F-ZIPS WITH ADDITIONAL STRUCTURE ON SPLITTING MODELS
OF SHIMURA VARIETIES

XU SHEN AND YUQIANG ZHENG

ABSTRACT. We construct universal G-zips on good reductions of the Pappas-Rapoport
splitting models for PEL-type Shimura varieties. We study the induced Ekedahl-Oort
stratification, which sheds new light on the mod p geometry of splitting models. Building
on the work of Lan on arithmetic compactifications of splitting models, we further extend
these constructions to smooth toroidal compactifications. Combined with the work of
Goldring-Koskivirta on group theoretical Hasse invariants, we get an application to Galois
representations associated to torsion classes in coherent cohomology in the ramified setting.
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1. INTRODUCTION

This paper deals with the mod p geometry and arithmetic of some PEL-type Shimura va-
rieties for ramified groups. More precisely, we study the reduction modulo p of the splitting
models constructed by Pappas-Rapoport in . For smooth splitting models, we explore
the mod p Hodge structures on their special fibers by constructing universal F-zips with
additional structure of fixed type (given by the Hodge cocharacter). Then we deduce some
consequences on the geometry and coherent cohomology.

PEL moduli spaces are central objects to study in arithmetic geometry and Langlands
program. If the associated reductive group is unramified at p, Kottwitz constructed smooth
integral PEL moduli spaces in [28]. In the general setting, Rapoport and Zink in [53]
introduced similar and generalized integral PEL moduli spaces /"¢, These are called
naive integral models, as Pappas proved in that in some ramified unitary case, the
moduli scheme 7™ fails to be flat over @, the ring of integers of the local reflex field E.
To study integral models of PEL-type Shimura varieties in ramified case, in Pappas and
Rapoport introduced the so-called splitting integral models &7 spl, Roughly speaking, in the
setting of , the associated p-adic reductive group G has the form as a Weil restriction
and the ramification mainly comes from restriction of scalars. After fixing the data, the
model «7*P! is proposed as a relative moduli space over the naive integral model .o7"*ve
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constructed in [53]. For any scheme S over O, &/"V(S) classifies abelian schemes with
PEL structure A = (A, A\, ¢, ) over S. Fix a sufficiently large field extension F'|E. For a
scheme S over O, /*P1(S) classifies (A,.%,) where A € &7™*¥°(S) and .Z, is a filtration on
the cotangent bundle w, /g, satisfying certain conditions related to the ramification data.

Pappas and Rapoport proved that the model & Pl over Op admits nice properties. In
particular, there is a scheme M®P! (called the splitting local model) over Op, so that &7P!
and MPP! sit into a local model diagram. Moreover, by construction M®P! can be realized as
a twisted product of unramified local models. There is a natural morphism

Mspl N Mnaive

Pappas and Rapoport defined the canonical model &7 as the scheme theoretic image of this
morphism. Then & is a flat integral model over Op. In case that the group G is tamely
ramified and p 1 |71 (Gger)|, then up to Hasse principle the scheme o7 should coincide with
the Kisin-Pappas integral models [26]. We refer to [47] for more information and details on
the general theory of splitting models, and to [44,45/49] for some recent progress on the
canonical models.

The most well known splitting models come from the examples of Hilbert modular vari-
eties. In this case, & = &/ ¥¢ and the special fiber of &7 was studied previously by Deligne
and Pappas in [11]. Let L be a totally real field of degree g > 1 and p a prime number. Let
k|, be a large enough finite field and MPP = o7 @k the Deligne-Pappas moduli space over
K, which parametrizes abelian schemes with real multiplication given by Op, together with
polarization and level structure. If p is unramified in L, this is a smooth scheme (a special
case of the Kottwitz models |28]). Here we are mainly concerned with the case p ramifies in
L. Then MPF is only a normal scheme which is singular (cf. [11]). By contrast, the special
fiber of «*P' over r, in this case denoted by MFR, is smooth and the natural morphism

MPR N MDP

is a resolution of singularities. In [54] Reduzzi and Xiao constructed g partial Hasse invari-
ants on MPR by carefully exploring the structure of Pappas-Rapoport filtrations. On the
other hand, in the ramified case the number of partial Hasse invariants on MPY is strictly
less than ¢ (see the introduction of [54] and the references therein). Reduzzi and Xiao ap-
plied these g partial Hasse invariants on MFPR to construct Galois pseudo-representations
attached to torsion Hecke eigenclasses in the coherent cohomology. This shows a big ad-
vantage to work with splitting models. The space MPR and the partial Hasse invariants
on it have been serving as a basic tool in the study of geometry and arithmetic of Hilbert
modular varieties, for example, see the recent works of Sasaki [56] and Diamond-Kassaei |12].

In the more general PEL setting, recently Bijakowski and Hernandez in [4] studied some
aspects of the mod p geometry of splitting models. More precisely, they proved that .o/ spl
with maximal level at p is smooth under some conditions on the PEL datum. Roughly,
these conditions are to ensure that at a p-adic place v;, the group has the form Resp, Q, H;
where H; is unramified over F;, and the level at p is hyperspecial for these H;. In particular,
this excludes the ramified unitary groups (labeled as type (AR) in [4]) as local factors. Bi-
jakowski and Hernandez also proved the p-ordinary locus (defined as the maximal Newton
stratum) is open and dense in the special fiber o/ (S)pl of «7*P!. For this, they introduced a
so-called Hodge stratification and proved that the maximal Hodge stratum (which contains
the p-ordinary locus) is open and dense.
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In this paper, we essentially work in the same setting as that in [4]. Our first key obser-
vation is that one can modify the local model diagram between «7*?' and M*P! constructed
in [47] to a local model diagram between /P! and [T Mloc(gfyj,,ué’ ), a product of un-
ramified local models related to the PEL datum, cf. Proposition This is not quite
surprising, as we already mentioned above that the splitting local model M*P! = MPY(G, 1)
was constructed in [47] as a twisted product of unramified local models MIOC(% o uli,j). Let
G be the reductive group defined by the PEL datum, which we assume to be connected
(thus we exclude the type D case), and {u} the attached geometric conjugacy class of Hodge
cocharacters of G. In the following we often fix a suitable choice of i in this conjugacy class.
Recall that E|Q, is the field of definition of {u} and F|E is a large enough extension (so
that G splits over F'). The group scheme related to the modified local model diagram is
GsPL a reductive group over Op, which is the reductive model of the split group Gp. On
the other hand, let G be the parahoric model of G' over Z, associated to the integral PEL
datum. The local model diagram of [47] corresponds to a morphism of algebraic stacks

AP — MPUG, 1) /Go),

which is more suited to study the canonical model < and its related canonical local model.
While the local model diagram here corresponds to a morphism

%spl N [MIOC(gspI’ M)/gspIL

where M'°¢(G*P!, 1) = L. Mloc(gf’j,uaj). If there is an ¢ such that the finite extension
F;|Qy is ramified, then in general

g@p ?é gspl.

From the modified diagram here, we can immediately deduce the smoothness of 27 if the
local factors G; satisfy the same condition as that in [4] (compare [4] Theorem 2.30 and
Remark 2.31). Under this condition, the parahoric subgroup K, = G(Z,) is in fact very
special in the sense of [69].

In fact, the above observation on the modified local model diagram leads us to go much
further. Recall that the theory of F-zips was introduced and studied by Moonen-Wedhorn
in [41] as a candidate of mod p Hodge structure. This notion has been promoted and
enlarged by Fontaine-Jannsen [15], Drinfeld [13], and Bhatt-Lurie [7]. Here we work with
the generalization of F-zips in another direction: the notion of G-zips for a reductive group
G over a finite field, cf. [51,52]. Back to splitting models of PEL-type Shimura varieties, we
will work with smooth splitting models .o/ Pl from now on (in particular, this excludes the
ramified unitary group case). Let x be the residue field of Op and & ?)pl the special fiber of
/P! over k.

Theorem 1.1 (Theorem [3.13]). (1) There is a natural ggpl-zip of type p over o Bpl,
where ggpl is a reductive group over F), constructed from the PEL datum such that
G = G @0y 1.
(2) The induced map to the moduli stack of g(s]pl—zips of type
C: szfzpl — ggpl—ZipZ
18 smooth and surjective.
Let us first comment on the related reductive groups appearing here. For o 3101, the group

Qspl replaces Gi4', the maximal reductive quotient of the special fiber Gy of G. The group
ggdt is mainly related to the geometry of &7, the special fiber of the canonical model 7.



4 XU SHEN AND YUQIANG ZHENG

The difference between ggpl and gg;dt reflects the ramification data. Indeed, at a p-adic place
v;, the local factors of the two groups admit the following description:

spl __ € rdt __ .
g(],i - Resfﬁ| Fp H;" gO,i - Res:‘iil Fp HZ

7
where k; is the residue field of Fj, e; is the ramification index of the extension F;|Q,, and
H; is a reductive group over x;. Note that the Hodge cocharacter u of G over F' naturally
admits a reduction to a cocharacter of g3p1 over K.

Now we briefly explain the construction of the universal G;" 1—zip of type p. In the unram-
ified PEL case, we have &7y = &5V = of f)pl and the construction is direct, cf. [41,63] and
[68]. However, in the ramified case, the construction becomes rather indirect and compli-
cated. Since a general PEL datum is involved, we illustrate the ideas by working with the
example of Hilbert-Siegel case. For the general case, see sections 2| and |3l Then the PEL
datum (B, *,V,(-,-),Op,A) is of type C and B = L is a totally real field which we assume
[L: Q] > 1. We further assume that there is only one finite place v of L over p and the
local field F := L, is ramified over Qp, i.e. the ramification index e = [F} : F}"] > 1, where
F™ is the maximal unramified sub extension of F over Q,. Let f = [F1" : Q,] = [k1 : Fp],
where £ is the residue field of Fi, so that [F} : Qp) = ef. Let K C G (A}}) be a fixed suf-
ficiently small open compact subgroup. Recall F|F} is a fixed large enough extension with
residue field x. For any s-scheme S, let A = (A4, ), 1, ) be an S-point of &/"¥V¢ = Mf;ii"c.
Then we have an exact sequence of locally free sheaves of Og-modules

0— wa/s — H&R(A/S) — LieAV/S — 0.

In the unramified case, this exact sequence, together with the Frobenius and Verschiebung
morphisms, defines the F-zip with additional structure of type u over o7 Epl. However, in our
ramified case here, it turns out a posterior that the type of the Hodge filtrations constructed
in this way will vary, which reflects the singularities of & in some sense.

Indeed, we have the Kottwitz-Rapoport stratification on <7 (see later), and on each

stratum by [57] we have a GEd*-zip of certain type (dependent on this stratum). Recall the

natural map &7 [S)pl — /4. We can pullback these g(r)dt-zips to the corresponding preimages
of KR strata in .o (S)pl. But these do not give the correct object that we want. Here, to

construct the ggpl—zip of fixed type p over @*P!, we have to take into account the splitting
structures. It is here that our modified local model diagram (over k)

A~ MG, 1)/ G

plays the key role. Under our smoothness assumption, the underlying topological space of
[MIoc(GPL 11)o/G5PY] has only one point. Then the construction is guided by the construc-
tions in [57] subsections 3.3 and 3.4. On the other hand, we remark that it is very hard to
work with the original local model diagram </ (s)pl — [M*P(G, 11)0/Gx] of [47]. The quotient
stack [M*P!(G, 11)o/Gy] is quite complicated, and in fact it is not known whether the set of
G-orbits on MY (G, 11)g is finite or not in general.

Let us discuss more details on the construction of the ggpl—zip of fixed type u over o (S)pl.
Let (A, #,) be an S-valued point of y*P!. Then by definition A = (A, \, 1, a) € &/™Ve(S),
T = {ﬁ;} is a Pappas-Rapoport filtration of O, ®z, Og-module w,,5. To explain this
term, we write H = HJly(A/S), which is an OFpr ®z, Og-module, hence it has a decompo-

sition
H=Dn;
J
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where H,; is the locally free sub Og-module of H where Opm acts by the fixed embedding
0; : Oppr — Op. For each j, there is a pairing on H; induced from the pairing on H coming
from the polarization A. Similarly, we have a decomposition wy, g = @j wj with w; C H;
for each 1 < j < f. The Pappas-Rapoport filtration is by definition a filtration of locally
direct Og-factors of each w;.

0=F)CF C-CF =wjCH,j

with Op, /(p) ~ k1[T]/(T°) = k1le1] action, such that x; acts on 9} by o : O — &; for
all 1 < <e, 9’}/35;71 is locally free of rank dé- and 51ﬁ} C ﬁ’]lfl.

The Opypr-action on A induces a decomposition A = EBj A;. For each embedding Jé- :
Or, — Op which extends o; : (’)Flur — Op, we set Aé. = A; ®Opl,oj- OF (note that the
lattice Aé is denoted by Eé in [47, Proposition 5.2]) and A! = D, Aé-. Set Aé‘,o = Ag- R0y K
and Af)pl =D, D, Aé‘,o- One can show that there is a standard F-zip structure on A(S)pl,
whose Hodge filtration is given by the cocharacter p over k.

For S = 4™ and (4, %) € #™(S) the universal object, one can associate a module

e f
1 . l —1 grl—1 -1
M=PEPM, with M;=ctF )7

J J
1=1 j=1

Then each Mé is a locally free Og-module, and locally isomorphic to Aé- ®o, Og, cf. [47].
Now the idea is to transfer the Hodge and conjugate filtrations on H to filtrations on each
M= GB]- /\/lé, and to show that the F-zip structure on H induces an F-zip structure on
M. To this end, one can first complete the filtration of w to a full filtration of H, then apply
the Frobenius and Verschiebung morphisms successively to the full filtration, and make use
of the usual relation Ker F' = Im V,Ker V = Im F' to succeed. In fact, we proceed by an
alternative and equivalent approach. For any 1 < j < f, inspired by [54] we construct
explicit linear maps Fjl : ./\/lé-_1 — Mé, V;-l : Mé — ./\/l;_1 for each 2 <[ < e (which are easy
to construct), and o~ !-linear (o-linear) maps Fj1 tMS_ = ./\/ljl-, le : M} — M¢§_; (which
are induced by the Frobenius and Verschiebung, and the definition of le is a little subtle).
Now for each 1 < | < e, M! = @;;1 /\/lé is a locally free Oglei]-module with x; action,
and locally M! ~ Al ®0, Og . For each [, set F! = @j Fjl and V! = @j le. We have the
following linear morphisms:

F? F3 Fe

Mt M? e ME.
V2 v ve

and semi-linear morphisms (F! is o-linear and V! is o~ !-linear)

Fl

Me " ML
Vl

Then (see Lemmas and respectively)
(1) For 2 <1 < e, we have Im F! = Ker V!, Ker F! = Im V'
(2) There is a canonical isomorphism g : M! — M sends Ker V! to Im F'.

Therefore we get an F-zip

(M =P M, C=EPKer F',D = HKer V!, ¢.)
l l l
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over of f)pl. Moreover, there are natural compatible symplectic form and Op-action on M.
Comparing with the standard F-zip structure on AP, we get the Q(S)pl—zip of type p over

o zpl. Roughly, the process of transforming H to M is a way of “semi-simplification”. Dur-

ing this transformation the different types of ggdt-zips become uniform as QSpl—zips, which

reflects some key features of the resolution of singularities .o/ Bpl — /. Note that even in
the Hilbert case, the above construction reveals more complete geometric information than
that in [54]. For more details, see Proposition and subsection

Let k£ = K be an algebraic closure of x. By Theorem we get an induced stratification
ﬂzpl _ H ,Q{Zpl’w
welW

which we call the Ekedahl-Oort (EO) stratification. Here the index set /W is the subset
of the (absolute) Weyl group of QSpl defined by the cocharacter p in the usual way, which
is equipped with the partially order < as that in [51,/52]. By the theorem, each stratum
aof ,ipl’w is non-empty, smooth, and we have the usual closure relation for the EO strata given
by <. In fact, the non-emptiness is more subtle, requiring additional efforts. We prove the
non-emptiness by comparing the minimal EO stratum of </ Zp ! with the minimal EKOR
stratum of &7 (see below) in Proposition and show the minimal EKOR stratum is
non-empty in the Appendix (Proposition by adapting the method of He-Zhou [24].

We can compare the EO strata with some other naturally raised strata. Recall the natural
morphism

o Zpl — g,

which is a resolution of singularities: as in the Hilbert case ([11]) the scheme &} is usually
singular in the ramified case. On &7}, we have the following stratifications:

e Newton stratification, which can be constructed by studying the associated F-
isocrystals with additional structure.
e Kottwitz-Rapoport (KR) stratification &k = [],,cadm(u),, @k Which is induced
p

from the local model diagram for o/ and the geometry of M}C"C, cf. [19,38,47].

e Ekedahl-Kottwitz-Oort-Rapoport (EKOR) stratification &% = [],cxp adm(y) k-
which can be constructed as in [57], see the Appendix of the current paper; in
particular, see Example for more information of EKOR strata in the Hilbert
case.

While on & Zpl we have the following stratifications:

e Newton stratification, which can be constructed by forgetting the splitting structures
and considering the associated F-isocrystals with additional structure,

e Hodge stratification, which is constructed in [4],

e Ekedahl-Oort stratification, which is constructed in this paper.

The Newton stratification on &7 Skpl naturally factors through 7. In subsection ﬁ we will
show that the Hodge stratification also factors through .o7. Moreover, the resulted stratifi-
cation on 7, is coarser than the Kottwitz-Rapoport stratification. On the other hand, the
FEkedahl-Oort stratification on & Skpl does not factor through &% in general. Nevertheless,
one can try to compare the EO strata of &/ zpl with pullbacks of KR and EKOR strata
of &/} under m. On each KR stratum ./}, we have a g{,dt—zip of type Jy, see [57] and

our Appendix. Pulling back to ./ ?f’l, we get a family of Gid-zips of different types. It is

curious to study the relationship with our Q(S]pl-zip of fixed type u. In doing so, we prove
the following results.
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Theorem 1.2 (Propositions and |3.16]). (1) Let o7} be the maximal KR stratum
of &. Then m induces an isomorphism

W_l(%z’(’) = A
furthermore Wﬁl(dzo) is also the maximal Hodge stratum (called the generalized
Rapoport locus in [4] ).
(2) 1 (}°) is a disjoint union of some EO strata of P! and moreover these EO
strata are exactly pullbacks of the EKOR strata contained in /}°. Thus the iso-

morphism 77_1(,52%}50) = }° refines into isomorphisms between the corresponding
EO and EKOR strata.

In particular, using a result of He-Nie [22], we can deduce that the maximal EO stratum
coincides with the p-ordinary locus, cf. Corollary Thus by Theorem we reprove
the open density of p-ordinary locus of &5, cf. [4].

Once we have the morphism
¢: %(S)pl — gépl—Zipf;,
we get Hasse invariants on o7 Bpl by pulling back the group theoretic Hasse invariants on
the stack g(s]pl-Zip‘,_é constructed by Goldring-Koskivirta in [18]. Note that in [3] Bijakowski
and Hernandez have constructed Hasse invariants for the p-ordinary locus (which is also
our maximal EO stratum) by an explicit method. It would be interesting to compare their
construction with our construction here. On the other hand, in the Hilbert case, in subsec-

tion [£.4) we do compare the EO strata and Hasse invariants here with those constructed in
154].

To proceed as [54] and [18] to get applications to Galois representations, we need arith-
metic compactifications of splitting models and we have to extend the above construction
to the compactifications. Fortunately, the arithmetic (toroidal and minimal) compactifica-
tions for splitting models with good properties have already been established by Lan in [35],
based on his previous constructions in [31,[33,|34]. At this point, we have to slightly modify

the integral model &7*P! = o7 ?()11, by considering the open closed subspace

M2 oD
studied in [35]. Here K = KPK, and K, = G(Z,). All previous constructions and results
also hold for Mi?l by simple modifications. For a projective and smooth compatible collec-

tions of cone decompositions X, by [35] we have a toroidal compactification Mi?lgor, together

. . . . e 1 1,mi
with a proper surjective morphism to the minimal compactification ¢ : M?ygor — M

As we are working with smooth M2, the compactification M3P4" is also smooth by [35]
Proposition 3.4.14. We write their special fibers as M?(),lo and M?g}gfg.
Theorem 1.3 (Theorem [5.4)). (1) The gf)pl-zz'p of type p on M?()IO extends to a G(AIJ)C)-

. . 1 . 1
equivariant Gy -zip of type pu on MBS .

(2) The induced map (*° : I\/I??l’zt(g — G _Zip# is smooth.

The extension of Qf)pl—zip is easy to construct, as the canonical extension of the universal
de Rham bundle together with its Hodge filtration has already been given by Lan in [35],
so we just repeat the above construction. To prove the smoothness of (*°', we adapt some
ideas of Andreatta [2] in the unramified Hodge type case. We also prove that EO strata
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here are well-positioned in the sense of Lan-Stroh [36]. By the well-positionedness in fact
we get another proof of the smoothness of ¢*" (this is the approach taken in [36] for the
unramified PEL case).

Before talking about arithmetic applications, we note another advantage of the smooth
splitting models M?()l. As the modified local model diagram for l\/I?;1 is similar to that in
the unramified case, we get naturally automorphic vector bundles on M?(Dl as in the clas-
sical procedure. In contrast, automorphic vector bundles do not extend to the singular
integral model Mg, the corresponding open and closed subspace of & = & Kgp». We also
get canonical and subcanonical extensions of automorphic vector bundles to M?glgor, as the
local model diagram extends. Moreover, pull backs of canonical extensions of aﬁtomorphic
vector bundles satisfy similar properties as in the unramified case (cf. [32] Proposition
5.6). In particular, we have the relative vanishing of higher direct images for the projection

§ 2 MERtr MM Cof - Proposition [5.3) and [35] Theorem 4.4.9.

Theorems and allow us to deduce some further consequences on the mod p geom-
etry and arithmetic related to PEL-type Shimura varieties with ramifications raised from
WEeil restrictions. As an illustration, we discuss congruences of mod p automophic forms
and Galois representations associated to torsion classes in coherent cohomology. For some
other possible applications, see [12] and [64]. From Theorem |1.3| we get extensions of Hasse
invariants to toroidal compactifications. Then we can apply Goldring-Koskivirta’s machin-
ery of Hasse-regular sequences introduced in [18], which formalizes some key properties of
the subschemes defined by Hasse invariants. Indeed, the key technical conditions 6.4.2 and
7.1.2 of |18] have been verified in our setting as above. Let S be the finite set of primes
¢ where Ky is not hyperspecial. Let L C P, be the Levi subgroup and V,, € ReppL an
irreducible representation of highest weight 1. Using our modified local model diagram,

we get the associated integral automorphic vector bundle V), on Mi?l and the subcanonical

extension V,s]ub of V, to Mi?l’ztor. For each integers i > 0,n > 1, the Hecke algebra H* acts
on the cohomology groups

; spl,tor b
HZ(MK,E,OF/wn’VZu ),

where w is a uniformizer of Op. Let ’H%" be its image in the endomorphism algebra. Fix

a representation r : “G — GL,, of the Langlands dual group. With all the geometric

ingredients at hand, one can prove the following theorem by the same arguments of [18].

Theorem 1.4 (Theorem . Suppose that for any reqular C-algebraic cuspidal automor-
phic representation 7' of G with ©l, discrete series, the pair (7',r) satisfies the condition
LC, of subsection which roughly says the existence of GLy,-valued p-adic Galois repre-
sentation attached to 7' satisfying the local-global compatibility outside S.

(1) For any i > O,n > 1,n € X*(T){, there exists a continuous Galois pseudo-
representation

p: Gal(Q/Q) — H;",

such that p(Frob!) = T for all v ¢ S, where Frob,, is the geometric Frobenius at

v and Tv(j) € Hf;n is the element defined in subsection .
(2) Let  be a C-algebraic cuspidal automorphic representation of G such that w is a

(C-algebraic) non-degenerate limit of discrete series and Wfp #0. Then (m,r) also
satisfies LCy,.
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As [18], this theorem is a consequence of a result that the Hecke action on H® factorizes
through H? with increased weight, which is in turn deduced by the machinery of Hasse
invariants on toroidal compactifications, see Theorem

For unramified PEL type case, Theorem is due to [18] (the key technical conditions
6.4.2 and 7.1.2 there hold for unramified PEL type case), which recovers the main result of
[14] (for the unramified Hilbert case), and completes the work of Boxer [5] by a different
approach. We refer to [18] subsection 10.1 for further discussions on the appearance of
non-degenerate limit of discrete series in higher coherent cohomology of Shimura varieties.
Recall that since K, C G(Qy) is a very special parahoric subgroup, irreducible smooth rep-

resentations 7, of G(Q,) such that WII;( P £ 0 can be classified by their spherical parameters,
see [69] section 6. The interests of Theorem lie in that it provides some flexibilities
for the construction of automorphic Galois representations, in the sense we allow the p-
component of the automorphic representation 7 to be ramified as 7'({){ P £ 0. It reproves [54]
Theorem 1.1 in the Hilbert case by a different method. We also mention that a similar result
has been given in [50] in the ramified setting, but there the integral structure is given by
the strange integral models introduced by Scholze using perfectoid geometry. As all these
works, Theorem should be useful when studying modularity lifting problems, cf. [8].

In this paper we restrict to the PEL case, since so far splitting models for Shimura vari-
eties have been only constructed in this setting (|47]). It would be interesting and useful to
construct splitting models in more general Hodge and abelian type case. This would cer-
tainly require quite different ideas and independent treatments. Once more general splitting
models are available, we do expect that our constructions in this paper would naturally ex-
tend.

This paper is organized as follows. In section 2, we fix the PEL datum and discuss the
corresponding Pappas-Rapoport splitting models. In particular, under a basic assumption
on the datum we prove the smoothness of splitting models by a modified local model dia-
gram. In section 3, we construct the universal ggpl—zip of type p over the smooth special

fiber <7 f')pl and study the induced Ekedahl-Oort stratification. As an application, we prove
the open density of the p-ordinary locus. Along the way we also show that the Hodge
stratification constructed in [4] descends to 7. In section 4, we discuss Hasse invariants
on o gpl, by pulling back those on the zip stack constructed by Goldring-Koskivirta. We
also discuss some concrete examples, in particular we compare the Hasse invariants and EO
strata here with those constructed by Reduzzi-Xiao in [54] in the Hilbert case. In section
5, we first review Lan’s constructions of arithmetic compactifications for splitting models,

then we extend the universal ggpl—zip to the smooth toroidal compactifications Mi?lg%r and

prove the smoothness of the induced morphism (**. In section 6, we apply the method
of Goldring-Koskivirta [18] to deduce similar consequences on Hecke algebras and Galois
representations associated to torsion classes in coherent cohomology of smooth splitting
models. Finally, in the Appendix we discuss related local model diagrams for general para-
horic levels, and briefly review the construction of EKOR stratification on 7.

Acknowledgments. We thank Sian Nie for some helpful discussions. The first author
is partially supported by the National Key R&D Program of China 2020YFA0712600, the
CAS Project for Young Scientists in Basic Research, Grant No. YSBR-033, and the NSFC
grant No. 12288201.
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2. SPLITTING MODELS OF PEL-TYPE SHIMURA VARIETIES WITH GOOD REDUCTION

In this section, we review the definition of Pappas-Rapoport splitting models for PEL-
type Shimura varieties, following [47] and [35], for a maximal level at p. In the Appendix
[A] we will work with more general parahoric levels, and discuss the related local model
diagrams and EKOR stratifications, which are needed in the main text for the maximal
level case. Our setting here is the same as that in [4]. In fact, we will reprove the main
results of loc. cit. by a different approach.

2.1. Integral PEL datum.

2.1.1. PEL datum. Fix a prime p > 2. Let (B,*,V,(-,-),Op,A,h) be an integral PEL
datum at p. This means (see [28,31,53])

e B is a finite dimensional semisimple algebra over Q with a positive involution *. We
further assume that Bg, is isomorphic to a product of matriz algebras over finite
extensions of Q, (note that we allow the extensions ramified over Q).

V' is a finitely generated faithful B-module.

o (-,-) : VxV — Qis asymplectic form on V such that (bv,w) = (v,b*w) for all
v,w eV and b€ B.

Op is a *-invariant Z(p)—order of B such that Op ®Z, is a maximal Z,-order of Bq,-
A is a Op ®Zy-lattice in Vg,, such that (-,-) induces a pairing A x A — Z,.

G is the algebraic group over Q of (similitude) automorphisms of (V, (-, -)), i.e. for
any Q-algebra R, we have

G(R) ={g € GLp(Vgr) | (92,97") = c(g) (z,7') for some c(g) € R*,Vz,2' € Vg}.
We further require the group G to be connected.

e h:S = Rescjr(Gm) — Gr is a group homomorphism which defines a Hodge struc-
ture of type {(—1,0),(0,—1)} on Vg and the form (-, h(v/=1)-) is symmetric and
positive definite.

e 1 : Gy, c — Ge is the Hodge cocharacter associated to h.

We make some explicit description of this datum, which will be fixed in the rest of this
paper. By assumption, there is a decomposition (as product of #-invariant simple factors)

r r
BQp = l_IBZ = HMmz(Rl)7
=1 =1

where for each 1 <i <r, R; is a product of finite extensions (may be ramified) of Q,. Let
I :={1,...,r} be the index set. For each i € I, let F; be the set of *-invariant elements
in R;, which is a field over Q,. Since we require the group G to be connected, we can
decompose the index set I into four types: (C), (AL), (AU), (AR) (see also [4] subsection
2.2, but note that our I is the quotient of their {1,...,7} by the induced action of *). For
each ¢ € I, its type is defined by
(C): if % induces the identity on R;, so we have R; = F;.
(AL): if R; ~ F; x F; and * exchanges the two factors.
(AU): if * is an automorphism of order 2 on R;, and R;/F; an unramified quadratic exten-
sion.
(AR): if * is an automorphism of order 2 on R;, and R;/F; a ramified quadratic extension.

As in this paper we are mainly interested in good reduction of splitting models, we will
make the following assumption:

For all index i € I, its type is not (AR).

Thus our setting is the same as that in [4]. In the unramified case, see also [63] section 2.
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For each i € I, let
n; = eifi
be the degree of F; over Q,, where e; is the ramification index and f; the residue degree of

F;|Qp. Denote F™ the maximal unramfied extension of Q, inside F;. Then e; = [F; : F}"']
and f; = [F{" : Qp]. The decomposition of Bg, induces a decomposition

T

VQp - @ V;ml ’

i=1
For each i € I, the existence of x-symplectic form implies that V; is a vector space over F;
of even dimension, so we write

1 . .
d; = 5 dimg, V;, thus dimg, V; = 2d;n;.
We have an isomorphism

T
Op ®Zp = H M, (Or;)
i=1
with Op, the maximal order of R;, and the induced decomposition

A= éA’i”i,
1=1

where each A; is an Opg,-lattice in V;, and there is an induced pairing (-, -); : A; X A; — Zy,
which factors through OF,.

2.1.2. Rational group structure. The restriction of the pair (-,-) on V; defines an algebraic
group G; = Resp, |, Hi over Q,: for any Fj-algebra R, we have

Hi(R) ={gi € GLp,(Vir) | {9ix, giy) = ci(gi) (x,y) for some ¢;(g;) € R*,Vx,y € Vi g}.

Then
Go, C [[ G
i€l
is the subgroup such that the local similitude factors ¢; are the same and defined over Q,.
From now on, we fix an isomorphism of fields C ~ @p. Then we view p as a cocharacter
of G over @p. Let F' be a fixed sufficiently large finite Galois extension of @@, containing
all embeddings of F; to @p such that G is split. Then the cocharacter p is defined over F
and we can write
o Gm,F — Gfp C HGi,F'
el
For each i € I, the projection of G to G; r induces a cocharacter
i 2 Grr — Gy p.

For each ¢ € I, we order the embeddings F;" < F as 0;1,... 0y ,. For each 1 < j < f;,
there are e; extensions of o; ; to embeddings F; — F', ordered and denoted by Ug,j F,— F,
1 <1 <e;. We have the decompositions

fi e;
l
Vir =@ Vij, Vij= PV
j=1 =1
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For each 1 < j < f;, the space V; ; is the subspace of V; g such that F;" acts through o; ;,
and for each 1 <[ < e; the space Vzl ; 1s the subspace of V; ; such that F;j acts through 057 2
Note that we also have

Qdi = rankp Vil,jv

and the pairing (-,-) on V; induces pairings (-, ) : Vzl ;X Vll ; — F (which in fact are defined
over F;). For each i € I, as G; = Resm@p H;, we have

Gi,F = H Gli,j7

I .
Ui7j~Fz*>F

where in the index ¢!, runs through all 1 < 7 < f; and 1 <[ < ¢;, and each Glm- is

4]
(isomorphic to) a copy of H; . So the cocharacter

1
i Gpr— Gip = HGz’Ja
j?l

induces a cocharacter
g Gmr — Gl
foreach 1 <j< fiand 1 <[ <e;.
Since the only weights of p : G, p — G are 0 and 1, we get an induced decomposition
VF =W o WI,

where z € F* acts on W (resp. W’) by 1 (resp. z). This implies that the pairing (-, -)
induces an isomorphism

W~ (W)Y := Homp(W', F).

We can also decompose the F-vector space W as
r Ji €
w=Ppwm, wi=@w, ad W,;=EHW,
i=1 j=1 =1

Similarly for W’. For each 1, 7,1, we have Vzlj = Wi{j & (W’)ij Let dé’j = dimp Wll] If

we write dé ; = d,t  to make explicit the embedding af ;» then there is an induced *-action

on {Ué,j}i,j,l and \:v]e set (dﬁ])* = d(aﬁ,j)*' The natural isomorphism W ~ (W’)V gives the
identity
(d. ;)" = dimp(W")!;, and d.;+ (di;)* = 2d;.
We can make these data more explicit according to the type of i: recall G; = Resp,|q, H;
(C): in this case R; = F;, dimp, V; = 2d;, H; ~ GSpy,,. We have
dl; = dimp W}; = dimp(W)! ; = d;
foreach1 <j< fiand 1 <[ <e;.
(AL): in this case R; = F; x Fj, so we have a decomposition
Vi=U; o U’
with dimgp, U; = d;, H; ~ GLg4, XG,,. Then there are induced decompositions

Vzlg = Uz'l,j D (Uv)é,j? Wzl] = Ali,j D (Av)é,j and (W/)ﬁj = (A/)é,j D ((A/)V)é,j' Let

aéj = dimp Ai-yj, bé,j = dimF(A’)éyj, then by similar notations as above
l l l l
(a;5)" =bi; and a;;+b;;=di

foreach1 <j< fiand 1 <[ <e;.
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(AU): in this case R;|F; is an unramified quadratic extension, and V; is a Hermitian space
over Ri|F;, H; = GU(V;, (-, -)i). We have W}, = AL, @ Bl ; and (W), ; = (4). ; &
(B’)éjj. Let aﬁ =dimp AL 0! . = dimp(A")!

i Ui then by similar notations as above

INE
(af;)*=bl; and al;+0b;;=d;
foreach 1 <j < f; andlglgei.
In the rest of this paper, the index (i, j, ) will always be the tuple of integers runs through
1ell1<j< fiand 0 <[ <e.

2.1.3. Integral group structure. Now we discuss the integral group theoretic data which will
be needed later. Consider the parahoric group scheme G over Z, defined by the integral
PEL datum (Opg, %, A, (-,-)). Recall the decomposition A = @;_; A]"", where each A; is an
Op,-lattice in V; together with an induced form (-,-); : Ay x A; = Op,. Let G; /Z, be the
parahoric subgorup of G; associated to (A;, (-, -);), then

GcC H gi
i€l
is the subgroup of elements with the same local similitude factors defined over Z. For each
i, the Op;-lattice A; is self dual with respect to the form (-,-);, so that the above group

H; is unramified over F;. By abuse of notation, we still denote by H; its reductive integral
model over OF,. Then we have

g; = ReSOFi | Zp H;.

Recall that we have fixed a large enough field extension F'|Q,. Let x (resp. k; for each
i € I) be the residue field of F' (resp. F; for each ¢ € I). For each i € I, we denote also by
H; the associated reductive group over ;. Consider the artinian x;-algebra defined by the
quotient of polynomial ring k;[e;] := k;[z]/(x%). Then we have

Gio = Gi®z, Fp ~ Res, .. F, Hi-
By [42, Appendice 3], there is an exact sequence
1= U —Gio— Resg,p, Hi — 1,

where U is a connected unipotent subgroup of G;o. Let gfdt be the maximal reductive
quotient of G; 0. So we have

gi‘((l]t - ReSHzHFp H
This group is the similitude automorphism group associated to

ATY = i ®p o) mis - where  Ajo = A @z, Fp,

which admits an induced r;[g;]-action and a pairing (-, -); : Ajo X Ajo — k4. Let g{)dt be the
maximal reductive quotient of Gy. We have similarly an inclusion

rdt C H grdt

el

2.1.4. The group ggpl. For each i € I, we define the group gi%l / F, as similitude automor-
phism group associated to (A;dot)ei with its natural pairing. Then we have an isomorphism

spl e;
Gio ~ Res,p, H;".

spl c H gspl

el

Putting together, we define
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as the subgroup of element with the same [F)-local similitude factors. For each i € I,1 <
j < fi,1 <1 < e by our choice of F, Géjj is a split reductive group over F. We denote by
the same notations the reductive group scheme over Or and k. Then each ,u,lL-’ ; extends to
a cocharacter of Gé ; over Opr and thus a cocharacter over k:

ph: Gy — Gl
The cocharacters ué’ j then define a cocharacter of Hie I gf}gl over k. One can check carefully
that it factors through ggﬁi:
1
N = Il,l,,lL7‘7 : Gm,f{ — ggp ®FP Kk C HGi’]
i7j7l i7j7l
Fixani e I. Foreach 1 <j < f;,1 <1 < ¢e;, we also define an Op-lattice as
l
A’i,j = ArL ®0Fi7o-l OF .

i,

l
17.],
automorphism group is isomorphic to G% ; over Op. In contrast to the rational case, in

The pairing on A; induces a natural pairing on the Op-lattice A: ., and the similitude

general G; 0, does not split as product of Gé j due to ramification. So we define the split

Op-lattice as
A= P AP AP = P AL,
il il
here and in the following the indexes j and [ (in the second direct sum) run over 1 < j < f;
and 1 <[ < e;. There are naturally induced pairings on ASP! and A?pl. Let G°P! and G} Pl he

the corresponding group schemes over Op. Then QZ.Spl =11, G! ;» and we have the inclusion
as before
gspl C H g§p1
K2
el

by requiring having the same Z,-local similitude factors. Over F' we have the following
isomorphism
A?pl RKRog F~V ®Qp F,

compatible with additional structures on both side. Thus GsPl is the split reductive model
of G over F. Note that there is a natural homomorphism

Gior = G
which is not an isomorphism in general as remarked above. Therefore, in general we have
Go, # G
Foreachi e I,L1 <j < f;,1 <[l <ey, set
fi
Mo=A;®0,k and Aly=EDAl,.
j=1

For each 1 <[ < ¢;, we have the natural isomorphism
fi
dt oAl !
0 ®F, K= A g = @Ai,j,()'
j=1

Therefore,
spl .__ Aspl _ I _ srdte;
Al = A @0, k= DAL = Mg @5, .
j?l
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So Q;%l ®k is the similitude automorphism group associated to A?%l, and p; is a cocharacter
of gi%l defined over k. By construction, we have an isomorphism of reductive groups over
K:

G @p, Kk =GPl @o, k.
In other words, QSpl is an F, model of the special fiber of G*Pl. Moreover, one can analysis
the decomposition of Als%l induced by p; exactly as in the characteristic zero case (see the

end of in [2.1.2]).

2.2. Smooth Pappas-Rapoport splitting models. Recall that we have p : Gm@ —
5%

G@P the Hodge cocharacter of G over F,. Let E be the field of definition of the conjugacy
class attached to p. Then by the assumption on F', we have E C F.

Let KP be a sufficiently small open compact subgroup of G (A?), which will be fixed in the
rest of this section. By works of Kottwitz |28] and Rapoport-Zink [53], there is a scheme
g/malve = g/maive gyver Op representing the following moduli problem (see [53] chapter 6
for more details): for any Opg-scheme S, &7™¥Ve(S) classifies the isogeny class of tuples
(A, A\, 1, c), where

e A/S is an abelian scheme,
e M: A AVisa Z(Xp)—polarization,
e .: Op — Endg(A) ®z Z,) is an Op-structure of (A, \), which is compatible with
the Rosatti involution.
e « is a KP-level structure.
Its generic fiber Jziﬁaive is called the rational moduli space with respect to the PEL datum.

For any Og-scheme S and a point A € &/"V¢(S), there is an exact sequence of Og-

modules
0— wa/s — H&R(A/S) — LieAV/S — 0,
where wy /g is the sheaf of invariant differentials. For simplicity, write w = wy,g, and
H = H}z(A/S). The action of O ®Z, on the Og-modules H and w induces decompositions

fi fi
H:@H;m, HZ‘Z@HZ‘J, w:@wzmi, wi:@wi,j7
j=1 Jj=1

icl iel
and similarly for Lieyv /g. For each i, j we have an exact sequence of Og-modules
0 = wi; = H;j — Liegv/g;; — 0.

As ¢ is compatible with A, there is an isomorphism

Hij = Hyj.
Hi; is a self-dual Og-module of rank 2d;e;. If i is an index of type (AL), there is a
natural decomposition H;; = H; x?—[;\é such that H; ; is an Og-module and ’H;VJ =
Hom(?—[;j, Os). Moreover, the pairing of H; ; is given by the natural pairing of product of
dual objects.

For each i € I, let m; be a uniformizer of Op,. Moreover, for each triple (i, j,[), set

! !
T = Ui,j(Wi)-
For each i, j,1, we define two polynomials as
l e;
<l k ! k
QM =1l -=t) and Q7= ] (T ).

k=1 k=l+1
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Definition 2.1 (See also Definition [A.4). Let S be an Op-scheme and A = (A, 1, \, @) €
o/ PVe(S) with the associated H and w together with the induced additional structure. A
splitting structure with respect to A is given by the datum Fo = (gzl{j) foreachie I, 1<
j < fi, there is a filtration of Og-modules with OF,-action

70 gl GZCi — . .
0— ’L]CJZ,]CCJZ_Z] wl,],

such that

(1) For each 1 <1 <e,, ff] and Hw/ﬁz{j are finite locally free Og-modules.

(2) Write [m;] for the action of m; € OF,. Then for all 1 <1 < e;, we have

! ! -1
([mi] —m; ) Fij C yi,j )

e. (MR1—1® al J(m) - Tl T
(3) The Og-module ., /ﬂigl 1s locally free of rank déyj foralll1 <1 <eg,.

. - 1 e .
(4) For each 1 <1< e;, let yffrl = QZEI l(m) ﬂf} L. Then we require that

Fitt = 7070 and ([m]—vaij)'-.([m]—wfzfl hFit c g

Here 983 bl s the orthogonal complement of F fel Lin H;j under the pairing on

H; j induced by the polarization X.

More explicitly, we have the following description of splitting structures according to the
type of i (see the notations in see also |4] subsections 2.3 and 2.4):

e (C): We have R; = F; and for each index i, j, 1, dli,j = d;. One has a filtration

0 1 € — . . .
O—:g O\’LJC”'C%’L’J_W’LJCHZ,]

where for each 1 < [ < ¢;, & ij is a locally a direct factor of rank d;l, and the
filtration satisfies the relations as in the above conditions (2) and (4).

e (AL): We have R; = F; x F;, and H; = H, & H,". For each j, the splitting structure
is reduced to a filtration

Ozﬂl?JCﬂlly]C ﬂel—w CH@]’

where each % i] is locally a direct factor of rank am- + oo+ al j» and the filtration
satisfies the above condition (2).
e (AU): We have a quadratic unramified field extension R;|F;. For each j, we have a
further decomposition
wij =wi; ® (W)’
given by the unramified Op,-action, and the splitting structure is reduced to a
filtration

0— floijlleCtg‘\ze;:w/C%J,

where each % i is locally a direct factor of rank a} +--- + aéj, and the filtration

J
satisfies the above condition (2).

Finally, we can give the definition of the splitting model over &/¥ve, cf. [47].

Definition 2.2. The splitting model o/*P' over O is the scheme which represents the
following moduli problem: for any scheme S over Op, a/*P\(S) is the isomorphism classes
of tuples (A, F.), where

o A= (A )1 ) is an S-point of o/"dVe,

o Fy= (9’,}7]-) is a splitting structure of A.
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e The isomorphism is given by Z(Xp)—isogenies between abelian schemes with Op @zZ ) -
structures and splitting structure.

Let A"V be the universal abelian scheme over &7V with the associated H and w. By
the notation of [35], we have

spl __ +
’d - Spl(H’w’L)/dnaive®0F .

By [47] section 15 and [35] Lemma 2.3.9, there is a canonical isomorphism of schemes over
F

,Q{SPI ®(’)FF ~ ﬂnaive ®0E F.
Proposition 2.3. Assume that each i € I has type either (C), or (AL), or (AU), then the
splitting model /P is smooth over Op.

Proof. Let o/5P! be the scheme over O such that for any O p-scheme S
A(S) = {(A Fo, T = {]; D)},

where (A,.Z,) is an S-point of 2/%P! and for each i € I,1 < j < fi, T is a collection of
isomorphisms

l l l

By Propositions 5.2 and 9.2 of [47], when ¢ is of type (AL) or type (C), such isomorphism
exists locally. Moreover, when ¢ is of type (AU), the same proof equally applies.

Let Mi’,j = Mloc(Gé,j,ué,j) be the unramified local models over Op. Then we have
the following local model diagram (which is a special case of the local model diagram in

Proposition [A.8)):

/ \
1 l
A [T ju M
where the index (i, j,1) runs through 1 <i <r,1 <j < f;,1 <[ < ¢;, the morphism q is
smooth and given by
l ! -1\ 1<I<e;
(A, Zo, 1) = (1 )(Fi j/ Fi 5 )icia<i<s
which is HZ il Géjj—equivariant. The morphism 7 is the natural forgetful functor, which is a
[T Gé’j—torsor.
We have excluded the index of type (AR), so the right hand side of the local model

diagram is a product of unramified local models with hyperspecial level, which is known to
be smooth. This shows that 7P is smooth over Op. O

Let <7 be the scheme theoretic image of the natural morphism
Mspl N %naive R0 OF N %naive
5 .
Then o is flat over Op. Moreover, &/ admits a local model diagram, cf. Proposition
Thus under the condition of Proposition the morphism
P — of
is a resolution of singularities. Note that in this case, the associated parahoric subgroup
K, = G(Z,) is very special in the sense of [69] Definition 6.1. The purpose of this paper

is to show that in our ramified setting, the smooth splitting model &7*?' admits many nice
properties as in the unramified setting.
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Recall for any (V,n) € ReppP,, we have the associated automorphic vector bundle V
over
AP Qo F~ oV @0 F~ o Q0,F,
cf. [39]. Since G is split over F', we have a canonical reductive model G together with the
parabolic P, over O, and (V,n) naturally extends to a representation of P, over Op. In
general, it is hard to extend V to an vector bundle on &7, . Nevertheless, we have

Corollary 2.4. V extends canonically to a vector bundle on o/*P'.

Proof. Note that the integral flag variety over Op is FU(G,pn) = G/P, =1, Mé’j. The
diagram in the proof of the above proposition is the diagram of schemes over Op

=y
PN
/P! FUG, ).

Then we can construct an integral canonical model of V over &*P' by using this diagram as
in [39). O

By abuse of notation, we still denote by V the integral automorphic vector bundle over
/P!, We discuss the example of standard representation APl Let (A"™V X 1) be the
universal abelian scheme over @**' and H = H dR (A | of sPl) Then as before we have
decomposition H = @, 1", H; = D j H; j. We have also the universal splitting structure
F o on H. For each 1, j,l, we define

l l -1
M =Ker((m ®1—1® 05 ;(m))|[Hij/ Fi) )
Then the automorphic vector bundle over «7*P' associated to ASP! is

M=PM®™, M;=EP M.
i 4,

3. F-71PS WITH ADDITIONAL STRUCTURE AND EKEDAHL-OORT STRATIFICATION

In this section, we keep our assumption that there is no index of type (AR), so we
have a smooth splitting integral model <7*P'/ Op. We will construct a universal F-zip
with additional structure over the special fiber <7 Pl of 7P, Then we study some basic
properties of the induced Ekedahl-Oort stratification on %Spl.

3.1. F-zips and G-zips. We first recall the notion of F-zips ([41]). For any [F,-scheme S

and any object M over S, we write M ®) for the pullback of M under the absolute Frobenius
of S.

Definition 3.1. Let S be a scheme over F, and o : S — S is the absolute Frobenius of S.
An F-zip over S is a tuple M = (M, C®, Ds, ps) where

M is a locally free sheaf of finite rank on S;

C* = (C%);ez is a descending filtration on M and each C* are locally free Og-module;
Do = (D;)icz is an ascending filtration on M and each D; is locally free Og-module;
e = (pi)icz, and for each i, p; : C*/C1 — D;/D;_1 is a o-linear map whose
linearizion

(piin . (CZ/C’L+1)(])) N Di/Di,1

s an isomorphism.
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Next we briefly review the notion of G-zips and the theory of G-zip stacks ([51},52]) for
later use in this section. Let G be a connected reductive group over IF,,, and x a cocharacter
of G defined over a finite field s|F,. Let P} (resp. P_) be the parabolic subgroup of G,
such that its Lie algebra is the sum of spaces with non-negative weights (resp. non-negative
weights) in Lie(Gy) under Ad ox. We will also write U, (reps. U_) for the unipotent radical
of Py (resp. P_). Let L be the common Levi subgroup of Py and P-_.

Definition 3.2. Let S be a scheme over k.
(1) A G-zip of type x over S is a tuple I = (I,1,,1_,1) consisting of
e q right Gx-torsor I over S,
e q right Py-torsor I, C 1,
e q 1ight pr)—torsor I_Cl,

e an isomorphism of L\P)-torsors 1 : IS?)/U_(f) — I_/ng).
(2) A morphism (I,1,1_,0) — (I',/ I\, I' ;') of G-zips of type x over S consists of
equivariant morphisms I — I' and I — I'. that are compatible with inclusions and
the isomorphism v and (.

One can prove that the category of F-zips of rank n is equivalent to the category of
GL,,-zips, see [52] 8A. More generally, for a classical group G, a G-zip is equivalent to the
F-zip associated to its natural faithful representation, together with the additional structure
corresponding to the linear algebraic data defining the group, cf. [52] section 8.

The category of G-zips of type x over S will be denoted by G-ZipX(S). This defines a
category fibered in groupoids G-Zip} over k.

Theorem 3.3 (|52]). The fibered category G-ZipX is a smooth algebraic stack of dimension
0 over k.

Denote by Frob, : L — L®) 1+ 1) the relative Frobenius of L, and define Eg,, by the
fiber product

P(P)

Then we have
Eqy ={(p+ =luy,p_ = IPu_)|le Luy € Uys,u_ € Uﬁp)}.
It acts on G from the left-hand side as follows: for (py,p—) € Eg(S) and g € G, (S5), set
(P+,p-) - g = pygp_".
Theorem 3.4 ([52]). We have an isomorphism of algebraic stacks [Eq,\Gx] ~ G-ZipY.

Let B C G be a Borel subgroup and T' C B a maximal torus. Let W := W (B, T) be the
absolute Weyl group, and I := I(B,T) the set of simple reflections defined by B. Let J C I
be the simple roots whose inverse are roots of Py. Let W; be the subgroup of W generated
by J, and /W the set of elements w such that w is the element of minimal length in some
coset Wyw'. By [51] section 6, there is a partial order < on JW. Let k = & be an algebraic
closure of k, and ¢ : W — W the isomorphism induced from the Frobenius of G. There is
a distinguished element x € W satisfying certain technical conditions, see [51] 12.2.

Theorem 3.5 (|51]). For w € YW, and (B',T') a Borel pair of Gy such that T' C Ly
and B’ C Pg;ﬂ, let g, € Ng, (T") be the representative of ¢~ (z) and w respectively, and
Gw C Gy, the Eg y-orbit of gB'wB’. Then
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(1) The orbit Gy, does not depend on the choices of w,T', B’ or g.

(2) The orbit Gy, is a locally closed smooth subvariety of G. Its dimension is dim(P)+
l(w). Moreover, G, consists of only one Eg ,-orbit.

(3) Denote by |[Eg\Gx] @ k| the topological space of [Eg,\Gx| ®k, and 7W the topo-
logical space induced by the partial order <. Then the association w — G, induces
a homeomorphism W ~ |[Eg\G]|.

In the following, we will apply the above results to the pair (G, x) = (ggpl, ) constructed
in subsection 2.1

3.2. Construction of the universal gf)pl—zip on M%pl. Let s be the residue field of Op

and o the absolute Frobenius of k. We will construct a universal g%pl—zip of type p over the
special fiber

1
AP = P R, K
spl

of @7°Pl. As in the unramified case, we will first construct a vector bundle M over < 0
which can be viewed as a semi-simplification of the de Rham cohomology of the universal
abelian scheme for the additional structure. The construction of such a vector bundle was
already mentioned below [54, Corollary 2.10] for Hilbert modular varieties.

For any k-scheme S, %SPI(S ) classifies the isogeny classes of (4, .%,), where

(1) A= (A, )\ 1,a) is an S-point of a7ive,
(2) Fo = (54‘2.”].) is a splitting structure of O ®z, Og-module w,,g. This means: if we
write H = H}g(A4/9), it is an O ® Og-module, hence has a decomposition

i
-,

icl j=1

with H;; a locally free Og-module equipped with a pairing H;; x H;; — Os.
Similarly we have a decomposition w = @,; @f;l w;f. Foreachi€e I,1<j<f,
the splitting structure is a filtration of locally direct Og-factors of wj ;:

0= 373]- C 3’711] C---C 9163 =w;j CHiy

with O, /(p) =~ ki[T]/(T%) = kile;]-action, such that
(a) k; acts on ffllj by 0;j: Oppr — K.

(b) For each 1 <1 < e, 5ifil,j C ﬁ‘i{;l.

(c) For each 1 <1 < ey, ﬁf’j/ﬂ’i{;l is locally free of rank dé’j.
(d) For each 1 <[ <e;, gfjf = (efi_l)_lﬁi{j.

Let S = %Spl and A the universal abelian scheme over S. For each triple 4, j, [, we define
M= T Z

Note that each Mij is a locally free Og-module of rank 2d;. As in the description blew

Definition , in fact we have some reduced description for ./\/li ; according to the type of
i, which we leave to the reader. Now we write

ei Jfi
M:@M;m, Mi:@®Mé,ja
iel I=1 j=1

then each /\/lij is locally isomorphic to Aﬁ’j ®op Og. First fix i € T and 1 < j < f;. For
each 1 <[ < ¢;, we have two natural maps:
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(1) If I # 1, we have a natural map:

. l -1
‘/’i,j . M%] — M’L,j 5 X — £,

which is an Og-linear morphism. On the other side, the injection 6;19}{;2 —
€; 19;7;1 induce an Og-linear morphism
I aql—1 !
F/L7J . MZ7J % Mi’j-
(2) If Il =1, let V;; : Hi; — H; j—1 be the Verschiebung morphism and Fj ; : H; ;-1 —
‘H;,; the Frobenius morphism. The map V; ; induces a natural map

1. 1 €; (e
Vij i Mij—= M1 x= Vi (e; "(2)),
which is o~ !-linear. Similarly, F; j induces a o-linear map
1 . i 1
Fi,j . Mi,jfl — Mi,j7 T — F:LJ(ZB)
Now for each 1 <1 < ¢;, define

fi fi
M= @ty MDA,
Jj=1 J=1

Each M! is a locally free Og[e;]-module with a ;-action, and we have locally an isomorphism
l l
Mi ~ AZ- Rog Og.

(Note that the lattice Aéj is denoted by Eé,j in |47, Proposition 5.2].) We also have locally
an isomorphism

€; €;
Mi=@PM ~PA ©0s=A0s.
=1 =1

Each M; is a locally free Og-module of rank 2e; f;d;. For each 1,1, let Fil = @j Fil,j and
Vil =& ; Vll ;- We have constructed the following linear morphisms:

1 2 €
2 3 €
Vi Vi Vit
and semi-linear morphisms (F} is o-linear and V;! is o~ 1-linear)
F}l
k2
ei —> g1

1
Vi

Lemma 3.6. There is a canonical isomorphism g; : M; — M} sends Ker(V}) to Im(F}).

Proof. We can reduce to the case S = Spec R for a ring R over k. For e; = 1, we have
F! = Frob, V;! = Ver, so we can assume that e; > 2. Note that

Ker(V;) = ef ' Ver (F71), Im(F};) = Frob(F{i ).
For each j, fix an isomorphism H;; ~ R[g;]?% and lift it to ’;[” = R[[t]]** such that
Hij/(t%) = H; ;. For each T C My, let ;‘Jii] be its lifting in H, ;. One can lift the
Frobenius and Verschiebung morphisms of H; to injections of H,;, such that

Ver(H; ;) = Aﬁ/:;_l, Frob(jgz/:;_l) = tei’;{i,j.
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This gives the following isomorphism:

Frob

16y —kgei g TR e ey T e 1y,

Such isomorphism sends the lifting of Ker(Vi}j) to lifting of Im(Fi{j). After mod (t%) of
above isomorphism, we get an isomorphism
gi : M} — M;}
sending Ker(V;,) to Im(F};). O
Lemma 3.7. For each integer 2 <1 < e;, we have the following identities:
Im(F}) = Ker(V}), Ker(F}) =Im(V}).

Moreover, we have

rank(Ker(Vil,j)) = dﬁ’j and rank(Ker(F’i{j)) =d; — déyj.
Proof. By our definition, for each [ > 2, we have

Ker(F-l ) = Im(Vl ) = O\ija Im(Fil ) = Ker(Vl )=¢; ! 91,32'

The rank of .# ij | F! jl is dl by the definition of splitting structures. O

Recall that Mij =e;! ﬂi;l /332;1 ~ ﬂ?;?_lﬂ /€i ﬁ?;i_lﬂ. The symplectic pairing on
ﬂ?;-i_l“ C H; ; induces a pairing on Mij
Recall the group gf;pl constructed in as a similitude group with respect to the vector
space Azpl with its symplectic form . Recall that we have introduced a cocharacter
1
= Hﬂi‘,j cOme = gsp
i7j7l
Such datum gives the parabolic subgroup Py, P— of g;?l and corresponding unipotent group

U,,U_, and common Levi subgroup L = P, NP_ as in previous subsection. The cocharacter
w1 induces a standard F-zip

spl
(A[b)p ) COa D07 ¢070)-
Moreover, the above construction gives an F-zip

(M= GBM"“C @Ker F)™,D = @Ker ™, )

over o f’)pl, equipped with a natural symplectic form ¢ and an Opg-action with the natural
isomorphisms

@e: M /C ~D® (=~ (M/D)?,
where ¢ =[], ¢ : gspl (e 1 is the group isomorphism given by

1 1
& : gsp _ gf%, (1, ey Tey) = (T2, ooy Ty, 2h),

and D? is the same module D but with Q%pl—action twist by ¢. The sub vector bundles C
and D are totally isotropic with respective to the symplectic form ¢ on M.

Proposition 3.8. We have
(1) I :=Isom((M,1)), (Agpl, V)) is a ggpl—torsor over szf%pl.
(2) I :=Isom(M D C D O,A(S)pl D Cy D 0) is a Py-torsor over df)pl.
(3) I_ :=Isom(M > D > 0,AP' 5 Dy 5 0) is a P°-torsor over o/,
(4) We have an L?-equivariant isomorphism v : (I /U )® ~ I_/U.
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In the above, all the isomorphisms preserve the natural additional structure.

Proof. By the proofs of Propositions [2.3| and [A.8] there is a local model diagram

Nspl

sp/ N

Mloc

where M'°¢ is the special fiber of M!°¢(G! 1), ¢ sends (z = (4,.%,),T : M, ~ A(S)pl) to
(M, D Cy) € M = G /P, . By same arguments in [57, §3.4], we have

—~spl
o ] = %Ep is a Q(S)pl—torsor;
o [, = q_l(/\zpl D () is a Py-torsor;
Recall the forgetful map o/ Epl — /. There is a conjugate local model diagram for «7:

/\

Mlocc go, )

where M'°¢(Gg, i) classifies the conjugate filtration of .27 defined in [57] and ¢ is a smooth
morphism (same as |57, Theorem 3.4.2]) sending points of Zt?g to corresponding conjugate
filtration. Let

Mspl,(:(g()’u) N Mloc,C(go,M)
be the scheme over k classifying the splitting structures of M°%¢(Gg, 1). The pull-back of
the morphism ¢¢ gives the conjugate splitting local model diagram

Nspl

sp/ N

Msplc go, )

By previous method of constructing local model diagram of splitting models, there is a local
model diagram:
Nspl

N

JZ{Spl Mloc,c

where M°%¢ .= M 1OC’C(QSPI, w) and ¢¢ is a QO —equlvarlant smooth morphism sending (z =
(A, Fo), T My =~ Agpl) to 7(Dy C My) € M9 .= ggpl /P?. Combining these diagrams
we have
o I :=q¢“ YDy C AP is a PP-torsor. This follows from the same argument of I
using the conjugate local model diagram:;
e There is an L%-equivariant isomorphism ¢ : (I./U;)? ~ I_/U?. This follows from
Lemma [3.6] and Lemma
]
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Let ¢/ =[], #; be the group isomorphism given by
¢ gj}gl — gj}gl, (@1, oy Tey) > (@ey, 2l - 737];—1)'
Then we have ¢ - ¢' = ¢' - ¢p =0, s0 I ¥ is a PP_torsor and
(1, U@ ~ 1 @

is an L(®-equivariant isomorphism. This is the universal ggpl—zip of type u over ,Q/OSPI, i.e.
there is a morphism of algebraic stacks over k:

¢: %Spl — ggpl—Zipf;.
Definition 3.9. The fibers of ( are called the Ekedahl-Oort strata of %Spl.

Note that for each 1 < ¢ < r, by construction we have in fact a universal Qg?g—zip of type

[L; over %Spl, thus a morphism
. spl spl 7. ;
Gy — G o-Lip)'.

The universal ggpl-zip of type p over & Plig essentially equivalent to the product of all the
lefil—zip of type p;.

3.3. Smoothness of (. The dimension formula, closure relation, and smoothness of EO
(Ekedahl-Oort) strata follow from the following proposition.

Proposition 3.10. The morphism ( : cng(fpl — ggpl—Zip’,i is smooth.

Proof. Let k be the algebraic closure of k. Consider the following cartesian diagram

% * 1
s Gy

l |

AP G Zipt @ k.

The smoothness of ¢ is equivalent to the smoothness of ¢(#, which is also equivalent to the
surjectivity of the induced map on tangent spaces at points of .&7*P'# (k).

Recall g(s)pl—Zip,,c ~ [E\ggpl]. Let 27 be a closed point of d;pl with image x in .@/,:pl. Let

A be the complete local ring of safks Pl at 2. Consider the cartesian diagram

X a gzpl

| |

Spec A ——= g;pl—Zip’,g ®k

The morphism X — Spec A is a trivial E-torsor isomorphic to I,,, for an A-point ug of gspl.
Let U_ C g,jpl be the opposite unipotent subgroup determined by g, then A is isomorphic
to the complete local ring of U_ at identity. The trivialization induces an isomorphism and
translates « into the morphism g : Spec A Xy £y — gzpl given by for any k-scheme T, on

T-points 3 : (u,l,uy,u_) — luyug(IPu_)~1. Now the same method of the last paragraph
of |68, Theorem 4.1.2] shows the map on the tangent space at z is surjective. O
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3.4. Non-emptiness of EO strata. Recall that we have natural morphisms over x:
AP = oy — G

In the following we work over k = K. Although we are primarily interested in the geometry
of EO strata of o7 ipl, sometimes it would be helpful to study the geometry of <7} together.
On &7}V there is a KR (Kottwitz-Rapoport) stratification given by the isomorphism class
of wyyg, cf. [21]. By [19,38,47], there is also a KR stratification

dr= [ ¥
weAdm(u) i

indexed by the p-admissible set: let K = K, = G(Z,) and Adm(u)x the p-admissible
set of level K as introduced in [23], which is the partially ordered set of all KR types of
level K. By the discussions in we have a decomposition K = [[,.; K; and thus
Adm(p)x = [[;e; Adm(u;) k- We also have an EKOR (Ekedahl-Kottwitz-Oort-Rapoport)
stratification of o, which is a refinement of the KR stratification, such that for each
w € Adm(u) g, we have a morphism of algebraic stacks

Cw + A — Gy -ZipTv,
see subsectionsand in the Appendix for more details. If w = (w;) € [[;c; Adm(pu)x;,
for each 7, we have in fact a morphism ¢,, : & — ggf‘; -Zip”wi | the i-th component of (.

Proposition 3.11. Let 7 : szkspl — ), be the natural forgetful morphism. Let x € </*P'(k)
andy =mn(z) € (k).
e If x is a minimal EO point of «/*P'(k), then y is a minimal EKOR point of < (k).
o Ify is a minimal EKOR point, then there exists x' € n=1(y) C &/*P!(k) such that x’
is a minimal EO point.

Proof. Both the involved gf)pl—zip and gf)dt—zips admit decompositions over the indexes i.
We proceed according to the type of i.
Case (AL/AU): For each j, write >, dﬁ?j =t;d; + 55,0 < s; < d;, and

wnin = (7P DT

then a point y € 7 is a minimal KR point if and only if

/
Wy,i,j = Wmin @ “min

(cf. [46] section 3; here w; ; and the splitting structure is determined by such structure
On Win). Assume that z = (4, F,) € &*P}(k) is a minimal EO point and y = 7(x). The
minimal condition is equivalent to

(1) #}, CKer(VL) or Ker(Vy)c .7}, C et T

(2) For each [ > 2, fféj C 6;1 fﬁf or 5;1 céfi;z - yi] - 5;1 ﬁZl
This forces wy;j ~ Wmin @ Wy, s0 ¥y = 7(z) is a minimal KR point, which is then a
minimal EKOR point by the condition (1). Conversely, if y is a minimal EKOR point,
then by the above condition (1) and (2), there is a splitting structure %4 of y, such that
2’ = (y, Fo) minimal.
Case (C): A point y € &7 is a minimal KR point if and only if w, ; ; isomorphic to

Wmin ‘= ((Ez‘[ez./ﬂ) @(Eki/%))@di C k‘[&‘i}@mli.

A similar construction as above gives the proof of type (C).
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Corollary 3.12. The morphism ( is surjective.

Proof. By Proposition the EKOR strata of &% are non-empty. Hence, we have the
existence of minimal EO points of &/ ipl by Proposition The smoothness of ¢ : &7 (s)pl —

Q(S)pl—Zip’,i plus the fact that its image contains a minimal point imply the surjectivity of
¢ O

We summarize the above results in a theorem, which describes the expected properties
of Ekedahl-Oort stratification.

Theorem 3.13. We have the following basic properties of EO strata on smooth splitting
models.

(1) There is a smooth surjective morphism
¢: sz(s)pl — Qgpl—Zip’;
of algebraic stacks.

(2) Let W be the topological space of gzpl—Zip*kL, and define the EO stratum as ;z/skpl’w =
¢~ Y(w) for each w € 7W. Then each EO stratum szf’,fpl’w is a smooth and locally
closed subscheme of dimension l(w), with the closure relation by the partial order
=, i.e.

P = T o™, for all w € 'W.

w’' <w

3.5. The p-ordinary locus. Let U C Mkspl the maximal EO stratum, then by Theorem

U is open dense in sz/,:pl.
Recall the Kottwitz set B(G, u) (see subsection |A.5)). The universal abelian scheme with

additional structure (A4, A, 1) over &7:* defines as usual a map
Newt : .Qf%pl(k:) — B(G, ),
which by construction factors through .«7o(k) and o751V (k).

Definition 3.14. The fibers of Newt define a decomposition of sz/,fpl, which we call the
Newton stratification of safkspl. Moreover, as G is quasi-split at p, there is a unique mazximal
Newton stratum in Mkspl, called the p-ordinary locus.

When the group G is unramified over Q,, Moonen [40] proved that the p-ordinary locus
coincides with the maximal EO stratum of &7} = o Zpl. This fact was generalized to general
Hodge-type Shimura varieties with good reduction at p in [66]. We will prove that for the
ramified PEL-type case, the same result holds for smooth splitting models. As in the last
subsection, we will apply the geometry of KR and EKOR stratifications of @;. Recall
that Adm(u)x is the p-admissible set of level K , which is the partially ordered set of all
KR types of level K. As K C G(Q,) is a special parahoric subgroup, by [55, Theorem 4.2,
Corollary 4.6] the set Adm(u)x has a unique maximal element.

Proposition 3.15. Let wg be the mazimal element of Adm(u)x and 27, the mazimal KR
stratum of <. Then the morphism m : d;pl — ), induces an isomorphism over <7,"°, i.e.
L e C AL A

Proof. For every i, j, let {aé,j | 1 <1< e;} be apermutation of {déjj | 1 <1< e;} such that

1 2 €;
Qjj 2 Qg 20 2 Ayl
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We define a module wmax i = P ; Wmax m, where

Wmax,i,j ‘= k‘[gi}aifj @ 52 @i @ @ g ” ai’j-
The maximal KR stratum «7,"° can be described as follows: x € ka (k) if and only if the
following condition ( dependent on the type of the index ) holds:
e Case (AL/AU): Under the natural decomposition wy ; = wy ;1 € wy,i2 given by the
R;/Fi-action, we require that wy ;1 ™~ Wmax,i-
e Case (C): We require that wy; =~ wmax; = klg;]4 C k[e;]*

This condition comes from the explicit description of the maximal element in Adm(,ul)

Let x € @,,°(k). In the case (C) we have a = dl for all [, then Wmax,i ;[e}] has rank

1 l :
d; ;+ -+ +d; ;. This forces
Flj = waijlel.

Hence the splitting structure over w; ; ; is unique. The case (AL/AU) is similar. Therefore
the splitting structure over w, is unique, and 7 : 7r*1(,ﬁszw°) ~ /" is an isomorphism. [

Since there is a unique maximal KR stratum in <7}, we have a unique maximal EKOR
stratum in 7). Recall that for each 1 < i < r, we have gs grdt “. We get a map
gSpl Qrdt which is induced by the projection to the first factor QSpl gfdt for each 7. Let

1/ be the cocharacter of ggdt induced by p under this map. As a continuation of Proposition
3.15 we have
Proposition 3.16. Let Uxr = «7,"° be the mazimal KR stratum of <f,. Then the morphism
¢: %Spl — gbpl Zipl, induces a morphism

G N (Ukr) — Go-Ziph .

. 1 . . .
Moreover, the natural morphism m : sz,:p — &, induces a commutative diagram

_ ¢ r Lo
Y(Ukgr) —= Gyt -Zip!

e
Ukr

where (o = Cy, 15 the zip morphism on the maximal KR stratum of </} constructed in

subsection [A.3.

Proof. The projection QB — grdt induces a morphism go lek — grdt lek Composing
with ( : %Spl — gSPl Zip), and restricting to 7~ L({Ukr), we get a morphism

¢ Y (Ur) — Gy -Zip!!.

By Proposition the splitting structure over Ukg is unique, hence the EO strata in
771 (Ukr) is uniquely determined by the fiber of ¢;. In other words, the restriction of the
universal Q[S)pl—zip of type p to 71 (Ukg) is uniquely determined by the associated Qrdt
of type p/. To the above dlagram commutes, we need to show that this grdt -zip is the
pullback (under 7) of the Gi-zip on Uxgr glven by (2 = Cuyg-

Let = (A, \,,) € Ukr(k) and y = 7! (x). We will explicitly compare the G5*-zips at
z and y. The argument will be dependent on the type of the indexes i. We first investigate
the Qrdt—zip at x.

Case (AL/AU): Fix an isomorphism

Hai = Mgy = ke, P24
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and Ay; decomposes as W@ W', with W = k[g;]®%/i W' the dual of W. There are induced
Frobemus morphism F' and Verschiebung morphlsm V on Ay ;. The F-zip associated to x

(with er-%t—structure) induces an F-zip with k;-action M = (W, C, D, ) given by
W = k[]®%/,  C =Ker(Vlw), D =ZKer(Flw),

and M determines the F-zip associated to x.
By the proof of Proposition we have C = @j C;, where

P

Cj ~ k[gi]@aj,ij @( “i—1_ )@ @ e;—1 @(a” ai,').

The EO strata of Ukg is determined by an F-zip (M',C’, D',.") with gro -structure (recall
that G; 0 = Res, ¢, F, Hi, g;”%t = Resy,|r, Hi). More precisely, we have

o M'=M/e; M = k%%,
e (' is the natural image of C' in M’ we have C' = @; C} and dimy, C} = af;.
. Under the natural isomorphism &’ “IM o~ M, let D’ = Dnei™ 1 M, we have

=@, D} and dimy D} = d; — a;;.
° The morphlsm F,V of M restricts to the morphism
F:M —eeC)/(6;C) and V:gl(e,0)/(eiC) — M.
Composing with the natural isomorphism (same as Lemma
e (e, C)/(e;C) =~ M’
give semi-linear isomorphisms F’, V' of M’, such that
Ker(F') =Im(V') = D', Ker(V') =Im(F') = C".
The morphism ¢/ = (¢, ¢}) is induced from F’, V'.

The type of a grdt-mp is determined by a cocharacter ' associated to the tuple (a; ]) j (up
to conjugate).
Case (C): Fix an isomorphism

IH%Z' ~ Ak,i = k[e’:‘i]eﬂdiﬁ.

The F-zip associated to z (with g%t—structure) induces an F-zip M = (A;,C,D,t), C =
Ker(V), D = Ker(F). In this case, we have di =d;, and C = @, C; where

C; == kel € ke

Similar to the case (AL/AU), such data induce an F-zip (M’,C’, D', ') with gro -structure,
with type (19,09)%7:
On the other hand, fixing an isomorphism M, ~ Azpl with associated F-zip (Azpl, C,D,u),
we have
M = 8_1(& C)/eC, M= 5?"71 Agi.

By identifying M;* and Ml, our construction in subsection induces the same F-zip
with gfo -structure (M’,C’, D', ) as that at z. This finishes the proof. O

Corollary 3.17. The p-ordinary locus of d;pl coincides with the maximal EO stratum,
thus it is open dense in ,inpl.
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Proof. Note that the Weil restriction of a quasi-split group remains quasi-split, so the group
G, is quasi-split. Let Ugkor be the maximal EKOR stratum of .. Then Ugkor C Ukr-
The main result of [22] shows that the p-ordinary locus of <, is the same as Ugkor. By
the above proposition, we have

7' (Uekor) = U,

hence the maximal EO stratum U coincides with the p-ordinary locus of &7 Pl O

The open density of the p-ordinary locus was proved in [4, Theorem 1.2] by a different
method.

3.6. Hodge strata and pullbacks of Kottwitz-Rapoport strata. In [4], Bijakowski-
Hernandez introduced a Hodge stratification. Here we give an interpretation of their Hodge
stratification by our language.

Recall the local setup of [3,i4]. Let L be a finite extension of Q,, of degree n = ef, where
e is the ramification index, and f the residue degree of L|Q,. Let 7 be a uniformizer of
Op. Let G be a p-divisible group over k with Oj, action ¢, such that its height is nh. This
is the local geometric datum in the case of type (AL). In the case of type (C) or (AU),
we require moreover there to be a polarization \ : G — GV of G. Note that even in the
type (AL) case, we have a natural polarization A : G x GV — GY x G. Let (M, F) be
the contravariant F-crystal associated to the p-divisible group G. Then M is a finite free
W (k)-module of rank nh and F : M — M a o-linear injective morphism. The Op-action
induces a decomposition of W (k)-module

M =M,
TEJ

where J := Hom(Opuw, W(k)), and M, is the W (k)-submodule of M such that Or-acts
through 7 : Opw — W(k). In the case of type (C) or (AU), there is an induced perfect
pairing M x M — W(k) from A, which is compatible with the decomposition. As F is
o-linear, we have

F(M,-1,) C M.
For each 7 € J, there is an isomorphism
M, /F(My-1,) ~ @ W(k)/ar, W (k),
1<i<h
where each a.; € W(k) — {0} and we assume that
v(ar1) 2 vlarg) 2 -+ > v(arp).
For each 0 < i < h, the i-th coordinate of Hodge polygon is:
Hdgo, (M, F)(i) := v(ar1) + -+ v(arp—it1)-
Note that our polygon is upper convex, where [3] uses lower convex polygon. All statements
of loc. cit. about polygons still hold, after replacing minimal by maximal. The Hodge
polygon of G = (G, t, ) is defined as a polygon starting at (0,0) and ending at (h,d) such
that for 0 < i< h
. 1 .
Hdg(G)(i) = + Y Hdgo, (M, F)(i),
TedJ
where d = % Y ;eydr and dr = Z?Zl v(ar;). The precise form of the pair of numbers (h, d)
depends on the type (C), (AL) or (AU) which is being studied. Note that since we have an
isomorphism
we~M/FM
as Op-modules, the Hodge polygon of G depends only on the O -module wg.
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Now fix integers 0 < le < hfor 7 € J;1 <1 < e, we say that (M, F') satisfies the
Pappas-Rapoport condition with respect to u := (le), if for every 7, there exists a filtration

FrMy-1(;y = Fil’ M, C Fil' M, C --- C Fil° M, = M,
such that

e For each 0 <1 < e, Fil' M, is a sub W (k)-module of M,

e One has 7 Fil'! M, c Fil' "' M, forall 1 <[ <,

o Fill M,/ Fill—! M. is a k-vector space of dimension le foralll1 <l <e.
Given the Pappas-Rapoport condition with respect to u, the maximal possible Hodge poly-
gon is given by the polygon PR(u), where for each 7, let

PR, (u)(s) := %Zmax(s —h+d),
=1

and PR(p) is the average of PR, (p) for 7 € J. Recall the following result

Theorem 3.18 (|3]). Let G = (G, t, \,Fil®) be a p-divisible group over a perfect field k of
characteristic p, with an Or-action, plus a Pappas-Rapoport condition given by u = (le)TJ.
We have three polygons associated to G, the Newton polygon (upper convex) Newt(G) and
the Hodge polygon Hdg(G) with respect to G, and a PR polygon PR(u) determined by the
Pappas-Rapoport condition with respect to p. One has the following inequalities:

Newt(G) < Hdg(G) < PR(u).

Using our language, let = € &/*P'(k), and G, the p-divisible group associated to z. Then
G, decomposes as direct sum G, = @;_; G4, and each G, ; is a p-divisible group over k
with Op;-action and polarization A, plus a PR condition with respect to p;. So for each ¢,
there are three polygons Newt;(x) := Newt(G,;), Hdg;(x) := Hdg(G4;), PR(p) associated
to x. Note that for each i, we have an isomorphism of Op,-module w, ; ~ wg, ;-

Corollary 3.19. Let Ukg be the maximal open dense KR stratum of &7y, and 7 : szl — o
the forgetful morphism. For each x € ﬁfzpl, we have Hdg;(x) = PR(u;) for all i if and only
z'fa; S W_I(UKR).

Proof. This follows from the description of maximal KR stratum in the proof of Proposi-
tion 13.15) 0

Note that 7= 1(Ukg) is the generalized Rapoport locus in [4], where it is defined as the
maximal Hodge stratum of .o/ Zpl. Also note in general the closure relation does not hold for
the Hodge stratification, as claimed by [4].

We give a group theoretic reformulation of Hodge polygon. For simplicity, we assume
r = 1 (the general case follows by combining the independent data for all ¢ € I) in our
previous notations. Let I} be a finite extension over Qp of degree ny = ey fi, with e; its
ramification index and fi its residue degree. We also fix an unramified group H over F} and
let G1 = Resp, |, H. The maximal parahoric subgroup of G1(Qp) is K = H(Op, ), where
we use the same H as the reductive model of H. Let Qp be the completion of maximal
unramified extension of Q,. For simplicity, we will write Gi= Gl(@p) and similar symbols
for other groups.

Choose a maximal torus 7' C Gy and N its normalizer. Let I be the Iwahori subgroup
of G1. The Iwahori-Weyl group is
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We have the following isomorphism
W ~ X, (T)r, x» Wy

where Ty = Gal(@p/(@p) and Wy the relative Weyl group of Gy . Let K C G4 be the
P
induced parahoric subgroup and

Wk = (N(Qp) ﬁIu{)/(zj((@p) N f) - W,

then Wg ~ Wy is the section of Wy in W, since K is a special parahoric subgroup. The
following natural bijection

Wi \W /W ~ X.(T)r,/Wo

gives the natural injective map

h: Wi\W /Wi = X (D), o-

Since G is a Weil restriction of H/Fy, this implies

Gi=H(F® Q)= [[ HE).
T:Ffr—ﬂ@p
For simplicity, we just write G; = H/t, where H = H(F}). Similarly we have Tx ~ Tlf

P
with T} C H a maximal torus, which induces natural maps

X*(T)Fo,@ = (X*(Tl)ro@)f — X*(Tl)rm(@'

The last map sends (x1,...,xy) to %(X1 + -+ xy). Composing this map with h gives us

a map .
Hdg : W \W/Wk — X.(Th){, o

Recall the p-admissible set Adm(u)x C Wx\W/Wg. Restricting Hdg to it gives the
following proposition.

Proposition 3.20. For z € «/*P/(k), let w € Adm(p) i be the KR type of n(z) € o (k).

Then the Hodge polygon of  is given by Hdg(w) € X, (Tl)ffo 0

Proof. Let (M, F') be the F-crystal with additional structure attached to x, which depends
only on m(z). The isomorphism class of M/FM as Op @W (k)-module is given by an
element in Adm(p) i, consisting of a tuple in X, (T")r,. The average of the tuple in X.(7T)r,

gives the Hodge polygon of F-crystal (M, F'), which is (as usual) viewed as an element of

X (Tt o O

Corollary 3.21. The Hodge stratification of ,Q%skpl descends to </} under the map w :
dskpl — .. In particular, each Hodge stratum of ﬂ/ipl 18 a finite disjoint union of preim-
ages of Kottwitz-Rapoport strata of o} under the natural map 7 : szl — .

Recall that Corollary says that the maximal Hodge stratum is exactly the preimage
of the maximal Kottwitz-Rapoport stratum. One checks easily that Hdg(wg) = PR(u).

4. HASSE INVARIANTS FOR EO STRATA

In this section, we apply the general theory of group theoretical Hasse invariants of [17,/18]

to the smooth scheme &7 f)pl, by the map ¢ : & ?)pl — ggpl—Zipﬁ constructed in the last section.
We will discuss some examples.
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4.1. Group theoretical Hasse invariants. We come back to the setting of subsection 3.1
Let (G, i) be a cocharacter datum over F,,, this means that G is a connected reductive group
over F, and p a cocharacter of G defined over a finite field x over F,. Recall that (Py, P-)
is the pair of opposite parabolic subgroups of GG, determined by u, and L := P_ N Py the
Levi subgroup of G. Let Uy (resp. U_) the unipotent radical of P, (resp. P_). The zip
group £ = Eg , is the subgroup of Gx x Gy

E={(py =lup,p- =1Pu_)e P, x PP |1 € Louy € Up,u_ e UP}.

It acts on G, as (p4,p—) - g := prgp_". By Theorem there is a canonical isomorphism
of stacks
G-Zip = [E\G,].
Let k = % and G-Zip* = G-Zip}, = [Ex\Gj). Given X\ € X*(L), which can be viewed as
an element of X*(FE) through the projection E — L, one can associate a line bundle V()
over [E;\Gy| such that

HO([E\GL], V(N) = {[ : Gr = A} | f(gz) = Mg)f(x) for all g € Ey,z € Gy}
Let S be a scheme or an algebraic stack over k with a morphism ( : S — G-Zip*.

Definition 4.1. For every w € YW, denote by S,, the EO stratum of S associated to w, i.e.
Sw = ("Y(w) and S, its Zariski closure in S. A Hasse invariant for (\,Sy,) is a section
hy € H(Sw,V(n))) for some positive integer n, such that its non-vanishing locus D(h.,)
is Syw. If such hy, exists for all w, then X is called a Hasse generator for S.

The following proposition shows that the Hasse generator is unique up to k£* if it exists.

Proposition 4.2 ([17]). Let A € X*(L) and U, the unique open dense E-orbit in Gy, then
(1) One has dimg(H®(G-Zip*,V(N))) < dimg(H*(U,, V(\))) < 1.
(2) There is a positive integer N, such that the space H°(U,,V(N,A)) has dimension
one.

Recall that a cocharacter datum (G, i) is Hodge type if there is a symplectic embedding
G < GSpy, over F;, such that p induces the standard minuscule cocharacter of GSpy,. For
such datum, there is a Hodge line bundle V(n,,) over [E\G] by pull-back from the given
symplectic embedding of G (in general V(n,,) depends on the symplectic embedding). We
have the following theorem.

Theorem 4.3 ([17]). Let (G, i) be a cocharacter datum over F,, and assume p is minuscule.
For p > 2, the stack G-Zip* admits a Hasse generator.

Moreover, if (G, u) is Hodge type (p = 2 allowed), then Hodge line bundle is a Hasse
generator.

4.2. Length Hasse invariants. Keep notations as above. Let d = (2p, u), where p is the
half sum of positive (absolute) roots of G. Recall the subsets G,, C G as in Theorem
attached to w € W. For any integer 0 < j < d, define

Gi= |J Gu
f(w)=j

with the reduced subscheme structure. It is called the j-th length stratum of G. By [1§],
we have the following identities:

In the rest of this section, assume that (G, ) is of Hodge type.
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Proposition 4.4 (|18, Proposition 5.2.2]). There exists an integer N’ > 1 such that for
each 0 < j < d, a section h; € H([E\G}],V(n,)N') such that D(h;) = [E\G].

Such h; will be called a length Hasse invariant.

Now we assume that S is a k-scheme and ¢ : S — G-Zip* is a morphism of stacks

(may not smooth). For a character A\ € X*(L), write Vg(\) = ¢*(V(\)). For w € W

and j € {0,...,d}, we define the locally-closed subsets of S: S, Sy, S;, 5’; as preimage of

[E\Gu], [E\Gu], [E\G,],[E\G/] respectively, equipped with reduced subscheme structure
from S.
Proposition 4.5 ([18, Proposition 5.2.3]). Assume that

(1) The scheme S is equi-dimensional of dimension d.
(2) The stratum Sy, is non-empty for all w € JW.
(8) The stratum S = Sy is zero-dimensional.

Then we have:

(1) The schemes S; and S5 are equi-dimensional of dimension j.

(2) The sections h; are injective; equivalently S; is open dense in S;.

(3) Forw € 7W, S, is equi-dimensional of dimension f(w).
4.3. Hasse invariants on splitting models. Back to splitting models, let S = szfskpl.
Recall that by Theorem there is a smooth surjective morphism

¢: S — GPzZiph.

For each w € /W, let S, = ("'(w) the EO stratum of S. By our construction, Q(S)pl is the
similitude group of the lattice Azpl with a pairing induced from that on A, hence the pair
(Qgpl, w) is of Hodge type and the general theory of Hasse invariants applies.

Corollary 4.6. There exists an integer N > 1 such that for every w € W, there exists a
section hy, € HO([E\Q(S)%], V(Nn,,)) whose non-vanishing locus is precisely [E\ QBI?,}U}.

Corollary 4.7. Fiz a large enough integer N as in the above corollary. For every EO
stratum Sy, C S, the section (*(hy) € HO(Sw,w{{Vdg) is G(A?)—equivariant, and its non-
vanishing locus is D(C*(hy)) = Sw-

Here we denote wpqg as the Hodge line bundle with weight 7, on S = & zpl. We will
use the same symbols h,, as their pullbacks to S and call them the Hasse invariants of

S. We also have the length Hasse invariants on S, and by our previous results in section
Proposition [£.5 holds for S.

4.4. Example: Hilbert modular varieties. Now consider the splitting models of Hilbert
modular varieties. We would like to compare our construction with that of Reduzzi-Xiao
in [54].

Let L|Q be a totally real field extension and G = (Respq GL)t€Q™ the similitude
group associated to the Hilbert moduli space with respect to L. Fix a prime number p and
a prime to p level structure K? C G(A?), which is defined in [54] as Too(N)-level structures.
Let F' be a Galois extension of Q, containing all the p-adic factors of L. Then we have a
splitting model &7*P! defined over Op with level KP. Let k be an algebraic closure of the
residue field of Op, and ,ssz)pl = P k.

For any k-scheme S, &/ ZPI(S) classifies the isomorphism class of tuples (4, \, a, .Z,),
where

(1) (A, ) is a polarized abelian scheme over S with Op-action, with level structure .
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(2)

= (9i])1<z‘§r,1§j§fi,0§l§e“ each ﬂij is a locally free sheaf over S such that

o () = J\OJ C L?Zl] C - C 913 = wyys,,; and each 7 ”- is stable under the
O -action.
e each subquotient .%# / Fi =1 s a locally free OS module of rank one.

e the Op-action on each subquot1ent ﬁw / 3,7 ! factors through O' :0p = Op.

Consider S = sz[s)pl and (A, \, a, #,) the universal obJect over S. The sheaf Hij =
Hl:(A/S)ij is a locally free Ogle;l-module (¢5° = 0) of rank two, where the m-action
is given by ¢;. For each 4, j denote w; ; =wy/g

717.7
For each 1, 7,1, let h - be the partial Hasse invariant defined by [54], which is a section

of certain line bundle over S. For a point z = (A, #,) € S(k), the construction of partial
Hasse invariants shows that

e For 2 <l <e, bl ;(x) =0if and only if &; 7| ; = Z. >,
e For =1, h1 ;(x) = 01if and only if 7 fl = Kelr(Ver1 ).
The vanishing loci of these hl ;,; cut out the stratlﬁcatlon in their paper. We claim that their
stratification coincides with the Ekedahl-Oort stratification defined i 1n this paper.
For each i, j, [ we have a locally free sheaf ./\/(Z =g lglit /ff - Let M; = B, M!
By our construction in subsection there is a natural GZ = Res ki Fp GL§-zip

(Mi7 Cia Div %0, 801)

of type p1; = (1,0)%/i over S. The maps V', : M}, — ./\/ll U (for 1 >2) and V|, : M}, —
Mfzj’(p ) (for [ = 1) induces maps
V;ZJ wl — wlﬂl [>2, and VZ-1 w ;= wZ’]’(pl) = we’zj’@f

by restriction to w. Such morphisms give sections of wl; (wi j)* and wf}’@)f Q(w; j)*1
l
L

respectively, which are the partial Hasse invariants of Reduzzi-Xiao. More precisely, w
is just a Frobenius twisted version of w_ in [54], i.e. (wll-j)(p) = w. . Now by [25,
P 5J > F 2]

Proposition 5.2.3|, every codimension one closed Ekedahl-Oort stratum of zip stacks can be
cut out from zip partial Hasse invariants. So we at least have codimension one closed EO
strata coincide with that in Reduzzi-Xiao’s definition.

In Hilbert case, any EO stratum can be cut out from co-dimension one strata as the
associated Weyl group is isomorphic to (Z /27Z)™. So all the EO strata of splitting models of

Hilbert modular varieties coincide with the strata constructed by the partial Hasse invariants
in [54].

4.5. Example: Hilbert-Siegel case. Let L be a totally real field over Q with n = [L :
Q] > 1 and

G = (Resy g GSpy,) <"

the similitude subgroup of Resy g GSpy,. In fact one can also work with Shimura varieties
associated to the sightly larger group Res g GSpyg, which is of abelian type, by considering
some suitable group quotient which does not change the geometry at p, see for example
[6,/14,29,59]. Fix a prime to p level KP C G(A?) which is sufficiently small. Let o' be
the splitting model over Of corresponds to G. Note that when g = 1, we return to the
Hilbert case in the last subsection.

As L = B, we have

L®QQPZHFZ'

=1
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and

Spl C H (Resy, |7, GSpay)“
i=1
Recall that the EO index set of GSpy, is {0,1}¢ (see [63, §5.4]), so the EO index set W
of JZ{(S)pl can be identified with ({0,1}¢)", under the isomorphism gg‘j}i}der ®F,k =~ (Spay)".
Given z = (4, .F,) € @P'(k), the EO type of z can be written as a tuple a = (af ), where
aﬁ’j € {0,1}9. For each index i,7,1, by the construction in subsection at the point z,

we have an F-zip structure at the standard tuple (Al R K, C(l)”, Ow) (of type Mé,j) by
trivializing the filtration

M;>C;;20, and 0CDj;c ML

The classification of F-zips of type ,ué ; 1s given by the set {0,1}9. This gives the element
a= (aé’j) € ({0,1}9)"™ with respect to z.

We give a description of the p-ordinary Hasse invariants. For each ¢ and [ > 2, we have
defined a map V}! : ./\/lﬁ — ./\/lé_l, which reduces to a morphism

Vil : wf« — wﬁ_l, where wf = @Cij.

For [ = 1, we have the morphism

Taking summation induces a morphism

det(V;) : det(w; ® ®det ) — det(w ® ®det e~ ®det(wfi)®lﬂ

and a global section
hi € H(o/, det(wf) @D,

Let h be the product of h;, which is a section of the product of the line bundle det(w;* )®(p*1).
It coincides with the u-ordinary Hasse invariant coming from the zip stack.

4.6. Example: unitary Shimura varieties. Let L™ be a totally real field and L|L*
a totally imaginary quadratic extension. We denote by ¢ € Gal(L/L™) the non trivial
element. Let I = Hom(L*, Q) and for any o € I we fix a choice of extension 7 : L — Q of
o. Then we have Hom(L,Q) = I'[[I oc.

Let V be an L-vector space of dimension n together with a hermitian form (-,-). We
assume that this form is not totally definite. Let G = GU(V,(:,-)) be the associated
unitary similitudes reductive group over Q. Let (p;,q:)rer be the signature of Gr so
that Gr = G([[,c;U(pr,qr)) and we get a standard h : Rescgr Gm — Gr. If we write
G1 = U(V,(,,)) as the corresponding unitary group over Q, then G1 = Resp+|g U, where
U is the unitary group over LT defined by (V, (-, -)).

Let p > 2 be a prime and A C Vg, be a PEL Op-lattice. We get a parahoric group
scheme G over Z,. Let v1,--- ,v, be the places of L™ over p. For each v;, as in subsection
we assume v; is unramified in L, thus we have the following two cases:

e (AL): v; splits in L,

e (AU): v; is inert in L.
Fix a tame level KP C G(AI}) and let K = G(Z,)KP. Let E be the local reflex field and
F|Q, a sufficiently large field extension as before. We get integral models over O of the
associated PEL moduli space szfsl’?l — J Kk Qo OF.
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On the algebraically closed field k, the group ggp,i is just the associated similitude sub-
group of
H GLdi X Gm .
i7j7l
Moreover, the cocharacter has a decomposition p = Hi,j,l ;Lé’j, where each ,uéJ has type
(o,

and the decomposition of gf)pl, the EO index set YW decomposes as

Iy _ ! I
W = HVVZ, where W, ~ H (Sdﬁy]- X Sdz-—dﬁ-,j) \ Sa,,
2 1<5<fi

d; — déjj), corresponding to some (p;, ¢,) above. By the classification of F-zips in [41]

where Sy, is the permutation group of d; elements, and (S x S, _u ) is the subgroup
i, 4 i,J

of Sy, consists of the permutation of first dé,j element times and the permutation of last

d; — dé i element. For a precise description of the minimal length representatives for the left

coset (Sy xS, g )\ Sa,, see [41] subsection 2.6. The partial order < on W is given by
1,] ( 1,7

the product of the partial orders on Wil. We remark that different type of ¢ induces different
Frobenius actions on VVZ-Z, which induces different partial orders < on Wll The construction
of Hasse invariants is the same as above.

5. EXTENSIONS TO COMPACTIFICATIONS

To study applications to cohomology, we need to extend the previous constructions to
compactifications. In other words, we need to study the degeneration of F-zips with ad-
ditional structure on splitting models. Fortunately, the arithmetic compactifications for
general splitting models have already been established by Lan in [35]. Here we single out
the special case of smooth splitting models. It turns out the properties of these compacti-
fications are as good as that in the unramified setting |31].

5.1. Modifications of moduli spaces and integral models. Before talking about com-
pactifications of splitting models, we need to slightly modify our integral models following
[35]. Recall we have fixed a tame level KP C G(A?) and K = KPG(Z,). Let Mg be the

integral model over Of constructed as in [33] (denoted by WTH in |33-35|, where H denotes
the level as in loc. cit.). Then we get an open and closed embedding (cf. [35] Corollary
2.4.8) of Op-schemes
Mg < o Kr,
thus composed with the closed immersion o x» C &%V we get also a closed immersion
Mg C o “Ka,%ve. On generic fibers, we have an open and closed embedding of E-schemes (cf.
[31] Lemma 1.4.4.2)
Mrx e — Y Kkr E -

Let (H,.Z, 1) be the polarized Op ® Owm,-modules (see Definition associated to the
pullback of the universal object over @™V, Here in fact .# = w. By the notation of [35]
Proposition 2.3.10, we define the corresponding splitting model as the moduli scheme of
splitting structures of (H,.Z,t) over Mg ® O

spl +
Mk = SPliy 2 ) /Mxo0r

Then we get an induced open and closed embedding of O p-schemes
1 1
MP — /9P,
The difference of these schemes is bounded by the size of failure of Hasse principle (cf. [31]
Remark 1.4.3.12). All the results in previous sections still hold for M?()l and Mg, as in fact
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our previous constructions can be done for the related integral models of the associated
Shimura varieties.

5.2. Arithmetic compactifications of splitting models. We very briefly review some
basic properties of the toroidal and minimal compactifications of Mi?l constructed by Lan
in [35], which will be used in the following.

Recall that we have a morphism l\/I?{)1 — Mg ® Op. By [33,134] we choose a toroidal
compactification M}?fx of Mg over O associated to a compatible collection > of cone
decompositions. Over Mg, we have the polarized Op ® Om,.-modules (H,.#, 1) associated
to the universal abelian scheme with additional structure as above. By [35] Proposition
3.1.2, the triple (H,.Z, ) uniquely extends to an .Z-set of polarized Op ® (’)Mg?rz—modules

(K, . ZX 1<) Then we define

spl,itor +
MK,E — Spl(ﬂext 7zext ,AEXt)/M}gTE(@OF

as the scheme of splitting structures of (H*, . F* ) over M}?fz ® Op. By [35] Theorem

3.4.1, for suitable choice of X, the scheme Mi(plgor is normal, projective and flat over Op,

which admits a similar description as the usual compactifications M.

Proposition 5.1. For a projective smooth 3, the scheme l\/I?(Jl’Etor is projective and smooth
over Op.

Proof. This follows from [35] Propositions 3.4.13, 3.4.14, and our Proposition
Alternatively, the smoothness of Mi?l’ztor can also be seen from the extended local model
diagram in the next subsection. ([l

From now on we assume that X is projective and smooth. Thus the canonical morphism
M?{)}gor — M}%rz ® OF
is a resolution of singularities.
By [35] Propositions 4.1.22, 4.2.31 and 4.2.34, we have the minimal compactification
M?()l’mm together with a canonical morphism ¢ : M?g}gor — M?()l’mm, which fits into a
commutative diagram of schemes over Op:

spl,tor tor
Mgt —— MRy ®Or

| |

MR pmin @ O

By loc. cit. Theorem 4.3.1, the minimal compactification I\/Isi’gl’mirl admits a similar descrip-
tion as M.

Let Z%P! C Msﬁl’min be a boundary stratum. There is a corresponding boundary stratum
Z C M which is an analogue of Mk for some boundary PEL datum (O, *, A2 (-, )2 h7)
so that we have the tautological abelian scheme (B, A, ¢) over Z with associated (*H, %%, .).
By construction, we have

spl __ +
2 =5Plsg s 70012005

Attached to Z%P! and Z, we have the following data:

e an admissible cone decomposition Xz of some P = P, as well as a subset EJZr of
Y.z which forms a cone decomposition of the interior P* of P
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e an arithmetic group I' = I'; acting on P and hence aslo on Xz; the open cone PT
and the corresponding E} are stable under the action of I'. As in [36] we may and
we shall assume that for each o € E}, the stabilizer T', is trivial,

e a finite free abelian group S; let E be a split torus over Z with character group S.

e a normal scheme C*P! which is flat over O, together with a proper surjective mor-
phism CSP! — ZsPl,

e a morphism of schemes ZP' — C*P! which is an E-torsor; for each o € ¥, we have
an affine toroidal embedding ZP' < =%!(o) over C*P! with a closed subscheme =Pl

e for each representative ¢ € X} of an orbit [o] € £} /T, let Z[Sf]l C MEPLOr e

the corresponding toroidal boundary stratum, and 2Pl = (ESpl(o'))Qsp1 the formal

completion, then there is a canonical isomorphism of formal schemes

spl spl,tory A
X = (M)
o

o let ESZpl be the full toroidal embedding attached to ¥z and

spl .__ spl _ :Spl A
o= xP = (7)) .
TGEZ“T

the formal completion, then there is a canonical isomorphism

spl 1t
T (MERY
TEEZ/F (7]
Note the (disjoint) union UT@:} /FZ[STP]I is exactly the preimage of Z°P! under the

facts . nSpLtor spl,min
natural projection § : M Ra M

e there are similar and parallel objects C, = etc for the boundary stratum Z, such that

1 =spl
ol — Splgﬂ,ﬁz,”é)/c*@(o,v’ zspl — Spl?&ﬂﬁﬁ,’@)/E@(’)F ete, see [35] Lemma 3.2.4.

The same arguments as in the proof of Proposition show that
Proposition 5.2. Each boundary stratum ZP' is smooth over Op.

5.3. Canonical extensions of automorphic vector bundles. Since G is split over F,
it defines a reductive group scheme over O which is what we denoted by G%!. Moreover,
the parabolic subgroup P, extends to a paraholic group scheme of G*! over Op. Thus
the flag variety Z¢(G, u)p extends canonically to a smooth scheme G%P!/P, (the integral
flag variety) over Op which is nothing else but [[;c; <<, 1<i<e; Mij We still denote by
FL(G, p) the integral flag variety over Op.

Now we have an extension of the local model diagram of schemes over Op:

spl,tor
MK,E

/ X
M FUG. )

where 7 is a G*Pl-torsor and ¢ is G*Pl-equivariant. For any representation (V,n) € Repp . Py,
we get the associated G-equivariant vector bundle V on #¢(G, ). Via the above diagram,
we get a vector bundle V" = V2" on M?()I’Etor, which we call the canonical extension of

the vector bundle V =V, on Mi‘?l. Let D' be the effective Cartier divisor of [35] Corollary

4.4.4 with D', = MY\ M5! and set VU = Vean(— D) which we call the sub canonical
extension of V = V.
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Let n € X*(T )+ and V' € Repp,. L the irreducible representation of L of highest weight
n. Recall the map ¢ : MSpl tor M?{)l’min.

Proposition 5.3. For any i > 0, we have R’ $. V,SIUb =0.

Proof. This will follow from [35] Theorem 4.4.9, once we have verified that V" = V" is
formally canonical in the sense of loc. cit. (The definition of this notion there is given by the
corresponding analogue of [34] Definition 8.5.) Recall that this means: for any boundary

stratum Z%P! of Mi?hmin, and any geometric point T over Z%P!, there exists a coherent sheaf
Vo,z over C’%pm such that
(1) for any o € £}, the pullback V™" to X is of the form

N 1
P,... (¥ 2 woz),
(2) Voz admits a finite filtration whose graded pieces are isomorphic to pullbacks of
spl,A
— Spec Op.
One needs to check in the smooth reduction case the sheaf V" satisfies the above two

conditions. This can be achieved by modifying the arguments in the proof of [32] Proposition
5.6, where we take account of the splitting structures everywhere. ]

quasi-coherent sheaves over O via the structural morphism CZ

5.4. Extensions of ggpl-zips and Hasse invariants. Recall that < is the residue field
of OF. and k = . Let M?%lo = M ®o, k, Migl’;)or = M?%lgor ®o, k and Mi?}émm =
M?()l’mm ®o, k be the geometric special fibers. By section |3| we have a smooth surjective
morphism
1 .
¢: Mi?o =Gy le’kf.

Before discussing extensions of zips to the boundary, we need some group theoretical
Mspl,mln

K7

preparation. For each Z*P! C , recall that we have the boundary PEL-type Opg-

lattice (A%, (-,-}%,h?). Over Q, we have the associated parabolic subgroups
Q=QzCcP=P;C(G

with the same unipotent radical U such that M, := Q/U is the reductive group for the
rational PEL datum corresponding to Z, and M := P/U = M}, x M; where M; ~ P/Q is
a reductive group factor of the Levi M, see for example [36] Definition 3.8. Consider the

reductive group ggpl over IF,. We want to adapt the construction of [2] subsection 3.3 to
our setting. Consider the induced symplectic filtration

0CA s CA_ 1 CAg=A

so that

A =gr A=A_1/A_,,
and the decomposition A = @, Aj"", we get similar filtrations on each A;. Using the
fact that each A; is self-dual over Op,, by similar construction as in subsection we have
parabolic subgroups

Qspl Spl - gspl
with the same unipotent radical USP'. Let M Spl PPYUSP and MR = O /U, Then
Mgpl = M}Slpé x M sgl where M Sgl = PPl QSpl. Recall that we have the cocharacter . of
QS which is defined over , and Py := P, C QSpl the associated parabolic subgroup. Set
PSpl N Py. We get the inclusions

PCP+CgSp1
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Consider the induced cocharacter pz of M ,Slpé from h%. We get a natural morphism
v MR- Ziph? — MEP-Zipl

where we denote by the same notation uyz for the induced cocharacter of MSpl. Identifying
M; sPl a5 the standard Levi of PSpl, the inclusion M spl gbpl induces a morphism

v M{PZiph? — [Ez\ GPl,

where Z = (P, F(p ), ) is the algebraic zip data for QSI; associated to P. Then the natural
inclusion P C P, induces a morphism
¢ : [Bz \ Goh] = GoP'-Zipl.
We define
Ty =€0vVO7: Mslo1 Ziph? — gSPl Ziph.
In the following we also write gsng) =M, Spl to indicate its analogue with QO .

. . . 1
Given the canonical extensions of automorphlc vector bundles to I\/ISII();Cg, the construc-

tions of subsection can be generalized.

Theorem 5.4. (1) The go -zip of type p on MP 0 extends to a G(Ap) -equivariant QO -

2ip of type p on Mi?lg%r

2) The induced map C*°* : l\/ISpl tor — G Zip“ 18 smooth.
k
Proof. For (1), we just repeat the construction in subsectionstarting from (HEX, FxE oxt)

together with its universal splitting structure.
For (2), we follow the idea in the proof of [2] Theorem 3.1. Let € M3 he a closed

point and C' = 9, yeebtor . We need only check that the induced morphism

K 3,00
spl 7.
Gc : Spec C — Gy -Zipy,
is smooth If z € M?()lo, this has been done in Proposition So we may assume
x € Z[ ] for a boundary stratum. Then there is correspondmg point 2’ € Z%!(¢) such

that C' = OEspl(a)ﬂ;/. Let y € Z%! be the image of x and D = Ozsp1’y. We get an induced
morphism

j{ : Spec C' — Spec D.
Moreover, we have the boundary version (z : ZP! — QSpl le“ Z and the analogue
(p :Spec D — gspl Zip}”
of (¢. Recall that by Proposition ZSlDl is smooth. We have also a natural morphism
Tz ¢ QO -Ziph? — gSpl Zipt.

To show the smoothness of (- : Spec C — gg" -Zipt, we proceed in four steps.
Step 1. We show (¢ = 77 o (p o §. In other words, the following diagram commutes

Spec C CH gspl Zip},.

| N

spl

Spec D _‘n . - Liph”?
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We need to analysis the structure of the QSpl-zip on C in terms of the associated ggpé-zip.

Consider the restriction of (H™, . Zt, 1) on Z[S:}l, which we denote by (ﬂh,z h, gh). By

[35] proof of Proposition 3.3.21, there are isomorphisms
Frint Fa& F, where ' F = wrv )z,

Moreover, the filtration .Z," on .#* induces filtrations on .% and *.7 as [35] Lemma 3.3.11,
and by loc. cit. Corollary 3.3.16 the filtration on ”.% is independent of the filtration on .Z%.
By the construction in section 3, the F-zip M? (constructed from (H?, %%, 44)) is a direct
sum of the F-zip Mz constructed from (ﬂﬂ, ‘7. ﬁg) and the F-zip constructed from b .
Translating further into the language of Q(S)pl—zips we have the factorization of (o.

Step 2. § : Spec C' — Spec D is smooth. For this, we apply the local diagrams for MSpl tor

and Z°P! to realize C' and D as local rings of the corresponding local models, which are also
completions along identities of some unipotent subgroups, see the proof of Proposition [3.10]
Then one can prove the smoothness of ¢ by checking that on tangent spaces it induces a
projection.

Step 3. Cp : Spec D — gspl Zip}? is smooth. As Z°! is smooth, the smoothness of (p
follows from the boundary version of Proposition [3.10

Step 4. Tz : QO -Zip}? — g%pl—ZipZ is smooth. This follows from a similar argument as
the proof of [2] Lemma 3.4. O

We write X' = Mi‘glg%r and the fiber of ¢*°' at w as X!°". Then we get the EO
stratification
xtor — H Xfuor.
welW
For each w € /W let Xt be the Zariski closure of X! in X'°r,

Corollary 5.5. The Hasse invariants h,, € H°(X,, wgé”g) of Corollary extends to a

G(A%)-equivariant section hy* € H 0(Xtor wﬁfé" ) with non vanishing locus precisely X .

The proof of Theorem 5.4} - actually gives us the following (expected) description of

¢** on the boundary. Let Z3*' MSpl ™I b a boundary stratum and Z5PM" = §(Z5Ph),

spl tor spl
We get an induced morphism § : Z — Z.

Proposition 5.6. The restriction

Ctor|Z8pl,tor =Tz 0O CZ [e) f,
where Tz and (z are as in the proof of Thearem 4 (2).

Corollary 5.7. Let e € 7W be the minimal element (then £(e) = 0). The associated EO
stratum X, does not intersect with the boundary of X, in other words we have X, = X°T.
In particular, the conclusions of Proposition @ hold for X*tor,

Proof. Similar to [2] Corollary 3.7, this follows from the fact that for each boundary Z,
T7 QO le“ z Qf]pl—Zip’;: is smooth, thus open, therefore does not contain the closed

point of Gy’ ‘leZ' O

Next, we discuss the well-positionedness of EO strata in the sense of [36] Definition 2.2.1,
which is in fact closely related to the smoothness of (*°*. Let Z%P! be a boundary stratum of
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M?gl’min. Recall for each o € X}, we have =°P!(¢) and its closed subscheme =Pl Consider
the closed subscheme

=P (0)" = UTGZJZr,?CEEipl
and the formal completion

%(srpl,o = (ESPI(U))QspI(Uﬁ-

spl,o
o

By [36] Proposition 2.1.3, the formal scheme ESZPI admits an open covering by X for o

running through elements of ¥}, and for each ¢ we have an isomorphism

spl,o spl,tory A
%O' - (MK,Z )U‘r Z[T] .

For any open affine formal subscheme Spf R of f{(s,pl’o, let W = Spec R, then we get induced
morphisms

1,t —spl

W — M?Efg, W — =E%(0).
. . . . . spl,tor

By these morphisms, the two stratifications of W induced respectively by those of M K5
and Z%P!(¢) coincide. Let

W' cw
be the open stratum, which is the preimages of l\/I?{)1 and Z°P! under the above morphisms.

Now consider the geometric special fiber Mi?lg%r and we denote by the same notations

7zl CsPl =Pl W etc the corresponding objects base-changed to k. By [36] Definition 2.2.1,
a locally closed subset

1
Y CMZ,
is called well-positioned if there exists a collection
(Y3)z
indexed by the boundary strata of M?()l(’]min, where YZﬁ C Z%®! is a locally closed subset

(which may be empty), such that for any ¥, any o € £}, and any Spf R as above, if YZti # 0,
then under the induced morphisms

WO 5 MmeeL

Por WOz

the preimages of Y and YZli in WO coincide. Here W? — Z%P! is the composition
WO — =spl_, ospl _y zspl,

By [36] Lemma 2.2.2, it suffices to verify the condition for just one collection of cone
decompositions ¥ and some affine open covering Spf R of each xsphe,
Proposition 5.8. For each w € YW, the locally closed subset X,, of X = Mi?lo s well-

positioned.

Proof. We can translate [36] Lemma 3.4.3 into zips. Indeed, the setting of loc. cit. includes
the splitting model case. Specializing to the case of p-torsion (n = 1 there), we see that
the triple (A[p], A, ¢) determines and is determined by the isomorphism classes of (X,Y, ¢ :
Y — X) and of (B[p], A, tp). The splitting structure on wy is induced by those on X,Y
and wp. For the torus part, the splitting structure is unique, cf. [35] Corollary 3.3.16. Thus
by construction, the g(s)pl—zip attached to (A[p], \,¢) determines and is determined by the

isomorphism classes by the Gp" é—zip attached to (Bp|, Ap,tB). See also the arguments of
Step 1 in the proof of Theorem Therefore the EO strata are well-positioned. O
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Remark 5.9. In [36] subsection 3.5, Lan and Stroh firstly proved that EO strata in their
case (Nm) for a good prime p are well-positioned. They then deduced that (™" is smooth
if C is, cf. loc. cit. Corollary 8.5.8. Following their idea, we sketch how to deduce the
smoothness of (*°" from Proposition as follows:

By Proposition each Xy is smooth. As X, is well-positioned by Proposition
the partial toroidal compactification (X,,)%" of X, (in the sense of |36] Definition 2.3.1
and Theorem 2.3.2) is also smooth by [36] Proposition 2.3.13. By construction, we see that
(Xw)¥" equals to the fiber of C*" at w. As each fiber of (*°" is smooth, we get (*°* is smooth
once we know it is flat. The actual argument of [36] (proof of Corollary 3.5.8 there) says
that étale locally C'°* factors through CSP' (and Z*P'), which follows from Proposition .

6. APPLICATION TO (GALOIS REPRESENTATIONS

In this section we study the coherent cohomology of the smooth schemes Mi?l’gor. We
deduce some consequences to Hecke algebras and Galois representations following the same
treatments of |18§].

6.1. Hecke actions on coherent cohomology. Recall that K = KPG(Z,,) is our level of
moduli spaces. Let S be the finite set of primes ¢ where Ky is not hyperspecial. Consider
the Hecke algebra

/
1 = Q) Ho,
vgS

the restricted tensor product of the spherical Hecke algebras H, = Z,[K,\G(Q,)/K,] out-
side S. We assume that G is ramified over Q,, i.e. p € S, since otherwise all the following
discussions are covered by [18].

Consider also the Hecke algebra Hg. There is a natural morphism HS — Hp. Recall
for any Op-representation V of L, we have the autornoc vector bundle V"P on the

smooth toroidal compactification Mi?l’ztor as in subsection In the following we describe

the action of Hx on the coherent cohomology groups H i(l\/li?lgor, VSub) 50 that we get an
induced action of H®. Since the Hecke algebra H is generated by characteristic functions
of KgK € K\G(Ay)/K with g € G(Ay), it suffices to describe the action of KgK on
Hi(M?()}gor,Vsub). Let K, = K NgKg~'. By [35] Proposition 2.4.17, we get the associated
Hecke correspondence

spl
M K,
AN
Mspl Mspl
K K
where p; is the natural projection, ps is the composition of natural projection with g :

Mi?; = sz,llKgg. For i = 1,2, the induced Z_f] = p;¥ are admissible finite rped for the

level K,. Let X, be a common smooth refinement of 251; and 23. Then by [35] Proposition
3.4.10, we get an extended Hecke correspondence

1, tor
Msp7
Kg,%4

P
spl,tor spl,tor
MK,E M KX >
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where ¢; is the composition

Mspl,tor T Mspl,tor T Mspl,tor

Ky,% Ky,%i Kx
The morphisms r; satisfy ij* Opgeptior = 0 for j > 0 and 75« Opysprior = Opysplior by [35]
Kg,Xg Kg,3g Kg,5%
Proposition 3.4.10 and [34] Proposition 7.5. By [35] Proposition 3.4.14, the schemes MSP"t"

Kg,5%
are Cohen-Macaulay as Msg is. Arguing as |18| 8.1.5, we get that the morphisms m; are
finite flat. Thus we get a trace map

spl,tor — O
Kg,EZg

trm; . (’)M

Mi}()lgor,
which induces the associated Hecke operator: for each i > 0
T, H (MEPE Vo) — HE(MIESET, peib),

Let @ be a uniformizer of Op. Recall the Levi subgroup L of P = P, over Op. For any

i>0,n>1and (V,n) € Repp, L, consider the vector bundle V5" on Miglgo(,r)F Jom+ We get
an action
S ; spl,tor b
H” — End (H'(ME S5, s Vi'))-

Let ”H%n be its image.

6.2. Factorizations to H°. For any i > 0,n > 1 and n € X*(T)}, as in [18] we consider
the following set

F(i,n,n) = {n € X*(T)} |H® — ’H%" factors through % — ’Hg}n}.

With all the ingredients at hand, by the method of [18] we have the same consequences as
Theorem 8.2.1 of loc. cit.

Theorem 6.1. For any (i,n,n) as above, we have

(1) There exists an arithmetic progression A such that n + an, € F(i,n,n) for all
a€ANZ>.

(2) Let C be the cone defined in [18] 3.4.3. Then for allv € C and my € F(i,n,n), there
exists m = m(v,n) € Z>1 such that for all j € Z>1, we have n + jmv € F(i,n,n).

(8) For all § € R>q, F(i,n,n) contains a d-reqular character in the sense of [18| Defi-
nition N.5.5.

The proof of the above theorem is by the same arguments as in |18] subsections 7.2, 7.3,
8.3 and 9.2. In particular, one plays with the machinery of Hasse-regular sequences based
on our Corollaries and Propositions [£.5] and and one applies the associated
flag space to increase the regularity. For the reader’s convenience, we recall that a Hasse
regular sequence of length r with 0 < r < d = dim M??}F on X := M??lzto(gF -
of [18] Definition 7.2.1) is given by a filtration of closed subschemes

X:Z()DZlD"'DZT

(in the sense

together with some integers a; and global sections f; € HO(Zj,wgfdg), such that each f; is

a lifting of a length Hasse invariant, and for each 0 < j < r — 1, we have Z; 11 = V(fj).
More precisely, on the reduced locus

Xred = H Xw D Zj,red = H Xuw-
wel W weIWl(w)<d—j
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By Proposition there exists a large integer Ny_; and a length d — j Hasse invariant

0 Ng_;
hdfj €H (Zj,red7ngg])

such that its vanishing locus is Z; {1 reqd = ]_[weJWZ(de_j_l Xw- Then one requires
0 aj
fi € H'(Zj, wjgg)

to be a lifting of certain power of hy_; (which exists by [18] Theorem 5.1.1) for some integer
a; > Ng_j;. From a regular Hasse sequence of length r, we get an exact sequence of sheaves
over Z,_1:

0 — VI @ iy T VI @ Wit e g )|, g,
where wpgqg is the Hodge line bundle and s is an integer. From here, one gets congruences
between cohomology of different degrees using the vanishing result H*(Z,, Vsub ® wﬁ”dg) =0

for m > 0 and i > 0 (cf. [18] Lemma 7.1.4). In particular, to study H*(X, Vf]“b), one
performs a Hasse regular sequence of length i to finally reduce to H°.

Remark 6.2. (1) As mentioned above, in the unramified case Theorem was proved
by Goldring-Koskivirta in |18|; in this case part (1) also follows from the work of
Bozer [5].

(2) In the Hodge type case (which may be ramified), part (1) was proved by Pilloni-Stroh
in [50] (Théoréme 3.5 and Remarque 3.9) for some quite different integral models
(constructed by Scholze’s method). As they remarked there, the torsion classes for
these integral models seem to be quite different from those associated to the unrami-
fied Kottwitz or Kisin models. Their torsion classes also seem to be rather different
from these associated to the smooth splitting models here.

(3) By [18] Remark 8.2.4, parts (2) and (3) of Theorem[6.1] do not follow the methods
of [5] and [50].

6.3. Galois representations. We can now deduce some consequences on Galois represen-
tations from Theorem as [18] section 10.

Let v # p be a finite unramified place of Q for G. Let Frob, be a geometric Frobenius
at v and H, the unramified Hecke algebra at v. Then we have the Satake isomorphism (cf.
18] (10.2.1))

Holv/o] = R(*Gy) [V,
where R(*G,) is the algebra obtained by restricting characters representations of G, to
semisimple “G? (@p)—conjugacy classes in G, x Frob,. If m, is an unramified irreducible
smooth representation of G(Q,), we get the corresponding semisimple *G? (@p)—conjugacy

class Sat(m, ), the Satake parameter of 7.
Let

T:LG—>GLm

be a representation of the Langlands dual group. For each place v as above, we get an in-
duced representation r, of “G,. Let 7 be a C-algebraic cuspidal automorphic representation
of G. If v is an unramified place of w, then we get

ry(Sat(my)) € GLy (Q)).

Let Ram(m) be the set of ramified places of m. We say that (m,r) satisfies LCp, if there
exists a continuous semisimple Galois representation

p(m,7) : Gal(Q/Q) — GLn(Q,)
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such that for any v ¢ Ram(m) U {p}, we have
p(m,r)(Frob,) = r,(Sat(m,))

as GLy,(Q,)-conjugacy classes.
For any j > 1, the function *G(Q,) — Q,, g — tr(r(g)?) defines an element of R(*G,)
and thus an element quj)(r) € Hy[\/v]. For any i > 0,n > 1,n € X*(T)}, let

79 = 79 (11, m.) € M

be its image in H%" In the following we fix § € R>g and r : “G — GL,,. Here is the
version of |18] Theorems 10.4.1 and 10.5.1 in the ramified setting. The proof is identical to
loc. cit. by applying Theorem here. Part (1) also generalizes Theorem 1.1 of [54].

Theorem 6.3. Suppose that for any d-reqular, C'-algebraic cuspidal automorphic represen-
tation 7' with wl, discrete series, the pair (7', r) satisfies LC).
(1) For any i > O,n > 1,n € X*(T)Z, there exists a continuous Galois pseudo-
representation

p: Gal(Q/Q) — H;",

such that p(Frob?) = Y forallv ¢ S.
(2) Let w be a C-algebraic cuspidal automorphic representation of G such that T s a

C-algebraic) non-degenerate limit of discrete series and m,* # 0. Then (mw,r) also
P
satisfies LC,.

Recall that K,, C G(Q,) is a very special parahoric subgroup, and irreducible smooth rep-

resentations 7, of G(Q)) such that 7r£( P £ 0 can be classified by their spherical parameters,
see [69] section 6.

6.4. Examples. We discuss some concrete examples where the condition LC), is essentially
known. In these examples, the notation L is also used as certain number fields. Thus to
avoid confusion, we denote L C P, for the Levi subgroup.

6.4.1. Unitary case. We use the notations of subsection

For any regular C-algebraic cuspidal automorphic representation 7 of G, the associated
Galois representation satisfying the condition LC), is known to exist by the works of many
people. We only mention [9}/10,20%/60].

Corollary 6.4. For anyi>0,n>1,n¢€ X*(T);f, there exists a continuous Galois pseudo-
representation B '
p:Gal(L/L) — H;",

such that p(Frob!) = 7Y forallv ¢ S.

Here, when applying Theorem [6.3| we can replace Q by the totally real field L, cf. [18]
10.6. One may also state and prove a similar version of [18] Theorem 10.5.3 for Galois
representations associated to automorphic representations 7w with non degenerate limit of
discrete series Tao.

6.4.2. Hilbert-Siegel case. We use the notations of subsection 4.5

For the group G = Resy g GSpy,, any regular C-algebraic cuspidal automorphic repre-
sentation 7 of G, the associated Galois representation satisfying the condition LC), is known
to exist for g < 2:

e for g =1, see |14,54] and the references therein for the related classical works,
e for g = 2 this has been intensively studied, see [37.,/61,62./65] for example,
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e for general g, see [29.|67] for some recent progress.

Corollary 6.5. Assume the condition LC,, holds. For anyi > 0,n > 1,n € X*(T){, there
exists a continuous Galois pseudo-representation

p:Gal(L/L) — H}",
such that p(Frob!) = T forallvégs.

Here, as above, when applying Theorem we can replace Q by the totally real field L.
One may also state and prove a version for Galois representations associated to automorphic
representations 7w with non degenerate limit of discrete series mq.

APPENDIX A. LocAL MODELS AND EKOR STRATIFICATIONS IN RAMIFIED PEL-TYPE
CASE

In this appendix, we first review the related local model diagrams for integral models
of PEL-type Shimura varieties with general parahoric level at p, following [47]. Then we
briefly explain how to extend the construction of [57] to this setting (the groups of [57] are
supposed to be tamely ramified at p as those in [26], but the construction there only needs
local model diagrams as the input).

A.1l. Integral models of PEL-type Shimura varieties. We keep the notations and
assumptions of section [2| Let G be the connected reductive group defined by the rational
PEL datum and .# a multichain of O g-lattices (see Definition[A.1)). By [47], there are three
integral models 27"V o7 and /P! of the PEL moduli space over E (with respect to the
multichain .#). The models &7/ naive ' o7 are defined over O and <7*P! is defined over Op.
We first recall the definition of PEL datum with parahoric level structure following [53], see
also the appendix of [57] or [21] section 2.

A.1.1. Parahoric data at p. To simplify the notation, we will write (B, *,V,¢ = (-,-) ,Op, A)
for the base change of such data in section [2 to Q,. So we have

B:HMmi(Ri), OBZHMml(ORZ)
i=1

i=1
By Morita equivalence, we can decompose the B-module V' (resp. any Op-lattice A in V')
as

V= @Vlml ( resp. A ~ @Almi),
i=1 i=1
where each factor V; is a free R;-module (resp. A; is an Op,-lattice in V;). Write 2d; =
rankp, V;.

Definition A.1. (1) A chain of Op-lattices in 'V is a set of totally ordered Op-lattices
& such that for every element x € B* which normalizes Op, one have

ANe ¥ — zAc Z.

(2) A set £ of Op-lattices in V is said to be a multichain of Opg-lattices if there exists
a chain of Op,-lattices £; in V; for each i = 1,...,m such that for any member
A e Z one has A; € L foralli=1,...,m.

(3) A multichain of Opg-lattices £ is called self-dual if for every member A € £, its
dual lattice AV also belongs to £, where

A ={z eV |y¥(z,A) CZpy}
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For a multichain .Z of Op-lattices, we write
G=0go
for the group scheme over Z, defined by the stabilizer of multichain £ as in [53, §6]. By
[19, Corollary 4.8], for a reductive group of the form G = Resp, Q, G’, every parahoric group
scheme of G is of the form Resp,. |z, G’ for a unique parahoric group scheme G’ of G'. If we
assume that G’ unramified, the stabilizer group scheme G = G & associated to .Z is always

connected. So G is a parahoric group scheme of G and (since the prime to p level K? is
fixed) we write K = G(Z,).

A.1.2. Integral models. Now let AV be the category of abelian varieties with O p-actions,
where morphisms are prime to p isogenies.

Definition A.2. Let £ be a multichain of Op-lattices in V. A £-set of abelian varieties
over a Zyp-scheme S is a functor

L — AV, A Ay,
satisfying the following.
(1) For each inclusion A C N in £, a quasi-isogeny Ay — Ap/.
(2) For any element a € B* NOp which normalizes Op and any member A € £, there
exists an isomorphism 0, 5 : Ay — Aqa such that the following diagram commutes

Az "y
A al

\ lp

Ap

Let .Z be a self-dual multichain of Op-lattices in V', and fix a sufficiently small open
compact subgroup K? C G(AI}). Recall that E is the local reflex field. There is a naive

integral model &/5*¢ over O, which is a moduli scheme classifying the objects (A.#, A, 7)/S
for each scheme S/ Op, where

e Ay = (Apr)rcy is a Z-set of abelian schemes over S in AV;

e A = Q* - \is a Q-homogeneous principal polarization on A g;

e 77 is a m(S,3)-invariant KP-orbit of isomorphism 7 : V ® AI; — TP(As) which
preserve the pairings up to a scalar in (A?)X. Here T?(As) is the prime to p Tate
module of Az and for simplicity we assume that S is connected.

For the exact meaning of the above terms, we refer to [35/47,53] and appendix of [57].

In general the naive model @/Z¥® is not flat over Op, cf. [43]. In order to define a
good integral model, Pappas and Rapoport introduced an alternative integral model of
APV @0, F in [47], where F is a large enough extension of E (which contains the Galois
closure of E over Q). We briefly recall their construction. To this end, we find it convenient
to use Lan’s formulation of splitting structures ([35]).

Definition A.3 ([35, Definition 2.1.12]). Suppose that S is a scheme over Op. A L -set
of polarized Op ® Og-modules is a triple (H,.F, 1), where:
(1) H: A~ Hp and F : A — Fp are functors from the category £ to the category of
Op ® Og-modules.
(2) For each A € £, both Fp and Hp [ Fa are finite locally free Og-modules, and that
Ha |/ FA satisfies the determinant condition.
(8) For other conditions, we refer to Lan’s paper [35].
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Definition A.4 ([35, Definition 2.3.3]; see also [47] Definition 14.1). Suppose that S is a
scheme over O, and that (H,.Z,1) is a ZL-set of polarized Op @ Og-modules. A splitting

structure for (H,.%#,1) is a collection
& = (ﬂ{j, ij)1<z<'r 1<5<f;,0<I<e;>»

where each ﬁi{j A — 33}\” is a functor from the category £ to the category of Op ®0Og-
modules, and each L,ZL-J : ﬁ}\w — Hayuj @5 an injective morphism satisfies the following
conditions (identify le] with its image under t):

(1) For each A € £, we require that both L%Z\” and Hp ;i j /9’1{” to be finite locally

free Og-modules.
(2) For each A€ L and1<i<r1 <j < f,;, we have a filtration
0

as O ®0Og-submodule ofHA ji,j- Foreach mtegeTO <1 < ey, the quotient F Z]/ f/lx 1,1]

is a locally free Os-module of rank d. j» annihilated by b®1—1®ai7j( ) for allb € OF,.
(8) For each A € £ and i € ., there are periodicity isomorphisms, cf. [35] p. 2475
for more details.
(4) For each A € Z and tuples (i,7,1), let (F# A”) denote the orthogonal complement

of F Alj in Hav ;,; with respect to the perfect pairing Ha;j x Havij — Og. Then
k I \L l
[[ bo1-1@00)(Fh,)") C Fhoay

0<k<l

Let </, *Pl e the moduli scheme over Op classifying the objects (A.g, A\, 7, Fe Fo) for each
scheme S/ Op, where (Ag, \,7) is an object in &/ZV¢(S) and .Z, is a splitting structure for
the .Z-set of polarized Op ® Og-modules associated with (A, A, 7). This is the splitting
model associated to the PEL datum. By the notation of [35], we have

AP = Splt

(H )/d§a1v9®oF .

In the following, we will simply write &*P! and @™ for the schemes 2 U and o7 E}ai"e
respectively. Let o/ be the scheme-theoretic image of the natural morphism
%spl N %naive R0 OF N JZ{naive
5 .
The natural morphism
P — of
is projective by [35] Proposition 2.3.7. Both &7*P! and &7 admit better geometric properties
than the naive integral model 7",

A.2. Local models. The local structure of integral models of Shimura varieties are con-
trolled by the associated local models. There is a naive local model M"®V¢ associated to
the moduli scheme &7™ve, Recall that MV := M®™V¢(G, 1) is the moduli scheme over
Opg given by the following definition.

Definition A.5 ([53]). A point of M™Y® with values in an Og-scheme S is given by the
following data.

(1) A functor from the category £ to the category of Op @ Og-modules on S:
A—ty, AeZ.
(2) A morphism of functors
VA " A®Zp Og — ta.
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We require that the following conditions to be satisfied:
(1) ta is a finite locally free Og-module. The Op-action on ta satisfies the determinant
condition
det(a;tpr) = det(a; W), a€ Op.
Osg F

(2) The morphism @y are surjective.
(8) The composition of the following maps is zero for each A:

th = (A®0g)* 2 A®0g — t;.

The naive local model M"®V¢ is usually not flat in the ramified case, cf. [43]. We define
the splitting local model
Mspl — MSpl(g, u)

as moduli scheme over O classifying the splitting structures over M™V® @ Op. The
splitting model M*P! admits good properties. Recall we assume that there is no type (AR)
local factors.

Proposition A.6. The splitting local model M®*P! is flat over Op.

Proof. This is a direct generalization of [47, Theorems 5.3 and 9.4]. For the reader’s conve-
nience, we briefly recall their proofs. Without loss of generality, we may assume r = 1 and
we slightly change the notation: let G = G be the associated reductive group over Q,. So
we have

G = ReSFl‘Qp G,
for an unramified group G’ over a local field F1| Q,. Since F|Q, contains the Galois closure
of F1, we have
Gr = H G', where G, := G' ®p, ; F.

T F1—F
The projection of

M:ij—)GF: H G/T

T:F—F
to each factor G’. gives a cocharacter p, : G, p — G.. Moreover, for each 7 : F1 — F, one
can associate an O p-multichain by
L= {AT:A®(9F1 Or | A e Z}.

Such multichain determine a parahoric subgroup of G%.. This gives a local model (over Op)

M = M(G7, pir) 2.

By our assumption, G’ is unramified over F, so M'°° is the same as naive local model. This
means that for each O p-scheme S, MIOC(S ) classifies the set of multichain {# A ; }rcey C &>
which is compatible with transition maps, and each .#  ; is Zariski locally on S an Og-direct
summand of A, of rank d,.

Given the splitting local model M®P' = M*PY(G, 1) over OF, one has the following diagram
(which is a modified version of the diagrams (5.10) and (9.13) in [47])

~ spl
M
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For each Op-scheme S, MSpl(S ) classifies
(Fh ol Th = A ®o, Os)rcy,
where (.# i\,j)i\e ;€ MePL(S), cpé. is an isomorphism from the Og-module
T\, =Ker(r®1l-1® Ué(w))\Aé’s s #i1)
to the Og-module Aé ®op Og with
Aj =A@, 4t OF .

Such a trivialization exists Zariski locally on S by [47, Propositions 5.2, 9.2] (this reference
only cover the case of type (C) and (AL); the case of type (AU) can be proved by the same
argument). The map m; is the natural forgetful morphism, and 7 sends (.F i\,jv‘Pix ;) to

l -1 1
So.llx,j(ng,j/yAJ) € M;f
Let gé be the subgroup of [],c o Aut(Afj) compatible with the transition maps of %,
and GP! := ijl gé-. Then the action
l l l l N
g;- (9/\,3'7%\,]‘) = (yA,jangOA,j)

makes 11 a HJ’,ZZ2 Qé—torsor. The other action

l l l l —-1_1 1 l I
g; - (yA,jv(pA,j) = ((SOA,j) ngOA,j(gZA,j)vgj@A,j)
makes T3 a [[;,59 gé—torsor. Now the existence of such a diagram of torsors for a smooth
group scheme and flatness of unramified local models implies the flatness of M*P!. O

Proposition A.7. (1) Let MI'°¢ = M'°¢(G, 1) be the scheme-theoretic image of the nat-
ural forgetful morphism M — MPaive  Then M coincides with the local model
M defined in [38] with respect to the triple (G, u, Kg).
(2) We have the following naive local model diagram:

—_—

o naive

/ \
oy haive Mnaive
(3) We have a local model diagram:

o ;/JX

(4) The pullback of the natural morphism M*P! — M"Ve gives the splitting local model
diagram with respect to the group G over Op (|47, §15])

Mloc

7N

rQ{Spl Mspl
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Proof. We only need to show M coincides with M, as the other statements are contained
in [47]. The image M'°° is flat by the flatness of M. As the generic fiber of M agrees
with M™@ve M is the flat closure of the generic fiber of M™V® which agrees with M!°¢ by
definition. ([l

In order to study the geometry of o/ Bpl, we would like to show that there is a local model
diagram of splitting models with respect to the splitting group G*P! in the next paragraph.

This means that there is a G'-torsor @**' over &/*'| and a G*Pl-equivariant morphism

;z{Spl N Mloc(gspl’ M)'
For every scheme S over O and each A € £, we define the Og-module Ti\l ; as

Ti\,i,j =Ker((m®1-1® Ug,j(m))‘%,j/?ﬁ,j)'

Consider also the O p-lattice Aé ;= A; R0, ot Or. Then Zariski locally there exists an
9 i7 17‘7
isomorphism
l l
Thi; =N ®op Os,
see the proof of Proposition For every A € £, we can define an Og-module M, as
My =P My, Mai =P Th,;
4.l

7
so it is locally isomorphic to the Op-lattice
1. spl,m; spl | l
A= P AP AP = AL
i gyl
Consider the group
1 spl
gsl,xp = Aut(Abp ) C H glAJ’] .
i7j7l
We simply define the splitting group G*P! as
spl spl
g =) ¥
AeZ

For each 1,j,1, let gé,j be the group scheme over Op defined by the automorphism of
multichain (A} ;). Then it admits a decomposition as GoPl = I1;,,6. ;- Now we define

AR | L Cn
i7j7l
where on the right hand side each Mloc(gfv,j, uéj) is the local model attached to the pair

(3 o uﬁ,j). Note that if we consider the natural GSPl-action on M°¢(GP!, 1), as in the proof
of Proposition we get the following diagram of schemes over Op for splitting local
models (modified version of the diagrams (5.10) and (9.13) of [47]):

~ spl

MG, )
MG, ) M(G, 1)

where 71 is the []; ji>2 QZZ» j-torsor, and ¢ is a GPlequivariant morphism. Note that ¢ = o,

~ spl
but here we only consider the group action on M (G, 1) given by 1. One can see that such
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action is compatible with the natural []; ;5o g -action on M!°¢(G*P!, ;). This motivates
the following local model diagram for splitting 1ntegral models.

Proposition A.8. We have the following local model diagram for splitting models:

/ \
o7/5Pl Mloc(gspl’ /’L) - Hi,j,l Mi\,i,j’

where for every Op-scheme S, «/5PL(S) classifies isomorphism classes of
l l l
Ay, Z o (Thij Taij = N j ®op Os)aes)s
: 1 (A - it -
with (Ay, Z o) € F(S), and T := {7} ; ;} can be viewed as a trivialization of the multi-

chain (Mp)aey. The morphism 7 is the natural forgetful morphism, which is a G*Ptorsor.
The morphism q is the natural GP'-equivariant smooth morphism given by

(A_Sf’/f’ {TAU}) = {TA l,j(‘gA,Z,j /‘gAz])}AE.Z'

Proof. Combining the diagram in Proposition (4) and the diagram in the proof of Propo-
sition one has the following diagram

~ spl

dspl #

N TN

%spl Mspl g u Mloc gspl )

—
—~—

Let «7°P! be the product of ¢’ and 7y, then we have a new diagram

—

JZ{Spl

N

%spl Mloc gspl )

where 7" is a Gop X []; /50 G} ;-torsor, and we can check that the same action of " makes

7" aGop %I, j1>2 gaj-equivariant smooth morphism. Note that we always have A} C A,
so the restriction of G-action on A induces a natural morphism
Gop = Aut(A ® Op) — Aut(EPA}) =
i

So we can push the G-torsor 7" along the natural morphism Go, — G to get 75l
a G5Pl = IL il g” -torsor. Moreover, the Gp, X H” 1>2 g -action on MbC(gSPl u) factors

through GP!, therefore the morphism ¢ factors through o7 bpl and induces a GPl-equivariant
morphism ¢ : &/sP! — M¢(G*P! ;1). This gives the diagram

SN

%spl Mloc (gspl) M)
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claimed in the proposition. ]

A.3. EKOR stratification. Recall that we write x for the residue field of O, and k =&
for the algebraic closure of k. We will construct the EKOR stratification of

Ay = A Qk

from its local model diagram, following the idea of [57].

Fix the triple (G, u, K) with associated parahoric group scheme G. We have the attached
local model M!°® = M"¢(G, ;1) equipped with a left action of G. Let Gy = G®k and
M = M"*¢ @ k. For K = G(Z,), let Adm(p)x be the p-admissible set as in [57] 1.2. By
[1938,47], we have

Corollary A.9. There is a set-theoretically disjoint union of locally closed subsets
Mloc _ H M@,
weAdm(u)

Moreover, we have
(1) The closure M™ =[], ., M®;

(2) Each M™ consists of a single Go-orbit, and the stabilizer of each closed point is
smooth.

The decomposition of M'°¢ induces the KR (Kottwitz-Rapoport) stratification
do= [ ¢,

weAdm(p) ik

where for each w € Adm(u)x, 27§ is the fiber of the morphism of algebraic stacks over k

induced by the local model diagram (cf. Proposition (3))
oy — [Go \M™ .
Each &7 is a locally closed smooth subvariety of 7, and we have
a5 =] «v"
w' <w

Consider the local model diagram

o
/ X
g

where 7 is a Go-torsor and ¢ is Gop-equivariant. For each w € Adm(u)g, let J,, be the
set defined in 1.3.6 of [57], and ggdt the reductive quotient of Gy. By the same method of
[57, §3], there is a Git-zip of type J, over &/¥, written as

(I, 1%, 1%, ).

The tuple (I, IY,I*, ¢) then induces a morphism of stacks

Mloc

Cow : AY — GH-ZipTw.
The proof of |57, Theorem 3.4.11] gives

Corollary A.10. The morphism (, is smooth.
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Let W = Wgrar be the Weyl group of Gidt . Then the underlying topological space of
Q{)dt—Zipr is given by the partially ordered set »W. For each x € /W, define &% :=
¢, (x). Then &/ is a locally closed subvariety of &7(. Letting w € Adm(u)x vary, we get

= 1T AT
weAdm(u) gk ,x€Sw W

We will call such decomposition the EKOR stratification of .o7.
The index set of EKOR strata is in fact given by the partially ordered set (X Adm(u), <k,
) of [57] 1.2. There is a natural surjection

7 X Adm(p) — Adm(p) g,

such that for every w € Adm(u) g, the fiber 7=1(w) is bijective to the partially ordered set
Ju W by [57] 1.3.6.

Example A.11 (EKOR strata of Hilbert modular varieties). Consider B = L a totally real
field over Q and V = L?, then G is a subgroup of Respg GL2. In this case, the canonical
model &/ (with mazimal parahoric level at p) was constructed in [11] and coincides with
MV Let x = (A, N\ 1,0) € o o(k) and H, w the corresponding k-vector spaces as above.
For each i,5, H;j; ~ kle:]? and wij C Hij is a kle;]-submodule with k-dimension e;, so
there is an integer a; ; such that

wij = (e77) @ (€5 "), for a unique integer 0 < a;; < L%j

For each tuple a = (a; ;) such that 0 < a;; < %], let

§:={r€do|wpij= () @ (] ") for alli,j}.
Then
o=

is the KR stratification of </y. The stratum </ is locally closed subvariety of </ of di-
mension 3, ;(e; — 2a;;) with closure relation given by

a <d if and only if a; j > a;j for all i, ;.

Now consider the tuple a = (a; ;) such that x € @/§(k), then a;; is the mazimal integer
such that

s
wij C & Hig -
If we write M; ; = H;; [ei Hij, the Ver map H;jp1 — Hiy induces a morphism
aij aij+1
Vig: Mijor — ;™ Hij /e;™ " Hij =~ M.

Conversely, we first assume a; j < e;/2, the Frobenius map H;; — H; j+1 induces a mor-
phism

a;,; a; ;j+1 2a;,; 2a;,;+1
Fij:Mjg~e;™ Hig/e;™ Hig—ey ™ Hige fe7 ™ Higrn >~ My
For a;; =e;/2, let F; j =0, then we have the tuple

(M =P M,;;,F=EPF;,V:=PVi;)
irj i irj

such that M is a k-vector space with semi-linear morphisms F,V satisfying the equation

Im(F) = Ker(V), Ker(F)=Im(V).
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The type of the F-zip (M,Ker(V),Ker(F), ps) is determined by the dimension of Ker(V),
which is equal to the number of the index (i,j) such that a;; # e;/2. More explicitly,

consider the function
0 =0;
6('[,[,) — { ? U Y

1, u#0.

For each tuple a = (a; ;) corresponding to a KR stratum </, set
ty = Z d(ei — 2a; ;).

There are t, + 1 EKOR strata contained in </§. The EKOR type of a point x € o/§(k)
is given by an integer 0 < t, < t,, and the EKOR stratum containing x has dimension
dim(&/§) — ts.

A.4. Global construction of EKOR stratification. We will show that the closure re-
lation of EKOR strata is given by the partially ordered set (X Adm(u), <k o). All results
and detailed definitions come from [57, §4] with exactly the same proofs (note that thanks
to the recent works [1,/16] the perfection of the geometric special fiber M'°¢ of the local
model here can be embedded into the associated Witt vector affine flag variety, similar to
the tamely ramified case used in [57]). So we omit all proofs in this subsection and refer to
loc. cit. for detailed arguments.

Keep the notations as in the last subsection. Let C(G,u) be the index set of central
leaves in |57, §1]. There is a prestack Shtizcl( over k = F, classifying G-Shtukas of type p,
whose k-points are given by

Sht, (k) = C(G, ).

There is a prestack Shtloc(C>O D over k, parameterizing the so-called (oo, 1)-restricted local
Shtukas. For sufﬁmently large integer m, there is an algebraic stack Shtloigm D over k,

parameterizing the so-called (m,1)-restricted local Shtukas, such that (see [57, Lemma
4.2.4])

|Sht, % | = | Shtie W™ | = K Adm(p).
We also have natural maps (Whlch are perfectly smooth by [57, Proposition 4.2.5])

Shtlo% — Sht 258! — Sht 2™ - [Go \ M),

Consider the perfection o pf @1{7 o/ of o7y. Then the same proof of [57, Proposition
4.4.1] shows that there exists a morphism of prestacks

/B — Shtlo .

tlo

Composing this morphism with the natural morphism Sh ‘}( — Shtloc(m 1)7 we get a mor-

phism of stacks
(m,1)

v 1 f — Sht 5
Recall that the local model diagram gives the morphism of stacks
A0 B = [Go \ M),

which is perfectly smooth. The same proof of [57, Theorem 4.4.3] (there is a small gap
in the last step of the proof concerning the involved diagram, which is inherited from
the corresponding place of the work of Xiao-Zhu; but a small modification without the
commutativity of that diagram will make the argument still work, cf. [58].) gives
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Theorem A.12. The following diagram commutes:

pf VK loc(m,1)
oy —— Sht,

e

[go \ Mloc]
Moreover, vi is perfectly smooth.
Consider the morphism of stacks
VK - szpf — Shtl:(}gm’l) .

We know that | Sht10C ma1) \ ~ K Adm(pu), the fibers of v are then the EKOR strata of .Q%gf.
As we have the 1dent1ﬁcat10n of underlying topological spaces

f
| | =10l
The perfect smoothness of vx shows that

Corollary A.13. For any x € X Adm(u), the Zariski closure of the EKOR stratum </% is

given by
I #-

<Ko

A.5. Non-emptiness of EKOR strata. We recall the proof of non-emptiness of EKOR
strata following [24]. Our situation is slightly different from loc. cit. as the groups there
are required to be tamely ramified at p. Nevertheless their method equally applies to our
case.

Let 7, be the minimal element in Adm(yu) with respect to the Bruhat order. Let I bea

fixed Iwahori subgroup of G = G(Qp). For simplicity, we may assume that the lattice .Z
is determined by a finite index set J = {0,...,m}.

Let B(G) be the set of o-conjugacy classes in G. Recall that the Kottwitz set (the index
set of Newton stratification of 27¢) is

B(G, ) = {[t] € B(G) | w([t]) = u*, v([b]) < 7}

There is a unique basic element [by] € B(G, ). By [27, Theorem 1], the basic locus of <7
is nonempty. Let © = (A, \j,@)jes € &/ (k) be a point in the basic locus. Let D; be the
Dieudonné module of A;[p>°] and N the common rational Dieudonné module. Then D;

form a lattice chain inside N. The Frobenius gives d € G such that [0] = [bg] € B(G, 1).
For any w € Wg\W /W and b € G, The affine Deligne-Lusztig variety is defined as

Xk ={geG/K | g bo(g) € KwK}.

If K =1, we simply write the corresponding affine Dehgne Lusztig variety as X, (b). For

an element w € W let w be a representative of it in G. The following lemma will be used
in the proof of non-emptiness of EKOR strata.

Lemma A.14. (1) 7, is central.
(2) X:,(0) is non-empty.

Proof. Recall that we have the isomorphism

W~ W, x m1(G)ry,
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where W, is the affine Weyl group of G. Under this isomorphism, the minimal element 7,
corresponds to (id, u#) € W, x m1(G)r,. By the proof of [48, Appendix, Lemma 14], such
element lifts to the torus 7' C G. So 7, is central in W and its lift is also central in G.

We have

X, (0)#0 <= It,In 5] #0

by definition. As 7, is a o-straight element in W, I Tuf lies in a single o-conjugacy class of
G by [23, Theorem 5.1.(a)]. Moreover, such conjugacy class is given by [8]. This shows the
non-emptiness of X, (9). O

Proposition A.15. We have /% # ) for all x € K Adm(p)

Proof. By Lemma (2), there is an element g € X, (6). Then g~'d0(g) € I7,I. Lemma
(1) shows that do(g) € g7, [. This gives

png C (SU(g)Dj = 7"“ng C ng,
which essentially shows that
Frob(gD;) = 60 (g9)D; C gD;.

Thus gD; corresponds to a p-divisible group which is isogenous to A;[p>], so we get an
abelian variety gA;. The polarization A; and Op-action extends naturally to gA;. The
prime to p level structure o also extends to gA;, we thus obtain a triple (gA;, gAj, ). This
triple gives a k-point gz € </1(k). By construction, gz must live in the minimal EKOR
stratum. Then by closure relation, we get the non-emptiness of EKOR strata. ([l
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