
Because y ∈ r−1(o), we can pick up a representative coordinate

y = [y1 : ... : yn]

with each yi ∈ OK and the reduction y lies in the Drinfeld half-space over the residue field
Fq. Then each yi is nonzero so we have |yi| = 1. Indeed, each point inside X(T,L)s(OK)
will already have such norm one result. For each nonzero vector v =

∑
aie
∗
i with ai ∈ F ,

its norm respect to the Drinfeld retract is

rDr(y)(v) = |
∑
i

aiyi|.
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Then it is sufficient to show that this is the Gauss norm with respect to the basis {e∗i }.
In other words, we need to check

|
∑
i

aiyi| = max{|ai|}.

For simplicity, suppose a1,...,ak reach the maximum norm max{|ai|}, we only need to
show |

∑
ajyj | = max{|aj |}, here j runs from 1 to k. Multiply a suitable power of π (the

fixed uniformizer of OF ) so that each aj lies in O∗F , then consider the reduction:∑
j

ajyj =
∑
j

(aj)yj .

Since the reduction y lies in the Drinfeld half-space, it can not lie in any Fq-rational
hyperplane, this reduction of the sum is nonzero. Thus

∑
j ajyj has norm one, so rDr(y) =

o.
Now we return to the point x. Enlarge the test field K if necessary so that x is also a

K-point.
We proceed as before, and suppose x is (x1, ..., xn−1) = [x1 : ... : xn−1 : 1], here

for simplicity we use the inhomogeneous coordinate. This is possible because each xi is
nonzero indeed. Now we make the convention that e∗n is always norm 1. Then we can
pick up a unique representative norm for each point in the apartment A. Consider the
Drinfeld retract rDr(x), it sends the vector

∑
aie
∗
i to |

∑
i<n aixi + 1|. Note that our

conventions are compatible, the vector e∗n is surely norm 1 under this norm. Because {e∗i }
is an adapted basis, so we know that rDr(x) is determined by the following n− 1-tuple:

(rDr(x)(e1), ..., rDr(x)(en−1)) = (|x1|, ..., |xn−1|).
On the other hand, the retraction map for x can also be computed by the apartment

retraction map rA,o. Now suppose x = t.y0 with y0 ∈ X(T,L)s(OK), and suppose t =
(t1, ..., tn−1, 1) and y0 = [y1 : ..yn−1 : 1]. By previous observation, each yi is norm 1
element. Then we have

|xi| = |tiyi| = |ti|.
Therefore the apartment retraction map rA,o sends x to the norm on V ∗ corresponding

to the n− 1-tuple (|t1|, ..., |tn−1|), which means exactly rDr(x) = r(x). We are done.
�

Remark 5.16. In the Drinfeld case, Werner constructed an extension of the retraction
map r : Ωn → B(G,F ) to a continuous map r : Pn−1,Berk → Bt(G,F ), for which the

embedding Bt(G,F ) ↪→ Pn−1,Berk is a section, cf. [50] section 6. In the setting of Theorem
5.13, it may be possible to extend the retraction map r to a continuous map r : XBerk →
Bt(G,F ) for which the the embedding Bt(G,F ) ↪→ XBerk is a section. Since we do not
need it in the following, we will not do this here.

5.5. p-adic period domains and tropical geometry. We conclude this section by
making some analogy with tropical geometry, which offers a possible new aspect on the
p-adic period domains Xb0 . Intuitively, it is better to think about the retraction map r
in a reverse way. Here we sketch how to imagine its fiber geometrically. In spirit this is
close to the method in [49].

For a special vertex z ∈ B(G,F ) (otherwise we need to use base change to make it
become special vertex), we consider its fiber

r−1(z) = Yz ⊂ Xs

under the retraction map r : Xs → B(G,F ). Such z will give us an integral model Gz for
G and enable us to upgrade everything into integral level. In particular, we can consider
the reduction map (the flag scheme is proper). For any test field K, through the reduction
we get a map

X(K) = F`(G,µ)(K) = F`(Gz, µz)(OK) −→ F`(G,µ)(K̃),
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then r−1(z)(K) is in fact the lift of semistable (= stable) locus over the residue fields.
This fiber is closed in the whole semistable locus, it is a finite union of affinoids with the
same dimension as the flag variety.

Such fiber-wise thoughts produce some interesting observations. For any apartment
A, let T denote the resulting maximal split torus over F . Let us restrict to the slice
r−1(A) ⊂ Xs (inverse image over A):

r−1(A) −→ A ∼= Rn−1.

An amazing thing is that both r−1(A) and A have an extra T (K) action. The latter one
is through the translation, and may think it acts through the identification of A with
the base changed apartment inside B(G,K). But the huge group T (K) can also acts on
r−1(A). Of course T (K) can not act on the semistable locus or the Bruhat-Tits building.
But inside this slice r−1(A), the T (K) action can even identify different fiber (keeping
analytic structure). Moreover, if the field K satisfies v(K∗) = R, then its action on the
apartment is transitive. Therefore each fiber is isomorphic to each other. The above map
looks like a “fiberation”. The Bruhat-Tits building is a union of apartments, so the whole
retraction map also looks like a “fiberation”.

In a certain sense, this picture has some analogy with tropical geometry. Consider
the n-dimensional torus Gn

m (as a Berkovich space), through the valuation, we get a
continuous map

r : Gn
m −→ Rn,

which has a skeleton section

s : Rn −→ Gn
m

sending a vector to the corresponding generalized Gauss point. More generally, for other
Berkovich space Y , we may consider its map to Gn

m, then composite with r to get a
subset Im(Y ) inside Rn and this set is called tropical image. These ideas (tropical image,
skeleton section etc) are widely used in tropical geometry and other related fields. For
example see [16], [22], [31], [52] and so on. Although our setting is a little different from
the usual cases in tropical geometry, there people usually use one formal (or integral)
model, while the Bruhat-Tits building will provide “variation” of integral models for G.

In the case of Drinfeld spaces, two pictures are perfectly compatible. For example, take
a maximal split torus T , so we can take homogenous coordinate for the projective space,
then this induces an open embedding

Ωn ↪→ Gn−1
m

through the inhomogenous coordinate (we have n-choices). Then the tropical map from
Ωn to Rn−1 is exactly the apartment retraction map rA. And the skeleton section map
is the Berkovich map. Moreover, in [51], Werner introduced a tropical viewpoint on the
Bruhat-Tits building and its compactification. Combining these ideas together, it may be
possible to use tropical geometry (combined with the Berkovich map and the retraction
map) to study the semistable locus Xss = Xs.

Finally, we consider Xb0 . An important question in p-adic Hodge theory is to under-
stand the difference Xss \Xb0 . This object is mysterious, for example, it does not have
any classical points. The previous discussion about the semistable locus is harder for Xb0 .
For example, the intersection

Xb0 ∩ r−1(z)

(z is a special vertex) is mysterious, it is not a finite union of affinoids. The intersection
broke the affinoid property, then the construction of formal model in [29] does not work
for Xb0 . Moreover, since Xb0 shares the same classical points with Xss, its reduction
through z to mod p points will be all semistable points. On the other hand, we can look
at the subspace r−1(∆) ⊂ Xss over any maximal dimensional simplex. It is also a finite
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union of affinoids. Even better, it is F -affinoids. The simplicial decomposition

Xss =
⋃
4
r−1(4)

induces a similar decomposition for Xb0 : we have

Xb0 =
⋃
4

(
Xb0 ∩ r−1(4)

)
=

⋃
g∈G(F )

g(Xb0 ∩40),

here we take a standard simplex 40. Therefore it reduces the problem of studying Xb0

to study a slice
Xb0 ∩ r−1(40).

The fiber r−1(40) is a finite union of F -affinoids and is closely related with period domain
(semistable locus) over the residue field Fq, which may be simpler.

6. Translations to the de Rham side

In this section, we briefly explain how to translate the previous constructions and
results to the de Rham setting as in the beginning of the introduction, i.e. the setting as
in [35] Chapter one. Roughly speaking, we get similar results for the Bruhat-Tits building
B(Gb, F ) and the admissible locus F`(G,µ−1, b)adm with b = b0 ∈ B(G,µ−1) basic. Here
Gb is the reductive group over F defined by the σ-centralizers of b, cf. [34] 1.11 and [27]
3.3 (where it is denoted by Jb) and [20] III.4.1. As we assume b is basic, Gb is an inner
form of G over F .

Starting with a basic local Shimura datum (G, {µ−1}, b), we get a tower of rigid analytic
spaces (

M(G,µ−1, b)K

)
K

over Ĕ, where K runs over the set of open compact subgroups of G(F ) and E is the reflex
field E = E(G, {µ−1}) as before. These rigid analytic spaces M(G,µ−1, b)K are called
the associated local Shimura varieties. Let

F`(G,µ−1, b)adm ⊂ F`(G,µ−1)ad
Ĕ

be the admissible locus as defined in [44], which is the open Newton stratum for the
Newton stratification on F`(G,µ−1)ad

Ĕ
as in [10, 11]. Then there are étale morphisms

(the de Rham period morphisms) of adic spaces over Ĕ

πdR,K :M(G,µ−1, b)K −→ F`(G,µ−1, b)adm,

which are surjective. Consider the local Shimura variety at infinite level

M(G,µ−1, b)∞ = lim←−
K

M(G,µ−1, b)3K ,

defined as the inverse limit of the associated diamondsM(G,µ−1, b)3K ofM(G,µ−1, b)K .
The diamonds M(G,µ−1, b)3K and M(G,µ−1, b)∞ are moduli spaces of certains p-adic
G-shtukas, cf. [44] Lectures 23 and 24. There is the Hodge-Tate period morphism (cf.
[43, 10, 11])

πHT :M(G,µ−1, b)∞ −→ F`(G,µ)b,3
Ĕ
,

where
F`(G,µ)b ⊂ F`(G,µ)ad

is the open Newton stratum of the adic space F`(G,µ)ad over E studied in subsection
3.2.

Consider also the basic local Shimura datum (Gb, {µ}, b−1), which is the dual local
local Shimura datum of (G, {µ−1}, b) in the sense of [44] Corollary 23.3.2. Then one has
a natural G(F )×Gb(F )-equivariant isomorphism

M(G,µ−1, b)∞ ∼=M(Gb, µ, b
−1)∞
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of locally spatial diamonds over Spd Ĕ = (Spa Ĕ)3, cf. [44] Corollary 23.3.2. Moreover,

we have natural isomorphisms of adic spaces over Ĕ (cf. [45] section 4):

F`(G,µ−1, b)adm ∼= F`(Gb, µ−1)b
−1

Ĕ
, F`(G,µ)b

Ĕ
∼= F`(Gb, µ, b−1)adm.

These fit into a twin towers diagram using the de Rham and Hodge-Tate period morphisms
that allow us to collapse each tower on its base (cf. [17, 19, 43, 44, 11, 45])

M(G,µ−1, b)∞ M(Gb, µ, b
−1)∞

F`(G,µ−1, b)adm,3 F`(Gb, µ, b−1)adm,3

πdR

∼

πHTG(F ) πdRπHT Gb(F )

Now we can translate our previous constructions and results as follows:

• (Theorem 3.5) The natural Berkovich map similarly constructed as before by
Rémy-Thuillier-Werner

θ : B(Gb, F ) −→ F`(Gb, µ−1)Berk
Ĕ

= F`(G,µ−1)Berk
Ĕ

factors through the admissible locus F`(G,µ−1, b)Berk,adm, i.e.

θ(B(Gb, F )) ⊂ F`(G,µ−1, b)Berk,adm.

In terms of moduli, this means that from a point of the building B(Gb, F ), one
can construct a p-adic G-shtuka (up to isogeny) in the sense of [44]. Note that

here the base field Ĕ still satisfies the functoriality assumption of [36] 1.3.4.

• (Theorem 4.6) Let ḃ be a representative of b and s an integer such that sνḃ factors
through Gm and Es = E · Fs with Fs|F the unramified extension of degree s (see
[35] pages 8-9). Then the space F`(G,µ−1, b)adm is defined over Es (this is an
exercise by the construction of the admissible locus) and we have Gb,Fs

∼= GFs (cf.
[35] Corollary 1.14). Consider the Berkovich map

θ : B(Gb, F ) −→ F`(Gb, µ−1)Berk
Es = F`(G,µ−1)Berk

Es .

By the above, we have

θ(B(Gb, F )) ⊂ F`(G,µ−1, b)Berk,adm.

Consider the closure

θ(B(Gb, F ))

of θ(B(Gb, F )) inside F`(G,µ−1)Berk
Es

. Then there exists a natural description of

the boundary strata of θ(B(Gb, F )) in terms of B(M,F ) with M the F -rational
proper Levi subgroups of Gb. Moreover, each boundary stratum Bτ (M,F ) is
contained in a uniquely determined non basic Newton stratum.
• (Section 5) Consider the basic local Shimura datum

(D×, {µ}, b−1),

where D is a division algebra over F of invariant d
n with (d, n) = 1, and µ =

(1d, 0n−d). ThenGb−1 = GLn and the dual local Shimura datum is (GLn, {µ−1}, b).
Moreover,

F`(D×, µ, b−1)adm = F`(GLn, µ)b

is the p-adic period domain studied in section 5 after base change to Ĕ. We have

θ(B(GLn, F )) ⊂ F`(D×, µ, b−1)Berk,adm.

Moreover, we have a continuous retraction map

r : F`(D×, µ, b−1)Berk,adm −→ B(GLn, F ),
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generalizing the case of Drinfeld for d = 1. Here, one can first construct the
associated formal Rapoport-Zink space

M̂,

which is a moduli space of p-divisible groups with certain OD-action together with
a rigidification (cf. [35]), then one can construct the local Shimura varieties MK

as the étale coverings of the rigid analytic generic fiber of M̂. In this case, the
associated admissible locus F`(D×, µ, b−1)adm, together with its étale coverings
MK and the isomorphism between the associated twin towers, were studied in
[18]. In particular, one sees that the whole picture is quite similar to the Drinfeld
case, although the retraction map r : F`(D×, µ, b−1)Berk,adm −→ B(GLn, F ) is
more complicated.

Finally, we discuss some open problems. Back to the Hodge-Tate setting as in section
3. Recall that we have the closed subspace Bt(G,F ) ⊂ F`(G,µ)Berk,b defined as the image
of the building B(G,F ) under the Berkovich map. Without loss of generality, assume that
{µ} is non-degenerate, so that B(G,F ) ∼= Bt(G,F ), which we simply identify. Let

B(G,F )ad ⊂ F`(G,µ)ad,b

be the inverse image of B(G,F ) = Bt(G,F ) under the quotient map18 F`(G,µ)ad,b →
F`(G,µ)Berk,b. This is a generalizing closed subset of |F`(G,µ)ad,b|, thus it defines a
closed locally spatial diamond

B(G,F )3 ⊂ F`(G,µ)ad,b,3

such that

|B(G,F )3| = B(G,F )ad.

The diamond B(G,F )3 has a well defined étale site, cf. [42]. This arises a natural
question to study its étale cohomology. More precisely, let ` 6= p be another prime, and
Λ ∈ {F`,Z`,Q`}, the étale cohomology with compact support ([42])

H∗c (B(G,F )3
E
,Λ)

form natural Λ-representations of Gal(E/E) × G(F ). The question is what are these
representations? The classical compact support cohomology of the topological build-
ing H∗c (B(G,F ),C) had been computed explicitly by Borel-Serre in [5]. There only
Hd
c (B(G,F ),C) 6= 0 with d = dim B(G,F ), in which case it is the Steinberg representation

of G(F ). Here the situation is much more complicated, as the étale cohomology involves
the Galois cohomology of large (transcendent degree) non-archimedean fields H(θ(x)) for
x ∈ B(G,F ).

Similarly, one may study the derived category of G(F )-equivariant étale sheaves ([42])

Det(B(G,F )3,Λ).

In the topological setting, there is the work of Schneider-Stuhler [39], in which one trans-
forms smooth representations of G(F ) to sheaves (or coefficient systems) on the building
B(G,F ) and can deduce several interesting results on representations. In [40], Schneider
further studied Verdier duality of constructible sheaves on B(G,F ). Inspired by the recent
work of Fargues-Scholze [20], it seems reasonable to study certain class of étale sheaves
and duality on B(G,F )3, and deduce representation theoretic consequences. We leave
these considerations to future works.

18Note here we can replace the p-adic period domain by the whole flag variety.
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existence d’une donnée radicielle valuée. Publications Mathématiques de l’IHÉS, 60:5–184, 1984.
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Birkhäuser, Basel 2008.
[20] L. Fargues, P. Scholze, Geometrization of the local Langlands correspondence, arXiv: 2102.13459.

[21] Roland Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics,
Springer 1996.

[22] Walter Gubler, Joseph Rabinoff, and Annette Werner. Tropical skeletons. In Annales de l’Institut
Fourier, volume 67, pages 1905–1961, 2017.

[23] Urs Hartl. Period spaces for Hodge structures in equal characteristic. Annals of Mathematics, pages
1241–1358, 2011.

[24] Urs Hartl. On a conjecture of Rapoport and Zink. Inventiones Mathematicae, 193(3):627–696, 2013.
[25] K. S. Kedlaya, R. Liu, Relative p-adic Hodge theory: Foundations, Astérisque 371, Soc. Math. France,
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