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Abstract. We study F -gauges for de Rham cohomology of smooth algebraic varieties
in characteristic p. Applying to good reductions of Shimura varieties of Hodge type,
we recover the Ekedahl-Oort stratifications by constructing universal de Rham F -
gauges with G-structure. We also study the cohomology of de Rham F -gauges on
these varieties. In particular, in the PEL type case and when the weights of the flat
automorphic vector bundles are p-small, we determine the F -gauge structure on their
de Rham cohomology by the associated dual BGG complexes.
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1. Introduction

Shimura varieties are certain algebraic varieties which play a very important role
in the Langlands program for number fields. These algebraic varieties admit very rich
arithmetic and geometric structure. In this paper, we study the mod p geometry and co-
homology of these varieties by the theory of F -gauges, as initiated by Fontaine-Jannsen
[17], Drinfeld [8, 9, 10], Bhatt-Lurie [5, 6, 4] et al. In fact, we mainly restrict to the sim-
plest version of the theory: de Rham F -gauges, which are roughly enhanced coefficient
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objects for the de Rham cohomology of smooth algebraic varieties in characteristic p.
This theory already reveals new information on the good reductions of Shimura varieties.

Let p be a prime. Kisin [27] and Kim-Madapusi Pera [26] (for p = 2) have constructed
smooth integral canonical models for Shimura varieties of abelian type at p. For sim-
plicity, we restrict to the Hodge type case. Let X be the geometric special fiber over
k = Fp of the integral canonical model constructed in [27, 26] of a Hodge type Shimura
variety with hyperspecial level at p. Then by the works of Moonen-Wedhorn [40] (in
the PEL type case, see also [49] and the references therein) and C. Zhang (in the Hodge
type case, [52]), there is a basic stratification

X =
∐

w∈JW

Xw,

called the Ekedahl-Oort stratification of X, generalizing previous works of Ekedahl,
Oort, and Goren-Oort in the Siegel and Hilbert modular varieties case. Here the index
set JW is certain subset of distinguished elements in the absolute Weyl group of G, the
group defining the Shimura variety, which we consider as a reductive group over Fp. The
Ekedahl-Oort stratification has nice properties, which lead to better understanding on
the arithmetic geometry of X, for example see [49, 19, 51].

To construct the Ekedahl-Oort stratification, one applies the theory of F -zips with
additional structure developed by Moonen-Wedhorn [40] and Pink-Wedhorn-Ziegler [44,
45], by first constructing the universal G-zip of type µ (the Hodge cocharacter) over X,
then showing that the induced morphism

ζ : X → G-Zipµ

from X to the moduli stack G-Zipµ of G-zips of type µ is smooth. By [44] section 6,
there is a partial order � on JW , and we have a homeomorphism of topological spaces
|G-Zipµ| ' (JW,�). The Ekedahl-Oort stratum Xw is defined as the fiber of ζ at w.

Let S be a scheme over Fp. An F -zip over S consists of a tuple (E , C•, D•, ϕ), where

• E is a finite locally free OS-module (i.e. a vector bundle over S),
• C• is a decreasing filtration on E ,
• D• is an increasing filtration on E ,
• ϕ : Fr∗SgrCE

∼→ grDE is an isomorphism of the associated graded vector bundles
up to pullback by the absolute Frobenius FrS of S.

Such a structure arises naturally from the relative de Rham cohomology (with constant
coefficient) of a proper smooth morphism f : Y → S, once we assume that the Hodge-de
Rham spectral sequence degenerates and the relative Hodge cohomology sheaves are locally
free: fix an integer i ≥ 0 and set E = H i

dR(Y/S), let C• be the Hodge filtration on E , D•
the conjugate filtration, and ϕ the morphism induced by the Cartier isomorphism, cf.
[40] section 7 for more details. In particular, F -zips are closely related to the Dieudonné
theory of 1-truncated p-divisible groups ([40, 45]). One has a natural extension of the
notion of F -zips to G-bundles, known as G-zips. In the case of the mod p Hodge type
Shimura variety X, we consider the relative de Rham cohomology of the abelian scheme

A → X,

which is induced from a fixed Siegel embedding. This gives us an F -zip over X. To
construct the universal G-zip, one takes care about the Hodge cycles, and makes trivial-
ization of the F -zip with respect to the standard one constructed from the Siegel datum,
for more details see [52].

The motivation of this paper comes from the following question: what is the relation
between the Ekedahl-Oort stratification of X and the F -zip structure on the de Rham
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cohomology1 H i
dR(X/k)? Apparently, both of them reflect some perspective of the mod

p Hodge structure of X.

Here, to formulate the question one has to be careful. First, to make sense of the
F -zip structure on the de Rham cohomology H i

dR(X/k), one has to prove that the
Hodge-de Rham spectral sequence degenerates, which is nontrivial in characteristic p.
Next, in the setting of Shimura varieties, it will be more natural to consider de Rham
cohomology with coefficients. The theory of automorphic vector bundles provides plenty
of flat vector bundles (V,∇) over X, coming from algebraic representations of G. Then,
it will need furthermore efforts to make sense of the F -zip structure on the de Rham
cohomology

H i
dR(X/k, (V,∇)),

since in the previous work of Moonen-Wedhorn [40] only de Rham cohomology with triv-
ial coefficients were considered. At this point we are naturally led to the notion of de
Rham F -gauges, which are roughly enrichments F -zips by adding an additional datum
of a flat connection ∇, with necessary compatibility conditions. It turns out the theory
of de Rham F -gauges unifies and strengthens the two structures on X: Ekedahl-Oort
stratification and the de Rham cohomology.

Let S be a smooth scheme over Fp. A de Rham F -gauge (see Definition 3.1) over S
consists of a tuple (E ,∇, C•, D•, ϕ), where

• (E , C•, D•, ϕ) is an F -zip over S,
• ∇ is a flat connection on E , such that it satisfies the Griffith transversality

condition with respective to C•,
• the filtration D• is horizontal with respective to ∇, and the induced connection

on grDE has zero p-curvature,
• let θ∇ = grC∇ be the graded Higgs field on grCE , and ψ∇ : grDE → grDE ⊗
Fr∗SΩ1

S the morphism induced by the last condition on p-curvature, then we

require the isomorphism ϕ : Fr∗SgrCE
∼→ grDE to be compatible with θ∇ and

ψ∇: it induces an isomorphism ϕ : Fr∗Sθ∇ ' ψ∇.

By a classical theorem of Katz ([25] Theorem 3.2), such a structure also arises natu-
rally from a proper smooth morphism f : Y → S, under the same condition on the
degeneration of the Hodge-de Rham spectral sequence and locally freeness of the Hodge
cohomology sheaves. In particular, the natural connection ∇ on E = H i

dR(Y/S) is
given by the Gauss-Manin connection, θ∇ is then the Kodaira-Spencer map, and ψ∇ the
induced p-curvature map. See also [42] Remark 3.19 for some generalized versions of
Katz’s theorem. On the other hand, one can show that this explicit definition is equiv-
alent to the modern stacky approach of Drinfeld [9] and Bhatt-Lurie [4], where a de
Rham F -gauge can be defined as a vector bundle2 over the special fiber of the syntomic
stack Ssyn, cf. Theorem 3.8. Another theory of de Rham F -gauges also appeared in the
work of Fontaine-Jannsen (cf. [17], especially subsection 8.2). It would be interesting
to explicitly compare the definition here and the version in [17].

Let F -GaugedR(S) be the category of de Rham F -gauges over S. One can study the
cohomology of a de Rham F -gauge (E ,∇, C•, D•, ϕ) over a proper smooth morphism
of smooth schemes Y/S: under the above condition that the Hodge-de Rham spectral
sequence degenerates and the relative Hodge cohomology sheaves are locally free, the de

1In [51] Wedhorn-Ziegler studied the cycle classes of Ekedahl-Oort strata in the Chow ring of Xtor

(smooth toroidal compactification of X), showing that they generate the same subring as that generated
by the Chern classes of automorphic vector bundles. However, this does not address our question yet.

2One can consider more general perfect complexes or even general complexes in the stable∞-derived
category of quasi-coherent sheaves on the syntomic stack, as in these references. Here we only restrict
to the simplest version of vector bundles.
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Rham cohomology H i
dR(Y/S, (E ,∇)) carries a natural structure of a de Rham F -gauge

over S, by combining the results of Katz [25] and Moonen-Wedhorn [40], cf. Proposi-
tion 3.6. Here, we just mention that to study the conjugate filtration on the de Rham
complex, we make use of the conjugate filtration N• on the sheaf of PD differential
operators DY/S , cf. [42] subsection 3.4. The graded sheaf grNDY/S is a canonical split
Azumaya algebra, which essentially reduces the study of conjugate filtration on de Rham
complexes to that on the associated p-curvature complexes, cf. Proposition 3.5.

If S2/W2 is a lift of S/k over the truncated Witt ring W2 = W2(k), we have another
closely related category MF∇[0,p−2](S2/W2), the category of p-torsion Fontaine modules

(M,∇,Fil,Φ), introduced by Faltings in [14] (as a generalization of the previous work of
Fontaine-Laffaille in the case S = Spec k). Here the precise definition of (M,∇,Fil,Φ) is
a little technical, in particular there is a “strongly divisibility condition” on the Frobenius
Φ and the Hodge filtration Fil. Using the Cartier transform functor constructed in [42],
Ogus-Vologodsky gave a reformulation of this category in loc. cit. subsection 4.6. The
link between this theory and de Rham F -gauges is as follows, cf. Proposition 3.3. There
is a natural functor

MF∇[0,p−2](S2/W2)→ F -GaugedR(S),

which is fully faithful, with essential image the de Rham F -gauges (E ,∇, C•, D•, ϕ) of

nilpotent level ≤ p− 1, i.e. ψp−1
∇ = 0. We note that this functor was already implicitly

discussed in [42] subsection 4.6. Here, it deserves to note that contrary to the category of
p-torsion Fontaine modules, we do not need any lift of S/k to define de Rham F -gauges.

We have also a similar notion of de Rham F -gauge with G-structure of type µ (or for
simplicity: de Rham F -gauge with (G,µ)-structure), for a reductive group G over Fp
with a cocharacter µ. There is a natural forgetful functor

F -GaugeG,µdR (S)→ G-Zipµ(S)

from the category of de Rham F -gauge with G-structure of type µ to the category of
G-zips of type µ over S, which is an equivalence of categories if S = Spec k. From
here one sees that the natural morphism between the corresponding stacks induces a
homeomorphism of underling topological spaces.

In a recent paper [10], Drinfeld has studied the moduli stack3 BTG,µ1 of de Rham
F -gauge with G-structure of type µ, with µ minuscule. He shows that this is a smooth
algebraic stack of dimension zero, and the forgetful map

BTG,µ1 → G-Zipµ

is an fppf gerbe banded by a finite group scheme LauG1 . The stack BTG,µ1 should be the
special fiber of a smooth algebraic stack living over OE , see [10] Conjecture C.3.1 (which
has recently been proved by Gardner-Madapusi, cf. [18] Theorem A). If G = GLh and
{µ} is given by (1d, 0h−d) for some integer 0 ≤ d ≤ h, Drinfeld also conjectures that

the stack BTG,µ1 is isomorphic to the stack of 1-truncated p-divisible groups of height
h and dimension d, cf. [10] Conjectures 4.5.2 and 4.5.3. Recently, Mathew and Mada-
pusi announced a theorem which says that there is an equivalence between the category
of truncated p-divisible groups of height h and dimension d over S and the category

F -GaugeG,µdR (S) (cf. [18] Conjecture 1 and the paragraph below it). In particular, this
equivalence implies Drinfeld’s conjecture.

3In Drinfeld’s paper [10], the cocharacter µ is defined over Fp. But one checks that with necessary
modifications, his construction works for µ defined over a finite extension of Fp, as in the setting of

[44, 45]. Moreover, the stack BTG,µ1 is exactly introduced to study the mod p geometry of Shimura
varieties.
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Back to Shimura varieties and let S = X. The first main result of this paper is as
follows. It allows us to make the link between de Rham F -gauges and Ekedahl-Oort
stratification of X.

Theorem 1.1 (Theorem 4.1). Let X be the geometric special fiber of the integral canoni-
cal model of a Hodge type Shimura variety with hyperspecial level at p. There is a natural
de Rham F -gauge with (G,µ)-structure over X, which induces the universal G-zip of

type µ given by ζ. The induced morphism ξ : X → BTG,µ1 is smooth. In other words,
we have a commutative diagram of smooth morphisms of algebraic stacks over κ:

X
ξ //

ζ ""

BTG,µ1

��
G-Zipµ.

This theorem can be viewed as a strengthen of the main result of [52]. The smooth-
ness of the morphism ξ can be proved based on the smoothness of ζ ([52]) and the

fact that BTG,µ1 → G-Zipµ is a gerbe ([10]). With some extra efforts, one can ex-
tend the above theorem to the abelian type case (cf. [36, 48] for some constructions of
this type). Currently there are works in progress to construct a mixed characteristic
version of the morphism ξ, which is certainly more difficult (see the introduction of [18]).

We have also a Tannakian definition of de Rham F -gauge with G-structure. Thus by
the above theorem, we have a functor

RepG→ F -GaugedR(X).

Therefore, for any λ ∈ X∗(T )+ such that Vλ is defined over Fp, we have an enrichment
of the flat vector bundle (Vλ,∇) into a de Rham F -gauge (Vλ,∇, C•, D•, ϕ). Consider
the de Rham F -gauge associated to the dual representation V ∨λ . In the second main
result, we study the F -gauge (= F -zip) structure on the de Rham cohomology groups

H i
dR(X,V∨λ ) := H i

dR(X/k, (V∨λ ,∇)).

It turns out that if λ is p-small, this F -gauge structure is determined by the dual BGG
complex4 BGG(V∨λ ), cf. [13, 46, 39, 30], which is a basic construction in the setting of
Shimura varieties and closely related to the de Rham complex DR(V∨λ ,∇).

Theorem 1.2 (Theorem 4.11). Suppose that X is of PEL type. For simplicity, assume
moreover that X is proper, and the reductive group G defined by the PEL datum is
connected. Let n = dim X.

(1) For any 0 ≤ i ≤ 2n and λ ∈ X∗(T )+ such that Vλ is defined over Fp, there is a
natural F -zip structure on H i

dR(X,V∨λ ), which is induced by the cohomology of
the de Rham F -gauge (V∨λ ,∇, C•, D•, ϕ).

(2) If moreover λ is p-small, then the F -zip structure on H i
dR(X,V∨λ ) is determined

by the dual BGG complex BGG(V∨λ ) as follows. Let H ∈ X∗(T ) be the element
defined by the conjugacy class of µ. For each a ∈ Z, by the construction of dual
BGG complexes, we have

H i
(
X, graCBGG(V∨λ )

)
=

⊕
w∈JW

w·λ(H)=−a

H i−`(w)(X,W∨w·λ).

4It is interesting to note that the set JW appears once again in the construction of the (dual) BGG
complexes. The two appearances of JW (in EO stratification and dual BGG complexes) is in fact the
original motivation of this work.
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Then there is a commutative diagram of isomorphisms

Fr∗kgraCH
i
dR(X,V∨λ )

ϕa // graDH
i
dR(X,V∨λ )

Fr∗kH
i
(
X, graCBGG(V∨λ )

)∼

OO

ϕa // H i
(
X, graDFr

∗
XBGG(V∨λ )

)
.

∼

OO

For the notion of p-small weights λ and the dot action w · λ, see subsection 4.4. The
sheaves W∨w·λ are also automorphic vector bundles on X, but without connection, see
subsection 4.1. Here we restrict to the PEL type case, in order to use the theory of
Kuga families [28] to deduce that the Hodge-de Rham spectral sequence is degenerate
(see also [32, 33]). For the second part of the theorem, on the Hodge filtration side, it
is already known that the inclusion of graded complexes

grCBGG(V∨λ ) ↪→ grCDR(V∨λ ,∇)

is quasi-isomorphic by the key properties of dual BGG complexes. We observe that the
p-curvature complex together with the conjugate filtration associated to (V∨λ ,∇) can
be realized from a complex of Verm modules, cf. Proposition 4.8. In particular, we
apply the crystalline description of the p-curvature, see [42] Proposition 1.7, to achieve
this construction. This is similar to the case of de Rham complex with Hodge filtra-
tion, which can be constructed from the standard complex of Verm modules. Then we
show the conjugate filtrations of the dual BGG complex and the de Rham complex are
compatible, and the induced map between the graded complexes is a quasi-isomorphism.

We briefly review the structure of this article. In section 2, we recall various related
notions on flat connections in characteristic p. In particular, we review the works of
Ogus-Vologodsky [42] on non-abelian Hodge theory in characteristic p, the notion of
p-torsion Fontaine modules of Faltings, as reformulated in [42], and the theory of F -
zips and G-zips due to Moonen-Wedhorn [40] and Pink-Wedhorn-Ziegler [44, 45]. In
section 3, we study basic properties of de Rham F -gauges, their cohomology, and the
theory with additional structure. In section 4, we apply the previous theory to good
reductions of Shimura varieties of Hodge type. We first construct universal de Rham
F -gauges with G-structure and show the smoothness of the induced map ξ. Then we
study the cohomology of de Rham F -gauges on these varieties. In the PEL type case and
when the weights of the flat automorphic vector bundles are p-small, we determine the
F -gauge structure on their de Rham cohomology by the associated dual BGG complexes.

Acknowledgments. We thank Heng Du, Shizhang Li, Mao Sheng, and Daxin Xu
for some helpful conversations during the preparation of this work. The author was
partially supported by the National Key R&D Program of China 2020YFA0712600, the
CAS Project for Young Scientists in Basic Research, Grant No. YSBR-033, and the
NSFC grant No. 12288201.

2. Preliminaries

Let k be a perfect field of characteristic p and X/k a smooth k-scheme. In this section,
we review some background on the non-abelian Hodge theory on X. We first fix some
notations on Frobenius morphisms: let FrX : X → X and Frk : Spec k → Spec k be the
absolute Frobenius maps, π : X ′ → X the pullback of X under Frk, and FX/k : X →
X ′ the relative Frobenius map, so that FrX = πX ◦ FX/k and we have the following
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commutative digram

X

��

FrX

&&

FX/k
##
X ′

πX //

��

X

��
Spec k

Frk // Spec k,

where the square is cartesian. Later, we will also denote X ′ = X(p) for compatibility
of notations. In the following, most results hold more generally in the relative smooth
setting for X/S, with S a scheme over Fp. For our later purpose, we will mainly restrict
to the case S = Spec k.

2.1. PD differential operators and stratifications. Consider the diagonal embed-
ding X ↪→ X×kX with ideal sheaf I. Then we have Ω1

X = Ω1
X/k ' I/I

2 as OX -modules.

Let PX = PX/k denote the PD envelope of the diagonal embedding X ↪→ X ×k X and
PX = PX/k its structure sheaf. Let JX = JX/k the ideal of X in PX . Consider the

completion of PX with respect to the PD powers J
[n]
X : P̂X = lim←−n PX/J

[n]
X . For any

integer n ≥ 0, denote

PnX = PX/J [n+1]
X .

For n = 1, we have a natural isomorphism Ω1
X ' JX/J

[2]
X and a split exact sequence of

OX -modules
0 −→ Ω1

X −→ P1
X −→ OX −→ 0.

We recall the basic notions of PD differential operators and PD stratifications as in
[3] section 4. For OX -modules E and F , a PD differential operator E → F of order
≤ n is an OX -linear map PnX ⊗ E → F , and an HPD differential operator E → F is an

OX -linear map PX ⊗ E → F . A PD stratification on E over P̂X is a collection (εn)n≥0

of isomorphisms
εn : PnX ⊗ E −→ E ⊗ PnX

such that ε0 = idE , each εn is PnX -linear, when n varies these εn are compatible under
the projections between PnX , and for all m and n, a cocycle condition holds; see [3]
Definition 4.3 for the precise meaning of this condition. An HPD stratification on E
over PX is a PX -linear isomorphism

ε : PX ⊗ E −→ E ⊗ PX
such that ε reduces to the identity mod JX and the cocycle condition holds.

Let DX = DX/k be the sheaf of algebraic differential operators generated by OX and
the tangent sheaf TX = TX/k, subject to the module and commutator relations

• f · ∂ = f∂, ∂ · f − f · ∂ = ∂(f), ∂ ∈ TX , f ∈ OX ,
• ∂1 · ∂2 − ∂2 · ∂1 = [∂1, ∂2], ∂1, ∂2 ∈ TX .

In other words, DX is the envelope algebra of the tangent Lie algebroid TX . One can
check that DX coincides with the sheaf of PD differential operators on OX as defined
above. The sheaf DX carries a natural increasing filtration F• = D≤•X by the degree of

differential operators DX =
⋃
nD
≤n
X , with D≤0

X = OX ,D≤n+1
X = D≤nX + TX · D≤nX . As

in the case of characteristic zero, one can check that the associated graded sheaf can be
described as the symmetric algebra of TX :

grFDX ' SymTX .

The sheaf DX is dual to P̂X in the sense that we have perfect pairing DX × P̂X → OX ,
which induces an isomorphism of OX -modules

D≤nX ' Hom(PnX ,OX), DX ' lim−→
n

Hom(PnX ,OX),
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where we use the left OX -module structure on PX .

2.2. Flat vector bundles in characteristic p and p-curvature. Let E be a vector
bundle over X, considered as a locally free sheaf of finite rank. Recall a connection ∇
on E is given by a k-linear map of sheaves

∇ : E → E ⊗ Ω1
X ,

satisfying the Leibniz rule
∇(fs) = f∇(s) + s⊗ df,

for sections f, s of E and OX respectively. The connection ∇ is called flat (or integrable),
if

∇1 ◦ ∇ = 0 : E → E ⊗ Ω2
X ,

where ∇1 : E⊗Ω1
X → E⊗Ω2

X is the induced map given by ∇1(e⊗ω) = e⊗dω−∇(e)∧ω,
for sections e, ω of E and Ω1

X respectively. In this case, we call (E ,∇) a flat vector bundle.
The datum of a connection ∇ on E is equivalent to an OX -linear morphism of sheaves

∇ : TX → Endk(E),

and ∇ is flat if and only if the map ∇ : TX → Endk(E) is also a Lie algebra homo-
morphism, cf. [24] section 1. We can generalize the above definition to more general
quasi-coherent sheaves. Let MIC(X) be the category of quasi-coherent OX -modules
with flat connections. We have the following equivalent description of this category.

Theorem 2.1 ([3] Theorems 4.8 and 4.12). Let E be a quasi-coherent OX-module. Then
the following structures on E are equivalent:

(1) a flat connection ∇ : E → E ⊗ Ω1
X ,

(2) a quasi-coherent left DX-module structure on E,
(3) a PD stratification on E.

The flat connection ∇ is quasi-nilpotent (in the sense of [3] Definition 4.10) if and only
if the stratification is HPD.

In particular, we have
MIC(X) = QCoh(DX).

We view PX as an OX -module from the right, which carries a canonical HPD stratifi-
cation. Let ∇P be the integral connection on PX corresponding to this stratification.

Then ∇P(J
[n]
X ) ⊂ J [n−1]

X ⊗Ω1
X . Moreover ∇P induces an integral connection ∇P̂ on P̂X .

Remark 2.2. The datum (E ,∇) of a quasi-coherent OX-module together with a flat con-
nection can be also described as a quasi-coherent sheaf over the de Rham stack (X/k)dR

attached to X/k. This perspective is due to Simpson. See Theorem 3.8 for a similar
statement for certain related objects with much richer structure.

As we are working in characteristic p, there is a concept of p-curvature attached to
each flat connection (E ,∇), which plays a very important role in the theory. First note

that if ∂ is a section of TX , then so is its p-th iterate ∂(p), which can be checked by
viewing ∂ as a k-derivation on regular functions and using the Leibniz rule. Now, for a
flat vector bundle (E ,∇), its p-curvature is defined as the map of sheaves

ψ∇ : TX → Endk(E), ∂ 7→ ∇(∂)p −∇(∂(p)).

Therefore ψ∇ = 0 if and only if the map ∇ : TX → Endk(E) is a p-restricted Lie-algebra
homomorphism. In the general case, by [24] Proposition 5.2, ψ∇ is p-linear. Therefore,
as Fr∗XTX = F ∗X/kTX′ , the datum ψ∇ is equivalent to an OX -linear map

ψ∇ : E → E ⊗OX F
∗
X/kΩ

1
X′ .

If dim X = n and U ⊂ X is an open subset which is étale over Ank with coordinates
x1, . . . , xn, then over U , the p-curvature ψ∇ is determined by the endomorphisms of E|U :

ψ∇(∂1), · · · , ψ∇(∂n),



DE RHAM F -GAUGES AND SHIMURA VARIETIES 9

where ∂i = ∂
∂xi

(1 ≤ i ≤ n) is the induced base of TX over U . Note that ∂
(p)
i = 0 for all

1 ≤ i ≤ n, thus ψ∇(∂i) = ∇(∂i)
p.

Let QCoh(X ′) be the category of quasi-coherent OX′-modules. Recall the following
classical Cartier descent:

Theorem 2.3 ([24] Theorem 5.1). The functor H 7→ (F ∗X/kH,∇
can) induces an equiv-

alence of categories
QCoh(X ′)

∼−→ MIC(X)ψ∇=0,

where MIC(X)ψ∇=0 is the full subcategory of MIC(X) consists of (E ,∇) with zero p-
curvature. The quasi-inverse of the above functor is given by

MIC(X)ψ∇=0 −→ QCoh(X ′), (E ,∇) 7→ E∇.

In [24], a flat connection (E ,∇) on X is called nilpotent of level ≤ N , if the map

ψN∇ : E → E ⊗ (F ∗X/kΩ
1
X′)
⊗N

induced by the p-curvature ψ∇ is zero. One can check that this notion is equivalent to
the notion of quasi-nilpotent above ([3] Definition 4.10). By [24] Corollary 5.5, (E ,∇) is
nilpotent of level N if and only if there exists a decreasing filtration of length N

E = Fil0 ⊃ Fil1 ⊃ · · · ⊃ FilN−1 ⊃ FilN = 0

which is horizontal with respect to ∇, such that the associated graded connection on
grFilE has zero p-curvature. Flat connections of geometric origin are nilpotent:

Example 2.4 (Katz, [24] Theorem 5.10). Let f : Y → X be a proper smooth mor-
phism between smooth algebraic varieties over k. Then for each i ≥ 0, the relative de
Rham cohomology RifdR∗OY admits a canonical flat connection, called the Gauss-Manin
connection, which is nilpotent.

Let n = dim X. For a flat vector bundle (E ,∇), we have the de Rham complex

DR(E ,∇) = (E ⊗ Ω•X , d
•).

More explicitly, this is the following complex of OX -modules

0→ E d0−→ E ⊗ Ω1
X

d1−→ E ⊗ Ω2
X

d2−→ · · · d
n−1

−→ E ⊗ Ωn
X −→ 0,

where d0 = ∇ and for 0 ≤ i ≤ n,

di(e⊗ ω) = e⊗ dω + (−1)i∇(e) ∧ ω
sections e, ω of E and Ωi

X respectively. Note that although the differentials di are

not OX -linear, they are F−1
X/kOX′-linear (note also OX is locally free of rank pn over

F−1
X/kOX′). As a result, the complex of OX′-modules FX/k∗DR(E ,∇) is OX′-linear.

Following Grothendieck, the de Rham cohomology of X/k with coefficient in (E ,∇) is
defined by the hypercohomology of DR(E ,∇)

H∗dR(X/k, (E ,∇)) = R∗Γ(X,DR(E ,∇)).

On the other hand, one can check that the p-curvature ψ∇ satisfies an integral condition
(cf. [41]): let ψ0 = ψ, and for 0 ≤ i ≤ n let ψi be the composition of

E ⊗ F ∗X/kΩ
i
X′

ψ⊗id−→ E ⊗ F ∗X/kΩ
1
X′ ⊗ F ∗X/kΩ

i
X′

id⊗∧−→ E ⊗ F ∗X/kΩ
i+1
X′ ,

then ψi ◦ ψi−1 = 0. Therefore, we have the p-curvature complex

K(E , ψ) = (E ⊗ F ∗X/kΩ
•
X′ , ψ

•)

in the following form

0→ E ψ0

−→ E ⊗ F ∗X/kΩ
1
X′

ψ1

−→ E ⊗ F ∗X/kΩ
2
X′

ψ2

−→ · · · ψ
n−1

−→ E ⊗ F ∗X/kΩ
n
X′ −→ 0.

Note that in case of ψ∇ = 0, e.g. (E ,∇) = (OX , d) the constant connection, the
associated p-curvature complex has trivial differentials. Sometimes it is useful to consider
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the OX′-linear p-curvature complex FX/k∗K(E , ψ) on X ′, which by adjunction has the
form

0→ FX/k∗E
ψ0

−→ FX/k∗E ⊗ Ω1
X′

ψ1

−→ FX/k∗E ⊗ Ω2
X′

ψ2

−→ · · · ψ
n−1

−→ FX/k∗E ⊗ Ωn
X′ −→ 0.

Since k is of characteristic p, the differentials of FX/k∗Ω
•
X are OX′-linear. If x is a

local section of OX , then dπ∗X(x) is a local section of Ω1
X′ . One checks that there exists

a unique homomorphism of OX′-modules

C−1 : Ω1
X′ → H1(FX/k∗Ω

•
X)

such that C−1(dπ∗X(x)) is the class of xp−1dx. Recall the following classical theorem
due to Cartier:

Theorem 2.5 ([24] Theorem 7.2). For all i ≥ 0, there exists a unique isomorphism of
OX′-modules

C−1
i : Ωi

X′
∼−→ Hi(FX/k∗Ω•X)

such that

C−1
0 (1) = 1, C−1

1 = C−1, C−1
i+j(ω ∧ ω

′) = C−1
i (ω) ∧ C−1

j (ω′),

for local sections ω and ω′ of Ωi
X′ and Ωj

X′ respectively.

We discuss a little more about the inverse Cartier isomorphisms. First, for each i,
the original inverse Cartier isomorphism

C−1
i : Ωi

X
∼−→ Hi(Ω•X)

is p-linear (cf. [25] 7.1.4 for some discussions on the original Cartier isomorphism and
the version above). Therefore it is equivalent to an OX -linear isomorphism

C−1
i : Ωi

X
∼−→ Hi(FrX∗Ω•X).

Next, as Ωi
X′ = π∗XΩi

X , we can rewrite C−1
i as

π∗XΩi
X
∼−→ Hi(FX/k∗Ω•X).

We have the natural decreasing Hodge filtration C• on the de Rham complex Ω•X with

Ci(Ω•X)j =

{
0, j < i

Ωj
X , j ≥ i

and

griCΩ•X = Ωi
X [−i].

On the other hand, we have also the increasing conjugate filtration D• on FX/k∗Ω
•
X with

Di(FX/k∗Ω
•
X)j = τ≤i(FX/k∗Ω

•
X)j =


FX/k∗Ω

j
X , j < i

ker(FX/k∗Ω
i
X → FX/k∗Ω

i+1
X ), j = i

0, j > i

and

griDFX/k∗Ω
•
X = Hi(FX/k∗Ω•X)[−i].

The inverse Cartier isomorphism C−1
i can be rewritten as

C−1
i : π∗XgriCΩ•X

∼−→ griDFX/k∗Ω
•
X .
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2.3. The Azumaya algebra property and the conjugate filtration of DX . In
characteristic p, the sheaf DX has a large center Z(DX) (contrary to the characteristic
zero setting). To study the center, sometimes it is convenient to consider FX/k∗DX
instead of DX . Note that as FX/k is affine, the direct image functor FX/k∗ induces an
equivalence of categories:

QCoh(DX) ' QCoh(FX/k∗DX).

A key observation of Bezrukavnikov-Mirković-Rumynin is

Theorem 2.6 ([7]). (1) The p-curvature map ψ : TX′ → FX/k∗DX , v 7→ vp − v(p)

factors through the center Z(FX/k∗DX) of FX/k∗DX , and induces an isomor-
phism

SymTX′ ' Z(FX/k∗DX).

(2) The sheaf FX/k∗DX is an Azumaya algebra of rank p2 dimX over SymTX′.

By adjunction, we have then

Fr∗XSymTX = F ∗X/kSymTX′ ' ZDX (OX) ↪→ DX ,

where ZDX (OX) is the centralizer of OX in DX , and for the second isomorphism see [7]
section 2. One checks easily that DX is locally free of rank pdimX over ZDX (OX). The
proof of Theorem 2.6 (2) actually shows that

F ∗X/kFX/k∗DX ' EndZDX (OX)(DX).

Following [42] section 3.4, we introduce a decreasing filtration N• on DX by ideals

· · · ⊂ J iX ⊂ · · · ⊂ JX ⊂ DX ,
where

JX = J 1
X = (F ∗X/kSym1TX′) · DX , J iX = (F ∗X/kSymiTX′) · DX

are ideals of DX generated by the corresponding one of F ∗X/kSymTX′ . More precisely,

this filtration is induced from the deceasing filtration N• on F ∗X/kSymTX′ by ideals

· · · ⊂J i
X ⊂ · · · ⊂JX ⊂ F ∗X/kSymiTX′ , with J i

X := F ∗X/kSymiTX′ .
Then we have

grNF
∗
X/kSymTX′ ' F ∗X/kSymTX′ .

The natural inclusion
F ∗X/kSymTX′ ↪→ DX

given by p-curvature preserves the filtrations by construction.

Proposition 2.7. The associated graded grNDX can be described as5

grNDX ' (DX/JX)⊗OX F
∗
X/kSymTX′ ,

which is a canonically split tensor Azumaya algebra, with

F ∗X/kFX/k∗OX ⊗OX F
∗
X/kSymTX′

the graded splitting module.

Proof. This follows from [42] the paragraph below Lemma 3.18. In fact, by [2] Proposi-
tion 2.2.7, we have

DX/JX ' EndF−1
X/k
OX′

(OX) ' EndOX (F ∗X/kFX/k∗OX).

Therefore, we have an isomorphism

(DX/JX)⊗OX F
∗
X/kSymTX′ ' EndF ∗

X/k
SymTX′

(
F ∗X/kFX/k∗OX ⊗OX F

∗
X/kSymTX′

)
.

�

5Recall that for the order filtration F• on DX , the associated graded grFDX ' SymTX .
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Hence we get an equivalence of categories

CX : QCoh(grNDX)
∼−→ QCoh(F ∗X/kSymTX′),

M 7→ HomgrNDX

(
F ∗X/kFX/k∗OX ⊗OX F

∗
X/kSymTX′ ,M

)
.

The quasi-inverse C−1
X : QCoh(F ∗X/kSymTX′) −→ QCoh(grNDX) is given by

E 7→ E ⊗F ∗
X/k

SymTX′

(
F ∗X/kFX/k∗OX ⊗OX F

∗
X/kSymTX′

)
' E ⊗OX F

∗
X/kFX/k∗OX .

In fact, we have an equivalence of derived categories

CX : D
(
Mod•(grNDX)

)
∼−→ D

(
Mod•(F ∗X/kSymTX′)

)
,

where D
(
Mod•(grNDX)

)
is the derived category of graded grNDX -modules, and simi-

larly for D
(
Mod•(F ∗X/kSymTX′)

)
.

2.4. Higgs bundles and flat vector bundles. Let Y/k be a smooth scheme. A Higgs
sheaf on Y is defined by a pair (H, θ), where H is a quasi-coherent OY -module,

θ : H → H⊗OY Ω1
Y

is a morphism of OY -modules, satisfying θ ∧ θ = 0. As in the case of flat connections, a
Higgs sheaf can be equivalently given by a map

θ : TY → EndOY (H),

such that the image of θ is a commuting subsheaf of operators. We denote by Higgs(Y )
the category of Higgs sheaves on Y .

Consider the sheaf of algebra Γ̂Ω1
Y , the complete PD algebra associated to Ω1

Y , which
can be viewed as the structure sheaf of the PD formal completion T ∗PDY of the tangent
bundle T ∗Y → Y along the zero section. We have a perfect pairing

SymTY × Γ̂Ω1
Y −→ OY .

Similar to Theorem 2.1, we have

Theorem 2.8. Let H be a quasi-coherent OY -module. Then the following structures on
H are equivalent:

(1) a Higgs filed θ : H → H⊗ Ω1
Y ,

(2) a SymTY -module structure on H,

(3) a PD stratification of H over Γ̂Ω1
Y .

The equivalence (1)⇔ (2) is classical. We omit the proof of the equivalence (2)⇔ (3)
(which can be proved similarly as Theorem 2.1; see also [43] Theorem 1.2.10 and its
proof for a slightly variant version) as actually we will not use it in the following.
Let q : T ∗Y → Y be the cotangent bundle , which is the geometric realization of
Ω1
Y = Hom(TY ,OY ), and we have

q∗OT ∗Y ' SymTY .
As q is affine, the functor q∗ induces an equivalence of categories:

QCoh(T ∗Y ) ' QCoh(SymTY ) = Higgs(Y ).

Replacing the above Ω1
Y and TY by a general locally free sheaf of finite rank Ω and

its dual T , we have the notion of T -Higgs fields and T -Higgs bundles. Back to our fixed
smooth scheme X/k and let Y = X. In particular, considering Ω = F ∗X/kΩ

1
X′ and T =

F ∗X/kTX′ , we denote the associated category of twisted Higgs bundles as F -Higgs(X).

Then we have the p-curvature functor

MIC(X) −→ F -Higgs(X), (E ,∇) 7→ (E , ψ∇).

As in Theorems 2.1 and 2.8, the category F -Higgs(X) can be described as
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Theorem 2.9. Let E be a quasi-coherent OX-module. Then the following structures on
E are equivalent:

(1) a F ∗X/kTX′-Higgs field ψ : E → E ⊗ F ∗X/kTX′,
(2) a F ∗X/kSymTX′-module structure on E,

(3) a PD stratification over the complete PD algebra F ∗X/kΓ̂Ω1
X′.

Thus we have an equivalence of categories

F -Higgs(X) ' QCoh(F ∗X/kSymTX′).

Together with the equivalence MIC(X) ' QCoh(DX) by Theorem 2.1, the p-curvature
functor MIC(X) −→ F -Higgs(X) is given by the natural restriction functor by the
inclusion

F ∗X/kSymTX′ ' ZDX (OX) ⊂ DX .
On the other hand, as Higgs(X ′) ' QCoh(SymTX′) by Theorem 2.8, we have the natural
pullback functor

Higgs(X ′) −→ F -Higgs(X)

induced by F ∗X/k.

Recall I is the ideal sheaf of the diagonal embedding X ↪→ X×kX. We have a natural
map

I → PX/IPX
which is p-linear and zero on I2, thus we get an induced map

Fr∗XΩ1
X = F ∗X/kΩ

1
X′ −→ PX/IPX , and thus F ∗X/kΓ̂Ω1

X′ −→ P̂X/IP̂X .

Proposition 2.10. (1) The map F ∗X/kΩ
1
X′ −→ PX/IPX induces an isomorphism

F ∗X/kΩ
1
X′ ' JX/(J

[p+1]
X + IPX).

(2) The above map is an isomorphism of sheaves of algebras

F ∗X/kΓ̂Ω1
X′ ' P̂X/IP̂X .

(3) Under the perfect pairing DX × P̂X → OX , the induced quotient map

P̂X → P̂X/IP̂X ' F ∗X/kΓ̂Ω1
X′

is dual to the inclusion F ∗X/kSymTX′ ↪→ DX given by the p-curvature map

F ∗X/kSymTX′ ' ZDX (OX) ↪→ DX .

Proof. (1) is [42] Proposition 1.6. (2) follows from (1) and a local computation, for more
details, see [20] Proposition 3.3 or [38] Proposition 7.6. Finally, (3) follows easily from
(2), cf. [38] Lemma 7.8. �

If (E ,∇) ∈ MIC(X) with the associated stratification isomorphism ε : pr∗2E → pr∗1E
(by Theorem 2.1), where pri : P̂X = Spec P̂X → X are the natural projections, then
under the isomorphism in Proposition 2.10 (1), by a result of Mochizuki, the p-curvature
ψ∇ : E → E ⊗ F ∗X/kTX′ is given by

ψ∇(e) = ε(pr∗2(e))− pr∗1(e) mod J
[p+1]
X + IPX

for any section e of E , see [42] Proposition 1.7. By Proposition 2.10 (3), this is com-
patible with the description of p-curvature by restriction of scalar along the injection
F ∗X/kSymTX′ ↪→ DX .

Back to the setting of the beginning of this subsection. Consider the smooth scheme
Y/k. Let N ≥ 1 be an integer and (H, θ) a Higgs sheaf on Y . We say θ is nilpotent of
level ≤ N if the induced morphism

θN : H → H⊗ (Ω1
Y )⊗N
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is zero. The resulting category is denoted by HiggsN (Y ). Now, we review the basic link
between flat connections and Higgs sheaves, following [42]. Back to our fixed smooth
scheme X/k as in the beginning of this section, and let Y = X ′. One basic version of
the main results of Ogus-Vologodsky is as follows.

Theorem 2.11 ([42] Theorem 2.8). A lifting X/W2(k) of X/k gives rise to an equiva-
lence of categories

C−1
X/W2(k) : Higgsp−1(X ′)

∼−→ MICp−1(X),

which extends the equivalence of Cartier descent in Theorem 2.3.

Very roughly, this theorem was proved in [42] by showing the Azumaya algebra
FX/k∗DX splits when pulling back along

γ : T ∗PDX
′ → T ∗X ′,

where we view FX/k∗DX as a sheaf over T ∗X ′ by viewing it as a module over Z(FX/k∗DX) '
SymTX′ , and

T ∗PDX
′ = SpecSymTX′ Γ̂TX′

with the complete PD algebra Γ̂TX′ over SymTX′ . We refer to [42] for more com-
prehensive and extensive study of the correspondence between Higgs sheaves and flat
connections, including the relative version, the comparison between cohomology and the
functoriality.

Remark 2.12. (1) There are some other constructions of the equivalence above:
• Lan-Sheng-Zuo [34] constructed the Cartier and inverse Cartier transforms

by exponential twisting of the classical Cartier descent equivalences as in
Theorem 2.3,
• Oyama [43] constructed the equivalences by introducing a Higgs site which is

closely related to the crystalline site; moreover this approach also deduced the
comparison theorem between de Rham cohomology and Higgs cohomology.

(2) The work of Schepler [47] extends the Ogus-Vologodsky equivalence to the log-
arithmic setting, which also contains a comparison theorem between de Rham
cohomology and Higgs cohomology.

2.5. p-torsion Fontaine modules. Besides flat connections and Higgs fields, we will
need more structures: Hodge filtration and Frobenius. One version of such objects is
given by the Fontaine modules (some other terminologies: relative Fontaine-Laffaille
modules, or filtered F -crystals) introduced by Faltings in [14]. In fact, we will only need
a p-torsion version, as discussed in loc. cit. subsections II. c) and d). We will follow
[35] section 2 to give explicit descriptions.

Fix a lifting X2/W2 of X/k. A p-torsion Fontaine modules on X consists of tuples
(M,∇,Fil,Φ), where

• (M,∇) is a flat coherent OX -module,
• Fil is a decreasing filtration on M of length6 ≤ p− 1, i.e. Fil is given by

M = Fil0 ⊃ Fil1 ⊃ · · · ⊃ Filp−2 ⊃ Filp−1 = 0,

such that the Griffiths transversality condition holds: ∇(Fili) ⊂ Fili−1 ⊗ Ω1
X/k,

• Φ is the Frobenius structure on M given by the following data. Set M̃ =
grFilM = ⊕p−2

i=0 Fili/Fili+1. Then

Φ : Fr∗XM̃
∼−→M

is an isomorphism of OX -modules. Moreover, Φ is required to be compatible
with ∇ in the following sense: take an open cover U of X, U ⊂ X2 lifts of U ,

6One should be careful about the length. We follow the notation of [14], where there is also a larger
category MF∇[0,p−1](X2/W2) of similar objects, but with length ≤ p, i.e. Filp = 0. However, it is the

category MF∇[0,p−2](X2/W2) that is compatible with the theory in [42].
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FrU : U → U lifts of the absolute Frobenius on U , and MU are OU -modules
lifting MU . ΦU : F ∗UMU → MU , where for an open cover U of X, U ⊂ X2 are
lifts of U , FrU : U → U are lifts of the absolute Frobenius on U , and MU are
OU -modules lifting MU . The Φ is required to be compatible with Fil and ∇ in
the following sense:

– let ∇̃ = grFil∇ be the graded Higgs field attached to ∇ and Fil on M̃ ;

– for each U , let Fr∗U∇̃ be the connection on Fr∗UM̃U defined by the formula:

Fr∗U∇̃(f ⊗ e) = df ⊗ e+ f · (dFrU
p
⊗ 1)(1⊗ ∇̃(e)), f ∈ OU , e ∈MU ,

then the following diagram commutes:

Fr∗UM̃U
ΦU //

Fr∗U ∇̃
��

MU

∇
��

Fr∗UM̃U ⊗ Ω1
U

ΦU⊗id // MU ⊗ Ω1
U .

By [14], M is in fact locally free, and Φ is well defined, i.e. it does not depend
on the choice of local liftings.

We denote the category of p-torsion Fontaine modules on X, denoted by

MF∇[0,p−2](X2/W2).

By [14], this is an abelian category. If X/W is a smooth lifting of X/k, we have also the
usual category of Fontaine modules MF∇[0,p−2](X/W ) over X , cf. [14] p. 34-35. There

is an obvious truncation functor

MF∇[0,p−2](X/W )→MF∇[0,p−2](X2/W2).

Moreover, one can check that MF∇[0,p−2](X2/W2) is equivalent to the full subcategory

of p-torsion objects in MF∇[0,p−2](X/W ), see [42] the paragraph after Definition 4.16.

Using Theorem 2.11, we can give an equivalent formulation of p-torsion Fontaine
modules. Recall the equivalences

Higgsp−1(X ′)

C−1
X2/W2 ..

MICp−1(X).
CX2/W2

nn

For an object (M,∇,Fil,Φ) ∈MF∇[0,p−2](X2/W2), we get the associated Higgs bundle

(H, θ) := π∗ ◦ CX2/W2
(M,∇) ∈ Higgsp−1(X),

where recall π : X ′ → X is the projection from the Frobenius twist. As in the charac-
teristic zero case, this Higgs bundle can be obtained more directly as

(H, θ) ' (grFilM, grFil∇).

More precisely, we have

H = ⊕iHi, θ = ⊕iθi
with

Hi = griFilM = Fili/Fili−1 and θi = grFil∇i : Fili/Fili−1 −→ (Fili−1/Fili−2)⊗ Ω1
X

induced by the Griffiths transversality condition.

Proposition 2.13. (1) We have an equivalence of categories:

MF∇[0,p−2](X2/W2)
∼−→ {(M,∇,Fil, φ)},
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where the category on the right hand side is given by [42] Definition 4.16. Con-
cretely, for an object (M,∇,Fil, φ) in this category, the first three terms (M,∇,Fil)
are the same as above, the last term is an isomorphism

φ : C−1
X2/W2

◦ π∗(grFilM, grFil∇)
∼−→ (M,∇).

The equivalence is given by a natural functor (M,∇,Fil,Φ) 7→ (M,∇,Fil, φ).
(2) We have an equivalence of categories:

MF∇[0,p−2](X2/W2)
∼−→ {(H, θ,Fil, φ)},

where the category on the right hand side is the category of 1-periodic Higgs-de
Rham flow introduced in [35]. It consists of objects with (H, θ) ∈ Higgsp−1(X),

Fil is a Griffiths transverse filtration on C−1
X2/W2

(H, θ), and φ is an isomorphism

φ : grFil ◦ C−1
X2/W2

◦ π∗(H, θ) ∼−→ (H, θ).

The equivalence is given by a natural functor (M,∇,Fil,Φ) 7→ (grFilM, grFil∇,Fil, φ).

Proof. The first statement is contained in [42] section 4.6. The second equivalence is
proved in details in [35] Proposition 3.3. �

2.6. F -zips. We recall the notion of F -zips introduced by Moonen-Wedhorn in [40] (see
also [50]). Let S be a scheme over Fp (not necessarily smooth). For an object M over

S, in the following we denote M (p) = Fr∗SM , the pullback of M under the absolute
Frobenius morphism FrS : S → S. An F -zip over S is a tuple (M,C•, D•, ϕ) where

• M is a locally free sheaf of finite rank on S,
• C• is a descending filtration on M ,
• D• is an ascending filtration on M ,
• ϕ = ⊕iϕi : (grCM)(p) ∼−→ grDM is an isomorphism of graded OS-modules: for

each i, ϕi : (Ci/Ci+1)(p) → Di/Di−1 is an isomorphism of OS-modules.

For s ∈ S, consider the function

τs : Z→ Z≥0, m 7→ dimκ(s) grmC (Ms) = dimκ(s)C
m
s /C

m+1
s .

As grmCM are locally free, the function s 7→ τs is locally constant on S, which takes
values in the set of maps Z → Z≥0 with finite support. We call this function the type
of (M,C•, D•, ϕ). Let F -Zip(S) be the category of F -zips over S. Letting S vary, we
get a smooth algebraic stack F -Zip, which decomposes as

F -Zip =
∐
τ

F -Zipτ ,

where τ runs through the set of functions Z→ Z≥0 with finite support, and each F -zipτ

is the open and closed substack classifying F -zips of type τ , cf. [40] Proposition 2.2.
We have also the notion of F -zips with additional structure. Let G/Fp be a connected

reductive group, µ a cocharacter of G defined over a finite field κ|Fp. Let P+ (resp. P−)
be the parabolic subgroup of Gκ such that its Lie algebra is the sum of spaces with
non-negative weights (resp. non-negative weights) in Lie(Gκ). We will also write U+

(reps. U−) for the unipotent radical of P+ (resp. P−). Let L be the common Levi
subgroup of P+ and P−. Now assume that S is a scheme over κ. A G-zip of type µ over
S is given by (cf. [45] Theorem 7.13)

(1) either a tuple I = (I, I+, I−, ϕ) consisting of
• a right G-torsor I over S,
• a right P+-torsor I+ ⊂ I,

• a right P
(p)
− -torsor I− ⊂ I,

• an isomorphism of L(p)-torsors ϕ : I
(p)
+ /U

(p)
+ → I−/U

(p)
− .
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(2) or an exact Fp-linear tensor functor z : RepG → F -Zip(S) of type µ, which
means that the graded fiber functor grC ◦ z and γµ are fpqc-locally isomorphic.
Here grC : F -Zip(S)→ GrVect(S) is the functor taking grading with respect to
the filtration C• and γµ : RepG → GrVect(κ) is the tensor functor defined by
µ.

One can check that the category of F -zips of rank n is equivalent to the category of
GLn-zips, see [45].

The category of G-zips of type µ over S will be denoted by G-Zipµ(S). This defines
a category fibered in groupoids G-Zipµ over κ.

Theorem 2.14 ([45]). The fibered category G-Zipµ is a smooth algebraic stack of di-
mension 0 over κ, which has the form of a quotient stack [EG,µ\Gκ], where EG,µ is
certain algebraic group acting on Gκ.

Let B ⊂ G be a Borel subgroup and T ⊂ B a maximal torus. Let W = W (B, T ) be
the absolute Weyl group, and ∆ the set of simple roots defined by B. Let J ⊂ ∆ be the
simple roots correspond to P+. Let WJ be the subgroup of W generated by J , and JW
the set of elements w such that w is the element of minimal length in some coset WJw

′.
By [44] section 6, there is a partial order � on JW , and we have a homeomorphism of
topological spaces

|[EG,µ\Gκ]| ' (JW,�).

3. De Rham F -gauges

Let X/k be a smooth scheme as in the last section. We introduce and study the
notion of de Rham F -gauges on X, inspired by [40, 25, 42] and [4]. The notion of F -
gauges was originally introduced by Fontaine-Jannsen in [17]. Recently Drinfeld [9] and
Bhatt-Lurie [5, 6] have extended this notion to prismatic cohomology for p-adic formal
schemes in mixed characteristic. Here we restrict to characteristic p and consider only
de Rham cohomology.

3.1. Explicit definition. Let X be as above. Roughly a de Rham F -gauge over X is
an F -zip enriched by a flat connection. Recall FrX : X → X is the absolute Frobenius
map.

Definition 3.1. (1) A de Rham F -gauge (in vector bundle) over X is a tuple E =
(E ,∇, C•, D•, ϕ), where
• (E ,∇) is a flat vector bundle on X,
• C• is a descending filtration on E, which satisfies the Griffiths transversality

condition with respective to ∇: for any i, we have ∇(Ci) ⊂ Ci−1 ⊗ Ω1
X .

• D• is an ascending filtration on E, which is horizontal with respective to ∇,
such that the induced connection on grDE has zero p-curvature,
• ϕ is an OX-linear isomorphism

ϕ : Fr∗X(grCE , θ)
∼−→ (grDE , ψ),

where θ = grC∇ : grCE → grCE ⊗ Ω1
X is the graded Higgs field as before,

and

ψ : grDE → grDE ⊗ Fr∗XΩ1
X

is the OX-linear morphism induced by ∇ and the zero p-curvature condition.
(2) A morphism of de Rham F -gauges f : E1 → E2 is a morphism of flat vector

bundles f : (E1,∇1) → (E2,∇2), which is compatible with the filtrations C•1 , C
•
2

and D1,•, D2,•, such that on graded vector bundles we have grD(f) ◦ ϕ1 ' ϕ2 ◦
Fr∗X(grC(f)).

We denote the category of de Rham F -gauges on X by F -GaugedR(X).
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We want to emphasis that the graded Higgs field θ = grC∇ has the form

θ =
⊕
i

θi, and θi : griCE = Ci/Ci+1 → griCE ⊗ Ω1
X = (Ci−1/Ci−2)⊗ Ω1

X .

It can be viewed as a section

θ ∈ H0
(
X,
⊕
i

Hom(griCE , gri−1
C E)⊗ Ω1

X

)
⊂ H0

(
X, End(grCE)⊗ Ω1

X

)
.

Similarly, the morphism ψ induced by the p-curvature condition of of the graded con-
nection grD∇ has the form

ψ =
⊕
i

ψi, and ψi : Di/Di−1 → (Di−1/Di−2)⊗ Fr∗XΩ1
X ,

which can be viewed as a section

ψ ∈ H0
(
X,
⊕
i

Hom(griDE , gri−1
D E)⊗ Fr∗XΩ1

X

)
⊂ H0

(
X, End(grDE)⊗ Fr∗XΩ1

X

)
.

By projection formula and using grDE ' Fr∗XgrCE , we have

H0
(
X,
⊕
i

Hom(griDE , gri−1
D E)⊗ Fr∗XΩ1

X

)
=H0

(
X,
⊕
i

FrX∗Hom(griDE , gri−1
D E)⊗ Ω1

X

)
=H0

(
X,
⊕
i

FrX∗Hom(Fr∗XgriCE , F r∗Xgri−1
C E)⊗ Ω1

X

)
.

Applying basic properties of p-curvature (cf. [24] Proposition 5.2), we have in fact

ψ ∈H0
(
X,
(⊕

i

FrX∗Hom(Fr∗XgriCE , F r∗Xgri−1
C E)⊗ Ω1

X

)∇can)
=H0

(
X,
⊕
i

Hom(griCE , gri−1
C E)⊗ Ω1

X

)
.

The isomorphism ϕ in the last term of the above definition is required to preserve the
grading structures on both sides. It is equivalent to the corresponding bijective p-linear
morphism grCE → grDE , which makes the following digram commute:

grCE
θ //

��

grCE ⊗ Ω1
X

��
grDE

ψ // grDE ⊗ Fr∗XΩ1
X ,

where the right vertical map is the tensor product of the p-linear morphism grCE → grDE
with the natural p-linear map Ω1

X → Fr∗XΩ1
X . We also remark that there is an obvious

generalization of the above definition by considering quasi-coherent sheaves instead of
vector bundles.

Example 3.2. Let f : Y → X be proper smooth scheme over X of relative dimension
n. Assume that the Hodge-de Rham spectral sequence

Ea,b1 = Rbf∗(Y,Ω
a
Y/X) =⇒ Ra+bf∗(Ω

•
Y/X)

degenerates at E1, and all the Hodge cohomology sheaves Rbf∗(Y,Ω
a
Y/X) are locally free

of finite rank over X. Then for each 0 ≤ i ≤ 2n, the relative de Rham cohomology

H i
dR(Y/X) = Rif∗(Ω

•
Y/X)
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admits a canonical de Rham F -gauge structure: ∇ is given by the Gauss-Manin connec-
tion, C• is given by the Hodge filtration, D• is given by the conjugate filtration (induced
from the conjugate spectral sequence which also degenerates), and the isomorphism

ϕ : Fr∗X(grCH
i
dR(Y/X), θ)

∼−→ (grDH
i
dR(Y/X), ψ)

is given by Katz in [25] Theorem 3.2.
The above assumption on Y → X holds in the following cases: abelian schemes,

proper smooth curves, K3 surfaces, smooth complete intersection in a projective space
PnX over X, etc. See [40] 7.4.

The usual operations on flat vector bundles extend naturally to de Rham F -gauges:
we have direct sums, dual, tensor products etc, which make F -GaugedR(X) a tensor
exact category. If considering quasi-coherent de Rham F -gauges, we would get a tensor
abelian category. As an example, we discuss the tensor product E = E1 ⊗ E2 of two de
Rham F -gauges E1 = (E1,∇1, C

•
1 , D1,•, ϕ1) and E2 = (E2,∇2, C

•
2 , D2,•, ϕ2):

• (E ,∇) = (E1,∇1)⊗(E2,∇2) is the usual tensor product of two flat vector bundles
(cf. [24] 1.1.1),
• C• = C•1⊗C•2 is the usual tensor product of two decreasing filtrations on E1⊗E2,
• D• = D1,• ⊗D2,• is the tensor product of two increasing filtrations on E1 ⊗ E2,
• For each a ∈ Z, ϕa : Fr∗XgraC(E1 ⊗E2)→ graD(E1 ⊗E2) is the isomorphism which

makes the following diagram commute:

Fr∗XgraC(E1 ⊗ E2)

ϕa

��

∼ //
⊕

i Fr
∗
XgriCE1 ⊗ Fr∗Xgra−iC E2⊕

i(ϕ1,i⊗ϕ2,a−i)
��

graD(E1 ⊗ E2)
∼ //

⊕
i griDE1 ⊗ gra−iD E2.

The induced morphisms θa =
⊕

i(θ1,i ⊗ 1 + 1 ⊗ θ2,a−i) and ψa =
⊕

i(ψ1,i ⊗
1 + 1 ⊗ ψ2,a−i) are matched under ϕa by the compatibilities of corresponding
components.

By definition, we have a natural forgetful functor

F -GaugedR(X) −→ F -Zip(X),

which is an equivalence of categories if X = Spec k with k|Fp is a field. In particu-
lar, we can define the notion of de Rham F -gauges of type τ associated to a locally
constant functor τ as in subsection 2.6, and by definition we have the forgetful functor
F -GaugeτdR(X) −→ F -Zipτ (X).

On the other hand, we can construct de Rham F -gauges from p-torsion Fontaine
modules (the construction is implicitly contained in [42] section 4.6).

Proposition 3.3. There is a natural functor

MF∇[0,p−2](X2/W2) −→ F -GaugedR(X),

which is fully faithful, with essential image the de Rham F -gauges E of nilpotent level
≤ p− 1, i.e. ψp−1

∇ = 0.

Proof. For an object (M,∇,Fil,Φ) ∈ MF∇[0,p−2](X2/W2), set C• = Fil. We construct

a conjugate filtration D• on M as follows (see also [42] the paragraph above Theorem
4.17). For each i, set

Di(M) = Φ(Fr∗X(⊕j≤igrjCM)) ⊂M.

Then D• is an increasing filtration on M and by construction we have an isomorphism
ϕi : Fr∗XgriCM ' griDM for each i. By construction, D• is horizontal with respect
to ∇ and the associated graded connection on grDM has zero p-curvature. By the
last condition in the definition of the p-torsion Fontaine module (M,∇,Fil,Φ), we
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have ϕ : Fr∗Xθ∇ ' ψ∇. Then (M,∇,Fil,Φ) 7→ (M,∇,Fil, D•, ϕ) defines a functor

MF∇[0,p−2](X2/W2) −→ F -GaugedR(X).

By Proposition 2.13, this functor is fully faithful, with essential image the de Rham
F -gauges E of nilpotent level ≤ p− 1. �

Remark 3.4. Contrary to the notion of p-torsion Fontaine modules, it is important to
note that the notion of de Rham F -gauges does not rely on any lifting of X.

Let n = dim X. For a de Rham F -gauge E = (E ,∇, C•, D•, ϕ) over X, we can form
the following filtered complexes. First, as usual we can view the de Rham DR(E ,∇) as
a complex of DX -modules (see [16] Chapter VI section 3). Then we have:

• The C•-filtered de Rham complex DR(E ,∇) = (E ⊗ Ω•X ,∇), with

Ca(DR(E ,∇)) = Ca−•(E)⊗ Ω•X , a ∈ Z.

This filtration is compatible with the order filtration F• of DX . The associated
graded complex is: for any a ∈ Z,

graCDR(E ,∇) = [0→ graCE → gra−1
C E ⊗ Ω1

X → · · · → gra−nC E ⊗ Ωn
X → 0].

In particular, we get an object

grCDR(E ,∇) ∈ D
(
Mod•(grFDX)

)
' D

(
Mod•(SymTX)

)
.

• The D•-filtered de Rham complex DR(E ,∇) = (E ⊗Ω•X ,∇), where the filtration
is induced from the D•-filtration on E as follows. Since the induced D•-filtration
on each term E ⊗Ωi

X is JX -compatible with the conjugate filtration N• on DX
(cf. subsection 2.3), we can view DR(E ,∇) together with the D•-filtration as an
object in DF (DX ,JX) (cf. [42] Definition 3.13). The associated graded complex
defines an object

grDDR(E ,∇) ∈ D
(
Mod•(grNDX)

)
.

• The D•-filtered p-curvature complex K(E , ψ) = (E ⊗ Fr∗XΩ•X , ψ), with

Da(K(E , ψ)) = Da−•(E)⊗ Fr∗XΩ•X , a ∈ Z.

The associated graded complex is: for any a ∈ Z,

graD(K(E , ψ)) = [0→ graDE → gra−1
D E ⊗ Fr∗XΩ1

X → · · · → gra−nD E ⊗ Fr∗XΩn
X → 0],

which we can view as a graded complex of Fr∗XSymTX -modules (cf. [16] Chapter
VI section 3): it defines an object

grDK(E , ψ) ∈ D
(
Mod•(Fr∗XSymTX)

)
.

Recall that we have an equivalence of categories

CX : D
(
Mod•(grNDX)

)
→ D

(
Mod•(Fr∗XSymTX)

)
.

Proposition 3.5. We have a quasi-isomorphism for graded complexes

ϕ : Fr∗XgrCDR(E ,∇)
∼−→ CX(grDDR(E ,∇)),

which extends the isomorphism ϕ in the definition of the de Rham F -gauge E.

Proof. As E satisfies the conditions in Definition 3.1, by the above description, we see
ϕ induces an isomorphism between each term of the complexes Fr∗XgrCDR(E ,∇) and
grDK(E , ψ). To show it also induces an isomorphism between differentials, it suffices
to see for any a ∈ Z, the first differentials θa : graCE → gra−1

C E ⊗ Ω1
X and ψa : graDE →

gra−1
D E ⊗ Fr∗XΩ1

X are matched. But this also follows from the definition of de Rham
F -gauges.

On the other hand, we have the equivalence of categories

C−1
X : D

(
Mod•(Fr∗XSymTX)

)
∼−→ D

(
Mod•(grNDX)

)
.
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One checks by construction that

C−1
X (grDK(E , ψ)) ' grDDR(E ,∇).

Therefore, we get a quasi-isomorphism for graded complexes

ϕ : Fr∗XgrCDR(E ,∇)
∼−→ CX(grDDR(E ,∇)).

�

The isomorphism in Proposition 3.5 can be rewritten as

ϕ : π∗XgrCDR(E ,∇)
∼−→ CX(grDFX/k∗DR(E ,∇)).

For the de Rham F -gauge E = (E ,∇, C•, D•, ϕ) over X, from the C•-filtered complex
DR(E ,∇) we get the Hodge-de Rham spectral sequence

′Ea,b1 = Ha+b
(
X, graCDR(E ,∇)

)
=⇒ Ha+b

dR (X/k, (E ,∇)).

From the D•-filtered complex FX/k∗DR(E ,∇), we get the conjugate spectral sequence

′′Ea,b1 = Ha+b
(
X ′, graDFX/k∗DR(E ,∇)

)
=⇒ Ha+b

dR (X/k, (E ,∇)).

The Cartier-twisted Frobenius

ϕ : π∗XgrCDR(E ,∇)
∼−→ CX(grDFX/k∗DR(E ,∇))

induces an isomorphism

ϕ : Fr∗k(
′Ea,b1 ) = Fr∗kH

a+b
(
X, graCDR(E ,∇)

)
∼−→ Ha+b

(
X ′, graDFX/k∗DR(E ,∇)

)
=′′ Ea,b1 .

Therefore, by the same arguments as in [24] Proposition 2.3.2 and [40] subsection 7.5,
we get

Proposition 3.6. Let X be a proper and smooth variety over k. Assume that the
Hodge-de Rham spectral sequence

′Ea,b1 = Ha+b
(
X, graCDR(E ,∇)

)
=⇒ Ha+b

dR (X/k, (E ,∇))

degenerates and each Hodge cohomology sheaves H i
(
X, graCDR(E ,∇)

)
is locally free.

Then the conjugate spectral sequence also degenerates. Moreover, for each 0 ≤ i ≤ 2n =
2 dim X, we get a de Rham F -gauge (= F -zip) on k given by

H i(X, E) :=
(
H i

dR(X/k, (E ,∇)), C•, D•, ϕ
)
,

where C• (resp. D•) is the induced Hodge filtration (resp. conjugate filtration) on
H i

dR(X/k, (E ,∇)), and for each 0 ≤ a ≤ i, ϕa is the isomorphism induced from the
Frobenius on coefficients, which sits in the following commutative diagram

Fr∗kH
i
(
X, graCDR(E ,∇)

)
∼ //

∼
��

H i(X, graDK(E , ψ))

∼
��

Fr∗kgraCH
i
dR(X/k, (E ,∇))

ϕa // graDH
i
dR(X/k, (E ,∇)).

One can obviously generalize the above proposition to the relative setting for a proper
smooth morphism Y → X (as in Example 3.2) with coefficients in a de Rham F -gauge
on Y . We leave this task to the reader.

Remark 3.7. Let X be a proper smooth scheme over k and X ⊂ X an open subscheme
such that D = X \X is a normal crossing divisor of X. One has the classical notion of
flat connections over X with log poles at D. In fact, we have also natural extensions of
all the discussions in this subsection to this logarithmic setting. See [40] subsection 7.7
for some discussions of the extension of F -zips to log F -zips.
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3.2. De Rham F -gauges via syntomification. Let X be a p-adic formal scheme
over Zp. By Drinfeld [8, 9] and Bhatt-Lurie [5, 6, 4], attached to X, one has 3 stacks

(with increased complicities): X�, XN and Xsyn. The (stable∞-) category of prismatic
F -gauges is defined by

Dqc(Xsyn),

which contains prismatic F -gauges in perfect complexes and vector bundles respectively

Perf(Xsyn), Vect(Xsyn).

Specializing to our smooth scheme X/k as above, the stacks X� and XN are stacks
over W = W (k), while Xsyn is an stack over Zp, obtained by gluing the two copies of

X� inside XN . In particular, we can consider the special fiber

Xsyn := Xsyn ⊗ Fp

of Xsyn. The constructions are functorial, so that we get a morphism of stacks Xsyn →
ksyn. In [4] chapter 2, this is denoted by XC → C. We will consider the category
Vect(Xsyn) of vector bundles on Xsyn. Note that it can be viewed as a full subcategory
Vect(Xsyn) ↪→ Perf(Xsyn). The following theorem is implicitly contained in [4].

Theorem 3.8. Suppose that X/k is a smooth algebraic variety over a perfect field k of
characteristic p. We have an equivalence of categories

F -GaugedR(X) ' Vect(Xsyn).

Proof. The proof is rather standard from the stacky approach as in [4] and [9], so we
just sketch it here. We need to understand the geometry of the stack Xsyn. This will
proceed step by step.

Step 1. First, consider the de Rham stack (X/k)dR. We have a flat cover

X → (X/k)dR,

and its Cech nerve can be identified with the simplicial formal scheme PX(•)
defined by taking PD formal completion of the Cech nerve of X → Spec k along
the diagonal copy of X). Then Vect((X/k)dR) is equivalent to the flat vector
bundles on X. This is implied by [8] Theorem 2.4.2 or [6] Theorem 6.5.

Step 2. Consider the Hodge filtered de Rham stack (X/k)dR,+. By construction, we have
a morphism (X/k)dR,+ → A1/Gm and a flat cover

X × A1/Gm → (X/k)dR,+

over A1/Gm. Moreover, we have an open immersion (X/k)dR ↪→ (X/k)dR,+ corre-
sponding to Gm/Gm ↪→ A1/Gm. Its complement is denoted by (X/k)Higgs. Vec-
tor bundles on (X/k)Higgs is equivalent to graded Higgs bundles on X such that
the Higgs field decreases degree 1 and is nilpotent. The category Vect((X/k)dR,+)
is equivalent to the category of triples (E ,∇,Fil•), where (E ,∇) is a flat vector
bundle on X, Fil• is a decreasing filtration on E which satisfies the Griffiths
transversality condition with respect to ∇, cf. [4] Remark 2.5.8.

Step 3. Consider the conjugate filtered de Rham stack (X/k)dR,c. By construction, we
have a morphism (X/k)dR,c → A1/Gm and a flat cover

(X/k)dR,c → X ′ × A1/Gm

over A1/Gm. Here X ′ is the Frobenius pullback of X and the relative Frobe-
nius morphism FX/k : X → X ′ factors through (X/k)dR, cf. [4] Remark

2.7.4. We have an open immersion (X/k)dR ↪→ (X/k)dR,c corresponding to
Gm/Gm ↪→ A1/Gm. Its complement is denoted by (X/k)F−Higgs. Vector bundles
on (X/k)F−Higgs is equivalent to graded F -Higgs bundles on X such that the
Higgs field decreases degree 1 and is nilpotent. Vector bundles on (X/k)dR,c can
be described as triples (E ,∇,Fil•), where (E ,∇) is a flat vector bundle on X
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with nilpotent p-curvature, Fil• is an increasing filtration on E which is hori-
zontal with respect to ∇, such that the graded connection on grFil•E has zero
p-curvature.

Step 4. Consider the stack XN := XN ⊗W k, which is denoted by XC in [4] Definition
2.8.4. There are open immersions

(X/k)dR,+ → XN and (X/k)dR,c → XN ,

with image XN u=0 and XN t=0 respectively. The stack XN lives over kN =
kN ⊗W k = (Spf k[u, t]/(ut))/Gm, so that there are coordinates u and t. Vector

bundles on XN can be described as

(E1,∇1,Fil•, E2,∇2,Fil•, ϕ)

such that (E1,∇1,Fil•) ∈ Vect((X/k)dR,+), (E2,∇2,Fil•) ∈ Vect((X/k)dR,c), and
ϕ : grFil•E1 ' grFil•E2 is an isomorphism of graded vector bundles.

Step 5. Finally, by construction we have a pushout diagram

(X/k)dR
∐

(X/k)dR //

��

XN

��
(X/k)dR // Xsyn.

In other words, Xsyn is obtained by gluing the two copies of (X/k)dR inside XN .

From the above description of Vect(XN ) we get that Vect(Xsyn) is equivalent
to the category of tuples (E ,∇,Fil•,Fil•, ϕ) which satisfy the condition as in
Definition 3.1.

�

3.3. De Rham F -gauges with G-structure. We want a notion of de Rham F -gauges
with G-structure, as a strengthen of the notion of G-zips in subsection 2.6. So recall our
notations there. Let G/Fp be a connected reductive group, µ : Gm → G a cocharacter
over a finite extension κ|Fp with associated conjugacy class {µ}, P+ = Pµ the associated
parabolic, P− the opposite parabolic, L the common Levi subgroup of P+ and P−.

Let X/κ be a smooth scheme and I a G-bundle on X. A flat connection ∇ on I is
given by an isomorphism

∇ : pr∗2I
∼−→ pr∗1I

such that δ∗∇ = IdI and pr∗13∇ = pr∗12∇◦pr∗23∇. Here are the meaning of the notations:
let ∆2(1) be the first order neighborhood of the diagonal X ↪→ X ×k X, δ : X ↪→ ∆2(1)
the induced embedding and pri : ∆2(1) → X the induced projections for i = 1, 2. Let
∆3(1) be the first order neighborhood of the diagonal X ↪→ X×kX×kX, with induced
projections prij : ∆3(1)→ ∆2(1) for i, j ∈ {1, 2, 3}. It is well known that the datum of
a flat G-bundle (I,∇) is equivalent to an exact tensor functor

RepG→ Vect∇(X),

where Vect∇(X) is the category of flat vector bundles on X, cf. [36] subsection 2.3.

Definition 3.9. A de Rham F -gauge with (G,µ)-structure over X is given by a tuple

I = (I,∇, I+, I−, ϕ),

consisting of

• a G-bundle I over X with a flat connection ∇,
• a P+-bundle I+ ⊂ I,

• a P
(p)
− -bundle I− ⊂ I on which ∇ induces a connection, which has zero p-

curvature on the graded L(p)-bundle,
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• an isomorphism of L(p)-bundles

ϕ : I
(p)
+ /U

(p)
+

∼−→ I−/U
(p)
− ,

under which the associated Higgs field and p-curvature coincides

ϕ : Fr∗Xθ∇ ' ψ∇.

Sometimes we also call it a (G,µ)-de Rham F -gauge. Denote the category of such objects

by F -GaugeG,µdR (X).

Let us explain the last term following [10] (but note that our sign ± correspond to
the ∓ of loc. cit.). Let u± = LieU±. Then u = u+ (resp. u−) forms a representation of

L (resp. L(p)), thus we can view it as a representation of P = P+ (resp. P
(p)
− ) by the

quotient P → L (resp. P
(p)
− → L(p)). For (I,∇, I+, I−) as above, we get the associated

vector bundles

I+(u−) = I+ ×P+ u− and I−(u
(p)
− ) = I− ×P

(p)
− u

(p)
− .

Then the Higgs field attached to (∇, I+) is given by a map

θ∇ : TX −→ I+(u−),

or equivalently a global section θ∇ ∈ H0(X, I+(u−)⊗Ω1
X). The p-curvature attached to

(∇, I−) is given by a map

ψ∇ : TX −→ I−(u
(p)
− ),

or equivalently a global section ψ∇ ∈ H0(X, I−(u
(p)
− ) ⊗ Ω1

X). From the isomorphism

ϕ : I
(p)
+ /U

(p)
+

∼−→ I−/U
(p)
− we get an induced isomorphism

ϕ : Fr∗XI+(u−) = I+(u−)(p) ∼−→ I−(u
(p)
− ).

The condition ϕ : Fr∗Xθ∇ ' ψ∇ means that θ∇ is mapped to ψ∇ under the induced
morphism

H0(X, I+(u−)⊗ Ω1
X) −→ H0(X,Fr∗XI+(u−)⊗ Ω1

X)
∼−→ H0(X, I−(u

(p)
− )⊗ Ω1

X).

Equivalently, we can give a Tannakian definition: a de Rham G-gauge of type µ over
X is an exact Fp-linear tensor functor

I : RepG→ F -GaugedR(X)

of type µ. This means that the induced functor z : RepG→ F -Zip(X) (by composing I
with the forgetful functor F -GaugedR(X)→ F -Zip(X)) has type µ, cf. subsection 2.6.

By construction, we have the natural forgetful functor

F -GaugeG,µdR (X) −→ G-Zipµ(X).

In the Tannakian formulation, we can define a larger category F -GaugeGdR(X) by allow-

ing µ varies. Then one has a decomposition of F -GaugeGdR(X) according to different
types, similar to the case of G-zips as in [45] subsection 7.1. The forgetful functor
extends to F -GaugeGdR(X) −→ G-Zip(X).

Remark 3.10. Assume that µ is minuscule. In [10] Drinfeld studied moduli stacks of
similar objects as Definition 3.9, see Theorem 3.11. Compared with here, except the
above difference on sign, there are 2 subtleties to mention: first, in [10] the cocharacter
µ is also defined over Fp, so that there is no Frobenius twist on P−; next, instead of an
isomorphism ϕ in the last term, Drinfeld requires an equality (called the Katz condition)
between θ∇ and ψ∇ by a careful choice of sign7: ψ∇ = −θ∇.

7Such a choice of sign is also included in the definition of the Cartier and inverse Cartier transforms
CX2/W2

and C−1
X2/W2

in [42].
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3.4. Moduli stacks of de Rham F -gauges with G-structure. In this subsection,
assume that µ is minuscule. We consider the moduli of de Rham F -gauges with (G,µ)-
structure. This has already been studied by Drinfeld (see also [18]).

Theorem 3.11 (Drinfeld [10]). The functor X 7→ F -GaugeG,µdR (X) is represented by a

smooth algebraic stack BTG,µ1 over κ. The natural morphism

BTG,µ1 → G-Zipµ

is an fppf gerbe banded by a finite group scheme LauG1 .

More precisely, the finite group scheme LauG1 is the finite group scheme of height
1 over X corresponding to the commutative restricted Lie OX -algebra I+(u−) with p-
operation coming from the composition

Fr∗XI+(u−)
∼−→ I−(u

(p)
− ) ↪→ I−(g(p)) ' I−(g) ' I+(g) � I+(u−).

In particular, the underlying topological spaces of the two moduli stacks are homeomor-
phic:

|BTG,µ1 | ' |G-Zipµ|.
As in subsection 2.6, the latter was known by the works of Pink-Wedhorn-Ziegler ( [44]
and [45]):

|G-Zipµ| ' (JW,�),

where J ⊂ W is the set of simple generators defined by µ, JW is the set of minimal
length representatives for WJ\W .

The stack BTG,µ1 should be the special fiber of a smooth algebraic stack living over
OE , see [10] Conjecture C.3.1, which has recently been proved by Gardner-Madapusi
(cf.[18] Theorem A). If G = GLh and {µ} is given by (1d, 0h−d) for some integer 0 ≤
d ≤ h, Drinfeld also conjectures that the stack BTG,µ1 is isomorphic to the stack of
1-truncated p-divisible groups of height h and dimension d, cf. [10] Conjectures 4.5.2
and 4.5.3. Recently, Mathew and Madapusi announced a theorem which says that there
is an equivalence between the category of truncated p-divisible groups of height h and

dimension d and the category F -GaugeG,µdR (X) (cf. [18] Conjecture 1 and the paragraph
below it). In particular, this equivalence implies Drinfeld’s conjecture.

4. Applications to Shimura varieties

We apply the theory of de Rham F -gauges to the study of good reductions of Shimura
varieties. On the one hand, we construct universal de Rham F -gauges on the reduction
mod p of smooth integral canonical models for Shimura varieties of Hodge type. On the
other hand, we study the cohomology of de Rham F -gauges on these varieties by dual
BGG complexes.

4.1. Automorphic vector bundles in characteristic p. Let (G,X) be a Shimura
datum of Hodge type and p a prime such that G is unramified at p. Fix a sufficiently
small open compact subgroup Kp ⊂ G(Apf ) and set K = KpG(Zp). By [27] and [26]

we have the smooth integral canonical model SK over OE of the Shimura variety ShK
over the local reflex field E. By [37] and [29], we have smooth toroidal compactifications
S tor
K,Σ. From now on, let X = SK ⊗OE Fp (resp. Xtor = S tor

K,Σ ⊗OE Fp) be geometric

special fiber of SK (resp. S tor
K,Σ).

Recall that we have the following diagram of schemes over k = Fp

X̃

τ

��

q

""
X F `G,µ,



26 XU SHEN

where τ is a G-torsor and q is G-equivariant. Let P = Pµ = P+ with associated Levi L.
It is well known that there is an equivalence of categories

RepP ' VectG(F `G,µ),

where the later is the category of G-equivariant vector bundles on F `G,µ. Then from
the above diagram, we get the functor

E(·) : RepP −→ Vect(X).

The objects in the essential image are called autormorphic vector bundles on X. For
any representation V of G, viewed as a representation of P by the inclusion P ⊂ G, the
associated vector bundle V = E(V ) admits a natural flat connection ∇. On the other
hand, for any representation W of L, viewed as a representation of P via the projection
P → L, we have also the associated (semisimple) vector bundle W over X.

Considering the pullback of the above diagram under the Frobenius Frk : Spec k →
Spec k, we get a commutative diagram

RepP
E(·) //

π∗P
��

Vect(X)

π∗X
��

Fr∗X // Vect(X).

RepP (p)
E(p)(·)// Vect(X ′)

F ∗
X/k

88

In other words, we have a natural isomorphism of functors

Fr∗X ◦ E(·) ' F ∗X/k ◦ E
(p)(·) ◦ π∗P .

On the other hand, we have also an isomorphism of functors E(·)◦Fr∗P ' Fr∗X ◦E(·). Let

FrP/k : P → P (p) be the relative Frobenius morphism for P . Then FrP = πP ◦ FrP/k.
For V ∈ RepP , we get Fr∗PV = Fr∗P/k ◦ π

∗
PV = Fr∗P/k(V

(p)) ∈ RepP , the Frobenius

twisted representation.
Fix T ⊂ B ⊂ P a maximal torus and Borel subgroup inside P . Let λ ∈ X∗(T )+ (resp.

X∗(T )L,+) be the associated set of dominant characters (L-dominant characters). For
any λ ∈ X∗(T )+, we get the representation Vλ of G with highest weight λ, and the
associated flat vector bundle (Vλ,∇) over X. On the other hand, for η ∈ X∗(T )L,+, we
have also the associated (semisimple) vector bundle Wη over X.

4.2. De Rham F -gauges on good reductions of Shimura varieties. By works
of Moonen-Wedhorn [40], C. Zhang [52], Goldring-Koskivirta [19], Lan-Stroh [31], and
Andreatta [1], there exits a smooth morphism of algebraic stacks

ζ : X −→ G-Zipµ.

We get the induced Ekedahl-Oort stratification

X =
∐

w∈JW

Xw.

Via the theory of generalized Hasse invariants, this is of key importance to understand
the coherent cohomology of X and construction of automorphic Galois representations
in irregular and torsion case, cf. [19].

The morphism ζ corresponds to a universal G-zip (I, I+, I−, ϕ) of type µ over X,
which we briefly review. Fix a symplectic embedding i : (G,X) ↪→ (GSp(V, ψ), S±) and
a lattice VZp ⊂ V such that we have a closed embedding GZp ⊂ GL(VZp). Fix a finite

collection of tensors sα ∈ V ⊗Zp defining GZp ⊂ GL(VZp). Let

A −→ X

be the pull back of the universal abelian scheme over the associated Siegel modular
variety. Consider the vector bundle

V = H1
dR(A/X)
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together with the Gauss-Manin connection ∇ over X. We have also the Frobenius and
Verschiebung maps F : V → V and V : V → V. The Hodge filtration C• on V is given
by V ⊃ KerF ⊃ 0 and the conjugate filtration D• on V is given by 0 ⊂ ImV ⊂ V. We
get a de Rham F -gauge

(V,∇, C•, D•, ϕ)

by Example 3.2. By [27] Corollary 2.3.9 and [26] Proposition 4.8, we have de Rham
tensors sα,dR ∈ V⊗. Set M = (VZp ⊗Fp)∨. Then the cocharacter µ induces a decreasing

filtration M ⊃ M1 ⊃ 0 and the cocharacter µ(p) induces an increasing filtration 0 ⊂
M0 ⊂M . The G-zip (I, I+, I−, ϕ) of type µ over X is defined by

• I = IsomX

(
(M, sα)⊗OX , (V, sα,dR)

)
,

• I+ = IsomX

(
(M ⊃M1, sα)⊗OX , (V ⊃ KerF, sα,dR)

)
,

• I− = IsomX

(
(M0 ⊂M, sα)⊗OX , (ImV ⊂ V, sα,dR)

)
,

• ϕ : I
(p)
+ /U

(p)
+ → I−/U

(p)
− is the isomorphism with precise formula given in [52]

Theorem 2.4.1.

Here is the first main result of this section, which is motivated by the works of Drinfeld
[10, 11] (in particular, see [11] subsection 4.3).

Theorem 4.1. Let X = SK ⊗OE Fp be the reduction modulo p of the integral canonical
model of a Hodge type Shimura variety with hyperspecial level at p. There is a natural
de Rham F -gauge with (G,µ)-structure over X, which induces the universal G-zip of

type µ given by ζ. The induced morphism ξ : X → BTG,µ1 is smooth. In other words,
we have a commutative diagram of smooth morphisms of algebraic stacks over κ:

X
ξ //

ζ ""

BTG,µ1

��
G-Zipµ.

Proof. In fact we have two approaches. First, applying the main result of [36] that there
exists a universal filtered F -crystal on the formal completion of the integral canonical
model X of the involved Shimura variety, we take its reduction modulo p to get (similarly
as Proposition 3.3) the desired exact tensor functor

RepG→ F -GaugedR(X).

The fact that this construction lifts the universal G-zip on X follows from the discussions
in [48] subsection 5.3.

Next we explain a direct construction, as an enrichment of the construction of the
universal G-zip in [52]. We already have the universal G-zip of type µ given by

(I, I+, I−, ϕ).

The task is to find a flat connection ∇ on I having all the required properties so that
(I,∇, I+, I−, ϕ) forms a de Rham F -gauge of type µ. By [27] and [26] the de Rham
tensors sα,dR ∈ V⊗ are horizontal with respect to the Gauss-Manin connection ∇ on
V. By the definition of I above, we get an induced connection ∇ on I. It satisfies the
required properties as in Definition 3.9 as the induced flat vector bundle (I(M),∇) =
(V,∇) together with I+(M) and I−(M) forms a de Rham F -gauge (V,∇, C•, D•, ϕ).
Therefore we get a morphism of algebraic stacks

ξ : X → BTG,µ1 .

We already know that ζ : X → G-Zipµ is smooth by [52] Theorem 3.1.2. Since the

morphism BTG,µ1 → G-Zipµ is a gerbe, the morphism ξ : X → BTG,µ1 is equivalent to

a section over X of the morphism BTG,µ1 → G-Zipµ, which can be checked easily to be
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smooth. More precisely, let X# → X be the pullback of the EG,µ-torsor G → G-Zipµ,

we get a smooth morphism of schemes ζ# : X# → G. Let X̃# → X# (resp. G̃→ G) be

the pullback of the morphism BTG,µ1 → G-Zipµ under the induced map X# → G-Zipµ

(resp. G→ G-Zipµ). In other words, we have the following commutative diagram

X̃#

��

// G̃

��

// BTG,µ1

��
X#

��

ζ# // G //

��

G-Zipµ

X
ζ // G-Zipµ

with all squares cartesian. Then the morphism ξ : X → BTG,µ1 is obtained by quotient
by EG,µ of

X# → G̃,

the composition of the induced smooth morphism X̃# → G̃ and a section X# → X̃#

of the gerbe X̃# → X# banded by LauG1 . Now, the section X# → X̃# is smooth, as
the classifying stack BLauG1 is smooth, cf. [10] B.0.1 and the references therein. We
conclude. �

Remark 4.2. (1) As in Remark 3.7, over a smooth toroidal compactification X tor

of X, one can in fact show that there is a universal log de Rham F -gauge with
G-structure over X tor, as a canonical extension of the one over X.

(2) We leave it to the reader to extend Theorem 4.1 to the abelian type case. For
the version without compactification, see [36, 48] for some ideas.

By Theorem 4.1 and the Tannakian definition of de Rham F -gauge with G-structure,
we have a functor

RepG −→ F -GaugedR(X).

Therefore, for any λ ∈∈ X∗(T )+ such that Vλ is defined over Fp, we have an enrichment
of the flat vector bundle (Vλ,∇) into a de Rham F -gauge

(Vλ,∇, C•, D•, ϕ).

In the following, we will study the F -gauge (= F -zip) structure on the de Rham coho-
mology groups H i

dR(X/k, (Vλ,∇)).

4.3. Standard complexes in characteristic p. We need some group and represen-
tation theoretic preparations in this and the next subsection. We work over k = Fp.
Let g = LieG, p = LieP, u = LieU and u− = LieU−. For W ∈ RepP , the associated
Verma module is the U(g)− P -module

Verm(W ) = U(g)⊗U(p) W,

where U(g) acts canonically on the first component and P acts canonically and diago-
nally on both components. By the Poincaré-Birkhoff-Witt theorem, we have a canonical
isomorphism

U(g)⊗U(p) W ' U(u−)⊗k W.
Since u− is abelian, we have a canonical isomorphism

U(u−) ' Sym(u−),

which can be identified with a polynomial algebra over k with variables given by any
k-basis of u−. Thus we have

Verm(W ) ' Sym(u−)⊗k W.
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In the following we will omit the subscript k of ⊗k for tensor products of k-vector spaces.
For any integer m ≥ 0, let Sym≤m(u−) be the sub k-algebra of Sym(u−) of elements
of degree ≤ m, which we identify with a sub k-algebra of U(u−). Similarly we have
Symm(u−), the sub k-algebra of Sym(u−) of elements of degree m. For W1,W2 ∈ RepP ,
we have a natural isomorphism

HomU(g)−P (Verm(W1),Verm(W2)) ' HomP (W1,Verm(W2)).

A morphism f ∈ HomU(g)−P (Verm(W1),Verm(W2)) is said of degree m if the induced
morphism

f : W1 → Verm(W2) = Sym(u−)⊗W2

has image in Symm(u−)⊗W2.
Let f ∈ HomU(g)−P (Verm(W1),Verm(W2)) be a morphism of degree m, which we

view as a map

f : W1 −→ Sym≤m(u−)⊗W2.

Passing to dual, it induces a morphism

f∨ : Γ≤m(u∨−)⊗W∨2 −→W∨1 ,

where Γ≤m(u∨−) = Γ(u∨−)/Γ>m(u∨−) is the quotient of the divided power algebra Γ(u∨−)
associated to u∨−. By construction, Γ(u∨−) sits in a canonical perfect pairing

Sym(u−)× Γ(u∨−) −→ k.

There is a degree-preserving canonical morphism

Sym(u∨−) −→ Γ(u∨−),

such that the induced morphism

Sym≤m(u∨−) −→ Γ≤m(u∨−)

is an isomorphism for m ≤ p − 1. Later, we will mainly work with m = 1 to produce
differential operators of degree one, therefore we can use either Sym≤1(u∨−) or Γ≤1(u∨−)
without changing the construction.

Let V ∈ RepG be a representation, which we consider as an object in RepP by the
natural restriction functor RepG → RepP . Let ρ be the half of sum of positive roots.
Set n = dimk u−. Consider the standard complex of U(g)− P -modules

Std•(V ) = Verm(∧•(u−)⊗ V ) = Sym(u−)⊗ ∧•(u−)⊗ V,
more explicitly

0→ Verm(∧n(u−)⊗V )→ Verm(∧n−1(u−)⊗V )→ · · · → Verm(u−⊗V )→ Verm(V )→ 0,

where for 1 ≤ a ≤ n, the differentials

da : Verm(∧a(u−)⊗ V ) −→ Verm(∧a−1(u−)⊗ V )

are given by

da(u⊗ (x1 ∧ x2 ∧ · · · ∧ xa)⊗ v) =
a∑
i=1

(−1)i−1(uxi)⊗ (x1 ∧ x2 ∧ · · · ∧ x̂i ∧ · · · ∧ xa)⊗ v

+
a∑
i=1

(−1)iu⊗ (x1 ∧ x2 ∧ · · · ∧ x̂i ∧ · · · ∧ xa)⊗ (xiv),

for all u ∈ Sym(u−), x1, . . . , xa ∈ u− and v ∈ V .
Recall that P = Pµ for a cocharacter µ : Gm → G defined over κ, as in the setting of

subsection 2.6. For V as above, we have a natural decreasing Hodge filtration C• which
is defined as usual by the weights of Gm via µ: for a ∈ Z,

Ca(V ) =
⊕
b≥a

V b,
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where for each b ∈ Z, V b ⊂ V is the subspace of weight b by the induced action of Gm.
It follows that each graded piece graCV forms a representation of L, the Levi subgroup
associated to P . As any element of u− has weight −1, we have

d(Sym(u−)⊗ ∧j(u−)⊗ Ca−j(V )) ⊂ Sym(u−)⊗ ∧j−1(u−)⊗ Ca−j+1(V ).

We get a decreasing Hodge filtration C• on Std•(V ) by

Ca(Std•(V )) := Sym(u−)⊗ ∧•(u−)⊗ Ca−•(V ), a ∈ Z.

The associated graded complex has the form

graC(Std•(V )) = Sym(u−)⊗ ∧•(u−)⊗ gra−•C (V ), a ∈ Z.

Now consider the Frobenius twisted parabolic P (p) ⊂ Gκ and its opposite parabolic

P
(p)
− . The Lie algebra of the unipotent radical of P

(p)
− is u

(p)
− . As above, we can consider

the category of U(g)−P (p)-modules. For any V ∈ RepG, we repeat the above definition

of standard complex Std•(V ) to define a complex of U(g)− P (p)-modules.

Definition 4.3. For any V ∈ RepG, let p-Std•(V ) be the following complex

0→ Sym(u
(p)
− )⊗ ∧n(u

(p)
− )⊗ V → · · · → Sym(u

(p)
− )⊗ u

(p)
− ⊗ V → Sym(u

(p)
− )⊗ V → 0,

where for 1 ≤ a ≤ n, the differentials

ψa : Sym(u
(p)
− )⊗ ∧a(u(p)

− )⊗ V −→ Sym(u
(p)
− )⊗ ∧a−1(u

(p)
− )⊗ V

are given by

ψa(u⊗ (x1 ∧ x2 ∧ · · · ∧ xa)⊗ v) =
a∑
i=1

(−1)i−1(uxi)⊗ (x1 ∧ x2 ∧ · · · ∧ x̂i ∧ · · · ∧ xa)⊗ v

+
a∑
i=1

(−1)iu⊗ (x1 ∧ x2 ∧ · · · ∧ x̂i ∧ · · · ∧ xa)⊗ (xiv),

for all u ∈ Sym(u
(p)
− ), x1, . . . , xa ∈ u

(p)
− and v ∈ V .

Write P
(p)
− = Pν . We can define similarly an increasing conjugate filtration D• on V

by weights of Gm-action via ν : Gm → Gκ ' G(p)
κ :

Da(V ) =
⊕
b≤a

V b.

Note that ν = µσ,−1 with σ = IdG × Frk : Gk → Gk the Frobenius of G over k. In
particular, if V is defined over Fp, we get an F -zip

(V,C•, D•, ϕ)

using the isomorphisms V (p) ' V and G(p) ' G. Recall here ϕ is given by isomorphisms

ϕa : Fr∗kgraCV = (graCV )(p) ∼−→ graDV, a ∈ Z.

Now, as any element of u
(p)
− has weight 1, we have

ψa(Sym(u
(p)
− )⊗ ∧a(u(p)

− )⊗Di(V )) ⊂ Sym(u
(p)
− )⊗ ∧a−1(u

(p)
− )⊗Di+1(V ).

Thus we can define an increasing conjugate filtration D• on p-Std•(V ) by

Da(p-Std•(V )) = Sym(u
(p)
− )⊗ ∧•(u(p)

− )⊗Da−•(V ), a ∈ Z.

The associated graded complex has the form

graD(p-Std•(V )) = Sym(u
(p)
− )⊗ ∧•(u(p)

− )⊗ gra−•D (V ), a ∈ Z.

Lemma 4.4. Let V be a representation of G defined over Fp. The isomorphisms ϕa :

(graCV )(p) ∼−→ graDV extend to isomorphisms

ϕa : (graC(Std•(V )))(p) ' graD(p-Std•(V )).
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Proof. By the above description, the corresponding terms of the two graded complexes
on both sides are isomorphic. One can check that the differentials on both sides are also
isomorphic under ϕa. �

4.4. BGG complexes in characteristic p. The construction of BGG complexes in
mixed characteristic is due to Polo-Tiluilne [46] and Lan-Polo [30]. We review the
construction, with emphasis on characteristic p.

Keep the notations as above. Let Φ be the set of roots of G and Φ+ the set of positive
roots corresponding to the choice of the Borel subgroup B. We recall a crucial notion
for modular representations. A weight λ ∈ X∗(T )+ is called p-small, if

〈λ+ ρ, α∨〉 ≤ p, ∀α ∈ Φ,

where as before ρ = 1
2

∑
α∈Φ+ α. Equivalently, λ ∈ X∗(T )+ is p-small if

λ ∈ X∗(T )+ ∩ Cp,
where Cp is the closure of the fundamental p-alcove

Cp = {λ ∈ X∗(T )R | 0 ≤ 〈λ+ ρ, α∨〉 ≤ p, ∀α ∈ Φ+}
for the dot action of the affine Weyl group Waff ' pZΦ o W on X∗(T )R (see [46]
subsection 1.9 and the references therein). Here the dot action is given by w · λ =
w(λ+ ρ)− ρ. Consider the Coxeter number of G

h := 1 + Max{〈ρ, α∨〉, α ∈ Φ+}.
Then one checks easily that

X∗(T )+ ∩ Cp 6= ∅ ⇐⇒ p ≥ h− 1.

Recall the subset JW of the Weyl group W associated to P introduced in subsection
3.4. The length function induces a surjection

` : JW −→ {0, 1, . . . , n}, w 7→ `(w).

For each 0 ≤ a ≤ n, let JW (a) ⊂ JW be the subset of elements of length a. If
λ ∈ X∗(T )+ and w ∈ JW , then w · λ ∈ X∗(T )L,+.

Theorem 4.5. Assume that λ is p-small. There exists a C•-filtered complex BGG•(Vλ)
of U(g)− P -modules

0→ BGGn(Vλ)→ · · · → BGG1(Vλ)→ BGG0(Vλ)→ 0,

where
BGGa(Vλ) =

⊕
w∈JW (a)

Verm(Ww·λ), 0 ≤ a ≤ n.

Moreover, there is a C•-filtered quasi-isomorphic embedding

BGG•(Vλ) ↪→ Std•(Vλ),

such that the induced map of graded complexes

grCBGG•(Vλ) ↪→ grCStd•(Vλ)

is a quasi-isomorphic direct summand of degree zero with trivial differentials.

Proof. This is [30] Theorem 5.2, which generalizes the Theorem D of [46]. See also the
proof of Proposition 4.6 below. �

Proposition 4.6. Assume that λ is p-small and Vλ is defined over Fp. There exists a

D•-filtered complex p-BGG•(Vλ) of U(g)− P (p)-modules

0→ p-BGGn(Vλ)→ · · · → p-BGG1(Vλ)→ p-BGG0(Vλ)→ 0,

where
p-BGGa(Vλ) =

⊕
w∈JW (a)

Sym(u
(p)
− )⊗W (p)

w·λ, 0 ≤ a ≤ n.
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Moreover, there exists a D•-filtered quasi-isomorphic embedding

p-BGG•(Vλ) ↪→ p-Std•(Vλ),

such that the induced map of graded complexes

grD(p-BGG•(Vλ)) ↪→ grD(p-Std•(Vλ))

is a quasi-isomorphic direct summand of degree zero of with trivial differentials.

Proof. The proof is similar to that of [30] Theorem 5.2. For the reader’s convenience, we
review the proof here. Firstly, by assumption X∗(T )+ ∩Cp 6= ∅, 0 ∈ X∗(T )+ is p-small,
arguing as [46] 4.4 we have

∧a(u−) '
⊕

w∈JW (a)

Ww·0

as P -modules, and hence

∧a(u(p)
− ) '

⊕
w∈JW (a)

W
(p)
w·0

as P (p)-modules. Since V0 = k is defined over Fp, we have natural isomorphism V0 ' V (p)
0

and p-Std•(V0) ' (Std•(V0))(p) as complexes of U(g) − P (p)-modules. More explicitly,
for any a ∈ Z,

p-Stda(V0) '
⊕

w∈JW (a)

Sym(u
(p)
− )⊗W (p)

w·0.

Consider a general λ ∈ X∗(T )+ ∩ Cp 6= ∅ as in the statement of the proposition.

Since Vλ is defined over Fp, we have V
(p)
λ ' Vλ. From the isomorphism (cf. [46] 4.5)

Stda(Vλ) ' Stda(V0)⊗ Vλ, we get

p-Stda(Vλ) '
⊕

w∈JW (a)

Sym(u
(p)
− )⊗W (p)

w·0 ⊗ Vλ.

Denote p-Stdw(Vλ) = Sym(u
(p)
− )⊗W (p)

w·0⊗ Vλ, so that p-Std•(Vλ) '
⊕

w∈JW p-Stdw(Vλ).

Arguing as [46] 2.7, we have a decomposition of subcomplexes of U(g)− P (p)-modules

p-Std•(Vλ) '
⊕
j∈J

p-Std•(Vλ)χj ,

where J is some finite set, such that the Harish-Chandra part U(g)G ⊂ Z(g) of the

center8 Z(g) ⊂ U(g) acts on p-Std•(Vλ)χj by a distinct character χ
(p)
j . There is a dis-

tinguished character χλ, which is the unique character of U(g)G which acts nontrivially
on Vλ. Now define

p-BGG•(Vλ) = p-Std•(Vλ)χλ =
⊕
w∈JW

p-Stdw(Vλ)χλ ,

where p-Stdw(Vλ)χλ = (Sym(u
(p)
− )⊗W (p)

w·0⊗Vλ)χλ . Then we need to compute each term
p-Stdw(Vλ)χλ .

As λ is p-small, by [46] Lemma 2.3 all weights of

∧•(u(p)
− )⊗ Vλ =

⊕
w∈JW

(W
(p)
w·0 ⊗ Vλ)

are p-small. For each w, by [46] Lemma 2.3 and Lemma 1.11, there exists a finite

filtration on the P (p)-module W
(p)
w·0 ⊗ Vλ such that the graded pieces are of the form

8In characteristic p, there is also a Frobenius part of the center Z(g), cf. [23] C.4 or [7] 3.1.6 and the
references therein.
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Wη for some η ∈ X∗(T )L(p),+ ∩ Cp. By the same argument applied to the P -module

Ww·0 ⊗ Vλ, we get Wν for some ν ∈ X∗(T )L,+ ∩ Cp. Since

(Ww·0 ⊗ Vλ)(p) 'W (p)
w·0 ⊗ V

(p)
λ 'W (p)

w·0 ⊗ Vλ,
by the uniqueness in the statement of [46] Lemma 1.11, we have

η ' ν(p) and Wη 'W (p)
ν .

Then we get also a finite filtration on p-Stdw(Vλ) by U(g)− P (p)-modules, with graded

pieces Sym(u
(p)
− )⊗W (p)

ν for those ν as above. For the direct summand p-Stdw(Vλ)χλ , we

have a similar finite filtration. For each ν as above, by [46] 2.7 and 2.8, Sym(u
(p)
− )⊗W (p)

ν

appears as a graded piece of the filtration on p-Stdw(Vλ)χλ = Sym(u
(p)
− )⊗W (p)

w·0 ⊗ Vλ if
and only if Wν appears as a graded piece of the filtration on Ww·0 ⊗ Vλ and ν = w′ · µ
for some w′ ∈ JW . If these condition hold, by [46] 4.5 we have exactly w′ = w with
multiplicity one. Therefore, we have

p-Stdw(Vλ)χλ = Sym(u
(p)
− )⊗W (p)

w·λ,

and
p-BGGa(Vλ) =

⊕
w∈JW (a)

Sym(u
(p)
− )⊗W (p)

w·λ, 0 ≤ a ≤ n.

Let H ∈ X∗(T ) be the element defined by the conjugacy class of µ. We define a
D•-filtration on p-BGG•(Vλ) as

Da(p-BGG•(Vλ)) =
⊕
w∈JW

w·λ(H)≥−a

Sym(u
(p)
− )⊗W (p)

w·λ.

Then the quasi-isomorphic embedding

p-BGG•(Vλ) ↪→ p-Std•(Vλ)

is compatible with the D•-filtrations on both sides, and the induced map of graded
complexes

grD(p-BGG•(Vλ)) ↪→ grD(p-Std•(Vλ))

is a quasi-isomorphic direct summand of degree zero of with trivial differentials, by the
same arguments as the last paragraph of the proof of Theorem 5.2 in [30]. Alternatively,
this follows from Lemma 4.4 and similar statements in Theorem 4.5. �

4.5. De Rham complexes and p-curvature complexes. We transfer the results of
subsection 4.3 to geometric setting. In the rest of this section we assume that X is of
PEL type. For simplicity, assume moreover that the reductive group defined by the PEL
datum is connected (i.e. we exclude the case with local factors of groups of type D) and
X = Xtor is proper9.

For any λ ∈ X∗(T )+, we get the representation V ∨λ of G with highest weight −w0(λ),
and the associated flat vector bundle (V∨λ ,∇) over X. Here w0 is the element of maximal
length in the Weyl group. We will assume that Vλ is defined over Fp. Recall the de
Rham complex DR(V∨λ ,∇) and the associated p-curvature complex K(V∨λ , ψ). Consider
the dual complex Std•(V ∨λ )

0→ Verm(Vλ)∨ → Verm(u− ⊗ Vλ)∨ → · · · → Verm(∧n(u−)⊗ Vλ)∨ → 0

and the dual complex p-Std•(V ∨λ )

0→ Sym(u
(p)
− )∨ ⊗ V ∨λ → Sym(u

(p)
− )∨⊗(u

(p)
− )∨ ⊗ V ∨λ → · · ·

→ Sym(u
(p)
− )∨ ⊗ (∧nu(p)

− )∨ ⊗ V ∨λ → 0

9All the results hold in general PEL type case, by more carefully working with smooth toroidal
compactifications, canonical or subcanonical extensions of automorphic vector bundles, connections
with log poles, and certain Galois orbit [λ] in case with local factors of type D, cf. [30]
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of Std•(Vλ) and p-Std•(Vλ) respectively. The filtrations C• and D• on V ∨λ naturally
induce corresponding filtrations on Std•(V ∨λ ) and p-Std•(V ∨λ ).

Let us make the differentials in Std•(V ∨λ ) more explicit. Consider a map

f ∈ HomU(g)−P (Verm(W1),Verm(W2)) ' HomP (W1,Verm(W2))

of degree one, i.e. it is given by f : W1 → Sym≤1(u−) ⊗ W2. Its dual is then f∨ :
Sym≤1(u∨−) ⊗W∨2 → W∨1 . Applying to the differentials in Std•(Vλ) (which are all of
degree one), in particular

d1 : Sym(u−)⊗ u− ⊗ Vλ → Sym(u−)⊗ Vλ
is given by

d1 : u− ⊗ Vλ → Sym≤1(u−)⊗ Vλ,
which induces

d∨1 : Sym≤1(u∨−)⊗ V ∨λ → V ∨λ ⊗ u∨−.

This map can be explicitly described as follows. For any k-basis y1, . . . , yn of u− and
dual basis f1, . . . , fn of u∨−, for any (c, e) ∈ Sym≤1(u∨−) = k ⊕ u∨− and v ∈ V ∨λ , consider
the map

d∨1 ((c, e)⊗ v) = v ⊗ e+

n∑
j=1

(yjv)⊗ (cfj).

By [30] Lemma 4.18, we have

E(Sym≤1(u∨−)) ' P1
X ,

and by loc. cit. Proposition 4.27, under the functor E(·) the differential d∨1 is sent to
the morphism

s∗ − Id∗ : P1
X ⊗ V∨λ → V∨λ ⊗ Ω1

X

(cf. [30] subsection 2.2 for the precise meaning of the notation s∗ − Id∗). Composed
with the canonical morphism V∨λ → P1

X ⊗ V∨λ , this gives the connection

∇ : V∨λ → V∨λ ⊗ Ω1
X

on the automorphic vector bundle V∨λ . By our notation, we have

∇ = (s∗ − Id∗) ◦ pr∗2 = ε1(pr∗2)− pr∗1,

where pri : P 1
X = SpecP1

X → X are the natural projections. Recall P1
X = PX/J [2]

X and

we can identify Ω1
X = JX/J

[2]
X . We have similar descriptions for all d∨a and E(d∨a ).

Proposition 4.7 ([30] Corollary 4.30 and Proposition 4.31). Under the functor E(·),
we have

DR(V∨λ ,∇) ' E(Std•(V ∨λ )).

Moreover, the functor E(·) transfers the Hodge filtration C• on Std•(V ∨λ ) to the Hodge
filtration on DR(V∨λ ,∇).

Similarly, we have

Proposition 4.8. Under the functor E(·), we have

K(V∨λ , ψ) ' E(p-Std•(V ∨λ )),

which is compatible on conjugate filtrations on both sides.

Proof. We need a similar description as above for the complex p-Std•(V ∨λ ), in the way

to take care of the p-curvature. Replace P by P (p) and consider the complex p-Std•(Vλ).

All the differentials are of degree one. Consider the map ψ1 : Sym(u
(p)
− ) ⊗ u

(p)
− ⊗ Vλ →

Sym(u
(p)
− )⊗ Vλ which is given by ψ1 : u

(p)
− ⊗ Vλ → Sym≤1(u

(p)
− )⊗ Vλ. We can explicitly

describe its dual
ψ∨1 : Sym≤1(u

(p)∨
− )⊗ V ∨λ → V ∨λ ⊗ u

(p)∨
−
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similarly as d∨1 . We denote the composition of ψ∨1 with the canonical map V ∨λ →
Sym≤1(u

(p)∨
− ) ⊗ V ∨λ , v 7→ 1 ⊗ v by ψ∨. Then as above ψ∨ : V ∨λ → V ∨λ ⊗ u

(p)∨
− can be

explicitly described as

ψ∨(v) =

n∑
i=1

(xiv)⊗ fi,

for any k-basis x1, . . . , xn of u
(p)
− and dual basis f1, . . . , fn of u

(p)∨
− .

Under the functor E(·), we have

E(u
(p)∨
− ) = Fr∗XΩ1

X , and E(Sym≤1(u
(p)∨
− )) = Fr∗XSym≤1Ω1

X = Fr∗XΓ≤1Ω1
X .

The map ψ∨1 is sent to a morphism

E(ψ∨1 ) : (Fr∗XΓ≤1Ω1
X)⊗ V∨λ → V∨λ ⊗ Fr∗XΩ1

X .

Composed with the canonical map V∨λ → (Fr∗XΓ≤1Ω1
X)⊗ V∨λ , we get a map

ψ0 = E(ψ∨) : V∨λ → V∨λ ⊗ Fr∗XΩ1
X .

We claim that ψ0 is the p-curvature ψ∇ of ∇. Indeed, recall by Proposition 2.10 we have

an isomorphism Fr∗XΩ1
X = F ∗X/kΩ

1
X′ ' JX/(J

[p+1]
X + IPX). Using local coordinates, it

is given by

dπ∗X(x) 7→ τ [p] mod J
[p+1]
X + IPX ,

with τ = 1 ⊗ x − x ⊗ 1, cf. [42] Proposition 1.6. Then using local coordinates, ψ0 is
given by

ψ0(v) =

n∑
i=1

∇(∂i)
p(v)⊗ τ [p]

i ,

where ∂i = ∂
∂xi

and τi = 1⊗xi−xi⊗1. Now the claim follows by the similar description

of ∇ (as above) in the proof of [30] Proposition 4.27, and the crystalline description of
ψ∇ in [42] Proposition 1.7.

Similar analysis holds for ψ∨a . Thus we get E(p-Std•(V ∨λ )) ' K(V∨λ , ψ), which is
compatible on conjugate filtrations on both sides. �

4.6. Dual BGG complexes in characteristic p. We transfer the results of subsection
4.4 to geometric setting.

Theorem 4.9. Assume that λ is p-small. We have a C•-filtered quasi-isomorphic em-
bedding of complexes

BGG(V∨λ ) ↪→ DR(V∨λ ,∇),

where BGG(V∨λ ) has the form

0→ BGG0(V∨λ )→ BGG1(V∨λ )→ · · · → BGGn(V∨λ )→ 0

with BGGa(V∨λ ) =
⊕

w∈JW (a)W∨w·λ, such that the associated graded complex

grCBGG(V∨λ ) =
⊕
w∈JW

W∨w·λ

is a quasi-isomorphic direct summand of grCDR(V∨λ ,∇) with trivial differentials.

Proof. This follows from Theorem 4.5 as in [30] Theorem 5.9. Let H ∈ X∗(T ) be the
element defined by the conjugacy class of µ. The C•-filtration on BGG(V∨λ ) is defined
by

CiBGG(V∨λ ) =
⊕
w∈JW

w·λ(H)≤−i

W∨w·λ.

Note here we have the additional property that BGG(V∨λ ) ↪→ DR(V∨λ ,∇) is an embed-
ding, as we work with PD differential operators. See also [30] Remark 5.20. �
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We define a D•-filtration on BGG(V∨λ ) by

DiBGG(V∨λ ) =
⊕
w∈JW

w·λ(H)≥−i

W∨w·λ,

which induces a D•-filtration on Fr∗XBGG(V∨λ ).

Proposition 4.10. Assume that λ is p-small. We have a D•-filtered quasi-isomorphic
embedding of complexes

Fr∗XBGG(V∨λ ) ↪→ DR(V∨λ ,∇),

such that grDFr
∗
XBGG(V∨λ ) is a quasi-isomorphic direct summand of grDDR(V∨λ ,∇).

Proof. This follows from Propositions 4.6, 4.8 and Proposition 3.5 (and its proof), as in
the last theorem. �

4.7. De Rham cohomology with coefficients. Now we can assemble previous results
in subsections 4.3–4.6 to prove the second main result of this section. In the following,
for simplicity we write H i

dR(X,V∨λ ) = H i
dR(X/k, (V∨λ ,∇)).

Theorem 4.11. Suppose that X is of PEL type. Assume moreover that X is proper,
and the reductive group G defined by the PEL datum is connected. Let n = dim X.

(1) For any 0 ≤ i ≤ 2n and λ ∈ X∗(T )+ such that Vλ is defined over Fp, there is a
natural F -zip structure on H i

dR(X,V∨λ ), which is induced by the cohomology of
the de Rham F -gauge (V∨λ ,∇, C•, D•, ϕ).

(2) If moreover λ is p-small, then the F -zip structure on H i
dR(X,V∨λ ) is determined

by the dual BGG complex BGG(V∨λ ) as follows. Let H ∈ X∗(T ) be the element
defined by the conjugacy class of µ. For each a ∈ Z, by the construction of dual
BGG complexes, we have

H i
(
X, graCBGG(V∨λ )

)
=

⊕
w∈JW

w·λ(H)=−a

H i−`(w)(X,W∨w·λ).

Then there is a commutative diagram of isomorphisms

Fr∗kgraCH
i
dR(X,V∨λ )

ϕa // graDH
i
dR(X,V∨λ )

Fr∗kH
i
(
X, graCBGG(V∨λ )

)∼

OO

ϕa // H i
(
X, graDFr

∗
XBGG(V∨λ )

)
.

∼

OO

Proof. For (1), we use the theory of Kuga families [28] to deduce that the Hodge-de
Rham spectral sequence is degenerate. More precisely, such a theory explains how
to realize the vector bundles V∨λ from the relative de Rham cohomology with trivial
coefficients of products of the universal abelian scheme A → X, cf. [32] section 3 and
[33] section 5. Then we get the F -zip structure on cohomology by Proposition 3.6 and
Example 3.2.

(2) follows from part (1), Theorem 4.9, and Proposition 4.10. �

4.8. Mod p crystalline comparison with small coefficients. Finally, as in [39]
section 6, we discuss briefly the mod p crystalline comparison theorem with coefficients
to indicate how to pass from mod p de Rham cohomology to mod p étale cohomology,
following Faltings [14, 15]. There are more recent developments by prismatic methods,
for example see [12, 21]. As currently a general comparison theorem for the p-torsion
coefficients in F -GaugedR(X) is not available yet, we restrict to the Fontaine-Laffaille
case, and moreover the absolutely unramified case to match our previous discussions.
Thus we are in the setting of [14]. Then the following discussions (with more details)
already appeared in the works of Lan-Suh [32, 33].
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Let k be a perfect field of characteristic p, W = W (k) and E = W ⊗ Q. Consider
X/W a proper smooth scheme over W with X/k its special fiber over k, and Xη its
generic fiber over E. Consider the category

MF∇[0,p−2](X2/W2)

of p-torsion Fontaine modules associated to theW2 = W2(k)-lift X2 ofX. By Proposition
3.3, we can view it as a full subcategory of F -GaugedR(X) as we have a fully faithful
functor

MF∇[0,p−2](X2/W2) ↪→ F -GaugedR(X).

By [14], there is a fully faithful contravariant functor

D :MF∇[0,p−2](X2/W2) −→ Loc(Xη,Fp),

where Loc(Xη,Fp) is the category of Fp-local system on Xη. Let V = D∗ be the
functor which is the composition of D with the Pontryagin dual. Moreover, if the
p-torsion Fontaine module E = (E ,∇,Fil,Φ) ∈ MF∇[0,p−2](X2/W2) is associated with

L ∈ Loc(Xη,Fp), in the sense that

V(E) = L,

then for any integer i ≥ 0 and i+ a ≤ p− 2 where the integer a is given by Fila+1 = 0,
we have an isomorphism (cf. [14] Theorem 5.3)

V(H i
dR(X, E)) ' H i

et(Xη,E ,L).

Now let X/W be the smooth integral canonical model of a PEL type Shimura variety,
which we assume to be proper10 for simplicity. For a p-small weight λ ∈ X∗(T )+, let
|λ| = |λ|L be the integer defined as in [32] Definition 3.2. Roughly, if GQp decomposes as
a product p-adic factors Gi, with induced dominant characters λi which can be described
as a tuple of integers, then |λ| =

∑
i |λi|, with |λi| the integer defined explicitly from

λi according to the type of the group Gi. Assume as before that Vλ is defined over Fp
(thus defined over k).

Proposition 4.12. If the weight λ ∈ X∗(T )+ is p-small and the associated de Rham F -
gauge V∨λ = (V∨λ ,∇, C•, D•, ϕ) comes from an object (V∨λ ,∇,Fil,Φ) ∈MF∇[0,p−2](X2/W2),

then we have

V(V∨λ ) = L∨λ ,

where Lλ is the Fp-local system on Xη associated to the Fp-representation of G with
highest weight λ. In particular, for an integer i ≥ 0 with i + |λ| ≤ p − 2, we have an
isomorphism

V(H i
dR(X,V∨λ )) ' H i

et(Xη,E ,L
∨
λ).

Proof. The first statement can be proved by the explicit realization of the automorphic
vector bundle V∨λ in terms of the Kuga families over X, and the second statement follows
from the theorem of Faltings as in [14]. See [32] sections 3-5 for more details. �
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