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1. Introduction

Representation of integers by ternary quadratic forms has rich history, yet it continues 
to be alluring. Sometimes, it is closely related to the arithmetic of quadratic twist family 
of elliptic curves defined over the rationals.

A positive square-free integer is called a congruent number if it is the area of a right 
triangle with rational side lengths. An important open problem: to determine whether 
or not a given integer is a congruent number, perhaps one of the oldest open problems 
(cf. [49]). It is closely related to studying rational points on a certain quadratic twist 
family of elliptic curves - the congruent number elliptic curves.

We begin with the Birch and Swinnerton-Dyer (BSD) conjecture for the congruent 
number elliptic curves in the guise of:

Conjecture 1.1. Let n be a positive square-free integer. The following are equivalent.

(a) n is a congruent number.
(b) Let a = 1 if 2 � n and a = 2 otherwise. Let Σ(n) be the set of integral solutions to 

the equation

2ax2 + y2 + 8z2 = n

a
.

Then, # {(x, y, z) ∈ Σ(n) : 2|z} = # {(x, y, z) ∈ Σ(n) : 2 � z}.

Define

L(n) = # {(x, y, z) ∈ Σ(n) : 2|z} − # {(x, y, z) ∈ Σ(n) : 2 � z} . (1.1)

The non-vanishing of L(n) may be determined in a finite number of steps, while an 
algorithm to determine whether a given n is a congruent number remains elusive.
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In view of Tunnell’s theorem and the Coates–Wiles theorem: if L(n) �= 0, then n is 
not a congruent number (cf. [14], [51]). Conjecture 1.1 predicts the converse. One may 
ask:

How often is L(n) �= 0? (Q)

1.1. Main result

Our recent result [11]:

Theorem 1.2. For a density one subset of positive square-free integers n ≡ 1, 2, 3
(mod 8),

L(n) �= 0.

Remark 1.3.

◦ A priori, an independent assertion: for a density one subset of n ≡ 1, 2, 3 (mod 8), 
n is not a congruent number (cf. [46]).

◦ For n ≡ 5, 6, 7 (mod 8), notice L(n) = 0. Conjecture 1.1 predicts that these n are 
congruent. Over the last decade, arithmetic of Heegner point as pioneered by Heegner 
[27], [36] has led to a progress: [48], [50], [46]. It is now known that more than 50%
square-free positive integers n ≡ 5, 6, 7 (mod 8) are congruent numbers (cf. [50], 
[46]).

1.1.1. Congruent number elliptic curves
Theorem 1.2 yields the first instance of the influential (even parity) Goldfeld conjec-

ture [21], which concerns the distribution of analytic ranks in the quadratic twist family 
of elliptic curves over the rationals:

The congruent number problem may be rephrased in terms of the arithmetic of 
quadratic twist family of the congruent number elliptic curves1

E(n) : ny2 = x3 − x.

Let L(s, E(n)) denote the Hasse–Weil L-function of E(n). The integer L(n) is closely 
related to the special L-value L(1, E(n)).

1.1.2. Outline
Theorem 1.2 is a consequence of the following.

1 Note that n is a congruent number if and only if rankZE(n)(Q) > 0.
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• An explicit Shimura–Shintani–Waldspurger correspondence [51]:

L(n) �= 0 ⇐⇒ L(1, E(n)) �= 0.

• A p-converse theorem [11]:

For any prime p, #Selp∞(E(n)/Q) < ∞ =⇒ L(1, E(n)) �= 0, (p-cv)

where Selp∞(E(n)/Q) denotes the p∞-Selmer group.
• A key progress towards Selmer-counterpart of the Goldfeld conjecture [46]:

Prob
(
#Sel2∞(E(n)/Q) < ∞

∣∣∣ n ≡ 1, 2, 3 (mod 8) positive square-free
)

= 100%.

Our essential contribution is the p-converse theorem, especially for the prime p = 2. 
Now, an equivalent form of Theorem 1.2: the even parity Goldfeld conjecture for the 
congruent elliptic curves -

For a density one subset of positive square-free integers n ≡ 1, 2, 3 mod 8, one has

L(1, E(n)) �= 0.

Remark 1.4. Since its proposal, the Goldfeld conjecture has been studied via diverse 
tools, yet an example remained elusive. Perhaps enigmatically the first example turns 
out to be the classical congruent number family. Time and again, the congruent num-
ber curves have influenced the arithmetic of general elliptic curves over Q. Even a key 
precursor to [46] - the congruent number family [50], [45].

1.2. Plan

The article is essentially an elaboration of §1.1.2. It also reports on a generalisation 
of Tunnell’s theorem to general quadratic twist families of elliptic curves [25] and a 
preliminary investigation of a missing case in Smith’s work [19]. The article is not meant 
as a survey. For instance, in view of [6], even the discussion of (p-cv) is succinct.

The text begins with the Goldfeld conjecture in §2. Then §3 presents a recent inter-
relation among ternary quadratic forms and central L-values of a quadratic twist family 
of elliptic curves over the rationals - a generalisation of Tunnell’s theorem (the case of 
congruent number elliptic curves). Next an update of p-converse theorems appears in 
§4. Then §5 briefly recalls a few conjectures regarding the distribution of Selmer groups 
associated to elliptic curves over a fixed number field and Smith’s main result. Finally, 
§6 presents an exploratory study of a missing case in [45], [46].
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2. Goldfeld’s conjecture

2.1. Backdrop

2.1.1. The set-up
An elliptic curve over the rationals is given by a projective curve with affine equation:

A : y2 = x3 + ax + b

for a, b ∈ Z with Δ := 4a3 + 27b2 �= 0.
The associated Hasse–Weil L-function L(s, A) is defined as an Euler product

L(s,A) :=
∏

p a prime
Lp(p−s)−1

for s ∈ C, where

Lp(X) = 1 − apX + pX2, ap = p + 1 − #A(Fp)

for p � 2Δ. Define

Λ(s,A) := Ns/2 · 2(2π)−sΓ(s)L(s,A)

for N the conductor.
In view of the Hasse bound |ap| ≤ 2√p, the Euler product is absolutely convergent 

for Re(s) > 3/2. The elemental modularity:

Theorem 2.1. The Hasse–Weil L-function L(s, A) has entire continuation, which satisfies 
the functional equation

Λ(s,A) = ε(A)Λ(2 − s,A),

where ε(A) ∈ {±1} denotes the root number.

The central vanishing order - ords=1L(s, A) - is referred to as the analytic rank of A.
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2.1.2. The Birch and Swinnerton-Dyer conjecture

Conjecture 2.2 (The BSD conjecture). Let A be an elliptic curve over Q.

(a) ords=1L(s, A) = rankZA(Q)
(b) The Tate–Shafarevich group X(A/Q) is finite and

L(r)(1, A)
r! · ΩA ·RA

=
∏

� c�(A) · #X(A/Q)
#A(Q)2tor

for r = ords=1L(s, A), ΩA ∈ C× the Néron period, RA the regulator of the Néron–
Tate height pairing on A(Q) and c�(A) the Tamagawa number at �.

The Tate–Shafarevich group X(A/Q) is defined as

X(A/Q) = Ker
(
H1(Q, A) →

∏
p

H1(Qp, A)
)
.

It may be interpreted as the isomorphism classes of A-torsors C such that C(Qp) is 
non-empty for all primes p.

Remark 2.3. For a brief introduction, one may refer to the recent survey [6].

2.2. Goldfeld’s conjecture

An individual invariant may often be delicate to study, an emerging theme is to instead 
investigate its variation in a family.2 In the late 1970’s Goldfeld pioneered the exploration 
of quadratic twist families of elliptic curves over the rationals.

Let A : y2 = x3 + ax + b be an elliptic curve over the rationals as above. For a 
square-free integer d, consider the quadratic twist A(d) : dy2 = x3 + ax + b. A principal 
insight of Goldfeld is that the underlying analytic or arithmetic invariants often vary 
systematically in the quadratic twist family {A(d)}d.

2.2.1. The conjecture
In 1979 Goldfeld [21] proposed the following

Conjecture 2.4 (Goldfeld’s conjecture). Let A be an elliptic curve over Q.
Then, for a density one subset of square-free integers d with ε(A(d)) = +1

(resp. ε(A(d)) = −1):

ords=1L(s,A(d)) = 0, (resp. ords=1L(s,A(d)) = 1).

2 Which may shed some light on the individual invariant.
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We refer to the sign +1 (resp. −1) part as the even (resp. odd) parity Goldfeld 
conjecture. It may be easily seen that 50% of the quadratic twists have sign ±1.

Remark 2.5. The core of Goldfeld’s conjecture is his minimalist principle: Often for 
natural families of elliptic curves over Q - not just the quadratic twist families - the 
subfamily with root number +1 (resp. −1) has generic analytic rank 0 (resp. 1). In 
particular, the distribution of analytic rank is the same as that of the root number. For 
a similar conjecture based on different philosophy, see [32].

Remark 2.6. It is natural to seek an analogue of the conjecture over number fields. In 
general, the root number variation in a quadratic twist family may notably differ.

◦ A counterpart over number fields: [33, Conj. 7.12].
◦ One may also seek a variant of the conjecture for a self-contragredient cuspidal 

automorphic representation of GL2(AF ) for F a number field. Such an investigation 
appears in [1]. Also see Conjecture 2.8 below.

◦ An instance of a contrasting root number variation: Let E/F be an elliptic curve 
with everywhere good reduction, F with no real places but odd (resp. even) number 
of complex places. Then the root number is given by ε(E) = −1 (resp. ε(E) = +1), 
further any quadratic twist of E also has root number −1 (resp. +1). Such examples 
perhaps first appeared in [18]. Over Q( 6

√
−11), the elliptic curve

y2 = x3 + 5
4x

2 − 2x + 7

has everywhere good reduction and its any quadratic twist E′ satisfies ε(E′) = −1. 
In contrast, over Q( 4

√
−37), the elliptic curve

y2 = x3 + x2 − 12x− 67
4

has everywhere good reduction and its any quadratic twist E′ satisfies ε(E′) = +1.

2.2.2. An existence
We recall a mild, yet general result towards Conjecture 2.4 (cf. [20]).
Let F be a number field and π a self-contragredient cuspidal automorphic represen-

tation of GL2(AF ). Then its root number ε(π) ∈ {±1} satisfies

(−1)ords=1/2L(s,π) = ε(π),

where L(s, π) is the L-function of π. Any quadratic twist of π is also self-contragredient.

Theorem 2.7. Let ε ∈ {±1} and χ be a quadratic character over F such that ε(π⊗χ) = ε. 
Let S be a finite set of places of F .
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Then, among the quadratic characters χ′ over F with χ′
v = χv for v ∈ S: there exist 

infinitely many χ′ such that ords=1/2L(s, π ⊗ χ′) = 0 (resp. 1) if ε = +1 (resp. −1).

2.2.3. The conjecture, again
In light of Goldfeld’s minimalist principle, one may naturally propose:

Conjecture 2.8. Let π be a self-contragredient cuspidal automorphic representation of 
GL2(AF ). Let χ be a quadratic character over F with ε(π ⊗ χ) = ε and let S be a finite 
set of places of F .

Then, among the quadratic characters χ′ over F with

(i) ε(π ⊗ χ′) = ε and
(ii) χ′

v = χv for v ∈ S,

the density of χ′ with ords=1/2L(s, π ⊗ χ′) = 0 (resp. 1) is one if ε = +1 (resp. −1).

3. Tunnel’s theorem, generalised

The section reports on a recent generalisation [25] of Tunnell’s theorem to general 
quadratic twist families of elliptic curves over Q (cf. Theorem 3.12). The strategy - a 
departure from Tunnell’s method - employs general explicit Waldspurger formula [12]
and explicit theta liftings.

3.0.1. Notation
For n ∈ Q×, let χn be the quadratic character over Q corresponding to the extension 

Q(
√
n). For N ∈ Z a positive integer, χ : (Z/NZ)× → C× a Dirichlet character, 

and k ∈ 1
2Z such that 4|N if k /∈ Z, let Mk(N, χ) (resp. Sk(N, χ)) denote the space 

of modular forms (resp. cusp forms) of weight k, level Γ0(N), and character χ. These 
spaces are endowed with Hecke action.

3.1. Tunnell’s theorem

3.1.1. The theorem
Let E(n) : y2 = x3 −n2x be the congruent elliptic curve, where n is a positive square-

free integer.
A link among the central L-values and ternary quadratic forms:

Theorem 3.1 (Tunnell’s theorem). There are weight 3/2 modular forms,

∞∑
n=1

anq
n ∈ S3/2(128,1),

∞∑
n=1

bnq
n ∈ S3/2(128, χ2)

such that for all positive square-free integers n,
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L(n) =
{
an,

bn/2,

L(1, E(n))
Ω/

√
n

= L(n)2 ·
{

1
16 , if 2 � n,
1
8 , if 2 | n.

Here L(n) as in (1.1) and Ω =
∞∫
1

dx√
x3 − x

. (cf. [51], [40])

In light of Tunnell’s theorem, the central L-values of the quadratic twist family of 
congruent elliptic curves are modular. Furthermore, the theorem gives an effective way 
to compute the L-values.

3.1.2. Tunnell’s proof
The key tool is a fundamental theorem of Waldspurger, which connects

• The Fourier coefficients of half weight modular forms that are Shimura equivalent to 
a given elliptic newform ϕ,

• The central L-values of the quadratic twists of ϕ.

Shimura equivalence. The Shimura equivalence connects - weight 2 and weight 3/2 -
Hecke eigenforms.

Given a newform ϕ ∈ S2(M, χ2) and an positive integer N ∈ 4Z ∩2MZ, the subspace 
of S3/2(N, χ) Shimura equivalent to ϕ is given by

S3/2(N,χ, ϕ) :=
{
f ∈ S⊥

3/2(N,χ)
∣∣ Tp2f = ap(ϕ)f for all p � N

}
.

Here S⊥
3/2(N, χ) is the subspace of S3/2(N, χ) orthogonal to one variable theta series.

Let ϕ ∈ S2(M, χ2) be a newform and π = ⊗vπv the irreducible automorphic repre-
sentation of GL2(A) associated to ϕ. After Flicker, there exists an integer N such that 
S3/2(N, χ, ϕ) �= 0 if and only if the following hypothesis holds: If πv = π(ξ1,v, ξ2,v) is a 
principal series with associated characters ξ1,v, ξ2,v, then

ξ1,v(−1) = ξ2,v(−1) = 1. (H)

Theorem 3.2 (Waldspurger). Let ϕ ∈ S2(M, χ2) be a newform that satisfies the hypothesis 
(H). Let f =

∑
anq

n ∈ S3/2(N, χ, ϕ) with N ∈ 4Z ∩ 2MZ.
If n1, n2 are positive square-free integers with n1/n2 ∈ Q×2

p for all p|N , then

a2
n1

· L
(
1, ϕ⊗ χ−1

0 χn2

)√
n2χ(n2/n1) = a2

n2
· L

(
1, ϕ⊗ χ−1

0 χn1

)√
n1.

Here χ0(n) = χ(n) 
(−1

n

)
. (cf. [52])

Remark 3.3. A consequence: Assume that an �= 0 for a positive square-free n. Then 
L(1, ϕ ⊗ χ−1

0 χn) �= 0, moreover, for any positive square-free m with m/n ∈ Q×2
p for all 

p|N , one has
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am �= 0 ⇐⇒ L(1, ϕ⊗ χ−1
0 χm) �= 0.

Let ϕ be the newform associated to E : y2 = x3 − x of weight 2 and level 32. Now, 
consider inverse image of the Shimura equivalence for ϕ. As S3/2(64, χ) with χ2 = 1 is 
generated by one variable theta series, one may resort to S3/2(128, χ), which is interlaced 
with weight 1/2 modular forms. Indeed, S3/2(128, χ) and M1/2(128, χ) are 3-dimensional, 
the latter generated by one variable theta series, so multiplication by the unique newform 
in S1(128, χ−2) induces an explicit isomorphism

M1/2(128, χχ2)
∼−→ S3/2(128, χ).

This gives rise to f1 ∈ S3/2(128, 1) and f2 ∈ S3/2(128, χ2), which are Shimura equivalent 
to ϕ satisfying

a1(f1), a3(f1), a1(f2) and a5(f2) are non-zero.

Then Theorem 3.1 is just a special case of Theorem 3.2.

Remark 3.4. If the genus class of a definite integral ternary quadratic form consists of 
only two forms, then the difference of the associated theta series is an eigen cusp form 
of weight 3/2. Qin found the above weight 3/2 modular forms as such (cf. [40]).

3.2. General counterpart

One may seek a generalisation of Tunnell’s theorem: As A varies in the quadratic 
twist family E of an elliptic curve over Q -

(a) Encapsulate modularity of a certain “square root” of

Lalg(1, A) := L(1, A)
ΩA

∈ Q.

(b) Offer an effective algorithm to compute Lalg(1, A) in terms of ternary quadratic 
forms. In particular, an algorithm to determine non-vanishing3 of L(1, A).

The first is essentially addressed by Waldspurger [52]. The second has been studied 
extensively, a notable progress due to Gross [23] - quadratic twists of elliptic curves with 
prime conductor - via Waldspurger formula for toric periods. (See also an extension [3]
of Gross’ work to the square-free conductor case under some local conditions.) Definite 
ternary quadratic forms are elemental to the approach.

3 In turn to determine positivity of rankZA(Q) in finitely many steps as L(1, A) �= 0 ⇒ rankZA(Q) = 0
(cf. [14], [30], [34]). Assuming (the rank part of) the BSD conjecture, this is an effective algorithm.
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In a recent joint work [25] of the second author, a Waldspurger-style result is reproven 
in the context of automorphic forms via theta lifting and Waldspurger formula for toric 
periods (via the local test vector theory developed in [12]). The approach leads to a gen-
eralization of the aforementioned results - due to Tunnell and Gross - for any quadratic 
twist family. In light of the explicit Waldspurger formula [12], (b) is now available for 
the general quadratic twist family of weight 2 newform with trivial character.

In general, due to potential local obstruction arising from the action of Atkin–Lehner 
operators, it is essential to consider a particular subset of the integral solutions of relevant 
ternary quadratic form. We call them oriented solutions (cf. (ot)). The previous results 
toward (b) implicitly assume the vanishing of the local obstruction (cf. Remark 3.13).

In addition, it is crucial4 to resort to certain indefinite ternary quadratic forms (cf. 
Remark 3.13).

3.2.1. Theta lifting
The theory of theta lifting generalizes the classical construction of half weight modular 

forms from quadratic forms.
Let B/Q be a definite quaternion algebra. Then V := Btr=0 is a quadratic space 

with quadratic form q given by minus of the reduced norm. Let H = SO(V ) = PB×

and G = S̃L2(A) be the metaplectic double cover of SL2(A). Fix a non-trivial additive 
character ψ of Q\A. There is a Weil representation w (associated to ψ) of H(A) ×G on 
S(V (A)). Let A0(H) (resp. A0(G)) be the space of automorphic forms on H(A) (resp. 
G). Theta lifting (associated to ψ) is a systematic mechanism to construct automorphic 
forms on G from H and Schwartz functions S(V (A)), via the Weil representation. For 
each φ ∈ S(V (A)), the theta kernel function

θφ : (h, g) �→
∑
x∈V

(w(h, g)φ)(x)

is an automorphic form on H(A) ×G and gives a (H(A) ×G)-equivariant map

θ : A0(H) × S(V (A)) → A0(G), (f, φ) �→

⎛⎜⎝θφf : g �→
∫

H(Q)\H(A)

f(h)θφ(h, g)dh

⎞⎟⎠ .

Let π ⊂ A0(H) be an irreducible cuspidal representation. Recall the theta lifting of 
π is defined to be

θ(π) := {θφf
∣∣ f ∈ π, φ ∈ S(V (A))},

4 If E is a family of CM curves or there exists A ∈ E such that the conductor of A is not a square, then 
definite ternary quadratic forms suffice.
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which is an irreducible cuspidal automorphic representation of G. It is known that θ(π) �=
0 if and only if L(1

2 , π) �= 0.
Let A0,2(H) denote the space of cuspidal automorphic forms on H(A) with the H(R)-

action being trivial and let π ⊂ A0,2(H) be an irreducible. Our goal is to explore precise 
relation between Fourier coefficients of θφf and the central L-values of quadratic twists 
of π, by choosing explicit test vectors f ∈ π and φ ∈ S(V (A)).

First of all, the Fourier coefficients of theta liftings θφf have a natural connection with 
ternary quadratic forms and toric periods.

For m ∈ Q, f ∈ A0(H) and φ ∈ S(V (A)), define the m-th Fourier coefficient of θφf by

Wm(θφf ) =
∫

Q\A

θφf

(
1 x
0 1

)
ψ(−mx)dx.

Pick f ∈ π, then f is constant at infinity and fixed by an open compact subgroup 
U of H(Af ). Pick φ ∈ S(V (A)) such that φ|Vm(A) ∈ S(Vm(A))U , where Vm(·) = {x ∈
V (·) 

∣∣ q(x) = m} for · = Q, Qp, A. Assume that φ = φfin ⊗ φ∞ with finite part given by 
φfin = 1Z for an open compact set Z ⊂ V (Af ) and that φ∞ factors through the reduced 
norm. Say Z = L̂ for a lattice L in V .

On the one hand, Wm(θφf ) has expression in terms of ternary quadratic forms:

Wm(θφf ) .=
∑

[h]∈B×\B̂×/U

f(h)
wh

· #(Vm(Q) ∩ Zh) (FT)

with wh = #H(Q) ∩ hUh−1 and Zh = hZh−1. Here ‘ .=’ denotes equality up to an 
explicit non-zero constant depending on φ∞ and choice of measure.

On the other hand, using Witt theorem, Wm(θφf ) can be expressed in terms of toric 
period: For x ∈ Vm(Q),

Wm(θφf ) =
∫

Tx(A)\H(A)

φ(h−1 · x)PTx
(fh)dh. (FP)

Here · denotes the conjugate action of H on V , Tx ⊂ H is the stabilizer of x, and PTx
(f)

is the toric period

PTx
(f) :=

∫
Tx(Q)\Tx(A)

f(t)dt.

For f ∈ π, φ ∈ S(V (A)), we seek a relation between the Fourier coefficients Wm(θφf )
of θφf and the quadratic twist central L-values L(1

2 , π ⊗ χm) as m varies. Let M be the 
conductor of the Jacquet–Langlands correspondence σ of π.
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Definition 3.5. Let C ⊂ Q× be an equivalence class with respect to the relation:

a ∼ b ⇐⇒ a/b ∈ Q×2
v for all v | 2M∞.

We call C an M -equivalence class.

The root number of σ ⊗ χm is independent of m ∈ C, denoted by ε(C). Assume 
ε(C) = 1 and that (π, C) satisfies the Tunnell–Saito condition (cf. (TS)). In the explicit 
Waldspurger formula [12] (see Theorem 3.8), as m varies in C, one can find a common 
vector f ∈ π, such that the toric period PTx

(f), is proportional to the base change 
central L-value L(1

2 , πKm
) = L(1

2 , π)L(1
2 , π ⊗ χm). Here x ∈ V with q(x) = m and 

Km = Q(
√
m).

The following notion of an admissible pair (f, φ) for f ∈ π and φ ∈ S(V (A)) is 
elemental in the context of Shimura equivalence. It is purely local, perhaps easier to 
check and more flexible than Shimura equivalence.

From now on, further choose ψ in the Weil representation with ψ∞(x) = e2πicx for 
c ∈ Q<0.

Definition 3.6. Let f = ⊗fv ∈ π and φ = ⊗vφv ∈ S(V (A)) be pure tensors. We call 
(f, φ) an admissible pair if

• for p � 2M∞, fp is spherical and φp = 1M2(Zp)tr=0 ,
• φ∞(x) = e2π|c|q(x),
• for p|2M , φp ∈ S(V (Qp)) is invariant under left multiplication by 1 + 2pZp.

Define normalized Fourier coefficients of θφf :

an(θφf ) := e2π|c|nW−n(θφf ), n ∈ Q.

Relation of explicit Waldspurger formulae with different test vector is given in [12]. We 
compare am(θφf ) with the toric periods defined by another test vector in [12]. It turns 
out, for an admissible pair (f, φ), the ratio is constant as m varies in an equivalence 
class. We have (cf. [25]):

Theorem 3.7. Let π ⊂ A0,2(H) with L(1
2 , π) �= 0. Let (f, φ) be an admissible pair.

Then for any positive square-free integers n1, n2 with n1/n2 ∈ (1 + 2pZp)2 for all 
p|2M ,

|an1(θ
φ
f )|2L

(
1
2 , π ⊗ χ−n2

)√
n2 = |an2(θ

φ
f )|2L

(
1
2 , π ⊗ χ−n1

)√
n1.

However, the above theorem is ineffective since it does not offer construction of an 
admissible pair such that the Fourier coefficient with a given index is non-zero. Actually, 
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the construction is the crux of the main result of [25], which relates quadratic twist 
L-values to ternary quadratic forms.

3.2.2. Quadratic twist subfamilies
Let E be the quadratic twist family of an irreducible cuspidal automorphic repre-

sentation of PGL2(A) whose infinite component is the discrete series of weight 2. We 
first partition the family into finitely many subfamilies and then for each subfamily, we 
construct an admissible pair that is effective for this subfamily: the Fourier coefficients 
of its theta lifting interpret the central L-values of the representations in this subfamily. 
Furthermore, we also seek to relate the Fourier coefficients to ternary quadratic forms.

Let σ ∈ E be such that L(1
2 , σ) �= 0 and M denote the conductor of σ. Let C ⊂ Q×

be an M -equivalence class. Then we have a subfamily of E given by

EC := {σ ⊗ χm

∣∣ m ∈ C} ⊂ E .

Actually, E can be covered by finitely many EC ’s (σ may differ).
Notice it suffices to consider a set-up: L(1

2 , σ) �= 0 and C an M -equivalence class with 
ε(C) = 1. Let B be the quaternion algebra over Q such that (σ, C) satisfies Tunnell–Saito 
condition, i.e. for each K = Q(

√
m), m ∈ C:

ε(σv,1Kv
) = ηv(−1)ε(Bv) (TS)

holds for all places v of Q. Here ε(σv, 1Kv
) is the local root number at v of the Rankin–

Selberg L-function L(s, σ × 1K), ηv the quadratic character associated to the extension 
Kv/Qv and ε(Bv) ∈ {±1} the invariant of B at v. Let H = PB× and π ⊂ A0(H) be 
with πJL = σ.

For simplicity, we often assume σ corresponds to an elliptic curve over Q and that B
is definite.5

3.2.3. Quadratic twist L-values and toric periods
We first present the explicit Waldspurger formula in [12] which connects toric periods 

to quadratic twist L-values.
Let π ⊂ A0,2(H) be irreducible and M be the conductor of its Jacquet–Langlands 

transfer σ = πJL. For simplicity, assume that σ corresponds to an elliptic curve over 
Q. Let C ⊂ Q× be an M -equivalence class. Assume (π, C) satisfies the Tunnell–Saito 
condition (TS).

Let K ⊂ B with K � Q(
√
m), m ∈ C. An order R ⊂ B is called admissible (with 

respect to (π, K)) if its discriminant equals M and R ∩ K = OK . Then the following 
space is one dimensional:

5 In fact, to construct half weight modular forms effectively for EC and to connect with ternary quadratic 
forms, the ensuing approach works well for a general quaternion algebra.
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V (π,K) :=
{
f ∈ π

∣∣∣∣∣ f is invariant under R̂× and K×
p for any p|M ramified in K

}
.

We call its generator an admissible test vector for (π, 1K) with level R̂×. (A proof of the 
fact that the space V (π, K) is one dimensional and consists of pure tensors appears in [12], 
which generalizes the newform theory.) Let ΣC ⊂ C denote the subset of fundamental 
discriminants in C. A vector f0 ∈ π is admissible for C if there exists x ∈ VD0(Q) for 
some D0 ∈ ΣC and an admissible order R0 (with respect to (π, Q(x))) such that f0 is 
an admissible test vector for (π, 1Q(x)) with level R̂×

0 . Let f0 be admissible for C, then 
for any D ∈ ΣC and xD ∈ VD(Q), there exists hD ∈ H(A) such that fD := fhD

0 is 
an admissible test vector for (π, 1Q(xD)) with level R̂×

D for RD := hDR̂0h
−1
D ∩ B (an 

admissible order).
In particular, we may choose hD0 = 1, xD0 = x and then f0 = fD0 . From now, fix 

such choices.
For D ∈ ΣC , let KD = Q(xD) and OD the ring of integers of KD. Denote

P 0
KD

(fD) :=
∑

t∈Cl(KD)

fD(t).

Theorem 3.8 (Explicit Waldspurger formula). Let f0 be a non-zero C-admissible test 
vector, valued in the rationals.

Then there exists a constant kC ∈ Q× dependent only on π and C:

√
D · L(∞) ( 1

2 , σKD

)
Ω+

σ Ω−
σ

= kC ·
|P 0

KD
(fD)|2

[O×
D : Z×]2

∈ Q

for all D ∈ ΣC . Here (Ω+
σ , Ω−

σ ) ∈ (R× × iR×) are Shimura’s fundamental periods asso-
ciated to σ. (cf. [12])

3.2.4. Optimal choices
For B and f0 = fD0 ∈ π a Z-primitive C-admissible test vector as in Theorem 3.8, 

one may seek a φ0 inherent to the ternary quadratic form such that exactly one toric 
period appears in the Fourier coefficients6 of θφ0

f0
. One may even consider all D ∈ ΣC

simultaneously.
A simple yet key result [25]:

Proposition 3.9. There exists a lattice L0 ⊂ V and an open compact subgroup U0 ⊂ R̂×
0

such that

LD := hDL̂0h
−1
D ∩ V

6 Note that the D-th Fourier coefficient WD(θφ
f ) only depends on the restriction φ|VD(A).
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is an xD-distinguished lattice with level UD := hDU0h
−1
D ⊂ R̂×

D for any D ∈ ΣC - the 
definition being:

LD,p ∩ VD(Qp) = UD,p · {±xD}

for all prime p.

For unique toric integral to appear in the Fourier coefficients, it is essential to isolate a 
certain symmetry arising from the abelian group structure of lattices, thereby switching 
to a finer structure: For each p|2M , write Z×

p = up�−up for some open compact subset 
up of Z×

p invariant under multiplication of 1 +2pZp with 1 ∈ up. For D ∈ ΣC and p|2M , 
further choose 

√
D/D0 ∈ up and hD ∈ H(A) such that√

D/D0xD0 = h−1
D,p · xD ∈ V (Qp).

For a prime p|2M , define a local condition Lo
D,p ⊂ LD,p by

Lo
D,p =

{
� ∈ LD,p

∣∣∣ � ∈ UD,p · (up,DxD)
}

here up,D ⊂ Z×
p such that up,DxD = hD,p · (upxD0).

Now let φD = φD,fin⊗e2π|c|q(·): φD,fin the characteristic function of L̂(2M)
D ·

∏
p|2M Lo

D,p.

Definition 3.10. The special admissible pairs (fD, φD), D ∈ ΣC are called distinguished.

The theta lifting

θC := θφD

fD

does not depend on the choice of D. Now let (f, φ, L, U, {Lo
p}p|2M ) be any one of(

fD, φD, LD, UD, {Lo
D,p}p|2M

)
, D ∈ ΣC .

Definition 3.11. For each [h] ∈ XU := B×\B̂×/U , let Lo
h ⊂ Lh := hL̂h−1 ∩ V be the 

subset

Lo
h =

{
� ∈ Lh

∣∣∣ � ∈ h · Lo
p for all p|2M

}
. (ot)

We refer to Lo
h ⊂ Lh as the oriented solutions of the underlying ternary quadratic form.

In light of (FP), (FT), it now follows: For each D ∈ ΣC , normalized Fourier coefficients 
of θC satisfy

a|D|(θC) =
P 0
KD

(fD)
× ×
[OD : Z ]
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and

a|D|(θC) =
∑

[h]∈XU

f(h)
wh

· #(Lo
h ∩ VD(Q)),

where wh := #(hUh−1 ∩H(Q)) is finite.

3.2.5. Main result
Let π ⊂ A0,2(H) and M the conductor of the Jacquet–Langlands transfer σ of π. 

Let C be an M -equivalence class with ε(C) = 1 such that (π, C) satisfies Tunnell–Saito 
condition (TS).

Theorem 3.12. Assume B is definite and L(1
2 , σ) �= 0. Let (f, φ) be a distinguished pair 

as in §3.2.4.
Then there exists an explicit constant kC ∈ Q× such that for each D ∈ ΣC ,

√
D · L(∞) ( 1

2 , σ ⊗ χD

)
Ω−

σ
= kC ·

⎛⎝ ∑
[h]∈XU

f(h)
wh

· #(Lo
h ∩ VD(Q))

⎞⎠2

.

Here the notation is as in §3.2.4. (cf. [25])

Remark 3.13.

(i) A more general set-up appears in [25]: weight k and indefinite quaternion algebras.7
(ii) If for each v|M , ε(πv) = ε(Bv), then the local obstruction of Atkin–Lehner operator 

disappears. The oriented solutions in Theorem 3.12 may thus be replaced by the 
whole lattice solutions - switching the constant kC with a 2-power multiple.

(iii) If E is CM or there exists A ∈ E with non-square conductor, then there exists 
n1 > 0, n2 < 0: both L(s, A(n1)) and L(s, A(n2)) have sign +1 and also do not 
vanish at the center. In this case, there exists a partition of E such that each EC
corresponds to a definite quaternion algebra. There is an example of E does not 
satisfy such condition [16].

3.3. Congruent number L-values, revisited

As an application of Theorem 3.12, we recover Tunnell’s theorem and exhibit a new 
interpretation of the central L-values of the congruent number elliptic curves in terms 
of ternary quadratic forms.

7 Accordingly, the infinite component π∞ may be non-trivial and in general, one needs to account for 
infinitely many integral solutions with fixed reduced norm in an indefinite lattice.
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3.3.1. Tunnell’s theorem, again
Let σ be the irreducible cuspdial automorphhic representation associated to E : y2 =

x3 − x, its conductor M = 32. We first use Theorem 3.7 to recover Tunnell’s result. Let 
C ⊂ Q<0 be an M -equivalence class consisting of negative rationals. Then ε(C) = 1
if and only if C = [−1], [−2], [−10], [−3], where [n] denotes the M -equivalence class of 
n ∈ Q×. Now pick C with ε(C) = 1 to be one of [−1], [−2], [−3].

The quaternion algebra determined by C such that (σ, C) satisfies Tunnell–Saito con-
dition (TS) is the quaternion algebra B over Q ramified exactly at 2 and infinity, i.e.

B = Q⊕Qi⊕Qj ⊕Qk

with i2 = j2 = −1, ij = k = −ji. Let H = PB× and π ⊂ A0,2(H) be irreducible: the 
Jacquet–Langlands correspondence of π is σ. For the existence of admissible pairs, we 
begin with the computation of the space V (π, K) (cf. [50]).

Let K = Q(x) ⊆ B with

x = i, i + j, i + j + k, for C = [−1], [−2], [−3], respectively.

Let OB be the maximal order of B generated over Z by i, j, 
1 + i + j + k

2 . Then

R = OK + 4OB

is an admissible order for (π, 1K). The (finite) Shimura set XR̂× of level R̂× has repre-
sentatives given by elements in H(Q2):

XR̂× =

⎧⎪⎪⎨⎪⎪⎩
{12, (1 + 2j)2, (1 + 1 + i + j + k)2, (1 + 1 + i− j + k)2}, if C = [−1],
{12, (1 + 2j)2}, if C = [−2],
{12, (1 + 2j)2}, if C = [−3].

A basis f : XR̂× → Z of the one dimensional space V (π, K) with respect to the above 
representatives of XR̂× (cf. [50]):

f =

⎧⎪⎪⎨⎪⎪⎩
(1,−1, 0, 0), if C = [−1],
(1,−1), if C = [−2],
(3,−1), if C = [−3].

Let L ⊂ V be the lattice with level 
{

128, if C = [−1], [−3]
256, if C = [−2]

and character 1 given by

L =
{
Zi⊕ Z(j + k) ⊕ Z4(j − k), if C = [−1], [−3]
Z(i + j) ⊕ Z2(i− j) ⊕ Z8k, if C = [−2].
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Put φ = 1L̂ ⊗ e2π|c|q(·) ∈ S(V (A)). Then (f, φ) is an admissible pair.
In view of Theorem 3.7 and (FT), finally Tunnell’s result:
For any positive square-free integer n,

L(1, E(n))
Ω/

√
n

= 1
16 ·

{
(#L1 ∩ V−n(Q) − #L2 ∩ V−n(Q))2, if n ≡ 1, 3 (mod 8)
2(#L′

1 ∩ V−n(Q) − #L′
2 ∩ V−n(Q))2, if n ≡ 2 (mod 8).

Here Ω =
∫∞
1

dx√
x3−x

, {L1, L2}, {L′
1, L

′
2} the genus class of lattices in V given by

{L1 = Zi⊕ Z(j + k) ⊕ Z4(j − k), L2 = Z(i + j) ⊕ Z2k ⊕ Z(2i− 2j + k)}

and

{L′
1 = Z(i + j) ⊕ Z2(i− j) ⊕ Z8k, L′

2 = Z2(i− j) ⊕ Z2(i + j) ⊕ Z(i + j − 4k)}.

Note that the ternary quadratic forms corresponding to L1, L2, L′
1, L

′
2 are given by

x2 + 2y2 + 32z2, 2x2 + 4y2 + 9z2 + 4yz,

2x2 + 8y2 + 64z2, 8x2 + 8y2 + 18z2 + 8yz,

respectively. It is easy to see the equivalence to Tunnell’s theorem.

3.3.2. Congruent number L-values, anew
In light of Theorem 3.12, one may obtain central L-value formulae for congruent num-

ber elliptic curves in term of different ternary quadratic forms (or equivalently different 
lattices).

(I) Let x = 2i ∈ B and R = Z[i] + 4OB . Let f be the test vector in the last subsection 
for C = [−1]. Consider the genus class of lattices in V with level 128 and character 
1 consisting of

L1 = Zi⊕ Z4(j − k) ⊕ Z4(j + k),

L2 = Z2i⊕ Z(i + 4k) ⊕ Z(4j − i),

L3 = Z2i⊕ Z(i + 2j + 2k) ⊕ Z4(j − k).

Then the lattice 2L1 is x-distinguished and (f, 12L̂1
⊗e2π|c|q(·)) a distinguished pair.

Proposition 3.14. For any positive square free integer n ≡ 1 (mod 8),

L(1, E(n))√ = 1 (
#L1 ∩ V−n(Q) − #L2 ∩ V−n(Q)

)2
.

Ω/ n 16
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(II) We now construct a new distinguished pair whose Fourier coefficients interpret the 
L-values L(1, E(n)) for positive square-free integers n ≡ 1 (mod 8).
Let σ′ = σ ⊗ χ2 be with conductor M ′ = 64. Consider the M ′-equivalence class 
C = [−2] with ε(C) = 1. The pair (σ′, C) gives the quaternion algebra B as in 
§3.3.1. Let π′ := π ⊗ χ2 ⊂ A0,2(H) and K := Q(x) ⊂ B with x := 2(i + j).
Then

R := OK + 4(i + j)OB

is an admissible order for (π′, 1K). The Shimura set XR̂× has representatives given 
by elements in H(Q2):

XR̂× = {12, (1 + 2j)2, (1 + 2(1 + i + j + k))2, (1 + 3(1 + i + j + k))2} .

A Z-primitive test vector in V (π′, K) is given by

f ′ = (1, 1,−1,−1).

Consider the genus class of lattices in V with level 512 and character 1 consisting 
of

L′
1 = Z(i + j) ⊕ Z8(i− j) ⊕ Z8k,

L′
2 = Z2(i + j) ⊕ Z8k ⊕ Z(−3i + 5j − 4k),

L′
3 = Z8k ⊕ Z16i⊕ Z(9i + j),

L′
4 = Z2(i + j) ⊕ Z8(i− j) ⊕ Z(i + j + 4k).

Then the lattice 2L′
1 is x-distinguished and (f ′, 12L̂′

1
⊗e2π|c|q(·)) a distinguished pair.

Proposition 3.15. For any positive square-free integer n ≡ 1 (mod 8),

L(1, E(n))
Ω/

√
n

= 1
16

(
#L′

1∩V−2n(Q)+#L′
2∩V−2n(Q)−#L′

3∩V−2n(Q)−#L′
4∩V−2n(Q)

)2
.

Remark 3.16. Let θ, θ′ be the theta lifting of the distinguished pairs as in (I), (II) 
respectively. For positive square-free n ≡ 1 (mod 8), one has

a2
4n(θ) = a2

8n(θ′)

(cf. Proposition 3.14 and Proposition 3.15). However, as n varies in positive square-free 
integers with n ≡ 1 (mod 8), note that the sequence {a4n(θ)} is not proportional8 to 
{a8n(θ′)}.

8 For example, a4(θ) = a8(θ′) but a4·57(θ) = −a8·57(θ′).
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4. p-converse

4.0.1. The Birch and Swinnerton-Dyer conjecture, bis
Let A be an elliptic curve over Q and p a prime.
The p∞-Selmer group Selp∞(A/Q) appears as the middle term of the short exact 

sequence

0 → A(Q) ⊗Z Qp/Zp → Selp∞(A/Q) → X(A/Q)[p∞] → 0, (4.1)

for X(A/Q)[p∞] the p-primary part of X(A/Q).
In view of the exact sequence (4.1), Conjecture 2.2 suggests:

Conjecture 4.1. Let A be an elliptic curve over Q. The following are equivalent.

(a) rankZA(Q) = r and X(A/Q) is finite.
(b) corankZp

Selp∞(A/Q) = r for p a prime.
(c) ords=1L(s, A) = r.

Part (b) follows from part (a) just by (4.1). That (c) =⇒ (a) is a spectacular result9
towards the Birch and Swinnerton-Dyer conjecture due to Coates–Wiles [14] and Rubin 
[41] (the CM case), and Gross–Zagier [24] and Kolyvagin [34] (the general case).

After Skinner, nowadays, ‘(b) =⇒ (c)’ is referred to as a p-converse: a p-adic criterion 
to have analytic rank r. For r = 0, an important progress towards the p-converse - Rubin 
[42] (the CM case) and Skinner–Urban [44] (the ordinary non-CM case). The r = 1 case 
remained widely open until the breakthrough due to Zhang [54] and Skinner [43] (the 
ordinary non-CM case) a few years back. Since then, the p-converse is undergoing a 
revival, in light of which one may hope a complete resolution of:

Conjecture 4.2 (p-converse). Let A be an elliptic curve over Q, p a prime and r = 0, 1. 
Then,

corankZp
Selp∞(A/Q) = r =⇒ ords=1L(s,A) = r.

Our study concerns some of the missing cases, notably the CM curves (cf. [10], [11], 
[7], [8], [9]). For a brief overview of the current progress towards Conjecture 4.2, one may 
refer to [6, §3.1–3.2].

4.0.2. The Goldfeld conjecture, bis
In view of Conjecture 2.4 and Conjecture 4.2:

9 For a brief introduction, one may see [6, §3.1–3.2].
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Conjecture 4.3. Let A be an elliptic curve over Q and p a prime.
Then, for a density one subset of square-free integers d with ε(A(d)) = +1

(resp. ε(A(d)) = −1):

corankZp
Selp∞(A(d)/Q) = 0, (resp. corankZp

Selp∞(A(d)/Q) = 1).

4.0.3. p-converse to a theorem of Coates–Wiles and Rubin

Theorem 4.4. Let A be a CM elliptic curve over Q and p a prime. Then

corankZp
Selp∞(A/Q) = 0 =⇒ L(1, A) �= 0.

In the early 1990’s Rubin [42] proved this p-converse when p � #O×
K for K the CM 

field - the hypothesis being essential to utilise the Euler system of elliptic units. The case 
p = 2 remained open since then. The unconditional p-converse is quite recent [11].

Now, in view of Theorem 3.1:

Corollary 4.5. For a positive square-free integer n ≡ 1, 2, 3 mod 8, let E(n) be the con-
gruent elliptic curve ny2 = x3 − x. Let p be a prime. Then,

L(n) �= 0 ⇐⇒ corankZp
Selp∞(E(n)/Q) = 0.

Approach. Unconventionally - for the CM case - the approach employs the Beilinson–
Kato elements [30]. It is inherently Iwasawa theoretic, principle:

Galois actions on arithmetic objects ←→ zeta values.

(cf. [31]). Indeed, the decisive shift is to consider Kato’s main conjecture for A (cf. [30, 
Conj. 12.10]) instead of the habitual elliptic units main conjecture for K (cf. [42], [28]). 
The heart of [11] is the proof of Kato’s main conjecture, which via an Iwasawa descent 
implies Theorem 4.4.

Remark 4.6. Unlike [42], our approach uniformly treats the ordinary and non-ordinary 
primes.

4.0.4. p-converse to a theorem of Gross–Zagier, Kolyvagin and Rubin

Theorem 4.7. Let A be a CM elliptic curve over the rationals with conductor N and 
p � 6N a prime. Then,

corankZp
Selp∞(A/Q) = 1 =⇒ ords=1L(s,A) = 1.
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For p also a prime of ordinary reduction, this p-converse was proved in [11]. It is a 
rare instance where the non-CM case [43], [54] preceded the CM case. The supersingular 
case will appear in [9] (cf. [4], [5]). Another approach, which generalizes to CM curves 
over totally real fields, is given in [8].

A salient feature of [11], [8]: the arithmetic of auxiliary Heegner points over the CM 
field. For CM curves, the CM field does not satisfy the Heegner hypothesis - while - it 
is natural to seek to utilise the arithmetic of the CM field. The generality of the Gross–
Zagier formula [53] allows us to still introduce auxiliary Heegner points over the CM 
field. The core of the approach: an interplay between Iwasawa theory of the auxiliary 
Heegner points [37] and CM Iwasawa theory [42]. For a more detailed account of the 
strategy, one may refer to [6, §4].

5. Distribution of Selmer groups

5.1. Conjectures

The subsection presents conjectures on the distribution of Selmer groups of elliptic 
curves over a fixed number field following [39], [2]. As an instructive introduction, one 
may refer to [38].

Let A be an elliptic curve over a number field F and p a prime. For the p∞-Selmer 
group Selp∞(A/F ), the exact sequence

0 → A(F ) ⊗Qp/Zp
κ−→ Selp∞(A/F ) → X(A/F )[p∞] → 0 (SeqA)

of cofinitely generated Zp-modules is split.

5.1.1. The mod p Selmer groups
We recall the distribution model for the mod p Selmer groups Selp(A/F ) due to 

Poonen and Rains [39].
Consider the infinite dimensional locally compact hyperbolic quadratic space

V :=
∏
v

′
H1(Fv, A[p]).

Here the restricted product arises from {A(Fv)/pA(Fv)}v and the quadratic form Q: the 
sum of local quadratic forms Qv corresponding to the map

H1(Fv, A[p]) → H2(Fv,Gm) ↪→ Q/Z,

which arises from the short exact sequence

0 → Gm → H → A[p] → 0

of GFv
-modules for H the Heisenberg group scheme as in [39].
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By definition, Selp(A/F ) is the intersection of two maximal isotropic subspaces: the 
images of H1(F, A[p]) under the restriction map and the local Kummer maps:∏

v A(Fv)/pA(Fv)
κv

∏′
v H

1(Fv, A[p])

H1(F,A[p])

Res

This perhaps suggests the following model.
Let (V = W ⊕W∨, Q) be a hyperbolic quadratic space over Fp of dimension 2n with 

the natural quadratic form and IV the set of maximal isotropic subspaces.
A key proposal [39]:

Conjecture 5.1.

Prob (dim Selp(A/F ) = d) = lim
dimV→∞

Prob
(
dim(Z1 ∩ Z2) = d

∣∣∣ Z1, Z2 ∈ IV

)
It may be seen that

Cp,d := lim
dimV→∞

Prob
(
dim(Z1 ∩ Z2) = d

∣∣∣ Z1, Z2 ∈ IV

)
=

∞∏
j=0

(1 + p−j)−1
d∏

i=1

p

pi − 1 .

In particular, when ordered by height, the elliptic curves with rankZA(F ) ≥ 2 have 
density ≤ p+1

p2 . In light of the BSD conjecture, the Poonen–Rains conjecture thus implies 
the following.

Conjecture 5.2 (Rank conjecture). Let r ∈ {0, 1}. When ordered by height, 50% of the 
elliptic curves over F have Mordell–Weil rank r.

5.1.2. The p∞-Selmer groups
Following Bhargava, Kane, Lenstra, Poonen and Rains (cf. [2]), we now switch to the 

p∞-Selmer group.
Equip Z2n

p with the hyperbolic quadratic form Q : Z2n
p → Zp given by

Q(x1, · · · , xn, y1, · · · , yn) =
n∑

i=1
xiyi.

A direct summand Z of Z2n
p is called maximal isotropic if Q|Z = 0 and the rank of Z is 

n. Let OGrn(Zp) be the set of the maximal isotropic Zp-submodules of Z2n
p . Let OGrn
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be the underlying smooth projective scheme over Z. Consider the natural probability 
measure νn on OGrn(Zp):

νn(S) := lim
e→∞

#Im (S → OGrn(Z/peZ))
#OGrn(Z/peZ)

for S ⊂ OGrn(Zp) an open and closed subset. Fix W := Zn
p × 0 and Z at random.10

In the spirit of §5.1.1 define

R := (Z ∩W ) ⊗Zp
Qp/Zp,

S := (Z ⊗Zp
Qp/Zp) ∩ (W ⊗Zp

Qp/Zp),

T := S/R.

Note that T is finite, endowed with a canonical non-degenerate alternate pairing. Let 
Q2n be the distribution of the isomorphism class of the short exact sequences

0 → R → S → T → 0, (5.1)

induced from νn. It may be seen that the limit of Q2n exists, say Q.
A fundamental proposal [2]:

Conjecture 5.3. Let F be a global field and S a short exact sequence of Zp-modules as in 
(5.1). When ordered by height, the density of{

A : SeqA � S
}

equals the Q-probability of S.
More precisely, let G be a finite symplectic p-group. Then

Prob
(
Selp∞(A/F ) � (Qp/Zp)r ⊕G

)
= (#G)1−r

#Sp(G) ×

⎧⎪⎨⎪⎩
1
2

∞∏
i=r+1

(1 − p1−2i), if r = 0, 1,

0, if r ≥ 2.

The scheme OGrn is a disjoint union of two isomorphic subschemes OGr±n such that -
for any field k - OGr+n (k) (resp. OGr−n (k)) parameterize Z ∈ OGrn(k) with dim(Z∩Wk)
even (resp. odd). Further, the locus with dim(Z ∩Wk) ≥ 2 has lower dimension (cf. [2]). 
Thus Conjecture 5.3 implies Conjecture 5.2. Note that the conjecture in [15] is also a 
consequence of Conjecture 5.3. Assuming independence in p, it also implies:

Conjecture 5.4. Let n ∈ Z≥1. When ordered by height, the average of #Seln(A/F ) is 
σ(n) :=

∑
d|n d.

10 In fact, equivalent to choose both Z and W at random, since O(V, Q) acts transitively on OGrn(Zp).
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In particular, the average of #Sel2n(A/F ) is conjecturally 2n+1 − 1, which resonates 
through the following subsection.

5.2. Smith’s work

In his remarkable thesis, Smith [46] made the following breakthrough towards the 
distribution of the 2∞-Selmer groups in the quadratic twist family of elliptic curves over 
Q (cf. [22]).

Theorem 5.5. Let A/Q be an elliptic curve such that

A[2] ⊂ A(Q) and A has no cyclic subgroup of order 4 defined over Q. (ord)

Let r ∈ Z≥0 and G be a symplectic 2-group.
Then, as d varies over square-free integers:

Prob
(
Sel2∞(A(d)/Q) ∼= (Q2/Z2)r ⊕G

)
= (#G)1−r

#Sp(G) ×
{

1
2
∏∞

i=r+1(1 − 21−2i), if r = 0, 1,
0, if r ≥ 2.

A couple of striking consequences:

Corollary 5.6. Let A be an elliptic curve over Q as in Theorem 5.5.
Then, for a density one subset of square-free integers d with ε(A(d)) = +1

(resp. ε(A(d)) = −1):

corankZ2Sel2∞(A(d)/Q) = 0, (resp. corankZ2Sel2∞(A(d)/Q) = 1).

Corollary 5.7. The density of non-congruent numbers in all positive square-free integers 
n ≡ 1, 2, 3 mod 8 is one.

Remark 5.8. The quadratic twist family of elliptic curves is complementary to Conjec-
ture 5.3, yet intriguingly Theorem 5.5 echoes the same principal.

Remark 5.9.

◦ Very recently, Smith has announced: Theorem 5.5 also holds for elliptic curves A/Q

with A(Q)[2] = 0. When ordered by height, a density one subset of elliptic curves 
over Q satisfies the hypothesis.

◦ Suppose A(Q)[2] � Z/2Z and let A′ be the isogenous curve arising from the 2-
torsion. If Q(A[2]) �= Q(A′[2]), Smith has announced: Corollary 5.6 still holds.
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5.3. Goldfeld’s conjecture: an instance

By Corollary 5.6 and Theorem 4.4,

Corollary 5.10. Let E(n) : y2 = x3 − n2x, n ∈ N, be congruent number elliptic curves. 
Then,

L(1, E(n)) �= 0 for a density one subset of positive square-free integersn ≡ 1, 2, 3 mod 8.

Remark 5.11. In light of Remark 5.9 and Theorem 4.4: The even parity Goldfeld con-
jecture holds for quadratic twist family of CM elliptic curves over Q, once the CM field 
differs from Q(

√
−2).

6. Distribution of 2-Selmer groups: exceptional case

Let E be a fixed elliptic curve over Q. Recall that the 2-Selmer group Sel2(E/Q)
appears in the fundamental short exact sequence

0 → E(Q)/2E(Q) κ−→ Sel2(E/Q) → X(E/Q)[2] → 0.

In particular, if Sel2(E/Q) = κ(E(Q)tor), then E has Mordell–Weil rank 0 and 
X(E/Q)[2] = 0. On the other hand, if Sel2(E/Q)/κ(E(Q)tor) is non-trivial and E
has Mordell–Weil rank 0: X(E/Q)[2] is non-trivial.

The 2-parity conjecture, proved by Monsky [35] (see also [17]), asserts that

dimF2

(
Sel2(E/Q)/κ(E(Q)tor)

)
≡ ord

s=1
L(s, E) mod 2.

For simplicity assume that E[2] ⊂ E(Q). For a square-free integer n, let E(n) be the 
quadratic twist of E by Q(

√
n) and define the rational number

L (n) := L(1, E(n))
ΩE(n)

·
( ∏

� c�(E(n))
#E(n)(Q)2tor

)−1

,

the analytic Sha of E(n) if L(1, E(n)) �= 0.
Given a residue class a mod M , one may seek to study: among all positive 

(or negative) square-free integers n in this residue class, the minimal value of 
dimF2 Sel2(E(n)/Q)/κ(E(n)(Q)tor) and the 2-adic valuation of L (n) of E(n), and the 
distribution of n which ord2L (n) attains the minimum.

6.0.1. A precursor
If E satisfies (ord), then the results of Heath-Brown [26], Swinnerton-Dyer [47] and 

Kane [29] exhibit the minimal value of 2-Selmer ranks and its distribution among the 
residue classes. The results suggest that the distribution of 2-Selmer groups in a quadratic 
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twist family (modulo the contribution of torsion points) still mirrors the Poonen–Rains 
principle11 (cf. Conjecture 5.1). The phenomenon inspired and resonates through Smith’s 
work on 2∞-Selmer groups [45], [46].

The main results of [26], [47], [29]:

Theorem 6.1. Let E/Q be an elliptic curve satisfying (ord). Let n0 be a square-free 
integer and d0 = dimF2 Sel2(E(n0)/Q)/κ(E(n0)(Q)tor). Let N be the conductor of E, 
and [n0] ⊂ Q× the N -equivalence class12 which contains n0.

(i) For d, k ∈ Z≥0, let πd,k denote the following probability among square-free integers 
n with k distinct prime factors such that n ∈ [n0]:

πd,k := Prob
(
dimF2 Sel2(E(n)/Q)/κ(E(n)(Q)tor) = d

)
.

Then

lim
k→∞

πd,k =
{

2
∏∞

j=0(1 + 2−j)−1 ∏d
i=1

2
2i−1 , if d ≡ d0 (mod 2),

0, if d �≡ d0 (mod 2).

(ii) For d ∈ Z≥0, among square-free integers n ∈ [n0]:

Prob
(
dimF2 Sel2(E(n)/Q)/κ(E(n)(Q)tor) = d

)
=

{
2
∏∞

j=0(1 + 2−j)−1 ∏d
i=1

2
2i−1 , if d ≡ d0 (mod 2),

0, if d �≡ d0 (mod 2).

In particular, for d ∈ Z≥0, among square-free integers n:

Prob
(
dimF2 Sel2(E(n)/Q)/κ(E(n)(Q)tor) = d

)
=

∞∏
j=0

(1 + 2−j)−1
d∏

i=1

2
2i − 1 .

Part (i) is due to Swinnerton-Dyer [47], a key: (πd,k)∞d=0 is connected by a Markov 
chain as k varies. Via analytic tools, Kane [29] proved that part (i) implies part (ii) - a 
transition from the density for integers with restricted prime factors to natural density. 
The above theorem for the congruent number elliptic curve y2 = x3 − x is also due to 
Heath-Brown [26], an independent approach.

6.0.2. An exceptional case
Some quadratic twist families of elliptic curves over Q satisfy neither (ord) nor the 

hypotheses in Remark 5.9.

11 Though their framework excludes the quadratic twist family.
12 See Definition 3.5.
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A key missing case:

E[2] ⊂ E(Q) and E has rational 4-torsion points. (exc)

For example, the quadratic twist family of tiling number elliptic curves

E(n) : y2 = x(x− n)(x + 3n).

Notice E(Q)tor ∼= Z/2Z × Z/4Z.
Perhaps surprisingly, in light of the presence of such rational 4-torsion, the distribution 

of 2-Selmer groups no longer seems to be as in Theorem 6.1. A suggestive example [19]:

Proposition 6.2. Let E be the elliptic curve y2 = x(x − 1)(x + 3). If n �= 1, n ≡ 1
(mod 12) is positive square-free, then

dimF2 Sel2(E(−n)/Q)/κ(E(−n)(Q)tor) ≥ 2,

and the corresponding L (−n) is also even.

6.1. Main results

Our preliminary study suggests that for elliptic curves satisfying (exc), the distribution 
of 2-Selmer groups may resemble that of the 4-ranks of ideal class groups of the underlying 
imaginary quadratic fields.

Let g(n) := #2Cl(Q(
√
−n)), in particular, g(n) is odd if and only if Q(

√
−n) has no 

ideal class of exact order 4.
A main result of [19]:

Theorem 6.3. Let E be the elliptic curve y2 = x(x − 1)(x + 3). Let n ≡ 3, 7 (mod 24) be 
a positive square-free integer. Let ε ∈ {±1}. Then the followings are equivalent.

(a) The genus invariant⎧⎪⎪⎨⎪⎪⎩
g(n) +

∑
d|n

d≡11 mod 24

g(n/d)g(d), if n ≡ 7 mod 24 and ε = −1,

g(n), otherwise,

is odd.
(b) Sel2(E(εn)/Q)/κ(E(εn)(Q)tor) = 0.
(c) L(1, E(εn)) �= 0 and the analytic Sha L (εn) of E(εn) is odd.

As in [48], the core of the approach: a link between L (±n) and g(n). In light of [47], 
[29], [45], the link also allows us to deduce the following positive density [19].
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Theorem 6.4. Let E be the elliptic curve y2 = x(x − 1)(x + 3). Among the set of positive 
square-free integers n ≡ 7 (mod 24) (resp. n ≡ 3 (mod 24)), the subset of n - for which 
the analytic Sha L (±n) of E(±n) is odd and Sel2(E(±n)/Q)/κ(E(±n)(Q)tor) trivial - has 

density 
1
2

∞∏
i=1

(1 − 2−i) ≈ 14.4% (resp.
∏∞

i=1(1 − 2−i)).

Remark 6.5. A salient feature: L (±n) mirrors the ideal class groups of imaginary 
quadratic fields, unlike [29], [45].

In the following we exhibit methods to study Theorem 6.3.

6.2. 2-descent in a quadratic twist family

Let E/Q be an elliptic curve.

6.2.1. The set-up
In the following we assume E[2] ⊂ E(Q).
One may suppose that E is given by a Weierstrass equation y2 = x(x −e1)(x −e2) with 

e1, e2 ∈ Z. Let m be a square-free integer, and E(m) : y2 = x(x − e1m)(x − e2m). Let S
be the set of primes dividing 2me1e2(e1 − e2)∞ and Q(S, 2) the subgroup of Q×/(Q×)2
supported on S.

Then elements in Sel2(E(m)/Q) can be realized as curves CΛ/Q with CΛ(AQ) �= ∅. 
Here for Λ = (b1, b2) ∈ Q(S, 2)2, the curve:

CΛ :
{
b1z

2
1 − b2z

2
2 = e1mt2

b1z
2
1 − b1b2z

2
3 = e2mt2

Note that CΛ(AQ) �= ∅ if and only if CΛ(Qv) �= ∅ for all v ∈ S. The 2-torsion points O, 
(0, 0), (e1m, 0), and (e2m, 0) correspond to (b1, b2) = (1, 1), (e2/e1, −e1m), (e1m, (e1 −
e2)/e1), and (e2m, (e2 − e1)m).

6.2.2. The strategy
Let S′ ⊂ S be the set of primes dividing 2e1e2(e1 − e2), which is independent of m. 

Let n > 0 be the prime-to-S′ part of m, and let q = m/n. Write n = �1 · · · �k.
Let A = (aij) ∈ Mk×k(F2) be the Rédei matrix associated to n, defined by aij =[

�j
�i

]
:= 1

2

(
1 −

(
�j
�i

))
(the additive Legendre symbol) if i �= j, and 

∑
j aij = 0 for all 

i, namely aii =
[
n/�i
�i

]
. For Λ = (b1, b2) ∈ Q(S, 2)2, t = 1, 2, write bt = ct

∏
i �

xt,i

i and 

ct =
∏

p∈S′∪{−1} p
y
(p)
t for xt = (xt,1, · · · , xt,k)T ∈ Fk

2 and y(p)
t ∈ F2 for p ∈ S′ ∪ {−1}.

Then the condition that CΛ(Qv) �= ∅ for all v ∈ S \ (S′ ∪ {∞}) = {�1, · · · , �k}
can be rephrased as a linear equation in F2 involving A and xt. For example, consider 
E : y2 = x(x − 1)(x + 3), then the linear equation [19]:
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(
A + Dq D−3

A + D−q

)(
x1
x2

)
=

(
zc1
zc2

)
.

Here for an integer d prime to n, zd :=
([

d
�1

]
, · · · ,

[
d
�k

])T
∈ Fk

2 , and Dd := diag(zd) ∈
Mk×k(F2).

Similarly, for each v ∈ S′∪{∞}, the condition that CΛ(Qv) �= ∅ can also be rephrased 
in terms of linear algebra. This allows us to describe rankF2Sel2(E(m)/Q) in terms of 
the corank of certain “generalized Rédei matrix”. Via elementary linear algebra, one may 
then establish the equivalence of parts (a) and (b) of Theorem 6.3.

Remark 6.6. The approach is employed in several previous works, for example, [26], [47], 
[29], [45].

6.3. An induction

Let E/Q be an elliptic curve of conductor N and φ the associated newform.

6.3.1. The set-up
For a positive square-free integer n, let K = Q(

√
−n) be an imaginary quadratic field, 

D its discriminant, and η the associated quadratic character.
Let χ : Gal(H/K) ∼= Cl(K) → {±1} be an unramified quadratic character over K, 

where H is the Hilbert class field of K. Such characters are in one-to-one correspondence 
with the unramified quadratic extensions K(

√
−d)/K, where d > 0 is a divisor of n with 

d ≡ 3 mod 4 (resp. d ≡ 3 mod 4 or d ≡ n mod 8) if n ≡ 3 mod 4 (resp. 2 | n). We usually 
denote such χ associated to K(

√
−d)/K by χd. In particular, taking d = n, we obtain 

the trivial character 1K = χn over K.
Let Σ be the set of places v | N∞ such that

εv(E,χ) · χvηv(−1) = −1.

Here εv(E, χ) is the local root number at v of the Rankin–Selberg L-series L(s, E × χ). 
Note that ∞ ∈ Σ and for any finite place v ∈ Σ: v non-split in K. Assume that Σ has 
even cardinality, equivalently, the sign of the functional equation of L(s, E × χ) is +1.

Let B be the definite quaternion algebra over Q ramified exactly at the places in Σ. 
Then there exists an embedding of K into B, which we fix once and for all. Let R ⊂ B

be an order of discriminant N with R ∩K = OK . The Shimura set

X := B×\B̂×/R̂×

is a finite set endowed with Hecke correspondences Tp for p � N and K×
v -actions for 

v | (N, D) by right multiplication (cf. [12, Lem. 3.4]). Let C[X] be the set of C-valued 
functions on X, which is endowed with a natural Hermitian inner product 〈 , 〉, Hecke 
operators Tp for p � N and K×

v -actions for v | (N, D). Let C[X]0 ⊂ C[X] be the 
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orthogonal complement of the functions on X which factor through the reduced norm 
map B̂× → Q̂×.

Let π be the cuspidal automorphic representation of B× whose Jacquet–Langlands 
transfer to GL2 is the automorphic representation generated by φ.

6.3.2. Toric periods
The subspace V (π, χ) of πR̂× ⊂ C[X]0 where Tp acts as ap(φ) = ap(E) for all p � N and 

K×
v acts via χv for all v | (N, D) turns out to be one-dimensional (cf. [12]). A generator 

of this space is referred to as a test vector. In fact, since the coefficients of Tp-actions 
and the values of χv are integral, V (π, χ) has a basis f ∈ Z[X] of integral values. One 
may choose a Z-primitive test vector f : X → Z, i.e. the image generates Z. Such f is 
unique up to ±1.

The inclusion K → B induces a map ι : Cl(K) → X, in view of which, define the 
toric period P 0

χ(f) associated to (E, χ):

P 0
χ(f) =

∑
t∈Cl(K)

χ(t)f(ι(t)) ∈ Z.

An explicit Waldspurger formula [12].

Theorem 6.7. Let E and χ be as above. Then

L(1, E × χ) = 2−μ(N,D) ·
8π2(φ, φ)Γ0(N)

u2
√
|D|

·
|P 0

χ(f)|2
〈f, f〉 .

Here μ(N, D) is the number of common prime factors of N and D, u = [O×
K : Z×] and 

(φ, φ)Γ0(N) the Petersson norm of φ.

Now we fix a Z-primitive test vector f ∈ V (π, 1K) for E and the trivial character 1K . 
Define the genus period

P0(f) :=
∑

t∈2Cl(K)

f(ι(t)) ∈ Z.

An evident yet key fact: if f |(B̂×)2 only takes odd integeral values, then P0(f) ≡
g(n) mod 2. Let k = μ(n) be the number of prime factors of n, let c = 0 if n ≡ 1 mod 4, 
and c = 1 otherwise. In particular, Cl(K)/2Cl(K) ∼= Gal(H0/K) ∼= (Z/2Z)k−c for H0
the genus class field of K.

Then as χ varies, ∑
χ:Gal(H/K)→{±1}

P 0
χ(f) = 2k−cP0(f). (6.1)

Remark 6.8. For χ such that f /∈ V (π, χ), notice P 0
χ(f) = 0.
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6.3.3. Induction
In the following we assume that E[2] ⊂ E(Q). Notice

L(s, E × χ) = L(s, E(n/d))L(s, E(−d)).

By considering the variation of local arithmetic invariants of elliptic curves in a 
quadratic twist family, Theorem 6.7 (the Waldspurger formula) may be rephrased as 
[19]:

|P 0
χ(f)|2 = Cn,d · 4μ(n)u2L (n/d)L (−d) ·

(
4

#E(n/d)(Q)tor

)2 ( 4
#E(−d)(Q)tor

)2

. (6.2)

Here L (n/d) and L (−d) are the analytic Sha of E(n/d) and E(−d) in the rank 0 case, 
and Cn,d an explicit non-zero rational constant which depends just on the residue classes 
(n mod M, d mod M) - where M an explicit constant intrinsic to E.

We moreover assume that E(m)(Q)tor = E(m)[2] for all square-free integers m �= ±1, 
and that L(1, E) �= 0 and L(1, E(−1)) �= 0.

Now, in light of (6.1) and (6.2), for f /∈ V (π, χ1):

2cu

⎛⎜⎜⎜⎜⎜⎝±
√
Cn,nL (1)L (−n) · 4

#E(Q)tor
+

∑
χd:Gal(H/K)→{±1}

f∈V (π,χd)
d�=1,n

±
√
Cn,dL (n/d)L (−d)

⎞⎟⎟⎟⎟⎟⎠
= P0(f).

When f ∈ V (π, χ1), an analogous formula holds. Finally, by replacing E with E(−1), we 
obtain formulae relating L (−1)L (n) with L (−n/d)L (d). Note that in these formulae, 
the number of prime factors of ±n/d and ±d are strictly smaller than that of ±n. This 
allows us to execute an induction argument on the number k = μ(n) of prime factors 
of n, proving the lower bounds for the 2-adic valuations and the congruence formula 
modulo 2 for L (±n).

The induction leads to an equivalence of parts (a) and (c) of Theorem 6.3. Here the 
presence of 4-torsion reduces the length of the recursion formula for L (±n), which yields 
a very concise formula relating L (±n) and g(n), unlike [50].

Remark 6.9. The induction method was introduced in [48] and it has been employed in 
several previous works, for example [13], [50].
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