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Twisted Fermat curves over

totally real fields

By Adrian Diaconu and Ye Tian

1. Introduction

Let p be a prime number, F a totally real field such that [F (µp) : F ] = 2

and [F : Q] is odd. For δ ∈ F×, let [ δ ] denote its class in F×/F×p. In this

paper, we show

Main Theorem. There are infinitely many classes [ δ ] ∈ F×/F×p such

that the twisted affine Fermat curves

Wδ : Xp + Y p = δ

have no F -rational points.

Remark. It is clear that if [ δ ] = [ δ′ ], then Wδ is isomorphic to Wδ′

over F . For any δ ∈ F×, Wδ/F has rational points locally everywhere.

To obtain this result, consider the smooth open affine curve:

Cδ : V
p = U(δ − U),

and the morphism:

ψδ :Wδ −→ Cδ; (x, y) 7−→ (xp, xy).

Let Cδ → Jδ be the Jacobian embedding of Cδ/F defined by the point (0, 0).

We will show that:

(1) If L(1, Jδ/F ) 6= 0, then Jδ(F ) is a finite group (cf. Theorem 2.1. of §2).
The proof is based on Zhang’s extension of the Gross-Zagier formula

to totally real fields and on Kolyvagin’s technique of Euler systems. One

might use techniques of congruence of modular forms to remove the re-

striction that the degree [F : Q] is odd.

(2) There are infinitely many classes [ δ ] such that L(1, Jδ/F ) 6= 0 (cf.

Theorem 3.1. of §3; see also 2.2.4.).

The proof is based on the theory of double Dirichlet series. The con-

dition that [F (µp) : F ] = 2 is essential for the technique we use here.

http://arxiv.org/abs/0706.0470v1
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Combining (1) and (2), one can see that the set

Π :=
{
[ δ ] ∈ F×/F×p

∣∣∣ Jδ(F ) is torsion
}

is infinite.

1.1. Proof of the Main Theorem assuming (1) and (2). For any δ ∈ F×,

consider the twisting isomorphism (defined over F ( p
√
δ)):

ιδ : Cδ −→ C1; (u, v) 7−→ (u/δ, v/
p
√
δ2).

Define ηδ : Jδ −→ J1 to be the homomorphism associated to ιδ.

Let Σδ denote the set ιδ (Cδ(F )). It is easy to see that:

(i) Σδ = Σδ′ , if [ δ ] = [ δ′ ],

(ii) Σδ ∩ Σδ′ = {(0, 0), (1, 0)}, otherwise.
For any δ ∈ F× with [ δ ] ∈ Π, and [ δ ] 6= 1, the diagram

Wδ(F )
ψδ−→ Cδ(F ) →֒ Jδ(F )yιδ

yηδ

C1(F (
p
√
δ)) →֒ J1(F (

p
√
δ))

commutes.

Since the set ⋃

δ∈F×

J1(F (
p
√
δ))tor ⊂ J1(F )

is finite by the Northcott theorem, the set
⋃

[ δ ]∈Π

Σδ is finite. Thus, for all but

finitely many [ δ ] ∈ Π \ {[1]}, Σδ = {(0, 0), (1, 0)}, and therefore Wδ has no

F -rational points.

Remark. Our method is, in fact, effective: for any [ δ ] ∈ F×/F×p, let

Supp(p) ([ δ ]) =
{
p prime of F

∣∣∣ p ∤ vp(δ)
}
.

Let L′ be the Galois closure of F (µp), and let S be the set of places of F

above 2DL′/Q, where DL′/Q is the discriminant of L′/Q. If Supp(p) ([ δ ]) is

not contained in S and L(1, Jδ) 6= 0, then the twisted Fermat curve Wδ has no

F -rational points (see Proposition 2.2).
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2. Arithmetic methods

Fix δ ∈ F× ∩OF such that (δ, p) = 1. Let ζ = ζp be a primitive p-th root

of unity. The abelian variety Jδ is absolutely simple, of dimension g =
p− 1

2
,

and has complex multiplication by Z[ζ] over the field F (µp). In this section

we show:

Theorem 2.1. If L(1, Jδ/F ) 6= 0, then Jδ(F ) is finite.

Notation. In this section, for an abelian group M , set M̂ = M ⊗Z

∏
p Zp

where p runs over all primes. For any ring R, let R× denote the group of

invertible elements. For any ideal a of F, denote the norm NF/Q(a) by Na. Let

A denote the adele ring of F , and Af its finite part. Sometimes, we shall not

distinguish a finite place from its corresponding prime ideal.

2.1. The Hilbert newform associated to Jδ. We first recall some facts about

L-functions of twisted Fermat curves over arbitrary number fields (see [14],

[32]). Let F be any number field, L = F (µp), L0 = Q(µp), and F0 = L0 ∩ F .
For any place w of L, denote by w0 and v its restrictions to Q(µp) and F ,

respectively. Let χw0
and χw be the p-th power residue symbols on L×

0 and

L×, respectively, given by class field theory. Then χw = χw0
◦ NL/Q(µp). The

Jacobi sum

j(χw, χw) = −
∑

a∈OL/w
a6=0,1

χw(a)χw(1− a)

is an integer in L0 satisfying j(χw, χw) = j(χw0
, χw0

)iw/w0 and the Stickelberger

relation:

(j(χw0
, χw0

)) =

p−1

2∏

i=1

σ−1
i (w0)

as an ideal in L0. Here, iw/w0
is the inertial degree for w/w0, and σi ∈

Gal(L0/Q) is the image of i under the isomorphism (Z/pZ)× −→ Gal(L0/Q).

Since δ ∈ OF is coprime to p, Cδ has good reduction at w for any w ∤ pδ.

We know that the zeta-function of the reduction C̃δ of Cδ at a place v of F is

Z(C̃δ, T ) =
Pv(T )

(1− T )(1 −NvT )
,

with

Pv(T ) =
∏

w|v

∏

σ

(1− χw(δ
2)σj(χw, χw)

σT fv),

where fv is the order of Nv modulo p, and σ runs over representatives in

Gal(Q(µp)/Q) of Gal(F0/Q). Then the number of points on J̃δ (the reduction

of Jδ at v) is Pv(1).
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Now we give a bound on torsion points of Jδ(F ). Let F ′ be the Galois

closure of F/Q, and assume that F ∩L0 = F ′∩L0. This assumption is satisfied

if F is as in the main theorem, or F is Galois over Q. Let L′ = F ′(µp), and let

q ∤ 2DL′/Q be a prime. Let ℓ be a prime for which there exists a place w′|ℓ of L′

such that FrobL0/F0
(w′|L0

) is a generator of Gal(L0/F0), FrobF ′/F0
(w′|F ′) = 1

and FrobQ(µq)/Q(w
′|Q(µq)) = 1. Then, ℓ ≡ 1 mod q. Let v, w and w0 be the

places of F, L and L0, respectively, below w′. Then, v is inert in L/F and

iw/w0
= 1. We have

Pv(1) =
∏

σ

(1− χw(δ
2)σj(χw, χw)

σ).

Since v is inert in L/F and δ ∈ F×, we have χw(δ
2) = 1. Using the Stickelberger

relation and the fact that j(χw0
, χw0

) ≡ 1 mod (1 − ζp)
2, one can show that

j(χw, χw) = −ℓf , for f = p−1
2[F0:Q] . Then, Pv(1) = (1+ ℓf )[F0:Q] ≡ 2[F0:Q] mod q.

Consequently, there are no q-torsion points in Jδ(F ).

Similarly, for the case q|2DL′/Q, let cq ≥ 1 be the smallest positive in-

teger such that there is a σ ∈ Gal(L′(µqcq )/Q) for which σ|L is a generator

of Gal(L/F ), σ|F ′ = 1, and the restriction of σ to Gal(Q(µqcq )/Q) has order

greater than f = p−1
2[F0:Q] . Then, Pv(1) ≡/ 0 mod qcq[F0:Q]. Let M be defined

by M :=
∏
q|2DL′/Q

qcq[F0:Q]. It follows that Jδ(F )tor ⊂ Jδ [M ], the subgroup of

M -torsion points of Jδ(F ).

Let F be a totally real field as in the main theorem. We have:

Proposition 2.2. Let S be the set of places of F above 2DL′/Q. If

Supp(p) ([ δ ]) is not contained in S and L(1, Jδ/F ) 6= 0, then the twisted

Fermat curve Wδ has no F -rational points.

Let F be as in the introduction. Then F0 = Q(µp)
+ is the maximal

totally real subfield of L0 = Q(µp). By the reciprocity law, one can see that

w 7→ χw(δ
2) defines a Hecke character, which we denote by χ[δ2]. It depends

only on the class of δ2 and has conductor above δ. By Weil [32], the map

w 7→ j(χw, χw)NL/Qw
− 1

2 also defines a Hecke character on L, denoted by ψ,

which has conductor above p. Thus, we have a (unitary) Hecke character on L,

χ[δ2]ψ : A×
L −→ C×,

which is not of the form φ ◦ NL/F , for any Hecke character φ over F. Then,

there exists a unique holomorphic Hilbert newform f/F of pure weight 2 with

trivial central character such that,

Lv(s, f/F ) =
∏

w|v

Lw(s− 1/2, χ[δ2]ψ),

for all places v of F. Actually, the field over Q generated by the Hecke eigen-

values attached to f is F0 = Q(µp)
+, and for the CM abelian variety Jδ , we



TWISTED FERMAT CURVES OVER TOTALLY REAL FIELDS 1357

have

L(s, Jδ/F ) =
∏

σ∈Gal(L0/Q)
/
Gal(L0/F0)

L(s− 1/2, χσ[δ2]ψ
σ)

=
∏

σ:F0 →֒C

L(s, fσ/F ).

Note that L(s, Jδ) only depends on the class [ δ ] of δ, and the above equality

holds for any local factor.

2.2. A nonvanishing result. Let π be the automorphic representation

associated to f, and let N be its conductor. Let S0 be any finite set of places

of F, including all infinite places and the places dividing N. Choose a quadratic

Hecke character ξ corresponding to a totally imaginary quadratic extension of

F, unramified at N, where ξ(N) ·(−1)g = −1 (since F is of odd degree, we have

(−1)g = −1); i.e., the epsilon factor of L(s, π⊗ξ) is −1. Let D(ξ;S0) denote the

set of quadratic characters χ of F×/A×
F , for which χv = ξv, for all v ∈ S0.With

the above notation and assumptions, by a theorem of Friedberg and Hoffstein

[11], there exist infinitely many quadratic characters χ ∈ D(ξ;S0) such that

L(s, π ⊗ χ) has a simple zero at the center s = 1/2.

Choose such a χ, and let K be the totally imaginary quadratic extension

of F associated to it. The conductor of χ is coprime to N, and the L-function

L(s, f/K) = L(s − 1/2, π)L(s − 1/2, π ⊗ χ) has a simple zero at s = 1. Let d

denote the discriminant of K/F.

2.3. Zhang ’s formula.

2.3.1. The (N,K)-type Shimura curves. Let O be the subalgebra of C over

Z generated by the eigenvalues of f under the Hecke operators. In our case,

O = Z[ζ + ζ−1] is the ring of integers of F0. In [33] (see also [5], [6]), Zhang

constructs a Shimura curve X of (N,K)-type, and proves that there exists a

unique abelian subvariety A of the Jacobian Jac(X) of dimension [O : Z] = g,

such that

Lv(s,A) =
∏

σ:O→֒C

Lv(s, f
σ/F ),

for all places v of F. By the construction of f, it follows that Lv(s,A/F ) =

Lv(s, Jδ/F ) for all places v of F. Therefore, by the isogeny conjecture proved by

Faltings, A is isogenous to Jδ over F. In particular, the complex multiplication

by O ⊂ Q(µp)
+ on A is defined over F.

Now, let us recall the constructions of X and A.

The L-function of π ⊗ χ satisfies the functional equation

L(1− s, π ⊗ χ) = (−1)|Σ|NF/Q(Nd)
2s−1L(s, π ⊗ χ),
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where Σ = Σ(N,K) is the following set of places of F :

Σ(N,K) =
{
v
∣∣∣ v|∞, or χv(N) = −1

}
.

Since the sign of the functional equation is −1, by our choice of K, the cardi-

nality of Σ is odd. Let τ be any real place of F. Then, we have:

(1) Up to isomorphism, there exists a unique quaternion algebra B such that

B is ramified at exactly the places in Σ\{τ};

(2) There exist embeddings ρ : K →֒ B over F.

From now on, we fix an embedding ρ : K → B over F.

Let G denote the algebraic group over F, which is an inner form of PGL2

with G(F ) ∼= B×/F×. The group G(Fτ ) ∼= PGL2(R) acts on H± = C\R. Now,
for any open compact subgroup U of G(Af ), we have an analytic space

SU (C) = G(F )+\H+ ×G(Af )/U,

where G(F )+ denotes the subgroup of elements in G(F ) with positive deter-

minant via τ.

Shimura has shown that SU (C) is the set of complex points of an algebraic

curve SU , which descends canonically to F (as a subfield of C via τ). The curve

SU over F is independent of the choice of τ.

There exists an order R0 of B containing OK with reduced discriminantN.

One can choose R0 as follows. Let OB be a maximal order of B containing

OK , and let N be an ideal of OK such that

NK/FN · discB/F = N,

where discB/F is the reduced discriminant of OB over OF . Then, we take

R0 = OK +N · OB .

Take U =
∏
v R

×
v /O×

v . The corresponding Shimura curve X := SU is compact.

Let ξ ∈ Pic(X)⊗Q be the unique class whose degree is 1 on each connected

component and such that,

Tmξ = deg(Tm)ξ,

for all integral ideals m of OF coprime to Nd. Here, the Tm are the Hecke

operators.

2.3.2. Gross-Zagier-Zhang formula. Now, we define the basic class in

Jac(X)(K) ⊗ Q, where Jac(X) is the connected component of Pic(X), from

the CM-points on the curve X. The CM points corresponding to K on X form

a set:

C : G(F )+ \G(F )+ · h0 ×G(Af )/U ∼= T (F ) \G(Af )/U ; [(h0, g)] ↔ [g],

where h0 ∈ H+ is the unique fixed point of the torus T (F ) = K×/F×.
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For a CM point z = [g] ∈ C, represented by g ∈ G(Af ), let

Φg : K −→ B̂, t 7−→ g−1ρ(t)g.

Then, End(z) := Φ−1
g (R̂0) is an order of K, say On = OF+nOK , for a (unique)

ideal n of F. The ideal n, called the conductor of z, is independent of the choice

of the representative g. By Shimura’s theory, every CM point of conductor n is

defined over the abelian extension H ′
n of K corresponding to K× \ K̂×/F̂×Ô×

n

via class field theory.

Let P1 be a CM point in X of conductor 1, which is defined over H ′
1,

the abelian extension of K corresponding to K× \ K̂×/F̂×Ô×
K . The divisor

P = Gal(H ′
1/K) · P1 together with the Hodge class defines a class

x := [P − deg(P )ξ] ∈ Jac(X)(K) ⊗Q,

where degP is the multi-degree of P on the geometric components. Let xf
be the f -typical component of x. In [34], Zhang generalized the Gross-Zagier

formula to the totally real field case, by proving that

L′(1, f/K) =
2g+1

√
N(d)

· ‖f‖2 · ‖xf‖2,

where ‖f‖2 is computed on the invariant measure on

PGL2(F ) \ Hg × PGL2(Af )/U0(N)

induced by dxdy/y2 on Hg, and where

U0(N) =

{(
a b

c d

)
∈ GL2(ÔF )

∣∣c ∈ N̂

}
⊂ GL2(F̂ ),

and ‖xf‖2 is the Neron-Tate pairing of xf with itself.

2.3.3. The equivalence of nonvanishing of L-factors. For any σ : F →֒ C, it

is known by a result of Shimura that L(1, f/F ) 6= 0 is equivalent to L(1, fσ/F )

6= 0. One can also show this using Zhang’s formula above. To see this, assume

L(1, f/F ) 6= 0. Then, ‖xf‖ 6= 0, and therefore, ‖xfσ‖ 6= 0. It follows that

L′(1, fσ/K) 6= 0. Since L(1, f/F ) 6= 0, the L-function L(s, fσ/F ) has a positive

sign in its functional equation. Thus, L(1, fσ/F ) 6= 0. In fact, to obtain our

main theorem, we do not need this equivalence, but we may see that Theorem

3.1 is equivalent to statement (2) in the introduction.

2.4. The Euler system of CM points. We now assume that L(1, χ[δ2]ψ) 6= 0,

or equivalently, L(1, f/F ) 6= 0. Then by the equivalence of nonvanishing of

L(1, fσ) for all embeddings σ : F →֒ C, we have that L(1, Jδ/F ) 6= 0. By

Zhang’s formula, we also know that ‖xf‖ 6= 0.
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Let N be the set of square-free integral ideals of F whose prime divisors

are inert in K and coprime to Nd. For any n ∈ N , define

Hn =
∏

ℓ|n

H ′
ℓ ⊂ H ′

n, H1 = H ′
1.

Let un denote the cardinality of (Ô×
n ∩K×F̂×)/Ô×

F . Then, Hℓ/H1 is a cyclic

extension of degree t(ℓ) = N(ℓ)+1
u1/uℓ

.

For each n ∈ N , let Pn be a CM point of order n such that Pn is contained

in TℓPm if n = mℓ ∈ N and ℓ is a prime ideal of F. Let yn = TrH′

n/Hn
π(Pn) ∈

A(Hn), where π is a morphism from X to Jac(X) defined by a multiple of the

Hodge class.

The points {yn}n∈N form an Euler system (see [29, Prop. 7.5], or [33,

Lemma 7.2.2]) so that, for any n = mℓ ∈ N with ℓ a prime ideal of F,

(1) un
−1

∑

σ∈Gal(Hn/Hm)

yσn = um
−1aℓym;

(2) For any prime ideal λm of Hm above ℓ, and for λn the unique prime

above λm,

Frobλm
ym ≡ yn mod λn;

(3) The class xf is equal to yK := trH1/Ky1 in
(
A(K)⊗Q

)/
Q×.

Theorem 2.1 follows with the nontrivial Euler system by Kolyvagin’s stan-

dard argument (see [21], [23], [13], and [33, Th. A]).

3. Analytic methods

Let r = 4 or an odd prime, and let L = F (ζr), with [L : F ] = 2. Let ψ be

a unitary Hecke character of L. In this section, we show:

Theorem 3.1. There are infinitely many classes δ ∈ F×/F×r such that

L
(
1
2 , χ[ δ ]ψ

)
does not vanish.

Let ρ be a unitary Hecke character of F. The purpose of this section is

to construct a perfect double Dirichlet series Z(s,w;ψ; ρ) similar to an Asai-

Flicker-Patterson type Rankin-Selberg convolution, which possesses meromor-

phic continuation to C2 and functional equations. Then, Theorem 3.1 will

follow from the analytic properties of Z(s,w;ψ; ρ) (when r = 4, see [7]). To

do this, it is necessary to recall the Fisher-Friedberg symbol in [9].

3.1. The r-th power residue symbol. Let S′ be a finite set of non-

archimedean places of L containing all places dividing r, and such that the

ring of S′-integers OS′

L has class number one. We shall also assume that S′ is

closed under conjugation and that ψ and ρ are both unramified outside S′.
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Let S∞ denote the set of all archimedean places of L, and set S = S′∪S∞.
Let IL(S) (resp. IL(S)) denote the group of fractional ideals (resp. the set

of all integral ideals) of OL coprime to S′. In [9], Fisher and Friedberg have

shown that the r-th order symbol χn can be extended to IL(S) i.e., χn(m) is

defined for m, n ∈ IL(S). Let us recall their construction.

For a non-archimedean place v ∈ S′, let Pv denote the corresponding

ideal of L. Define c =
∏
v∈S′ Prv

v with rv = 1 if ordv(r) = 0, and rv sufficiently

large such that, for a ∈ Lv, ordv(a − 1) ≥ rv implies that a ∈ (L×
v )

r. Let

PL(c) ⊂ IL(S) be the subgroup of principal ideals (α) with α ≡ 1 mod c, and

let Hc = IL(S)/PL(c) be the ray class group modulo c. Set Rc = Hc ⊗ Z/rZ,

and write the finite group Rc as a direct product of cyclic groups. Choose

a generator for each, and let E0 be a set of ideals of OL, prime to S, which

represent these generators. For each e0 ∈ E0, choose me0 ∈ L× such that

e0OS′

L = me0OS′

L . Let E be a full set of representatives for Rc of the form∏
e0∈E0

e
λe0

0 . Note that eOS′

L = meOS′

L for all e ∈ E. Without loss, we suppose

that OS′

L ∈ E and mOS′

L
= 1.

Let m, n ∈ IL(S) be coprime. Write m = (m)egr with e ∈ E, m ∈ L×,

m ≡ 1 mod c and g ∈ IL(S), (g, n) = 1. Then the r-th power residue symbol(
mme

n

)
r
is defined. If m = (m′)e′g

′r is another such decomposition, then e′ = e

and
(
m′m

e
′

n

)
r
=
(
mme

n

)
r
.

In view of this, the r-th power residue symbol
(
m
n

)
r
is defined to be(

mme

n

)
r
, and the character χm is defined by χm(n) =

(
m
n

)
r
. This extension of

the r-th power residue symbol depends on the above choices. Let Sm denote

the support of the conductor of χm. It can be easily checked that if m = m′ar,

then χm(n) = χm′(n) whenever both are defined. This allows one to extend χm

to a character of all ideals of IL(S ∪ Sm).
The extended symbol possesses a reciprocity law: if m, n ∈ IL(S) are

coprime, then α(m, n) = χm(n)χn(m)−1 depends only on the images of m, n

in Rc.

In our situation, we also need the following lemma:

Lemma 3.2. The natural morphism

IF (S)/PF (c) −→ IL(S)/PL(c)

has kernel of order a power of 2.

Proof. If [n] is in the kernel, i.e., n = (α) in IL(S) is a principal ideal with

α ≡ 1 mod c, then α/α is a root of unity with α/α ≡ 1 mod c. Now let W

be the set of roots of unity in L which are ≡ 1 mod c. Let W0 be the subset

of W of elements of the form u/u for some unit u in OL and u ≡ 1 mod c. It

is clear that W0 ⊃W 2. Then, the map

Ker (IF (S)/PF (c) → IL(S)/PL(c)) −→W/W0; n 7−→ α/α
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is obviously injective; i.e., the order of the kernel of the natural map in this

lemma is a power of 2.

Since r is odd, using the lemma, we may choose a suitable set E0 of repre-

sentatives since the beginning such that if m ∈ IF (S), then the decomposition

m = (m)egr is such that m ∈ F×, e, g ∈ IF (S).

Using the symbol χn, we shall construct a perfect double Dirichlet series

Z(s,w;ψ; ρ) (i.e., possessing meromorphic continuation to C2) of type:

(3.1) Z(s,w;ψ; ρ) = ZS(s,w;ψ; ρ) = ∗
∑

n∈IF (S)

LS(s, ψ χn) ρ(n)NF/Q(n)
−w,

where the sum is over the set of all integral ideals of OF coprime to S′, for n ∈
IF (S) square-free, the function LS(s, ψ χn) is precisely the Hecke L-function

attached to ψ χn with the Euler factors at all places in S removed, and where

∗ is a certain normalizing factor. For an arbitrary n ∈ IF (S), write n = n1n
r
2

with n1 r-th power free. If LS(s, ψ χn1
) denotes the Hecke L-series associated

to ψ χn1
with the Euler factors at all places in S removed, then LS(s, ψ χn) is

defined as LS(s, ψ χn1
) multiplied by a Dirichlet polynomial whose complexity

grows with the divisibility of n by powers (see (3.10), (3.12) and (3.13) for

precise definitions).

Based on the analytic properties of Z(s,w;ψ; ρ), we show the following

result which is stronger than Theorem 3.1.

Theorem 3.3. 1) There exist infinitely many r-th power free ideals n1 in

IF (S) with trivial image in Rc for which the special value LS(
1
2 , χnψ) does not

vanish.

2) Let κc denote the number of characters of Rc whose restrictions to F

are also characters of the ideal class group of F , and let κ be the residue of the

Dedekind zeta function ζF (s) at s = 1. Then for x→ ∞,

(3.2)
∑

NF/Q(n)<x
n∈IF (S)
n=(n)
[n] = 1

LS

(
1

2
, χnψ

)
∼ κ · κc

hF · |Rc|
LS(1, ψ)LS(

r
2 , ψ

r)

LS(
r
2 + 1, ψr)

∏

v in F
v∈S′

(
1− q−1

v

)
· x,

where [n] denotes the image of the ideal n in Rc.

Remarks. i) By the above definition of the extended r-th power residue

symbol, it is easy to see that the first part of this theorem is equivalent to

Theorem 3.1.

ii) In fact, by a well-known result of Waldspurger [30], it will follow that

LS(
1
2 , χnψ) ≥ 0, for n ∈ IF (S), n = (n) and trivial image in Rc. We will see

this in the course of the proof of Theorem 3.3.
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iii) Following [8], by a simple sieving process, one can prove the more

familiar variant of the above asymptotic formula where the sum is restricted

to square-free principal ideals.

3.2. The series Zaux(s,w;ψ; ρ) and metaplectic Eisenstein series. To

obtain the correct definition of Z(s,w;ψ; ρ), let G0(n, m), for m, n ∈ IL(S),
be given by

(3.3) G0(n, m) =
∏

v
ordv(n)=k
ordv(m)=l

G0(p
k
v , p

l
v),

where, for k, l ≥ 0,

(3.4) G0(p
k
v , p

l
v) =





1 if l = 0,

q
k

2
v if k + 1 = l; l 6≡ 0 (mod r),

− q
k−1

2
v if k + 1 = l; l > 0; l ≡ 0 (mod r),

q
l

2
−1

v (qv − 1) if k ≥ l; l > 0; l ≡ 0 (mod r),

0 otherwise.

Here qv denotes the absolute value of the norm of v. Also, let G(χ∗
m1
) (where m1

denotes the r-th power free part of m and χ∗
a(b) := χb(a)) be the normalized

Gauss sum appearing in the functional equation of the (primitive) Hecke L-

function associated to χ∗
m. If n∗ denotes the part of n coprime to m1, then

set

G(n,m) := χ∗
m1
(n∗)G(χ∗

m1
)G0(n,m).

Now, let ψ be as above. For n ∈ IL(S) and Re(s) > 1, let ΨS(s, n, ψ) be the

absolutely convergent Dirichlet series defined by

ΨS(s, n, ψ) = LS

(
rs− r

2
+ 1, ψr

) ∑

m∈IL(S)

ψ(m)G(n,m)

NL/Q(m)s
.

This series can be realized as a Fourier coefficient of a metaplectic Eisenstein

series on the r-fold cover of GL(2) (see [18] and [24]). It follows as in Selberg

[28], or alternatively, from Langlands’ general theory of Eisenstein series [25]

that ΨS(s, n, ψ) has meromorphic continuation to C with only one possible

(simple) pole at s = 1
2 + 1

r . Moreover, this function is bounded when |Im(s)|
is large in vertical strips, and satisfies a functional equation as s → 1− s (see

Kazhdan-Patterson [18, Cor. II.2.4]).

For Re(s), Re(w) > 1, let Zaux(s,w;ψ; ρ) be the auxiliary double Dirichlet

series defined by

(3.5) Zaux(s,w;ψ; ρ) =
∑

n∈IF (S)

ΨS(s, n, ψ)ρ(n)

NF/Q(n)w
.
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Let ρ̃ be the Hecke character of L given by ρ̃ = ρ ◦ NL/F . As we shall shortly

see, Zaux(s,w;ψ ρ̃; ρ) is the type of object that constitutes a building block in

the process of constructing the perfect double Dirichlet series Z(s,w;ψ; ρ). Set

Γ∗
aux(s, ψ ρ̃) =

∏

v∈S∞

r−1∏

j=1

Lv

(
s− 1

2
+
j

r
, ψv ρ̃v

)
,

and let

Ẑaux(s,w;ψ ρ̃; ρ̄) := Γ∗
aux(s, ψ ρ̃) · Zaux(s,w;ψ ρ̃; ρ̄).

Let R1 be the tube region in C2 whose base B1 is the convex region in R2 which

lies strictly above the polygonal contour determined by (0, 2), (1, 1), and the

rays y = −2x+ 2 for x ≤ 0 and y = 1 for x ≥ 1. As a simple consequence of

the analytic properties of ΨS(s, n, ψ) (n ∈ IL(S)), we have the following:

Proposition 3.4. The double Dirichlet series Zaux(s,w;ψ ρ̃, ρ̄) is holo-

morphic in R1, unless ψ
r ρ̃r = 1 when it has only one simple pole at s = 1

2 +
1
r .

Furthermore, Ẑaux(s,w;ψ ρ̃, ρ̄) satisfies the functional equation

(3.6)

Ẑaux(s,w;ψ ρ̃, ρ̄) ·
∏

v∈S′

(
1− (ψρ̃)−r(πv) q

rs− r

2
−1

v

)

=
∑

η, τ

A(ψ, ρ)
η, τ (1− s) Ẑaux(1− s, 2s + w − 1;ψ−1ρ̃−1η, ψ ρ τ),

where each A
(ψ, ρ)
η, τ (s) is a polynomial in the variables qsv, q

−s
v (v ∈ S′), and the

sum is over a finite set of idéle class characters η and τ, unramified outside S

and with orders dividing r.

3.3. The double Dirichlet series Z̃(s,w;ψ; ρ). It turns out that the func-

tion Zaux(s,w;ψ ρ̃, ρ̄) possesses another functional equation. To describe it, we

introduce a new double Dirichlet series Z̃(s,w;ψ; ρ) defined for Re(s), Re(w)

> 1 by

(3.7)

Z̃(s,w;ψ; ρ) = LS(rs+ rw + 1− r, ψr ρ̃r)
∑

m∈IL(S)
m−imaginary

ψ(m)LS(w, χ
∗
mρ)

NL/Q(m)s

·
∑

h∈IF (S)

(ψρ)(h)χ∗
m(h1)

NF/Q(h)2s−1 NF/Q(h)w

∏

v
ordv(h0)>0

[
(χ∗

mρ)(πv) q
−w
v − q−1

v

]

·
∏

v
ordv(NL/F (m))>0

ordv(h2)>0

(1− q−1
v )

∏

v−split in L
ordv(NL/F (m))=0

ordv(h2)>0

[
(χ∗

mρ)(πv) q
−w−1
v + 1 − 2q−1

v

]

·
∏

v−inert in L
ordv(h2)>0

[
1 − (χ∗

mρ)(πv) q
−w−1
v

]
.
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In the above formula, an ideal m ∈ IL(S) is called imaginary, if it has no

divisor in IF (S), other than OF . The function LS(w, χ
∗
mρ) represents the

L-series defined over F (not necessarily primitive) associated to χ∗
mρ with the

Euler factors corresponding to places removed in S. Also, all the products are

over places of F , πv is the local parameter of Fv (Fv denoting the completion

of F at v), and qv is the absolute value of the norm in F of v.

Let R2 denote the tube region in C2 whose base B2 is the convex region in

R2 which lies strictly above the polygonal contour determined by (1, 1), (32 , 0)

and the rays y = −x+ 3
2 for y ≤ 0 and x = 1 for y ≥ 1. Recall that LS(w, χ

∗
mρ)

differs from a primitive L-series by only finitely many Euler factors (i.e., the fac-

tors corresponding to places in S and to places v for which ordv(NL/F (m)) ≡ 0

(mod r)). Applying the functional equation of LS(w, χ
∗
mρ) and some standard

estimates, one can easily show that the function Z̃(s,w;ψ; ρ) is holomorphic

in R2, unless ρ = 1 where it has only one simple pole at w = 1. The following

proposition gives the functional equation connecting the double Dirichlet series

Zaux(s,w;ψ ρ̃, ρ̄) and Z̃(s,w;ψ; ρ).

Proposition 3.5. The function Z̃(s,w;ψ; ρ) is holomorphic in R2, un-

less ρ is the trivial character when it has a simple pole at w = 1. Furthermore,

for Re(s), Re(w) > 1, there exist the functional equations

(3.8)
∏

v∈S∞

Lv (1− w, ρv) ·
∏

v∈S′

(
1− ρ−r(πv) q

−rw
v

)
· Z̃(s+ w − 1

2
, 1− w;ψ; ρ)

=
∏

v∈S∞

Lv
(
w, ρ−1

v

)
·
∑

τ

B(ρ)
τ (w)Zaux(s,w;ψρ̃ τ, ρ̄),

and

(3.9)∏

v∈S∞

Lv
(
w, ρ−1

v

)
·
∏

v∈S′

(
1− ρr(πv) q

rw−r
v

)
· Zaux(s,w;ψρ̃, ρ̄)

=
∏

v∈S∞

Lv
(
1− w, ρv

)
·
∑

τ

C(ρ)
τ (1− w) Z̃(s+ w − 1

2
, 1− w;ψ τ ; ρ),

where, as before, B
(ρ)
τ (w), C

(ρ)
τ (w) are polynomials in the variables qwv , q

−w
v

(v ∈ S′). The above products are over the places of k corresponding to those

in S, and the sums are over a finite set of idéle class characters τ, unramified

outside S and orders dividing r.

The proof of this proposition will be given in the next section.

Let α and β be the involutions on C2 given by

α : (s,w) → (1− s, 2s+ w − 1) and β : (s,w) → (s +w − 1

2
, 1− w).

It can be easily checked that these involutions generate the dihedral group

D8 of order 8. It follows directly from Propositions 3.2 and 3.3 that both
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Z̃(s + w − 1

2
, 1 − w;ψ; ρ) and Zaux(s,w;ψρ̃, ρ̄) can be continued to R1 ∪ R2.

Clearly, this applies to Zaux(s,w;ψ, ρ) (replace ψ by ψρ̃−1 and ρ by ρ̄). It fol-

lows from the functional equation (3.6) that Zaux(s,w;ψρ̃, ρ̄) can be continued

to R1 ∪ R2 ∪ α(R2), and hence, by (3.8), the function Z̃(s+w− 1

2
, 1−w;ψ; ρ)

continues to this region. The double Dirichlet series Zaux(s,w;ψρ̃, ρ) may have

only one simple pole in R2, namely w = 1, and this pole occurs only if ρ is the

trivial character. This fact follows easily by inspection of the proof of Propo-

sition 3.3 (see §3.1). Then from the functional equation (3.6), one can see

that Zaux(s,w;ψρ̃, ρ) may have a pole only at w = 2 − 2s in α(R2), provided

ψr|OF
· ρr is trivial. The last fact also applies to Z̃(s + w − 1

2 , 1 − w;ψ, ρ), by

the functional equation β in (3.8).

3.4. The double Dirichlet series Z(s,w;ψ; ρ). To define the perfect double

Dirichlet series Z(s,w;ψ; ρ), let LS(s, χnψ), for n ∈ IF (S), be given by

LS(s, χnψ) := LS(s, χn1
ψ)Pn(s, ψ),

where n1 denotes the r-th power free part of n, and Pn(s, ψ) is the Dirichlet

polynomial defined by

(3.10)

Pn(s, ψ) =
∏

v
ordv(n1)>0

(
1 + ψ(πv) q

1−2s
v + · · ·+ ψ(πv)

ordv(n)−1q(ordv(n)−1)(1−2s)
v

)

·
∏

v
ordv(n)=rµ
v−inert in L

((
1− ψ(πv) q

−2s
v

) (
1 + ψ(πv) q

1−2s
v + · · ·

+ψ(πv)
rµ−1 q(rµ−1)(1−2s)

v

)
+ ψ(πv)

rµ qrµ(1−2s)
v

(
1 + q−1

v

)
)

·
∏

v
ordv(n)=rω
v=v′v̄′ in L

(
(1− (χn1

ψ)(πv′ ) q
−s
v )(1− (χn1

ψ)(πv̄′ ) q
−s
v )
(
1 + ψ(πv) q

1−2s
v + · · ·

+ψ(πv)
rω−1 q(rω−1)(1−2s)

v

)
+ ψ(πv)

rω qrω(1−2s)
v

(
1− q−1

v

)
)
.

Here the products are over places v of F , and πv denotes the local parameter

of Fv. It can be seen that these polynomials satisfy a functional equation as

s→ 1− s, and that we have the estimate

(3.11) Pn(s, ψ) ≪ε NF/Q(n)
ε (ε > 0, Re(s) ≥ 1

2
).

Furthermore, if ψ(m) = ψ(m), for m ∈ IL(S), then Pn(s, ψ) ≥ 0, for s ∈ R.

Later, we shall specialize ψ to be (essentially) a normalized Jacobi sum, which

obviously satisfies this property.
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For Re(s), Re(w) > 1, we define Z(s,w;ψ; ρ) as

Z(s,w;ψ; ρ) =ZS(s,w;ψ; ρ)(3.12)

=LS(rs+ rw + 1− r, ψrρ̃r)
∑

n∈IF (S)

LS(s, χnψ)ρ(n)

NF/Q(n)w
.

Applying the functional equation and the convexity bound of LS(s, χnψ)

(n ∈ IF (S)), we see that Z(s,w;ψ; ρ) is holomorphic in R1, if the character

ψr is nontrivial. Representing the normalizing factor LS(rs+ rw+1− r, ψr ρ̃r)
by its Dirichlet series, then after multiplying and reorganizing, we can write

Z(s,w;ψ; ρ) as

(3.13) Z(s,w;ψ; ρ) =
∑

n∈IF (S)

LS(s, χn1
ψ)Qn(s, ψ) ρ(n)

NF/Q(n)w
,

where Qn(s, ψ), for n ∈ IF (S), is a new set of Dirichlet polynomials which can

be easily expressed in terms of Pn(s, ψ).

Referring to the definition of Z̃(s,w;ψ; ρ) given in (3.7), replace LS(w,χ
∗
m ρ)

by its Dirichlet series, the sum being over n, say. For fixed m ∈ IL(S) imag-

inary, and n ∈ IF (S), collect the terms contributing to (χ∗
mρ)(n)NF/Q(n)

−w.

Switching the order of summation, we obtain:

Proposition 3.6. For Re(s), Re(w) > 1,

(3.14) Z(s,w;ψ; ρ) = LS(2s, ψ)Z̃(s,w;ψ; ρ),

where the L-function is defined over F .

Assuming both ψr and ψrρ̃r to be nontrivial, we see from Proposition 3.4

that

LS(2s + 2w − 1, ψ)Z̃(s+ w − 1

2
, 1− w;ψ; ρ)

continues to β(R1), and hence, from the above discussion, it continues to

R1 ∪ β(R1) ∪ R2 ∪ α(R2). Note that the convex closure of this tube region

is C2. As ψr ρ̃r 6= 1, and therefore, by Propositions 3.2 and 3.3, the function

Z̃(s+w− 1

2
, 1−w;ψ; ρ) does not have a pole at s = 1

2 +
1
r , one can easily check

that the only possible poles of LS(2s+ 2w − 1, ψ)Z̃(s+w− 1

2
, 1−w;ψ; ρ) are

the hyperplanes w = 0 and w = 2 − 2s. Clearly, both are simple poles, and

they may occur only if ρ and ψr|OF
· ρr are both trivial.

Consequently, by the convexity theorem for holomorphic functions of sev-

eral complex variables (see [16]) and by Proposition 3.4, we have the following:

Theorem 3.7. When ψr and ψr ρ̃r are nontrivial, the function

(w − 1)(2s + w − 2)Z(s,w;ψ; ρ)

has analytic continuation to C2, and for any fixed s, it is (as a function of the

variable w) of order one.
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The fact that, for any fixed s, the above function is of order one follows

as in [8, Prop. 3.11].

By Proposition 3.4 and (3.7), one finds that, for Re(s) > 1
2 ,

(3.15)

Res
w=1

Z(s, w;ψ; 1) = LS(2s, ψ)LS(rs+ 1, ψr)

·
∏

v in F
v∈S′

[
(
1− q−1

v

) ∑

m∈IL(S)
m−imaginary

(
κψ(m)r

∏
v′|m

(
1− q−1

v′

)

NL/Q(m)rs

∑

h∈IF (S)

ψ(h)r

NF/Q(h)2rs

·
∏

v
ordv(NL/F (m))>0

ordv(h)>0

(
1 − q−1

v

) ∏

v−split in L
ordv(NL/F (m))=0

ordv(h)>0

(
1 − q−1

v

)2 ∏

v−inert in L
ordv(h)>0

(
1 − q−2

v

)
)]

= κLS(2s, ψ)LS(rs, ψ
r)
∏

v in F
v∈S′

(
1− q−1

v

)
,

where κ denotes the residue at w = 1 of the Dedekind zeta-function ζF (w).

We are now in the position to give the proof of Theorem 3.3.

Proof of Theorem 3.3. As before, let ρ =
∏
ρv be a unitary Hecke

character of F unramified outside S. We further assume that ρ is of finite

order. For Re(s), Re(w) > 1, consider the double Dirichlet series Z1(s,w;ψ; ρ)

defined by

(3.16). Z1(s,w;ψ; ρ) =
∑

n∈IF (S)
n=(n)
[n] = 1

LS(s, χn1
ψ)Qn(s, ψ) ρ(n)

NF/Q(n)w
.

By expressing this function as

Z1(s,w;ψ; ρ) =
1

hF · |Rc|
∑

ρ1, ρ2

Z(s,w;ψ; ρρ1ρ̂2),

where ρ1 ranges over the characters of the ideal class group of F , ρ2 ranges

over the characters of Rc, and ρ̂2 is the restriction of ρ2 to F , it follows from

Theorem 3.5 that Z1(s,w;ψ; ρ) is holomorphic on C2, except for w = 1 and

w = 2− 2s, where it might have simple poles. Furthermore,

lim
w→1

(w− 1)2 Z1( 1

2
, w;ψ; ρ) = lim

(s,w)→( 1

2
,1)
(w− 1)(2s+w− 2)Z1(s,w;ψ; ρ) = 0,

and, therefore, Z1(
1
2 , w;ψ; 1) has at most a simple pole at w = 1. To compute its

residue, recall the functional equation satisfied by L(s, χn1
ψ) with n1 ∈ IF (S)

r-th power free (see [31, Ch. VII, §7]). Combining this with the functional
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equation of the polynomial Qn(s, ψ) (n ∈ IF (S)), we find that

LS(s, χn1
ψ)Qn(s, ψ)= ε(s, χn1

ψ) · LS(1− s, χn1
ψ)Qn(1− s, ψ)

·
∏

v∈S∞

Lv(1− s, ψv)

Lv(s, ψv)
·
∏

v∈S′

Lv (1− s, (χn1
ψ)v)

Lv (s, (χn1
ψ)v)

.

A simple local computation shows that ε(12 , χn1
ψ) = ψ(n)ε(12 , ψ). It immedi-

ately follows that Z1(s,w;ψ; 1) satisfies the functional equation

(3.17)∏

v∈S∞

Lv(s, ψv) ·
∏

v∈S′

(
1− ψr(πv) q

rs−r
v

)
· Z1(s,w;ψ; 1)

=
∏

v∈S∞

Lv(1− s, ψv) ·
∑

ρ

D(ψ)
ρ (1− s)Z1(1− s, 2s+ w − 1;ψ; ρ),

where D
(ψ)
ρ (s) are polynomials in the variables qsv, q

−s
v , v ∈ S′, and the sum

is over a finite set of idéle class characters ρ, unramified outside S and orders

dividing r. As r is odd, and ψ, restricted to the group of principal ideals of F ,

is quadratic and nontrivial, it follows that Z1(s,w;ψ; 1) does not have a pole

at w = 2− 2s. Then (3.15) yields

(3.18) Res
w=1

Z1

(
1

2
, w;ψ; 1

)
=

κ · κc
hF · |Rc|

LS(1, ψ)LS

(r
2
, ψr
) ∏

v inF
v∈S′

(1− q−1
v ),

where κc denotes the number of characters of Rc whose restrictions to F are

also characters of the ideal class group of F .

To complete the proof, we define the double Dirichlet series Z0(s,w;ψ; ρ)

by simply replacing in (3.16) the polynomial Qn(s, ψ) by Pn(s, ψ) defined in

(3.10). Note that

Z0(s,w;ψ; ρ) =
1

hF · |Rc|
∑

ρ1,ρ2

Z(s,w;ψ; ρρ1ρ2)

LS(rs+ rw + 1− r, ψr ρ̃rρ̃r1)
,

and therefore, Z0(s,w;ψ; ρ) may have additional poles at the zeros of the

incomplete L-functions LS(rs + rw + 1 − r, ψr ρ̃rρ̃r1). It is well-known that

these zeros occur in the region Re(s + w) < 1. In particular, the function

Z0(
1
2 , w;ψ; 1) is holomorphic for Re(w) > 1

2 , except for w = 1, where it has a

simple pole. Using (3.18), we can compute its residue as

(3.19)

Res
w=1

Z0

(
1

2
, w;ψ; 1

)
=

κ · κc
hF · |Rc|

LS(1, ψ)LS(
r
2 , ψ

r)

LS(
r
2 + 1, ψr)

∏

v in F
v∈S′

(
1− q−1

v

)
> 0.

This implies that LS(
1
2 , χn1

ψ) 6= 0 for infinitely many r-th power free

ideals n1 in IF (S) with trivial image in Rc, which is the first assertion of

Theorem 3.3.
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For the remaining part, one needs to apply a Tauberian theorem. To

keep the argument as simple as possible, note first that, as ψ(m) = ψ(m), for

m ∈ IL(S), we have Pn(s, ψ) ≥ 0, for s ∈ R.On the other hand, by the comment

made right after Lemma 3.2, any r-th power free ideal n1 in IF (S) with trivial

image in Rc can be decomposed as n1 = (n1)g
r with n1 ∈ F×, n1 ≡ 1 mod c

and g ∈ IF (S). By definition, the character χn1
coincides with the classical

r-th power residue symbol χn1
given by class field theory. It follows that

the incomplete L-series LS(s, χn1
ψ) differs from the complete Hecke L-series

associated to L(s, χn1
ψ) by only finitely many local factors. Recall that the

latter is the L-series associated to a Hilbert modular form. As the set S′ is

closed under conjugation, it follows from a well-known result of Waldspurger

[31] that LS(
1
2 , χnψ) ≥ 0, for n ∈ IF (S), n = (n) and trivial image in Rc.

Hence, the function Z0( 1

2
, w;ψ; 1), for R(w) > 1, is given by a Dirichlet series

with nonnegative coefficients. The second part of Theorem 3.3 now follows

from the Wiener-Ikehara Tauberian theorem.

Remark. With some additional effort, one can exhibit an error term on

the order of O(xθ) with θ < 1 in the asymptotic formula (3.2). Also, the

remark following Theorem 3.3 implies that the Hecke L-series LS(
1
2 , χn1

ψ) 6= 0

for infinitely many square-free principal ideals (n) in IF (S) with trivial image

in Rc. Any such ideal has a generator n ∈ F with n ≡ 1 mod c.

3.5. Proof of Proposition 3.3. Recall that for a ∈ IL(S), we defined

χ∗
a by χ∗

a(b) := χb(a) (b ∈ IL(S)). Note that every ideal m of OL can be

uniquely decomposed as m = m′h, where m′ is an imaginary ideal of OL, and

h is a real ideal; that is, h ∈ OF . For m ∈ IL(S) imaginary and r-th power

free, let ε(w, (χ∗
m ρ)

−1) denote the epsilon-factor in the functional equation of

L(w, (χ∗
m ρ)

−1) (as a Hecke L-function of F ). Also, for m ∈ IL(S) imaginary

and h ∈ IF (S), coprime and r-th power free, let G(χ∗
mh) be the normalized

Gauss sum in the functional equation of the Hecke L-function (of the field L)

associated to χ∗
mh, i.e., ε(

1
2 , χ

∗
mh). We set m0 and h0 to be the product of all

distinct prime ideals dividing m and h, respectively.

The following lemma is a consequence of a standard local computation.

The details will be omitted.

Lemma 3.8. Let m and h be integral ideals as above. Assume that the

images of mh and m in Rc are e and e′, respectively. Then,

G(χ∗
mh) ε

(
1

2
, (χ∗

mρ)
−1

)

= Ce, e′, ρ · η(e)−1η(m1h1) ρ̃(m0)
−1 χ∗

m(h0)χ
∗
h(m0)χ

∗
m(m0)

−1,

where ρ̃ = ρ ◦ NL/F , Ce, e′, ρ is a constant depending on just e, e′ and ρ, and η

is a Hecke character unramified outside S and order dividing r. Furthermore,
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if e′ is replaced by e′′ with e′/e′′ a real ideal, then both Ce, e′, ρ and η do not

change.

Proof of Proposition 3.3. Using (3.5), we have

(3.20)

Zaux(s,w;ψ ρ̃, ρ̄)

=
∑

n∈IF (S)

ΨS(s, n, ψ ρ̃) ρ(n)

NF/Q(n)w

= LS

(
rs− r

2
+ 1, ψr ρ̃r

) ∑

m∈IL(S)
n∈IF (S)

(ψ ρ̃)(m) ρ(n)G(n,m)

NL/Q(m)sNF/Q(n)w

= LS

(
rs− r

2
+ 1, ψr ρ̃r

) ∑

m∈IL(S)
n∈IF (S)

(ψ ρ̃)(m) ρ(n) χ∗
m1
(n∗)G(χ∗

m1
)G0(n,m)

NL/Q(m)sNF/Q(n)w
,

where n∗ denotes the part of n coprime to m1. In the last sum, replace m by mh

with m ∈ IL(S) imaginary and h real. As we shall see, the only contribution

to the sum comes from m and h for which their r-th power free parts m1 and

h1 are coprime. Then, we have

(3.21)
∑

m∈IL(S)
n∈IF (S)

(ψ ρ̃)(m) ρ(n) χ∗
m1
(n∗)G(χ∗

m1
)G0(n,m)

NL/Q(m)sNF/Q(n)w
=

∑

m∈IL(S)
m−imaginary

(ψ ρ̃)(m)

NL/Q(m)s

·
∑

h∈IL(S)
n∈IF (S)
h−real

(ψ ρ̃)(h) ρ(n) χ∗
m1h1

(n∗)G(χ∗
m1h1

)G0(n,mh)

NL/Q(h)sNF/Q(n)w
.

Next, we separate the contribution of h in the inner sum. To do so, let m1

denote the r-th power free part of an ideal m ∈ IL(S), and set m0 to be the

product of all distinct prime ideals dividing m1, and

m2 :=
∏

v
ordv(m)=rev

prevv .

For fixed m, n and h as above, let pv be a prime ideal of L dividing h0. Upon

replacing this prime ideal by its conjugate, we can assume that ordv(m) = 0.

Recall that

G0(n, m) =
∏

v
ordv(n)=k
ordv(m)=l

G0(p
k
v , p

l
v),
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where G0(p
k
v , p

l
v) is given by (3.4). As ordv(mh) = ordv(h) 6≡ 0 (mod r) (this

condition implying that ordv(n) = ordv(h)−1), and n ∈ IF (S), we can decom-

pose n = (h/h0h2)n
′ with n′ ∈ IF (S) coprime to h1. Also, we have

ordv(n)= ordv̄(n) ≥ ordv̄(mh)− 1

= ordv̄(m) + ordv(h)− 1 = ordv̄(m) + ordv(n),

which implies ordv̄(m) = 0. It immediately follows that m and h1 are coprime.

Then, by (3.4), we can write

G(χ∗
m1h1

)G0(n,mh) =G(χ∗
m1h1

)G0

(
h

h0h2
,
h

h2

)
G0(n

′,mh2)(3.22)

=G(χ∗
m1h1

)NL/Q

(
h

h0h2

) 1

2

G0(n
′,mh2).

Furthermore, we have

G0(n
′,mh2) =

∏

v
ordv(n′)=kv
ordv(m)=lv
ordv(h2)=rev

G0(p
kv
v , p

lv+rev
v )

=
∏

v
lv 6≡0 (r)

kv+1=lv+rev

G0(p
kv
v , p

lv+rev
v ) ·

∏

v
lv≡0 (r)

kv+1≥lv+rev

G0(p
kv
v , p

lv+rev
v )

=
∏

v
lv 6≡0 (r)

kv+1=lv+rev

q
(lv−1)+rev

2
v ·

∏

v
lv≡0 (r)

kv+1=lv+rev>0

− q
lv+rev−2

2
v ·

∏

v
lv≡0 (r)

kv≥lv+rev>0

q
lv+rev

2
v (1− q−1

v )

= NL/Q

(
mh2

m0

) 1

2

·
∏

v
lv≡0 (r)

kv+1=lv+rev>0

− q−1
v ·

∏

v
lv≡0 (r)

kv≥lv+rev>0

(1− q−1
v ).

One can decompose n′ as

n′ = n1 · NL/F
(

m

m0

)
· h2

·
∏

v−complex
lv≡0 (r); lv̄=0
lv+rev>0

αv :=1+kv−lv−rev≥0

NL/F (pv)
αv−1 ·

∏

v−real
ev>0

βv:=1+kv−rev≥0

qβv−1
v ,
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with n1 coprime to mh. Here, if v is complex such that lv = lv̄ = 0, then one

chooses either v or v̄, but not both. As n = (h/h0h2)n
′, we also have

n= n1 · NL/F
(

m

m0

)
· h

h0

·
∏

v−complex
lv≡0 (r); lv̄=0
lv+rev>0

αv :=1+kv−lv−rev≥0

NL/F (pv)
αv−1 ·

∏

v−real
ev>0

βv :=1+kv−rev≥0

qβv−1
v .

Recall that n∗ denotes the part of n coprime to m1h1. It follows that

n∗= n1 ·
(

m

m0m2

)
· NL/F (m2) · h2

·
∏

v−complex
lv≡0 (r); lv̄=0
lv+rev>0

αv :=1+kv−lv−rev≥0

NL/F (pv)
αv−1 ·

∏

v−real
ev>0

βv:=1+kv−rev≥0

qβv−1
v .

Combining all these with (4.26), we obtain

X

m∈IL(S)
m−imaginary

(ψρ̃)(m)

NL/Q(m)s

X

h∈IL(S)
n∈IF (S)
h−real

(ψρ̃)(h) ρ(n) χ∗
m1h1

(n∗)G(χ∗
m1h1

)G0(n,mh)

NL/Q(h)s NF/Q(n)w

=
X

m∈IL(S)
m−imaginary

ψ(m)ρ̃(m0)χ∗
m1

“

m
m0

”

NL/Q(m0)
w− 1

2

NL/Q(m)s+w− 1
2

·

X

h∈IF (S)

(ψρ)(h)ρ(h0) NF/Q(h0)
w−1 χ∗

h1
(m)χ∗

h1
(m0)

−1G(χ∗
m1h1

)

NF/Q(h)2s+w−1

Y

v
ordv(NL/F (m1))>0

ordv(h2)>0

(1− q
−1
v )

·

Y

v
ordv(NL/F (m2))>0

ordv(h)=0

h

− (χ∗
m1
ρ)(πv) q

w−1
v + (1− q

−1
v ) ·

X

αv≥0

( (χ∗
m1
ρ)−1(πv) q

−w
v )αv

i

·

Y

v
ordv(NL/F (m2))>0

ordv(h2)>0

h

− (χ∗
m1
ρ)(πv) q

w−1
v (1− q

−1
v ) + (1− q

−1
v )2 ·

X

αv≥0

( (χ∗
m1
ρ)−1(πv) q

−w
v )αv

i

·

Y

v−split in L
ordv(NL/F (m))=0

ordv(h2)>0

h

(χ∗
m1
ρ)(πv) q

w−2
v + (1− q

−1
v )2 ·

X

αv≥0

( (χ∗
m1
ρ)−1(πv) q

−w
v )αv

i

·

Y

v−inert in L
ordv(h2)>0

h

− (χ∗
m1
ρ)(πv) q

w−2
v + (1− q

−2
v ) ·

X

βv≥0

( (χ∗
m1
ρ)−1(πv) q

−w
v )βv

i

·

X

n1∈IF (S)
(n1,mh)= 1

ρ(n1) χ∗
m1

(n1)

NF/Q(n1)w
.
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Note that the last sum represents an incomplete Hecke L-function. After eval-

uating the geometric series inside the last four products, the missing Euler

factors corresponding to places of F dividing NL/F (m2)h2 can be incorporated.

Also, multiply and divide by the Euler factors corresponding to places of F

dividing h0, forcing in this way LS(w, (χ
∗
m1
ρ)−1) to appear.

Let R+
c be the subgroup of Rc generated by the images (in Rc) of all real

fractional ideals of L coprime to S′. Let e′ be a fixed element of Rc which is

the image of an imaginary ideal m ∈ IL(S). Replacing ψ by ψτ1τ2 with τ1
and τ2 characters of Rc and Rc/R

+
c , respectively, and making a standard linear

combination, one can restrict the first two sums over ideals m and h, for which

the image of m1 in Rc is e
′ modulo R+

c and the image of m1h1 is a fixed element

e of Rc.

Now, invoke the functional equation of L(w, (χ∗
m1
ρ)−1). It is well-known,

see [31], that the incomplete Hecke L-function (defined over F )

LS
(
w, (χ∗

m1
ρ)−1

)
=
∏

v 6∈S

Lv
(
w, (χ∗

m1
ρ)−1
v

)
=
∏

v 6∈S

[
1 − (χ∗

m1
ρ)−1
v (πv) q

−w
v

]−1

satisfies the functional equation

LS
(
w, (χ∗

m1
ρ)−1

)
= ε
(
w, (χ∗

m1
ρ)−1

)
· LS

(
1− w, χ∗

m1
ρ
)

·
∏

v∈S∞

Lv (1− w, ρv)

Lv
(
w, ρ−1

v

) ·
∏

v∈S′

Lv
(
1− w, (χ∗

m1
ρ)v
)

Lv
(
w, (χ∗

m1
ρ)−1
v

) .

Replace ψ by ψ η−1, and combine the above functional equation with Lemma

3.6. Here Re(s) is taken sufficiently large to ensure convergence. Using the

Fisher-Friedberg extension of the reciprocity law [9], one can see that

χ∗
m1
(m)χ∗

h1
(m) = C ′

e, be′
· χ∗

m(h1),

where C ′
e, be′

is a constant depending on just e and the class ê′ in Rc/R
+
c . Also,

note that ∏

v∈S′

(
1− ρ−r(πv) q

−rw
v

)−1
· Lv

(
1− w, (χ∗

m1
ρ)v
)

Lv
(
w, (χ∗

m1
ρ)−1
v

)

is the inverse of a polynomial in the variables qwv , q
−w
v corresponding to places

v ∈ S′ of the totally real field F. The characters involved in its coefficients are

trivial on real ideals. Now, the functional equation (3.8) immediately follows,

after we replace ψ with ψτ, where τ ranges over a finite set of idéle class

characters unramified outside S and orders dividing r, and make a combination

such that the above product over v ∈ S′ disappears.

Starting from the definition of
∏

v∈S′

(
1− ρr(πv) q

rw−r
v

)−1
· Z̃(s+ w − 1

2
, 1− w;ψ; ρ),

one can easily check (3.9) by reversing the above argument.
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