
Congruent Number Problem

by Ye Tian

1. Introduction

A positive integer is called a congruent number if

it is the area of a right-angled triangle, all of whose

sides have lengths in Q. For example, Fermat proved

that 1 is not congruent and Fibonacci proved that 5 is

congruent because of the existence of the right trian-

gle with sides
(

3
2 ,

20
3 , 41

6

)
. The congruent number prob-

lem (see Dickson [10]) is to determine whether a given

integer n is congruent and, if so, find all rational right

triangles with area n. It can be traced back at least to

the 10-th century in Arab manuscripts (Al-Kazin) but

it is possibly much older. It turns out to be the old-

est unsolved major problem in number theory, and

possibly in the whole of mathematics.

We say a right-angled triangle is rational if all

three lengths are rational, and is primitive if all three

lengths a,b,c are positive integers and (a,b,c) = 1. By a
formula of Euclid, for a primitive right-angled trian-

gle, there exist unique positive integers r,s such that

its side lengths are given as

r2 − s2, 2rs, r2 + s2.

It follows that for any integers r > s, rs(r2−s2) is a con-

gruent number. In particular, (r−1)r(r+1) is congru-
ent for any integer r > 1.

Proposition 1.1. A positive integer n is a congruent

number if and only if there exist positive integers r,s, t
such that rs(r2−s2)= nt2. If so, the rational right-angled

triangle with side lengths(
r2 − s2

t
,

2rs
t
,

r2 + s2

t

)
has area n.

For example, taking (r,s) = (5,4),

5 ·4 · (5+4) · (5−4) = 5 ·62,

from which we know 5 is a congruent number with a

corresponding right-angled triangle(
52 −42

6
,

2 ·5 ·4
6

,
52 +42

6

)
=

(
3
2
,

20
3
,

41
6

)
.

Taking (r,s) to be

(2,1), (16,9), (52 ·13, 62), (8,1), (4,1), (4,3),

(50,49), (1562,1332),

square-free parts of rs(r+ s)(r− s)

6, 7, 13, 14, 15, 21, 22, 23

are then congruent numbers. By the same numerical

method, one can show that the following numbers in

the beginning of positive integers (not being divisible

by 4) are congruent numbers:

5,6,7,13,14,15,21,22,23,29,30,31,34,37,38,39,

41,45,46,47, . . . .

The sequence of its residue modulo 8 is

5,6,7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 2, 5, 6, 7, 1, 5, 6, 7, . . . .

There is a conjecture:

Conjecture 1.2. Any positive integer congruent to

5,6,7 modulo 8 is a congruent number.

The following example shows that the verification

of a number being congruent is not trivial. It is known

by Heegner that any prime number ≡ 5 mod 8 is con-

gruent, but Zagier found that the “smallest” rational

right angled triangle with area 157 ≡ 5 mod 8 has side

lengths:

a =
411340519227716149383203
21666555693714761309610

,
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b =
6803298487826435051217540
411340519227716149383203

,

c =
224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

.

Let us remark that there are infinitely many

square-free congruent numbers in each residue class

of 1,2,3 modulo 8. One can easily show this by us-

ing the fact that (r− 1)r(r+ 1) is a congruent number

and by using Dirichlet’s result on prime numbers on

arithmetic progressions. In fact, the first congruent

numbers congruent to 1,2,3 modulo 8 are 41,34, and
219, respectively. To see 41,34,219 are congruent, one

may take (r,s) to be

(25,16), (41,9); (17,1), (25,9); (73,48), (169,73),

respectively.

Is 1 congruent? No one could find a rational right

angled triangle with area 1. People began to try to

prove that there was no such triangle, and many peo-

ple falsely claimed a proof. For example, in his mem-

oir “Liber Quadratorum” (1225), Fibonacci made the

statement that 1 is not congruent but with a false

proof, and its proof had to wait for four centuries. We

owe to Fermat, in the middle of the 17-th century, a

marvellous proof that 1 is not congruent by introduc-
ing infinite descent method. Not only did this proof

introduce ideas that had a vast development in the

20-th century, but Fermat noted that his proof also

showed that there are no integers x,y,z with xyz 6= 0
such that

x4 + y4 = z4.

He subsequently went on to state, without proof, that

there are no integers x,y,z with xyz 6= 0 such that

xn + yn = zn

when n is any integer ≥ 3. It is A. Wiles in 1994 who

proved this so-called Fermat’s Last Theorem.

Theorem 1.3 (Fermat). 1 is not a congruent number.

Proof. Suppose, on the contrary, that 1 is congruent,

therefore there exists a primitive right angled triangle

whose area is a square integer. By Euclid’s formula, it

has side lengths

r2 − s2, 2rs, r2 + s2

for some positive integer r,s. Then r > s> 0, 2 - r+s, and
(r,s) = 1. Since the area rs(r+ s)(r− s) is square and the

numbers r,s,r + s,r − s are coprime pairwise, we may

write

r = x2, s = y2, r+ s = u2, r− s = v2,

for some positive integers x,y,u,v. Now one can check

that (
u+ v

2
,

u− v
2

,x

)
is again a right angled triangle with integral sides and

square area. In fact,(
u+ v

2

)2

+

(
u− v

2

)2

=
u2 + v2

2
= x2,

1
2
· u+ v

2
· u− v

2
=

u2 − v2

8
=

y2

4
.

Note that the hypotenuse of the new triangle is less

than the one we started:

x =
√

r < r2 + s2.

Thus we constructed a new primitive right angled

triangle with square area with smaller hypotenuse.

Clearly this process can be repeated. But this gives

rise to an infinite decreasing sequence of positive in-

tegers, a contradiction.

By a similar argument, one can show that any

prime p≡ 3 mod 8 is not a congruent number. Also, one

can prove the following numbers are non-congruent:

1,2,3,9,10,11,17,18,19,25,26,27,33, 35, 42,43, . . .

Modulo 8, we have the sequence of residues modulo

8 of non-congruent numbers:

1,2,3,1,2,3,1,2,3,1,2,3,1, 3, 2,3, . . .

If D is an infinite set of positive integers, D′ is a

subset of D, if the following limit exists:

lim
N→+∞

#{n ∈D′ | n < N}
#{n ∈D | n < N}

,

then it is called the density of D′ in D. Using this no-

tation, there is a conjecture that

Conjecture 1.4. The congruent numbers in all positive

integers congruent to 1, 2, 3 modulo 8 have density 0.

Beside conjectures 1.2 and 1.4, it is natural to ask

the following question.

Question 1.5. Is there an algorithm which determines

whether or not a given positive integers is congruent

in a finite number of steps?

How to understand these conjectures and ques-

tion? In fact, many results on congruent numbers lie

on the arithmetic of elliptic curves. We have seen that

a positive integer n is a congruent number if and only

if there exist positive integers r > s,m such that

rs(r+ s)(r− s) = nm2.
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Namely (r/s,m/s2) is a rational point on the following

curve:

E(n) : ny2 = x(x+1)(x−1).

The curve E(n) has 3 obvious rational points

(0,0),(±1,0), all of which have y-coordinates 0. In fact,

we have

Proposition 1.6. A positive integer n is a congruent

number if and only if the curve E(n) has a rational

point (x,y) with y 6= 0. Moreover, there is a bijection be-

tween the following sets:

• {(a,b,c) ∈Q3 : a2 +b2 = c2,n = ab/2}
• {(x,y) ∈Q2 : ny2 = x3 − x}

given by

(a,b,c) 7−→
(

−b
a+ c

,
2

a+ c

)
,

(x,y) 7−→
(

1− x2

y
,
−2x

y
,

1+ x2

y

)
.

The curve E(n) has a plane projective model, still

denoted by E(n)

E(n) : ny2z = x(x+ z)(x− z),

or equivalently, y2z = x(x+nz)(x−nz). The curve E(n) is

an elliptic curve over Q, i.e. a projective smooth curve

over Q of genus one, together with a rational point at

infinite z= 0, namely O= [0 : 1 : 0]. There is a rich theory

on arithmetic of elliptic curves. We will give a quick

review on arithmetic theory of general elliptic curves

over Q in next section.

2. Elliptic Curves

Let E be an elliptic curve defined over Q, that is,
a projective smooth curve over Q of genus one with

a rational point O on E. Elliptic curves over Q has a

plane model and can be defined by a Weirstrass equa-

tion

E : y2 = x3 +ax+b, a,b ∈Q,

(or projective one: y2z = x3 + axz2 + bz3) such that x3 +

ax + b = 0 has distinct roots, or equivalently, 4a3 +

27b2 6= 0; now the rational point O on E is the point

at infinite, namely O = [0 : 1 : 0].
Let E(Q) denote the set of rational points on E.

There is a natural abelian group structure on E(Q)

with O as zero element such that P+Q+R = O if and

only if P,Q,R are collinear. We call E(Q) the Mordell-

Weil group of E over Q.

Theorem 2.1 (Mordell). The Mordell-Weil group E(Q)

is a finitely generated abelian group.

Hence, there is a non-negative integer r such that

E(Q)∼= Zr ⊕ (a finite abelian group).

The rank r of Mordell-Weil group E(Q) is denoted by

rankZ E(Q). There is an other important arithmetic in-

variant of E, called Shafarevich-Tate group and de-

fined by

X(E) := Ker(H1(Q,E)−→ ∏
v

H1(Qv,E)),

where v runs over all places of Q. We have much

deeper understand for arithmetic of elliptic curves

when Birch and Swinnerton-Dyer studied the link of

arithmetic of elliptic curves with their complex L-

series.

Recall that the L-series of E is defined as an Euler

product

L(E,s) = ∏
p

Lp(E,s),

where the Euler factor Lp(E,s) at a prime p is given as

follows:

• Lp(E,s) =
(
1−ap p−s + p1−2s

)−1
if E has good reduc-

tion at p, here ap is an integer such that p+1−ap

is the number of points of the reduction of E at

Fp; in particular, if p - 16(4a3 + 27b2) then E has

good reduction at p and p+ 1− ap is the number

of solutions of y2z = x3 + axz2 + bz3 over the finite

field Fp.

• Lp(E,s)= (1− p−s)
−1

(resp. (1+ p−s)
−1
) if E has split

(resp. non-split) multiplicative reduction at p.
• Lp(E,s) = 1 if E has additive reduction at p.

For the precise definition of the reduction type, see

[26]. The completed L-series of E is defined to be

Λ(E,s) := 2(2π)−s
Γ(s)L(E,s)

which a priori is defined on the complex half plane

Re(s) > 3/2. There is a positive integer NE , called the

conductor of E, whose prime factors are exactly the

primes on which E has bad reduction, measures the

badness of the reductions of E. The following is

conjectured first by Taniyama and Shimura, nowa-

days called the modularity theorem, and is proved

by Wiles, Taylor-Wiles and Breuil-Conrad-Diamond-

Taylor:

Theorem 2.2. Let E be an elliptic curve over Q, then
its L-series has an analytic continuation to the whole

complex plane and satisfies a functional equation with

central point s = 1, namely

Λ(E,s) = ε(E)N1−s
E ·Λ(E,2− s),

where ε(E) = ±1 is called the root number of E, or
called the sign of the L-function L(E,s).
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The conjecture of Birch and Swinnerton-Dyer

(BSD, for short) for an elliptic curve E over Q relates

the leading term of the Taylor expansion of L(E,s) at
s = 1 with arithmetic invariants of E, which says that

Conjecture 2.3 (Birch and Swinnerton-Dyer). Let E be

an elliptic curve over Q. Then

(1) the rank part of BSD says that

rankZ E(Q) = ords=1L(E,s).

(2) Let Ω(E),c`,R(E),X(E) be the period, Tamagawa

number at prime `, regulator, and Shafarevich-

Tate group of E, respectively (see [26] for their def-
initions). The refined part of BSD says that X(E)
is finite and satisfies the following formula

#X(E) = #Xan(E)

:=

(
Ω(E)∏` c` ·R(E)

(#E(Q)tor)2

)−1

· lim
s→1

L(E,s)
(s−1)r .

For a general elliptic curve E : y2 = x3 +ax+b over

Q and a square-free integer n, we define the quadratic
twist of E by E(n) : ny2 = x3 + ax+ b, and ε(n) = ε(E(n))

the sign of E(n) in its functional equation. According

to the behavior of ords=1L(E(n),s), D. Goldfeld [15] (see

also Katz–Sarnak [17]) has the following conjecture

Conjecture 2.4 (Goldfeld conjecture). Among all

square-free positive integers n with ε (n)=+1 (resp.−1),
there is a subset with density one with ords=1L(E(n),s) =
0 (resp. = 1).

Theorem 2.5 (Gross-Zagier [14] and Kolyvagin [19]).

If r := ords=1L(E,s)≤ 1, then rankZ E(Q) = r.

Goldfeld’s conjecture, together with the theorems

of Coates-Wiles and Gross-Zagier-Kolyvagin, predicts

Conjecture 1.4 and the following conjecture

Conjecture 2.6 (Rank version of Goldfeld conjecture).

Among all square-free positive integers n with ε(n) =
+1 (resp. −1), there is a subset of n with density one

such that rankZ E(n)(Q) = 0 (resp. = 1).

3. L-Values and Tunnell’s Theorem

Back to the congruent elliptic curve E : y2 = x3 − x
and its quadratic twist E(n) : ny2 = x3 − x. It is not hard
to see that the torsion subgroup of E(n)(Q) consist-

ing of O,(0,0),(±1,0), hence by Mordell’s theorem and

Proposition 1.6, we have

Proposition 3.1. A positive integer n is a congruent

number if and only if the rank of Mordell-Weil group

E(n)(Q) is larger than 0. Moreover, if n is a congruent

number, then there are infinitely many rational right

angled triangles with area n.

For example, the Morell-Weil group of E(6) : 6y2z =
x(x+ z)(x− z) is of rank one and is, modulo its torsion,

generated by the point P := (2,−1). The point P gives

rise to the triangle (3,4,5) by the correspondence in

Proposition 1.6. The point 2P :=
(

25
24 ,−

70
242

)
gives rise

to the triangle
(

7
10 ,

120
7 , 1201

70

)
.

It was already known in the middle of 19th cen-

tury that the L-series L(E(n),s) of the congruent ellip-

tic curve E(n) : ny2 = x3 − x is equal to the L-function of

a Hecke character over the quadratic imaginary field

Q(
√
−1) and which implies the following (a special

case of modularity theorem).

Theorem 3.2. The L-function L(E(n),s) of E(n) has an-

alytic continuation to an entire function in s ∈ C and

satisfies the functional equation

Λ(E(n),s) := 2(2π)−s
Γ(s)L(E(n),s) = ε(n)N1−s ·Λ(E(n),2− s),

where

ε(n) =

{
+1, if n ≡ 1,2,3 mod 8,

−1, if n ≡ 5,6,7 mod 8.
N =

{
32n2, if 2 - n,

16n2, if 2 | n.

It is therefore clear that the vanishing order

ords=1L(E(n),s) of the L-series at s= 1, is odd if and only

if ε(n) =−1, and therefore if and only if n≡ 5,6,7 mod 8.
Thus the BSD conjecture predicts Conjecture 1.2.

Using work of Shimura and Waldspurger on

Shimura correspondence and Theorem 2.5 (which

was proven by Coates-Wiles for CM elliptic curve with

r = 0), Tunnell established a special values formula of

L(E(n),1) and therefore obtained the following theo-

rem.

Theorem 3.3 (Tunnell [33]). Let n be a square-free pos-
itive integer and let a = 1 for n odd and a = 2 for n even.
If n is a congruent number, then

#
{
(x,y,z) ∈ Z3

∣∣∣ n
a
= 2ax2 + y2 +8z2, 2 - z

}
= #

{
(x,y,z) ∈ Z3

∣∣∣ n
a
= 2ax2 + y2 +8z2, 2 | z

}
.

If the Birch and Swinnerton-Dyer conjecture is true for

E(n), then, conversely, the equality implies that n is a

congruent number.

Thus there is a conjectural (which will be true

assuming the rank part of the BSD conjecture) al-

gorithm which decides in a finite number of steps

whether or not a given positive integer is congruent.

Tunnell’s theorem gives a sufficient condition for a

positive integer being non-congruent number. Next

section, we introduce the theory of Heegner points,

and give a sufficient condition for a positive integer

being congruent number.
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4. Heegner Points and Congruence
Numbers

In this section we consider the congruent elliptic

curve E : y2 = x3 − x and its quadratic twists E(n) : ny2 =

x3 − x. One of our main result is the following weak

version of Goldfeld conjecture:

Theorem 4.1. Among the set of all positive square-

free integers n ≡ 5,6,7 mod 8, there is a subset of inte-

gers n with density more than 50% such that L(E(n),s)
has a simple zero at s = 1 (and therefore n is a congru-

ent number).

4.1 Heegner-Birch Argument

For a positive square-free integer n, let #Xan(n) =
#Xan(E(n)) be the hypothetical size of the Shafarevich-

Tate group of E(n) predicted by the refined BSD con-

jecture; it is known to be a positive rational number

when the analytic rank r(n) := ords=1L(E(n),s) is ≤ 1. In
particular, #Xan(E) = #X(E) = 1. We start with the

simplest case of Heegner point.

Theorem 4.2. Any prime p ≡ 7 mod 8 is a congruent

number, and r(p) = 1 and #Xan(p) is a 2-adic unit.

Proof. Let K = Q(
√
−p) and E : y2 = x3 − x, which has

conductor 32. Note that X0(32) is a genus one curve

over Q with the cusp ∞ rational. There is a degree 2
modular parametrization

f : X0(32)−→ E, ∞ 7→ O,

Since the prime 2 is split in K, there is an idealN ofOK

such that OK/N ∼= Z/32Z. The point P on X0(N) repre-

senting the isogeny (C/OK → C/N−1) is defined over

the Hilbert class field HK of K. Define the Heegner

point on E to be

y = TrHK/K f (P) ∈ E(K).

Using the theory of complex multiplication, one can

show that there is a 2-torsion point T 6= O such that

f (P)+ f (P)c = T

where c is the complex conjugation. Since [HK : K] is

odd, we have y+ yc = T . Now we have 2y ∈ E(K)−, the

subgroup of points in E(K) where the action of com-

plex conjugation is equal to the inverse. If y is torsion,
then 4y = O. But E[4]∩E(K) = E[2] and then y is defined
over Q. Thus 2y = y+ yc = O 6= T , a contradiction.

Under the twisting isomorphism

E(K)− ∼= E(p)(Q), (x,y) 7→ (−x,y/
√
−p),

we may view 2y as a rational point on E(p). One can

derive the following formula from the Gross-Zagier

formula for E over K (see Theorem 4.4)

#Xan(p) = [E(p)(Q) : Z(2y)+E(p)(Q)tor]
2.

Therefore, we know that #Xan(E(p)) is a 2-adic unit

since 2y is not 2-divisible in E(p)(Q).

Theorem 4.3. Any prime p≡ 3 mod 8 is not a congruent
number and #Xan(E(p)) is a 2-adic unit.

One can show that a prime p ≡ 3 mod 8 is not con-

gruent exactly as Fermat show that 1 is not congruent.
But we now give a proof using L-values, parallel to the

previous case.

Proof. Let B be the quaternion algebra over Q rami-

fied exactly at 2,∞. Since 2 is inert in K =Q(
√
−p), there

is an embedding of K into B as Q-algebras. Fix such an

embedding and let R be an order of B of discriminant

32 such that R∩K =OK . Such an order R is unique up

to conjugation by K̂× (there is a conjugation action of

B̂× on the set of orders with fixed discriminant). Here,

for an abelian group M, M̂ = M⊗Z Ẑ, where Ẑ = ∏pZp.

with p running over all primes.

Consider the Shimura set XR̂× := B×\B̂×/R̂×. By

the reduction theory of definite quadratic forms, the

set XR̂× is finite. For any odd p, there is a Hecke

action Tp on the free abelian group Z[XR̂× ] (for pre-

cise definition, see (4.1)). Let ∑n anqn ∈ S2(Γ0(32)) be

the newform associated to E. By Jacquet-Langlands

correspondence, there is a unique free of rank one

Z-submodule in the subspace of Z[XR̂× ] with degree

zero where Tp acts as the Fourier coefficient ap. Let f
be its base (unique up to ±1). It turns out that f takes
odd value on cosets of B̂×2.

Denote by C = K×\K̂×/ÔK the ideal class group of

K, which has odd cardinality. The embedding of K into

B induces a morphism from C to XR̂× . Thus we obtain a

function, still denote by f , from C to Z. Since the ideal
class number is odd, C = C2 and f takes odd values on

C. Therefore the period

y := ∑
t∈C

f (t)

is odd. The following formula can be derived from the

Waldspurger formula 4.5 by noting #Xan(1) = 1.

|y|2 = [O×
K : Z×]2 ·#Xan(p).

We then know that the analytic Sha #Xan(p) is a 2-adic
unit and therefore p is non-congruent number by The-

orem 2.5.

One can easy to show thatX(E(p))[2∞] is trivial for

primes p ≡ 3 mod 4 and therefore the 2-part of refined
BSD conjecture holds for E(p).

For a general n with many prime factors, the ideal

class number of K =Q(
√
−n) is not odd any more. The

Heegner-Birch argument does not apply directly. We

will use all Heegner points for genus characters and

an induction argument to obtain a criterion with posi-

tive density. To do that, we need general Gross-Zagier

formula and Waldspurger formula (see [14], [36] and

[5]), which we review next.
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4.2 Heegner Points and Gross-Zagier Formula

4.2.1 Gross-Zagier Formula

Given a triple (E,K,χ) where

• E: an elliptic curve of conductor N defined overQ;
• K: an imaginary quadratic field of discriminant D
and η : A×

Q/Q
× →±1 the associated character;

• χ : an anticyclotomic character of conductor c.

Assume that the Rankin-Selberg L-function

L(s,E,χ) has sign −1 in its function equation and

assume that (c,N) = 1. Let B be the indefinite quater-

nion algebra over Q whose finite ramified places are

exactly those v with

ε(Ev,χv) =−χvηv(−1).

where ε(Ev,χv) is the local root number of L(s,E,χ) at
v. Let R be an order of B with discriminant N such that

R∩K =Oc with respect to a fixed embedding of K into

B. Such order exists and is unique up to the action of

K̂×. Let XR̂× be the Shimura curve over Q associated

to B of level R̂×. Its complex points forms a Riemann

surface as follows

XR̂×(C)∼= B×
+\H× B̂×/R̂×∪{cusps}.

Here, B×
+ denotes elements in B× with positive re-

duced norms and B×
+ acts on H via an isomorphism

B(R) ∼= M2(R). The set of cusps is non-empty if and

only if B is split. We denote [z,g]R̂× the image of (z,g) ∈
H× B̂× in XR̂×(C).

On the curve XR̂× , there is a distinguished class

ξR̂× ∈ Pic(XR̂×)Q with degree equal to one on every con-

nected component of XR̂× . In the case of the modu-

lar curve X0(N), one may work with the divisor class

of the cusp at infinity. In general, one uses a normal-

ized Hodge class i.e. the unique line bundle, which has

degree one on each geometrically connected compo-

nents, and is parallel to

ωXR̂×/Q+ ∑
x∈XR̂× (Q)

(1− e−1
x )x.

Here ωXR̂×/Q is the canonical bundle of XR̂× , ex is the

ramification index of x in the complex uniformization

of XR̂× , i.e. for a cusp x, ex = ∞ so that 1− e−1
x = 1; for a

non-cusp x, ex is the ramification index of any preim-

age of x in the map XU ′ →XR̂× for any sufficiently small

open compact subgroup U ′ of R̂× such that each geo-

metrically connected component of XU ′ is a free quo-

tient of H under the complex uniformization.

By the modularity theorem and Jacquet-

Langlands correspondence, there is a modular

parametrization, that is, a non-constant morphism

over Q

f : XR̂× −→ E

satisfying the following conditions

• mapping the normalized Hodge class ξR̂× to O,
that is, there is an integral multiple of ξR̂× rep-

resented by a divisor ∑i nixi with integral coeffi-

cients ni such that ∑i ai f (xi) = O in E(Q).

• for each p | (N,D), TϖKp
f = χ−1

p (ϖKp) f . Here, for
each place p | (N,D), K×

p normalizes R×
p and a

uniformizer ϖKp of Kp induces an automorphism

TϖKp
on XR̂× over Q, which, on XR̂×(C), is given by

[z,g]R̂× 7→ [z,g · ϖKp ]R̂× . Also note that for such p,
χp(ϖKp) =±1.

Moreover, if f ′ is another such parametrization, then

there exist nonzero integers n,n′ such that n f = n′ f ′.
The multiplicity one property follows from the

following result in local representation theory. Let

p < ∞. Let πp be the p-component of the Jacquet-

Langlands correspondence on B×
A of the cuspi-

dal automorphic representation associated to E.
Then

• if ordp(Np) ≤ 1 or Kp/Qp is unramified, then the

space π
R×

p
p of πp invariant under R×

p is of dimen-

sion one.

• if ordp(Np) ≥ 2 and Kp/Qp is ramified, then

dimC π
R×

p
p ≤ 2 and there is a unique line in π

R×
p

p at

where K×
p acts by χ−1

p .

Let z0 be the unique point on H fixed by K×

and P the point on XR̂× represented by the double

coset [z0,1]R̂× in the above complex uniformization.

The Shimura’s reciprocity law asserts that P∈XR̂×(Kab)

and for any t ∈ K̂×, denote by σt ∈ Gal(Kab/K) the im-

age of t under the Artin map K̂×/K× → Gal(Kab/K),

then

[z,1]σt

R̂× = [z, t]R̂× .

Therefore, by R∩K = Oc we have P ∈ XR̂×(Hc), where

Hc is the ring class field of K of conductor c, charac-
terized by the property that the Artin map induces

an isomorphism Gal(Hc/K) ∼= K×\K̂×/Ô×
c . Define the

Heegner point

Pχ( f ) := ∑
σ∈Gal(Hc/K)

f (P)σ
χ(σ).

Theorem 4.4 (Gross-Zagier Formula). Assume that

(E,χ) has sign −1 and (c,N) = 1. Then the Heegner

point Pχ( f ) satisfies the following height formula:

L′(1,E,χ) = 2−µ(N,D) ·
8π2(φ ,φ)Γ0(N)

u2
√
|Dc2|

·
ĥK(Pχ( f ))

deg f
,

Here

• φ is the newform associated to E with

(φ ,φ)Γ0(N) =
∫∫

Γ0(N)\H
|φ(x+ iy)|2dxdy.
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• u = [O×
c : Z×], µ(N,D) is the number of common

prime factors of N and D.
• ĥK is the Neron-Tate height on E over K.
• deg( f ) is the degree of the morphism f .

To use primitive Heegner points, we actually use

parametrization f0 : XU → E with higher level than R̂×,

such that a multiple of f0 factors through XR̂× be-

comes to f and the same Gross-Zagier formula also

holds.

4.2.2 Waldspurger Formula

To do our induction argument, we also need

Waldspurger formula. Given the same triple (E,K,χ)

as before but assume the sign of L(s,E,χ) is +1.
Still assume (c,N) = 1. As before, let B be the defi-

nite quaternion algebra over Q ramified precisely at

ε(Ev,χv) =−χvηv(−1) and R an order of B with discrim-

inant N such that R∩K =Oc under a fixed embedding

K ↪→ B. Instead of the Shimura curve, we now consider

the Shimura set XR̂× = B×\B̂×/R̂×.

For any prime p - N, there is a Hecke action Tp on

the free abelian group Z[XR̂× ] which is defined as fol-

lows. For p -N, B×
p /R×

p
∼=GL2(Qp)/GL2(Zp) can be identi-

fied with the set of Zp-lattices in a 2-dimensional vec-

tor space over Qp. Then for any g = (gv) ∈ B̂×,

(4.1) Tp([g]) = ∑
hp

[g(p)hp],

where g(p) is the p-off part of g, namely g(p) =(g(p)
v )with

g(p)
v = gv for all v 6= p and g(p)

p = 1, and if gp corresponds

to lattice Λ, then hp runs over p+1 lattices Λ′ ⊂ Λ with

[Λ : Λ′] = p.
By Jacquet-Langlands correspondence, there is

function

f : XR̂× −→ Z

such that for each p - N, the Hecke operator Tp acts on

f by ap and for each p | (N,D), f (·ϖK,p) = χp(ϖK,p)
−1 f .

Such f is unique up to scalar. The reason for the mul-

tiplicity one property is the same as the one in Gross-

Zagier formula.

Consider the toric period

Pχ( f ) = ∑
σ∈Gal(Hc/K)

f (t)χ(t)

where Gal(Hc/K)∼= K×\K̂×/Ô×
c → XR̂× induced from the

fixed embedding K ↪→ B.

Theorem 4.5 (Waldspurger Formula). Assume that

(E,χ) has sign +1 and (c,N) = 1. Then we have that

L(1,E,χ) = 2−µ(N,D) ·
8π2(φ ,φ)Γ0(N)

u2
√
|Dc2|

·
|Pχ( f )|2

deg f
.

Here, if f = ∑i f (gi)[gi] where {[gi]} is a system of repre-

sentatives of XR̂× , then

deg f = ∑
i

f (gi)
2w−1

i

where wi is the cardinality of (B×∩giB̂×g−1
i )/{±1}.

4.3 Genus Character and Birch’s Conjecture

For a positive square-free integer n, if the analytic
rank of E(n) is ≤ 1, let L(n) be the positive real number

such that L(n)2 = #Xan(E(n)); if the analytic rank of E(n)

is ≥ 2, let L(n) = 0.
If the sign of E(d) is −1, let αd be a generator of

E(Q(
√

d))− modulo torsion if L(d) 6= 0 and αd = 0 oth-

erwise. Denote by P(d) = L(d)αd .

For a genus character χ corresponding to D= d0d1,

that is, the character corresponding to the quadratic

extension Q(
√

d0,
√

d1)/K, the above version Gross-

Zagier and Waldspurger formulae relate Pχ( f ) to

L(d0)L(d1) if sign is +1 and P(d0)L(d1) if sign is −1.
Here the choice of d0 is such that E(d0) has sign −1.

Proposition 4.6. Let E be the curve y2 = x3 − x. For
each square-free positive integer n, let f be the prim-

itive test vector for E and the trivial character over

Kn :=Q(
√
−n), which has a multiple as in the previous

formulaes. Let χ be a unramified genus character over

Kn. Let h2(n) be the 2-rank of ideal class group of Kn.

• for n ≡ 1,2,3 mod 8 and sign(E,χ) = +1, the period

Pχ( f ) 6= 0 only if we may write n= d0d1 with 0< d1 ≡
1 mod 8 such that χ is the character associated to

Kn(
√

d1). In that case,

Pχ( f ) =±2h2(n)−δ uKnL(d1)L(d2).

Here δ = 1 if n ≡ 1 mod 8 and δ = 0 otherwise.

• for n ≡ 5,6,7 mod 8 and sign(E,χ) = −1, the point

Pχ( f ) is non-torsion only if we may write n = d0d1

with 0 < d0 ≡ 5,6,7 mod 8 and 0 < d1 ≡ 1,2,3 mod 8
and χ = χd0,d1 is the genus character associated to

Kn(
√

d1) for n≡ 5,6 mod 8 or Kn(
√

d∗
1) for n≡ 7 mod 8.

In this case

Pχ( f ) = ε(d0,d1)2
h2(n)P(d0)L(d1).

Here ε(d0,d1) = ±i if (d0,d1) ≡ (5,3) mod 8 and

ε(d0,d1) =±1 otherwise.

The point here is as follows. Suppose d0 ≡
5,6,7 mod 8 is a positive and want to understand the

“Heegner point” P(d0). We need to compare its dif-

ferent realization Pχ of genus characters χ = χd0,d1 .

Let n = d0d1 and n′ = d0d′
1 be such situation. Choose

e0 such that e0d1,e0d′
1 are in the situation of sign +1.
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If we write P(d0,d1) (resp. P(e0,d1)) for corresponding

points (resp. periods). Then we have the comparison:

[P(d0,d1) : P(d0,d
′
1)]∼ [P(d0)L(d1) : P(d0)L(d′

1)]

= [L(e0)L(d1) : L(e0)L(d′
1)]∼ [P(e0,d1) : P(e0,d

′
1)]

namely we obtain comparison of Heegner points in

term of periods.

4.4 Induction Argument

Given n ≡ 5,6,7 mod 8, let f : XR̂× −→ E be the prim-

itive modular parametrization for E and trivial char-

acter over Kn =Q(
√
−n). Then we have

∑
χ

Pχ( f ) = 2kQn, Qn := TrHKn/H0
P.

Here χ = χd0,d1 runs over all genus characters of K.
Recall that we relates Pχ( f ) to P(d0)L(d1). By an induc-

tion, express P(n) in term of the genus points Qd ’s

with d ≡ 5,6,7 mod 8 and L(d)’s with d ≡ 1,2,3 mod 8.
Their 2-adic non-trivialities are related to the genus

class number g(d)’s as initial cases. Here g(d) is the

cardinality of 2Cd where Cd is the ideal class group of

Kd = Q(
√
−d). Then g(d) is odd if and only if Kd has

no ideal class of order 4. By Gauss’ genus theory, it is
easy to determine the parity of g(d).

4.5 The Main Result

Our main result is

Theorem 4.7 (T-Yuan-Zhang). The number L(n) is an
integer. For n ≡ 5,7 (mod 8), 2−ρ(n)L(n) is odd if

∑
n=d0···d`

di≡1 (mod 8), i>0

∏
i

g(di)≡ 1 mod 2, or

∑
n=d0···d`,

d0≡5,7 (mod 8)
d1≡2,3 (mod 8)

di≡1 (mod 8), i>1

∏
i

g(di)≡ 1 (mod 2).

For n ≡ 6 mod 8, 2−ρ(n)L(n) is odd if

∑
n=d0···d`,

d0≡5,6,7 (mod 8)
d1≡2,3 (mod 8)

di≡1 (mod 8), i>1

∏
i

g(di)≡ 1 (mod 2).

Here all decompositions n = d0 · · ·d` are non-ordered

with di > 1.

Here ρ(n) is an integer with 0 ≤ ρ(n) ≤ rankE(n)(Q)

defined as follows. Let A = (X0(32),∞) : 2v2 = u3 +u and

An : 2nv2 = u3+u. Let ϕn : An → E(n) be a degree 2-isogeny
and define a non-negative integer ρ to be such that

2ρ(n) = [E(n)(Q) : ϕn(An(Q))+E(n)[2]].

Let s(n) denote the F2-dimension of the 2-Selmer

group of E(n) : ny2 = x3 − x modulo the E(n)[2]. Then

s(n) = rankE(n)(Q)+dimF2 X(E(n)/Q)[2].

Theorem 4.8 (Heath-Brown, Daniel M. Kane). Let Σ be

all square-free positive integers n ≡ 5 mod 8 (resp n ≡
6,7 mod 8), then the density of the subset Σ1 ⊂ Σ of n
with s(n) = 1 is

2
∞

∏
k=1

(1+2−k)−1 = 0.8388 · · · .

Theorem 4.9 (Smith). Let Σ1 be the set of square-free

positive integers n ≡ 5 mod 8 (resp. n ≡ 6,7 mod 8) with
s(n)= 1. Let Σ′

1 be the set of square-free positive integers

n ≡ 5 mod 8 (resp. n ≡ 6,7 mod 8) satisfying the sufficient

conditions in the above Theorem. Then Σ′
1 ⊂ Σ1 with

density 3
4 (resp. 1

2 ,
3
4 ).

Combining Theorems 4.7, 4.8 and 4.9, we obtain

Theorem 4.1. and its analogues for sign +1 case. we

have the following:

Theorem 4.10. 1. Among the set of all positive square-

free integers n ≡ 1,2,3 mod 8, there is a subset of

integers n with density more than 40% such that

L(E(n),1) 6= 0.
2. Among the set of all positive square-free inte-

gers n ≡ 5,6,7 mod 8, there is a subset of integers n with

density more than 50% such that L′(E(n),1) 6= 0.

5. Distribution of 2-Selmer Groups

Let E be an elliptic curve overQ. For each 1≤ k ≤∞,

the. 2k-Selmer group of E is defined to be

Sel2k(E) = Ker

(
H1(Q,E[2k])−→ ∏

v
H1(Qv,E)[2

k]

)
.

Then there is an exact sequence of Z2-modules

0 −→ E(Q)⊗Z (Q2/Z2)−→ Sel2∞ −→X(E)[2∞]−→ 0

and therefore,

Sel2∞(E)∼= (Q2/Z2)
r ⊕

⊕
i

(Z/2iZ)ri

with r ≥ 0, and ri non-negative even integers and al-

most all 0. Let mi = r+∑ j≥i r j. Thus m := (m1 ≤ m2 ≤ ·· ·)
is a decreasing sequence of non-negative integers.

such that mi ≡ r mod 2 for all i where r := limi mi. The

structure of X2∞(E) is determined by the sequence

m, called the 2∞-Selmer type of E. It is know that

r ≡ ords=1L(E,s) mod 2 by Dokchitser brothers [11].

Definition 5.1. A sequence m of non-negative integers

is called admissible if (i) its is decreasing m1 ≥m2 ≥ ·· · ;
(ii) mi ≡ r mod 2 for all i, where r := limi mi is called the

rank of m.
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Given an elliptic curve E over Q, for a square-

free integer n, denote by E(n) its quadratic twist over

Q(sqrtn), m(n) its 2∞-Selmer type, and ε(n) =±1 the sign
in its functional equation.

Given an admissible m with rank r, let P(E,m)

denote the density, among all square-free integers

n with ε(n) ≡ r mod 2, of those n for which E(n) has

2∞-Selmer type m. By work of Heath-Brown, Kane, and

Smith, we have

Theorem 5.2. Let E be an elliptic curve overQwith full

rational 2-torison points and E has no cyclic subgroup

of order 4 defined over Q. Let m be an admissible se-

quence with rank r. Then the density P(E,m)> 0 if and

only if r ≤ 1. In the case r ≤ 1, we have

P(E,m) = δ (m1)∏
i≥1

δ (mi,mi+1),

where

• for each m ≥ j ≥ 0, δ (m, j) denote the probability

that an arbitrary m × m-alternating matrix with

entries in F2 has a kernel of dimension j. Here
A ∈ Mm×m(F2) is called alternating of At = −A and

diagonals of A are zero.

• for each m ≥ 0, δ (m) = lim j≥0 δ (m+2 j,m).

Remark. 1. Heath-Brown and Kane showed that the

density, among all square-free n, of those n such that

m(n)
1 =m1 is δ (m1). Let m, j be any non-negative integers

with m ≥ j. For any integer k ≥ 1, let

Rk(m, j) =
{
square-free n

∣∣ m(n)
k = m,m(n)

k+1 = j
}
,

Sk(m) =
{
square-free n

∣∣ m(n)
k = m

}
.

Smith [29] proved that the density of Rk(m, j) in Sk(m)

exists and is equal to δ (m, j).

2. By a remark in the draft of Heath-Brown

δ (m, j) = 2 j
j

∏
i=1

(2i −1)−1 ·
m

∏
i=m− j+1

(1−2−i)

·
(m− j)/2−1

∏
i=0

(1−2−1−2i).

δ (m) = lim
l→∞

P(m+2 j,m) = λ ·2m ·
m

∏
i=1

(2i −1)−1,

λ =
∞

∏
i=1

(1−2−1−2i) = 0.4194 · · · .

What is remarkable about the above result is that,

while it does not tell us the precise structure of any

particular 2n-Selmer group, it does give the asymp-

totic distribution of these groups, and shows that this

asymptotic distribution is exactly as predicted by the

probabilistic model given in [1] Moreover, it is shown

in [1] that the above result implies corresponding part

of Rank version of Goldfeld’s conjecture.

6. Full BSD Conjecture

The following theorem shows that there are in-

finitely many elliptic curves over Q of rank one for

which the full BSD conjecture hold.

Theorem 6.1 (Li-Liu-T). Let n ≡ 5 mod 8 be a positive

integer with all prime factors congruent to 1 modulo

4 and assume that Q(
√
−n) has no ideal class of exact

order 4. Then n is a congruent number and the full BSD

conjecture holds for the elliptic curve E(n) : ny2 = x3 − x.

For example, the number 1493 is the minimal

prime p ≡ 5 mod 8 such that E(p) has rank one and

with non-trivial Shafarevich-Tate group. In fact,

the associated Heegner point (x,y) has coordinates

x =
2456153549914721493968975459422696932728951498371630131453

2958501182854207571944468687561920064681205358510529
,

y =
121725780668263596873618123810557983972375660184180439465365335709906181098721585260100

160919109605479862871753246473210772682219745687839109456974711787796868892833
.

One can then show E(p)(Q) modulo torsion has a

generator [
1674371133

744769
, −51224214734700

642735647

]
.

Then the result in Theorem 6.1 shows that

X(E(p)/Q)∼= (Z/3Z)2.

To describe the reason behind it, we introduce

some notations. Let f = ∑n anqn ∈ S2(Γ0(N)) be a new-

form of weight 2 and level Γ0(N). Let Q( f ) ⊂ C be

the total real field generated over Q by Hecke eigen-

values of f . Let A be the abelian variety over Q
associated to f . Then A has the complex L-func-

tion

L(s,A) = ∏
σ :Q( f )→C

L(s, f σ ),

where σ runs over all embeddings of Q( f ) into C.
Moreover, A(Q)Q := A(Q)⊗Z Q is a finite dimensional

Q( f ) vector space.
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Assume that f has complex multiplication by an

imaginary quadratic field K and let F0 denote the min-

imal finite abelian extension of K such that the base

change of A to F0 is isogenous to a power of an elliptic

curve (with complex multiplication by K).

Theorem 6.2. Let p be a prime split in K, unramified

in F0, and p - [F0 : Q].

(i) Assume that L(s, f ) has a simple zero at s= 1. Then
dimQ( f ) A(Q)Q = 1 and X(A/Q) is finite. Moreover

the order ofX(A/Q)(p) is as predicted by the con-

jecture of Birch and Swinnerton-Dyer.

(ii) If dimQ( f ) A(Q)Q = 1 and X(A/Q)(p) is finite, then
L( f ,s) has a simple zero at s = 1.

As a special case of the above theorem, we have

Corollary 6.3. Let E be an elliptic curve over Q with

complex multiplication. Let p be any potentially good

ordinary odd prime for E.

(i) Assume that L(s,E) has a simple zero at s= 1. Then
E(Q) has rank one andX(E/Q) is finite. Moreover

the order ofX(E/Q)(p) is as predicted by the con-

jecture of Birch and Swinnerton-Dyer.

(ii) If E(Q) has rank one andX(E/Q)(p) is finite, then
L(E,s) has a simple zero at s = 1.

Remark. The first part of (i) in Theorem 6.2 is the

results of Gross-Zagier and Kolyvagin. The remaining

part is due to Perrin-Riou for good ordinary primes.

We deal with odd bad primes which are potentially

ordinary.

Proof of Theorem 6.1. An induction argument (see

[31] and also [32]) shows the Heegner point associ-

ated to E and Q(
√
−n) is of infinite order. In fact, to-

gether with the Gross-Zagier formula [5], the 2-part
of full BSD for E(n) : y2 = x3−n2x is also verified. There-

fore, both the analytic rank and Mordell-Weil rank of

E(n) are one.

By Perrion-Riou [24] and Kobayashi [18], we know

that the p-part of full BSD holds for all primes p - 2n.
By Theorem 6.2, the p-part of BSD also holds for all

primes p | n, since all primes p with p ≡ 1 mod 4 are

potentially good ordinary primes for E(n).
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