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Abstract. We revisit the Harder-Narasimhan stratification on a minuscule p-adic flag variety,
by the theory of modifications of G-bundles on the Fargues-Fontaine curve. We compare

the Harder-Narasimhan strata with the Newton strata introduced by Caraiani-Scholze. As

a consequence, we get further equivalent conditions in terms of p-adic Hodge-Tate period
domains for fully Hodge-Newton decomposable pairs. Moreover, we generalize these results

to arbitrary cocharacters case by considering the associated B+
dR-affine Schubert varieties.

Applying Hodge-Tate period maps, our constructions give applications to p-adic geometry of
Shimura varieties and their local analogues.
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1. Introduction

This paper is a continuation and complement of our previous work [5]. We look at “p-adic
period domains” from a different perspective (we refer to [5] and the references therein for more
background on p-adic period domains). We also extend the main result of [5] to general (not
necessarily minuscule) cocharacters.

More precisely, we revisit the Harder-Narasimhan stratifications on p-adic flag varieties, which
were defined using the theory of filtered vector spaces with additional structures by Rapoport
[35], and Dat-Orlik-Rapoport [8] Parts 1 and 2. In fact, in [35] only the maximal open strata
were considered, while in [8] Parts 1 and 2 these Harder-Narasimhan stratifications were mainly
investigated for reductive groups over finite fields. In this paper, we are interested in the p-adic
setting, motivated by the work of Fargues [14] in the context of Harder-Narasimhan polygons
for p-divisible groups. The pure linear algebra context here suggests that it should be easier to
access than the usual context of filtered isocrystals with additional structures as [33, 38] and [8]
Part 3. Under base change, filtered vector spaces can be viewed as filtered isocrystals with trivial
underlying isocrystals. Thus we can study these p-adic Harder-Narasimhan strata by plugging
them into the setting of Rapoport-Zink [38] chapter 1 and Dat-Orlik-Rapoport [8] Part 3, where
the theory of filtered isocrystals with additional structures serves as the basic tool. In a different
direction, the open Harder-Narasimhan strata were also defined and studied in certain cases by
van der Put and Voskuil in [44].

Thanks to the recent developments in p-adic Hodge theory [15, 41], now we can apply the the-
ory of modifications of G-bundles on the Fargues-Fontaine curve to study the Harder-Narasimhan
strata (in minuscule p-adic flag varieties). This new method has the advantage that it is easier
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and natural to compare the Harder-Narasimhan stratification with some other important strat-
ifications on (minuscule) p-adic flag varieties, such as the Newton stratification introduced by
Caraiani-Scholze in [4] section 3, where the Fargues-Fontaine curve also plays the key role. From
the point of view of period morphisms of local Shimura varieties, we consider these Harder-
Narasimhan and Newton stratifications as constructions on the Hodge-Tate side. The purpose of
this paper is to understand the relation between these two stratifications. In our previous work
[5], we studied the Harder-Narasimhan strata and Newton strata on the de Rham side (although
we mostly restricted to the open strata: the weakly admissible locus and the admissible locus).
At the end, we will see the theories on both sides are very closely related, in the sense they are
actually dual to each other. Therefore, we make the main result of [5] into a more symmetric
form here. Moreover, we can extend these results to general (arbitrary cocharacter) case, re-
placing p-adic flag varieties by the B+

dR-affine Schubert cells constructed in [41], which are key
examples of diamonds.

To be more precise, let us fix some notations. Let G be a reductive group over1 Qp and {µ}
a conjugacy class of cocharacters µ : Gm,Qp → GQp . Attached to (G, {µ}), we have flag varieties

F `(G,µ) and F `(G,µ−1), parametrizing “G-filtrations” of type µ and µ−1 respectively, defined

over a finite extension E of Qp. We view them as adic spaces over Ĕ, the completion of the
maximal unramified extension of E. We assume that µ is minuscule at this moment for simplicity.

Consider the p-adic flag variety F `(G,µ−1) first. By studying modifications of the trivial
G-bundle over the Fargues-Fontaine curve, we can introduce two stratifications as follows. The
first one is the Newton stratification introduced by Caraiani-Scholze in [4] section 3. Let C|Ĕ
be any algebraically closed perfectoid field and X = XC[ be the Fargues-Fontaine curve over
Qp attached to the tilt C[ equipped with a closed point ∞ with residue field C. A very basic
construction (originally due to Beauville-Laszlo) is that, to each point x ∈ F `(G,µ−1)(C), we
can attach a modified G-bundle at ∞

E1,x
of the trivial G-bundle E1 over X. Recall that by Fargues’s main theorem in [12], we have a

bijection B(G)
∼−→ H1

et(X,G), [b′] 7→ [Eb′ ], where B(G) is the set of σ-conjugacy classes in

G(Q̆p), cf. [24, 26]. The isomorphism class of E1,x thus defines a point in B(G), which in fact
lies in the Kottwitz set B(G,µ) ([26] section 6). This gives the Newton stratification

F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)Newt=[b′].

Each stratum F `(G,µ−1)Newt=[b′] is a locally closed subspace of F `(G,µ−1), therefore we can
either view it as a pseudo-adic space in the sense of Huber ([22]) or a diamond in the sense of
Scholze ([39]).

On the other hand, we can define the Harder-Narasimhan vector (see subsections 2.3 and 2.5)

ν(E1, E1,x, f)

attached to the modification triple (E1, E1,x, f), which is an element in the set N (G) of [36] 1.7
attached to G. In the case of GLn this has been studied by Fargues [14] and Cornut-Irissarry
[7]. It turns out that under the above minuscule condition, the vector ν(E1, E1,x, f) is identical
to the Harder-Narasimhan vector ν(Fx) defined in [8] chapter VI.3 for the “G-filtration” Fx
attached to x. We can show that in fact ν(E1, E1,x, f) (in fact some normalization of it) lies in
N (G,µ), the image of B(G,µ) under the Newton map ν : B(G)→ N (G) (cf. [24] section 4). In
this way we get the Harder-Narasimhan stratification

F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)HN=[b′].

Similarly as above, each Harder-Narasimhan stratum is a locally closed subspace of F `(G,µ−1).
For both stratifications, the maximal open strata are indexed by the basic element [b] ∈ B(G,µ)
and we have an inclusion

F `(G,µ−1)Newt=[b] ⊂ F `(G,µ−1)HN=[b],

1Throughout this paper, the base field for our reductive groups is Qp. However one can replace it by any

finite extension of Qp and all the results are still true.
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which comes from the inequality between the Harder-Narasimhan vector and the Newton vector
in N (G)

ν(E1, E1,x, f) ≤ ν(E1,x),

cf. Proposition 3.4. See also [14] Proposition 14 and [7] Proposition 3.5 (both in the case of GLn).

Now consider the side of F `(G,µ). Let b ∈ G(Q̆p) be such that the associated class
[b] ∈ B(G,µ) and it is the basic element. The triple (G, {µ}, [b]) then forms a basic local Shimura
datum ([37]). Then we can also define the Newton stratification and Harder-Narasimhan strat-
ification on F `(G,µ) by considering the modifications

Eb,x, x ∈ F `(G,µ)(C)

of the G-bundle Eb associated to b on X (by Fargues’s main theorem in [12]) similarly as above.
The Newton stratification2 in this setting was introduced in [5] 5.3, while the Harder-Narasimhan
stratification was introduced in [8] chapter IX.6, where the more classical theory of filtered
isocrystals with additional structures was used. The open Newton stratum is the admissible
locus F `(G,µ, b)a ([40, 41, 35, 5]), while the open Harder-Narasimhan stratum is the weakly
admissible locus F `(G,µ, b)wa ([38, 8]). By the theorem of Colmez-Fontaine (see [15] chapter
10), we have also the inclusion

F `(G,µ, b)a ⊂ F `(G,µ, b)wa.

The Newton and Harder-Narasimhan stratifications on the side of F `(G,µ) also have the same
index set, B(G, 0, νbµ

−1), a generalized Kottwitz set which was introduced in [35] and [5] section
4.

To summarize, we have the open strata F `(G,µ−1)Newt=[b] and F `(G,µ−1)HN=[b] inside
F `(G,µ−1) constructed starting from the triple (G, {µ−1}, [1]) (the Hodge-Tate side), and the
open strata F `(G,µ, b)a and F `(G,µ, b)wa inside F `(G,µ) constructed from the local Shimura
datum (G, {µ}, [b]) (the de Rham side). These open strata are related by the following diagram

M(G,µ, b)∞
πdR

vvvv

πHT

)) ))
F `(G,µ, b)a,3� _

��

F `(G,µ−1)Newt=[b],3
� _

��
F `(G,µ, b)wa,3 F `(G,µ−1)HN=[b],3,

whereM(G,µ, b)∞ is the local Shimura variety with infinite level attached to the datum (G, {µ}, [b])
(cf. [5] Theorem 3.3 and [41] sections 23 and 24), πdR and πHT are the p-adic de Rham and
Hodge-Tate period morphisms respectively. Thus it is more reasonable to call F `(G,µ, b)a and
F `(G,µ−1)Newt=[b] p-adic period domains, although historically in [35, 8] it was the open Harder-
Narasimhan strata F `(G,µ, b)wa and F `(G,µ−1)HN=[b] that were called period domains. By

construction,M(G,µ, b)∞ is a diamond over Ĕ. This is why we pass to the diamonds associated
to the above spaces.

Recall that Görtz-He-Nie have introduced the notion of fully Hodge-Newton decomposability
for the Kottwitz set B(G,µ) (or the pair (G, {µ}), cf. [18] Definition 2.1, where µ is a not
necessarily minuscule cocharater). Roughly, this condition means that for any non basic element
[b′] ∈ B(G,µ), the pair ([b′], {µ}) satisfies the Hodge-Newton condition. By [18] Theorem 2.5
we have a complete classification for fully Hodge-Newton decomposable pairs (G, {µ}). Now we
have the following theorem.

Theorem 1.1 (Theorem 5.1). Assume that µ is minuscule and [b] ∈ B(G,µ) is basic. The
following statements are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable,
(2) F `(G,µ, b)a = F `(G,µ, b)wa,

2In [5] this was called the Harder-Narasimhan stratification, which should not be confused with the Harder-

Narasimhan stratification here.
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(3) F `(G,µ−1)Newt=[b] = F `(G,µ−1)HN=[b].

The equivalence (1) ⇔ (2) was proved in [5] Theorem 6.1. Here the novelty is to add the
additional information (3). In fact, the equivalence (1)⇔ (3) was conjectured by Fargues in [14]
9.7. In Theorem 5.1 we will give several further equivalent conditions.

The idea to prove the above theorem is to introduce the dual local Shimura datum (Jb, {µ−1}, [b−1])
(see subsection 4.1 or [37] Conjecture 5.8 and [41] Corollary 23.2.3) and consider the following
similar statements:

(a) B(Jb, µ
−1) is fully Hodge-Newton decomposable,

(b) F `(Jb, µ
−1, b−1)a = F `(Jb, µ

−1, b−1)wa,

(c) F `(Jb, µ)Newt=[b−1] = F `(Jb, µ)HN=[b−1].

By [5] Corollary 4.15, we have shown (1) ⇔ (a) by purely group theoretical methods. Then by
[5] Theorem 6.1, we get (a) ⇔ (b). The point here is to show (3) ⇔ (b) and (2) ⇔ (c), which
can be viewed as certain dualities for the Newton and Harder-Narasimhan stratifications on the
p-adic flag varieties F `(G,µ) and F `(G,µ−1). See Theorem 4.4 and Corollary 4.5. In fact,
the duality for Newton stratifications already appeared implicitly in [5] 5.3, and the duality for
Harder-Narasimhan stratifications appeared implicitly in [8] IX.6. The novelties here are:

• studying both dualities more systematically in the setting of twin towers principle (see
[5] 5.1 and the following section 4),

• showing that how the combination of both dualities produces new information and sheds
new lights on the other side of the whole story,

• extending both dualities to general not necessarily minuscule cocharacters µ by looking
at the corresponding B+

dR-affine Schubert cells, see below.

On the other hand, we can show directly the equivalence (1)⇔ (3) by similar arguments as in
the proof of [5] Theorem 6.1, see Remark 5.2. Then under the equivalences (1)⇔ (a), (2)⇔ (c)
and (3) ⇔ (b), we get (a) ⇔ (c) ⇔ (b), and thus (1) ⇔ (2). In this way we give another proof
for [5] Theorem 6.1, although essentially the two proofs are the same. As one has seen, the
equivalence (1)⇔ (a) is in fact the only key ingredient which we take from [5].

For a general not necessarily minuscule cocharacter µ, to have a similar picture as above, the
correct objects to study are the B+

dR-affine Schubert cells (cf. [41] sections 19 and 20)

Grµ and Grµ−1

instead of the corresponding flag varieties. One of the main results of [41] says that Grµ and
Grµ−1 are locally spatial diamonds over E. They are related to flag varieties by the Bialynicki-
Birula maps (cf. [4] Proposition 3.4.3 and [41] Proposition 19.4.2)

πµ : Grµ → F `(G,µ)3, and πµ−1 : Grµ−1 → F `(G,µ−1)3.

For any perfectoid algebraically closed field C|Ĕ and any point x ∈ Grµ−1(C), by the Beauville-
Laszlo construction, we still have a modification E1,x of the trivial G-bundle E1 on the Fargues-
Fontaine curve X = XC[ . By considering the Newton vector (resp. Harder-Narasimhan vector)
attached to E1,x (resp. the triple (E1, E1,x, f)), we can construct the Newton (resp. Harder-
Narasimhan) stratification on Grµ−1 similarly as before. Here we study the Harder-Narasimhan
vector

ν(E1, E1,x, f)

along the lines of [8] chapter V, replacing G-filtrations by admissible modifications of G-bundles.
In the case G = GLn, the vector ν(E1, E1,x, f) was defined by the Harder-Narasimhan formalism

in [7]. To show each HN stratum GrHN=v
µ−1 defines a locally spatial diamond, we actually construct

a refinement of the HN vector stratification by associating each point a “HN type”, which is
an analogue of the HN type stratification introduced in [8] chapter VI.3. Along the way, we
also show that non semi-stable HN strata are parabolically induced, see Theorem 6.9. We
remark that if µ is non minuscule, then in general ν(E1, E1,x, f) 6= ν(Fπµ−1 (x)) (see Example

2.1), where ν(Fπµ−1 (x)) is the HN vector associated to the G-filtration Fπµ−1 (x) attached to

πµ−1(x) ∈ F `(G,µ−1)(C) studied in [8].

Let b ∈ G(Q̆p) be such that [b] ∈ B(G,µ). For any point x ∈ Grµ(C), as above we have a mod-
ification Eb,x of the G-bundle Eb over X = XC[ attached to [b]. By considering the Newton vector
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of Eb,x, we can construct the Newton stratification on Grµ. Moreover, the dualities for Newton
stratifications on Grµ−1 and Grµ also hold in this general setting (see Theorem 6.15). If [b] is
basic, by duality we can also define the Harder-Narasimhan stratification on Grµ by working with
(Jb, {µ}, [1]). When µ is minuscule, the Bialynicki-Birula maps πµ−1 : Grµ−1 → F `(G,µ−1)3

and πµ : Grµ → F `(G,µ)3 are isomorphisms (cf. [4] Theorem 3.4.5 and [41] Proposition
19.4.2), and we recover the Newton and Harder-Narasimhan stratifications on the flag varieties
F `(G,µ−1) and F `(G,µ).

Let b ∈ G(Q̆p) be such that [b] ∈ B(G,µ) basic. Starting from the datum (G, {µ}, [b]), we get
the admissible locus Graµ (the open Newton stratum) and the weakly admissible locus Grwaµ (the
open Harder-Narasimhan stratum) inside Grµ. Both of them are open sub diamonds of Grµ.

We have the inclusion of locally spatial diamonds over Ĕ:

Graµ ⊂ Grwaµ .

On the Hodge-Tate side Grµ−1 , by the inequality ν(E1, E1,x, f) ≤ ν(E1,x) as above, we have the
inclusion for open Newton and Harder-Narasimhan strata:

Gr
Newt=[b]
µ−1 ⊂ Gr

HN=[b]
µ−1 .

Here is the generalization of Theorem 1.1, where we remove the minuscule condition (see [14]
9.7, Conjecture 1 (1)):

Theorem 1.2 (Theorem 6.18, Corollary 6.19). Let [b] ∈ B(G,µ) be basic. The following state-
ments are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable,
(2) Graµ = Grwaµ ,

(3) Gr
Newt=[b]
µ−1 = Gr

HN=[b]
µ−1 .

As for Theorem 1.1, once we prove the equivalence (1)⇔ (2), which is the generalized version
of [5] Theorem 6.1, the remaining equivalence (1) ⇔ (3) follows by the dualities for Newton
and Harder-Narasimhan stratifications. The key new idea is to study the geometry of Grµ in
terms of B+

dR-affine Grassmannians of parabolic and Levi subgroups of G, which is in some sense
a theory of generalized semi-infinite orbits in the current setting. More precisely, we have the
following new3 information:

• We prove the dimension formula and closure relation for the B+
dR-affine Schubert cells

(same as the classical setting, see Proposition 6.2).
• Let M be a Levi subgroup inside a parabolic P of G over Qp. Then we have a stratifica-

tion Grµ =
∐
λ∈SM (µ) GrG,µ,λ, induced on Grµ by the natural diagram of the B+

dR-affine

Grassmannians of M,P and G respectively (the strata GrG,µ,λ are intersections of the
generalized semi-infinite orbits Sλ with Grµ, see subsection 6.3 for more details). More-
over, we know the closure relation for this stratification and we give some description
for the index set SM (µ) (which is in fact related to the geometric Satake equivalence for
B+
dR-affine Grassmannians, cf. [16]).

• The above stratification naturally arises when we study reductions of modifications of G-
bundles to P -bundles (resp. M -bundles) on the Fargues-Fontaine curve, cf. Lemma 6.6.
Using this, we give an interpretation of the weakly admissible locus Grwaµ in terms of the
Fargues-Fontaine curve, cf. Proposition 6.17, which is a generalization of [5] Proposition
2.7.

With these new ingredients at hand, the arguments in the proof of [5] Theorem 6.1 apply here
to establish the above equivalence (1)⇔ (2), see Theorem 6.18 for more details.

The pullbacks under the Hodge-Tate period morphisms define Harder-Narasimhan stratifica-
tions on moduli of local G-Shtukas (cf. [41] section 23) and on Shimura varieties, see sections
7 and 8. In particular, for applications to Shimura varieties, Theorem 1.1 will be enough, and
the new perspective (1) ⇔ (3) is crucial. We hope these constructions will be found useful for
further arithmetic applications (cf. [14] 9.7.2).

3We note that some of the results here can be deduced from the recent work of Fargues-Scholze [16] chapter

VI. However, our method is more concrete and direct, as we work with B+
dR-affine Grassmannians over Spa(Qp)3.
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In a recent paper [45], Viehmann has made some similar study on modifications of G-bundles
on the Fargues-Fontaine curve. The work [45] is more group theoretical in nature. Here we
are mainly motivated by the Harder-Narasimhan formalism as in the works [8, 7, 14]. When
we submitted our revised version, we learned that Nguyen and Viehmann have introduced and
studied Harder-Narasimhan strata on B+

dR-affine Grassmannians in a similar way ([28]).

We briefly describe the structure of this article. In section 2, we review some basics about
modifications of G-bundles on the Fargues-Fontaine curve, which will be our tool in the follow-
ing. In section 3, we define and study the Newton and Harder-Narasimhan strata on the flag
variety F `(G,µ−1) under the assumption that µ is minuscule. In section 4, we explain how
to transfer the point of view by using modifications of Jb-bundles. More precisely, we explain
how to identify the Newton and Harder-Narasimhan strata on the Hodge-Tate (resp. de Rham)
side for G by the corresponding strata on the de Rham (resp. Hodge-Tate) side for Jb. These
are the dualities of the Newton and Harder-Narasimhan strata established in Theorem 4.4 and
Corollary 4.5. In section 5, we summarize various equivalent conditions for a fully Hodge-Newton
decomposable pair (G, {µ}) with µ minuscule, applying results of sections 3 and 4. In section 6,
we generalize the previous constructions and results to not necessarily minuscule cocharacters µ
by studying the B+

dR-affine Schubert cells Grµ−1 and Grµ. In particular, we choose to work on
the de Rham side Grµ and prove the generalized Fargues-Rapoport conjecture (Theorem 6.18).
Then we transfer back to the Hodge-Tate side Grµ−1 (Corollary 6.19) by dualities (Theorem
6.15). We could start with the contents of section 6 directly after section 2. However, we decide
to discuss firstly the more classical objects of flag varieties to illustrate the duality principle.
In sections 7 and 8, we discuss some applications to moduli of local G-Shtukas and Shimura
varieties respectively.

Acknowledgments. I would like to thank Sian Nie for some discussions on group theory. I wish
to thank Michael Rapoport for helpful remarks on the first version of this paper. I also thank
Miaofen Chen and Laurent Fargues for useful conversations. I want to thank Eva Viehmann
and Christophe Cornut sincerely for valuable correspondences which lead to the correction for
a mistake in the previous version. I would like to thank the referee for helpful comments and
suggestions which lead to some further improvements. The author was partially supported by
the National Key R&D Program of China 2020YFA0712600, and the NSFC grants No. 11631009
and No. 11688101.

2. Modifications of G-bundles on the Fargues-Fontaine curve

The purpose of this section is to study the Harder-Narasimhan theory for admissible modifi-
cations of G-bundles on the Fargues-Fontaine curve. We refer to [1, 6, 32] for some generalities
on the Harder-Narasimhan formalism. We will also establish the basic setting of some closely
related objects.

Let C|Qp be a fixed algebraically closed perfectoid field, with C[ its tilt. We have the Fargues-
Fontaine curve X = XC[ over Qp, together with the canonical point ∞ ∈ X with completed

local ring ÔX,∞ = B+
dR(C). We refer the reader to [15] for a detailed study of this curve, and to

[5] section 1 for a brief summary. We will simply write BdR = BdR(C) and B+
dR = B+

dR(C) in the

following. Let ξ ∈ B+
dR be a fixed uniformizer. Let ϕ−ModQ̆p be the category of F -isocrystals

over Fp, and BunX be the category of vector bundles on X. A basic result of [15] says that we
have a natural functor

E(−) : ϕ−ModQ̆p −→ BunX

which is essentially surjective. For E ∈ BunX , we have the Harder-Narasimhan filtration of E with
the associated Harder-Narasimhan vector ν(E) ∈ Qn+ where n = rank E . To avoid confusion, we
will call it the Newton filtration, since later we will introduce several further Harder-Narasimhan
filtrations. We remind the reader that the main tools used in [5] are the Harder-Narasimhan
theories for G-bundles over X and filtered isocrystals with G-structures.

2.1. Modifications of vector bundles. We are interested in the category of modifications4 of
vector bundles on X, which we denote by

ModifX .

4In this paper we only consider modifications at the canonical point ∞ ∈ X.
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Recall that a modification of vector bundles is a triple E = (E1, E2, f), where

• E1, E2 are vector bundles on X,
• f : E1|X\{∞}

∼−→ E2|X\{∞} is an isomorphism.

A morphism F : E → E ′ is a pair of morphisms Fi : Ei → E ′i with F2 ◦ f = f ′ ◦F1. This category
ModifX is a quasi-abelian Qp-linear rigid ⊗-category with a Tate twist, cf. [7] 3.1.4. For a
modification (E1, E2, f), let

E+
i,dR = E∧i,∞

be the completed local stalk at ∞ of Ei, and

fdR : E+
1,dR[ξ−1]→ E+

2,dR[ξ−1]

be the induced isomorphism of BdR-vector spaces. We have the Newton filtrations FN,i(E) :=
F(Ei) for i = 1, 2. Moreover, we have the Hodge filtrations FH,i(E), which are the Z-filtrations
on the residues Ei(∞) := E+

i,dR/ξE
+
i,dR of Ei induced by E+

3−i,dR: for any j ∈ Z,

F jH,1 =
f−1
dR (ξjE+

2,dR) ∩ E+
1,dR + ξE+

1,dR

ξE+
1,dR

, F jH,2 =
fdR(ξjE+

1,dR) ∩ E+
2,dR + ξE+

2,dR

ξE+
2,dR

.

Let n = rank(E1) = rank(E2). Then FH,1 and FH,2 define opposed types νH,i(E) ∈ Zn+.
We have the following natural functors

ModifX
←−
h

yy

−→
h

%%
BunX BunX ,

with ←−
h (E1, E2, f) = E2,

−→
h (E1, E2, f) = E1.

These functors
←−
h and

−→
h will be related to the de Rham periods and the Hodge-Tate periods

respectively.

2.2. Filtered F -isocrystals. For any extension K|Q̆p (not necessary finite), let

ϕ−FilModK/Q̆p

be the category of filtered F -isocrystals with respect to K|Q̆p. A filtered F -isocrystal D =
(D,ϕ,F) ∈ ϕ−FilModK/Q̆p consists of a underlying F -isocrystal (D,ϕ) ∈ ϕ−ModQ̆p together

with a Q-filtration F on D ⊗Q̆p K. We have the rank and degree functions

rank : ϕ−FilModK/Q̆p → N, deg : ϕ−FilModK/Q̆p → Z

defined by

rankD = dim D, degD = tH(D)− tN (D),

where tH(D) =
∑
i i dim griFDK and tN (D) = vp(detϕ). These functions induce a Harder-

Narasimhan filtration on ϕ−FilModK/Q̆p .

Consider the case K = C. By Fargues’s de Rham classification for modifications of vector
bundles, there exists a functor π : ModifX −→ ϕ−FilModC/Q̆p , for which we refer to [11] 4.2.2

for more details.

2.3. Admissible modifications. Consider the full subcategory of admissible modifications

ModifadX

inside ModifX . Recall that a modification E = (E1, E2, f) is called admissible if E1 is a semi-
stable vector bundle of slope 0 (i.e. E1 is the trivial vector bundle). This is again a quasi-abelian
Qp-linear rigid ⊗-category with a Tate twist. For an admissible modification E = (E1, E2, f), we
set

FN (E) := F(E2), FH(E) := FH,1(E), νN (E) := ν(E2), and νH(E) := νH,1(E).

We have an exact Qp-linear faithful ⊗-functor

ω : ModifadX → VectQp , ω(E) = Γ(X, E1),
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which induces a bijection between the poset of strict subobjects of E in ModifadX and the poset
of Qp-subspaces of ω(E). We have the rank and degree functions

rank : ModifadX → N, deg : ModifadX → Z

defined by

rank(E) = rank(E1) = rank(E2) = dimω(E)

and

deg(E) = deg E2.

They induce a Harder-Narasimhan5 filtration on ModifadX with slopes µ = deg/rank in Q. We
denote it by F(E) with the associated Harder-Narasimhan vector ν(E).

Later we will need the following variant. Let Modifad
′

X be the subcategory of modifications
E = (E1, E2, f) with E2 trivial. On this category we have the rank and degree functions defined
by rank(E) = rank(E1) = rank(E2) and deg(E) = deg E1. One checks similarly as above that

they induce a Harder-Narasimhan filtration on Modifad
′

X . Moreover, we have the equivalence

Modifad
′

X
∼−→ ModifadX , E = (E1, E2, f) 7→ E ′ = (E2, E1, f−1)

and ν(E) = ν(E ′).

Let HTBdR be the category of pairs (V,Ξ), where

• V is a finite dimensional Qp-vector space,
• Ξ is a B+

dR-lattice in VdR = V ⊗BdR.

A morphism F : (V,Ξ) → (V ′,Ξ′) is a Qp-linear morphism f : V → V ′ such that the induced
morphism fdR : VdR → V ′dR satisfies f(Ξ) ⊂ Ξ′. This defines a quasi-abelian rigid Qp-linear ⊗-

category. We have the natural functor ω : HTBdR → VectQp , (V,Ξ) 7→ V . For (V,Ξ) ∈ HTBdR ,
the lattice Ξ induces a Hodge filtration FH(V,Ξ), which is the Z-filtration on the residue VC =
V ⊗ C of the lattice V +

dR = V ⊗B+
dR ⊂ VdR, giving by the formula:

FH(V,Ξ)i =
ξiΛ ∩ V +

dR + ξV +
dR

ξV +
dR

.

Moreover, we have the rank and degree functions

rank : HTBdR → N, deg : HTBdR → Z

defined by

rank(V,Ξ) = dimV = rankB+
dR

(Ξ),

and

deg(V,Ξ) =
∑
i

idim griFHVC .

They induce a Harder-Narasimhan filtration on HTBdR . We denote it by F(V,Ξ) with Harder-
Narasimhan vector ν(V,Ξ).

By Fargues’s Hodge-Tate classification in [11] 4.2.3, we have an exact ⊗-equivalence of ⊗-
categories

HT : ModifadX → HTBdR , E 7→ (Γ(X, E1), f−1
dR (E+

2,dR)).

The inverse functor is given by (V,Ξ) 7→ (E1, E2, f), where

• E1 = V ⊗OX
• E2 and f are given by the modification of E1 at ∞ corresponding to the B+

dR-lattice Ξ
of E∧1,∞[ξ−1] = V ⊗BdR under the Beauville-Laszlo correspondence (cf. [15] 5.3.1).

The functor HT preserves the rank and deg functions on the two categories, and it induces a
bijection between the posets of strict subobjects of E and HT(E) with compatible ranks and
degrees. Thus it preserves the Harder-Narasimhan filtrations and types on both sides.

5In [7] this filtration is called the Fargues filtration.
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2.4. Filtered vector spaces. Consider the category FilCQp of pairs (V,F), where

• V is a finite Qp-vector space.
• F is a descending Q-filtration on VC = V ⊗ C.

We have the natural functor ω : FilCQp → VectQp , (V,F) 7→ V . For (V,F) ∈ FilCQp , the rank and
deg functions are defined by

rank(V,F) = dimV, deg(V,F) =
∑
i

idim griFVC

induce a Harder-Narasimhan filtration on FilCQp . We have a natural functor

π : HTBdR −→ FilCQp , (V,Ξ) 7→ (V,FH(V,Ξ))

preserving the rank and deg functions. Composed with the equivalence functor HT : ModifadX →
HTBdR we get

π : ModifadX −→ FilCQp .

We remark that we can also construct the functor π : ModifadX −→ FilCQp by using the functor in

2.2 and [11] Proposition 4.17. In summary, we get the following commutative diagram

ModifadX
HT
∼
//

ω
$$

HTBdR
π //

ω

��

FilCQp

ω
{{

VectQp .

It is curious to compare the Harder-Narasimhan vectors ν(V,Ξ) and ν(π(V,Ξ)). If the fil-
tration FH(V,Ξ) is minuscule, then by [14] subsection 7.2 we have ν(V,Ξ) = ν(π(V,Ξ)). In

general, this is not true. The reason comes from the following subtle point: Let (V,Ξ) ∈ HTBdR

and W ⊂ V be a subspace, then we get the sub objects (W,ΞW ) of (V,Ξ) and (W,FW ) of
(V,FH(V,Ξ)), where ΞW = Ξ ∩ (W ⊗ BdR) and FW is the induced filtration on W ⊗ C by
FH(V,Ξ). In general, we have

FH(W,ΞW ) 6= FW .
Indeed, the functor π does not preserve the degrees of sub objects in general. This leads the
inequality

ν(V,Ξ) 6= ν(π(V,Ξ))

in general. The following example is due to Viehmann:

Example 2.1. Let V = Q2
p with standard basis e1 and e2. For any a ∈ C, consider the B+

dR-

lattice Ξa ⊂ B2
dR generated by ξ2e1 and e2 + aξe1. Then FH(V,Ξa) = (Fili)i∈Z with

Fili =


C2, i ≤ −2;

Ce2, i = −1, 0;

0, i ≥ 1.

Consider the subspace W = Qpe2 ⊂ V . Then an easy computation gives deg(FW ) = 0 and
deg(FH(W,Ξa,W )) = −1 if a 6= 0.

2.5. G-structures. Let G be a connected reductive group over Qp. We would like to add
“G-structures” to our previous discussions.

Let us first fix some notations. We fix a minimal parabolic subgroup P0 of G defined over
Qp and a Levi subgroup M0 of P0. Then a standard parabolic subgroup is a parabolic P with
P ⊃ P0. There is a unique Levi subgroup M of P containing M0, which we call a standard
Levi subgroup. We write UP for the unipotent radical of P . Let A ⊂ M0 be the maximal split
torus over Qp, and T ⊂M0 be a maximal torus of M0 defined over Qp which contains A. Then
T = M0 if and only if G is quasi-split over Qp.

For a parabolic subgroup P ⊂ G with Levi subgroup M ⊂ P over Qp, let WP := WM be the
absolute Weyl group of M . Assume that P ⊃ P0 is standard with associated standard Levi M .
Let AM be the maximal split torus contained in the center ZM of M , and A′M be the maximal
split quotient torus of M . Then we have a natural isogeny AM → A′M . We also write AP = AM
and A′P = A′M . In particular A = AP0

= AM0
. If Q ⊃ P , then we have an inclusion AQ ⊂ AP
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and a quotient A′P → A′Q. Let B ⊂ GQp be a Borel subgroup such that B ⊂ P0,Qp . Let T ⊂ B

be a maximal torus such that A ⊂ T ⊂M0. Then we get the absolute based root datum

(X∗(T ),Φ, X∗(T ),Φ∨,∆)

and the relative based root datum

(X∗(A),Φ0, X∗(A),Φ∨0 ,∆0).

Let ∆P (resp. ∆0,P ) be the set of non-trivial restrictions of elements of ∆ (resp. ∆0) to ZM
(resp. AP ) (recall ZM ⊂ T resp. AP ⊂ A). If we replace G by M and let6 ∆M (resp. ∆0,M )
be the set of simple roots (resp. relative roots) of M , then ∆P (resp. ∆0,P ) is in bijection
with ∆ \∆M (resp. ∆0 \∆0,M ). Let ∆∨ be the set of simple coroots of G, then we have ∆∨P
corresponding to P . Similarly we have the relative version ∆∨0 and ∆∨0,P .

Let W and W0 be the absolute and relative Weyl groups of G respectively. We identify

X∗(A)Q/W0 = X∗(A)+
Q := {x ∈ X∗(A)Q| 〈x, α〉 ≥ 0, ∀α ∈ ∆0}.

On the other hand, consider

N (G) :=
[
Hom(DQp , GQp) /G(Qp)-conjugacy

]Γ
,

with D the pro-torus over Qp whose character group is Q and Γ = Gal(Qp/Qp). As in [8], let

X∗(G) denote the set of cocharacters of G defined over Qp. Then X∗(G)Q = Hom(DQp , GQp), on

which G(Qp) acts by conjugation. We will write N (G) = (X∗(G)Q/G)Γ. We have identifications

(X∗(T )Q/W )Γ = (X∗(G)Q/G)Γ and X∗(A)Q/W0 = X∗(G)Γ
Q/G(Qp. Then the natural inclusion

X∗(G)Γ
Q/G(Qp) ⊂ (X∗(G)Q/G)Γ can be rewritten as

X∗(A)+
Q ⊂ N (G).

We have
G is quasi-split over Qp ⇐⇒ X∗(A)+

Q = N (G).

We identify
X∗(T )Q/W = X∗(T )+

Q = {x ∈ X∗(T )Q| 〈x, α〉 ≥ 0, ∀α ∈ ∆}.
Moreover, the choice of B defines a partial order ≤ on X∗(T ) by µ1 ≤ µ2 if µ2 − µ1 is a sum
of positive coroots with non negative integral coefficients. We get an induced partial order ≤
on X∗(T )Q and thus on N (G) ⊂ X∗(T )+

Q ⊂ X∗(T )Q. By [43] 15.5.8, we get an involution

x 7→ x∗ := w0(−x) on N (G), where w0 is the element of longest length in W acting on X∗(T )Q.

Recall that an F -isocrystal with G-structure is an exact tensor functor

N : RepG −→ ϕ−ModQ̆p .

An element b ∈ G(Q̆p) defines an isocrystal with G-structure

Nb : RepG −→ ϕ−ModQ̆p

V 7−→ (VQ̆p , bσ).

Its isomorphism class only depends on the σ-conjugacy class [b] ∈ B(G) of b, where B(G) is the

set of σ-conjugacy classes in G(Q̆p), cf. [24, 26, 36]. By Steinberg’s theorem, any isocrystal with
G-structure arises in this way. Thus B(G) is the set of isomorphism classes of isocrystals with
G-structure, cf. [36] Remarks 3.4 (i). We have the Newton map ([24] section 4) and Kottwitz
map ([25] section 6 and [26] 4.9, 7.5)

ν : B(G)→ N (G), κ : B(G)→ π1(G)Γ,

where
π1(G) = X∗(T )/〈Φ∨〉

(by our previous group theoretic notations, and it does not depend on the choice of T ) and

π1(G)Γ is its Galois coinvariant. In fact, ν is induced by a map ν : G(Q̆p) → Hom(DQ̆p , GQ̆p),

while κ is induced by a map κ : G(Q̆p) → π1(G)Γ. For this reason we also write ν([b]) = [νb]

and κ([b]) = κ(b) for b ∈ G(Q̆p) with the induced class [b] ∈ B(G). The partial order on N (G)
induces a partial order ≤ on B(G) (cf. [36] section 2). Consider the subset B(G)basic ⊂ B(G)

6Note that the notation here is compatible with the notation of [5].
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consisting of elements whose image under the Newton map are central (such elements are called

basic). Then the restriction of κ induces a bijection κ : B(G)basic
∼→ π1(G)Γ, cf. [24] section 5.

Recall that we have the following commutative diagram for the Kottwitz and Newton maps
(see [36] p. 162):

B(G)
ν //

κ

��

N (G)

��
π1(G)Γ

// π1(G)Γ,Q,

where we identify
π1(G)Γ,Q = π1(G)Γ

Q = X∗(ZG)Γ
Q = X∗(AG)Q,

where AG is the maximal split torus inside the center ZG of G. For an element v ∈ N (G), in
the following we will denote its image in π1(G)Γ,Q, by the same notation v for simplicity. For a
Levi subgroup M ⊂ G, we have the corresponding commutative diagram as above for G, which
maps to that for G, since all the maps in the diagram is functorial.

We explain B(G) in terms of G-bundles on the Fargues-Fontaine curve X as follows. Recall
that we have the following two equivalent definitions of a G-bundle on X:

• an exact tensor functor RepG→ BunX , where RepG is the category of rational algebraic
representations of G,

• a G-torsor on X locally trivial for the étale topology.

Attached to a G-bundle E on X, we have the Newton vector ν(E) ∈ N (G) and the G-equivariant

first Chern class cG1 (E) ∈ π1(G)Γ. For b ∈ G(Q̆p), let Eb be the composition of the above functor
Nb and

E(−) : ϕ−ModQ̆p −→ BunX .

In this way, the set B(G) also classifies G-bundles on X. In fact, we have

Theorem 2.2 ([12]). There is a bijection of pointed sets

B(G)
∼−→ H1

ét(X,G)

[b] 7−→ [Eb].
Under this bijection, we have

ν(Eb) = w0(−ν([b])), cG1 (Eb) = −κ([b]).

Let ωG : RepG → VectQp be the standard fiber functor for the category RepG of algebraic

representations of G. For any field extension K|Qp, let FilK(ωG) be the set of Q-filtrations of
ωG over K. An element F ∈ FilK(ωG) is given by a tensor functor

F : RepG −→ FilKQp

such that ωG = ω ◦ F and the induced tensor functor

gr ◦ F : RepG −→ GradK

is exact. Here ω : FilKQp → VectQp is the natural functor and gr : FilKQp → GradK is the graded

functor from FilKQp to the category of graded K-vector spaces. We refer the reader to [8] chapter
IV.2 for more discussions on these objects. We have a natural map

FilQp(ωG)→ X∗(G)Γ
Q/G(Qp) = X∗(A)+

Q ⊂ (X∗(G)Q/G)Γ = N (G).

A modification of G-bundles is given by

• either an exact tensor functor RepG→ ModifX ,
• or a triple (E1, E2, f), where E1, E2 are G-bundles on X and f : E1|X\{∞}

∼→ E2|X\{∞} is
an isomorphism.

Applying the functor π : ModifX → ϕ−FilModC/Q̆p in subsection 2.2, a modification of G-

bundles E = (E1, E2, f) gives rise to a filtered F -isocrystal with G-structure

π(E) : RepG −→ ϕ−FilModC/Q̆p ,

which is in turn equivalent to a pair (N,F), where (cf. [8] p. 239)

• N : RepG→ ϕ−ModQ̆p is the underlying F -isocrystal with G-structure induced by the

natural functor (forgetting filtrations) ϕ−FilModC/Q̆p → ϕ−ModQ̆p ,
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• F ∈ FilC(ωG).

By [8] Theorem 9.2.18, for the pair (N,F), there exists a unique Q-filtration •NF of N , such that
for any (V, ρ) ∈ RepG, the induced filtration •NF (V ) on N(V ) is the Harder-Narasimhan filtra-
tion of the filtered isocrystal (N(V ),F•N(V )). In particular, the Q-filtration •NF ∈ FilQ̆p(ωG)

defines a Harder-Narasimhan vector ν(N,F) ∈ (X∗(G)Q/G)Γ0 where Γ0 = Gal(Q/Q̆p). By [8]
IX.4, we have in fact

ν(N,F) ∈ N (G) = (X∗(G)Q/G)Γ.

An admissible modification of G-bundles is given by

• either an exact tensor functor RepG → ModifadX , such that when composing with ω :

ModifadX → VectQp we get ωG : RepG→ VectQp ,
• or a triple (E1, E2, f), where E1, E2 are G-bundles on X such that E1 is the trivial G-bundle

and f : E1|X\{∞}
∼→ E2|X\{∞} is an isomorphism.

By the equivalence of categories HT : ModifadX
∼→ HTBdR , given an admissible modification

E = (E1, E2, f) is equivalent to given an exact functor

HT(E) : RepG −→ HTBdR .

Composing with the functor π : HTBdR → FilCQp in 2.4, we then get a functor

π(E) : RepG −→ FilCQp ,

which defines an element of FilC(ωG). Recall that on all the categories ModifadX ,HTBdR and

FilCQp , there exist Harder-Narasimhan filtrations. The Harder-Narasimhan filtrations are com-

patible under the equivalence HT : ModifadX −→ HTBdR .

Theorem 2.3. Let C be one of the categories ModifadX ,HTBdR ,FilCQp , and N : RepG → C an

exact tensor functor such that ω ◦N = ωG, where ω : C → VectQp is the natural functor. There

exists a unique Q-filtration FN of ωG, such that for any (V, ρ) ∈ RepG, the induced filtration
ρ∗(FN ) on V is induced by the Harder-Narasimhan filtration of N(V ).

Proof. For C = FilCQp , this follows from [8] Theorem 5.3.1. For C = ModifadX or C = HTBdR , by [7]
Proposition 3.8, since the Harder-Narasimhan filtrations are compatible with tensor products,
duals, symmetric and exterior powers, one sees that the arguments in the proof7 of [8] Theorem
5.3.1 work here. See also [6] Theorem 5.8, Proposition 5.9 and Proposition 4.2. �

Let us explain a little more on the meaning of FN . Recall that ω : C → VectQp , Y 7→ ω(Y )
induces a bijection between the set of strictly sub objects of Y and the set of sub objects of
ω(Y ), thus we can view the Q-filtration FN ∈ FilQp(ωG) as a filtration of N , which we call the
Harder-Narasimhan filtration of N .

Consider the case C = ModifadX in Theorem 2.3. The functor N : RepG → ModifadX is
equivalent to a triple (E1, E2, f), where E1, E2 are G-bundles on X such that E1 is the trivial

G-bundle and f : E1|X\{∞}
∼→ E2|X\{∞} is an isomorphism. Let E = (E1, E2, f) be an admissible

modification of G-bundles on X, with associated HT(E) and π(E) ∈ FilC(ωG). We get Harder-
Narasimhan vectors

ν(π(E)) ∈ X∗(A)+
Q

and
ν(E) = ν(HT(E)) ∈ X∗(A)+

Q .

As before, in general ν(E) 6= ν(π(E)). In the following, we discuss ν(E) more. By construction,
ν(E) comes from the Harder-Narasimhan filtration

FE ∈ FilQp(ωG).

We get the associated parabolic P = PFE of G such that the associated Levi M is the centralizer
of ν(E). By construction, the vector ν(E) is obtained as the G(Qp)-conjugacy class of a splitting
λ : D → AM ⊂ G of FE . As in [8] Theorem 4.2.13, the pair (P, λ) uniquely determines
FE . For any (V, ρ) ∈ RepG, we get an induced admissible modification of vector bundles
EV = (E1,V , E2,V , fV ), and we have

ρ(ν(E)) = ν(EV ),

7If the base field is of characteristic p, which is not our case here, then one needs the correction as in [2] p.

1239.
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where ρ : X∗(G)Γ
Q/G(Qp)→ X∗(GL(V ))Γ

Q/GL(V )(Qp) is the induced map.
For any parabolic P ⊂ G, recall that a reduction of (E1, E2, f) to P is a triple (E1,P , E2,P , fP )

together with an isomorphism

ιP : (E1,P , E2,P , fP )×P G := (E1,P ×P G, E2,P ×P G, fP ×P G)
∼−→ (E1, E2, f),

where E1,P , E2,P are P -bundles onX and fP : E1,P |X\{∞}
∼→ E2,P |X\{∞} is an isomorphism. Note

that by [5] Lemma 2.4, given (E1, E2, f) and E1,P , the data (E2,P , fP ) is uniquely determined.
We sometimes omit ιP and simply say that (E1,P , E2,P , fP ) is a reduction of (E1, E2, f). We call
an admissible modification of G-bundles E = (E1, E2, f) semi-stable if ν(E) ∈ X∗(A)+

Q is central.

Lemma 2.4. (1) The admissible modification of G-bundles E = (E1, E2, f) is semi-stable if
and only if the induced modification of adjoint bundles Ad(E) = (Ad(E1),Ad(E2),Ad(f))
is semi-stable in the sense of subsection 2.3.

(2) Let ρ : G1 → G2 be a closed embedding of reductive groups, and E = (E1, E2, f) an admis-
sible modification of G1-bundles. Then the push forward ρ∗(E) = (ρ∗(E1), ρ∗(E2), ρ∗(f))
semi-stable implies E semi-stable.

Proof. (1) If E = (E1, E2, f) is semi-stable, the HN filtration has a unique splitting which factors
through AG. Therefore the induced modification Ad(E) has trivial HN filtration, i.e. it is semi-
stable. Conversely, if Ad(E) is semi-stable in the sense of subsection 2.3, let λ : D → G be a
splitting of the HN filtration of E , then the composition of λ with the natural projection G→ Gad
is the splitting of the HN filtration of Ad(E), which is trivial, therefore λ factors through AG.

(2) The closed embedding ρ induces an embedding LieG ↪→ LieG′, and Ad(E) can be viewed
as a strict sub object of Ad(ρ∗(E)). If Ad(ρ∗(E)) is semi-stable, since Ad(E) and Ad(ρ∗(E)) are
of slope 0, we deduce that Ad(E) is semi-stable. Then we conclude by (1). �

Now we translate the Tannakian description of the Harder-Narasimhan filtration on ModifadX
into an internal form. First of all, recall that for any linear algebraic group G over Qp and any
G-bundle E on X, the map

X∗(G)→ Z, χ 7→ degχ∗E
defines a vector

deg E ∈ X∗(A′G)Q.

If G is reductive, let

µ(E) ∈ π1(G)Γ,Q = X∗(AG)Q

be its inverse image under the natural isomorphism X∗(AG)Q → X∗(A
′
G)Q. The vectors deg E

and µ(E) are called the degree and slope respectively of the G-bundle E . If G = GLn and E
is viewed as a vector bundle of rank n, then the definition deg E here is compatible with the
usual definition of degree for the vector bundle E . Note that the slope µ(E) is given by either
the image of ν(E) under N (G) → π1(G)Γ,Q, or the image of cG1 (E) under π1(G)Γ → π1(G)Γ,Q.
If E = (E1, E2, f) is an admissible modification of G-bundles, we define deg(E) = deg E2, and let
µ(E) be its inverse image in X∗(AG)Q.

Proposition 2.5. Let E = (E1, E2, f) be an admissible modification of G-bundles. Then there
exits a unique pair

(P, v),

where P is a standard parabolic of G with associated Levi M , and v ∈ X∗(AM )Q with 〈v, α〉 > 0
for all α ∈ ∆0,P , such that the following holds:

Let (E1,P , E2,P , fP ) be the reduction of (E1, E2, f) to P such that E1,P is trivial and set

(E1,M , E2,M , fM ) = (E1,P , E2,P , fP )×P M,

the induced admissible modification of M -bundles. Then (E1,M , E2,M , fM ) is semi-stable of slope
v.

Proof. Let P = PFE be the standard parabolic associated to the Harder-Narasimhan filtration

FE of E and v = ν(E) ∈ X∗(A)+
Q the HN vector, then (P, v) is uniquely determined by Theorem

2.3. From P , we consider the unique admissible reduction (E1,P , E2,P , fP ) of (E1, E2, f) to P ,
then as v comes from a splitting λ : D → AM , P = Pλ and v = ν(E) is central in M , we have
v ∈ X∗(AM )Q and 〈v, α〉 > 0 for all α ∈ ∆0,P , i.e. v ∈ X∗(AM )+

Q .
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To show that EM = (E1,M , E2,M , fM ) is semi-stable of slope v, we first note that this is
true for G = GLn, since in this case the proposition is just a reformulation of the Harder-
Narasimhan filtration for admissible modifications of vector bundles in subsection 2.3. For the
general case, take a faithful representation ρ : G → G′ = GL(V ) and consider the induced
filtration F ′ = ρ∗(FE) ∈ FilQp(G′) with associated parabolic P ′ and Levi M ′. Then the induced

morphism ρM : M →M ′ is injective, cf. [8] p. 135. Moreover, if E ′ denotes the push forward of
E to G′, with associated E ′P ′ and E ′M ′ we have ρ∗(EM ) = E ′M ′ . Since E ′M ′ is semi-stable of slope
ρ∗(v), by Lemma 2.4 (2), EM is semi-stable. As ρM ◦µ(EM ) = ρ∗(v) and ρM is injective, we get
µ(EM ) = v.

�

From this proposition, we get the following characterization of semi-stable admissible modi-
fications.

Proposition 2.6. Let E = (E1, E2, f) be an admissible modification of G-bundles. It is semi-
stable if and only if for any standard parabolic subgroup P ⊂ G and any χ ∈ X∗(P/ZG)+, we
have

degχ∗E2,P ≤ 0,

where E2,P is the reduction to P of E2 determined by E and the trivial P -bundle E1,P .

Proof. Note that E is semi-stable if and only if the HN parabolic P = G. Then this proposition
follows immediately from Proposition 2.5. �

Let us explain a little more on the notations. For any standard parabolic P ⊃ P0 with
associated standard Levi M ⊃M0, we view

X∗(P/ZG) ⊂ X∗(P ) = X∗(M) = X∗(Mab) ⊂ X∗(ZM ),

where Mab is the maximal abelian quotient of M and ZM → Mab is the natural isogeny. From
the set ∆∨P , we get the following dominant set

X∗(P )+ = X∗(M)+ = {χ ∈ X∗(ZM )| 〈χ, α∨〉 ≥ 0, ∀α∨ ∈ ∆∨P }
and

X∗(P/ZG)+ := X∗(P/ZG) ∩X∗(P )+.

Similarly, we have

X∗(P/ZG)Γ ⊂ X∗(P )Γ = X∗(M)Γ = X∗(A′M ) ⊂ X∗(AM )

and AM → A′M is the natural isogeny. Using the set ∆∨0,P , we define similarly X∗(P )Γ,+

and X∗(P/ZG)Γ,+. We remark that in Proposition 2.6, it suffices to consider for any χ ∈
X∗(P/ZG)Γ,+.

Here is another usual form of the above proposition:

Corollary 2.7. Let E = (E1, E2, f) be an admissible modification of G-bundles. It is semi-stable
if and only if for any maximal standard parabolic subgroup P ⊂ G, we have

〈µ(E2,M ), α〉 ≤ 0,

where E2,M = E2,P ×P M and α is the unique element of ∆0,P .

2.6. Moduli of local G-Shtukas. As before, G is a connected reductive group over Qp. Let
{µ} be the conjugacy class of cocharacters µ : Gm,Qp → GQp . Fixing a Borel subgroup B ⊂ GQp
containing a maximal torus T . The class {µ} defines an element µ ∈ X∗(T )+ for the choice
of B. We view it as an element in X∗(G)Q/G. Then we have the associated flag variety
F `(G,µ) over a finite extension E = E(G, {µ}) of Qp. Recall that we have a natural map
FilQp(ωG)→ X∗(G)Q/G, sending a filtration to its type. By construction,

F `(G,µ)(Qp) = G(Qp)/Pµ(Qp) = {F ∈ FilQp(ωG) of type µ},

where Pµ is the parabolic subgroup of GQp associated to µ by the formula

Pµ = {g ∈ GQp | limt→0
µ(t)gµ(t)−1 exists}.

In particular Pµ ⊃ B. In the following sections 3-5, we will assume that µ is minuscule and work
with the associated p-adic flag varieties F `(G,µ) and F `(G,µ−1).
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For an arbitrary µ, we will need the B+
dR-affine Schubert cell Grµ, which is a diamond over

E, see [41] 19.2, 20.2 and the following subsection 6.1. There is a morphism of diamonds

πµ : Grµ → F `(G,µ)3,

which is an isomorphism if µ is minuscule, see [4] Proposition 3.4.3, Theorem 3.4.5, [41] Propo-
sition 19.4.2 and the following 6.1. We have also the B+

dR-affine Schubert variety Gr≤µ =∐
µ′≤µ Grµ′ , which is a proper diamond over E.

A local Shtuka datum8 (cf. [41] 23.1) is a triple (G, {µ}, [b]), where

• G is a connected reductive group over Qp,
• {µ} is a conjugacy class of cocharacter µ : Gm,Qp → GQp ,

• [b] ∈ B(G) is a σ-conjugacy class of b ∈ G(Q̆p) such that [b] ∈ B(G,µ).

If moreover µ is minuscule, then (G, {µ}, [b]) is called a local Shimura datum (cf. [37] Definition
5.1).

Let (G, {µ}, [b]) be a local Shtuka datum and fix a representative b ∈ G(Q̆p). Attached to
the triple (G, {µ}, b), we have the moduli space of local G-Shtukas with one leg (cf. [41] sections
12-14 and the appendix to section 19) with infinite level (cf. [41] section 23)

Sht(G,µ, b)∞,

which is a diamond over Ĕ, and up to isomorphism, all of which depend only on (G, {µ}, [b]).
By construction, there exist two natural morphisms of diamonds

πdR : Sht(G,µ, b)∞ → Grµ, and πHT : Sht(G,µ, b)∞ → Grµ−1 ,

which factor through certain subspaces Graµ ⊂ Grµ (see subsection 6.5) and Gr
Newt=[b]
µ−1 ⊂ Grµ−1

(see subsection 6.4) respectively. We call πdR (resp. πHT ) the de Rham (resp. Hodge-Tate)
period morphism. By [41] subsection 23.3, Sht(G,µ, b)∞ classifies

• either modifications of G-bundles of type µ between Eb and E1 over Graµ,

• or modifications of G-bundles of type µ−1 between E1 and Eb over Gr
Newt=[b]
µ−1 .

We get the following diagram of de Rham and Hodge-Tate period morphisms:

Sht(G,µ, b)∞

πdR

yyyy

πHT

'' ''
Graµ Gr

Newt=[b]
µ−1 .

The morphism πdR is a G(Qp)-torsor, while πHT is a Aut(Eb)-torsor.

One can replace Grµ by Gr≤µ in the above construction to get the diamond Sht(G,≤ µ, b)∞,
which is exactly the version of moduli space of local G-Shtukas with one leg bounded by µ
studied in [41].

If µ is minuscule, we have Sht(G,≤ µ, b)∞ = Sht(G,µ, b)∞, and we will also use the notation
M(G,µ, b)∞ for Sht(G,µ, b)∞. In this case Graµ ' F `(G,µ, b)a,3 and F `(G,µ, b)a ⊂ F `(G,µ)
is the admissible locus introduced in [5] Definition 3.1.

3. Newton strata and Harder-Narasimhan strata on p-adic flag varieties

We keep our notations and let (G, {µ}) be as before. Recall the Kottwitz set (cf. [26] section
6, here we use the notation of [5] 2.1)

B(G,µ) = {[b] ∈ B(G) | ν([b]) ≤ µ�, κ([b]) = µ]}.
We have also the set (cf. [37] 2.2)

A(G,µ) = {[b] ∈ B(G) | ν([b]) ≤ µ�}.
Both B(G,µ) and A(G,µ) are finite subsets of B(G), equipped with the induced partial order
≤.

In the rest of this section, we will mainly consider the induced conjugacy class {µ−1} instead.
Let F `(G,µ−1) be the associated flag variety defined over E = E(G, {µ−1}), which we consider
as an adic space. We are interested in the geometry of the p-adic flag variety F `(G,µ−1) from

8In this paper we only consider local Shtuka data with one conjugacy class {µ}.
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the point of view of p-adic Hodge theory. After reviewing the Newton stratification introduced
in [4], we define and study the Harder-Narasimhan strata of the p-adic flag variety F `(G,µ−1),
following the lines in [8] chapter VI, but via modifications of G-bundles on the Fargues-Fontaine
curve. These strata generalize the Harder-Narasimhan strata in the case of GLn studied by
Fargues in [14]. We assume that µ is minuscule in this section.

3.1. Newton strata. We first consider Newton strata. Let C|E be an algebraically closed
perfectoid field, and E be a G-bundle on the Fargues-Fontaine curve X = XC[ . Since µ is
minuscule, by [4] 3.4.5, [11] 4.2 and [13] 3.20, for any x ∈ F `(G,µ−1)(C,OC) we can associate
to it a modification

Ex

of E at∞ (see also subsection 6.2). Consider the case E = E1, the trivial G-bundle. By Theorem
2.2, the isomorphism class of E1,x defines a point b(E1,x) ∈ B(G). Letting C vary, we get a map

Newt : |F `(G,µ−1)| −→ B(G).

We can determine the image of Newt as follows.

Proposition 3.1. (1) We have the following decomposition of F `(G,µ−1) into locally closed
subsets over E:

F `(G,µ−1) =
∐

[b]∈B(G,µ)

F `(G,µ−1)Newt=[b],

such that for x ∈ F `(G,µ−1)(C,OC), we have

x ∈ F `(G,µ−1)Newt=[b](C,OC) ⇔ E1,x ' Eb.

The open stratum is associated to the unique basic element [b0] ∈ B(G,µ). Each stratum
F `(G,µ−1)Newt=[b] is stable under the G(Qp)-action on F `(G,µ−1).

(2) We have the following dimension formula: for [b] ∈ B(G,µ),

dim F `(G,µ−1)Newt=[b] = 〈µ− ν([b]), 2ρ〉,

where ρ is the half of the sum of positive roots of G.

Proof. (1) follows from [4] Proposition 3.5.7, Corollary 3.5.9 and [35] Proposition A.9. The fact
that each stratum is locally closed comes from the upper semi-continuity of the Newton map
(cf. [23] and [41] subsection 22.5).

(2) follows from the theory of local Shimura varieties and [3] Lemma 3.2.5 (see also [4] Propo-
sition 4.2.23 for the PEL case). More precisely, consider the local Shimura datum (G, {µ}, [b]).
Fix a representative b ∈ G(Q̆p) of [b]. We have the associated local Shimura variety at infinite
level M(G,µ, b)∞, which fits into the following diagram

M(G,µ, b)∞
πdR

vvvv

πHT

)) ))
F `(G,µ, b)a,3 F `(G,µ−1)Newt=[b],3,

where πdR is the Hodge-de Rham period map, which is a G(Qp)-torsor, and πHT is the Hodge-

Tate period map, which is a J̃b-torsor. Here J̃b = Aut(Eb) and we have dim J̃b = 〈ν([b]), 2ρ〉
(cf. [13] for example). As µ is minuscule, dim F `(G,µ) = 〈µ, 2ρ〉. As πdR is pro-étale and
F `(G,µ, b)a ⊂ F `(G,µ) is open, dim M(G,µ, b)∞ = dim F `(G,µ, b)a = 〈µ, 2ρ〉. Then by [3]
Lemma 3.2.5 dim F `(G,µ−1)Newt=[b] = 〈µ− ν([b]), 2ρ〉 (see also [5] Proposition 5.3). �

Remark 3.2. We call the decomposition in the above theorem the Newton stratification. By the
recent work of Viehmann [45], the closure relation holds.
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3.2. Harder-Narasimhan strata. Recall the finite subsets B(G,µ) ⊂ A(G,µ) ⊂ B(G). Let
π1(G)Γ,tors be the torsion subgroup of π1(G)Γ. There is a map (see [37] (2.10)) c : A(G,µ) →
π1(G)Γ,tors, [b] 7→ κ([b]) − µ]. By definition, B(G,µ) = c−1(0). Now consider the images
ν(B(G,µ)) ⊂ ν(A(G,µ)) under the Newton map ν : B(G) → N (G). For later use, we denote
N (G,µ) = ν(B(G,µ)) ⊂ N (G), the set of Newton vectors of elements of B(G,µ). In [5]
Corollary 4.7, we gave an internal description of the set N (G,µ) (using roots and weights). One
may wonder whether there is an external (Tannakian) description. Since π1(GLn)Γ,tors = 0, we
have B(G,µ) = A(G,µ) for G = GLn. It turns out that the Tannakian description in general
only holds for ν(A(G,µ)).

Lemma 3.3. Let v ∈ N (G). We have

(1) v ∈ Im ν if and only if for any representation (V, ρ) ∈ RepG we have ρ(v) ∈ Im νGL(V ).
(2) v ∈ ν(A(G,µ)) if and only if for any representation (V, ρ) ∈ RepG we have ρ(v) ∈
N (GL(V ), ρ ◦ µ).

Proof. (1) The only if part follows from the functoriality of the slope map ν : B(·)→ N (·). The
if part follows from the Tannakian definition of ν, cf. [24] 4.2.

(2) The only if part follows from the functorialities of the slope map ν : B(·) → N (·) and
the Kottwitz map κ : B(·)→ π1(·)Γ and the properties of the partial order on B(G) and N (G).
To show the if part, by (1) we have found [b] ∈ B(G) such that ν([b]) = v and v ≤ µ� by the
properties of the partial order. Then by definition we have [b] ∈ A(G,µ). Thus v = ν([b]) ∈
ν(A(G,µ)). �

Now we consider Harder-Narasimhan stratifications. Let C|E be an algebraically closed per-
fectoid field. Applying Theorem 2.3 to the admissible modification (E , E ′, f) with E = E1 and
E ′ = E1,x for a point x ∈ F `(G,µ−1)(C,OC), we get a well defined map

F `(G,µ−1)(C,OC) −→ N (G), x 7−→ ν(E1, E1,x, f).

We denote ν(E1, E1,x, f)∗ = w0(−ν(E1, E1,x, f)).

Proposition 3.4. For any x ∈ F `(G,µ−1)(C,OC), we have:

(1) The inequality of elements in N (G):

ν(E1, E1,x, f) ≤ ν(E1,x).

(2) The Harder-Narasimhan vector ν(E1, E1,x, f)∗ lies in N (G,µ).

Proof. (1) By Theorem 2.3 and [36] Lemma 2.2 (see also [8] Proposition 6.3.9), it suffices to
show that for any (V, ρ) ∈ RepG,

ν(E1,V , E1,x,V , fV ) ≤ ν(E1,x,V ) ∈ N (GL(V )).

This is exactly [7] Proposition 3.5. See also [14] Proposition 14.
(2) By (1), we have ν(E1, E1,x, f)∗ ≤ ν(E1,x)∗ := w0(−ν(E1,x)), which implies that for any

(V, ρ) ∈ RepG, ρ(ν(E1, E1,x, f)∗) ∈ N (GL(V ), ρ◦µ). By Lemma 3.3, ν(E1, E1,x, f)∗ ∈ ν(A(G,µ)).
We claim that in fact ν(E1, E1,x, f)∗ ∈ N (G,µ) ⊂ ν(A(G,µ)). This follows from the intrinsic

description of the Harder-Narasimhan vector v = ν(E1, E1,x, f) as in 2.5 and the proof of The-
orem 3.9 below. Indeed, let P be the standard parabolic associated to the HN vector v with
corresponding standard Levi M . Let λ ∈ X∗(T )+

M be the M -dominant cocharacter such that
λ = w(µ−1) for some w ∈ W and x ∈ P (C)wPµ−1(C)/Pµ−1(C). Then v is the image of λ
under the composition of natural maps X∗(T )Q → X∗(AP )Q ↪→ X∗(A)Q. On the other hand,
let λ] ∈ π1(M)Γ be the image of λ, which then corresponds a basic element [b′] ∈ B(M)basic
under the bijection κM : B(M)basic

∼→ π1(M)Γ. Let [b] ∈ B(G) be the image of [b′] under the
natural map B(M)→ B(G). Then by construction ν([b]) = v ≤ −w0(µ�) and κ([b]) = −µ], i.e.
−w0(v) ∈ N (G,µ).

�

For any x ∈ F `(G,µ−1)(C,OC) we write

HN(x) = ν(E1, E1,x, f)∗.

Letting C vary, we get the following map on topological spaces HN : |F `(G,µ−1)| −→ N (G,µ).



18 XU SHEN

Theorem 3.5. The map HN is upper semi-continuous, that is, for any v ∈ N (G,µ), the subset

F `(G,µ−1)HN≥v := {x ∈ |F `(G,µ−1)| |HN(x) ≥ v}

is closed. In particular, the subset

F `(G,µ−1)HN=v := {x ∈ |F `(G,µ−1)| |HN(x) = v}

is locally closed.

Proof. For any x ∈ F `(G,µ−1)(C,OC), since µ is minuscule, we have

ν(E1, E1,x, f) = ν(Fx)

with Fx ∈ FilC(ωG) attached to x. Indeed, this follows from the descriptions of ν(E1, E1,x, f)
and ν(Fx) by HN types as in our later Theorem 6.9 and [8] chapter VI.3 respectively, and the
fact that if µ is minuscule, then the Bialynicki-Birula map is an isomorphism, and moreover the
generalized semi-infinite orbits stratification on the B+

dR-affine Schubert cell Grµ−1 agrees with
the Bruhat decomposition on the flag variety (cf. subsection 6.3). The reader can accept this
fact on first reading. Then the arguments in the proof of [8] Theorem 6.3.5 (see also the proof
of the following Theorem 3.9) and Proposition 6.3.12 apply to the p-adic setting. �

In the following, we will identify N (G,µ) with B(G,µ) by the Newton map. For x ∈
F `(G,µ−1)(C,OC) we will also write HN(x) = b(E1, E1,x, f) ∈ B(G,µ). We have the following
stratification over E:

F `(G,µ−1) =
∐

[b]∈B(G,µ)

F `(G,µ−1)HN=[b].

For any [b] ∈ B(G,µ), the stratum F `(G,µ−1)HN=[b] is a locally closed subspace of F `(G,µ−1),
and it is stable under the action of G(Qp) on F `(G,µ−1).

Let [b0] ∈ B(G,µ) be the basic element. Then the stratum

F `(G,µ−1)HN=[b0]

is open, which is also called the semi-stable locus of F `(G,µ−1). We have the following descrip-
tion for F `(G,µ−1)HN=[b0], which is similar to [5] Proposition 2.7 (but here we don’t need the
assumption that G is quasi-split).

Proposition 3.6. Let x ∈ F `(G,µ−1)(C,OC). Then x ∈ F `(G,µ−1)HN=[b0](C,OC) if and
only if for any standard parabolic P and any χ ∈ X∗(P/ZG)+, we have

degχ∗(E1,x)P ≤ 0,

where (E1,x)P is the reduction of E1,x to P induced by the reduction E1P of E1 to P .

Proof. This is essentially a reformulation of Proposition 2.6 (see also [8] Corollary 5.2.10.).
Indeed, consider the Schubert cell decomposition9

F `(G,µ−1)(C) =
∐

w∈WP \W/WP
µ−1

F `(G,µ−1)(C)w,

where

F `(G,µ−1)(C)w = P (C)wPµ−1(C)/Pµ−1(C) = P (C)/(P (C)∩Pµ−1,w(C)) =: F `(P, µ−1,w)(C).

Projection to the Levi quotient M of P induces an affine fibration:

prw : F `(P, µ−1,w)(C)→ F `(M,µ−1,w)(C).

Now

(E1,x)P ×P M ' E1M ,prw(x),

and one can argue as in the proof of [5] Proposition 2.7 (see also the proof of Proposition 2.6). �

Remark 3.7. We note that in the above proposition, for each P it suffices to consider the subset
∆0,P ⊂ X∗(P/ZG)Γ,+ ⊂ X∗(P/ZG)+. In fact, it suffices to consider all maximal parabolic
subgroups P , in which case each ∆0,P consists of only one element.

9Since the Schubert cell decomposition exists on the algebraic varieties level, we omit OC here to simplify the

notations.
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Remark 3.8 ([8] Theorem 6.2.8). Fix an invariant inner product on G and let L be the cor-
responding ample homogeneous Q-line bundle on F `(G,µ−1) (cf. [8] p. 146). Let K be a field
extension of E and x ∈ F `(G,µ−1)(K,OK). Then we have the following GIT description for
F `(G,µ−1)HN=[b0]:

x ∈ F `(G,µ−1)HN=[b0](K,OK) ⇐⇒ ∀λ : Gm → Gder, µL(x, λ) ≥ 0.

The following theorem gives some basic properties of the Harder-Narasimhan stratification.

Theorem 3.9 ([14] Conjecture 2 (1)). For any non basic [b] 6= [b0], the stratum F `(G,µ−1)HN=[b]

is a parabolic induction.

Proof. We may assume that F `(G,µ−1)HN=[b] 6= ∅. We adapt the arguments in [8]. Fix a
minimal parabolic subgroup P0 with Levi subgroup M0 as above Proposition 3.6. Let T be a
fixed maximal torus in M0 defined over Qp. We introduce a finite set Θ(G,µ) which is the set
of pairs (P, νP ) with P a standard parabolic subgroup of G and νP ∈ X∗(T )Q/WP , satisfying
the following two conditions:

(1) νP ≡ µ−1 mod W ,

(2) Let µ(νP ) ∈ X∗(AP )Q be the image of νP under X∗(T )Q → X∗(A
′
P )Q

∼→ X∗(AP )Q.
Then 〈µ(νP ), α〉 > 0, ∀α ∈ ∆0,P .

A such pair (P, νP ) is called a HN type. Let H(G,µ) be the set of HN vectors which contribute
in the HN stratification. Then we have an inclusion H(G,µ) ↪→ N (G,µ) by Proposition 3.4. We
have also a natural surjective map

H : Θ(G,µ) � H(G,µ), (P, νP ) 7→ µ(νP )

sending a HN type to its HN vector. In the following we fix a finite extension Ẽ of E which splits

G and base change everything to Ẽ. We will denote by the same notations over Ẽ. Similar to
[8] p. 152 (and p. 280-281), we have a refinement of the Harder-Narasimhan stratification

F `(G,µ−1) =
∐

θ∈Θ(G,µ)

F `(G,µ−1)θ,

which is G(Qp)-equivariant and such that

F `(G,µ−1)HN=v =
∐

θ∈Θ(G,µ),H(θ)∗=v

F `(G,µ−1)θ.

Fix a HN type θ = (P, νP ) ∈ Θ(G,µ). Consider the P -orbits in the flag variety F `(G,µ−1) =
G/Pµ−1 . Then νP determines a unique Schubert cell

F `(P, νP ) = PwPµ−1/Pµ−1

where w ∈ WP \W/WPµ−1 such that νP = µ−1,w. By abuse of notation, we still denote w the

minimal length representative in the corresponding coset WPwWPµ−1 . Let M be the standard

Levi of P with induced νM . Then the natural projection

F `(P, νP )→ F `(M,νM )

is an affine bundle of rank `(w). Set

F `(P, νP )θ = F `(G,µ−1)θ ∩F `(P, νP ).

The G(Qp)-action restricts to an action of P (Qp) on F `(P, νP )θ. Let F `(M,νM )ss be the
open HN stratum for the flag variety F `(M,νM ). Then the above projection F `(P, νP ) →
F `(M,νM ) restricts to an affine fibration of rank `(w)

F `(P, νP )θ → F `(M,νM )ss.

We have a homeomorphism

F `(P, νP )θ ×P (Qp) G(Qp)
∼−→ F `(G,µ−1)θ.

Thus the stratum F `(G,µ−1)θ is an affine bundle of rank `(w) over F `(M,νM )ss×P (Qp)G(Qp).
We deduce that for any v ∈ N (G,µ), the stratum F `(G,µ−1)HN=v is a parabolic induction.

�



20 XU SHEN

Remark 3.10. We know the dimension formula for the basic stratum, since it is open. For any
non basic [b] 6= [b0], if the stratum F `(G,µ−1)HN=[b] 6= ∅, then by the above proof we have

dim F `(G,µ−1)HN=[b] = max
w
〈µ−1,w, 2ρM 〉+ `(w),

where M = Mv ⊂ P = Pv with v = w0(−ν([b])) and w runs through the set w ∈ PWPµ−1 such
that 〈µ−1,w, α〉 > 0 for any α ∈ ∆0,P . Here we view µ−1,w ∈ X∗(AP )Q under the above map
X∗(T )Q → X∗(AP )Q. In fact, Conjecture 2 (2) of [14] predicts that for any [b] ∈ B(G,µ) such

that the stratum F `(G,µ−1)HN=[b] 6= ∅, we have

dim F `(G,µ−1)HN=[b] = 〈µ− ν([b]), 2ρ〉.

This is verified in the case G = GLn by Fargues in [14] Proposition 23. The above theorem was
also proved by Fargues in [14] Propositions 21 and 22 in the case G = GLn by a different method.

Remark 3.11. By Theorems 3.9 and 3.8, we can calculate the `(6= p)-adic cohomology of
F `(G,µ−1)HN=[b]. Indeed, by 3.9 it suffices to consider the open stratum F `(G,µ−1)HN=[b0].
By the GIT description in 3.8, we can follow [8] chapter VII.2 to calculate the Euler-Poincaré
characteristic, and [29] to calculate the individual cohomology groups.

Remark 3.12. For any [b] ∈ B(G,µ) with the associated HN stratum F `(G,µ−1)HN=[b], we
neither know its non-emptiness10, nor the closure relation. If µ is non minuscule, then in [8] the
authors there gave a counter example for the closure relation, see loc. cit. Example 2.3.7.

3.3. Newton strata vs Harder-Narasimhan strata. By [20] Theorem 0.1, there exists a
unique maximal element [b1] inB(G,µ) for the partial order≤. IfG is quasi-split, then [νb1 ] = µ�.
In the general case, this is not true, see [21] Example 3.1. We call the stratum

F `(G,µ−1)HN=[b1] (resp. F `(G,µ−1)Newt=[b1])

the µ-ordinary Harder-Narasimhan (resp. Newton) stratum. Both of the µ-ordinary strata
F `(G,µ−1)HN=[b1] and F `(G,µ−1)Newt=[b1] are closed in F `(G,µ−1), by the semi-continuity
of the maps Newt and HN . Proposition 3.4 implies that we have the inclusion

F `(G,µ−1)HN=[b1] ⊂ F `(G,µ−1)Newt=[b1].

Proposition 3.13 ([14] Conjecture 1 (2)). Assume that G is quasi-split. Then we have always

F `(G,µ−1)HN=[b1] = F `(G,µ−1)Newt=[b1].

In particular F `(G,µ−1)HN=[b1] 6= ∅ in this case.

Proof. Let C|E be any algebraically closed perfectoid field. We have to show that for any point
x ∈ F `(G,µ−1)(C,OC) such that ν(E1,x)∗ = [νb1 ], then ν(E1, E1,x, f)∗ = [νb1 ]. Since G is
quasi-split, [νb1 ] = µ�. Then this follows from [7] Proposition 3.9. �

Let [b0] ∈ B(G,µ) be the unique basic element. By the last two subsections, we have the open
subspaces F `(G,µ−1)Newt=[b0] and F `(G,µ−1)HN=[b0] of F `(G,µ−1). Proposition 3.4 implies
that we have the inclusion

F `(G,µ−1)Newt=[b0] ⊂ F `(G,µ−1)HN=[b0].

In section 5, we will classify the case when the following equality holds

F `(G,µ−1)Newt=[b0] = F `(G,µ−1)HN=[b0].

4. Dualities for Newton and HN stratifications

Let [b] ∈ B(G)basic be a basic element. Fix a representative b ∈ G(Q̆p) of [b]. We have
the associated reductive group Jb over Qp, which is an inner form of G. Fix an isomorphism
Jb,Q̆p

∼= GQ̆p . Let BunG be the groupoid of G-bundles on the Fargues-Fontaine curve, cf. [13]

section 2, which is a small v-stack (over Fp) in the sense of [39].

10If [b] is basic, then the associated stratum is open and non-empty. Thus the non-emptiness is a problem on
non-basic strata. For the case of GLn, see [30] for a complete solution. For the general case, see [8] Remark 9.6.3

for some hints.
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4.1. The twin towers principle. In [5] 5.1, we have introduced the so called “twin towers
principle”, which is the following isomorphism

BunJb
∼= BunG,

that is to say there is an equivalence of groupoids between G-bundles and Jb-bundles on the
curve. In fact, Jb × X is the twisted pure inner form of G × X obtained by twisting by the
G-torsor Eb,

Jb ×X = Aut(Eb)
as a group over the curve. If E is a G-bundle on X one associates to it the Jb-bundle

Isom(Eb, E).

At the level of points, the preceding isomorphism of small v-stacks gives us the bijection

B(Jb)
∼−→ B(G)

that sends [1] to [b] and [b−1] to [1]. Here [b−1] ∈ B(Jb) is the class defined by

b−1 ∈ Jb(Q̆p) = G(Q̆p).
In fact, we have the following commutative diagrams on the compatibilities for Newton maps
and Kottwitz maps:

B(Jb)

νJb

��

∼ // B(G)

νG

��
N (H)

·ν([b]) // N (H),

B(Jb)

κJb

��

∼ // B(G)

κG

��
π1(H)Γ

+κ([b])// π1(H)Γ.

Let us make a comment on the notations. Here we have identified N (G) = N (Jb) = N (H) and
π1(G)Γ = π1(Jb)Γ = π1(H)Γ, where H is a fixed quasi-split inner form of G (and thus of Jb).
Recall that π1(G)Γ is an abelian group, for which we will write the group law additively and
the identity as 0; on the other hand, N (G) ⊂ X∗(G)Q/G, the later has a commutative ordered
monoid structure, and we will write its semi-group low multiplicatively.

The isomorphism BunJb
∼= BunG respects modifications of a given type µ, that is to say it

identifies the corresponding Hecke stacks of modifications (see subsection 6.2). Let {µ} be a
conjugacy class of cocharacter µ : Gm,Qp → GQp . In the rest of this section, we assume that

[b] ∈ B(G,µ). The isomorphism Jb,Qp
∼= GQp induces a conjugacy class of cocharacter {µ} of Jb.

Then
[b−1] ∈ B(Jb, µ

−1)

is the basic element (in B(Jb)), and [b−1] 7→ [1] via the above bijection B(Jb)
∼−→ B(G). One

thus has
Jb−1

∼= G.

Recall that in [5] 4.1 we have introduced the following generalized Kottwitz sets

B(G, 0, νbµ
−1) := {[b′] ∈ B(G) |κ([b′]) = 0, ν([b′]) ≤ ν([b])w0(−µ�)}

and
B(Jb, 0, νb−1µ) := {[b′′] ∈ B(Jb) |κ([b′′]) = 0, ν([b′′]) ≤ ν([b−1])µ�},

which are finite subsets of B(G) and B(Jb) respectively. They contain the trivial classes [1] ∈
B(G) and [1] ∈ B(Jb) respectively. One checks directly the following lemma:

Lemma 4.1. The bijection B(Jb)
∼−→ B(G) induces the following bijections:

B(Jb, µ
−1)

∼−→ B(G, 0, νbµ
−1), B(Jb, 0, νb−1µ)

∼−→ B(G,µ).

Let E = E(G, {µ}) and Ĕ = Êur be the completion of the maximal unramified extension of

E. Consider the following p-adic flag varieties (as adic spaces) over Ĕ:

F `(G,µ), F `(G,µ−1), F `(Jb, µ), and F `(Jb, µ
−1).

We have identifications:

F `(G,µ) = F `(Jb, µ), F `(G,µ−1) = F `(Jb, µ
−1).

To summarize, we have the following data:

• the triples (G, {µ−1}, [1]) and (Jb, {µ}, [1]) (which we call the Hodge-Tate side for G and
Jb respectively),
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• the local Shtuka data (G, {µ}, [b]) and (Jb, {µ−1}, [b−1]) (which we call the de Rham side
for G and Jb respectively).

In the rest of this section, we will assume that µ is minuscule.

4.2. Newton strata on the de Rham side. In the last section, we studied the geometry
of F `(G,µ−1) by modifications of the trivial G-bundle EG1 . Now we study the flag variety

F `(G,µ−1) = F `(Jb, µ
−1) by modifications of the Jb-bundle EJbb−1 . From the local Shimura

datum (Jb, {µ−1}, [b−1]), in [5] subsection 5.3, we have constructed a stratification of F `(Jb, µ
−1)

by locally closed subsets

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)Newt=[b′],

which we call the Newton11 stratification. Let C|Ĕ be an algebraically closed perfectoid field.

For any point x ∈ F `(Jb, µ
−1)(C,OC), we get a modification EJbb−1,x of the Jb-bundle EJbb−1 on

the Fargues-Fontaine X = XC[ . Then by definition

x ∈ F `(Jb, µ
−1, b−1)Newt=[b′](C,OC) ⇐⇒ b(EJbb−1,x) = [b′].

We have the associated p-adic period domain

F `(Jb, µ
−1, b−1)a := F `(Jb, µ

−1, b−1)Newt=[1],

which is the maximal open stratum.
Similarly, starting from the local Shimura datum (G, {µ}, [b]) we can study the geometry of

F `(G,µ) by modifications of the G-bundle EGb . More precisely, we have the Newton stratification

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)Newt=[b′],

and the associated p-adic period domain

F `(G,µ, b)a := F `(G,µ, b)Newt=[1].

Recall that inside F `(G,µ−1) and F `(Jb, µ), we have respectively the open Newton strata

F `(G,µ−1)Newt=[b] and F `(Jb, µ)Newt=[b−1] introduced in subsection 3.1.

Lemma 4.2. Under the identification F `(G,µ−1) = F `(Jb, µ
−1), we have

F `(Jb, µ
−1, b−1)a = F `(G,µ−1)Newt=[b].

Similarly, under the identification F `(G,µ) = F `(Jb, µ), we have

F `(G,µ, b)a = F `(Jb, µ)Newt=[b−1].

Proof. We only check the identity F `(Jb, µ
−1, b−1)a = F `(G,µ−1)Newt=[b]. Let C be any alge-

braically closed complete extension of Ĕ and let x ∈ F `(G,µ−1)(C,OC) = F `(Jb, µ
−1)(C,OC).

Then we have

x ∈ F `(Jb, µ
−1, b−1)a(C,OC) ⇔ EJbb−1,x = EJb1

⇔ EG1,x = EGb
⇔ x ∈ F `(G,µ−1)Newt=[b](C,OC).

�

4.3. Dualities for local Shimura varieties. Consider the local Shimura variety with infinite
level

M(G,µ, b)∞,

which is the moduli space classifying

• either modifications of type µ between EGb and EG1 over F `(G,µ, b)a,

• or modifications of type µ−1 between EG1 and EGb over F `(G,µ−1)Newt=[b] = F `(Jb, µ
−1, b−1)a.

11In [5] this is called the Harder-Narasimhan stratification. Here we change the terminology and modify
the notation, since later we will introduce another stratification with the same index set, which we will call the

Harder-Narasimhan stratification following [8], as an analogy of that introduced in last section.
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Similarly, we have the local Shimura variety with infinite level

M(Jb, µ
−1, b−1)∞,

which is the moduli space classifying

• either modifications of type µ−1 between EJbb−1 and EJb1 over F `(Jb, µ
−1, b−1)a,

• or modifications of type µ between EJb1 and EJbb−1 over F `(Jb, µ)Newt=[b−1] = F `(G,µ, b)a.

The twin tower principle induces a Jb(Qp)×G(Qp)-isomorphism of local Shimura varieties with
infinite level ([9, 10], [40] section 7, [41] Corollary 23.2.3.)

M(G,µ, b)∞
∼−→M(Jb, µ

−1, b−1)∞

as diamonds on Spa(Ĕ)�. This fits into a twin towers diagram using the de Rham and Hodge-Tate
period morphisms that allow us to collapse each tower on its base

M(G,µ, b)∞ M(Jb, µ
−1, b−1)∞

F `(G,µ, b)a,3 F `(Jb, µ
−1, b−1)a,3.

πdR

∼

πHTG(Qp) πdRπHT Jb(Qp)

4.4. Harder-Narasimhan strata on the de Rham side. Now we continue to look at the p-
adic flag variety F `(Jb, µ

−1). In [8] chapter IX.6, Dat-Orlik-Rapoport introduced a stratification
of F `(Jb, µ

−1) by locally closed subsets (indexed by Harder-Narasimhan vectors)

F `(Jb, µ
−1) =

∐
v∈H(J,µ−1)

F `(Jb, µ
−1, b−1)HN=v,

which they called the Harder-Narasimhan stratification. Here J is the augmented group attached
to Jb and b−1 as in [8] Example 9.1.22. Let C|Ĕ be an algebraically closed perfectoid field. For

any x ∈ F `(Jb, µ
−1)(C,OC), we have the modification triple (EJbb−1,x, E

Jb
b−1 , f) of Jb-bundles on

X = XC[ . We write

ν(EJbb−1,x, E
Jb
b−1 , f) = ν(Nb−1 ,Fx)

for the filtered F -isocrystal with Jb-structure (Nb−1 ,Fx) attached to (EJbb−1,x, E
Jb
b−1 , f) constructed

in subsection 2.5.

Proposition 4.3. For any x ∈ F `(Jb, µ
−1)(C,OC),

(1) we have the following inequality in N (Jb)

ν(EJbb−1,x, E
Jb
b−1 , f) ≤ ν(EJbb−1,x).

(2) The Newton map for Jb induces an injection

H(J, µ−1) ↪→ B(Jb, 0, νb−1µ).

Proof. Under the bijection B(Jb)
∼→ B(G), [b−1] 7→ [1] and the identification F `(Jb, µ

−1) =
F `(G,µ−1), we have

ν(EJbb−1,x, E
Jb
b−1 , f) = νbν(E1,x, E1, f1) = νbν(E1, E1,x, f−1

1 )

(for the second “=”, see subsection 2.3) and ν(EJbb−1,x) = νbν(E1,x). Since [b] is basic, we have

νbν(E1, E1,x, f−1
1 ) ≤ νbν(E1,x)⇔ ν(E1, E1,x, f−1

1 ) ≤ ν(E1,x).

Therefore (1) is equivalent to Proposition 3.4 (1). The proof of (2) is similar, which is equivalent
to Proposition 3.4 (2) (using Lemma 4.1). �

We get the composition

|F `(Jb, µ
−1)| → H(J, µ−1) ↪→ B(Jb, 0, νb−1µ)

and we write b(EJbb−1,x, E
Jb
b−1 , f) ∈ B(Jb, 0, νb−1µ). Therefore, starting from the local Shimura

datum (Jb, {µ−1}, [b−1]), for the flag variety F `(Jb, µ
−1), we have the Harder-Narasimhan strat-

ification:

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)HN=[b′].
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Similarly, starting from the local Shimura datum (G, {µ}, [b]), for the flag variety F `(G,µ),
we have the Harder-Narasimhan stratification:

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)HN=[b′].

The open Harder-Narasimhan stratum F `(G,µ, b)HN=[1] corresponds to the trivial element
[1] ∈ B(G, 0, νbµ

−1), which is also denoted by (cf. [38] chapter 1)

F `(G,µ, b)wa := F `(G,µ, b)HN=[1].

Moreover, by Proposition 4.3 (1) (applied to (G, {µ}, [b])), we have

F `(G,µ, b)a ⊂ F `(G,µ, b)wa.

Alternatively, the above inclusion also follows from the theorem of Colmez-Fontaine (cf. [15]
chapter 10). Our argument above shows that it is equivalent to the inclusion F `(G,µ−1)Newt=[b] ⊂
F `(G,µ−1)HN=[b], see subsection 3.3.

4.5. Dualities for Newton and Harder-Narasimhan stratifications. Consider the p-adic
flag variety F `(Jb, µ

−1). Starting from the datum (Jb, {µ−1}, [b−1]) (de Rham side for the group
Jb), by subsection 4.4 we have the Harder-Narasimhan stratification:

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)HN=[b′].

By subsection 4.2, we have also the Newton stratification:

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)Newt=[b′].

Recall the Harder-Narasimhan and Newton stratifications for F `(G,µ−1) introduced in section
3 starting from the datum (G, {µ−1}, [1]) (Hodge-Tate side for the group G):

F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)HN=[b′], F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)Newt=[b′].

We have the following generalization of Lemma 4.2, which says that under the twin towers
principle, the corresponding Harder-Narasimhan and Newton stratifications introduced in section
3 and here are identical.

Theorem 4.4. Under the identification

F `(G,µ−1) = F `(Jb, µ
−1),

for any [b′] ∈ B(G,µ) corresponding to [b′′] ∈ B(Jb, 0, νb−1µ) under the bijection (cf. Lemma
4.1)

B(G,µ)
∼−→ B(Jb, 0, νb−1µ),

we have

(1) F `(G,µ−1)HN=[b′] = F `(Jb, µ
−1, b−1)HN=[b′′].

(2) F `(G,µ−1)Newt=[b′] = F `(Jb, µ
−1, b−1)Newt=[b′′].

Proof. The proof for (2) is identical with the proof for Lemma 4.2, which is in fact also [5]
Proposition 5.3.

The proof for (1) is in fact similar, which follows from the functoriality of the Harder-
Narasimhan filtrations and the morphisms HN : let C be any algebraically closed complete
extension of Ĕ, we have the following commutative diagram

F `(Jb, µ
−1)(C,OC)

∼ //

HNJb
��

F `(G,µ−1)(C,OC)

HNG

��
N (H)

·ν([b]) // N (H)

where H is a fixed quasi-split inner form of G, see [8] p. 252 (3.3), Proposition 9.5.3 (iii) and
Remarks 9.6.18 (ii).

�
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Similarly, starting from (G, {µ}, [b]) (de Rham side for the group G), for the flag variety
F `(G,µ), we have the Harder-Narasimhan stratification (see subsection 4.4)

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)HN=[b′]

and the Newton stratification (see subsection 4.2)

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)Newt=[b′]

introduced in this section. Recall also the Harder-Narasimhan and Newton stratifications for
F `(Jb, µ) in section 3 starting from the datum (Jb, {µ}, [1]) (Hodge-Tate side for the group Jb):

F `(Jb, µ) =
∐

[b′]∈B(Jb,µ−1)

F `(Jb, µ)HN=[b′], F `(Jb, µ) =
∐

[b′]∈B(Jb,µ−1)

F `(Jb, µ)Newt=[b′].

The following corollary is clear now.

Corollary 4.5. Under the identification

F `(Jb, µ) = F `(G,µ),

for any [b′] ∈ B(G,µ) corresponding to [b′′] ∈ B(Jb, 0, νb−1µ) under the bijection (cf. Lemma
4.1)

B(Jb, µ
−1)

∼−→ B(G, 0, νbµ
−1),

we have

(1) F `(Jb, µ)HN=[b′] = F `(G,µ, b)HN=[b′′].

(2) F `(Jb, µ)Newt=[b′] = F `(G,µ, b)Newt=[b′′].

5. Fully Hodge-Newton decomposable case

We keep the notations of the last section. Let (G, {µ}, [b]) be a local Shimura datum such
that [b] ∈ B(G,µ) is basic. In particular µ is minuscule. We get the dual local Shimura datum
(Jb, {µ−1}, [b−1]).

Recall that (cf. [18] Definition 2.1 and [5] 4.3) we have the notion of fully Hodge-Newton
decomposability for the Kottwitz set B(G,µ) (or the pair (G, {µ})). Roughly speaking, this
means that for any non basic [b′] ∈ B(G,µ), the pair ([b′], {µ}) is Hodge-Newton decomposable.

Now we can summarize the various equivalent conditions for fully Hodge-Newton decompos-
ability studied in [5] and here.

Theorem 5.1. The following are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable.
(2) B(Jb, µ

−1) is fully Hodge-Newton decomposable.
(3) F `(G,µ, b)a = F `(G,µ, b)wa.

(4) F `(Jb, µ)Newt=[b−1] = F `(Jb, µ)HN=[b−1].
(5) F `(Jb, µ

−1, b−1)a = F `(Jb, µ
−1, b−1)wa.

(6) F `(G,µ−1)Newt=[b] = F `(G,µ−1)HN=[b].

Proof. The equivalences (1) ⇔ (2) follow from [5] Corollary 4.16. The equivalence (1) ⇔ (3)
was proved in [5] Theorem 6.1, thus we get also the equivalence (2)⇔ (5).

The equivalences (3)⇔ (4) and (5)⇔ (6) follow from Theorem 4.4 and Corollary 4.5 respec-
tively. Therefore all the above statements are equivalent.

�

Remark 5.2. In the above theorem, the equivalences (1)-(2) are taken from [5], which are
purely group theoretical statements. To show the equivalences with the remaining (3)-(6), we
have taken [5] Theorem 6.1 as one of the key ingredients. On the other hand, one can show12

the equivalence (1) ⇔ (6) directly, by using similar (and in fact easier) arguments as in the
proof of [5] Theorem 6.1. Then using Theorem 4.4 and Corollary 4.5, we get another proof of
[5] Theorem 6.1, although essentially the two proofs are the same. We leave the details to the
interested reader.

12This is exactly what the author did at the beginning when preparing this article.
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Remark 5.3. There are some further (conjectural) equivalences for the fully Hodge-Newton
decomposable condition (1). For example, we refer the reader to

(1) [5] Conjecture 7.2, in terms of fundamental domains of p-adic period domains and local
Shimura varieties,

(2) [18] Theorem 2.3, in terms of the geometry of affine Deligne-Lusztig varieties.

6. Non minuscule cocharacters

In this section, we indicate how to generalize our previous constructions and results to a
general (not necessarily minuscule) cocharacter µ. Roughly, we need to replace flag varieties and
local Shimura varieties by the corresponding B+

dR-affine Schubert cells and moduli of local G-
Shtukas respectively. We have Newton and Harder-Narasimhan stratifications on the diamonds
Grµ and Grµ−1 , generalizing the previous constructions in sections 3 and 4. In particular,
the duality results of section 4 can be generalized to the current setting. We will analyze the
geometry of Grµ using affine Schubert cells of the Levi subgroups, which is in some sense a
theory of (generalized) semi-infinite orbits for B+

dR-affine Grassmannians. This is the key new
step to prove the generalization of [5] Theorem 6.1.

6.1. B+
dR-affine Grassmannians and B+

dR-affine Schubert varieties. Let G be a connected

reductive group over Qp. Recall the B+
dR-affine Grassmannian GrG is the small v-sheaf (cf.

[41] 17.2 and [39]) over SpdQp := (SpaQp)3 such that for any affinoid perfectoid space S =
Spa(R,R+) over Qp,

GrG(S) = {(E , β)}/ '
where

• E is a G-torsor over SpecB+
dR(R),

• β : E → E0 is a trivialization over SpecBdR(R); here E0 is the trivial G-torsor,

cf. [13] 3.1 and [4] Definition 3.4.1. Equivalently,

GrG = LG/L+G,

where LG and L+G are the loop groups such that

LG(Spa(R,R+)) = G(BdR(R)), and L+G(Spa(R,R+)) = G(B+
dR(R)).

See also [41] Definition 20.2.1 and Proposition 20.2.2 (where it is called the Beilinson-Drinfeld
Grassmannian over SpdQp). By [41] Lemma 19.1.4, GrG is partially proper. Let C|Qp be an
algebraically closed perfectoid field and SpdC := (SpaC)3. The base change GrG,SpdC of GrG
to SpdC is given by Definition 19.1.1 of [41].

Let T ⊂ B ⊂ GQp be a maximal torus inside a Borel subgroup of GQp . We have the set

of dominant cocharacters X∗(T )+ of T with respective to B, which is a set of representatives
for X∗(T )/W where W is the absolute Weyl group of G. Recall that we have the Cartan
decomposition13

G(BdR(C)) =
∐

µ∈X∗(T )+

G(B+
dR(C))µ(ξ)−1G(B+

dR(C)),

where ξ ∈ B+
dR(C) is a fixed uniformizer. Any µ ∈ X∗(T )+ defines a closed subfunctor

Gr≤µ

of GrG,SpdE , with an open subfunctor Grµ ⊂ Gr≤µ, where E = E(G, {µ}) is the field of definition
of {µ}. By definition (cf. [41] Definition 19.2.2), Gr≤µ (resp. Grµ ) parametrizes those (E , β)
such that over any geometric points x, the relative position Inv(βx) is bounded (resp. exactly
given) by µ. One of the main results of [41] is the following theorem.

Theorem 6.1 ([41] Theorem 19.2.4, Corollary 19.3.4 and Proposition 20.2.3). Gr≤µ is a spatial
diamond, and it is proper over SpdE. Grµ is then a partially proper locally spatial diamond.

By definition we have a stratification of diamonds

Gr≤µ =
∐
µ′≤µ

Grµ′ .

In particular if µ is minuscule, we have Grµ = Gr≤µ.

13Here we follow [4] and [5] to normalize the sign.
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The inclusion L+G ⊂ LG induces a natural action of L+G on GrG. For any perfectoid
affinoid Qp-algebra (R,R+), let ξ ∈ B+

dR(R) denote a generator of ker θ, where θ : B+
dR(R)→ R

is the canonical surjection (cf. [41] page 138). For any µ ∈ X∗(T ), we write ξµ = µ(ξ) and
tµ = µ(ξ)−1 for the corresponding elements in LG. By abuse of notation we also denote ξµ and
tµ the associated points in GrG. The diamond Grµ can be described as usual the orbit L+Gtµ,
and we have

Grµ '
L+G

L+G ∩ tµL+Gt−µ
.

Note that we have a natural action of G(Qp) on Grµ via the inclusion G(Qp) ⊂ G(B+
dR(Cp)).

Recall that for a diamond D, we have its underlying topological space |D| ([39] Proposition 11.13
and Definition 11.14). If D is locally spatial, then the topological space |D| is locally spectral,
cf. [39] Propositions 11.18 and 11.19. We call a sub diamond D′ is dense in D, if |D′| ⊂ |D| is
dense. The dimension of a locally spatial diamond is defined to be the maximal length of a chain
of specializations in its underlying locally spectral space. We refer the reader to [22] section 1.8,
[39] section 21 and [3] section 3.2 for more discussions on dimensions of locally spatial diamonds.

Proposition 6.2. (1) The open sub diamond Grµ ⊂ Gr≤µ is dense in Gr≤µ.
(2) The dimension of Grµ (and thus Gr≤µ) is 〈2ρ, µ〉, where ρ is as usual the half sum of

positive (absolute) roots of G.

Proof. For both statements we may assume that the base field is Ê.
(1) We imitate the proof of [46] Proposition 2.1.5 (2) in the equal characteristic setting. If

λ ≤ µ, then there exists a positive coroot α such that µ − α is dominant and λ ≤ µ − α ≤ µ.
Thus it suffices to show that tµ−α is contained in the closure of Grµ. To prove this, we will
construct a curve C ' P1,3 in Gr≤µ such that tµ−α ∈ C and C \ {tµ−α} ⊂ Grµ.

For any integer m, let tλm :=

(
tm 0
0 1

)
, regarded as an element in PGL2(BdR). Let Km =

Adtλm (L+SL2) ⊂ LSL2. Then

σm :=

(
0 −tm
t−m 0

)
∈ Km.

Consider the map L+SL2 → SL2 induced by the natural map θ : B+
dR(R)→ R for any perfectoid

algebra R over Qp. Let L>0SL2 be its kernel and set K
(1)
m = Adtλm (L>0SL2). Then Km/K

(1)
m '

SL2. Let iα : SL2 → G be the canonical homomorphism associated to α. We get the induced
map Liα : LSL2 → LG. Let m = 〈µ, α〉 − 1 and consider

Cµ,α := Liα(Km)tµ.

Since Liα(K
(1)
m ) ⊂ L+G ∩ tµL+Gt−µ, Cµ,α is a homogenous space under Km/K

(1)
m = SL2. One

gets then

Cµ,α ' P1,3, and (L+G ∩ Liα(Km))tµ ' A1,3 ⊂ P1,3.

In addition,

Cµ,α \ (L+G ∩ Liα(Km))tµ = iα(σm)tµ = tµ−αL+G.

Thus Cµ,α is the desired curve.
(2) Since 〈2ρ, µ〉 = 〈2ρ,−w0µ〉 and dim Grµ = dim Grµ−1 (note that the map LG→ LG, g 7→

g−1 induces an isomorphism Grµ ' Grµ−1), we consider Grµ−1 = L+Gξµ. Let Φ+ be the set of
positive (absolute) roots of G for the choice of the above Borel subgroup B ⊂ GQp . Consider

the parabolic subgroups Pµ and Pµ−1 defined by the roots α such that 〈α, µ〉 ≥ 0 and 〈α, µ〉 ≤ 0
respectively. Then Pµ−1 is the opposite parabolic of Pµ. Let U = UPµ be the unipotent radical
of Pµ. Then U × Pµ−1 ⊂ G defines an open subspace. Consider the associated open functor
L+(U ×Pµ−1) = L+U ×L+Pµ−1 ⊂ L+G. Then since L+Pµ−1 ⊂ L+G∩ ξµL+Gξ−µ acts trivially
on ξµ, we have open functor L+Uξµ ⊂ L+Gξµ = Grµ−1 . By definition, U =

∏
α∈Φ+,〈α,µ〉>0 Uα
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with Uα the subgroup of G corresponding to the root α. Then

L+Uξµ = (
∏

α∈Φ+,〈α,µ〉>0

L+Uα)ξµ

=
∏

α∈Φ+,〈α,µ〉>0

(L+Uαξ
µ)

=
∏

α∈Φ+,〈α,µ〉>0

B+
dR/ξ

〈α,µ〉ξµ,

where B+
dR is the functor which sends a perfectoid affinoid Qp-algebra (R,R+) to B+

dR(R), and

the last “=” comes from the fact that L+Uα ' B+
dR which acts on ξµ through B+

dR/ξ
〈α,µ〉.

Moreover the action of B+
dR/ξ

〈α,µ〉 on ξµ is free, thus

L+Uξµ '
∏

α∈Φ+,〈α,µ〉>0

B+
dR/ξ

〈α,µ〉.

By [41] subsection 15.2, for each α as above, the Banach-Colmez space B+
dR/ξ

〈α,µ〉 is a dia-
mond, which is a successive extension of A1,3. By induction and [3] Lemma 3.2.5 we have
dimB+

dR/ξ
〈α,µ〉 = 〈α, µ〉. Therefore,

dim Grµ =
∑

α∈Φ+,〈α,µ〉>0

〈α, µ〉 = 〈2ρ, µ〉.

�

For µ ∈ X∗(T )+, let Pµ be the associated parabolic subgroup of GQp as in the above proof, see

also subsection 2.6. Consider the flag variety F `(G,µ) = GC/Pµ, which is defined over E. By [4]
Proposition 3.4.3,Theorem 3.4.5 and [41] Proposition 19.4.2, there is a natural Bialynicki-Birula
map14 for diamonds over E

πµ : Grµ → F `(G,µ)3,

which is an isomorphism if µ is minuscule. Let us recall the definition of πµ. Group theoretically,
over C it is the projection

πµ : Grµ '
L+G

L+G ∩ tµL+Gt−µ
−→ (GC/Pµ)3

induced by the projection
θ : L+G(R) = G(B+

dR(R))→ G(R)

for any C-perfectoid algebra R. Alternatively, we can give the moduli interpretation as follows.
By Tannakian formalism, it is enough to define it for GLn. In this case, µ is given by a tuple
of integers (m1, . . . ,mn) with m1 ≥ · · · ≥ mn. Then Grµ parametrizes lattices Ξ ⊂ BdR(R)n of
relative position (m1, . . . ,mn). For any such lattice, we can define a descending filtration Fil•Ξ
on the residue Rn = B+

dR(R)n/ξB+
dR(R)n with

FiliΞ =
ξiΞ ∩B+

dR(R)n

ξiΞ ∩ ξB+
dR(R)n

.

The stabilizer of this filtration defines a parabolic which is conjugate to Pµ. This gives the
desired πµ : Grµ → F `(G,µ)3. From the construction we see that in general, πµ is surjective,
and in fact it is a fibration in diamonds associated to (iterations of) affine spaces.

For C-points, recall F `(G,µ)(C) = {F ∈ FilC(ωG) | F has typeµ}, where FilC(ωG) is the
set of Q-filtrations over C of the standard fiber functor ωG. The map πµ : Grµ(C,OC) →
F `(G,µ)(C) sends a G-torsor to a “G-filtration”. We can define similarly

π : GrG(C,OC)→ FilC(ωG),

such that the following diagram commutes

GrG(C,OC)
π //

��

FilC(ωG)

��
X∗(T )+ // X∗(G)Q/G,

14Note that according to our convention, here πµ agrees with that in [4] Proposition 3.4.3, and it is the πµ−1

of that in [41] Proposition 19.4.2.



HARDER-NARASIMHAN STRATA AND p-ADIC PERIOD DOMAINS 29

where the left vertical arrow is given by the Cartan decomposition, the right vertical arrow is
given by taking a splitting modulo conjugacy, and the bottom arrow is given by the identifica-
tions X∗(T )+ = X∗(T )/W = X∗(G)/G and the inclusion X∗(G)/G ↪→ X∗(G)Q/G.

Now let H be an arbitrary linear algebraic group over Qp. Then we define the B+
dR-affine

Grassmannian GrH = LH/L+H similarly as above.

Proposition 6.3. GrH is representable by an ind-diamond, which is ind-proper if H is reductive.

Proof. As in the proof of [31] Theorem 1.4, we can take a faithful representation H ↪→ GLn such
that GLn/H is quasi-affine. Then the arguments in the proof of [41] Lemma 19.1.5 show that
the induced map GrH → GrGLn is a locally closed embedding. Since GrGLn is representable by
an ind-diamond by [41] 19.3, we conclude that GrH is also representable by an ind-diamond. In
case H is reductive, Theorem 19.2.4 of [41] implies that it is ind-proper. �

6.2. Hecke stacks and B+
dR-affine Schubert cells. Fix a dominant cocharacter µ ∈ X∗(T )+

and let E = E(G, {µ}). We have the Hecke stack

Heckeµ

over Fp (here we slightly modify the definition in [13] 3.4): for any Spa(R,R+) ∈ PerfFp ,

Heckeµ(Spa(R,R+)) is the groupoid of quadruples (E1, E2, D, f), where

• E1 and E2 are G-bundles on the relative Fargues-Fontaine curve XR,
• D is an effective Cartier divisor of degree 1 on XR,
• f : E1|XR\D

∼−→ E2|XR\D is a modification of G-bundles, such that the type of fx is µ

for any geometric point x = Spa(C(x), C(x)+)→ Spa(R,R+).

This Hecke stack fits into the following diagram

Heckeµ

←−
h

yy

−→
h

''
BunG,Fp BunG,Fp ×Div1,

where Div1 = Spd Q̆p/ϕZ is the diamond parametrizing degree one divisors on the Fargues-
Fontaine curve and

←−
h (E1, E2, f,D) = E2,

−→
h (E1, E2, f,D) = (E1, D).

The above diagram is the stack version of the diagram in subsection 2.1.
Let [b] ∈ B(G,µ) be the basic element. Fix a representative b ∈ G(Q̆p) of [b] and we have the

reductive group Jb. Let

x1 : Spa(Fp)→ [Spa(Fp)/G(Qp)]→ BunG,Fp

and
xb : Spa(Fp)→ [Spa(Fp)/Jb(Qp)]→ BunG,Fp

be the points associated to the classes [1] and [b]. Consider the diamonds Grµ and Grµ−1 over

Ĕ. Then we have the following enlarged diagram15 where Grµ and Grµ−1 appear:

Grµ

yy

ib

%%

Grµ−1

''

i1

ww
Spa(Fp)

xb

$$

Heckeµ

←−
h

zz

−→
h

''

Spa(Fp)
(x1id)

ww
BunG,Fp BunG,Fp ×Div1,

where both the squares are cartesian. In particular, we get

Grµ−1 −→ BunG,Fp

15 We can add Sht(G,µ, b)∞ on the top together with the period maps πdR and πHT to get a further cartesian

square and thus a even larger diagram, cf. [13] 8.2.
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which is the composition
←−
h ◦ i1, and

Grµ −→ BunG,Fp

which is the composition pr ◦
−→
h ◦ ib, where pr : BunG,Fp × Div1 → BunG,Fp is the natural

projection.
We have also the version of Hecke stack Hecke≤µ, which can be defined similarly and it is

related to Gr≤µ and Gr≤µ−1 as above.

6.3. Generalized semi-infinite orbits. Let P ⊂ G be a parabolic subgroup over Qp, M a
Levi subgroup contained in P , which is identified with the reductive quotient of P . Take a
maximal torus inside a Borel T ⊂ B ⊂ GQp and assume B ⊂ PQp and thus T ⊂ MQp . We have

the set of dominant cocharacters X∗(T )+. Let B ∩MQp be the induced Borel of MQp . Then we

get the set of M -dominant cocharacters X∗(T )+
M . We have the inclusion X∗(T )+ ⊂ X∗(T )+

M .
To simplify notations, the base field in this subsection will be C, an algebraically closed

perfectoid field of characteristic 0 (in fact an extension F |Qp which splits G will be enough). In
the following we will write BdR = BdR(C). Consider B+

dR-affine Grassmannians GrM ,GrG and
GrP (cf. Proposition 6.3) over C. The inclusion P ⊂ G and the projection P → M induce the
following diagram of B+

dR-affine Grassmannians:

GrP
pr

{{

i

##
GrM GrG.

Then the Iwasawa decomposition

G(BdR) = P (BdR)G(B+
dR)

induces a bijection

i : GrP (C,OC) = P (BdR)/P (B+
dR)

∼−→ GrG(C,OC) = G(BdR)/G(B+
dR).

Let UP ⊂ P be the unipotent radical of P . Since G/M (resp. G/UP ) is affine (resp. quasi-
affine), the natural inclusion M ⊂ G (resp. UP ⊂ G) induces a closed embedding GrM ↪→ GrG
by [41] Lemma 19.1.5 (resp. a locally closed embedding GrUP ↪→ GrG by the proof of Proposition
6.3). For any λ ∈ X∗(T )+

M , we have the locally spatial diamond GrM,λ ⊂ GrM . Consider the
locally closed sub ind-diamond

Sλ := i
(
pr−1(GrM,λ)

)
⊂ GrG.

This is identified with the orbit LUPGrM,λ for the natural action LUP on GrG induced by
LUP ⊂ LG. The natural product defines a map LUP × LM → LG which induces a map
GrUP ×GrM → GrG. Then we have

Sλ = GrUP GrM,λ ⊂ GrG,

where GrUP GrM,λ denotes the image of GrUP ×GrM,λ under GrUP ×GrM → GrG. The Iwasawa
decomposition above implies that

GrG =
∐

λ∈X∗(T )+M

Sλ.

In the following we consider the partial order ≤P 16 on X∗(T ) (and the restriction to X∗(T )+
M )

with respective to the coroots appearing in LieUP . When the setting is clear, we simply write
λ1 ≤ λ2 for λ1, λ2 ∈ X∗(T )+

M and λ1 ≤P λ2. For any λ ∈ X∗(T )+
M , like in the classical setting,

Sλ is of infinite dimensional. Nevertheless, we have

Proposition 6.4. The closure Sλ of Sλ is given by

S≤λ =
∐
λ′≤λ

Sλ′ .

16Note that this is different from the partial order ≤M used in some literatures, e.g. [17] 5.1, where one uses

simple coroots of M .
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Proof. We adapt the argument of [46] Proposition 5.3.6. We show firstly that S≤λ is closed.
First, assume that Gder is simply connected. For any highest weight representation Vχ of G, let
`χ be the corresponding highest weight line. Then we have the following description

S≤λ =
⋂
Vχ

{(E , β) ∈ GrG|β−1(`χ) ⊂ t−〈χ,λ〉(EVχ)},

where the intersection runs through all highest weight representations Vχ ofG, and EVχ = E×GVχ
is the induced vector bundle. It suffices to prove the locus

{(E , β) ∈ GrG|β−1(`χ) ⊂ t−〈χ,λ〉(EVχ)} ⊂ GrG

is closed. This follows from the proof of [41] Lemma 19.1.4. For general G, one can pass to a
z-extension to reduce to the case when Gder is simply connected.

Now we show Sλ = S≤λ. For λ′ ≤ λ, there exists a positive coroot α appearing in LieUP such
that λ− α is M -dominant and λ′ ≤ λ− α ≤ λ. Then the arguments in the proof of Proposition
6.2 (1) apply. �

Let µ ∈ X∗(T )+ be fixed and consider GrG,µ. For any λ ∈ X∗(T )+
M , note that

Sλ ∩GrG,µ 6= ∅ ⇐⇒ LUP t
λ ∩GrG,µ 6= ∅.

Indeed, to prove the direction “⇒′′, it suffices to work with an algebraically closed field C and
then use the normality of UP . Set

SM (µ) := {λ ∈ X∗(T )+
M |Sλ ∩GrG,µ 6= ∅}.

The stratification GrG =
∐
λ∈X∗(T )+M

Sλ induces a stratification of locally spatial diamonds

GrG,µ =
∐

λ∈SM (µ)

Sλ ∩GrG,µ.

For each λ ∈ SM (µ), for simplicity we denote GrG,µ,λ = Sλ ∩GrG,µ, so that

GrG,µ =
∐

λ∈SM (µ)

GrG,µ,λ.

To describe the index set SM (µ), first note by [17] Lemma 5.4.1

SM (µ) ⊂ Σ(µ)M−dom,

where Σ(µ)M−dom ⊂ X∗(T )+
M is the set of M -dominant elements in {µ′ ∈ X∗(T )|µ′dom ≤ µ}.

Indeed, to describe SM (µ) we may choose any algebraically closed perfectoid field C|Qp and
consider the C-points of GrG,µ(C,OC). Then λ ∈ SM (µ) if and only if λ ∈ X∗(T )+

M , and

UP (BdR(C))tλ
⋂
G(B+

dR(C))tµG(B+
dR(C)) 6= ∅

(
both as subsets ofG(BdR(C))

)
.

Fixing an isomorphism BdR(C) ' C((t)), we translate these to subsets of G
(
C((t))

)
. As in the

proof of [17] Lemma 5.4.1 (which is purely group theoretical and applies to general base fields),

λ ∈ Σ(µ)M−dom if and only if λ ∈ X∗(T )+
M and UB

(
C((t))

)
tλ
⋂
G(C[[t]])tµG(C[[t]]) 6= ∅, where

UB is the unipotent radical of B.
Recall that attached to µ we have the parabolic subgroup Pµ ⊂ GQp . Let W (resp. WP ,WPµ)

be the absolute Weyl group of G (resp. P, Pµ). We have the following inclusion:

Wµ ∩X∗(T )+
M ⊂ SM (µ).

The set Wµ ∩X∗(T )+
M can be described as

Wµ ∩X∗(T )+
M = PWPµµ,

where PWPµ ⊂ W is the set of minimal length representatives in the corresponding coset in
WP \W/WPµ . Then the element

λ0 = µ ∈ SM (µ)

is the unique maximal element with respective to the partial order ≤P . When µ is minuscule,
we have

Wµ ∩X∗(T )+
M = PWPµµ = SM (µ).

In this case, under the isomorphism GrG,µ
∼→ F `(G,µ)3, for λ = wµ with w ∈ PWPµ , we have

Sλ ∩GrG,µ ' (UPww0Pµ/Pµ)3,
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where w0 ∈W is the element of maximal length.

Remark 6.5. Using the geometric Satake equivalence for B+
dR-affine Grassmannians (cf. [16])

we have the following representation theoretic description of SM (µ):

Let Ĝ be the dual reductive group of G (over some characteristic zero algebraically closed field)

and M̂ ⊂ Ĝ be Levi subgroup defined by the dual root datum of M . Similarly let T̂ ⊂ B̂ ⊂ Ĝ

be the maximal torus dual to T inside the Borel subgroup of Ĝ dual to B. Then we may view

µ ∈ X∗(T̂ )+ = X∗(T )+. Consider the irreducible representation Vµ of highest weight µ of Ĝ.

The geometric Satake equivalence in the current setting implies that SM (µ) is the set of M̂ -

dominant weights of T̂ such that the associated highest weight representations of M̂ appear in
the restricted representation Vµ|M̂ :

SM (µ) = {λ ∈ X∗(T )+

M̂
| 0 6= Vλ ⊂ Vµ|M̂},

where for any λ ∈ X∗(T )+

M̂
, Vλ is the irreducible representation of M̂ of highest weight λ.

We identify W = W (Ĝ) and X∗(T̂ )+

M̂
= X∗(T )+

M . The set Wµ∩X∗(T̂ )+

M̂
= PWPµµ appears

naturally when considering the decomposition of Vµ|M̂ into irreducible representations of M̂ : we

view µ ∈ X∗(T̂ )+

M̂
, then the associated irreducible representation V M̂µ of M̂ appears in Vµ|M̂ .

Consider the adjoint action of W on Vµ = Vµ|M̂ . For any w ∈ PWPµ , we have

wV M̂µ = Vwµ ⊂ Vµ|M̂ .

Any λ ∈ SM (µ) is of the form

λ = µ−
∑

α∈∆\∆
M̂

nαα, nα ∈ N,∀α,

where ∆ = ∆Ĝ (resp. ∆
M̂

) is the set of simple roots of Ĝ (resp. M̂). Therefore,

Wµ ∩X∗(T̂ )+

M̂
= Wµ ∩X∗(T )+

M ⊂ SM (µ)

and µ ∈ SM (µ) is the unique maximal element.

Recall that the locally spatial diamond Grµ = GrG,µ is defined over SpdE with E =

E(G, {µ}). As usual, let Ĕ = Êur be the completion of the maximal unramified extension

of E. We will study GrG,µ over Spd Ĕ. First of all, we explain that the set SM (µ) and the above
diagram of B+

dR-affine Grassmannians naturally arise when considering reductions of modifica-
tions of G-bundles to P -bundles (resp. M -bundles), cf. Lemma 6.6.

For C|Ĕ any algebraically closed perfectoid field, let X = XC[ be the Fargues-Fontaine curve

over Qp attached to C[. Let b ∈ G(Q̆p) be an element with associated class [b] ∈ B(G) and the
G-bundle Eb on X (cf. [12]). For a Levi subgroup M of G, recall that (cf. [5] Definition 2.5) we

have the notion of reductions of b to M . Such a reduction is given by an element bM ∈ M(Q̆p)
together with an element g ∈ G(Q̆p) such that b = gbMσ(g)−1. Then the M -bundle EbM is a

reduction of Eb. If M ⊂ P for some parabolic subgroup P of G, let bP ∈ P (Q̆p) be the image of
bM . This defines a reduction of b to P , and thus a reduction of the G-bundle Eb to a P -bundle
EbP . By construction, EbP = EbM ×M P .

For any x ∈ GrG(C,OC), we can define a modification Eb,x of E , thus a map

GrG(C,OC)→ H1
ét(X,G).

It is functorial in the following sense: we have similar maps

GrP (C,OC)→ H1
ét(X,P ), y 7→ EbP ,y,

GrM (C,OC)→ H1
ét(X,M), z 7→ EbM ,z,
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by considering modifications of the P -bundle EbP and the M -bundle EbM respectively. Then the
following diagram commutes:

GrG(C,OC) // H1
ét(X,G)

GrP (C,OC)

OO

��

// H1
ét(X,P )

OO

��
GrM (C,OC) // H1

ét(X,M),

where the arrows on the right hand side are E 7→ E ×P G, E 7→ E ×P M , the push forwards of
P -bundles along P ⊂ G and P → M respectively. Recall that by Iwasawa decomposition, the
map GrP (C,OC) = P (BdR)/P (B+

dR)
∼−→ GrG(C,OC) = G(BdR)/G(B+

dR) is a bijection. For
x ∈ GrG(C,OC), let y ∈ GrP (C,OC) be its inverse image under this bijection. Then

EbP ,y ×P G = Eb,x,
i.e. EbP ,y is a reduction to P of Eb,x. By [5] Lemma 2.5, EbP ,y is the reduction to P of Eb,x
induced by the reduction EbP of Eb. We will also write

EbP ,y = (Eb,x)P

for this reduction. Recall that we have the decomposition

GrG,µ(C,OC) =
∐

λ∈SM (µ)

GrG,µ,λ(C,OC).

For λ ∈ SM (µ), let prλ : GrG,µ,λ(C,OC) → GrM,λ(C,OC) be the projection. The following
generalization of [5] Lemma 2.6 is clear now.

Lemma 6.6. For any x ∈ GrG,µ(C,OC), let λ ∈ SM (µ) be such that x ∈ GrG,µ,λ(C,OC). Then
there is an isomorphism of M -bundles

(Eb,x)P ×P M ' EbM ,prλ(x),

where (Eb,x)P is the reduction of Eb,x induced by the reduction EbP of Eb as above.

6.4. Newton and Harder-Narasimhan stratifications on Grµ−1 . We keep the notations

as in the last subsection. Consider the affine Schubert cells Grµ and Grµ−1 over Ĕ.

We first study the geometry of Grµ−1 using modifications of the trivial G-bundle E1. Consider
the morphism Grµ−1 → BunG,Fp constructed in 6.2. The induced map on the sets of C-valued

points can be described in more concrete terms. Let C|Ĕ be an algebraically closed perfectoid
field. For any x ∈ Grµ−1(C,OC), we have the modification

E1,x
of E1. The isomorphism class of E1,x defines a point b(E1,x) ∈ B(G). We write Newt :
Grµ−1(C,OC)→ B(G) for the map.

Proposition 6.7. The image of the induced map Newt : Grµ−1(C,OC)→ B(G) is B(G,µ).

Proof. The fact that the image of the above map is included in B(G,µ) follows from [4] Propo-
sition 3.5.3.

To show the surjectivity, if µ is minuscule, then it follows from [35] Proposition A.9. For
the general case, consider the affine Schubert cell Grµ. Let [b] ∈ B(G,µ) be any element

with a representative b ∈ G(Q̆p). Let Graµ ⊂ Grµ be the associated admissible locus (here
Graµ = Grµ ∩Gra≤µ and Gra≤µ is the admissible locus introduced in the proof of [41] Proposition
23.3.3). On the other hand, let F `(G,µ, b)wa ⊂ F `(G,µ) be the associated weakly admissible
locus (cf. [38, 8]). Then the Bialynicki-Birula map induces a morphism of diamonds

πµ : Graµ → F `(G,µ, b)wa,3.

By the theorem of Colmez-Fontaine (cf. [15] chapter 10), we have

Graµ(K,OK) = F `(G,µ, b)wa(K,OK)



34 XU SHEN

for any finite extension K|Ĕ. Thus F `(G,µ, b)wa 6= ∅ if and only if Graµ 6= ∅. Since [b] ∈ B(G,µ),
by [37] Proposition 3.1, F `(G,µ, b)wa 6= ∅ and thus Graµ 6= ∅. Take a point x ∈ Grµ−1(C,OC).
By definition,

x ∈ Gr
Newt=[b]
µ−1 (C,OC) ⇔ E1,x ' Eb ⇔ E1 = Eb,x∗

for some x∗ ∈ Grµ(C,OC). This is equivalent to x∗ ∈ Graµ(C,OC). Thus we get for any

[b] ∈ B(G,µ), Gr
Newt=[b]
µ−1 (C,OC) 6= ∅. �

Letting C vary, we thus get a map Newt : |Grµ−1 | −→ B(G,µ). By [23] (in the case G = GLn)
and [41] Corollary 22.5.1, this map is upper semi-continuous. The Newton stratification of Grµ−1

is the following stratification in diamonds over Ĕ (which is in fact defined over E):

Grµ−1 =
∐

[b′]∈B(G,µ)

Gr
Newt=[b′]
µ−1 .

The open Newton stratum

Gr
Newt=[b]
µ−1

is associated to the basic element [b] ∈ B(G,µ). Recall that We have the natural action of G(Qp)
on Grµ−1 . Since Aut(E1) = G(Qp), for any [b′] ∈ B(G,µ) the stratum Gr

Newt=[b′]
µ−1 is stable under

the G(Qp)-action.

Proposition 6.8. We have the following dimension formula: for [b′] ∈ B(G,µ),

dim Gr
Newt=[b′]
µ−1 = 〈µ− ν([b′]), 2ρ〉.

Proof. This is essentially the same as the proof of Proposition 3.1 (2), using the diagram in
subsection 2.6 and the dimension formula dim Grµ = 〈µ, 2ρ〉 of Proposition 6.2 (2). �

For any point x ∈ Grµ−1(C,OC), consider the admissible modification (E1, E1,x, f) and the
associated HN vector ν(E1, E1,x, f) ∈ N (G). Then Proposition 3.4 still holds in this setting by
easily modifying the proof therein (using the semi-infinite orbit decomposition of Grµ−1 instead
of the Bruhat decomposition). In other words, we have

ν(E1, E1,x, f) ≤ ν(E1,x)

and

ν(E1, E1,x, f)∗ = w0(−ν(E1, E1,x, f)) ∈ N (G,µ).

Letting C vary, we thus get a map HN : |Grµ−1 | −→ N (G,µ).

Theorem 6.9. For any v ∈ N (G,µ), the subset

GrHN=v
µ−1 := {x ∈ |Grµ−1 | |HN(x) = v}

is locally closed, stable under the G(Qp)-action, and it defines a sub diamond of Grµ−1 . Moreover,

for the basic element [b] ∈ B(G,µ) with v0 = ν([b]), the subset GrHN=v0
µ−1 is open, which is the

semi-stable locus, and we have an inclusion

GrNewt=v0µ−1 ⊂ GrHN=v0
µ−1 .

Proof. We generalize the arguments in the proof of Theorem 3.9. Let Θ(G,µ) be the set of pairs
(P, λ), where P is a standard parabolic (here including G) of G with associated standard Levi
M , λ ∈ X∗(T )+

M , such that the following conditions hold:

(1) λ ∈ SM (µ−1), where SM (µ−1) is the subset of X∗(T )+
M introduced in the last subsection;

(2) Let v(λ) ∈ X∗(AP )Q be the image of λ under the natural projections X∗(T )Q →
X∗(A)Q → X∗(AP )Q. Then

〈v(λ), α〉 > 0, ∀α ∈ ∆0,P .

In particular, Θ(G,µ) is a finite set. The inclusion X∗(AP )Q ⊂ X∗(A)Q induces a natural map

Θ(G,µ)→ X∗(A)+
Q , (P, λ) 7→ v(λ).

This map factors through N (G,µ). The element θ0 = (G,µ) maps to the basic element v0 of
N (G,µ). For any x ∈ Grµ−1(C,OC), let P be the standard parabolic determined by the HN
vector HN(x)∗ = ν(E1, E1,x, f). Consider the Iwasawa decomposition relative to P and M , and
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let λ ∈ SM (µ−1) be the cocharacter such that x ∈ Grµ−1(C,OC) ∩ Sλ(C,OC). By [4] Lemma
3.5.5,

cM1 (E1M ,prλ(x)) = λ] ∈ π1(M)Γ.

Therefore
µ(E1M , E1M ,prλ(x), fM ) = λ] ⊗ 1 = v(λ) ∈ π1(M)Γ,Q.

By Proposition 2.6, we have v(λ) = ν(E1, E1,x, f) and (P, λ) ∈ Θ(G,µ). Thus we get a well
defined map

Θ : |Grµ−1 | → Θ(G,µ).

It suffices to show that for any θ = (P, λ) ∈ Θ(G,µ), the subset

Grθµ−1 := {x ∈ |Grµ−1 | |Θ(x) = θ}
defines a sub diamond of Grµ−1 . In fact, we have

GrHN=v
µ−1 =

∐
θ=(P,λ),v(λ)∗=v

Grθµ−1 .

Note that we have the equality GrHN=v0
µ−1 = Grθ0µ−1 which is the semi-stable locus and we denote

by GrssG,µ−1 . We first show that this is an open sub diamond of Grµ−1 , i.e. |GrG,µ−1 | \ |GrssG,µ−1 |
is closed. This follows from Corollary 2.7 and Proposition 6.4. Indeed, for any x ∈ |GrG,µ−1 | \
|GrssG,µ−1 |, by Corollary 2.7, there exits a maximal standard parabolic P with standard Levi
M , such that 〈µ(E1,x,M ), α〉 > 0, where ∆0,P = {α}. Then an easy argument shows that
P ⊃ PHN(x). Consider the construction of subsection 6.3 with respect to P and M . Let

λ ∈ SM (µ−1) be such that x ∈ GrG,µ−1 ∩ Sλ, where Sλ is the generalized semi-infinite orbit
attached to λ. By Corollary 2.7, GrG,µ−1 ∩ Sλ ⊂ |GrG,µ−1 | \ |GrssG,µ−1 |. By Proposition 6.4, the
closure of GrG,µ−1 ∩ Sλ inside GrG,µ−1

GrG,µ−1 ∩ Sλ ⊂
∐
λ′≤λ

GrG,µ−1 ∩ Sλ′ .

Then by the last paragraph in the proof of Proposition 6.4, for any λ′ ≤ λ, we have 〈v(λ′), α〉 > 0
for the parabolic P with ∆0,P = {α}, as the inequality holds for λ. By Corollary 2.7, this implies

GrG,µ−1 ∩ Sλ ⊂ |GrG,µ−1 | \ |GrssG,µ−1 |.
Thus |GrG,µ−1 | \ |GrssG,µ−1 | is closed.

For a general θ = (P, λ) ∈ Θ(G,µ), consider the stratification Grµ−1 =
∐
λ′∈SM (µ−1) Grµ−1 ∩

Sλ′ with respect to P and the associated Levi M . Set

GrθP,λ := Grθµ−1 ∩ Sλ.
Then we have two inclusions

GrθP,λ ⊂ Grµ−1 ∩ Sλ, GrθP,λ ⊂ Grθµ−1 .

Consider the first inclusion GrθP,λ ⊂ Grµ−1 ∩Sλ. By Proposition 2.5, GrθP,λ is the preimage (fiber
product) of the semi-stable locus GrssM,λ ⊂ GrM,λ under the projection

prλ : Grµ−1 ∩ Sλ → GrM,λ.

As we just proved that GrssM,λ is open in GrM,λ, GrθP,λ is a locally closed and locally spatial

sub diamond of Grµ−1 . Now we look at GrθP,λ ⊂ Grθµ−1 . Note that the natural action of G(Qp)
on Grµ−1 restricts to an action of G(Qp) (resp. P (Qp)) on Grθµ−1 (resp. GrθP,λ). Then by
construction, as subsets of |Grµ−1 | we have

Grθµ−1 =
⋃

g∈G(Qp)/P (Qp)

gGrθP,λ.

We claim that Grθµ−1 is locally closed in Grµ−1 . Indeed, as⋃
g∈G(Qp)/P (Qp)

gGrθP,λ ⊂
⋃

g∈G(Qp)/P (Qp)

g(Grµ−1 ∩ Sλ)

is open, it suffices to show the later is locally closed in Grµ−1 . Then we are further reduced
to show that

⋃
g∈G(Qp)/P (Qp)(Grµ−1 ∩ S≤gλg−1) is closed in Grµ−1 , where S≤gλg−1 is the closed

semi-infinite orbit associated to the parabolic gPg−1 and gλg−1. Now, the closedness of the last
union follows from the fact that G(Qp)/P (Qp) is compact and S≤gλg−1 is closed by Proposition



36 XU SHEN

6.4. Moreover, as all subsets are generalizing, Grθµ−1 defines a locally spatial sub v-sheaf of
Grµ−1 . Then, we get an isomorphism of locally spatial v-sheaves

GrθP,λ ×
P (Qp) G(Qp)

∼−→ Grθµ−1 .

Indeed, the left hand defines a priori a locally spatial sub v-sheaf GrθP,λ ×
P (Qp) G(Qp) ⊂ Grθµ−1 .

The inclusion map is quasicompact, since the locally closed subspace of |Grθµ−1 | is the whole

|GrθP,λ ×
P (Qp) G(Qp)| =

⋃
g∈G(Qp)/P (Qp) g|GrθP,λ| = |Grθµ−1 |. By [39] Lemma 12.11 and Proposi-

tion 12.15, this inclusion is in fact an isomorphism of v-sheaves.
Finally, the inclusion GrNewt=v0µ−1 ⊂ GrHN=v0

µ−1 comes from the inequality ν(E1, E1,x, f) ≤ ν(E1,x)

as in Proposition 3.4 (1) (which holds for general µ).
�

Remark 6.10. (1) If µ is minuscule, by the proofs of Theorem 3.9 and Theorem 6.9, the
HN type stratifications of Grµ−1 and F `(G,µ−1) coincide via the Bialynicki-Birula iso-

morphism Grµ−1
∼→ F `(G,µ−1)3.

(2) One can actually show that the complement of the semi-stable locus Grµ−1 \ Grssµ−1 is

a profinite union of closed subspaces of the form Grµ−1 ∩ Sλ, where Sλ is a generalized
semi-infinite orbit with respect to some proper parabolic P of G. We leave this to the
interested reader.

In the following, we will identify N (G,µ) with B(G,µ) by the Newton map. We have the

following stratification of diamonds over Ĕ (which is in fact defined over E):

Grµ−1 =
∐

[b′]∈B(G,µ)

Gr
HN=[b′]
µ−1 .

For any [b′] ∈ B(G,µ), the stratum Gr
HN=[b′]
µ−1 is stable under the action of G(Qp) on Grµ−1 . The

open Harder-Narasimhan stratum Gr
HN=[b]
µ−1 is associated to the basic element [b] ∈ B(G,µ). By

the proof of Theorem 6.9, we get

Corollary 6.11. For any non basic [b′] ∈ B(G,µ), the stratum Gr
HN=[b′]
µ−1 is a parabolic induc-

tion.

We have also the following generalization of Proposition 3.13, as the argument in the proof
there applies:

Corollary 6.12. Let [b1] ∈ B(G,µ) be the unique maximal element. Assume that G is quasi-
split, then

Gr
HN=[b1]
µ−1 = Gr

Newt=[b1]
µ−1 .

6.5. Newton and Harder-Narasimhan stratifications on Grµ. Let [b] ∈ B(G,µ) be the
basic element. Now we study the geometry of Grµ using modifications of the G-bundle Eb.
Consider the map Grµ → BunG,Fp constructed in subsection 6.2. Let C|Ĕ be an algebraically

closed perfectoid field. The induced map on the sets of C-valued points can be described in more
concrete terms. For any x ∈ Grµ(C,OC), we have the modification

Eb,x
of Eb. The isomorphism class of Eb,x defines a point b(Eb,x) ∈ B(G). We write Newt :
Grµ(C,OC) → B(G) for the map. Recall the subset B(G, 0, νbµ

−1) ⊂ B(G) introduced in
subsection 4.1.

Proposition 6.13. The image of the induced map Newt : Grµ(C,OC)→ B(G) is B(G, 0, νbµ
−1).

Proof. For µ minuscule, this has been studied in [5] section 5 (see also [35] A.10). The arguments
in [5] section 5 work in the general case. See also the proof of Proposition 6.7. �

Letting C vary, we thus get a map Newt : |Grµ| −→ B(G, 0, νbµ
−1), which is upper semi-

continuous by [23, 41]. Thus we have the Newton stratification of diamonds over Ĕ:

Grµ =
∐

[b′]∈B(G,0,νbµ−1)

GrNewt=[b′]
µ .
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Note that Jb(Qp) acts on Grµ via the inclusions Jb(Qp) ⊂ G(Q̆p) ⊂ G(B+
dR(Cp)). For any [b′] ∈

B(G, 0, νbµ
−1), the stratum GrNewt=[b′]

µ is stable under the action of Jb(Qp) = Aut(Eb) on Grµ.

The open Newton stratum GrNewt=[1]
µ corresponds to the trivial element [1] ∈ B(G, 0, νbµ

−1),
which we will also denote by Graµ (the admissible locus inside Grµ with respective to (G, {µ}, [b]),
which we already introduced in the proof of Proposition 6.7).

Remark 6.14. In this subsection, to define the Newton stratification, in fact we don’t need the
assumption that [b] is basic. However, we don’t know a description of the index set for a non
basic [b].

Now we want to define a Harder-Narasimhan stratification on Grµ. Consider the triple
(Jb, {µ}, [1]). Then we can consider the Newton and Harder-Narasimhan stratifications on GrJb,µ
as in the last subsection. Since [b] is basic, the isomorphism Jb,Q̆p

∼→ GQ̆p induces identifications

GrG,µ ∼= GrJb,µ

as diamonds over Spd Ĕ. The Harder-Narasimhan stratification on GrJb,µ induces a Jb(Qp)-
equivariant stratification on Grµ over Ĕ:

Grµ =
∐

[b′]∈B(G,0,νbµ−1)

GrHN=[b′]
µ ,

which we call the Harder-Narasimhan stratification. The open Harder-Narasimhan stratum

GrHN=[1]
µ corresponds to the trivial element [1] ∈ B(G, 0, νbµ

−1), which we will also denote by
Grwaµ (the weakly admissible locus inside Grµ with respective to (G, {µ}, [b])).

Consider also the dual local Shtuka datum (Jb, {µ−1}, [b−1]). The results of subsection 4.3
still hold (cf. [41] subsection 23.3). Now the following generalization17 of Theorem 4.4 and
Corollary 4.5 is clear:

Theorem 6.15. (1) Under the identification GrG,µ−1 = GrJb,µ−1 , for any [b′] ∈ B(G,µ)
corresponding to [b′′] ∈ B(Jb, 0, νb−1µ) under the bijection (cf. Lemma 4.1)

B(G,µ)
∼−→ B(Jb, 0, νb−1µ),

we have
(a) Gr

HN=[b′]
G,µ−1 = Gr

HN=[b′′]
Jb,µ−1 .

(b) Gr
Newt=[b′]
G,µ−1 = Gr

Newt=[b′′]
Jb,µ−1 .

(2) Under the identification GrJb,µ = GrG,µ, for any [b′] ∈ B(G,µ) corresponding to [b′′] ∈
B(Jb, 0, νb−1µ) under the bijection (cf. Lemma 4.1)

B(Jb, µ
−1)

∼−→ B(G, 0, νbµ
−1),

we have
(a) Gr

HN=[b′]
Jb,µ

= Gr
HN=[b′′]
G,µ .

(b) Gr
Newt=[b′]
Jb,µ

= Gr
Newt=[b′′]
G,µ .

By Theorem 6.9 and the construction, we have Graµ ⊂ Grwaµ .

6.6. Extensions to Gr≤µ and Gr≤µ−1 . We can extend the above constructions to Gr≤µ and
Gr≤µ−1 . First, we note the following lemma.

Lemma 6.16. For µ1, µ2 ∈ X∗(T )+ with w0(−µ1) ≤ w0(−µ2), we have a natural injection
B(G,µ1) ↪→ B(G,µ2).

Proof. The assumption w0(−µ1) ≤ w0(−µ2) implies that µ1 ≤ µ2 and thus µ�1 ≤ µ�2. Recall
that by [26] 4.13,

(κ, ν) : B(G)→ π1(G)Γ ×N (G)

is injective. For [b] ∈ B(G,µ1), consider the pair (µ]2, ν([b]) ∈ π1(G)Γ × N (G). It comes from
a unique element [b′] ∈ B(G) under the injection (κ, ν) : B(G) ↪→ π1(G)Γ × N (G), since κ is

surjective and µ]2 ≡ ν([b]) in π1(G)Γ,Q. Then since ν([b′]) = ν([b]) ≤ µ�1 ≤ µ�2, by definition
[b′] ∈ B(G,µ2). In this way we get an injection B(G,µ1) ↪→ B(G,µ2). �

17The part on Harder-Narasimhan stratifications is by our construction.
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By the above lemma, we can define Newton and Harder-Narasimhan stratifications on Gr≤µ−1

by modifications of the trivial G-bundle E1, with both of the index sets as B(G,µ). These
strata will be the union over all (µ′)−1 ≤ µ−1 of the corresponding strata (could be empty)
inside Gr(µ′)−1 . Similar, for [b] ∈ B(G,µ) basic, we can define Newton and Harder-Narasimhan
stratifications on Gr≤µ by modifications of the G-bundle Eb, with both of the index sets as
B(G, 0, νbµ

−1). The strata will be the union over all µ′ ≤ µ of the corresponding strata (which
could be empty) inside Grµ′ . We will use the version of moduli of local G-Shtukas Sht(G,≤
µ, b)∞ in this setting. We can consider the dual local Shtuka datum (Jb, {µ−1}, [b−1]). Then
the constructions and results in subsections 6.4 and 6.5, in particular Theorem 6.15, can be
generalized to the current setting. We leave the details to the interested reader.

6.7. Fargues-Rapoport conjecture for general µ. In the following we explain how to gen-
eralize the arguments in the proof of [5] Theorem 6.1 to the non minuscule case.

Let µ ∈ X∗(T )+ and consider the diamond GrG,µ over Ĕ. Applying Proposition 2.6, we
deduce the following generalization of [5] Proposition 2.7 in non minuscule case (but for [b]
basic).

Proposition 6.17. Assume that G is quasi-split and [b] ∈ B(G,µ) basic. Then x ∈ GrG,µ(C,OC)
is weakly admissible if and only if for any standard parabolic P with associated standard Levi
M , any reduction bM of b to M , and any χ ∈ X∗(P/ZG)+, we have

degχ∗(Eb,x)P ≤ 0,

where (Eb,x)P is the reduction to P of Eb,x induced by the reduction EbP of Eb as above.

Proof. As [b] is basic, the group Jb is an inner form of G. Since G is quasi-split, for any
standard parabolic P of G with associated standard Levi M such that b admits a reduction
bM to M , there exists a unique parabolic P ′ of Jb with associated Levi M ′. Moreover, we
have a bijection X∗(P ′/ZJb)

+ ∼→ X∗(P/ZG)+, χ′ 7→ χ. Under the bijection GrJb,µ(C,OC)
∼→

GrG,µ(C,OC), x′ 7→ x, we have degχ′∗(E1,x′)P ′ = degχ∗(Eb,x)P . Now as x ∈ GrG,µ(C,OC) is
weakly admissible if and only if x′ ∈ GrJb,µ(C) is semi-stable, the proposition follows from
Proposition 2.6. �

Let b ∈ G(Q̆p) be such that [b] ∈ B(G,µ) is basic. We have the weakly admissible locus

Grwaµ ⊂ Grµ,

which is defined as the open Harder-Narasimhan stratum GrHN=[1]
µ , and the admissible locus

Graµ ⊂ Grµ,

which is defined as the open Newton stratum GrNewt=[1]
µ . Recall that we have the inclusion of

locally spatial diamonds over Spd Ĕ:
Graµ ⊂ Grwaµ .

Theorem 6.18. Assume that [b] ∈ B(G,µ) is basic. Then we have the following equivalent
statements:
B(G,µ) is fully Hodge-Newton decomposable ⇐⇒ Graµ = Grwaµ .

Proof. Let Gad be the adjoint group attached to G. Then we get a natural surjective morphism
φ : GrG,µ → GrGad,µad . Let [bad] ∈ B(Gad, µad) be the corresponding element under the

bijection B(G,µ)
∼→ B(Gad, µad). We consider the admissible locus and weakly admissible

locus of GrGad,µad with respective to bad. One checks easily that

GraG,µ = φ−1(GraGad,µad) and GrwaG,µ = φ−1(GrwaGad,µad).

Thus we are reduced to the case G is adjoint. We first assume that G is quasi-split.

The direction “⇒”: The arguments are identical to the direction (1) ⇒ (2) in [5] Theorem
6.1, using

• the Newton stratification Grµ =
∐

[b′]∈B(G,0,νbµ−1) GrNewt=[b′]
µ ,

• [5] Corollary 4.16 and Lemma 4.11,
• the above Lemma 6.6,
• [5] Lemmas 6.3 and 6.4,
• the above Proposition 6.17.
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Since this is the easier direction, we leave the details to the reader.

The direction “⇐”: We follow the arguments in the direction (2) ⇒ (1) of [5] Theorem
6.1, except in the last step Proposition 6.4 will be used. For the reader’s convenience, and to
clarify the ideas, we provide the details as follows.

We prove that if B(G,µ) is not fully Hodge-Newton decomposable, then Grwaµ ) Graµ, i.e.
there exists a point x ∈ Grwaµ (C,OC) \Graµ(C,OC), for any algebraically closed perfectoid field

C|Ĕ.

By [5] Corollary 4.16, B(Jb, µ
−1) is not fully Hodge-Newton decomposable, and thus by [5]

Proposition 4.14 (and its proof), there exists α ∈ ∆0 such that

〈−w0µ
�, ω̃α〉 > 1,

where ω̃α =
∑
γ∈Φ,γ|A=α ωγ . Let β ∈ ∆ such that β|A = −w0α with corresponding coroot

β∨ ∈ ∆∨. Then 〈β∨, ω̃−w0α〉 = 〈(β∨)�, ω̃−w0α〉 = 1 and thus

〈µ− β∨, ω̃−w0α〉 = 〈−w0µ
�, ω̃α〉 − 〈β∨, ω̃−w0α〉 > 0.

Let M be the standard Levi subgroup such that ∆0,M = ∆0 \ {−w0α}. Write P the associated
standard parabolic subgroup. Then the element (−β∨)] ∈ π1(G)Γ admits to a lift to π1(M)Γ,
which we still denote by

(−β∨)] ∈ π1(M)Γ =
(
X∗(T )/〈Φ∨M 〉

)
Γ
.

Let [b′M ] ∈ B(M)basic be the basic element in B(M) such that it is mapped to (−β∨)] under

the bijection κM : B(M)basic
∼→ π1(M)Γ. Then [νb′M ] is G-antidominant. Let [b′] ∈ B(G) be the

image of [b′M ] under the natural map B(M)→ B(G). Then by construction

[νb′ ] = w0[νb′M ], Mb′ = M, [b′] ∈ B(G, 0, νbµ
−1)

and the image of [b′] in B(Jb, µ
−1) is not Hodge-Newton decomposable. As in [5], we may assume

that [b′] ∈ B(G, 0, νbµ
−1) \ {[1]} is minimal.

Consider the Newton stratum Z := GrNewt=[b′]
µ attached to [b′]. Then naturally Z

⋂
Grwaµ ⊂

Grwaµ \Graµ. We claim that

Z(C,OC)
⋂

Grwaµ (C,OC) 6= ∅.

This will conclude the proof of the direction “⇐”.

Suppose the claim was not true, i.e. for any x ∈ Z(C,OC), x is not weakly admissible. By
the definition of Z, we have

Eb,x ' Eb′ .
By Proposition 6.17, there exists a standard maximal parabolic Q with the corresponding Levi
MQ, a reduction bMQ(x) of b to MQ, a character χ ∈ X∗(Q/ZG)+ such that degχ∗(Eb,x)Q > 0.
Consider the map

v : X∗(Q/ZG)→ Z, χ′ 7→ degχ′∗(Eb,x)Q.

It defines an element v ∈ N (G) and we have

v ≤ ν(Eb,x) = −w0[νb′ ]

by [5] Theorem 1.8 (1). Then −w0v ≤ [νb′ ]. By the description of B(G, 0, νbµ
−1) in [5] Corollary

4.4, we have −w0v ∈ B(G, 0, νbµ
−1). By the minimality of [b′], we get

−w0v = [νb′ ].

By [5] Theorem 1.8 (2) and the maximality of Q, we get Q = P and (Eb,x)Q is the canonical
reduction of Eb,x.

Consider the decomposition GrG,µ(C,OC) =
∐
λ∈SM (µ) GrG,µ,λ(C,OC). Let λ ∈ SM (µ) such

that x ∈ GrG,µ,λ(C,OC). By Lemma 6.6 we have

Eb′M = (Eb′)P ×P M = (Eb,x)P ×P M = EbM ,prλ(x),
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where bM = bMQ
(x) is the above reduction of b to MQ = M . Therefore, by taking −cM1 (·), we

get
κM (b′M ) = κM (bM )− λ] ∈ π1(M)Γ,

which implies
[νb′M ] = [νbM ]− λ] ⊗ 1 ∈ π1(M)Γ,Q

by our previous convention. As κM (b′M ) = (−β∨)] by construction, we get

(1) λ] ⊗ 1 = [νbM ] + (β∨)] ⊗ 1 ∈ π1(M)Γ,Q.

Next we pass to the dual side. Consider the inner form Jb of G. Let [b′′] ∈ B(Jb) be the

element which is mapped to [b′] ∈ B(G) under the bijection B(Jb)
∼→ B(G). Since G is quasi-

split and b′ admits reductions to P and M (by construction), the groups P and M transfer to
parabolic and Levi subgroups respectively of Jb, which we still denote by P and M by abuse
of notation. Moreover, there exist corresponding reductions b′′M and b′′P of b′′ to M and P
respectively. The isomorphism Jb,Q̆p ' GQ̆p induces an identification GrJb,µ = GrG,µ, and by

Theorem 6.15 we have
Gr

Newt=[b′′]
Jb,µ

= Gr
Newt=[b′]
G,µ = Z.

By Lemma 4.1, the bijection B(Jb)
∼→ B(G) restricts to a bijection B(Jb, µ

−1)
∼→ B(G, 0, νbµ

−1).
As [b′] ∈ B(G, 0, νbµ

−1), we get [b′′] ∈ B(Jb, µ
−1). Consider the dual local Shtuka datum

(Jb, {µ−1}, [b′′]). We have the following diagram

Sht(Jb, µ
−1, b′′)∞

πdR

wwww

πHT

(( ((

GraJb,µ−1 Gr
Newt=[b′′]
Jb,µ

.

Recall that we have our point x ∈ Z(C,OC) = Gr
Newt=[b′′]
Jb,µ

(C,OC). Consider the subset

πdR(π−1
HT (x)) ⊂ GrJb,µ−1(C,OC).

For the parabolic P and Levi M of Jb, we consider the digram of the corresponding B+
dR-affine

Grassmannians. Under the identifications GrG,µ = GrJb,µ and SGM (µ) = SJbM (µ), the decompo-
sitions GrG,µ =

∐
λ∈SGM (µ) GrG,µ,λ and GrJb,µ =

∐
λ∈SJbM (µ)

GrJb,µ,λ coincide. Therefore, we can

view x ∈ GrJb,µ,λ(C,OC).

We consider the side GrJb,µ−1 . Let z ∈ πdR(π−1
HT (x)) ⊂ GrJb,µ−1(C,OC) be a point. Consider

the decomposition of GrJb,µ−1(C,OC) indexed by SM (µ−1) := SJbM (µ−1). Let λ′ ∈ SM (µ−1) be
such that

z ∈ GrJb,µ−1,λ′(C,OC).

By Lemma 6.6 again, we have

(Eb′′,z)×P M ' Eb′′M ,prλ′ (z)
.

Let λ0 := −w0µ ∈ SM (µ−1) be the maximal element. If λ′ = λ0, that is

λ′ = −w0µ ∈ X∗(T )+
M ⊂ X∗(T ),

then we have

λ′ ⊗ 1 = (−w0µ)⊗ 1 ∈ π1(M)Q =
(
X∗(T )/〈Φ∨M 〉

)
Q
.

Now we come back to the group G and consider M as a Levi subgroup of G. We have our
previous notation π1(M)Γ,Q, taking into account the Galois action on GQ̆p defined by G over

Qp. Then

(2) (λ′)] ⊗ 1 = (−w0µ)] ⊗ 1 ∈ π1(M)Γ,Q.

Recall that we have the corresponding element λ ∈ SM (µ) such that x ∈ GrJb,λ(C,OC). Then

(λ′)] ⊗ 1 = −λ] ⊗ 1

= −[νbM ]− (β∨)] ⊗ 1 ∈ π1(M)Γ,Q,

where the second “=” comes from equation (1). Combined with equation (2), we get

(3) − [νbM ] = (−w0µ)] ⊗ 1 + (β∨)] ⊗ 1 ∈ π1(M)Γ,Q.

Pushing forward equation (3) to π1(G)Γ,Q and taking 〈·, ω̃−w0α〉, we get
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〈[νb], ω̃−w0α〉 = 〈µ− β∨, ω̃−w0α〉 > 0.

This is a contradiction, since b is basic in G and thus 〈[νb], ω̃−w0α〉 = 0. Therefore, for any
z ∈ πdR(π−1

HT (x)) such that z ∈ GrJb,µ−1,λ′(C,OC), we have

λ′ 6= λ0.

Now let x ∈ Z(C,OC) vary. Since

GraJb,µ−1(C,OC) =
∐

x∈Z(C,OC)

πdR(π−1
HT (x)),

by the above discussion, we get

GraJb,µ−1(C,OC)
⋂

GrJb,µ−1,λ0
(C,OC) = ∅.

As GraJb,µ−1 ⊂ GrJb,µ−1 is open and GrJb,µ−1,λ0
⊂ GrJb,µ−1 is dense by Proposition 6.4, we must

have
GraJb,µ−1(C,OC)

⋂
GrJb,µ−1,λ0

(C,OC) 6= ∅.
This contradiction implies that the claim is true: Z(C,OC)

⋂
Grwaµ (C,OC) 6= ∅. Thus we have

proved the direction “⇐”.

The general case: now consider the case G non necessarily quasi-split. Recall that we can
assume that G is adjoint. Let H be a quasi-split inner form of G. Then H is adjoint and G = Jb∗

for some [b∗] ∈ B(H)basic = H1(Qp, H). Let [bH ] ∈ B(H) be the image of [b] under the bijection

B(G)
∼→ B(H). We can consider the admissible locus and weakly admissible locus inside GrH,µ

with respective to bH . Under the identification GrG,µ = GrH,µ, we have

GraG,µ = GraH,µ and GrwaG,µ = GrwaH,µ.

Thus we are reduced to the quasi-split case as the last paragraph of the proof of [5] Theorem
6.1.

�

Come back to the Hodge-Tate side Grµ−1 . For any algebraically perfectoid field C|Ĕ and any
x ∈ Grµ−1(C,OC), the inequality ν(E1, E1,x, f) ≤ ν(E1,x) (see subsection 6.4 and Proposition 3.4
(1)) implies that we have always the inclusion for open Newton and Harder-Narasimhan strata:

Gr
Newt=[b]
µ−1 ⊂ Gr

HN=[b]
µ−1 .

Our previous efforts (cf. Theorems 5.1 and 6.15) imply the following enlarged version of Theorem
6.18:

Corollary 6.19. Let [b] ∈ B(G,µ) be basic. The following statements are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable,
(2) Graµ = Grwaµ ,

(3) Gr
Newt=[b]
µ−1 = Gr

HN=[b]
µ−1 .

Of course, one can make the above corollary into a similar version as Theorem 5.1, by including
the corresponding information for the dual local Shtuka datum (Jb, {µ−1}, [b−1]). One can also
generalize the results further to Gr≤µ and Gr≤µ−1 . We leave these tasks to the reader.

7. Application to moduli of local G-Shtukas

Let (G, {µ}, [b]) be a local Shtuka datum. Fix a representative b ∈ G(Q̆p) of [b], and let
Sht(G,µ, b)∞ be the associated moduli space of local G-Shtukas of type {µ} with infinite level.

Consider the Hodge-Tate period map of diamonds over Ĕ

πHT : Sht(G,µ, b)∞ −→ Gr
[b]
µ−1 ,

where we write Gr
[b]
µ−1 = Gr

Newt=[b]
µ−1 for the associated Newton stratum inside Grµ−1 for sim-

plicity. By subsection 6.4, the Harder-Narasimhan stratification on Grµ−1 induces a Harder-

Narasimhan stratification on Gr
[b]
µ−1 :

Gr
[b]
µ−1 =

∐
[b′]∈B(G,µ),[b′]≤[b]

Gr
[b],HN=[b′]
µ−1



42 XU SHEN

where each Gr
[b],HN=[b′]
µ−1 ⊂ Gr

[b]
µ−1 is the pullback of Gr

HN=[b′]
µ−1 ⊂ Grµ−1 under the inclusion

Gr
[b]
µ−1 ⊂ Grµ−1 , which is empty if [b′] ≥ [b] and [b′] 6= [b] (see subsection 6.4). The above

stratification in turn induces a Harder-Narasimhan stratification on Sht(G,µ, b)∞ by diamonds

Sht(G,µ, b)∞ =
∐

[b′]∈B(G,µ),[b′]≤[b]

Sht(G,µ, b)HN=[b′]
∞ ,

where

Sht(G,µ, b)HN=[b′]
∞ = π−1

HT (Gr
[b],HN=[b′]
µ−1 ).

By Corollary 6.11, we have

Corollary 7.1. For any non basic [b′] ∈ B(G,µ) such that [b′] ≤ [b], the stratum Sht(G,µ, b)
HN=[b′]
∞

is a parabolic induction.

Of course, when [b] = [b0] is basic, the above Harder-Narasimhan stratification on Sht(G,µ, b)∞
is trivial and thus Corollary 7.1 says nothing in this case.

We may also consider the Hodge-Tate period map of diamonds over Ĕ

πHT : Sht(G,≤ µ, b)∞ −→ Gr
[b]
≤µ−1 .

Then we have similar conclusion for Sht(G,≤ µ, b)∞ as above.

8. Application to Shimura varieties

Let (G,X) be an arbitrary Shimura datum. Let p be a prime number. Consider the conjugacy
class of Hodge cocharacters {µ} attached to X, which we view a conjugacy class of cocharacters
over Qp. Set G = GQp .

Let v|p be a place of the reflex field E = E(G,X) above p and E = Ev. Let K ⊂ G(Af ) be a
sufficiently small open compact subgroup. Attached to (G,X,K), we have the Shimura variety
ShK over the local reflex field E, which we view as an adic space. Assume that K is of the form
K = KKp with K ⊂ G(Qp) and Kp ⊂ G(Apf ). Consider the p-adic flag variety F `(G,µ−1) over

E, on which we have an action of G(Qp). Let Gc denote the quotient of G by the maximal Q-
anisotropic R-split subtorus in the center ZG of G. Then we have an induced action Gc(Qp) on
F `(G,µ−1). Let Kc ⊂ Gc(Qp) be the induced open compact subgroup. The quotient space

[Kc \F `(G,µ−1)3]

exists as a small v-stack in the sense of [39]. The main results of [27] imply that we have the
Hodge-Tate period map

πHT : Sh3
K −→ [Kc \F `(G,µ−1)3],

which is a morphism of small v-stacks over E. More precisely, by [27] Theorem 1.2 the universal
p-adic local system over ShK is de Rham, thus we get a relative Hodge-Tate filtration on it; by
standard arguments as in [4] section 2, the type of this Hodge-Tate filtration is exactly given by
{µ−1}.

Noting that the Kc-action on F `(G,µ−1)3 preserves the Harder-Narasimhan stratification

F `(G,µ−1)3 =
∐

[b]∈B(G,µ)

F `(G,µ−1)HN=[b],3,

we get a stratification on Sh3
K via πHT :

Sh3
K =

∐
[b]∈B(G,µ)

Sh
HN=[b]
K ,

where

Sh
HN=[b]
K = π−1

HT

([
Kc \F `(G,µ−1)HN=[b],3

])
.

By Theorem 3.9, we have

Corollary 8.1. For any non basic [b] 6= [b0], the stratum Sh
HN=[b]
K is a parabolic induction.

Similarly, the Kc-invariant Newton stratification

F `(G,µ−1)3 =
∐

[b]∈B(G,µ)

F `(G,µ−1)Newt=[b],3
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also induces a stratification18 on Sh3
K:

Sh3
K =

∐
[b]∈B(G,µ)

Sh
Newt=[b]
K ,

where

Sh
Newt=[b]
K = π−1

HT

([
Kc \F `(G,µ−1)Newt=[b],3

])
.

Then we have an inclusion of open strata

Sh
Newt=[b0]
K ⊂ Sh

HN=[b0]
K .

Theorem 5.1 implies

Corollary 8.2. If the pair (G, {µ}) is fully Hodge-Newton decomposable, then Sh
Newt=[b0]
K =

Sh
HN=[b0]
K .

Corollaries 8.1 and 8.2 together imply that for fully Hodge-Newton decomposable Shimura
varieties, the supercuspidal part of their cohomology concentrates on the (part contributed by)
basic Newton strata. We will work out the details in a future work. We refer the reader to [14]
9.7.2 for more speculations on cohomological applications related to the results above.

Remark 8.3. The readers who prefer diamonds can replace the above by the following consid-
erations. Let

ShKp = lim←−
Kp

Sh3
K

be the diamond of Shimura variety with infinite level at p and prime-to-p level Kp, on which we
have a natural action of G(Qp). Then we get the Hodge-Tate period map of diamonds19 over E

πHT : ShKp −→ F `(G,µ−1)3,

which is G(Qp)-equivariant. We can define Harder-Narasimhan strata and Newton strata on the
diamond ShKp , which are inverse limits of the corresponding strata at finite levels. Corollaries
8.1 and 8.2 admit the corresponding diamond versions.
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[24] R. E. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), 201-220.

[25] R. E. Kottwitz, Shimura varieties and λ-adic representations, in “Automorphic Forms, Shimura Varieties
and L-Functions, Part 1”, L. Clozel and J. Milne eds, Perspectives in Mathematics 10, Academic Press

(1990), 161-209.

[26] R. E. Kottwitz, Isocrystals with additional structure. II, Compositio Math, 109 (1997), 255-339.
[27] R. Liu, X. Zhu, Rigidity and a Riemann-Hilbert correspondence for p-adic local systems, Invent. Math. 207

(2017), 291-343.

[28] K. H. Nguyen, E. Viehmann, A Harder-Narasimhan stratification of the B+
dR-Grassmannian, preprint,

arXiv:2111.01764.

[29] S. Orlik, The cohomology of period domains for reductive groups over finite fields, Ann. Sci. École Norm.
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