ON FANO MANIFOLDS OF PICARD NUMBER ONE WITH BIG AUTOMORPHISM GROUPS

BAOHUA FU, WENHAO OU AND JUNYI XIE

Abstract

Let X be an n-dimensional smooth Fano complex variety of Picard number one. Assume that the VMRT at a general point of X is smooth irreducible and non-degenerate (which holds if X is covered by lines with index $>(n+2) / 2$). It is proven that $\operatorname{dim} \mathfrak{a u t}(X)>n(n+1) / 2$ if and only if X is isomorphic to $\mathbb{P}^{n}, \mathbb{Q}^{n}$ or $\operatorname{Gr}(2,5)$. Furthermore, the equality $\operatorname{dim} \mathfrak{a u t}(X)=n(n+1) / 2$ holds only when X is isomorphic to the 6 -dimensional Lagrangian Grassmannian $\operatorname{Lag}(6)$ or a general hyperplane section of $\operatorname{Gr}(2,5)$.

1. Introduction

For a smooth projective complex variety X, the Lie algebra $\mathfrak{a u t}(X)$ of its automorphism group $\operatorname{Aut}(X)$ is naturally identified with $H^{0}\left(X, T_{X}\right)$. A natural question is how big can this group be. In general, $\mathfrak{a u t}(X)$ can be very big with respect to its dimension. For example, when X is the Hirzebruch surface \mathbb{F}_{m}, then $\operatorname{dim} \mathfrak{a u t}(X)=m+5$. On the other hand, in the case of Fano manifold of Picard number one, we have the following:

Conjecture 1.1 ([HM05], Conjecture 2). Let X be an n-dimensional Fano manifold of Picard number one. Then $\operatorname{dim} \mathfrak{a u t}(X) \leq n^{2}+2 n$, with equality if and only if $X \simeq \mathbb{P}^{n}$.

In HM05 (Theorem 1.3.2), this conjecture is proven under the assumption that the variety of minimal rational tangents (VMRT for short, cf. Definition 3.1) at a general point of X is smooth irreducible non-degenerate and linearly normal. The purpose of this note is to push further the ideas of [HM05], combined with the recent results in [FH12] and [FH18], to prove the following

Theorem 1.2. Let X be an n-dimensional Fano manifold of Picard number one. Assume that the VMRT at a general point of X is smooth irreducible and non-degenerate. Then we have
(a) $\operatorname{dim} \mathfrak{a u t}(X)>n(n+1) / 2$ if and only if X is isomorphic to $\mathbb{P}^{n}, \mathbb{Q}^{n}$ or $\operatorname{Gr}(2,5)$.
(b) The equality $\operatorname{dim} \mathfrak{a u t}(X)=n(n+1) / 2$ holds only when X is isomorphic to $\operatorname{Lag}(6)$ or a general hyperplane section of $\operatorname{Gr}(2,5)$.

Remark 1.3. As proved in Corollary 1.3.3 HM05, the assumption on the VMRT of X is satisfied if there exists an embedding $X \subset \mathbb{P}^{N}$ such that X is covered by lines with index $>\frac{n+2}{2}$.

Recall that $\operatorname{dim} \mathfrak{a u t}\left(\mathbb{P}^{n}\right)=n^{2}+2 n$ and $\operatorname{dim} \mathfrak{a u t}\left(\mathbb{Q}^{n}\right)=\operatorname{dim} \mathfrak{s o}_{n+2}=\frac{(n+1)(n+2)}{2}$. The previous theorem indicates that there may exist big gaps between the dimensions of automorphism groups of Fano manifolds of Picard number one.

To prove Theorem [1.2, we first show the following result, which could be of independent interest.

Theorem 1.4. Let $n \geq 2$ be an integer. Let $X \subsetneq \mathbb{P}^{n}$ be an irreducible and nondegenerate subvariety of codimension $c \geq 1$, which is not a cone. Let $G_{n}^{X}=\{g \in$ $\left.\mathrm{PGL}_{n+1}(\mathbb{C}) \mid g(X)=X\right\}$. Then
(a) $\operatorname{dim} G_{n}^{X} \leq \frac{n(n+1)}{2}-\frac{(c-1)(c+4)}{2}$.
(b) $\operatorname{dim} G_{n}^{X}=\frac{n(n+1)}{2}$ if and only if X is a smooth quadratic hypersurface.
(c) if X is smooth and is not a quadratic hypersurface, then $\operatorname{dim} G_{n}^{X} \leq \frac{n(n+1)}{2}-3$.

The idea of the proof of Theorem 1.2 is similar to that in HM05: the dimension of $\mathfrak{a u t}(X)$ is controlled by $n+\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)+\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)^{(1)}$, where \mathcal{C}_{x} is the VMRT of X at a general point, $\mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)$ is the Lie algebra of infinitesimal automorphisms of $\hat{\mathcal{C}_{x}}$ while $\mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)^{(1)}$ is the first prolongation of $\mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)$ (cf. Definition (3.4). By Theorem [1.4, we have an optimal bound for $\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)$, which gives the bound for $\operatorname{dim} \mathfrak{a u t}(X)$ in the case when $\mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)^{(1)}=0$. For the case when $\mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)^{(1)} \neq 0$, we have a complete classification of all such embeddings $\mathcal{C}_{x} \subset \mathbb{P} T_{x} X$ by [FH12] and [FH18]. Then a case-by-case check gives us the bound in Theorem 1.2, Finally we apply Cartan-Fubini extension theorem of Hwang-Mok ([HM01]) and the result of Mok ([Mok08]) to recover the variety X from its VMRT.

Convention: For a projective variety X, we denote by $\mathfrak{a u t}(X)$ its Lie algebra of automorphism group, while for an embedded variety $S \subset \mathbb{P} V$, we denote by $\mathfrak{a u t}(\hat{S})$ the Lie algebra of infinitesimal automorphisms of \hat{S}, which is given by

$$
\mathfrak{a u t}(\hat{S}):=\left\{g \in \operatorname{End}(V) \mid g(\alpha) \in T_{\alpha}(\hat{S}), \text { for any smooth point } \alpha \in \hat{S}\right\}
$$

Acknowledgements: We are very grateful to Francesco Russo and Fyodor Zak for discussions on Lemma [2.3, the proof of which presented here is due to Fyodor Zak. Baohua Fu is supported by National Natural Science Foundation of China (No. 11688101, 11621061 and 11771425).

2. Automorphism group of embedded varieties

For each positive integer n, we let

$$
G_{n}=\operatorname{Aut}\left(\mathbb{P}^{n}\right)=\operatorname{PGL}_{n+1}(\mathbb{C})
$$

If $X \subseteq \mathbb{P}^{n}$ is a subvariety, we denote by $G_{n}^{X} \subseteq G_{n}$ the subgroup of elements g such that $g(X)=X$. Note that if $X \subset \mathbb{P}^{n}$ is non-degenerate, then $G_{n}^{X} \subset \operatorname{Aut}(X)$.

The goal of this section is to prove the following theorem, which is more general than Theorem 1.4 .

Theorem 2.1. Assume that $n \geq 2$. Let $X \subsetneq \mathbb{P}^{n}$ be an irreducible and non-degenerate subvariety of codimension $c \geq 1$. Then the set

$$
C_{X}:=\{x \in X \mid X \text { is a cone with vertex } x\}
$$

is a linear subspace. Set $r_{X}:=-1$ if $C_{X}=\emptyset$ and $r_{X}:=\operatorname{dim} C_{X}$ otherwise. Then we have

$$
\operatorname{dim} G_{n}^{X} \leq \frac{\left(n-r_{X}-1\right)\left(n-r_{X}\right)}{2}-\frac{(c-1)(c+4)}{2}+\left(r_{X}+1\right)(n+1)
$$

The idea of the proof is to cut X by a general hyperplane, and then use induction on n to conclude. To this end, we will first introduce the following notation. For a hyperplane H in \mathbb{P}^{n}, we may choose a coordinates system $\left[x_{0}: x_{1}: \cdots: x_{n}\right]$ such that
H is defined by $x_{0}=0$. For every $g \in G_{n}$, it has a representative $M \in \mathrm{GL}_{n+1}(\mathbb{C})$, such that its action on \mathbb{P}^{n} is given by $g\left(\left[x_{0}: x_{1}: \cdots: x_{n}\right]\right)=\left[y_{0}: y_{1}: \cdots: y_{n}\right]$, where

$$
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=M\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Then $g \in G_{n}^{H}$ if and only if it can be represented by a matrix of the shape

$$
\left(\begin{array}{c|ccc}
a_{0} & 0 & \cdots & 0 \\
\hline a_{1} & & & \\
a_{2} & & A & \\
\vdots & & & \\
a_{n} & &
\end{array}\right)
$$

There is a natural morphism $r_{H}: G_{n}^{H} \rightarrow \operatorname{Aut}(H) \cong \mathrm{PGL}_{n}(\mathbb{C})$. Then an element g is in the kernel $\operatorname{Ker} r_{H}$ if and only if it can be represented by a matrix of the shape

$$
\left(\begin{array}{c|ccc}
\lambda & 0 & \cdots & 0 \\
\hline a_{1} & & & \\
a_{2} & & \mathrm{Id}_{n} & \\
\vdots & & & \\
a_{n} & &
\end{array}\right)
$$

For such $g \in \operatorname{Ker} r_{H}$, we call λ the special eigenvalue of g. The action of g on the normal bundle of H is then the multiplication by λ. We see that this is independant of the choice of representatives of g in $\mathrm{GL}_{n+1}(\mathbb{C})$. We also note that if g, h are two elements in $\operatorname{Ker} r_{H}$, with special eigenvalues λ and μ respectively, then the special eigenvalue of $g h$ is equal to $\lambda \mu$. This gives a homomorphism $\chi_{H}: \operatorname{Ker} r_{H} \rightarrow \mathbb{C}^{*}$.

Before giving the proof of Theorem [1.4, we will first prove several lemmas.
Lemma 2.2. Let H be a hyperplane in \mathbb{P}^{n}, and let $X \subseteq \mathbb{P}^{n}$ be any subvariety. Then

$$
\operatorname{dim} G_{n}^{X} \leq \operatorname{dim}\left(G_{n}^{H} \cap G_{n}^{X}\right)+n
$$

Proof. This lemma follows from the fact that $\operatorname{dim} G_{n}=\operatorname{dim} G_{n}^{H}+n$.
We also need the following Bertini type lemma.
Lemma 2.3. Assume that $n \geq 2$. Let $X \subseteq \mathbb{P}^{n}$ be a non-degenerate irreducible subvariety of positive dimension which is not a cone. Then for a general hyperplane H, the intersection $X \cap H$ is still non-degenerate in H and is not a cone.

Proof. Since $X \subseteq \mathbb{P}^{n}$ is irreducible and non-degenerate, the intersection of X and a general hyperplane H is non-degenerate in H.

Let $V \subset X \times\left(\mathbb{P}^{n}\right)^{*}$ be the subset of pair (x, H) such that $H \cap X$ is a cone with vertex x. Set $\pi_{1}: V \rightarrow X$ and $\pi_{2}: X \rightarrow\left(\mathbb{P}^{n}\right)^{*}$ the projections to the first and the second factors. If π_{2} is not surjective, we concludes the proof. So we may assume that π_{2} is surjective. Hence $\operatorname{dim} V \geq n$. Set $Y:=\pi_{1}(V)$.

We first assume that there is $x \in Y$ such that $\operatorname{dim} \pi_{1}^{-1}(x) \geq 1$. Since any non trivial complete one-dimensional family of hyperplanes in \mathbb{P}^{n} covers the whole \mathbb{P}^{n}, this condition implies that for every point $x^{\prime} \in X \backslash\{x\}$, there is some hyperplane H containing x and x^{\prime} such that $H \cap X$ is a cone with vertex x. Therefore, the line
joining x and x^{\prime} is contained in $H \cap X$ and hence in X. This shows that X is a cone with vertex x. We obtain a contradiction.

So the morphism $\pi_{1}: V \rightarrow Y$ is finite. Then we get

$$
n \leq \operatorname{dim} V=\operatorname{dim} Y \leq \operatorname{dim} X<n
$$

which is a contradiction. This concludes the proof.
In the following lemmas, we will show that the kernel of $G_{n}^{X} \cap G_{n}^{H} \rightarrow G_{n-1}^{X \cap H}$ is a finite set. Note that this kernel is nothing but $G_{n}^{X} \cap \operatorname{Ker} r_{H}$, as $X \cap H$ is nondegenerate by Lemma 2.3, We will discuss according to the special eigenvalue of an element inside. We will first study the case when it is equal to 1 .

Lemma 2.4. Assume that $n \geq 2$. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible subvariety which is not a cone. Let H be a hyperplane in \mathbb{P}^{n} such that $X \nsubseteq H$. Let $g \in \operatorname{Ker} r_{H} \cap G_{n}^{X}$. If the special eigenvalue of g is 1 , then g is the identity in G_{n}. In other words, the map $\chi_{H}: \operatorname{Ker} r_{H} \cap G_{n}^{X} \rightarrow \mathbb{C}^{*}$ is injective.

Proof. Assume the opposite. We choose a homogeneous coordinates system $\left[x_{0}: x_{1}\right.$: $\left.\cdots: x_{n}\right]$ such that H is defined by $x_{0}=0$, and that $g\left(\left[x_{0}: x_{1}: \cdots: x_{n}\right]\right)=\left[y_{0}: y_{1}:\right.$ $\left.\cdots: y_{n}\right]$, where

$$
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c|lll}
1 & 0 & \cdots & 0 \\
\hline a_{1} & & & \\
a_{2} & & \mathrm{Id}_{n} & \\
\vdots & & & \\
a_{n} & &
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{0} \\
x_{1}+a_{1} x_{0} \\
x_{2}+a_{2} x_{0} \\
\vdots \\
x_{n}+a_{n} x_{0}
\end{array}\right)
$$

By assumption, the a_{i} are not all equal to zero. Let $p \in \mathbb{P}^{n}$ be the point with homogeneous coordinates $\left[0: a_{1}: \cdots: a_{n}\right]$. For any point $x \in X \backslash H$ with homogeneous coordinates $\left[1: x_{1}: \cdots: x_{n}\right]$, the point $g^{k}(x)$ has coordinates

$$
g^{k}(x)=\left[1: x_{1}+k a_{1}: \cdots: x_{n}+k a_{n}\right] .
$$

This shows that all $g^{k}(x)$ are on the unique line $L_{p, x}$ passing through p and x. Since the $g^{k}(x)$ are pairwise different, this implies that $L_{p, x}$ has infinitely many intersection points with X. Therefore, $L_{p, x} \subseteq X$.

Since X is irreducible, every point $y \in X \cap H$ is a limit of points in $X \backslash H$. Hence by continuity, for each point $x \in X \backslash\{p\}$, the line $L_{p, x}$ is contained in X. This implies that X is a cone with vertex p. We obtain a contradiction.

Now we will look at the case when the special eigenvalue is different from 1.
Lemma 2.5. Assume that $n \geq 2$. Let $X \subseteq \mathbb{P}^{n}$ be a subvariety. Then there is a number $d(X)$ such that if a line L intersects X at more than $d(X)$ points, then $L \subseteq X$.

Proof. Assume that X is defined as the common zero locus of homogeneous polynomials P_{1}, \ldots, P_{k}. Let $d(X)$ be the maximal degree of them. Assume that a line L intersects X at more than $d(X)$ points, then L intersects the zero locus of each P_{i} at more than $d(X)$ points. By degree assumption, this shows that L is contained in the zero locus of each P_{i}. Hence $L \subseteq X$.

Lemma 2.6. Assume that $n \geq 2$. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible subvariety which is not a cone. Let H be a hyperplane in \mathbb{P}^{n} such that $X \nsubseteq H$. Let $g \in \operatorname{Ker}\left(r_{H}\right) \cap G_{n}^{X}$.

Then the special eigenvalue λ of g is a root of unity. Moreover, its order is bounded by the number $d(X)$ from above.

Proof. We may assume that λ is different from 1. Then g is diagonalizable in this case. We may choose homogeneous coordinates $\left[x_{0}: x_{1}: \cdots: x_{n}\right]$ of \mathbb{P}^{n} such that H is defined by $x_{0}=0$ and that

$$
g\left(\left[x_{0}: x_{1}: \cdots: x_{n}\right]\right)=\left[\lambda x_{0}: x_{1}: \cdots: x_{n}\right] .
$$

Assume by contradiction that the order of λ is greater than $d(X)$ (by convention, if λ is not a root of unity, then its order is $+\infty)$. Let p be the point with homogeneous coordinates $[1: 0: \cdots: 0]$. For any point $x \in X \backslash(H \cup\{p\})$ with homogeneous coordinates $\left[1: x_{1}: \cdots: x_{n}\right]$, the point $g^{k}(x)$ has coordinates

$$
g^{k}(x)=\left[\lambda^{k}: x_{1}: \cdots: x_{n}\right] .
$$

This shows that all of the $g^{k}(x)$ are on the unique line $L_{p, x}$ passing through p and x. Moreover, we note that the cardinality of

$$
\left\{g^{k}(x) \mid k \in \mathbb{Z}\right\}
$$

is exactly the order of λ. By Lemma 2.5, we obtain that the line $L_{p, x}$ is contained in X. By the same continuity argument as in the proof of Lemma 2.4, this implies that for any point $x \in X \backslash\{p\}$, the line $L_{p, x}$ is contained in X. Hence X is a cone, and we obtain a contradiction.

Lemma 2.7. Assume that $n \geq 2$. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible subvariety which is not a cone. Let H be a hyperplane in \mathbb{P}^{n} such that $X \nsubseteq H$. Then $\operatorname{Ker}\left(r_{H}\right) \cap G_{n}^{X}$ is a finite set. As a consequence, we have

$$
\operatorname{dim} G_{n}^{X} \leq \operatorname{dim} G_{n-1}^{X \cap H}+n
$$

Proof. By Lemma 2.4, the map $\chi_{H}: \operatorname{Ker} r_{H} \cap G_{n}^{X} \rightarrow \mathbb{C}^{*}$ is injective, while Lemma 2.6 implies that its image has bounded order, hence $\operatorname{Ker}\left(r_{H}\right) \cap G_{n}^{X}$ is finite. By Lemma 2.2. we obtain that

$$
\operatorname{dim} G_{n}^{X} \leq \operatorname{dim} G_{n-1}^{X \cap H}+n
$$

Now we can conclude Theorem 1.4 .
Proof of Theorem 1.4. By Lemma 2.3, we can repeatedly apply Lemma 2.7 to get
$\operatorname{dim} G_{n}^{X} \leq \operatorname{dim} G_{n-1}^{X \cap H}+n \leq \cdots \leq \operatorname{dim} G_{c+1}^{X \cap H^{n-c-1}}+n+(n-1)+\cdots+(c+2)$
Let $C:=X \cap H^{n-c-1} \subset \mathbb{P}^{c+1}$ be a general curve section of X. As $C \subset \mathbb{P}^{c+1}$ is non-degenerate by Lemma [2.3, we have an inclusion $G_{c+1}^{C} \subset \operatorname{Aut}(C)$, while the latter has dimension at most 3 . This gives that

$$
\operatorname{dim} G_{n}^{X} \leq 3+\sum_{j=c+2}^{n} j=\frac{n(n+1)}{2}-\frac{(c-1)(c+4)}{2}
$$

which proves (a).
For (b), if $\operatorname{dim} G_{n}^{X}=\frac{n(n+1)}{2}$, then $c=1$ by (a), i.e. $X \subset \mathbb{P}^{n}$ is a hypersurface. As X is not a cone, it must be smooth if it is quadratic. Therefore it remains to show that if X is a hypersurface of degree at least 3 , then $\operatorname{dim} G_{n}^{X} \leq \frac{n(n+1)}{2}-1$. We prove it by induction on the dimension of X. When $\operatorname{dim} X=1$, pick a general line H in \mathbb{P}^{2}. By Lemma 2.7, we have

$$
\operatorname{dim} G_{2}^{X} \leq \operatorname{dim} G_{1}^{X \cap H}+2
$$

In this case $X \cap H$ is a set of $\operatorname{deg} X \geq 3$ points, hence $\operatorname{dim} G_{1}^{X \cap H}=0$, it follows that $\operatorname{dim} G_{2}^{X} \leq 2=\frac{2(2+1)}{2}-1$. When $\operatorname{dim} X=n-1 \geq 2$, pick a general hyperplane H in \mathbb{P}^{n}. By Lemma 2.7, we have

$$
\operatorname{dim} G_{n}^{X} \leq \operatorname{dim} G_{n-1}^{X \cap H}+n
$$

Then by induction hypothesis we have

$$
\operatorname{dim} G_{n}^{X} \leq \operatorname{dim} G_{n-1}^{X \cap H}+n \leq \frac{n(n-1)}{2}-1+n=\frac{n(n+1)}{2}-1
$$

For (c), if we assume further that X is a smooth hypersurface of degree greater than 2, then $\operatorname{dim} G_{n}^{X}=0$ (see for example Theorem 1.2 [Poo05]). As a consequence, if X is smooth and is not a quadratic hypersurface, then $\operatorname{dim} G_{n}^{X} \leq \frac{n(n+1)}{2}-3$. This completes the proof of the theorem.

Proof of Theorem [2.1. If $C_{X}=\emptyset$, then we conclude the proof by Theorem 1.4. Now assume that $C_{X} \neq \emptyset$. By Proposition 1.3.3 [Rus16], it is a linear subspace. For simplicity, we set $r=r_{X}=\operatorname{dim} C_{X}$.

Pick a coordinates system of \mathbb{P}^{n} such that C_{X} is defined by $x_{0}=\cdots=x_{n-r-1}=0$. Let V be the subspace of \mathbb{P}^{n} defined by $x_{n-r}=\cdots=x_{n}=0$ and we identify it with \mathbb{P}^{n-r-1}. We let $\pi: \mathbb{P}^{n} \backslash C_{X} \rightarrow V \cong \mathbb{P}^{n-r-1}$ be the projection

$$
\pi:\left[x_{0}: \cdots: x_{n}\right] \mapsto\left[x_{0}: \cdots: x_{n-r-1}: 0: \cdots: 0\right]
$$

Denote the image $\pi\left(X \backslash C_{X}\right)$ by Y. Then we have $X \backslash C_{X}=\pi^{-1}(Y)$, and $Y=X \cap V$. Moreover, Y is not a cone and it is non-degenerate in \mathbb{P}^{n-r-1}. Since C_{X} is preserved by G_{n}^{X}, we see that $G_{n}^{X} \subseteq G_{n}^{C_{X}}$.

Each element g in $G_{n}^{C_{X}}$ can be represented by a matrix of the shape

$$
\left(\begin{array}{c|c}
A & 0 \\
\hline B & C
\end{array}\right)
$$

such that A and C are square matrices of dimension $n-r$ and $r+1$ respectively. We may now define an action of $G_{n}^{C_{x}}$ on V as follows. For each

$$
y=\left[a_{0}: \cdots: a_{n-r-1}: 0: \cdots: 0\right] \in V,
$$

the new action $g * y$ of g on y is defined as

$$
g * y=\pi(g . y),
$$

where $g . y$ represents the standard action of G_{n} on \mathbb{P}^{n}. With the representative above, this action is just defined as

$$
g *\left[a_{0}: \cdots: a_{n-r-1}: 0: \cdots: 0\right]=\left[b_{0}: \cdots: b_{n-r-1}: 0: \cdots: 0\right]
$$

where

$$
\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{n-r-1}
\end{array}\right)=A\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-r-1}
\end{array}\right)
$$

Thanks to this action, and by identifying V with \mathbb{P}^{n-r-1}, we obtain a group morphism $\rho: G_{n}^{C_{X}} \rightarrow G_{n-r-1}$.

ON FANO MANIFOLDS OF PICARD NUMBER ONE WITH BIG AUTOMORPHISM GROUPS 7
On the one hand, we note that an element $g \in G_{n}^{C_{X}}$ belongs to G_{n}^{X} if and only if $\rho(g) \in G_{n-r-1}^{Y}$. On the other hand, an element $g \in G_{n}^{C_{X}}$ belongs to $\operatorname{Ker} \rho$ if and only if it can be represented by a matrix of the shape

$$
\left(\begin{array}{c|c}
\mathrm{Id} & 0 \\
\hline B & C
\end{array}\right)
$$

Hence $\operatorname{dim} \operatorname{Ker} \rho=(r+1)(n+1)$. As we can see that $\operatorname{Ker} \rho \subseteq G_{n}^{X}$, we obtain that

$$
\operatorname{dim} G_{n}^{X}=\operatorname{dim} G_{n-r-1}^{Y}+(r+1)(n+1)
$$

Finally, by Theorem 1.4, we get

$$
\operatorname{dim} G_{n}^{X} \leq \frac{(n-r-1)(n-r)}{2}-\frac{(c-1)(c+4)}{2}+(r+1)(n+1)
$$

3. Proof of the main theorem

Definition 3.1. Let X be a uniruled projective manifold. An irreducible component \mathcal{K} of the space of rational curves on X is called a minimal rational component if the subscheme \mathcal{K}_{x} of \mathcal{K} parameterizing curves passing through a general point $x \in X$ is non-empty and proper. Curves parameterized by \mathcal{K} will be called minimal rational curves. Let $\rho: \mathcal{U} \rightarrow \mathcal{K}$ be the universal family and $\mu: \mathcal{U} \rightarrow X$ the evaluation map. The tangent map $\tau: \mathcal{U} \rightarrow \mathbb{P} T(X)$ is defined by $\tau(u)=\left[T_{\mu(u)}\left(\mu\left(\rho^{-1} \rho(u)\right)\right)\right] \in$ $\mathbb{P} T_{\mu(u)}(X)$. The closure $\mathcal{C} \subset \mathbb{P} T(X)$ of its image is the VMRT-structure on X. The natural projection $\mathcal{C} \rightarrow X$ is a proper surjective morphism and a general fiber $\mathcal{C}_{x} \subset$ $\mathbb{P} T_{x}(X)$ is called the VMRT at the point $x \in X$. The VMRT-structure \mathcal{C} is locally flat if for a general $x \in X$, there exists an analytical open subset U of X containing x with an open immersion $\phi: U \rightarrow \mathbb{C}^{n}, n=\operatorname{dim} X$, and a projective subvariety $Y \subset \mathbb{P}^{n-1}$ with $\operatorname{dim} Y=\operatorname{dim} \mathcal{C}_{x}$ such that $\phi_{*}: \mathbb{P} T(U) \rightarrow \mathbb{P} T\left(\mathbb{C}^{n}\right)$ maps $\left.\mathcal{C}\right|_{U}$ into the trivial fiber subbundle $\mathbb{C}^{n} \times Y$ of the trivial projective bundle $\mathbb{P} T\left(\mathbb{C}^{n}\right)=\mathbb{C}^{n} \times \mathbb{P}^{n-1}$.

Examples 3.2. An irreducible Hermitian symmetric space of compact type is a homogeneous space $M=G / P$ with a simple Lie group G and a maximal parabolic subgroup P such that the isotropy representation of P on $T_{x}(M)$ at a base point $x \in M$ is irreducible. The highest weight orbit of the isotropy action on $\mathbb{P} T_{x}(M)$ is exactly the VMRT at x. The following table (e.g. Section 3.1 [FH12]) collects basic information on these varieties.

Type	I.H.S.S. M	VMRT S	$S \subset \mathbb{P} T_{x}(M)$	$\operatorname{dim} \mathfrak{a u t}(M)$	$\operatorname{dim} \mathfrak{a u t}(S)$
I	$\operatorname{Gr}(a, a+b)$	$\mathbb{P}^{a-1} \times \mathbb{P}^{b-1}$	Segre	$(a+b)^{2}-1$	$a^{2}+b^{2}-2$
II	\mathbb{S}_{r}	$\operatorname{Gr}(2, r)$	Plücker	$r(2 r-1)$	$r^{2}-1$
III	$\operatorname{Lag}(2 r)$	\mathbb{P}^{r-1}	Veronese	$r(2 r+1)$	$r^{2}-1$
IV	\mathbb{Q}^{r}	\mathbb{Q}^{r-2}	Hyperquadric	$(r+1)(r+2) / 2$	$(r-1) r / 2$
V	$\mathbb{O P}^{2}$	\mathbb{S}_{5}	Spinor	78	45
VI	$E_{7} /\left(E_{6} \times U(1)\right)$	$\mathbb{O P}^{2}$	Severi	133	78

Lemma 3.3. Let M be an IHSS of dimension n different from projective spaces and $S \subset \mathbb{P}^{n-1}$ its $V M R T$ at a general point. Then
(1) $\operatorname{dimaut}(M) \leq \frac{n(n+1)}{2}$ unless $S \subset \mathbb{P}^{n-1}$ is projectively equivalent to the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{2}$ or the natural embedding of $\mathbb{Q}^{n-2} \subset \mathbb{P}^{n-1}$.
(2) The equality holds if and only if $S \subset \mathbb{P}^{n-1}$ is projectively equivalent to the second Veronese embedding of \mathbb{P}^{2}.

Proof. For Type (I), we have $M=\operatorname{Gr}(a, a+b), n=\operatorname{dim} M=a b$ and $\operatorname{dim} \mathfrak{a u t}(M)=$ $(a+b)^{2}-1$. As M is not a projective space, we may assume $b \geq a \geq 2$. Then the inequality $(a+b)^{2}-1 \geq \frac{a b(a b+1)}{2}$ is equivalent to $3 a b+2 \geq\left(a^{2}-2\right)\left(b^{2}-2\right)$, which holds if and only if $(a, b)=(2,2)$ or $(2,3)$. In both cases, the inequality is strict.

For Type (II), we have $M=\mathbb{S}_{r}, n=\operatorname{dim} M=r(r-1) / 2$ and $\operatorname{dim} \mathfrak{a u t}(M)=r(2 r-$ 1). We may assume $r \geq 5$ as $\mathbb{S}_{4} \simeq \mathbb{Q}^{6}$. Then one checks that $\operatorname{dim} \mathfrak{a u t}(M)<\frac{n(n+1)}{2}$.

For Type (III), we have $M=\operatorname{Lag}(2 \mathrm{r}), n=\operatorname{dim} M=r(r+1) / 2$ and $\operatorname{dim} \mathfrak{a u t}(M)=$ $r(2 r+1)$. We may assume $r \geq 3$ as $\operatorname{Lag}(4) \simeq \mathbb{Q}^{3}$. Then one checks that $\operatorname{dim} \mathfrak{a u t}(M) \leq$ $\frac{n(n+1)}{2}$, with equality if and only if $r=3$. In this case, $S \subset \mathbb{P}^{5}$ is the second Veronese embedding of \mathbb{P}^{2}.

For type (IV), we have $M=\mathbb{Q}^{r}$ and $\operatorname{dim} \mathfrak{a u t}(M)=(r+1)(r+2) / 2$, which does not satisfy $\operatorname{dim} \mathfrak{a u t}(M) \leq \frac{r(r+1)}{2}$.

For types (V) and (VI), it is obvious that dim $\mathfrak{a u t}(M) \leq \frac{n(n+1)}{2}$.
Definition 3.4. Let V be a complex vector space and $\mathfrak{g} \subset \operatorname{End}(V)$ a Lie subalgebra. The k-th prolongation (denoted by $\mathfrak{g}^{(k)}$) of \mathfrak{g} is the space of symmetric multi-linear homomorphisms $A: \operatorname{Sym}^{k+1} V \rightarrow V$ such that for any fixed $v_{1}, \cdots, v_{k} \in V$, the endomorphism $A_{v_{1}, \ldots, v_{k}}: V \rightarrow V$ defined by

$$
v \in V \mapsto A_{v_{1}, \ldots, v_{k}, v}:=A\left(v, v_{1}, \cdots, v_{k}\right) \in V
$$

is in \mathfrak{g}. In other words, $\mathfrak{g}^{(k)}=\operatorname{Hom}\left(\operatorname{Sym}^{k+1} V, V\right) \cap \operatorname{Hom}\left(\operatorname{Sym}^{k} V, \mathfrak{g}\right)$.
It is shown in HM05 that for a smooth non-degenerate variety $C \subsetneq \mathbb{P}^{n-1}$, the second prolongation satisfies $\mathfrak{a u t}(\hat{C})^{(2)}=0$.

Examples 3.5. Fix two integers $k \geq 2, m \geq 1$. Let Σ be an $(m+2 k)$-dimensional vector space endowed with a skew-symmetric 2 -form ω of maximal rank. The symplectic Grassmannian $M=\operatorname{Gr}_{\omega}(k, \Sigma)$ is the variety of all k-dimensional isotropic subspaces of Σ, which is not homogeneous if m is odd. Let W and Q be vector spaces of dimensions $k \geq 2$ and m respectively. Let \mathbf{t} be the tautological line bundle over $\mathbb{P} W$. The VMRT $\mathcal{C}_{x} \subset \mathbb{P} T_{x}(M)$ of $\operatorname{Gr}_{\omega}(k, \Sigma)$ at a general point is isomorphic to the projective bundle $\mathbb{P}\left((Q \otimes \mathbf{t}) \oplus \mathbf{t}^{\otimes 2}\right)$ over $\mathbb{P} W$ with the projective embedding given by the complete linear system

$$
H^{0}\left(\mathbb{P} W,\left(Q \otimes \mathbf{t}^{*}\right) \oplus\left(\mathbf{t}^{*}\right)^{\otimes 2}\right)=(W \otimes Q)^{*} \oplus \operatorname{Sym}^{2} W^{*}
$$

By Proposition 3.8 [FH12], we have $\mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right) \simeq\left(W^{*} \otimes Q\right) \rtimes(\mathfrak{g l l}(W) \oplus \mathfrak{g l}(Q))$ and $\mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)^{(1)} \simeq \operatorname{Sym}^{2} W^{*}$. This gives that

$$
\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)=m^{2}+k^{2}+k m \text { and } \operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}}_{x}\right)^{(1)}=k(k+1) / 2 .
$$

We denote by $\mathfrak{a u t}(\mathcal{C}, x)$ the Lie algebra of infinitesimal automorphisms of \mathcal{C}, which consists of germs of vector fields whose local flow preserves \mathcal{C} near x. Note that the action of $\operatorname{Aut}^{0}(X)$ on X sends minimal rational curves to minimal rational curves, hence it preserves the VMRT structure, which gives a natural inclusion $\mathfrak{a u t}(X) \subset$ $\mathfrak{a u t}(\mathcal{C}, x)$ for $x \in X$ general.

The following result is a combination of Propositions 5.10, 5.12, 5.14 and 6.13 in [FH12].

ON FANO MANIFOLDS OF PICARD NUMBER ONE WITH BIG AUTOMORPHISM GROUPS 9
Proposition 3.6. Let X be an n-dimensional smooth Fano variety of Picard number one. Assume that the VMRT \mathcal{C}_{x} at a general point $x \in X$ is smooth irreducible and non-degenerate. Then

$$
\operatorname{dim} \mathfrak{a u t}(X) \leq n+\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)+\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)^{(1)}
$$

The equality holds if and only if the VMRT structure \mathcal{C} is locally flat, or equivalently if and only if X is an equivariant compactification of \mathbb{C}^{n}.

We recall the following result from Theorem 7.5 [FH18].
Theorem 3.7. Let $S \subsetneq \mathbb{P} V$ be an irreducible smooth non-degenerate variety such that $\mathfrak{a u t}(\widehat{S})^{(1)} \neq 0$. Then $S \subset \mathbb{P} V$ is projectively equivalent to one in the following list.
(1) The VMRT of an irreducible Hermitian symmetric space of compact type of rank ≥ 2.
(2) The VMRT of a symplectic Grassmannian.
(3) A smooth linear section of $\operatorname{Gr}(2,5) \subset \mathbb{P}^{9}$ of codimension ≤ 2.
(4) A \mathbb{P}^{4}-general linear section of $\mathbb{S}_{5} \subset \mathbb{P}^{15}$ of codimension ≤ 3.
(5) Biregular projections of (1) and (2) with nonzero prolongation, which are completely described in Section 4 of [FH12].

Proposition 3.8. Let $S \subsetneq \mathbb{P} V$ be an irreducible smooth non-degenerate variety such that $\mathfrak{a u t}(\widehat{S})^{(1)} \neq 0$. Let $n=\operatorname{dim} V$. Then
(a) we have $\operatorname{dim} \mathfrak{a u t}(\hat{S})+\operatorname{dim} \mathfrak{a u t}(\hat{S})^{(1)} \leq \frac{n(n-1)}{2}$ unless $S \subset \mathbb{P} V$ is projectively equivalent to the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{2}$ or the natural embedding of $\mathbb{Q}^{n-2} \subset \mathbb{P}^{n-1}(n \geq 3)$.
(b) The equality holds if and only if $S \subset \mathbb{P} V$ is projectively equivalent to the second Veronese embedding of \mathbb{P}^{2} or a general hyperplane section of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{2}$.

Proof. Consider case (1) in Theorem 3.7, Let M be an IHSS and $S \subset \mathbb{P V}$ its VMRT at a general point. As the VMRT structure is locally flat, we have $\operatorname{dim} \mathfrak{a u t}(\hat{S})+$ $\operatorname{dim} \mathfrak{a u t}(\hat{S})^{(1)}=\operatorname{dim} \mathfrak{a u t}(M)-\operatorname{dim} M=\operatorname{dim} \mathfrak{a u t}(M)-n$ by Proposition 3.6. Now the claim follows from Lemma 3.3.

Consider case (2) in Theorem 3.7, By Example 3.5, we have

$$
\operatorname{dim} \mathfrak{a u t}(\hat{S})+\operatorname{dim} \mathfrak{a u t}(\hat{S})^{(1)}=m^{2}+k^{2}+k m+k(k+1) / 2
$$

with $k \geq 2$ and $n=k m+k(k+1) / 2$. Note that $n \geq k m+3$. Assume first that $m \geq 2$, then we have $m^{2}+k^{2}<(k m+3) k m / 2 \leq n(n-3) / 2$, which gives the claim. Now assume $m=1$, then it is easy to check that $1+k^{2} \leq n(n-3) / 2$ with equality if and only if $(k, m)=(2,1)$. By Lemma 3.6 [FH12], this implies that $S \subset \mathbb{P} V$ is projectively equivalent to a general hyperplane section of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{2}$.

Consider case (3) in Theorem 3.7. If S is the hyperplane section of $\operatorname{Gr}(2,5)$, then we have $\operatorname{dim} \mathfrak{a u t}(\hat{S})=16$ and $\operatorname{dim} \mathfrak{a u t}(\hat{S})^{(1)}=5$ by Propositions 3.11 and 3.12 in [FH12]. Now assume that S is a codimension 2 linear section of $\operatorname{Gr}(2,5)$, then $\operatorname{dim} \mathfrak{a u t}(\hat{S})=9$ and $\operatorname{dim} \mathfrak{a u t}(\hat{S})^{(1)}=1$ by Lemma 4.6 BFM18]. The claim follows immediately.

Consider case (4) in Theorem 3.7. If S is the hyperplane section of \mathbb{S}_{5}, then $\operatorname{dim} \mathfrak{a u t}(\hat{S})=31$ and $\operatorname{dim} \mathfrak{a u t}(\hat{S})^{(1)}=7$ by Propositions 3.9 and 3.10 in [FH12]. Now assume that S_{k} is a \mathbb{P}^{4}-general linear section of \mathbb{S}_{5} of codimension $k=2,3$. By

Propositions 4.7 and 4.11 BFM18, we have $\operatorname{dim} \mathfrak{a u t}\left(\hat{S}_{2}\right)=19$ and $\operatorname{dim} \mathfrak{a u t}\left(\hat{S}_{3}\right)=12$. By Theorem 1.1.3 [HM05], we have $\operatorname{dim} \mathfrak{a u t}(\hat{S})^{(1)} \leq \operatorname{dim} V^{*}$, hence $\operatorname{dim} \mathfrak{a u t}\left(\hat{S}_{2}\right)^{(1)} \leq$ 14. By a similar argument as Lemma 4.6 [BFM18], we have $\operatorname{dim} \mathfrak{a u t}\left(\hat{S}_{3}\right)^{(1)}=1$. Now the claim follows immediately.

The case (5) follows from Proposition 3.9.
Proposition 3.9. Let $S \subsetneq \mathbb{P} V$ be an irreducible linearly-normal non-degenerate smooth variety such that $\mathfrak{a u t}(\widehat{S})^{(1)} \neq 0$. Let $L \subset \mathbb{P V}$ be a linear subspace such that the linear projection $p_{L}: \mathbb{P} V \rightarrow \mathbb{P}(V / L)$ maps S isomorphically to $p_{L}(S)$. Assume that $\mathfrak{a u t}\left(p_{L}(S)\right)^{(1)} \neq 0$. Then $\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)+\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)^{(1)}<\frac{\ell(\ell-1)}{2}$, where $\ell=\operatorname{dim}(V / L)$.

Proof. By [FH12] (Section 4), $S \subset \mathbb{P} V$ is one of the followings: VMRT of IHSS of type (I), (II), (III) or VMRT of the symplectic Grassmanninans. We will do a case-by-case check based on the computations in FH12] (Section 4).

Consider the case of VMRT of IHSS of type (I). Let A, B be two vector spaces of dimension $a \geq 2$ (resp. $b \geq 2$). Then $S \simeq \mathbb{P} A^{*} \times \mathbb{P} B \subset \mathbb{P} \operatorname{Hom}(A, B)$. For a linear subspace $L \subset \operatorname{Hom}(A, B)$, we define $\operatorname{Ker}(L)=\cap_{\phi \in L} \operatorname{Ker}(\phi)$ and $\operatorname{Im}(L) \subset B$ the linear span of $\cup_{\phi \in L} \operatorname{Im}(\phi)$. By Proposition 4.10 [FH12], we have $\left.\mathfrak{a u t} \widehat{p_{L}(S)}\right)^{(1)} \simeq$ $\operatorname{Hom}(B / \operatorname{Im}(L), \operatorname{Ker}(L))$. As p_{L} is an isomorphism from S to $p_{L}(S), \mathbb{P} L$ is disjoint from $\operatorname{Sec}(S)$, hence elements in L have rank at least 3. This implies that $\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)^{(1)} \leq(b-3)(a-3)$ and $a, b \geq 4$. As $\mathfrak{a u t}\left(\widehat{p_{L}(S)}\right) \subset \mathfrak{a u t}(\hat{S})=$ $\mathfrak{g l}\left(A^{*}\right) \oplus \mathfrak{g l}(B)$, we obtain

$$
\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)+\operatorname{dim} \mathfrak{a u t} \widehat{\left(p_{L}(S)\right)^{(1)}}<a^{2}+b^{2}+(b-3)(a-3)
$$

Note that $\ell=\operatorname{dim} \operatorname{Hom}(A, B)-\operatorname{dim} L \geq 3(a+b)-9$ by Proposition 4.10 [FH12]. Now it is straightforward to check that $a^{2}+b^{2}+(b-3)(a-3)<\ell(\ell-1) / 2$ since $a+b \geq 8$.

Consider the case of VMRT of IHSS of type (II), then $S=\operatorname{Gr}(2, W)$, where W is a vector space of dimension $r \geq 6$. Let $L \subset \wedge^{2} W$ be a linear subspace. We denote by $\operatorname{Im}(L)$ the linear span of all $\cup_{\phi \in L} \operatorname{Im}(\phi)$, where $\phi \in L$ is regarded as an element in $\operatorname{Hom}\left(W^{*}, W\right)$. By Proposition 4.11 [FH12], we have $\mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)^{(1)} \simeq$ $\wedge^{2}(W / \operatorname{Im}(L))^{*}$. As p_{L} is biregular on S, the rank of an element in L is at least 5 , hence $\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)^{(1)} \leq(r-5)(r-6) / 2$. On the other hand, we have $\ell=$ $\operatorname{dim} \wedge^{2} W-\operatorname{dim} L \geq 6 r-11$ by Proposition 4.11 [FH12]. As $\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)<r^{2}$, we check easily that $r^{2}+(r-5)(r-6) / 2<\ell(\ell-1) / 2$.

Consider the case of VMRT of IHSS of type (III), then $S=\mathbb{P} W$, where W is a vector space of dimension $r \geq 4$. By Proposition 4.12 [FH12], we have $\mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)^{(1)} \simeq$ $\operatorname{Sym}^{2}(W / \operatorname{Im}(L))^{*}$, which has dimension at most $(r-2)(r-3) / 2$. On the other hand, we have $\ell \geq 3 r-3$ by loc. cit., hence we have $r^{2}+(r-2)(r-3) / 2<\ell(\ell-1) / 2$.

Now consider the VMRT of symplectic Grassmannians. We use the notations in Example 3.5 with $V=(W \otimes Q)^{*} \oplus \operatorname{Sym}^{2} W^{*}$, where $\operatorname{dim} W=k \geq 2$ and $\operatorname{dim} Q=m$. By Lemma 4.19 [FH12], we have $k \geq 3$, hence $k+m \geq 4$. Let $L \subset V$ be a linear subspace, then by Proposition 4.18 [FH12], we have $\ell \geq 3(k+m)-3$ and $\mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)^{(1)} \simeq \operatorname{Sym}^{2}\left(W / \operatorname{Im}_{W}(L)\right)^{*}$ which has dimension at most $k(k+1) / 2$. As $\operatorname{dim} \mathfrak{a u t}(\hat{S})=k^{2}+m^{2}+k m$, we have

$$
\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)+\operatorname{dim} \mathfrak{a u t}\left(\widehat{p_{L}(S)}\right)^{(1)}<k^{2}+m^{2}+k m+k(k+1) / 2 .
$$

Put $s=k+m$, then $k^{2}+m^{2}+k m+k(k+1) / 2=s^{2}-k m+k(k+1) / 2<3 s^{2} / 2-k m<$ $\ell(\ell-1) / 2$ since $k+m \geq 4$.

Now we can complete the proof of Theorem 1.2.
Proof of Theorem 1.2. By Proposition 3.6, we have

$$
\operatorname{dim} \mathfrak{a u t}(X) \leq n+\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)+\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)^{(1)}
$$

If $\mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)^{(1)}=0$, then $\mathcal{C}_{x} \subset \mathbb{P}^{n-1}$ is not a hyperquadric, which implies that $\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right) \leq n(n-1) / 2-2$ by Theorem 1.4. This gives that

$$
\operatorname{dim} \mathfrak{a u t}(X) \leq n+\operatorname{dim} \mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right) \leq n+n(n-1) / 2-2<n(n+1) / 2
$$

Now assume $\mathfrak{a u t}\left(\hat{\mathcal{C}_{x}}\right)^{(1)} \neq 0$. If $\mathcal{C}_{x}=\mathbb{P} T_{x} X$ for general $x \in X$, then X is isomorphic to \mathbb{P}^{n} by CMSB02. If $\mathcal{C}_{x} \subset \mathbb{P}_{x} X$ is a hyperquadric \mathbb{Q}^{n-2}, then $X \simeq \mathbb{Q}^{n}$ by Mok08. If $\mathcal{C}_{x} \subset \mathbb{P} T_{x} X$ is isomorphic to the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{2}$, then $X \simeq \operatorname{Gr}(2,5)$ by Mok08]. Now assume $\mathcal{C}_{x} \subset \mathbb{P} T_{x} X$ is not one of the previous varieties, then by Proposition 3.8 we have $\operatorname{dim} \mathfrak{a u t}(X) \leq n+n(n-1) / 2=n(n+1) / 2$, which proves claim (a) in Theorem 1.2,

Now assume the equality $\operatorname{dim} \mathfrak{a u t}(X)=n(n+1) / 2$ holds, then by Proposition 3.6, the VMRT structure is locally flat. By Proposition 3.8, $\mathcal{C}_{x} \subset \mathbb{P} T_{x} X$ is either the second Veronese embedding of \mathbb{P}^{2} or a general hyperplane section of $\mathbb{P}^{1} \times \mathbb{P}^{2}$. Note that these are also the VMRT of $\operatorname{Lag}(6)$ and a general hyperplane section of $\operatorname{Gr}(2,5)$, which have locally flat VMRT structure. This implies that X is isomorphic to $\operatorname{Lag}(6)$ or a general hyperplane section of $\operatorname{Gr}(2,5)$ respectively by the Cartan-Fubini extension theorem [HM01].

References

[BFM18] Chenyu Bai, Baohua Fu, and Laurent Manivel, On fano complete intersections in rational homogeneous varieties, arXiv preprint arXiv:1808.01549 (2018).
[CMSB02] Koji Cho, Yoichi Miyaoka, and N. I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1-88. MR 1929792
[FH12] Baohua Fu and Jun-Muk Hwang, Classification of non-degenerate projective varieties with non-zero prolongation and application to target rigidity, Invent. Math. 189 (2012), no. 2, 457-513. MR 2947549
[FH18] , Special birational transformations of type (2, 1), J. Algebraic Geom. 27 (2018), no. 1, 55-89. MR 3722690
[HM01] Jun-Muk Hwang and Ngaiming Mok, Cartan-Fubini type extension of holomorphic maps for Fano manifolds of Picard number 1, J. Math. Pures Appl. (9) 80 (2001), no. 6, 563575. MR 1842290
[HM05] _, Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation, Invent. Math. 160 (2005), no. 3, 591-645. MR 2178704
[Mok08] Ngaiming Mok, Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents, Third International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 42, pt. 1, vol. 2, Amer. Math. Soc., Providence, RI, 2008, pp. 41-61. MR 2409622
[Poo05] Bjorn Poonen, Varieties without extra automorphisms. III. Hypersurfaces, Finite Fields Appl. 11 (2005), no. 2, 230-268. MR 2129679
[Rus16] Francesco Russo, On the geometry of some special projective varieties, Lecture Notes of the Unione Matematica Italiana, vol. 18, Springer, Cham; Unione Matematica Italiana, Bologna, 2016. MR 3445582

Baohua Fu (bhfu@math.ac.cn)
MCM, AMSS, Chinese Academy of Sciences, 55 ZhongGuanCun East Road, Beijing, 100190, China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China

Wenhao OU (wenhaoou@math.ucla.edu)
UCLA Mathematics Department, 520 Portola Plaza, Los Angeles, CA 90095, USA
Junyi Xie (junyi.xie@univ-rennes1.fr)
IRMAR, Campus de Beaulieu, bâtiments 22-23 263 avenue du Général Leclerc, CS 7420535042 RENNES Cédex, France

