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Abstract Let E be a CM elliptic curve over the rationals and p > 3 a good
ordinary prime for E . We show that

corankZpSelp∞(E/Q) = 1 �⇒ ords=1L(s, E/Q) = 1

for the p∞-Selmer group Selp∞(E/Q) and the complex L-function L(s, E/Q).
In particular, the Tate–Shafarevich groupX(E/Q) is finite whenever corankZp

Selp∞(E/Q) = 1.We also prove an analogous p-converse for CMabelian vari-
eties arising from weight two elliptic CM modular forms with trivial central
character. For non-CM elliptic curves over the rationals, first general results
towards such a p-converse theorem are independently due to Skinner (A con-
verse to a theorem of Gross, Zagier and Kolyvagin, arXiv:1405.7294, 2014)
and Zhang (Camb J Math 2(2):191–253, 2014).
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1 Introduction

There seems to be a dichotomy in the arithmetic of elliptic curves over the
rationals, the CM and non-CM elliptic curves. The CM action typically mani-
fests itself and often relates the arithmetic of a CM elliptic curve to arithmetic
of certain Hecke characters over the underlying CM field. In the CM case,
we may hope to study arithmetic of GL2/Q via arithmetic of GL1/K for the
CM field K . In this article, we consider perhaps a new instance of such a
phenomena in regards to the Birch and Swinnerton–Dyer (BSD) conjecture.

Elliptic curves of classical Diophantine interest are often CM. In regards to
an arithmetic aspect, the case of CM elliptic curves typically precedes that of
the non-CM elliptic curves. In this article, we consider an atypical instance
with results being first obtained in the case of non-CM elliptic curves a few
years ago.

Let E be an elliptic curve over the rationals. A fundamental arithmetic
invariant is the Mordell–Weil rank given by the rank of the finitely generated
abelian group E(Q). As E varies, the rank is typically expected to be 0 or
1. The arithmetic complexity seems to deepen while moving from the former
case to the latter. A mysterious structure governing the arithmetic of E is
the conjecturally finite Tate–Shafarevich group X(E/Q). For a prime p, the
p∞-Selmer group Selp∞(E/Q) encodes arithmetic of the elliptic curve via the
exact sequence

0 → E(Q) ⊗ Qp/Zp → Selp∞(E/Q) → X(E/Q)[p∞] → 0.

An underlying object on the analytic side is the complex L-function
L(s, E/Q) corresponding to the elliptic curve E/Q with s ∈ C. A funda-
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p-converse to a theorem 213

mental analytic invariant is the analytic rank given by the vanishing order
ords=1L(s, E/Q).

The BSD conjecture predicts a deep relation among the arithmetic and
analytic facets. We consider the following typical instance.

Conjecture 1.1 Let E be an elliptic curve over the rationals. For r = 0, 1,
the following are equivalent.

(1). rankZE(Q) = r and X(E/Q) is finite.
(2). corankZpSelp∞(E/Q) = r for a prime p.
(3). ords=1L(s, E/Q) = r .

Part (2) evidently follows from part (1). On the other hand, the implication

ords=1L(s, E/Q) = r �⇒ rankZE(Q) = r, #X(E/Q) < ∞
is a fundamental result on the BSD conjecture due to Coates–Wiles [16],
Gross–Zagier [19], Kolyvagin [28], Rubin [37] and Kato [25]. This passage
to the arithmetic facet from the analytic one goes back to mid 70’s and mid
80’s. In the case r = 0, the finiteness of the Mordell–Weil group for CM
elliptic curves is due to Coates–Wiles around mid 70’s. In the case r ≤ 1, the
implication is due to Gross–Zagier, Kolyvagin and Rubin for non-CM and CM
elliptic curves, respectively around mid 80’s. This is the theorem alluded to in
the title. It is one of the rare instanceswhere resultswere almost simultaneously
obtained for non-CM and CM elliptic curves.

In this article, we refer to the implication

corankZpSelp∞(E/Q) = r �⇒ ords=1L(s, E/Q) = r

as a p-converse theorem. Visibly, this is a p-adic criteria for an elliptic curve
to have analytic rank r .

From now, we suppose that p is a good ordinary prime for E/Q.
In the case r = 0, p-converse theorem is well-known to follow from a divis-

ibility in a p-adic Iwasawa main conjecture (IMC) for the elliptic curve. Here
divisibility refers to a lower bound for an Iwasawa Selmer group associated
to E along the Zp-cyclotomic extension of the rationals in terms of a p-adic
L-function. For CM elliptic curves, the rank zero p-converse thus follows from
a GL1/K -IMC due to Rubin [38] around early 90’s for p > 2. Here K is the
underlying CM field. For non-CM elliptic curves, the p-converse theorem fol-
lows from a divisibility in a GL2/Q-IMC due to Skinner–Urban [42] around
late 00’s under certain hypotheses.

In the case r = 1, a p-converse theorem appeared out of reach until recently.
For non-CM elliptic curves, a first general p-converse theorem is indepen-
dently due to Skinner [43] and Zhang [50] a few years ago. The theorems
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214 A. A. Burungale, Y. Tian

were proven almost simultaneously under different hypotheses. The striking
approaches due to Skinner and Zhang appearmarkedly distant at first. For now,
we only mention that both crucially rely on an auxiliary IMC. The theorems
and subsequent developments [14,48] exclude the case of CM elliptic curves.

The main result of the article is a p-converse theorem in the case of CM
elliptic curves.

Theorem 1.2 Let E be a CM elliptic curve over the rationals. Let p > 3 be a
good ordinary prime for the elliptic curve E/Q.

Then,

corankZpSelp∞(E/Q) = 1 �⇒ ords=1L(s, E/Q) = 1.

In particular, rankZE(Q) = 1 and X(E/Q) is finite whenever corankZp

Selp∞(E/Q) = 1.

Note that, “In particular” part follows from the work of Gross–Zagier,
Kolyvagin and Rubin. We would like to emphasise that finiteness of the Tate–
Shafarevich group X(E/Q) is not our hypothesis but in fact a consequence.
For CM elliptic curves, the p-converse under finiteness of X(E/Q)[p∞] is
indeed due to Rubin [40] around early 90’s.

In the article, we prove a p-converse theorem for CM-abelian varieties
arising from elliptic CM modular forms with weight two and trivial central
character (Theorem 4.4).

We have a few consequences of the p-converse theorem.

Corollary 1.3 Let E be a CM elliptic curve over the rationals. Let p > 3 be
a good ordinary prime for E/Q. Suppose that corankZpSelp∞(E/Q) = 1.

Then, the p-part of full BSD conjecture holds for E/Q.

Proof From Theorem 1.2, the rank part of BSD holds. In particular,

ords=1L(s, E/Q) = 1, #X(E/Q) < ∞.

In view of the work of Perrin–Riou [35] and Rubin [40], the p-part of BSD
formula thus holds (for example, [27, Cor. 1.4]). 	


The following gives a mod p criteria for a CM elliptic curve to have analytic
rank one and the p-part of underlying Tate–Shafarevich group to be trivial.

Corollary 1.4 Let E be a CM elliptic curve over the rationals. Let p > 3 be
a good ordinary prime for E/Q. Suppose that the following holds.

(i). Themod p Galois representation ρ : GQ → GL2(Fp) arising from the p-
torsion E[p] is absolutely irreducible with GQ an absolute Galois group
of the rationals.
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p-converse to a theorem 215

(ii). We have Selp(E/Q) � Z/pZ for the p-Selmer group Selp(E/Q).

Then,

ords=1L(s, E/Q) = 1,X(E/Q)[p∞] = 0.

Proof In view of (i) and (ii),

corankZpSelp∞(E/Q) = 1.

Indeed, we note

Selp(E/Q) = Selp∞(E/Q)[p]
if E(Q)[p] = 0.

From Theorem 1.2, we now deduce

ords=1L(s, E/Q) = 1, #X(E/Q) < ∞.

From non-degeneracy of Cassels–Tate pairing on X(E/Q)[p∞] and (ii), we
finally conclude

X(E/Q)[p∞] = 0.

	

When corankZpSelp∞(E/Q) = 1, the BSD conjecture predicts the existence

of a non-torsion point in theMordell–Weil group E(Q). To approach a rank one
p-converse theorem, one may typically begin with an auxiliary Heegner point
as a candidate for being non-torsion and then attempt non-triviality based on a
vertical/horizontal variation of certain Heegner points/ toric periods.We recall
that auxiliary Heegner points are defined over certain imaginary quadratic
fields.

Before describing our approach, we give a simplistic account of the
approaches due to Skinner and Zhang for a rank one p-converse theorem
in the non-CM case. In this paragraph alone, let E be a non-CM elliptic curve
over the rationals with conductor N such that corankZpSelp∞(E/Q) = 1 for
an ordinary prime p > 3. Both begin with a choice of an auxiliary imaginary
quadratic field K ′ satisfying the following Heegner hypothesis for E/Q.

(H) The number of primes dividing N which are inert or ramified in K ′ is
even.

Accordingly, there exists a candidate for a desired non-torsion point yK ′ ∈
E(K ′) as a Heegner point. The non-triviality is then approached via different
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216 A. A. Burungale, Y. Tian

strategies. As in Gross–Zagier, Kolyvagin and Rubin, K ′ is more precsiely
chosen so that

(i). Heegner hypothesis (H) holds for the pair (E, K ′),
(ii). L(1, E (K ′)

/Q
) 
= 0 for the quadratic twist E (K ′) and

(iii). p splits in K ′.
From (ii) and Kolyvagin, note that corankZpSelp∞(E/K ′) = 1. In view of
Gross–Zagier, the Heegner point yK ′ ∈ E(K ′) being non-torsion is equivalent
to ords=1L(s, E/Q) = 1. Skinner then resorts to p-adic Waldspurger formula
due to Bertolini–Darmon–Prasanna [4,5] which expresses p-adic logarithm
of yK ′ as a value of an anticyclotomic Rankin–Selberg p-adic L-function
LBDP(E/K ′) at the idenity Hecke character 1K ′ over K ′ which is outside its
interpolation range. Based on a variant of Galois descent, one notes that the
implication

corankZpSelp∞(E/K ′) = 1 �⇒ ̂1K ′(LBDP(E/K ′)) 
= 0

follows from a divisibility in a Rankin–Selberg IMC for the p-adic L-function
under a certain hypothesis. Here divisibility refers to a lower bound for an Iwa-
sawa Selmer group of E/K ′ along the anticyclotomic Zp-extension of K ′ in
terms of the p-adic L-function. Finally, such a divisibility is due to Wan [47].
To approach the non-triviality of the Heegner point yK ′ , Zhang instead resorts
to the technique of level raising and rank lowering along with Jochnowitz con-
gruence due to Bertolini–Darmon, Jochnowitz and Vatsal ([46] and references
therein). Under a certain hypothesis, Zhang in fact proves p-indivisibility of
the Heegner point. For simplicity, let’s suppose that Selp(E/K ) � Z/p. Via
Zhang’s technique of level raising and rank lowering, one introduces a weight
two elliptic newform g arising from a well-chosen level raising of the elliptic
newform corresponding to the elliptic curve E such that Selp(g/K ′) = 0. From
the Jochnowitz congruence, the p-indivisibility of the Heegner point yK ′ is
equivalent to the p-indivisibility of a noramlised central L-value Lalg(1, g/K ′).
Finally, the implication

Selp(g/K ′) = 0 �⇒ p � Lalg(1, g/K ′)

can be seen to follow from a divisibility in an IMC for g over K ′ due to
Skinner–Urban [42].

These approaches seem to exclude theCMcase in an essentialmanner. From
now, let E be a CM elliptic curve over the rationals with CM by an order in an
imaginary quadratic field K . A direct computation shows that the root number
of E over K equals+ 1. In particular, the CM field K does not satisfy Heegner
hypothesis (H) for E/Q. In the approaches of Skinner and Zhang, it may thus be
tempting to choose an auxiliary quadratic field K ′ distinct from the CM field
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p-converse to a theorem 217

K . However, Iwasawa theory in the CM case over imaginary quadratic fields
distinct from the CMfield seems to be in its early stages. As E has CM, it is not
a semi-stable elliptic curve and the corresponding p-adic Galois image over
K ′ is ‘small’. On the other hand, being semi-stable or having ‘large’ Galois
image seems indispensable for the Eisenstein congruence approach to obtain
a lower bound for an Iwasawa Selmer group in an IMC. Consequently, neither
Rankin–Selberg IMC divisibility for E over K ′ nor an IMC divisibility for an
analogue of auxiliary newform g over K ′ is yet established.

Our approach instead involves working over the CM field K itself via an
auxiliary Rankin–Selberg setup which leads to a candidate for a desired non-
torsion point as a Heegner point. We approach the non-triviality via Iwasawa
theory of Heegner points, the study of which rests upon elliptic units and
anticyclotomic CM Iwasawa theory over K . An essential role is also played by
Gross–Zagier formula and its Iwasawa-analogue along with non-vanishing of
arithmetic invariants which appear in the anticyclotomic CM Iwasawa theory.
In the remaining introduction, we provide an impressionistic account. Some
of the notation used here is not followed in the rest of the article.

Let ι∞ : Q ↪→ C and ιp : Q ↪→ Cp be complex and p-adic embeddings,
respectively. Let λ be an arithmetic Hecke character over K associated to the
CM elliptic curve E . As corankZpSelp∞(E/Q) = 1, the root number of λ

equals −1 from the parity conjecture. In this case, the parity conjecture is due
to Nekovář [31].

The auxiliary Rankin–Selberg setup involves an anticyclotomic twist as
follows. Let χ be a finite order Hecke character over K unramified at p such
that

L

(

1, λ∗ · χ

χ∗
)


= 0. (1.1)

For a Hecke character ψ over K , here ψ∗ := ψ ◦ c for c ∈ Gal(K/Q) the
non-trivial element. Note that χ

χ∗ is anticyclotomic Hecke character over K
and the existence of χ is thus due to Rohrlich [36]. Let g be the CM modular
form associated to the Hecke character λχ−1. We have a key factorisation

L(s, g × χ) = L(s, λ) · L
(

s, λ∗ · χ

χ∗
)

of complex L-functions for the Rankin-Selberg convolution g × χ corre-
sponding to the pair (g, χ). In particular, ords=1L(s, g × χ) = 1 ⇐⇒
ords=1L(s, E/Q) = 1. On the other hand, the Rankin-Selberg convolution
g × χ satisfies generalised Heegner hypothesis in the sense of Yuan–Zhang–
Zhang, namely
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218 A. A. Burungale, Y. Tian

(GH1). ω · χ |A× = 1 for ω the Neben-type of g and A the adeles over Q;
(GH2). ε(g × χ) = −1 for ε(g × χ) the global root number of the Rankin–

Selberg convolution g × χ .

In other words, (g, χ) corresponds to a self-dual Rankin-Selberg convolution
with root number −1. The generalised Heegner hypothesis holds in view of
λ being self-dual1 with root number −1 and (1.1). We thus have a Heegner
point

Pg,χ ∈ B(K ) ⊗Z Q

for a CM abelian variety B/K corresponding to the Rankin–Selberg con-
volution g × χ arising from a Shimura curve parametrisation. In view of
generalisation of Gross–Zagier formula due to Yuan–Zhang–Zhang [49], we
have

ords=1L
(

s, g × χ
) = 1 ⇐⇒ Pg,χ 
= 0.

In view of (1.1), note that

corankO℘Sel℘∞
(

λ∗ · χ

χ∗

)

= 0

due to Kolyvagin/ Rubin. Here℘|p is a prime in the Hecke field corresponding
to theRankin–Selberg convolution g×χ determined via the p-adic embedding
ιp, O an order in the Hecke field and Sel℘∞(λ∗ · χ

χ∗ ) the Bloch–Kato Selmer

group corresponding to the Hecke character λ∗ · χ
χ∗ . Summing up, p-converse

theorem is equivalent to the implication

corankO℘Sel℘∞(B/K ) = 1 �⇒ Pg,χ 
= 0. (1.2)

We approach the implication based on anticyclotomic Iwasawa theory of
Heegner points, namely a Heegner main conjecture (HMC) for the pair (g, χ)

along the anticyclotomic Zp-extension K−∞ of K . Let� be the anticyclotomic
Iwasawa algebra and ι the involution of� arising from inversion on the Galois
group Gal(K−∞/K ).

Let S be the anticyclotomic compact Selmer group associated to B given
by S = lim←−n

Sel℘∞(B/K−
n
) for K−

n the nth-layer in the Iwasawa extension

K−∞/K . Let X be the anticyclotomic divisible Selmer group associated to B
and Xtor a maximal �-torsion submodule. Let κ0 ∈ Sel℘∞(B/K ) be the coho-
mology class arising from Kummer image of the Heegner point Pg,χ . Variant

1 Strictly speaking, λ is not self-dual as an automorphic representation of GL1/K . It is so after
an automorphic induction to Q. We follow this unconventional terminology throughout.
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p-converse to a theorem 219

of the construction of the Heegner point Pg,χ along the anticyclotomic Zp-
extension gives rise to a �-adic Heegner cohomology class κ ∈ S deforming
κ0. The HMC is essentially due to Perrin–Riou [35] and predicts the following.

(HMC1). The Heegner class κ ∈ S is �-non-torsion and rank�S =
rank�X = 1.

(HMC2). Char�S/(κ) · (Char�S/(κ))ι = Char�Xtor for Char�(·) the char-
acteristic ideal.

The desired implication (1.2) follows from HMC via Galois descent.
The Heegner cohomology class κ being �-non-torsion is nothing but

Mazur’s conjecture. It has been recently proven in [11]. The central char-
acter of g being non-trivial, the case seems to be excluded from the work of
Cornut–Vatsal and subsequent developments [1,8–10,17,46].

We now turn towards our approach to the remaining parts of HMC. The
motive corresponding to the Rankin–Selberg convolution associated to the pair
(g, χ) being a direct sum of motives corresponding to the pair (λ, λ∗ · χ

χ∗ ) of
self-dual Hecke characters over K with opposite parity is perhaps the key. The
decomposition permeates through the approach. It is based on �-adic Gross–
Zagier formula on theGL2/Q-side [18] and anticyclotomicCMIwasawa theory
on theGL1/K -side [2,3,39]. An essential role is also played by a non-vanishing
of an anticyclotomic regulator [7,11]. The Selmer groups S andX decompose
in terms of the ones corresponding to the pair (λ, λ∗ · χ

χ∗ ). The assertion on
ranks in HMC part (i) thus follows from the one for the Iwasawa Selmer
groups corresponding to the pair (λ, λ∗ · χ

χ∗ ) due to Agboola–Howard [2] and
Rubin [38]. The latter fundamentally relies on an Euler system of elliptic units.
As for HMC part (ii), we commence with Disegni’s �-adic Gross–Zagier
formula which expresses the Heegner index corresponding to S/κ in terms
of the cyclotomic derivative L ′

p(g × χ) ∈ � of an underlying two-variable
Rankin–Selberg p-adic L-function L p(g×χ) over K up to an anticyclotomic
regulator RHg. Here the regulator corresponds to the �-module S with rank
one (HMC part (i)). A factorisation

L ′
p(g × χ) = L ′

p(λ) · L−
p

(

λ∗ · χ

χ∗
)

of anticyclotomic p-adic L-functions initiates a passage toGL1/K . Here L ′
p(λ)

is the cyclotomic derivative of a two-variable Katz p-adic L-function L p(λ)

over K and L−
p (λ∗ · χ

χ∗) an anticyclotomic Katz p-adic L-function along

K−∞/K . From the anticyclotomic CM Iwasawa theory, results of Agboola–
Howard and Arnold (resp. Rubin) express L ′

p(λ) (resp. L−
p (λ∗ · χ

χ∗)) in terms
of characteristic ideal of �-module X (λ)tor up to an anticyclotomic regulator
REl (resp. X (λ∗ · χ

χ∗)). Here X (·) denotes an anticyclotomic divisible Selmer
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group and the regulator corresponds to the �-compact Selmer group associ-
ated to λ which turns out to have rank one. In view of the decomposition of
anticyclotomic Selmer group X , the discussion so far shows that HMC part
(ii) would finally follow from the non-vanishing

RHg = REl 
= 0

of the anticyclotomic regulator. Building on Hida’s approach [22], the non-
vanishing has been proven in [7]. In the case of imaginary quadratic fields
K with class number one, the non-vanishing is in fact independently due to
Rubin [2, App.]. In this manner, we end up proving HMC based on a Rankin–
Selberg IMC in the sign−1 case alongwith non-vanishing of an anticyclotomic
regulator.

The auxiliary twist thus leads to a Rankin–Selberg setup viable for Iwasawa
theory. As if in a fugue, the manner in which various results from anticyclo-
tomic CM Iwasawa theory complement each other is mysterious to us. It may
be worth mentioning that unlike the approaches of Skinner and Zhang, a gen-
uine GL2/Q-IMC does not seem to be present in our approach to a p-converse
theorem. The only GL2/Q-ingredients seem to be Gross–Zagier formula, its
�-adic analogue and Chai–Oort rigidity principle for self-products of modular
curves in characteristic p [22]. Unlike Skinner’s approach, our approach does
not involve p-adic Waldspurger formula. The substitute seems to be �-adic
Gross–Zagier formula perhaps at the expense of non-vanishing of an anticy-
clotomic regulator.

We would like to emphasise that generality of the Gross–Zagier formula
[19] due to Yuan–Zhang–Zhang YZZ is foundational to the approach. In fact,
their very formulation allows an access to a self-dual Rankin–Selberg setup for
a pair (g, χ) with central character of the Hecke eigenform g or of the twist
χ being possibly non-trivial. As indicated earlier, the generality is perhaps
essential to us. The p-converse theorem seems to be one of the first results
towards the BSD conjecture which crucially relies on the Yuan–Zhang–Zhang
formalism with central character of the Hecke eigenform g or of the twist χ

being non-trivial. We hope that the article initiates study of arithmetic aspects
of Yuan–Zhang–Zhang formalism in its generality.

As is evident, the approach builds on anticyclotomic CM Iwasawa theory
due to Rubin [38,39], Agboola–Howard [2] and Arnold [3]. The Euler system
of elliptic units due to Rubin underlies the CM Iwasawa theory. An auxiliary
Rankin–Selberg setup is perhaps our point of departure. It leads to Heegner
points relevant to CM Iwasawa theory. Even though such Heegner points seem
to be missing in the earlier works, we study Iwasawa theory of the Heegner
points (HMC) partly based on [2] and [3]. A few developments following the
earlier works contribute crucially to our study, namely Gross–Zagier formula
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p-converse to a theorem 221

due to Yuan–Zhang–Zhang [49] and its �-adic analogue due to Disegni [18]
along with non-vanishing of the anticyclotomic regulator due to Rubin [2] and
[7].

Non-vanishing of arithmetic invariants in anticyclotomic CM Iwasawa the-
ory forms backbone of the approach. A search for auxiliary Rankin–Selberg
setup over the CM field K invokes non-vanishing of central Hecke L-values
due to Rohrlich [36]. Iwasawa theory of Heegner points (HMC part (i)) arising
from the auxiliary setup invokes non-vanishing of the Heegner points in [11].
Finally, the proof of HMC part (ii) invokes non-vanishing of an anticyclotomic
regulator. These non-vanishing results can in fact be proven uniformly based
on Hida’s approach to non-vanishing alluded to above.

On the whole, Iwasawa theory seems essential in our approach to the p-
converse theorem.

In regards to the arithmetic of self-dual Hecke characters, the auxiliary setup
seems to be rich. For example, it seems to lead to an anticyclotomic Euler
system for a self-dual Hecke character over a CM field. This is in contrast to
the fact that analogue of elliptic units over a general CM field being not yet
known. The study of related topics will appear in the near future. We may
ask if the current approach to p-converse works for all ordinary primes, for
example p = 2.

For a class of congruent number CM elliptic curves, a p-converse theo-
rem was established in [44] with p = 2. In this case, p is in fact a prime of
bad supersingular reduction. In the non-CM supersingular case, we refer to
Castella–Wan [15] for subsequent development regarding a p-converse theo-
rem. This article is perhaps a follow up to the work of Castella [14], Skinner
[43], Wan [48] and Zhang [50]. We refer to these articles for a general intro-
duction.

The article is organised as follows. In Sect. 2, we describe Heegner main
conjecture (HMC) for Rankin–Selberg convolution corresponding to a self-
dual pair of a weight two elliptic newform and a Hecke character over an
imaginary quadratic field with root number −1. In Sect. 2.1, we introduce
the setup. In Sect. 2.2, we introduce the relevant Heegner points. In Sect. 2.3,
we describe the conjecture. In Sect. 3, we consider Heegner main conjecture
(HMC) for Rankin–Selberg convolution corresponding to a self-dual pair of
a weight two elliptic CM modular form and a Hecke character over the same
CM field with root number −1. In Sect. 3.1, we introduce the main result.
In Sect. 3.2, we introduce underlying Selmer groups arising in our approach
to HMC. In Sect. 3.3, we introduce underlying p-adic L-functions arising in
the approach. In Sect. 3.4, we conclude with the proof. In Sect. 4, we prove
a p-converse theorem in the CM case. In Sect. 4.1, we introduce an auxiliary
twist of the underlying Hecke character. In Sect. 4.2, we conclude the proof
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based on a HMC which involves an auxiliary Rankin–Selberg setup arising
from the twist.

Notation

We use the following notation unless otherwise stated.
Let Q be a fixed algebraic closure of Q.
For a subfield F ⊂ Q, let GF = Gal(Q/F). For a set of places 
 of F ,

let F
 ⊂ Q denote the maximal extension of F unramified outside 
 and
GF,
 = Gal(F
/F). For F = Q, we often drop the subscript ‘F’ from
notation. For a place v of F , let Fv denote a fixed algebraic closure of Fv

and GFv = Gal(Fv/Fv). Let Iv ⊂ GFv denote the inertia subgroup. In the
case residue field of Fv being finite, let Frobv ∈ GFv /IFv denote an arithmetic
Frobenius. Typically, an F-linear embedding Q ↪→ Fv will be chosen which
identifies GFv as a subgroup of GF .

Let OF be the corresponding integer ring and DF the discriminant.
LetAF denote the adeles over F . For a finite subset S of places in F , letA(S)

F
denote the adeles outside S and AF,S the S-part. When F equals the rationals,
we drop the subscript F . For a Q-algebraC , letCA = C ⊗Q A. Let ̂C (S) (resp.
CS) denote the part outside S (resp. S-part) of CA.

For a place v of Q and a quadratic extension Kv/Qv , let ηv denote the
corresponding quadratic character. For a quaternion algebra Bv/Qv , let ε(Bv)

denote the corresponding invariant. In a non-standard manner, we take the
invariant to be 1 (resp. −1) if the quaternion is split (resp. non-split).

For an imaginary quadratic extension K/Q and an integral ideal c of Q, let
HK ,c be the ring class field with conductor c and PiccK/F the relative ring class
group with conductor c. Let hK (resp. hK ,c) be the ideal class number of K
(resp. HK ,c).

For a finite abelian group G, let ̂G denote the Q
×
-valued character group

of G. For a Z-algebra A, let ̂A = A ⊗Z
̂Z for ̂Z = lim←−n

Z/n. For a Z-module
M , let MQ = M ⊗Z Q.

2 Heegner main conjecture

In this section, we consider Heegner main conjecture (HMC) for Rankin–
Selberg convolution corresponding to a self-dual pair of a weight two elliptic
newform and a finite Hecke character over an imaginary quadratic field with
root number−1. In Sect. 2.1, we introduce the setup. In Sect. 2.2, we introduce
a norm compatible sequence of Heegner points. In Sect. 2.3, we describe the
conjecture.
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We emphasise that the root number of the newform over the imaginary
quadratic field need not be −1. Such a conjecture is essentially due to Perrin–
Riou [35].

2.1 Setup

In this subsection, we introduce the underlying objects and hypotheses.

2.1.1 Embeddings

Let p be an odd prime.We fix two embeddings ι∞ : Q → C and ιp : Q → Cp.
Let vp be the p-adic valuation induced via the embedding ιp so that vp(p) = 1.

2.1.2 Imaginary quadratic field

Let K be an imaginary quadratic field andO the ring of integers. We regard K
as a subfield of C via the embedding ι∞. Let η denote the quadratic character
overQ corresponding to the extension K/Q. Let c be the complex conjugation
on C which induces the unique non-trivial element of Gal(K/Q) via ι∞.

We assume the following:

(ord) p splits in K .

Let p be the prime above p in K induced via the p-adic embedding ιp. For
a positive integer m, let Hm be the ring class field of K with conductor m and
Om = Z + mO the corresponding order. Let H be the Hilbert class field.

Let K−∞ be the anticyclotomic Zp-extension of K and �−
K = Gal(K−∞/K ).

For each n ≥ 1, let K−
n be the subextension of K−∞ with degree pn over K .

Let K∞ be the Z
2
p-extension of K and �K = Gal(K∞/K ).

2.1.3 Self-dual pair

Let g ∈ S2(�0(N ), ω) be a weight two elliptic newform with Neben-type ω

and Eg the corresponding Hecke field. Let A = Ag be an abelian variety over
the rationals associated to g by Eichler–Shimura such that

L(s, A/Q) =
∏

σ :Eg→C

L(s, gσ ).

We recall that the endomorphism ring for A contains an orderOg in the Hecke
field E and the order is generated overZ by the Hecke eigenvalues correspond-
ing to g.
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Let χ be an arithmetic Hecke character over the imaginary quadratic field
K . Let Eg,χ ⊂ C be the subfield generated over Q by the Hecke eigenvalues

of g and the image of χ on A
(∞),×
K .

Let ℘ be a prime above p in Eg,χ determined via the embedding ιp. Let
L be the completion of Eg,χ at ℘ and O the corresponding integer ring. Let
Og,χ ⊂ Eg,χ be generated over Og by the values of χ . Let ℘0 be the prime
of Og,χ given by ℘ ∩ Og,χ . Let O0 be the localisation of Og,χ at ℘0. By
definition, O0 is a subring of O.

Let

�◦ = O[[�−
K ]] and � = �◦ ⊗O L .

Let ι be the involution on � induced by the inverse map on the anticyclotomic
Galois group �−

K . For a �0-module M , let M ι denote the corresponding twist.
We adopt the following normalisation in regards to Rankin–Selberg con-

volution corresponding to the pair (g, χ). Let π be the cuspidal automorphic
representation of GL2(A) generated by g and (�1, �2) the infinity type of χ .
We then consider the Rankin–Selberg L-function L(s, g × χ) given by

L(s, g × χ) = L

(

s − 1 + �1 + �2

2
, π × χ

)

.

Then, L(s, g × χ) satisfies a functional equation with center 2+�1+�2
2 ( [5,

§4.1]).
Suppose that χ is with finite order and

(SD) ω · χ |A× = 1

In particular, the Rankin–Selberg convolution L(s, g × χ) corresponding to
the pair (g, χ) is self-dual with functional equation around the center s = 1.

We have the following variant of Eichler–Shimura construction.

Definition 2.1 Let (g, χ) be a pair of an elliptic newformwith weight two and
a finite order Hecke character over an imaginary quadratic field K as above.
Let Eg,χ be the Hecke field corresponding to the pair generated over Q by the
Hecke eigenvalues of g and the image of χ . Let B be the Serre tensor A ⊗ χ

[45, p. 734] and [30, Def. 1.1]. It is an abelian variety defined over K such
that

L(s, B/K ) =
∏

σ :Eg,χ→C

L(s, gσ × χσ )

for σ being the Galois-conjugate.

In view of (SD), the dual abelian variety B∨
/K is isogenous to B/K . We fix

such an isogeny.
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2.1.4 Selmer groups

We now introduce Selmer groups associated to the abelian variety B over the
anticyclotomic tower.

By definition, we have an embedding Og,χ ↪→ End(B) for Og,χ being
generated overOg by the values of χ as above. Recall ℘|p denotes the prime
of the Hecke field Eg,χ determined via the embedding ιp as above and ℘0 the
corresponding prime of Og,χ .

Let S(B) the anticyclotomic Selmer group given by

S(B) := lim←−
n

lim←−
m

Selpm (B/K−
n ) ⊗O0 L .

Here Selpm (B/K−
n ) denotes the usual Selmer group arising from pm-torsion

points of the abelian variety B over the anticyclotomic extension K−
n . Let

X (B) =
(

lim−→
n

lim−→
m

Selpm (B/K−
n )

)∨
⊗O0 L

be the anticyclotomic Selmer group for (·)∨ being the Pontryagin dual. Note
that these Selmer groups actually arise from ℘∞

0 -torsion points on B.
We may analogously define Selmer groups S(B∨) and X (B∨) for the dual

abelian variety B∨
/K .

2.1.5 p-ordinarity

Inwhat follows,we suppose that the newform g is p-ordinary and (p, condr(χ))

= 1 for condr(·) the conductor. In particular, the abelian variety B/K has ordi-
nary reduction at the prime above p determined via the embedding ιp.

By definition,S(B) andX (B) have a natural structure as a�-module. In the
ordinary setup, S(B) and X (B) turn out to be finitely generated �-modules.

2.2 Heegner points

In this subsection, we introduce the underlying Heegner points.
For the pair (g, χ), we suppose the following generalised Heegner hypoth-

esis.

(GH1). ω · χ |A× = 1 and
(GH2). ε(g, χ) = −1 for the global root number ε(g, χ) of the Rankin–

Selberg convolution corresponding to the pair (g, χ).
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2.2.1 Shimura curve

Following [49], we may introduce Heegner points on the abelian variety B
over certain ring class fields Km’s. To do so, let D be the indefinite quaternion
algebra over Q such that

ε(g, χv)χvηv(−1) = ε(Dv)

for all finite places v. Here ε(g, χv) denotes the local root number correspond-
ing to the Rankin–Selberg convolution with χv the v-component of χ , η the
quadratic character corresponding to the extension K/Q and ε(Dv) the Hasse
invariant.

From Tunnell [45] and Saito [41], the set of ramification places ram(D)

satisfies

ram(D) ⊂
{

v|N∞
∣

∣

∣

∣

v non-split in K

}

(for example, [13, Lem. 3.1]). In particular, the quaternion D is split at the
prime p.

From construction of the quaternion algebra D, there exists a Q-algebra
embedding ιK : K ↪→ D. We fix such an embedding for once and all.

We have the representation of D(∞),×
A

over the field M := End0(A/Q)

arising from modular parametrisations of A given by

π = lim−→
U⊂D(∞),×

A

Hom0
ξU

(XU , A).

Here ξ = lim←−U
(ξU ) is a Hodge class on the Shimura variety X = lim←−U

XU

corresponding to the reductive group D× as U ⊂ D(∞),×
A

varies over open
compact subgroups. Let ιξ : X → J be the corresponding quasi-embedding
for J = lim←−U

Alb(XU ).2

2.2.2 Norm compatible Heegner points

The Heegner main conjecture (HMC) concerns Iwasawa theory of Heegner
points on the abelian variety B along the anticyclotomicZp-extension K−∞.We
now briefly recall a norm compatible Heegner points along the anticyclotomic
tower following [18, §10.1].

2 We refer to [49] for details.
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As the newform g is p-ordinary, note that the D(∞),×
A

-representationπ is℘-
ordinary [18, Def. 1.2.2]. Let α be the corresponding℘-unit Hecke eigenvalue.

Test vectors. Let f ◦
α ∈ π be a non-zero element satisfying the following.

(i). For the Hecke operator Up,

Up f
◦
α = α f ◦

α

(ii). f ◦
α is a test vector away from p ( [13, Def. 3.6]).3

For n ≥ 1, let

sn =
(

pn 1
0 1

)

∈ GL2(Qp) � D×(Qp)

and

fα,n = |p|−nα−n · sn f ◦
α .

Here we use GL2(Qp) action on π . We then have

fα = ( fα,n)n ∈ π(p) ⊗ lim←−
V

πV
p (2.1)

for π(p) (resp. πp) the component of π outside p (resp. at p), where V runs
over open compact subgroups such that

Ker(ωp) ⊂ V ⊂ K×
p

and ωp the component of ω at p [18, Lem. 10.1.1].
Heegner points.As the imaginary quadratic field K embeds in the quaternion

algebra D via the embedding ιK , the torus K× acts on the Shimura variety X .
Let P ∈ XK×

be a CM point.
In view of the definition of π , the choice of fα,n gives rise to Heegner point

P( fα,n, χ) =
∫

Gal(K ab/K−
n )

fα,n(ιξ (P
σ )) ⊗ χ(σ)dσ ∈ B(K−

n )Q (2.2)

from the definition of abelian variety B (Definition 2.1).
For n = 0, let Pg,χ denote the corresponding Heegner point over K . For

a character ν factoring through �−
n , let Pg,χν be the corresponding Heegner

point arising from ν-component of P( fα,n, χ).

3 We refer to [13, §3.3] for details.
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In view of (2.1) and (2.2), we have

(P( fα,n, χ))n ∈ lim←−
n

B(K−
n )Q

[18, (10.2.2)]. In view of the norm compatibility of the Heegner points
(P( fα,n, χ))n , the Kummer map

B(K−
n ) ⊗O0 L → H1(K−

n , TpB) ⊗O0 L

for the Tate module TpB gives rise to Heegner cohomology class

κ ∈ S(B).

As before, this corresponds to the ℘0-component of the cohomology class
arising from norm compatible Heegner points.

2.3 Formulation

In this subsection, we describe formulation of Heegner main conjecture
(HMC).

AfterKolyvagin [28] andRubin [38], non-triviality of aHeegner point over a
ring class field implies theMordell–Weil rank of the underlying abelian variety
over the ring class field being one and also finiteness of the corresponding
Tate–Shafarevich group [34]. Moreover, index of the Heegner point in the
Mordell-Weil group is closely related to the size of theTate–Shafarevich group.

We have the following fundamental conjecture regarding Heegner points in
Iwasawa-theoretic setup.

Conjecture 2.2 (Heegner Main Conjecture) Let (g, χ) be a self-dual pair of
an elliptic newformwith weight two and a finite order Hecke character over an
imaginary quadratic field K with root number−1. Let B be the corresponding
abelian variety over K (Definition 2.1).

Let p be an odd ordinary prime for the pair, K−∞ the anticyclotomic Zp-
extension of K , � the corresponding rational Iwasawa algebra and ι the
involution of � as above. Let S(B) and X (B) be the rational version of
Selmer groups associated to B along the anticyclotomic Zp-tower K−∞/K.

Let κ ∈ S(B) be the Heegner cohomology class as above. Then, the follow-
ing holds.

(i). The Heegner cohomology classes κ ∈ S(B) is �-non-torsion and

rank�S(B) = rank�X (B) = 1.

Moreover, S(B) is �-torsion-free.
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(ii).

Char�S(B)/(κ) · Char�(S(B)/(κ))ι = Char�X (B)tor

for Char�(·) the characteristic ideal and (·)tor the �-torsion submodule.

Mazur conjectured that the Heegner cohomology class κ is �-non-torsion.
This has been essentially proven in [1,17,46] (also see [8,9] and [10]). Certain
cases with the central character of g being non-trivial seem to be missing. The
remaining part of HMC (i) has been essentially proven in [2,23] and [34] under
certain hypothesis.

Remark 2.3 Heegner main conjecture does not seem to be stated in the litera-
ture for non-trivial χ . For our approach to a p-converse theorem, it is perhaps
essential to consider the setup with a non-trivial χ . With an optimal choice
of test vectors, we may formulate an integral version of the Heegner main
conjecture and it would involve Tamagawa numbers [35]. We restrict to the
rational version as it suffices for our study of a p-converse theorem.

3 Heegner main conjecture: CM case

In this section, we consider CM case of the Heegner main conjecture (HMC).
In §3.1, we describe the main result. In Sect. 3.2, we introduce underlying

Selmer groups arising in our approach to HMC. In Sect. 3.3, we introduce
underlying p-adic L-functions arising in the approach. In Sect. 3.4, we con-
clude with the proof.

3.1 Main result

In this section, we describe our main result towards HMC in the CM case.
We recall the following

Definition 3.1 AHecke eigenform g ∈ S2(�0(N ), ε) is said to be CM if there
exists an imaginary quadratic field K and an arithmetic Hecke character λ over
K such that g is the theta series θ(λ) associated to λ.

In this setup, we say that g has CM by K . Note that the infinity type of λ equals
(1, 0) or (0, 1).

The main result of this section is the following case of Conjecture 2.2 in the
CM case.

Theorem 3.2 Let K be an imaginary quadratic field and p > 3 a prime split
in K . Let g be a weight two CM modular form with CM by K , level Ng and
χ a finite order Hecke character over K . Suppose that the Rankin–Selberg
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convolution corresponding to the pair (g, χ) is self-dual with root number−1
and p � Ng · condr(χ).

Then, theHengermain conjecture (Conjecture 2.2) holds for the pair (g, χ).

Remark 3.3 (1). In view of (ord), the CM modular form g is p-ordinary.
(2). When g is a non-CMHecke eigenform and χ trivial, the conjecture has

been recently proven in [48, Thm. 1.2] and [14, Thm. 3.4] via an approach
which builds on [23]. The results are under mild hypotheses as long as the
image of mod p Galois representation associated to g is ‘large’ (also see [15]).
The approach seems to exclude the CM case in an essential manner. To begin
with, the results in [23] exclude the CM case.

3.2 Selmer groups

In this subsection, we describe generalities regarding Selmer groups arising in
our approach to Heegner main conjecture in the CM case (Theorem 3.2).

Let the notation and assumptions be as in Sect. 2.1. In particular, p denotes
an odd prime split in an imaginary quadratic field K . Moreover, p denotes the
prime of K above p induced via the embedding ιp. Let p∗ be its conjugate.

3.2.1 Definitions

We introduce the definitions of underlying Selmer groups.
Let ψ be a Hecke character over K with infinity type (1, 0) with respect to

the embedding ι∞. Let g ∈ S2(�0(Ng), ω) be the corresponding CMmodular
form. Recall that g is p-ordinary. Let χ be a finite order Hecke character over
K such that ω · χ |

A
×
Q

= 1. Let B be the abelian variety over K associated to

the pair (g, χ) as in Definition 2.1. We suppose that p � condr(χ) and thus B
has ordinary reduction at primes above p.

Recall that Eg,χ ⊂ C denotes the subfield generated over Q by the Hecke
eigenvalues of g and the values of χ . Let L be the completion of Eg,χ at the
prime above p induced via the embedding ιp andO the corresponding ring of
integers.

Galois representations. Let Vg be the p-adic Galois representation ρg :
GQ → GL2(L) associated to the Hecke eigenform g. Let L(χ) be the one
dimensional GK -representation over L associated to the Hecke character χ .
Then

V = Vg
∣

∣

GK
⊗L L(χ) (3.1)

is a p-adic Galois representation of GK ordinary at p.
The Galois representation admits an explicit description as follows. Let

λ = ψχ . For a Hecke character ξ over K , let ξ∗ denote the Hecke character
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ξ ◦ c for c ∈ Gal(K/Q) the non-trivial element. We then have

V ∼= L(λ) ⊕ L(ψ∗χ)

an isomorphism of L[GK ]-modules. Here we let ξ also denote p-adic avatar of
ξ determined via the embedding. We now choose a GK -stable lattice T ⊂ V
such that

T ∼= O(λ) ⊕ O(ψ∗χ). (3.2)

Let

W = V/T

and

W (λ) = L(λ)/O(λ), W (ψ∗χ) = L(ψ∗χ)/O(ψ∗χ).

Selmer groups: GL2/Q. We begin with underlying objects on the GL2/Q-
side.

We introduce the local Bloch–Kato subgroups corresponding to the pair
(g, χ).

(BK1). For ? = V, T or W and w � p, we consider

H1
f (Kw, ?) := ker

(

H1(Kw, V ) → H1(Iw, V )
)

.

Here Iw denotes the corresponding inertia subgroup.
(BK2). For w|p, we consider

H1
f (Kw, V ) := ker(H1(Kw, V ) −→ H1(Kw, V−)).

Here V− is the maximal unramified quotient of V |GKw
.4 For ? =

T,W , we analogously define H1
f (Kw, ?).

These local conditions give rise to the Bloch–Kato Selmer group

H1
f (K , ?) = ker

{

H1(K , ?) →
∏

w

H1(Kw, ?)

H1
f (Kw, ?)

}

4 The existence follows from g being p-ordinary.
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and the Tate–Shafarevich group

X f (W/K ) = H1
f (K ,W )

H1
f (K ,W )div

for (·)div the maximal divisible subgroup.
Iwasaw version. Recall that �◦ = O[[�−

K ]] for the anticyclotomic Galois
group�−

K and� := �◦⊗O L its rational version.We introduce the underlying
�-adic Selmer groups.

(BK’1). For w � p, we consider

H1
f (Kw, V ⊗L �) := ker

(

H1(Kw, V ⊗L �) → H1(Iw, V ⊗L �)
)

.

Here Iw denotes the corresponding inertia subgroup.
(BK’2). For w|p, we consider

H1
f (Kw, T ⊗L �) := ker(H1(Kw, T ⊗L �) −→ H1(Kw, T− ⊗L �)).

Here T− is themaximal unramified quotient of T |GKw
. For ? = V,W ,

we analogously define H1
f (Kw, ? ⊗L �).

Definition 3.4 The �-adic Selmer group S(V ⊗L �) corresponding to the
pair (g, χ) is given by

S(V ⊗L �) := ker

{

H1(K , V ⊗L0 �) →
∏

w

H1(Kw, V ⊗L0 �)/

H1
f (Kw, V ⊗L0 �)

}

.

With the ordinary condition (BK’2), we also have the discrete Selmer group

Sel(K ,W ⊗O �◦)

and its dual

X (W ) = HomO(Sel(K ,W ⊗O �◦), L/O).

We define the analogous notions for the dual Galois representations.

Remark 3.5 The �-modules S(V ⊗L �) and X (W )L := X (W ) ⊗O L are
nothing but the �-modules S(B) and X (B) associated to the abelian variety
B in Sect. 2.1, respectively.

123



p-converse to a theorem 233

Selmer groups:GL1/K .We now introduce underlying objects on theGL1/K -
side.

We begin with the local Bloch–Kato subgroups corresponding to the under-
lying Hecke characters. For a finite place v of K , the underlying local
Bloch–Kato Selmer groups are given by

H1
f (Kw, L(λ)) =

⎧

⎪

⎨

⎪

⎩

H1
ur(Kw, L(λ)), w � p,

H1(Kw, L(λ)) w|p,
0 w|p∗.

and

H1
f (Kw, L(ψ∗χ)) =

⎧

⎪

⎨

⎪

⎩

H1
ur(Kw, L(ψ∗χ)), w � p,

H1(Kw, L(ψ∗χ)) w|p∗,
0 w|p.

Here H1
ur(Kw, ·) denotes the unramified local Galois cohomology given by

H1
ur(Fw, ·) = ker

(

H1(Fw, ·) → H1(Iw, ·)).
The above description of the subgroups relies on the fact that the Hecke char-
acter λ (resp. ψ∗χ ) is with infinity type (1, 0) (resp. (0, 1)).5

These local conditions give rise to the Bloch–Kato Selmer group

H1
f (K , L(·)) = ker

{

H1(GK , L(·)) →
∏

w

H1(Kw, L(·))
H1

f (Kw, L(·))
}

We analogously define the Bloch–Kato Selmer group H1
f (K , L(·)∨) for

(·)∨ being the dual, a discrete version H1
f (K ,W (·)) and the Tate–Sharevich

groups X f (W (·)/K ).
Iwasawaversion.As in theGL2/Q-case,we analogously introduce Iwasawa-

version of the local conditions.

Definition 3.6 Let · denote the Hecke character λ orψ∗χ . The�-adic Selmer
groups S(L(·) ⊗L �) corresponding to χ is given by

S(L(·) ⊗L �) := ker

{

H1(K , L(·) ⊗L �) →
∏

w

H1(Kw, L(·) ⊗L �)/

H1
f (Kw, L(·) ⊗L �)

}

.

5 We refer to [3, §1.2].
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With the conditions, we have the discrete Selmer groups

Sel(K ,W (λ) ⊗O �◦), Sel(K ,W (ψ∗χ) ⊗O �◦),

and also their duals

X (λ), X (ψ∗χ).

3.2.2 Decomposition

We describe decomposition of the Selmer groups on the GL2/Q-side.
We have the following relation among the Selmer groups on the GL2/Q and

GL1/K -sides.

Lemma 3.7 Letψ (resp.χ ) be aHecke character over an imaginary quadratic
field K with infinity type (1, 0) (resp. finite order, unramified at p) andλ = ψχ .
Let g be the CM modular form associated to ψ and V the p-adic Galois
representation of GK corresponding to the pair (g, χ) as above (3.1). Let
S(·), Sel(·) and X (·) be the anticyclotomic Selmer groups as above.
Then, we have an isomorphism

S(V ⊗L �) ∼= S(L(λ) ⊗L �) ⊕ S(L(ψ∗χ) ⊗L �)

of �-modules and isomorphisms

Sel(K ,W ⊗O �◦) ∼= Sel(K ,W (λ) ⊗O �◦) ⊕ Sel(K ,W (ψ∗χ) ⊗O �◦)

and

X (W ) ∼= X (λ) ⊕ X (ψ∗χ)

of �◦-modules.

Proof We indicate the decomposition for S(·). The decomposition for Sel(·)
and X (·) can be proven analogously.

As noted earlier, we have decomposition of the p-adic Galois representation
V as a direct sum of the ones corresponding to the Hecke characters λ and
ψ∗χ (3.2). For a finite place v of K , we have the decomposition

H1
f (Kv, V ⊗L �) ∼= H1

f (Kv, L(λ) ⊗L �) ⊕ H1
f (Kv, L(ψ∗χ) ⊗L �)

of the local Bloch–Kato Selmer groups.
This finishes the proof. 	
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The decomposition does not rely on self-duality of the underlying Hecke
characters. In particular, it is independent of the root numbers.

We have the following immediate

Corollary 3.8 Let the notation and hypotheses be as in Lemma 3.7.
Then,

Char�X (W )tor = Char�X (λ)tor · Char�X (ψ∗χ)tor.

Here Char� denotes the characteristic ideal and (·)tor the �-torsion submod-
ule.

3.2.3 Ranks

We describe ranks of the underlying Selmer groups under Heegner hypothesis.
For the pair (g, χ), we now suppose that

ε(g, χ) = −1.

Note that the Hecke characters λ and ψ∗χ are self-dual. Here we say a
Hecke character ν over K to be self-dual if

ν|A× = η| · |A× .

Without loss of generality, we suppose that

ε

(

1

2
, λ

)

= −1, ε

(

1

2
, ψ∗χ

)

= +1.

We have the following proposition regarding the ranks of anticyclotomic
Selmer groups.

Proposition 3.9 Let ψ (resp. χ ) be a Hecke character over an imaginary
quadratic field K with infinity type (1, 0) (resp. finite order) and λ = ψχ . Let g
be theCMmodular formassociated toψ with level Ng and V the p-adicGalois
representation of GK corresponding to the pair (g, χ) as above (3.1). Suppose
that λ (resp. ψ∗χ ) has root number −1 (resp. 1) and p � 6Ng · condr(χ). Let
S(·) and X (·) denote the anticyclotomic Selmer groups as above.
Then, we have

rank�S(V ⊗L �) = 1

and

rank�S(L(λ) ⊗L �) = 1, rank�S(L(ψ∗χ) ⊗L �) = 0.
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Moreover, the analogous result holds for the divisible Selmer groups X (·).
Proof In view of Lemma 3.7, the latter assertion implies the former.

From our hypotheses on the root numbers, the latter assertion is nothing
but [3, Thm. 2.1 and Thm. 2.2] (also see [2,38]). The approach is based on an
underlying Euler system of elliptic units and its non-triviality. 	


3.2.4 Regulators

We end this subsection with generalities regarding the underlying anticyclo-
tomic regulators.

Let ν be a finite order character of the anticyclotomic Galois group �−
K and

L(ν) the extension of L obtained by adjoining values of ν. We may regard it
as a L[GK ]-module.

Being in a p-ordinary setup, there exists an L(ν)-valued canonical p-adic
Height pairing

〈 , 〉ν : H1
f (K , V ⊗L L(ν)) × H1

f (K , (V ⊗L L(ν))∗(1)) −→ L(ν).

Here H1
f (K , ·) denotes the Bloch–Kato Selmer group corresponding to the

ν-twist and (·)∗ the dual [32, Thm. 4.2].
There exists a �-adic height pairing

〈 , 〉 : S(V ⊗L �) ⊗� S((V ⊗L �)∗(1)) −→ �

interpolating the p-adic height pairings 〈 , 〉ν as ν varies over finite order
characters of �−

K [33, Prop. 11.1.9].6 In view of self-duality (SD), the pairing
can be viewed as

〈 , 〉 : S(V ⊗L �) ⊗� S(V ⊗L �)ι −→ �. (3.3)

In other words, here we utilise the isogeny between B/K and B∨
/K .

Such a �-adic height pairing also exists for Selmer groups arising from
arithmetic Hecke characters over K , in particular for the Selmer group
S(L(λ) ⊗L �) [32, Thm. 4.2] and [33, Prop. 11.1.9].7

Recall that the regulator of a �-adic height pairing is nothing but the char-
acteristic ideal of its cokernel viewed as a �-module [2, Def. 3.1.3], also [3,
p.77].

6 We also refer to [33, §11.1].
7 We also refer to [3, §4.2] and references therein.
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Definition 3.10 Let R(g × χ) (resp. R(λ)) be the regulator corresponding
to the �-adic height pairing (3.3) on the Selmer group S(V ⊗L �) (resp.
S(L(λ) ⊗L �)).

We have the following relation among the regulators.

Corollary 3.11 Let ψ (resp. χ ) be a Hecke character over an imaginary
quadratic field K with infinity type (1, 0) (resp. finite order) and λ = ψχ .
Let g be the CMmodular form associated toψ with level Ng and V the p-adic
Galois representation of GK corresponding to the pair (g, χ) as above. Sup-
pose that λ (resp. ψ∗χ ) has root number −1 (resp. 1) and p � Ng · condr(χ).
Let R(·) denote the anticyclotomic regulator as above.

Then,

R(g × χ) = R(λ).

Proof As the �-module S(L(ψ∗χ) ⊗L �) is torsion (Proposition 3.9),
the assertion follows from Lemma 3.7 and definition of the �-adic height
pairing. 	


3.3 p-adic L-functions

In this subsection, we describe generalities regarding p-adic L-functions aris-
ing in our approach to Heegner main conjecture (HMC) in the CM case
(Theorem 3.2). Even though HMC does not explicitly involve p-adic L-
functions in the formulation, they seem to appear inevitably in the approach.

3.3.1 Definitions

We introduce interpolation property for the underlying p-adic L-functions.
Let the notation and assumptions be as in Sect. 3.2. In particular, g ∈

S2(�0(Ng), ω) denotes CM modular form associated to a Hecke character ψ

over K with infinity type (1, 0) and χ a finite order Hecke character over K
such that ω · χ |

A
×
Q

= 1. Moreover, we suppose that ε(g, χ) = −1. Note that

ω = ηK · ψ |
A

×
Q

.

Let λ = ψχ . Without loss of generality, we suppose that ε(12 , λ) = −1.
Note that the CM modular form f associated to the Hecke character λ is of
weight two and trivial central character.

In view of the decomposition of Galois representation V corresponding to
the pair (g, χ) in terms of Hecke characters (3.2) and Artin formalism, we
have a factorisation

L(s, g × χ) = L(s, λ) · L(s, ψ∗χ)
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of complex L-functions. In what follows, we consider an Iwasawa analogue
of the above factorisation.

p-adic L-functions: GL2/Q. We begin with the GL2/Q-side.
We have a two-variable Rankin–Selberg p-adic L-function L p(g × χ) ∈

O[[�K ]] ⊗O L . To recall the interpolation, let (g, χ) be a general pair as in
Sect. 2.1with g not necessarily a CMmodular form. Recall that g is p-ordinary
with Up-eigenvalue α and p � condr(χ).

Definition 3.12 Let (g, χ) be a self-dual pair of an elliptic newform with
weight two and finite order Hecke character over an imaginary quadratic field
as above. Let

L p(g × χ) ∈ O[[�K ]] ⊗O L

be the Rankin–Selberg p-adic L-function characterised by the interpolation
property

̂χ ′(L p(g × χ)) = ep(g × (χχ ′)−1)

αv(condr(χ ′)) · L
(p)(1, g × (χχ ′)−1)

�g

for all sufficiently p-ramified finite order characters χ ′ : �K → C
×
p . Here

– �g := L(1, ad(g)) for ad(g) the adjoint,
– ep(g × (χχ ′)−1) = ε(0, χpχ

′
p) · ε(0, χp∗χ ′

p∗) for the local ε-factor ε(0, ·)
and

– L(p)(·) the L-function with Euler factors at primes above p removed

[18, Thm. A].

We refer to [18, Intro.] for “sufficiently ramified” (also see
[11, Proof of Thm. 2.3]). The local epsilon factors as above are with respect to
some uniform choice of additive characters of Kq of level one for the primes
q|p.

p-adic L-functions: GL1/K . We now turn towards the GL1/K -side.
We have a two-variable Katz p-adic L-functions L
(λ), L
∗(ψ∗χ) ∈

W [[�K ]]. Here W denotes a finite flat extension of the Witt ring W (F) for
an algebraic closure F of Fp.

Let π : �
�
K � �K be a finite cover arising from a finite extension of K∞

contained in K ab. This corresponds to fixing a tame level prime to p and we
exclude the tame level from the notation for simplicity. Let 
 be a p-adic CM
type of K as above, in other words the complex embedding ι∞.

By [20, Thm. II] (also see [26]), there exists an element

L
 ∈ W [[��]],
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uniquely characterised by an interpolation property. The domain of interpola-
tion consists of arithmetic Hecke characters λ′ : �

�
K → C

×
p with infinity type

(k + κ, −κ) for k, κ ∈ Z, such that

(i). k ≥ 1 and κ ≥ 0 or
(ii). k ≤ 1 and k + κ > 0.

The interpolation property is then the following.
There exist p-adic CM periods �
,p ∈ C

×
p and complex CM periods

�
,∞ ∈ C
× such that for any character λ′ : �

�
K → C

×
p in the domain we

have8

L
(λ′)
�k+2κ


,p

= ep((λ
′)−1) · L

(p)(0, ((λ′)−1))

�k+2κ

E,∞,

· πκ�(k + κ)

(Imθ)κ
· [O×

K : Z
×]

Here L(p)(·) denotes the L-function with Euler factors at primes above p
removed, � the usual �-function and θ ∈ K as in [24, §3.1].

If χ = (λ′)−1 is ramified at the primes dividing p, the p-Euler factor is
given by

ep(χ) = L(0, χp)

ε(0, χp)L(1, χ−1
p )

.

For our consideration, we choose a certain tame level and consider the
restriction of L
 to certain open subsets of �

�
K .

Definition 3.13 Let λ0 be a p-adic Hecke character over the imaginary
quadratic field K with values in L and 
 is a p-adic CM type as above.
Let

L
(λ0) ∈ W [[�K ]] ⊗ L

be the Katz p-adic L-function given by

̂χ ′(L
(λ0)) := L
(λ0χ
′).

The interpolation property of L
 gives rise to an analogous interpolation
for the Katz p-adic L-function L
(λ0).

8 Note that we are ignoring interpolation factors at places away from p appearing elsewhere in
the literature, since those, while non-integral, can be interpolated by polynomial functions on

W [[��
K ]].
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3.3.2 Factorisation

We describe factorisation of the Rankin–Selberg p-adic L-function on the
GL2/Q-side.

We have the following relation among the p-adic L-functions on GL2/Q and
GL1/K -sides.

Lemma 3.14 Let ψ (resp. χ ) be a Hecke character over an imaginary
quadratic field K with infinity type (1, 0) (resp. finite order) and λ = ψχ .
Let g be the CM modular form associated to ψ . Let L p(g × χ), L
(λ) and
L
∗(ψ∗χ) be the p-adic L-functions as in Definitions 3.12 and 3.13. Here 


denotes a CM type of K and 
∗ the conjugate CM type 
.
Then,

L p(g × χ)
.= L
(λ) · L
∗(ψ∗χ).

Here ‘
.=’ denotes equality up to a constant in Q

×
p [11, § 2.4].

The factorisation does not rely on self-duality of the underlying Hecke char-
acters. In particular, it is independent of the underlying root numbers.

Remark 3.15 The above factorisation is compatible with the decomposition
in Lemma 3.7.

3.3.3 Cyclotomic derivative

We consider cyclotomic derivative of the underlying p-adic L-functions.
Recall that ε(12 , g × χ) = −1. Moreover, λ and ψ∗χ are self-dual Hecke

characters over the imaginary quadratic field K . We may then suppose that

ε

(

1

2
, g × χ

)

= ε

(

1

2
, λ

)

= −1, ε

(

1

2
, ψ∗χ

)

= 1.

Accordingly, we are led to consider cyclotomic derivatives of Rankin–Selberg
and Katz p-adic L-functions.

As in Lemma 3.14, we have an analogous factorisation for cyclotomic
derivatives of the p-adic L-functions.

Corollary 3.16 Let ψ (resp. χ ) be a Hecke character over an imaginary
quadratic field K with infinity type (1, 0) (resp. finite order) and λ = ψχ .
Let g be the CM modular form associated to ψ . Let L p(g × χ), L
(λ) and
L
∗(ψ∗χ) be the p-adic L-functions as above. Here 
 denotes a CM type of
K and 
∗ the conjugate CM type.
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Then,

L ′
p(g × χ)

.= L ′

(λ) · L−


∗(ψ∗χ).

Here

– ‘
.=’ denotes equality up to a constant in Q

×
p ,

– L ′
�(·) = d

dS L�(·)
∣

∣

∣

S=0
the cyclotomic derivative with S being the cyclo-

tomic variable and
– L−

�(·) = L�(·)
∣

∣

∣

S=0
the anticyclotomic projection.

Proof In view of the hypothesis

ε(g × χ) = ε

(

1

2
, λ

)

= −1,

we have

L−
p (g × χ) = L−


(λ) = 0.

as the interpolated central L-values vanish identically by the functional equa-
tion of the underlyingRankin–SelbergL-functions.Here L−

p (g×χ) and L−

(λ)

denote the anticyclotomic projections.
As for the vanishing, note that the anticyclotomic line is a self-dual line for

the Rankin–Selberg convolution and the Hecke character. Moreover, it lies in
the interpolation region of the p-adic L-functions L p(g × χ) and L
(λ).

From Lemma 3.14, this finishes the proof. 	


3.4 Heegner main conjecture

In this subsection, we conclude the proof of Heegner main conjecture (HMC)
for a a self-dual pair of a weight two CM form and a Hecke character over the
same CM field with root number −1 (Theorem 3.2).

Let the notation and assumptions be as in Sect. 3.2. In particular, g ∈
S2(�0(Ng), ω) denotes CM modular form associated to a Hecke character ψ

over K with infinity type (1, 0) and χ a finite order Hecke character over K
such that ω · χ |

A
×
Q

= 1. Moreover, we suppose that ε(g, χ) = −1. Without

loss of generality, we suppose that ε(12 , ψχ) = −1. As before, let λ = ψχ .
We consider HMC (Conjecture 2.2) for the pair (g, χ)when p is an odd prime
split in the imaginary quadratic field K .

Approach. Our approach to Theorem 3.2 seems to consist of the following
key ingredients.
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• �-adic Gross–Zagier formula due to Disegni.
• Anticyclotomic IMC in the sign −1 case due to Agboola–Howard and
Arnold along with anticyclotomic IMC in the sign +1 case due to Rubin.

• Non-vanishing of a �-adic regulator in the sign −1 case.

Roughly speaking, Conjecture 2.2 concerns Heegner cohomology classe
κ ∈ S(B) with genesis on the GL2/Q-side. Here B denotes the abelian variety
corresponding to the pair (g, χ) as in Definition 2.1. The�-adic Gross–Zagier
formula expresses the�-adic height pairing of theHeegner class κ [33, Ch. 11]
in terms of the cyclotomic derivative L ′

p(g×χ) of the Rankin–Selberg p-adic
L-function L p(g × χ) up to an anticyclotomic regulator.

The CM setup leads to decompositions of Selmer groups and factorisations
of p-adic L-functions as in Lemma 3.7 and Corollary 3.16. In this manner,
Conjecture 2.2 enters an Iwasawa-theoretic setup on the GL1/K -side. The anti-
cyclotomic IMC’s due to Agboola–Howard and Arnold (resp. Rubin) express
the cyclotomic derivative L
(λ) (resp. anticyclotomic Katz p-adic L-function
L−


∗(ψ∗χ)) of Katz p-adic L-function in terms of anticyclotomic Selmer
groups up to an anticyclotomic regulator (resp. without a regulator).

We finish the proof via non-vanishing of the anticyclotomic regulators based
on Hida’s approach to non-vanishing.

Proof of Theorem 3.2 We build upon the consideration in Sects. 3.2 and 3.3.
HMC (i). Non-triviality. For a finite order character ν of the anticyclotomic
Galois group �−

K , we have a factorsiation

L(s, g × χν) = L(s, λν) · L(

s, ψ∗χν
)

of complex L-functions.
As

ε

(

1

2
, λ

)

= −1, ε

(

1

2
, ψ∗χ

)

= 1,

we have

ords=1L(s, λν) = 1, ords=1L(s, ψ∗χν) = 0

for all but finitely many ν due to Rohrlich [36, p. 384].
In view of the Gross–Zagier formula due to Yuan–Zhang–Zhang [49,

Thm. 1.2], we have

ords=1L(s, g × χν) = 1 ⇐⇒ Pg,χν 
= 0

for the Heegner point Pg,χν in Sect. 2.1.2.
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From injectivity of the Kummer map on rational points, we conclude that
the Heegner cohomology class κ is �-non-torsion.

Ranks. The rank part of HMC (i) is nothing but Proposition 3.9.
Torsion-free. In view of Lemma 3.7, it suffices to show that the GL1/K -

Selmer groups S(λ) and S(ψ∗χ) are �-torsion-free. The latter is a part of [3,
Thm. 2.14].

HMC (ii). We begin with the GL2/Q-side.
We have �◦-adic Gross–Zagier formula

〈κ, κι〉 .= L ′
p(g × χ)

due to Disegni [18, Thm. C]. Here 〈 , 〉 : S(B) ⊗ S(B)ι −→ � is the �-adic
height pairing in (3.3) and L ′

p(g×χ) the cyclotomic derivative as in Sect. 3.3.3.

Moreover, ‘
.=’ denotes up to a non-zero constant in Q

×
p . In particular, the

equality holds for ideals of � arising from both sides of the formula.
Recall that the Heegner class κ is �-non-torsion and

rank�S(B) = 1

(HMC (i)). It then follows that

(L ′
p(g × χ)) = (〈κ, κι〉) = Char�S(B)/(κ) · Char�(S(B)/(κ))ι · R(g × χ).

(3.4)

Anticyclotomic IMC: GL1/K . We now turn towards underlying anticyclo-
tomic Iwasawa theory on the GL1/K -side.

As λ is self-dual with ε(12 , λ) = −1, we have the following results towards
anticyclotomic CM IMC due to Agboola–Howard [2, Thm. A] and Arnold [3,
Thm. 2.14 & Thm. 4.17].

(IMC’1). The divisible Iwasawa module X (λ) has �-rank one.
(IMC’2). Moreover,

(L ′

(λ)) = Char�X (λ)tor · R(λ)

As ψ∗χ is self-dual with ε(12 , ψ
∗χ) = 1, we have the following results

towards anticyclotomic CM IMC due to Rubin [38, Thm. 4.1], also see [3,
Thm. 2.1].

(IMC1). The divisible Iwasawa module X (ψ∗χ) has �-rank zero.
(IMC2). Moreover,

(L−

∗(ψ∗χ)) = Char�X (ψ∗χ).
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We thus have

(L ′

(λ) · L−


∗(ψ∗χ)) = Char�X (λ)tor · Char�X (ψ∗χ) · R(λ). (3.5)

Non-vanishing. In view of Lemma 3.7 and the non-vanishing of anticyclo-
tomic regulators [2, App.], [7, Thm. A] and also see [11, Intro.], we have

R(g × χ) = R(λ) 
= 0. (3.6)

Strictly speaking, the μ-invariant of the cyclotomic derivative L ′

(λ) is

determined in [7] under the hypothesis p � hK for hK the class number.
However, the proof shows the non-vanishing of L ′


(λ) even when p | hK . For
example, the argument in [7, §3] goes through verbatim for open subsets b�′
introduced in [24, §5.1].

From the anticyclotomic IMC due to Agboola–Howard and Arnold as
above, non-vanishing of the anticyclotomic regulator R(λ) follows from that of
L ′


(λ). FromLemma 3.7, we then deduce non-vanishing of the anticyclotomic
regulator R(g × χ).

HMC. We now relate the GL2/Q and GL1/K -sides.
From Corollary 3.16, Lemma 3.7 and Corollary 3.8, we conclude that

Char�S(B)/(κ) · Char�(S(B)/(κ))ι · R(g × χ) = Char(X (B)tor) · R(λ).

In view of (3.4), (3.5) and (3.6), it thus follows that

Char�S(B)/(κ) · Char�(S(B)/(κ))ι = Char(X (B)tor).

This finishes the proof. 	

Remark 3.17 (1). The hypothesis p � 6Ng · condr(χ) arises only due to its
occurence in the anticyclotomic IMC due to Agboola–Howard and Arnold.

(2). We may ask for a refinement of the approach so as to consider �◦-adic
version of the Heegnermain conjecture. Asmentioned earlier, it would involve
Tamagawa numbers.

Remark 3.18 The approach seems rather different from the one in the non-CM
case [12,14,15,48]. For example, the Euler system of Heegner points is not
directly used for the ‘Euler system’ divisibility in Theorem 3.2 i.e. an upper
bound for the �-torsion module S(B)/(κ). In fact, as the Galois representa-
tion has small image, such an argument would perhaps require an additional
input. For the ‘modular divisibility’ i.e. a lower bound for the �-torsion mod-
ule S(B)/(κ), we do not directly rely upon Eisenstein congruence on higher
rank unitary group group U (3, 1)/K (for example, [47]). In fact, as this is
not a semistable setup and the Galois representation has small image, such
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an argument would again require an additional input. We circumvent these
potential issues via passage to GL1/K . For example, Euler system of Heeg-
ner points is replaced by Euler system of elliptic units and the unitary group
U (3, 1)/K replaced with the unitary group U (2, 1)/K . The approach seems
to utilise most of the known results regarding anticyclotomic CM Iwasawa
theory in an essential manner. In particular, elliptic units are fundamental in
the approach.

4 p-converse theorem

In this section, we prove a p-converse theorem in the CM rank one case. In
Sect. 4.1, we introduce an auxiliary twist of the underlying Hecke character.
In Sect. 4.2, we conclude with the p-converse theorem based on Heegner main
conjecture arising from the twist.

4.1 Auxiliary twist

In this subsection, we introduce an auxiliary twist of a Hecke character such
that non-vanishing of a certain central Hecke L-value holds.

4.1.1 Auxiliary twist, I

We introduce an auxiliary twist of a Hecke character in a general setup.
Let K be an imaginary quadratic field and λ a self-dual Hecke character

over K . We consider a twist of λ of the following kind.

Proposition 4.1 Let K be an imaginary quadratic field field. Let λ be a self-
dual arithmetic Hecke character over K with infinity type (1, 0). Let T be a
finite set of primes of K .

Then, there exists a finite orderHecke characterχ over K withw � condr(χ)

for w ∈ T such that

L

(

1, λ · χ∗

χ

)


= 0.

Here η∗ = η ◦ c for a Hecke character η over K with c ∈ Gal(K/Q) the
non-trivial element.

Proof This is based on the main result of [6].
Non-vanishing. Let θ(λ) be the CM modular form corresponding to the

Hecke character λ.
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From [6, pp. 543–544], there exists a weight two elliptic newform g arising
from a quadratic twist unramified at T of the CMmodular form θ(λ) such that

L(1, g) 
= 0. (4.1)

Note that g is again a CMmodular form with CM by K . Thus, there exists a
Hecke character λ′ over K with the same infinity type as λ such that g = θ(λ

′
).

Note that the Hecke character λ′/λ is of finite order and also anticylotomic.
Desired form. From L(s, λ∗· χ

χ∗ ) = L(s, g), the non-vanishing (4.1) finishes
the proof as a finite order anticyclotomic Hecke character has the form χ∗/χ
for a finite order Hecke character χ over K [21, Lem. 5.31]. Moreover, the
proof of [21, Lem. 5.31] shows that χ can be taken to be unramified at T . 	


4.1.2 Auxiliary twist, II

We introduce an auxiliary twist of a Hecke character in a special setup.
In Sect. 4.2, we consider a special case of Proposition 4.1. As it can be

approached in another manner, we describe it separately.
Let K be a p-ordinary imaginary quadratic field as in Sect. 2.1.1. Let λ be

a self-dual Hecke character over K with infinity type (1, 0). We consider an
auxiliary twist of λ of the following kind.

Proposition 4.2 Let K be a p-ordinary imaginary quadratic field for an odd
prime p. Let λ be a self-dual arithmetic Hecke character over K with infinity
type (1, 0).

Then, there exists a finite orderHecke characterχ over K with p � condr(χ)

such that

L

(

1, λ · χ∗

χ

)


= 0.

Here η∗ = η ◦ c for a Hecke character η over K with c ∈ Gal(K/Q) the
non-trivial element.

Proof This is based on the main result of [36].
Root number. First, there exists a finite order Hecke character χ0 over K

with p � condr(χ0) such that

ε

(

1

2
, λ · χ∗

0

χ0

)

= +1

[11, Lem. 2.5].
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Non-vanishing. In view of [36, p. 384], there exists a finite order anticyclo-
tomic Hecke character ψ over K with p � condr(λ · χ0) such that

L

(

1, λ · χ∗
0

χ0
ψ

)


= 0.

In fact, ψ can be chosen to have �-power order conductor with � an odd prime
unramified in K such that � � p · condr(λχ0).

In view of [21, Lem. 5.31], this again finishes the proof.9 	

Remark 4.3 The above approach has an anticyclotomic Iwasawa-theoretic
flavour perhaps more in sync with the approach to a p-converse theorem
(Sect. 4.2). We also note that the approach in [6] builds on a GL2/Q-setup,
whereas the one in [36] on a GL1/K -setup.

4.2 p-converse theorem

In this subsection, we prove a p-converse theorem in the CM rank one case.
The proof is based on a Heegner main conjecture arising from an auxiliary
twist in Sect. 4.1.

4.2.1 Setup

Let the notation be as before. In particular, we fix two embeddings ι∞ : Q → C

and ιp : Q → Cp as in Sect. 2. Moreover, f ∈ S2(�0(N )) denotes a weight
two newform with trivial Neben-type and E f the corresponding Hecke field.

Let A = A f be an abelian variety over Q associated to f by Eichler–
Shimura such that

L(s, A/Q) =
∏

σ :E f →C

L(s, f σ ).

The endomorphism ring for A contains an order O f in the Hecke field E f
and the order is generated over Z by the Hecke eigenvalues corresponding to
g. Replacing A by an isogeny, we assume that A has real multiplication by the
ring of integers in E f . Let ℘ be a prime above p in E f determined via the
embedding ιp. Let O the localisation of OE f at ℘.

Then the ℘∞-Selmer group Sel℘∞(A/Q) associated to A/Q is a co-finitely
generated O℘-module. As the case of elliptic curves in the introduction, we
have a BSD conjecture in the setup (Conjecture 1.1) and an analogous result

9 As the reader may note, hypothesis (ord) is inessential in this approach as well.
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towards it due to Gross–Zagier [19, I.6]), Kolyvagin ([28] and Rubin [37], [38,
§11].10

4.2.2 Main result

We consider a p-converse to the theorem of Gross–Zagier, Kolyvagin and
Rubin.

The main result of the article is the following p-converse theorem in the
CM case.

Theorem 4.4 Let f ∈ S2(�0(N )) be an elliptic CM modular form of weight
two, trivial neben-type with complex multiplication by an imaginary quadratic
field. Let E f be the corresponding Hecke field with integer ringOE f . Let A/Q

be a correspondingGL2-type abelian variety withOE f ⊂ End(A). Let p > 3
be a good ordinary prime for A, ℘ a prime above p in E f determined via the
embedding ιp and O the completion of OE f at ℘.

Then,

corankO℘Sel℘∞(A/Q) = 1 �⇒ ords=1L(s, A) = [E f : Q].
In particular, rankOA(Q) = 1 and X(A/Q) is finite whenever corankO℘

Sel℘∞(A/Q) = 1.

Note that, “In particular” part follows from the work of Gross–Zagier,
Kolyvagin and Rubin. We would like to emphasise that finiteness of the Tate–
Shafarevich group X(A/Q) is not our hypothesis but indeed a consequence.

Corollary 4.5 Let f ∈ S2(�0(N )) be an elliptic CM modular form of weight
two, trivial neben-type with complex multiplication by an imaginary quadratic
field. Let A/Q be corresponding GL2-type abelian variety and E f the Hecke
field with integer ring OE f . Let p > 3 be a good ordinary prime for A, ℘ a
prime above p in E f determined via the embedding ιp and O the completion
of OE f at ℘. Suppose that corankO℘Sel℘∞(A/Q) = 1.

Then, the p-part of full BSD conjecture holds for A/Q.

Proof From Theorem 4.4, the rank part of BSD holds. In particular,

ords=1L(s, A/Q) = [E f : Q], #X(A/Q) < ∞.

In view of the work of Perrin–Riou [35] and Rubin [40], the p-part of BSD
formula thus holds (for example, [27, Cor. 1.4]).11 	

Remark 4.6 In the setup, an analogue of Corollary 1.3 holds as well.

10 We also refer to [27, Intro].
11 We also refer to [29, Thm. 1.1].
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4.2.3 Proof of the main result

The approach to Theorem 4.4 relies upon Heegner main conjecture (Theo-
rem 3.2) for an auxiliary pair (g, χ) as in Sect. 2.1.

Proof of Theorem 4.4 Let K be the underlying CM field. As f is p-ordinary,
the prime p splits in K .

Parity. Let λ be arithmetic Hecke character over K with infinity type (1, 0)
corresponding to the CMmodular form f . Here the infinty type is with respect
to the embedding ι∞. Note that λ is self-dual.

As corankO℘Sel℘∞(A/Q) = 1, we deduce

ε

(

1

2
, λ

)

= −1 (4.2)

from the parity conjecture due to Nekovář [31, Thm. A’].
Auxiliary twist. Let χ be a finite order Hecke character over K as in Propo-

sition 4.2. In particular,

L

(

1, λ∗ · χ

χ∗

)


= 0. (4.3)

Self-dual pair. Let g be the CM modular form associated to the Hecke
character λχ−1 over K with the same infinity type (1, 0). In what follows, we
consider the pair (g, χ) in the setup of Sect. 2.1.

We have a factorisation

L(s, g × χ) = L(s, λ) · L
(

s, λ∗ · χ

χ∗

)

of complex L-functions. By (4.3), we thus have

ords=1L(s, λ) = 1 ⇐⇒ ords=1L(s, g × χ) = 1.

We first note that the pair satisfies the Heegner hypotheses (H) in Sect. 2.1.
Here we rely upon (4.2) and (4.3).

In view of the Gross–Zagier formula due to Yuan–Zhang–Zhang [49,
Thm. 1.2], it thus follows that

ords=1L(s, λ) = 1 ⇐⇒ Pg,χ 
= 0.

Here Pg,χ ∈ B(K )Q is theHeegner point on the abelian variety B/K associated
to the pair (g, χ) as in Sect. 2.1 (Definition 2.1).
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Heegner main conjecture. We approach non-vanishing of the Heegner point
via Heegner main conjecture in the setup (Theorem 3.2).

From Rubin ([38, Thm. 11.1], also see [3, Thm. 2.1]),

L

(

1, λ∗ · χ

χ∗

)


= 0 �⇒ corankL H
1
f

(

K , L

(

λ∗ · χ

χ∗

))

= 0. (4.4)

Here H1
f (K , L(λ∗ · χ

χ∗ )) denotes the corresponding Bloch–Kato Selmer

group.12

In view of the Selmer decomposition in Lemma 3.7, we thus have

corankL(Selp∞(B/K ) ⊗O0 L) = 1.

Here the notation O0 and L is as in Sect. 2.1.1.
We recall part (ii) of Theorem 3.2, namely

Char�S(B)/(κ) · Char�(S(B)/(κ))ι = Char�X (B)tor (4.5)

an equality of ideals in�. The IwasawamoduleX (B) has�-rank one (Propo-
sition 3.9).

Descent. We now consider descent of the equality (4.5).
Let γ − ∈ �−

K be a topological generator and I = (γ − − 1) ⊂ �.
We have a natural morphism

X (B)/I · X (B) → Selp∞(B/K )∨ ⊗O0 L (4.6)

with finite kernel and cokernel.13 In view of Lemma 3.7, such a control for
X (B) indeed follows from an analogous control for the GL1/K -Selmer groups
X (λ) and X (λ∗ · χ

χ∗ ). The latter control is nothing but [3, Prop. 4.3].
As corankL(Selp∞(B/K ) ⊗O0 L) = 1, we first note that X (B)/I · X (B)

is not a torsion L-module (4.6). In view of HMC (4.5), it now follows that
the Heegner cohomology class corresponding to the Heegner point Pg,χ is
non-trivial.

This finishes the proof. 	

Remark 4.7 The construction of a desired non-trivial Heegner point Pg,χ per-
haps crucially relies on the parity conjecture.

Remark 4.8 In view of the proof, the approachwould generalise to elliptic CM
modular forms with weight greater than two upon availability of complex and

12 As L(s, λ∗ · χ
χ∗ ) = L(s, θ(λ∗ · χ

χ∗ )), the finiteness (4.4) also follows from [28].
13 Usually referred as a ‘control theorem’.
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�◦-adic Gross-Zagier formulae along with non-vanishing of complex Bloch–
Beilinson height corresponding to a non-torsion Heegner cycle underlying the
setup.
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