
NORMALIZED TANGENT BUNDLE, VARIETIES WITH SMALL
CODEGREE AND PSEUDOEFFECTIVE THRESHOLD
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Abstract. We propose a conjectural list of Fano manifolds of Picard number 1 with
pseudoeffective normalized tangent bundles, which we prove in various situations by re-
lating it to the complete divisibility conjecture of Russo and Zak on varieties with small
codegree. Furthermore, the pseudoeffective thresholds and hence the pseudoeffective cones
of the projectivized tangent bundles of rational homogeneous spaces of Picard number 1
are explicitly determined by studying the total dual VMRT and the geometry of stratified
Mukai flops. As a by-product, we obtain sharp vanishing theorems on the global twisted
symmetric holomorphic vector fields on rational homogeneous spaces of Picard number 1.
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1. Introduction

1.A. Positivity of normalized tangent bundles. Let X be an n-dimensional projective
manifold, and let C ⊂ X be an irreducible projective curve. The (semi-)stability of the
restriction TX |C is very closely related to the global geometry of X. For example, a famous
result of Mehta and Ramanathan [MR82] says that the restriction TX |C of TX to a general
complete intersection curve C of sufficiently ample divisors is again (semi-)stable provided
that TX itself is (semi-)stable with the respective polarisation. However, apart from very
special situations, the variety X usually contains many dominating families of irreducible
curves to which the restrictions of TX are not (semi-)stable. Using the language of positivity
of Q-twisted vector bundles, the semi-stability of TX |C is equivalent to the nefness of the
restriction of the normalized tangent bundle TX <− 1

n
c1(X)> of X to C (see [Laz04b,

Proposition 6.4.11]). Thus, our expectation above can be rephrased by saying that X
should be very special if its normalized tangent bundle is positive in some algebraic sense.

Let π : P(TX)→ X be the projectivized tangent bundle (in the Grothendieck sense) with
tautological divisor Λ. The normalized tangent bundle TX<− 1

n
c1(X)> is said pseudoeffec-

tive (resp. ample, big, nef) if so is the class Λ− 1
n
π∗(c1(X)). The normalized tangent bundle

is said almost nef if all irreducible curves C ⊂ X, to which the restriction of TX<− 1
n
c1(X)>

is not nef, are contained in a countable union of proper subvarieties of X. Since the nor-
malized tangent bundle of a curve is numerically trivial, we will only consider varieties of
dimension at least 2.

The positivity of normalized tangent bundles has already been studied in various con-
texts. In particular, we have the following theorem, which can be easily derived from the
works of Jahnke-Radloff [JR13, Theorem 0.1], Höring-Peternell [HP19, Theorem 1.9] and
Liu-Ou-Yang [LOY20, Theorem 1.6]. It can be viewed as a strong evidence to our expected
picture above.

1.1. Theorem. Let X be a projective manifold of dimension at least 2. Then the nor-
malized tangent bundle of X is almost nef if and only if X is isomorphic to a finite étale
quotient of an abelian variety.

The motivation of this paper is to study a weaker positivity: the pseudoeffectivity of
normalized tangent bundles. This problem has already been studied by Höring-Peternell
in [HP19] for klt projective variety with numerically trivial canonical class. Moreover,
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Nakayama has studied this problem in [Nak04] for semi-stable vector bundles of rank 2
over projective manifolds of arbitrary dimension and he obtained a complete classification
for such vector bundles (see [Nak04, IV, Theorem 4.8] for a precise statement). In particu-
lar, Nakayama’s result provides a satisfactory answer to our problem above for projective
surfaces. For instance, it turns out that a del Pezzo surface S has pseudoeffective normal-
ized tangent bundle if and only if S is isomorphic to a quadric surface (see Theorem 4.8).
Note that the product of two projective manifolds with pseudoeffective normalized tangent
bundle has again pseudoeffective normalized tangent bundle. To exclude the product cases,
we will focus on the case where X is a Fano manifold of Picard number 1 with dimension
at least 3 in this paper. Note that in this situation the pseudoeffectivity of the normalized
tangent bundle of X implies that the tangent bundle of X is big and it is expected that
the bigness of the tangent bundle is already a rather restrictive property (see [HLS20]). We
expect the following classification:

1.2. Conjecture. Let X be a Fano manifold of Picard number 1 with dimension at least
3. Then the normalized tangent bundle of X is pseudoeffective if and only if X is one of
the following varieties:

(1) a smooth quadric hypersurface;
(2) the Grassmann variety Gr(n, 2n);
(3) the Spinor variety S2n;
(4) the Lagrangian Grassmann variety LG(n, 2n);
(5) the 27-dimensional E7-variety E7/P7.

Note that the normalized tangent bundles of the varieties in the list are already shown to
be pseudoeffective but not big by [Sha20, Corollary 1.4] (See Proposition 5.14 for another
proof). We will prove a more general result in Theorem 1.14. On the other hand, if we
use the pseudoeffective threshold (with respect to an ample line bundle A) introduced in
[Sha20] which is defined as

α(X,A) := sup{α ∈ R |Λ− απ∗A is effective},

then we can reformulate Conjecture 1.2 as follows:

1.3. Conjecture. Let X be a Fano manifold of Picard number 1 with dimension at least
3. Then

α(X,−KX) ≤
1

dim(X)

with equality if and only if X is one of the varieties in Conjecture 1.2.

1.4. Remark. By Theorem 1.1, the normalized tangent bundle of a projective manifold
can not be nef and big (see also [Nak04, IV, Corollary 4.7]). On the other hand, Conjecture
1.2 implies that there does not exist examples of Fano manifolds of Picard number 1 with
big normalized tangent bundle, and we suspect the existence of such examples even for
Fano manifolds of higher Picard number. Here we recall that if the tangent bundle TX
of a Fano manifold X is semi-stable with respect to some ample line bundle A, then the
normalized tangent bundle of X can not be big (see Lemma 2.8).
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A powerful tool to study Fano manifolds is the VMRT (abbreviation for variety of min-
imal rational tangents) theory developed by Hwang and Mok (cf. [Hwa01]). Fix a dom-
inating family of minimal rational curves K on a Fano manifold X and a general point
x ∈ X. The tangent directions at x of members in K passing through x form a projective
subvariety Cx in P(ΩX,x). The projective geometry of Cx encodes many global properties of
X. For example, we can recover irreducible Hermitian symmetric spaces (IHSS for short)
from its VMRT by the following result of Mok:

1.5. Theorem. [Mok08, Main Theorem] Let G/P be an irreducible Hermitian symmetric
space (IHSS for short) and X a Fano manifold of Picard number 1. Assume that the VMRT
of X at a general point is projectively equivalent to that of G/P . Then X is isomorphic to
G/P .

As all the varieties in Conjecture 1.2 are IHSS, we may try to determine first the VMRT
of X in Conjecture 1.2 and then apply Theorem 1.5. This is the approach that we will use
in this paper.

It is interesting to remark that among IHSS, only the following varieties do not appear
in Conjecture 1.2: Gr(a, a + b) with a 6= b, S2n+1 and E6/P1. These varieties are exactly
those among IHSS which appear in stratified Mukai flops (cf. Proposition 5.2). As it will
become clearer, there exists a delicate relationship between the pseudoeffective threshold
and the birational geometry.

Table 1. IHSS and their VMRTs

IHSS G/P Qn Gr(a, a+b) Sn LG(n, 2n) E6/P1 E7/P7

VMRT Co Qn−2 Pa−1×Pb−1 Gr(2, n) Pn−1 S5 E6/P1

embedding Hyperquadric Segre Plücker second Veronese Spinor Severi

1.B. Varieties with small codegree. Recall that the codegree codeg(Z) of a projective
variety Z ⊂ PN is defined as the degree of its dual variety Ž ⊂ P̌N (see Definition 3.1).
Varieties with small degree have been thoroughly studied while very little is known for
varieties with small codegree. Segre proved in [Seg51] that for an irreducible and linearly
non-degenerate projective variety Z ⊊ PN , if its dual variety Ž ⊂ P̌N is a hypersurface with
non-vanishing hessian, then we have the following Segre inequality

codeg(Z) := deg(Ž) ≥ 2(N + 1)

dim(Z) + 2
. (1.1)

The above inequality is sharp and in fact the following complete divisibility conjecture
due to Russo and Zak predicts the boundary varieties:

1.6. Conjecture. [Rus03, Question 5.3.11] [Zak04, Conjecture 4.15] Let Z ⊊ PN be an
irreducible and linearly non-degenerate projective variety. If the dual variety Ž ⊂ P̌N is a
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hypersurface with non-vanishing hessian such that

codeg(Z) := deg(Ž) =
2(N + 1)

dim(Z) + 2
. (1.2)

Then Z is isomorphic to one of the following varieties:
(1) a smooth quadric hypersurface ( codeg(Z) = 2);
(2) the Segre variety Pn−1 × Pn−1 ⊂ P(n−1)(n+1) (codeg(Z) = n);
(3) the Grassmann variety Gr(2, 2n) ⊂ Pn(2n−1)−1 ( codeg(Z) = n);
(4) the Veronese variety ν2(Pn−1) ⊂ P

(n−1)(n+2)
2 (codeg(Z) = n);

(5) the 16-dimensional Cayley plane E6/P1 ⊂ P26 (codeg(Z) = 3).

Conjecture 1.6 is still widely open for codeg(Z) ≥ 4. The case codeg(Z) = 2 is easy as
Z must be a hyperquadric. When codeg(Z) = 3, then we have dimZ = 2N−4

3
, which is the

bound for Severi varieties. Thanks to Zak’s classification of smooth varieties of codegree
3 (see [Zak93, Theorem 5.2]), it turns out in this case, Z is one of the following Severi
varieties:

ν2(P2) ⊂ P5, P2 × P2 ⊂ P8, Gr(2, 6) ⊂ P14, E6/P1 ⊂ P26.

As a corollary, Conjecture 1.6 is confirmed in the following two cases:
(1) dim(Z) > 2N−4

3
;

(2) Z is smooth and dim(Z) > N−3
2

.
On the other hand, initiated from 1950s, there have been many efforts trying to classify
nonsingular curves and surfaces with small codegree, which proves Conjecture 1.6 up to
dimension 2. More precisely, we have

1.7. Proposition. [Zak04, Proposition 3.1 and 3.2] [TV93, Theorem 2.1] If Z ⊊ PN is a
smooth projective variety of dimension at most 2 satisfying (1.2), then Z is either a conic
curve, a quadric surface or the Veronese surface ν2(P2) ⊂ P5.

There are very few papers devoted to threefold cases, see for example [LT87]. We will
confirm Conjecture 1.6 for smooth projective threefolds. More precisely we shall show:

1.8. Proposition. Let Z ⊊ PN be a linearly non-degenerate smooth projective threefold of
degree d and codegree d∗. Then one of the following statements holds.
(1) pg(S) 6= 0 and d∗ ≥ 2N , where S is a general hyperplane section of Z.
(2) 2d∗ ≥ d with equality if and only if Z is projectively equivalent to either the Veronese

variety ν2(P3) ⊂ P9 or its isomorphic projection in P8.
In particular, Conjecture 1.6 holds for smooth projective threefolds. More precisely, if Z ⊊
PN is a linearly non-degenerate smooth projective threefold satisfying the equality (1.2),
then Z is either a quadric threefold in P4 or the Veronese embedding ν2(P3) ⊂ P9.

The relation between Conjecture 1.2 and Conjecture 1.6 can be easily seen from Table
1 above: the varieties listed in Conjecture 1.6 are nothing else but the VMRTs of the
varieties listed in Conjecture 1.2. Indeed, if we assume that the VMRT of X at a general
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point is not dual defective, then the pseudoeffectivity of the normalized tangent bundle
can be interpreted as informations on the cohomological class of the total dual VMRT (cf.
[HR04, HLS20]). This allows us to relate Conjecture 1.2 to Conjecture 1.6. In particular,
combining this with the known results for Conjecture 1.6 yields the following first main
result of this paper.

1.9. Theorem. Let X be an n-dimensional Fano manifold of Picard number 1 with n ≥ 3.
Assume that the VMRT Cx ⊂ P(ΩX,x) at a general point x ∈ X is not dual defective.

(1) If we assume in addition that the VMRT is irreducible and linearly non-degenerate such
that its dual variety has non-vanishing hessian, then
(1.1) α(X,−KX) ≤ 1

dim(X)
;

(1.2) Conjecture 1.6 implies Conjecture 1.2 and hence Conjecture 1.3;
(2) Conjecture 1.2 and Conjecture 1.3 hold if one of the following holds.

(2.1) dim(Cx) > 2n−6
3

, or
(2.2) Cx is smooth and dim(Cx) > max

{
n−4
2
, 0
}

, or
(2.3) Cx is irreducible, smooth, linearly non-degenerate and dim(Cx) ≤ 3.

Our statement is actually a bit more stronger: if in Theorem 1.9 the normalized tangent
bundle of X is assumed to be pseudoeffective, then the VMRT Cx ⊂ P(ΩX,x) satisfies the
reverse Segre inequality (1.1) (see Proposition 4.3). Typically a projective variety is dual
defective only in very special cases and the VMRTs of a large class of Fano manifolds
are smooth and irreducible. Thus the assumption on smoothness, irreducibility and non-
defectiveness is not very restrictive. However, the assumption on the non-degeneracy seems
to be a strong restriction as many known examples of Fano manifolds have degenerate
VMRTs.

1.10. Corollary. Let X be an n-dimensional Fano manifold of Picard number 1 such that
3 ≤ n ≤ 5. Assume that the VMRT Cx ⊂ P(ΩX,x) at a general point is smooth and non-
linear. Then the normalized tangent bundle of X is pseudoeffective if and only if X is a
smooth quadric hypersurface in Pn+1 (3 ≤ n ≤ 5).

1.11. Remark. Let X be a Fano manifold of Picard number 1. To our best knowledge,
the known examples of X with singular VMRTs have dimension at least 6 (cf. [HK15,
Theorem 1.3]) and the known examples of X, not isomorphic to a projective space, with
linear VMRTs also have dimension at least 6 (cf. [MnOSC14, Proposition A.8])

1.12. Corollary. Let X be an n-dimensional Fano manifold of Picard number 1 such that
3 ≤ n ≤ 11. Assume that the VMRT Cx at a general point x ∈ X is irreducible, smooth,
linearly non-degenerate and not dual defective. Then the normalized tangent bundle of X
is pseudoeffective if and only if X is one of the following varieties:

(1) a smooth quadric hypersurface in Pn+1 (3 ≤ n ≤ 11);
(2) the Lagrangian Grassmaniann varieties LG(3, 6) and LG(4, 8);
(3) the Grassmaniann variety Gr(3, 6).

6



1.C. Rational homogeneous spaces. As mentioned in the previous subsection, the pseu-
doeffectivity of the normalized tangent bundle implies the bigness of the tangent bundle
and up to our knowledge, there are very few known examples of Fano manifolds of Picard
number 1 with big tangent bundle. Apart from rational homogeneous spaces, only two
examples are known, namely the del Pezzo threefold V5 of degree 5 [HLS20, Theorem 1.5]
and the horospherical G2-variety X [PP10, Theorem 2.3]. Thus a natural question is to
verify Conjecture 1.2 for those examples. This is more or less equivalent to determine
the pseudoeffective cone of the projectivized tangent bundle, or equivalently to determine
the invariant α(X,−KX), and it fits into the following general problem in the study of
positivity of vector bundles.

1.13. Problem. [Nak04, IV.4, Problem] Let E be a vector bundle over a projective mani-
fold X and let Λ be the tautological class of the projectivized bundle π : P(E)→ X. Describe
the set

V (X,E) := {D ∈ N1(X) |Λ + π∗D is pseudoeffective}.

The second part of this paper is devoted to study Problem 1.13 for rational homogeneous
spaces X = G/P of Picard number 1 and for E = TX . This is equivalent to determine
whether the following cohomological group

H0(X, (SymrTX)⊗OX(−dH))

vanishes or not, where H is the ample generator of Pic(X). In general, it is quite difficult
to compute these cohomological groups due to the lack of tools. However, recently it is
observed in [HLS20] that the problem can be translated into the calculation of the coho-
mological class of the total dual VMRT if the VMRT is not dual defective. By combining
this with the geometry of stratified Mukai flops, we will completely settle Problem 1.13 for
rational homogeneous spaces of Picard number 1 with E being the tangent bundle, which
reads as follows:

1.14. Theorem. Let G/P be a rational homogeneous space of Picard number 1 with
dimension at least 2. Let Λ be the tautological divisor on P(TG/P ) and π : P(TG/P )→ G/P
the natural projection. Denote by H the ample generator of Pic(G/P ). Then there exist
two integers a, b (explicitly determined in Appendix A ) associated to G/P such that
(1) The pseudoeffective threshold α(G/P,H) is equal to b/a, namely Λ− λπ∗H is pseudo-

effective if and only if λ ≤ b/a.
(2) Let r and d be two arbitrary positive integers. Then

H0(G/P, (SymrTG/P )⊗OG/P (−dH)) 6= 0⇐⇒ b
⌊r
a

⌋
≥ d,

(3) Conjecture 1.2 and hence Conjecture 1.3 hold for G/P .

Note that Shao proved in [Sha20], with completely different techniques (via Borel-Weil-
Bott Theorem), the statements of Theorem 1.14 for IHSS. It seems hard to extend his
arguments to this general setting.

The main idea of the proof is to use the generically finite Springer map ŝ : T ∗
G/P → O

from the cotangent bundle of G/P to its Richardson orbit closure. By taking the Stein
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factorization and then taking the projectivization, we get a birational map ε : P(TG/P )→ Y .
The birational geometry of ε is well-understood ([Nam06], [Fu07], [Nam08]), which implies
for example when ε is small, there exists a (projectivized) stratified Mukai flop (over Y)
µ : P(TG/P ) 99K P(TG/Q) with G/P ' G/Q. This allows us to determine the effective cone
and the movable cone of P(TG/P ) (cf. Theorem 5.5) in terms of the exceptional divisor Γ
of ε (resp. µ∗π∗

2H) when ε is divisorial (resp. when ε is small), where π2 : P(TG/Q)→ G/Q
and H is an ample generator of Pic(G/Q). The two numbers a and b in Theorem 1.14 are
the unique positive integers such that

Γ ≡ aΛ− bπ∗H (resp. µ∗π∗
2H ≡ aΛ− bπ∗

1H).

It turns out the integer a is very geometrical, which is related to the codegree of the
VMRT of G/P or to the degree of the images of lines under the stratified Mukai flops,
while b is an integer taking value 1 or 2, and b = 2 if and only if the VMRT of G/P is not
dual defective and G/P is not isomorphic to E7/P4. Subsequently we will divide G/P into
different types (Definition 5.6). In order to compute them, we carry out a detailed study
of stratified Mukai flops.

One interesting observation is that we have (a, b) = (4, 2) for Fano contact manifolds
of Picard number 1 different to projective spaces (cf. Proposition 5.14) and their VMRTs
are the homogeneous Legendre varieties which form the main series of the conjectural list
of nonsingular varieties with codegree 4 and are also the examples of varieties of next to
minimal degree (cf. [Zak04, Remark 3.6 and Remark 4.16] and [Tev05, p.168]).

Other interesting examples of Fano manifolds with Picard number 1 are provided by
moduli spaces SUC(r, d) of stable vector bundles of rank r and degree d over a nonsingular
projective curve of genus g. Based on the work of Hwang-Ramanan [HR04], we show in
Corollary 3.5 that the tangent bundle of SUC(r, d) is not big if g ≥ 4, r ≥ 3 and (r, d) = 1.
In particular, the normalized tangent bundle of SUC(r, d) is not pseudoeffective in this case.

1.15. Remark. As predicted by Conjecture 1.2, a Fano manifold of Picard number 1
with pseudoeffective normalized tangent bundle must have nef tangent bundle. If we can
prove this, then Conjecture 1.2 would follow from Theorem 1.14 and the famous Campana-
Peternell conjecture (see [CP91]) which predicts that Fano manifolds with nef tangent
bundles must be homogeneous.

Here is the organization of this paper: after a brief recall of various positivities of vector
bundles in Section 2, we describe in Section 3 the pseudoeffective cone of P(TX) in terms of
total dual VMRT when X is a Fano manifold of Picard number 1 with big tangent bundle
whose VMRT is not dual defective. Section 4 is devoted to the proof of Theorem 1.9.
We determine the pseudoeffective cone of P(TG/P ) in Section 5 for a rational homogeneous
space G/P of Picard number 1. Two non-homogeneous examples are studied in Section 6.

Acknowledgements. We are very grateful to Jun-Muk Hwang, Francesco Russo and Fy-
odor Zak for their comments on a first version and it is a pleasure to thank Qifeng Li for
the discussion on the VMRT of F4/P3. The second-named author would like to express his
gratitude to Andreas Höring for bringing his attention to this problem and also for helpful
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2. Cone of divisors and positivity of vector bundles

2.A. Cone of divisors. Given a projective variety X, we consider the real vector space
N1(X) := N1

R(X) of Cartier divisors, with real coefficients, up to numerical equivalence.
Its dimension is equal to the Picard number ρ(X) of X. This vector space contains several
important convex cones.
(1) The effective cone Eff(X) is the convex cone in N1(X) generated by classes of effective

divisors. This cone is neither closed nor open in general. The closure Eff(X) of Eff(X)
is called the pseudoeffective cone of X. The interior of the effective cone Eff(X) is the
big cone Big(X) of X, which is the convex cone generated by big R-Cartier divisors.

(2) Denote by Mov(X) the cone in N1(X) generated by classes of movable divisors; that
is, Cartier divisors D on X such that its stable base locus B(D) has codimension at
least two. Again, this cone is neither closed nor open. The closure Mov(X) of Mov(X)
is called the movable cone. Recall that the stable base locus of a Q-Cartier, Q-Weil
divisor D on a projective variety X is the Zariski closed subset defined as

B(D) :=
⋂

m∈N, mD Cartier

Bs(mD).

(3) The nef cone Nef(X) is the cone of classes in N1(X) having non-negative intersection
with all curves in X. This cone is closed by definition and its interior is the ample cone
Amp(X), which is generated by classes of ample divisors. In general the nef cone is
neither polyhedral nor rational.

Clearly, there are inclusions: Nef(X) ⊆ Mov(X) ⊆ Eff(X).

2.B. Divisorial Zariski decomposition. Let D be a pseudoeffective R-divisor on a
smooth projective variety X. Recall that for a prime divisor Γ on X we can define

σΓ(D) = lim
ϵ→0+

inf {Mult
Γ

D′ |D′ ≥ 0 and D′ ∼R D + ϵA}

where A is any fixed ample divisor. By [Nak04, III, Corollary 1.11], there are only finitely
many prime divisors Γ on X such that σΓ(D) > 0. This allows us to make the following
definition, see [Nak04, III] and [Bou04].

2.1. Definition. Let D be a pseudoeffective R-divisor on a smooth projective variety X.
Define

Nσ(D) =
∑

Γ σΓ(D)Γ and Pσ(D) = D −Nσ(D).
The decomposition D = Nσ(D)+Pσ(D) is called the divisorial Zariski decomposition of D.

Note that Nσ(D) is an effective R-Weil divisor and Pσ(D) is a movable R-divisor, i.e.,
[Pσ(D)] ∈ Mov(X) (cf. [Nak04, III, Proposition 1.14]). In particular, for any prime divisor
Γ ⊂ X the restriction Pσ(D)|Γ is pseudoeffective.
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2.B.1. Augmented and restricted base loci. Let D be an R-Cartier, R-Weil divisor on a
normal projective variety X. The augmented base locus (aka non-ample locus) of D is
defined to be

B+(D) :=
⋂
A

B(D − A),

where the intersection is over all ample divisors A such that D−A is a Q-Cartier, Q-Weil
divisor. The restricted base locus (aka non-nef locus) of D is defined as

B−(D) :=
⋃
A

B(D + A),

where the union is taken over all ample divisors A such that D+A is a Q-Cartier, Q-Weil
divisor. Recall that the augmented and restricted base locus depend only on the numerical
equivalence class of D and we refer the reader to [ELM+06] for a detailed discussion of these
notions. Let us denote by B1

+(D) (resp. B1
−(D)) the union of codimension 1 components

of B+(D) (resp. B−(D)).

2.2. Lemma. Let D and D′ be two pseudoeffective R-Cartier, R-Weil divisors on a normal
projective variety X. Assume that there exists an ample divisor A such that [D] is contained
in the interior of the 2-dimensional cone 〈[D′], [A]〉. Then we have B+(D) ⊂ B−(D

′).

Proof. By assumption, there exist positive real numbers λD′ and λA such thatD ≡R λD′D′+
λAA. By [ELM+06, Lemma 1.14 and Lemma 1.8], we obtain

B+(D) = B+(λD′D′ + λAA) ⊂ B−(λD′D′) = B−(D
′),

which concludes the proof. �
2.3. Lemma. Let M be a movable R-Cartier, R-Weil divisor on a normal projective variety
X. Then [M ] is contained in the interior of Mov(X) if and only if B1

+(M) = ∅.

Proof. Let A be an arbitrary ample divisor on X. By [ELM+06, Proposition 1.5], there
exists 0 < ϵ� 1 such that B+(M) = B(M−ϵ′A) for any 0 < ϵ′ ≤ ϵ. In particular, it follows
that B1

+(M) = ∅ if and only if B(M − ϵ′A) does not contain divisorial parts, i.e., M − ϵ′A
is movable, which holds if and only if [M ] is contained in the interior of Mov(X). �

2.B.2. Comparing base loci and Nσ(D). Given a pseudoeffective R-Weil divisor D on a
projective manifold X, the augmented and restricted base loci are closely related to the
divisorial Zariski decomposition of D.

2.4. Lemma. Let D be a pseudoeffective R-divisor on a projective manifold X. Then
(1) Supp(Nσ(D)) is precisely the divisor B1

−(D).
(2) If D is not movable and [D] generates an extremal ray of Eff(X), then there exists a

unique prime divisor Γ ⊂ X such that [Γ] ∈ R>0[D]. Moreover, we have
Γ = Supp(Nσ(D)) = B1

−(D).

Proof. The statement (1) follows from [Nak04, V, Theorem 1.3] and the statement (2) is
proved in [HLS20, Lemma 2.5] �
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As an immediate application, a pseudoeffective R-divisor D on a projective manifold X
is movable if and only if B1

−(D) is empty, see also [Nak04, III, Proposition 1.14].

2.5. Corollary. Given a smooth projective variety X, let D be a pseudoeffective R-divisor
and let M be a movable R-divisor on X. Assume that

(1) the divisor D is not movable and [D] generates an extremal ray of Eff(X), and
(2) the divisor class [M ] is not contained in the interior of Mov(X), and
(3) there exists an ample divisor A such that [M ] is contained in the interior of the 2-

dimensional cone 〈[D], [A]〉.

Then we have B1
+(M) = B1

−(D) = Supp(Nσ(D)), which is the unique prime divisor con-
tained in the ray R>0[D].

Proof. By our assumption (3) and Lemma 2.2, we have B+(M) ⊂ B−(D). As [M ] is
not contained in the interior of Mov(X), it follows from Lemma 2.3 that B1

+(M) is not
empty. On the other hand, according to assumption (1) and Lemma 2.4, one obtains that
B1

−(D) = Supp(Nσ(D)) is the unique prime divisor which is contained in R>0[D]. This
forces that B1

+(M) = B1
−(D). �

2.C. Positivity of vector bundles. Given a projective variety X, let E be a vector
bundle of rank r over X. Denote by π : P(E)→ X the projectivised bundle in the sense of
Grothendieck; that is,

P(E) := ProjX

(⊕
r≥0

SrE

)
.

We will denote by Λ the tautological divisor of P(E), i.e., OP(E)(Λ) ∼= OP(E)(1). We will
use the following terminology throughout this paper and we refer the reader to [Laz04b]
for more details.

2.6. Definition. Let X be a projective variety.

(1) A Q-twisted vector bundle E<δ> on X is an ordered pair consisting of a vector bundle
E on X, defined up to isomorphisms, and a numerical equivalence Q-Cartier divisor
class δ ∈ N1(X).

(2) The normalization of a vector bundle E of rank r on X is the Q-twisted vector bundle

E<−1

r
c1(E)> .

(3) A Q-twisted vector bundle E<δ> is said to be pseudoeffective (resp. ample, big, nef) if
the class Λ + π∗δ is pseudoeffective (resp. ample, big, nef) on P(E).

(4) A Q-twisted vector bundle E<δ> is said almost nef if for a very general curve C,
the restriction E<δ> |C is nef. Here very general curves mean that they intersect the
complementary part of a countable union of proper subvarieties.

The following properties are well known for experts and we include a complete proof for
the reader’s convenience, see also [HLS20, Lemma 2.2 and Lemma 2.3].
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2.7. Proposition. Let X be a projective variety. Let E and F be vector bundles over X
and let δ ∈ N1(X) be a Q-Cartier divisor class.
(1) The Q-twisted vector bundle E<δ> is pseudoeffective if and only if for an arbitrary big

Q-Cartier, Q-Weil divisor D on X and an arbitrary Q-Cartier, Q-Weil divisor ∆ on
X such that [∆] = δ, there exists an effective Q-Weil divisor N satisfying

N ∼Q Λ + π∗(∆ +D)

(2) The Q-twisted vector bundle E<δ> is big if and only if the Q-twisted vector bundle
E<δ − γ> is pseudoeffective for some big Q-Cartier class γ ∈ Big(X).

Proof. One direction of the statement (1) is clear since the pseudoeffective cone Eff(P(E))
is closed. For the converse, we assume that E<δ> is pseudoeffective. Since D is big, by
[Laz04a, Chapter 2, Corollary 2.2.7], there exists an ample Q-Cartier, Q-Weil divisor A and
an effective Q-Weil divisor N ′ such that D ∼Q A + N ′. On the other hand, as Λ + π∗δ is
π-ample, there exists a rational number 0 < ϵ� 1 such that the Q-Cartier, Q-Weil divisor
ϵ(Λ + π∗∆) + π∗A is ample. This implies that

Λ + π∗(∆ +D) ∼Q ϵ(Λ + π∗∆) + π∗A+ (1− ϵ)(Λ + π∗∆) +N ′

is big since Big(P(E)) is the interior of Eff(P(E)). Then it follows again from [Laz04a,
Chapter 2, Corollary 2.2.7] that there exists an effective Q-Cartier, Q-Weil divisor N such
that

N ∼Q Λ + π∗(∆ +D).

One can easily obtain one implication of the statement (2), since Big(P(E)) is open.
Conversely, we assume that E<δ − γ> is pseudoeffective for some big Q-Cartier class
γ. Similar to the proof of the statement (1), there exists a rational number 0 < ϵ � 1,
an ample Q-Cartier, Q-Weil divisor A and an effective Q-Weil divisor N such that the
Q-Cartier divisor class ϵ(Λ + π∗(δ − γ)) + π∗A is ample and

Λ + π∗δ ≡Q ϵ(Λ + π∗(δ − γ)) + π∗A+ (1− ϵ)(Λ + π∗(δ − γ)) +N.

Note that the Q-Cartier divisor class (1 − ϵ)(Λ + π∗(δ − γ)) is pseudoeffective by our
assumption. Then it is clear that the Q-Cartier divisor class Λ + π∗δ is big. �

We recall the following folklore result:

2.8. Lemma. Let X be a smooth projective manifold of dimension n and H an ample
divisor. Let E be an H-semi-stable vector bundle of rank r on X. Then the normalized
vector bundle E<−1

r
c1(E)> is not big.

Proof. Assume E〈−ac1(E)〉 is effective for some rational number a > 0; that is, we have
H0(X, SymmE ⊗ det(E∗)⊗(am)) 6= 0

for some positive integer m such that am is an integer. This gives an injection
det(E)⊗(am) → SymmE,

which yields
µmax
H (SymmE) ≥ µH(det(E)

⊗(am)) = amc1(E) ·Hn−1.
12



On the other hand, as E is H-semi-stable, so is SymmE. Hence, we obtain

µmax
H (SymmE) = µH(Sym

mE) =
mc1(E) ·Hn−1

r
,

which gives that a ≤ 1/r. In particular, it follows from Proposition 2.7 that E<−1
r
c1(E)>

is not big. �

3. Fano manifolds with semi-ample tangent bundles

3.A. Dual variety of VMRT. Let X be a smooth projective variety of dimension n.
Denote by RatCurvesn(X) the normalization of the open subset of Chow(X) parametrising
integral rational curves. By a family of rational curves in X, we mean an irreducible
component K of RatCurvesn(X). We denote by Locus(K) the locus of X swept out by
curves from K. We say that K is minimal if, for a general point x ∈ Locus(K) the closed
subset Kx of K parametrizing curves through x is proper. We say that K is dominating if
Locus(K) is dense in X. For an ample divisor H on X, we write H · K the intersection
number of H with a rational curve parametrised by K.

3.A.1. Variety of minimal rational tangents. Every uniruled projective manifold X carries
a dominating family of minimal rational curves. Fix one such family K. A general member
[C] ∈ K is a standard rational curve, i.e. if we denote by f : P1 → C its normalization,
then there exists a non-negative integer p such that

f ∗TX ∼= OP1(2)⊕OP1(1)⊕p ⊕O⊕(n−p−1)

P1 .

Given a general point x ∈ X, let Kn
x be the normalization of Kx. Then Kn

x is a finite union
of smooth projective varieties of dimension p. Define the tangent map τx : Kn

x 99K P(ΩX,x)
by sending a curve that is smooth at x to its tangent direction at x. Define Cx to be the
image of τx in P(ΩX,x). This is called the variety of minimal rational tangents (VMRT for
short) at x associated to the minimal family K. The map τx : Kn

x 99K Cx ⊂ P(ΩX,x) is in
fact the normalization morphism by [Keb02b, HM04a].

3.A.2. Dual variety. Let us recall the definition of dual varieties of projective varieties
and we refer the reader to [Tev05] for more details. Let V be a complex vector space of
dimension N + 1, and let Z ⊂ PN = P(V ) be a projective variety. We denote by TZ,z the
tangent space at any smooth point z ∈ Zsm, where Zsm is the non-singular locus of Z.
We denote by TZ,z ⊂ PN the embedded projective tangent space of Z at z. A hyperplane
H ⊂ PN is a tangent hyperplane of Z if TZ,z ⊂ H for some point z ∈ Zsm.

3.1. Definition. Let Z ⊂ PN = P(V ) be a projective variety.

(1) The closure of the set of all tangent hyperplanes of Z is called the dual variety Ž ⊂
P̌N = P(V ∗), where V ∗ is the dual space of V .

(2) The dual defect def(Z) of Z is defined as N−1−dim(Ž), and Z is called dual defective
if def(Z) > 0.

(3) The codegree codeg(Z) of Z is defined to be the degree of its dual variety Ž ⊂ P̌N .
13



3.A.3. Total dual variety of minimal rational tangents. Let C be a standard rational curve
parametrized by K with normalization f : P1 → C. A minimal section of P(TX) over the
curve C is a section (denoted by C̄) which corresponds to a quotient f ∗TX → OP1 . Recall
that p = n− 1 if and only X is isomorphic to Pn (cf. [CMSB02, Keb02a]). In particular, if
X is not isomorphic to projective spaces, such minimal sections always exist. Furthermore,
we have Λ · C̄ = 0 for the tautological divisor Λ on P(TX).

3.2. Definition. Let X be a uniruled projective manifold equipped with a dominating family
K of minimal rational curves. The total dual variety of minimal rational tangents (total
dual VMRT for short) of K is defined as

Č :=
⋃

[C]∈K: standard

C̄
Zar
⊂ P(TX)

where the union is taken over all minimal sections over all standard rational curves in K.

We remark that Č is an irreducible projective variety. Moreover, for a general point
x ∈ X, let us denote by Čx the fibre of Č → X over x. The next result justifies the
terminology in Definition 3.2:

3.3. Proposition. [MOSC+15, Proposition 5.14 and 5.17] Let X be an n-dimensional
uniruled projective manifold equipped with a dominating family K of minimal rational curves
and x ∈ X a general point. Then Čx is the dual variety of Cx.

Moreover, let c be the dual defect of Cx ⊂ P(ΩX,x). Then for a minimal section C̄ over
a general standard rational curve [C] ∈ Kx with normalization f̄ : P1 → C̄, we have

f̄ ∗TP(TX)
∼= OP1(−2)⊕OP1(2)⊕OP1(−1)⊕c ⊕OP1(1)⊕c ⊕O⊕(2n−2c−3)

P1 .

As an immediate corollary of Proposition 3.3, the dual variety of the VMRT Cx at a
general point x is always pure dimensional. Moreover, the total dual VMRT Č is a prime
divisor in P(TX) if and only if Čx ⊂ P(TX,x) at a general point x ∈ X is a (possibly
reducible) hypersurface, i.e., Cx ⊂ P(ΩX,x) is not dual defective.

The importance of the total dual VMRT in the study of positivity of tangent bundles is
illustrated in the following theorem, see also [MOSC+15, OCW16, HLS20].

3.4. Theorem. Let X be a Fano manifold of Picard number 1 equipped with a dominating
family K of minimal rational curves. Let H be the ample generator of Pic(X) and let Λ
be the tautological divisor of π : P(TX) → X. Assume that the VMRT Cx ⊂ P(ΩX,x) at a
general point x ∈ X is not dual defective. Denote by a and b the unique integers such that

[Č] ≡ aΛ− bπ∗H.

Then a is equal to the codegree of Cx and the following statements hold.
(1) TX is big if and only if b > 0.
(2) If TX is big, then bH · K ≤ 2 with equality if and only if there exists a general minimal

section C̄ over a general standard rational curve [C] ∈ K such that Č is smooth along
C̄.
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(3) If TX is big, then [Č] generates an extremal ray of Eff(P(TX)); that is ,we have
Eff(P(TX)) = 〈[Č], [π∗H]〉.

Proof. By our assumption, the projective variety Čx ⊂ P(TX,x) is a (possibly reducible)
hypersurface of degree codeg(Cx). On the other hand, we have

[Č]|P(TX,x) ≡ (aΛ− bπ∗H)|P(TX,x) ≡ c1
(
OP(TX,x)(a)

)
.

This implies that a is equal to the codegree of Cx.
Proof of (1). Note that if b > 0, then it follows from Proposition 2.7 that TX is big. Now

we assume that TX is big. Denote by αX := α(X,H) the pseudoeffective threshold of X,
namely the maximal positive real number such that Λ − αXπ

∗H is pseudoeffective. Note
that Č is dominated by minimal sections C̄ over standard rational curves in K and we have

(Λ− αXπ
∗H) · C̄ = −αXH · C < 0.

Therefore, the restriction (Λ−αXπ
∗H)|Č is not pseudoeffective. In particular, the R-divisor

Λ − αXπ
∗H is not movable and the total dual VMRT Č is contained in the effective Weil

divisor
Γ := Supp(Nσ(Λ− αXπ

∗H)) = B1
−(Λ− αXπ

∗H).

As X has Picard number 1, it follows that ρ(P(TX)) = 2 and R = R≥0[Λ − αXπ
∗H] is

an extremal ray of Eff(P(TX)). Then it follows from Lemma 2.4 that Γ is a prime divisor
generating the extremal ray R. This yields that Γ = Č and hence b > 0.

Proof of (2). Let C̄ be a general minimal section over a general standard rational curve
C in K with normalization f̄ : P1 → C̄. As Cx is not dual defective, by Proposition 3.3, we
have

f̄ ∗TP(TX)
∼= OP1(−2)⊕OP1(2)⊕O⊕(2n−3)

P1 . (3.1)
Moreover, by the generic choice of C̄, we may assume that C̄ is not contained in the singular
locus of Č. Then we have the following exact sequence of sheaves

N ∗
Č/P(TX)

−→ ΩP(TX)|Č −→ ΩČ −→ 0,

where N ∗
Č/P(TX)

is the conormal sheaf of Č in P(TX). In particular, since Č is a Cartier
divisor in P(TX), we have

N ∗
Č/P(TX)

= OP(TX)(−Č)|Č = OP(TX)(−aΛ + bπ∗H)|Č.

Consequently, the conormal sheaf is invertible. Pulling back the exact sequence by f̄ yields
an exact sequence

f̄ ∗N ∗
Č/P(TX)

∼= OP1(bH · C) f̄ ∗ΩP(TX) f̄ ∗ΩČ 0ι

Note that the map ι is generically injective since C̄ is not contained in the singular locus
of Č. As b > 0, it follows from (3.1) that bH · C ≤ 2 with equality if and only if ι is an
injection of vector bundles, i.e., f̄ ∗ΩČ is locally free. By Nakayama’s lemma, the latter one
is equivalent to the smoothness of Č along C̄. Conversely, if Č is smooth along C̄, ι is an
injection of vector bundles. In particular, as b > 0, we obtain bH · C = 2 by (3.1).
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Proof of (3). Since TX is big and X has Picard number 1, we have

Eff(P(TX)) = 〈[Λ− αXπ
∗H], [π∗H]〉.

On the other hand, note that Č is dominated by curves with Λ-degree 0, it follows that the
restriction (Λ− αXπ

∗H)|Č is not pseudoeffective. In particular, the R-divisor Λ− αXπ
∗H

is not movable and Č is contained in Supp(Nσ(Λ−αXπ
∗H)). Then it follows from Lemma

2.4 that Č = Supp(Nσ(Λ− αXπ
∗H)) and [Č] is contained in the ray R>0[Λ− αXπ

∗H]. �

3.5. Corollary. Let C be a nonsingular projective curve of genus ≥ 4. Let X := SUC(r, d)
be the moduli space of stable vector bundles of rank r with fixed determinant of degree d.
Assume that r and d are coprime. If r ≥ 3, then TX is not big.

Proof. It is known that X is a nonsingular Fano manifold of Picard number 1 such that
−KX = 2H, where H is the ample generator of Pic(X). On the other hand, there exists a
dominating family K of minimal rational curves on X given by the so-called Hecke curves
such that −KX · K = 2r [HR04, § 3]. By [HR04, Theorem 4.4], the total dual VMRT Č is
a divisor in P(TX). Then Theorem 3.4 implies that TX is not big as H · K = r ≥ 3. �

3.6. Remark. If C is a nonsingular projective curve of genus g = 2. Then the moduli
space X := SUC(2, r) with r odd is isomorphic to the intersection of two quadrics in P5

and it is shown in [HLS20, Theorem 1.5] that TX is pseudoeffective but not big.

3.B. Semi-ample tangent bundles. We consider in this subsection Fano manifolds with
big and nef tangent bundle. It is conjectured by Campana-Peternell in [CP91] that a Fano
manifold with nef tangent bundle must be a rational homogeneous space. Conversely, it is
also known that the tangent bundle of a rational homogeneous space is big and globally
generated. Recall that a vector bundle E over a projective variety is said to be semiample
if OP(E)(1) is semiample.

3.7. Lemma. Let X be an n-dimensional projective manifold such that TX is big and nef.

(1) The tangent bundle TX is semi-ample.
(2) The projectivised tangent bundle P(TX) is a Mori dream space.

Proof. As TX is big and nef, P(TX) is a weak Fano manifold, i.e., −KP(TX) is big ane nef.
Then the statement (1) follows from the base-point-free theorem and the statement (2)
follows from [BCHM10, Corollary 1.3.2] since a weak Fano manifold is always log Fano. �

We refer the reader to [HK00] for the definition of Mori dream spaces and their basic
properties.

3.8. Definition. Let X be a Q-factorial normal projective variety. A small Q-factorial
modification (SQM for short) of X is a birational map g : X 99K X ′, where X ′ is a
Q-factorial normal projective variety and g is an isomorphism in codimension 1.

Throughout the rest of this subsection, we will always assume that X is a Fano manifold
of Picard number 1 such that TX is big and nef. Let us denote by H the ample generator of
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Pic(X) and by Λ the tautological divisor of P(TX). Then the evaluation of global sections
defines a birational morphism

X := ProjX
(⊕

r≥0 S
rTX

)
Y := Proj

(⊕
r≥0H

0(X,SrTX)
)

X

ε

π
(3.2)

The morphism ε is an isomorphism if and only if TX is ample, and Mori proved in [Mor79]
that the tangent bundle of a projective manifold X is ample if and only if X is isomorphic
to a projective space. For projective spaces, we have the following description of the cones
of divisors.

3.9. Example. Let X be the n-dimensional projective space Pn with n ≥ 2, and let Λ be
the tautological divisor class of π : P(TX)→ X. Then we have

Eff(P(TPn)) = Eff(P(TPn)) = Nef(P(TPn)) = 〈[Λ− π∗H], [π∗H]〉,
where H is a hyperplane section of Pn. Indeed, we consider the following Euler sequence

0 −→ OPn −→ OPn(1)⊕(n+1) −→ TPn −→ 0.

It follows that TPn(−1) is globally generated. In particular, the divisor class [Λ − π∗H] is
contained in the intersection Eff(P(TX))∩Nef(P(TX)). On the other hand, it is known that
Λ− π∗H is not big and hence [Λ− π∗H] is not contained in the interior of Eff(P(TX)).

Let us collect some basic properties about the morphism ε.

3.10. Proposition. Let X be a Fano manifold of Picard number 1 such that TX is big
and nef. Denote by ε : X → Y the birational morphism given in (3.2). If ε is a divisorial
contraction, then the following statements hold.
(1) The projective variety Y has at worst Q-factorial canonical singularities.
(2) The exceptional locus of ε is an irreducible divisor Γ such that the general fibre of

Γ→ ε(Γ) consists of either a smooth P1 or the union of two P1’s meeting at a point.
(3) Let F be an irreducible component of a general one dimensional fibre of ε. Then there

exists a non-negative integer a such that
TX |F ∼= OP1(2)⊕OP1(−2)⊕OP1(1)⊕a ⊕OP1(−1)⊕a ⊕O⊕2n−2a−3

P1 .

Proof. Claims (1) and (2) follow from [Wie03, Theorem 1.3] and [MOSC+15, Proposition
5.10]. To prove (3), we follow the argument of [Wie03, Proposition 2.13]. Let

0→ E → TX → OX (1)→ 0

be the natural contact structure on X . By our assumption, we have OX (1)|F ∼= OF . Then
the contact structure induces a natural isomorphism E|F ∼= E∗|F . Let

E|F ∼=
2n−2⊕
i=1

OP1(ai)
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be the decomposition with a1 ≥ · · · ≥ a2n−2. Since the problem is local in Y , after removing
a subvariety of codimension at least 4 of Y , we may assume that all fibres of ε are at most
1-dimensional. Then the argument of [Wie03, Proposiion 2.13] applies verbatim to our
situation to obtain h1(F,ΩX |C) = 1. Then the short exact sequence below

0 −→ OF −→ ΩX |F −→ E∗|F = E|F −→ 0 (3.3)
implies h1(F,E|F ) = 1. This implies that a2n−2 = −2 and a2n−3 ≥ −1. The isomorphism
E|F ∼= E∗|F shows that E|F must be of the form

OP1(2)⊕OP1(1)⊕a ⊕O⊕2n−2a−4
P1 ⊕OP1(−1)⊕a ⊕OP1(−2).

Then it follows from (3.3) and the fact h1(E|F ) = h1(E∗|F ) = 1 that TX |F is either of the
form E ⊕OP1 or of the form

OP1(2)⊕OP1(1)⊕a ⊕O⊕2n−2a−4
P1 ⊕OP1(−1)⊕a+2.

It is clear that the Chow(X ) has dimension ≥ 2n− 3 at [F ] as Γ has dimension 2n− 2 and
the deformation of F dominates Γ. Hence, we have h0(F, TX |F ) ≥ 2n and TX |F is of the
form E ⊕OP1 . �
3.11. Definition. Let X be a Fano manifold of Picard number 1 such that TX is big and
nef. Denote by ε : X → Y the birational morphism given in (3.2). The projective variety Y
is of type A1 (resp. A2) if the morphism ε is a divisorial contraction and the general fibre
of E → ε(E) is a smooth P1 (resp. union of two P1’s meeting in a point).

In the sequel of this subsection, we will focus on the description of the cones of divisors
of X . Similar to the pseudoeffective threshold αX := α(X,H), we define the movable
threshold βX := β(X,H) to be the maximal real number such that the R-divisor Λ−βXπ∗H
is movable. Clearly we have αX ≥ βX . Since Λ is big, by Proposition 2.7, we obtain αX > 0.
Moreover, as Λ is semiample, we also have βX ≥ 0.

Given a Weil divisor Γ ⊂ X , let us denote by a(Γ) and b(Γ) the unique integers such
that

Γ ≡ a(Γ)Λ− b(Γ)π∗H.

Firstly we have the following general observation.

3.12. Proposition. Let X be an n-dimensional Fano manifold of Picard number 1 such
that TX is big and nef.
(1) Both αX and βX are rational numbers and there exists an SQM g : X ′ 99K X such that

the Q-Cartier, Q-Weil divisor g∗(Λ− βXπ∗H) is semi-ample.
(2) If αX 6= βX , then there exists a unique prime divisor Γ ⊂ X such that

[Γ] ∈ R>0[Λ− αXπ
∗H] and g∗Γ · (g∗(Λ− βXπ∗H))2n−2 = 0,

where g : X ′ 99K X is the SQM provided in the statement (1).

Proof. Recall that X is a Mori dream space by Lemma 3.7. By [HK00, Proposition 1.11],
there exists an SQM g : X ′ 99K X such that

[g∗(Λ− βXπ∗H)] ∈ Nef(X ′).
18



Moreover, as X ′ is again a Mori dream space, it follows that Nef(X ′) is generated by
semi-ample Q-Cartier divisors. Hence, βX is a rational number.

Now assume that αX 6= βX . Then Λ − αXπ
∗H is not movable. Moreover, as X has

Picard number 1, it is clear that R = R>0[Λ−αXπ
∗H] is an extremal ray of Eff(X ). Then,

by Lemma 2.4, there exists a unique prime divisor Γ ⊂ X such that [Γ] ∈ R>0[Λ−αXπ
∗H].

In particular, we have

αX =
b(Γ)

a(Γ)

and hence αX is again a rational number. Denote by Γ′ the divisor g∗Γ. Note that the
pseudoeffective cones and movables are preserved by g∗. In particular, by Lemma 2.2, we
obtain

B1
+(g

∗(Λ− βXπ∗H)) ⊂ B1
−(Γ

′) ⊂ Γ′.

Since Λ − βXπ∗H is not contained in the interior of Mov(X ), so is the pull-back g∗(Λ −
βXπ

∗H). In particular, by Lemma 2.3, we have
B1
+(g

∗(Λ− βXπ∗H)) = Γ′.

On the other hand, as g∗(Λ − βXπ∗H) is nef, by [Bir17, Theorem 1.4], Γ′ is contained in
the null locus of g∗(Λ− βXπ∗H). In particular, we obtain

g∗Γ · (g∗(Λ− βXπ∗H))2n−2 = Γ′ · (g∗(Λ− βXπ∗H))2n−2 = 0.

This completes the proof. �

According to Proposition 3.12, the calculation of the cones of divisors of X is very closely
related to the study of possible SQMs of X , which in general seems to be a very difficult
problem. However, if we assume that the morphism ε : X → Y is a divisorial contraction,
then the cones of divisors of X can be explicitly determined.

3.13. Proposition. Let X be an n-dimensional Fano manifold of Picard number 1 such
that TX is big and nef. Assume that the evaluation morphism ε : X → Y is a divisorial
contraction with exceptional divisor Γ. Let F be an irreducible component of a general fibre
of Γ→ ε(Γ). Then we have
(1) βX = 0, B+(Λ) = Γ and [Γ] generates the extremal ray R>0[Λ−αXπ

∗H]. In particular,
we have Γ · Λ2n−2 = 0.

(2) b(Γ) ≤ 2 with equality if and only if Y is of type A1 and there exists a dominating
family K of minimal rational curves on X such that Č = Γ and H · K = 1.

Proof. Since Λ is big and nef, it follows from [Bir17, Theorem 1.4] that B+(Λ) coincides with
the exceptional locus Γ of ε. In particular, Γ ·Λ2n−2 = (Λ|Γ)2n−2 = 0. Moreover, according
to Lemma 2.3, [Λ] is not contained in the interior of Mov(X ). This implies βX = 0. Then
it follows from Corollary 2.5 that [Γ] ∈ R>0[Λ−αXπ

∗H]. Combining Proposition 3.10 with
the same argument as in the proof of Theorem 3.4(3) shows that b(Γ)π∗H · F ≤ 2 with
equality if and only if Γ is smooth along F . Then we obtain that b(Γ) ≤ 2 with equality if
and only if Γ is smooth along F and π∗H ·F = 1. Now the result follows from the following
two claims.
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Claim 1. Γ is smooth along F if and only if Y is of type A1.

Proof of Claim 1. Firstly we assume that Γ is smooth along F , then the non-singular
locus Γsm contains F . In particular, by generic smoothness and the generic choice of F , it
follows that the fibre of Γsm → ε(Γsm) over ε(F ) is smooth. Nevertheless, if the fibre of ε
over ε(F ) consists of another irreducible component F ′ such that F and F ′ meeting at a
point x, then we have x ∈ Γsm and therefore F ′ ∩ Γsm is not empty. In particular, the fibre
of Γsm → ε(Γsm) over ε(F ) is not smooth, a contradiction. Hence, Y is of type A1.

Conversely, if Y is of type A1, then Γ→ ε(Γ) is a smooth P1-fibration over a Zariski open
subset of ε(Γ). In particular, the singular locus of Γ does not dominate ε(Γ) and hence Γ
is smooth along F as F is a general fibre.

Claim 2. π∗H · F = 1 if and only if there exists a dominating family K of minimal
rational curves over X such that H · K = 1 and Č = Γ.

Proof of Claim 2. Firstly we assume that π∗H · F = 1. Then the induced morphism
F → π(F ) is birational and H · F = 1. In particular, the images of the irreducible
components of general fibres of Γ → ε(Γ) in X form a dominating family K of rational
curves such that H · K = 1. Therefore, K is actually a dominating family of minimal
rational curves. Let Č be the total dual VMRT of K. As Č is dominated by curves with
Λ-degree 0, it follows that Č ⊂ Γ. Moreover, if C̄ is a minimal section over a general
standard rational curve C parametrised by K, then C̄ is contained in a fibre of ε. Hence,
by generic choice of F , we may assume that π(F ) is a general curve parametrised by K and
therefore a standard rational curve. In particular, the curve F is a minimal section over
π(F ) and consequently we obtain Č = Γ.

Conversely, assume that there exists a dominating family K of minimal rational curves on
X such that H ·K = 1 and Č = Γ. As Č is dominated by minimal sections C̄ over standard
rational curves C in K, it follows that C̄ is contained in a general fibre of Γ → ε(Γ). In
particular, we have π∗H ·C̄ = H ·C = 1. By the generic choice of F , the curve F is actually
a minimal section over some standard rational curve in K and hence π∗H · F = 1. �
3.14. Remark. In the setting of Proposition 3.13, to explicitly determine the pseudoef-
fective cone Eff(X ), it is enough to calculate the cohomological class of Γ in Pic(X ), i.e.,
determining a(Γ) and b(Γ). The statement (2) gives a totally geometric method to deter-
mine b(Γ). Then one can use the equality Γ · Λ2n−2 = 0 in the statement (1) to obtain
the rational number b(Γ)/a(Γ) and finally we get the precise value of a(Γ). On the other
hand, if there exists a dominating family K of minimal rational curves on X such that Č is
a divisor, then we must have Č = Γ and we can also apply Theorem 3.4 to calculate a(Γ).
In a later section we will apply these results to rational homogeneous spaces.

4. Varieties of small codegree and proof of Theorem 1.9

4.A. Segre inequality. Let us recall the following Segre inequality, which gives a sharp
lower bound for the codegree of an irreducible and linearly non-degenerate projective variety
in terms of its dimension and codimension.
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4.1. Theorem. [Seg51] Let Z ⊊ PN be an n-dimensional irreducible and linearly non-
degenerate projective variety. Assume that the dual variety Ž ⊂ P̌N is a hypersurface with
non-vanishing hessian. Then we have

codeg(Z) := deg(Ž) ≥ 2(N + 1)

n+ 2
. (4.1)

Moreover, the equality holds if and only if Ž ⊂ P̌N is a hypersurface defined by F = 0 such
that its hessian hF satisfies hF = FN−n−1.
4.2. Remark. Zak kindly informed us that the Segre inequality may fail if the dual variety
Ž is a hypersurface with vanishing hessian. There are very few known examples of smooth
projective varieties whose dual variety is a hypersurface with vanishing-hessian. Gondim,
Russo and Staglianò proved in [GRS20, Corollary 4.5] that the projection from an internal
point of ν2(Pn) ⊂ Pn2+3n

2 is a smooth variety Z ⊂ Pn2+3n−2
2 such that the dual variety Ž

is a degree n+ 1 hypersurface with vanishing hessian. It would be very interesting to find
more examples.

It is somehow surprising that there exists a link between Conjecture 1.6 and Conjecture
1.2 , which is bridged by the following simple observation:
4.3. Proposition. Let X be an n-dimensional Fano manifold of Picard number 1 equipped
with a dominating family K of minimal rational curves. If the normalized tangent bundle of
X is pseudoeffective and the VMRT Cx ⊂ P(ΩX,x) at a general point is not dual defective,
then we have

codeg(Cx) ≤
2 dim(X)

dim(Cx) + 2
. (4.2)

Proof. Let H be the ample generator of Pic(X) and denote by αX := α(X,H) the pseudo-
effective threshold of X with respect to H. Let iX be the index of X, i.e. −KX = iXH.
Then the normalized tangent bundle of X is pseudoeffective if and only if the following
inequality holds:

αX ≥
iX

dim(X)
.

On the other hand, since Cx is not dual defective, the total dual VMRT Č ⊂ P(TX) is a
prime divisor. Write [Č] ≡ aΛ− bπ∗H. Then, by Theorem 3.4, we obtain

a = codeg(Cx), 0 < bH · K ≤ 2 and αX =
b

a
.

Then we get
2

codeg(Cx)
≥ αXH · K ≥

iXH · K
dim(X)

=
dim(Cx) + 2

dim(X)
,

and the result follows. Here we use the fact that dim(Cx) = −KX ·K−2 = iXH ·K−2. �

Given a Fano manifold X of Picard number 1, once the VMRT Cx ⊂ P(ΩX,x) of X can
be explicitly determined and the VMRT is not dual defective, then Proposition 4.3 is quite
useful to check whether the normalized tangent bundle of X is pseudoeffective or not. For
Conjecture 1.6, we recall the following results for curves and surfaces.
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4.4. Theorem. [Zak04, Proposition 3.1 and 3.2] [TV93, Theorem 2.1]

(1) Let C ⊂ PN be a linearly non-degenerate smooth projective curve of degree d and
codegree d∗. Then the following statements hold.
(1.1) d∗ ≥ 2d− 2 with equality if and only if C is a rational curve.
(1.2) d∗ ≥ 2N − 2 with equality if and only if C is a normal rational curve.

(2) Let S ⊂ PN be a linearly non-degenerate smooth projective surface of degree d and
codegree d∗. Then the following statements hold.
(2.1) d∗ ≥ d − 1 with equality if and only if S is isomorphic to the Veronese surface

ν2(P2) ⊂ P5 or its isomorphic projection in P4, and d∗ = d if and only if S is a
scroll over a curve, and the cases 1 ≤ d∗ − d ≤ 2 does not happen.

(2.2) d∗ ≥ N − 2 with equality if and only if S is isomorphic to the Vernoese surface
ν2(P2) ⊂ P5, and d∗ = N − 1 if and only if S is either an isomorphic projection
of ν2(P2) to P4 or a rational normal scroll, and the cases 0 ≤ d∗ − N ≤ 1 does
not happen.

4.B. Projective threefolds with small codegree. This subsection is devoted to prove
Proposition 1.8, which confirms Conjecture 1.6 for smooth threefolds. We start with a
classification of projective threefolds such that its general hyperplane section is a smooth
surface with equal sectional genus and irregularity. Let us recall that for an n-dimensional
polarized projective manifold (X,L), the sectional genus of X (with respect to L) is defined
to be

g(X,L) :=
(KX + (n− 1)L) · Ln−1

2
+ 1.

4.5. Lemma. Let Z ⊊ PN be an irreducible, smooth and linearly non-degenerate projective
threefold and denote by L the restriction OPN (1)|Z. Let S be a general smooth hyperplane
section of Z. Assume that the sectional genus g of S is equal to the irregularity q of S.
Then (Z,L) is isomorphic to one of the following varieties:

(1) the 3-dimensional quadric hypersurface (Q3,OQ3(1)) and codeg(Z) = 2;
(2) a 3-dimensional scroll, i.e. a projective bundle P(E)→ B over a smooth curve B such

that all fibers are linearly embedded, and L is the tautological line bundle OP(E)(1). In
particular, the dual defect of Z = P(E) is equal to 1 and codeg(Z) = deg(Z) = c1(E).

Proof. Denote by L̄ the restriction L|S. As g = q, by [Zak73](see also [Som79, Corollary
1.5.2]), we know that either S is a geometrically ruled surface with smooth C ∈ |L̄| as
sections or the pair (S, L̄) is isomorphic to one of the following:

(P2,OP2(1)) or (P2,OP2(2)).

Firstly we note that the case (S, L̄) = (P2,OP2(2)) does not happen. This was already
proved by Scorza. Indeed, by Bott’s formula, we have H1(P2, TP2(−2)) = 0. Then we can
apply Zak’s inextendibility theorem (see [Zak91]) to conclude that Z is a cone over S. In
particular, Z is singular, which is a contradiction.
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Next we assume that the pair (S, L̄) is isomorphic to (P2,OP2(1)). Then we have L3 =
L̄2 = 1. In particular, (Z,L) itself is isomorphic to (P3,OP3(1)), which contradicts our
assumption.

Finally we assume that S is a geometrically ruled surface over a smooth curve. According
to [Liu19, Theorem 1.3], the pair (Z,L) is one of the following varieties:
(1) (Q3,OQ3(1));
(2) (P3,OP3(2));
(3) there exists a vector bundle E of rank 3 over B such that Z = P(E) and S is an element

in the linear system |OP(E)(1)|.
In Case (1), it is clear that Z ⊂ PN is linearly normal and hence it is a quadric hypersurface
of P4. In Case (2), one can easily obtain that g(S) = 1 while q(S) = 0, which does not
satisfy our assumption. In case (3), we note that Z ⊂ PN is actually a 3-dimensional scroll
such that all the fibres of P(E) → B are linearly embedded. As B is a curve, it is well-
known that the dual defect of Z is equal to 1 in this case (see for instance [Tev05, Theorem
7.21]) and the fact codeg(Z) = deg(Z) = c1(E) follows from Lemma 4.6 below. �
4.6. Lemma. Let Z = P(E) ⊂ PN be a 3-dimensional scroll over a smooth projective
curve B such that OP(E)(1) ∼= OPN (1)|Z. Then we have

codeg(Z) = deg(Z) = c1(E).

Proof. Let H be a hyperplane section of Z and denote by π : P(E) → B the natural
projection. By [BFS92] (see also [Tev05, Theorem 6.1]), we have

codeg(Z) = c2(J (H)) ·H = c1(ΩZ ⊗H) ·H2 + c2(ΩZ ⊗H) ·H
where J (H) is the first jet bundle. By a straightforward computation, we get

c1(ΩZ) = π∗c1(E) + π∗KC − 3H

and
c2(ΩZ) = −3π∗KC ·H − 2π∗c1(E) ·H + 3H2.

As a consequence, we obtain codeg(Z) = c1(E) ·H2 = H3 = deg(Z). �
4.7. Remark. Zak informed us a geometric proof of Lemma 4.6 which is valid for scrolls
of any dimension. We keep the proof here to indicate how to use the formula given in
[BFS92] to compute the codegree of an arbitrary variety and this method will also be used
in Lemma A.2 to compute the codegree of the VMRT of F4/P3.

Now we are in the position to prove Proposition 1.8.

Proof of Proposition 1.8. Denote by L the restriction of OPN (1)|Z and let S ⊂ Z be a
general hyperplane section. According to Lemma 4.6, we shall assume that Z is not dual
defective (cf. [Tev05, Example 7.6]). By the codegree formula (cf. [LT87, Proposition 1.1]),
we have

d∗ = (b3(Z)− b1(Z)) + 2(b2(S)− b2(Z)) + 2(g(S)− q(S)). (4.3)
Set A = b3(Z) − b1(Z), B = b2(S) − b2(Z) and C = 2(g(S) − q(S)). Then both A and C
are even non-negative integers and B is a positive integer since Z is not dual defective by
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our assumption (see [LT87, Proposition 1.2 and 1.4]). If C = 0, then we can conclude by
Lemma 4.5 that Z satisfies d∗ = d. Hence, we may assume also that C > 0 in the sequel.
On the other hand, if pg(S) 6= 0, then it follows from [LT87, Proposition 2.5] that we have
g(S)− q(S) ≥ N − 1. In particular, we obtain

d∗ ≥ 2B + 2(g(S)− q(S)) ≥ 2 + 2(N − 1) = 2N.

From now on, we shall assume that B > 0, C > 0 and pg(S) = 0. In particular, it follows
[Som79, Theorem] that KS + L̄ is globally generated and [Som79, Proposition 2.1] implies
that we have

d = L̄2 ≤ K2
S + 4g(S)− 4,

where L̄ is the restriction L|S, and the equality holds if and only if Φ|KS+L̄| is not generically
finite, i.e., dim(Φ|KS+L̄|(S)) ≤ 1. In particular, S is unirueld and so is Z. On the other
hand, by Noether’s formula, we have

K2
S = 12χ(OS)− χtop(S) = 10− 8q(S)− h1,1(S).

This implies
d ≤ 6 + 4g(S)− 8q(S)− h1,1(S).

Applying Landman’s formula, we get
d ≤ 6 + 2(d∗ − 2B − A)− 4q(S)− h1,1(S)
≤ 2d∗ + 6− 4(B + q(S))− 2A− h1,1(S)

Note that q(S) and A are non-negative integers. Thus, since B and h1,1(S) = b2(S) are
positive integers, it follows that we have d ≤ 2d∗ unless the following condition happens

B = h1,1(S) = b2(S) = 1 and A = q(S) = 0.

This is impossible since we have b2(S) > b2(Z) ≥ 1 by our assumption. Moreover, an easy
similar argument shows that if the quality d = 2d∗ holds, then we must have

B = 1, h1,1(S) = b2(S) = 2 and A = q(S) = 0.

This implies that ρ(Z) = b2(Z) = 1. In particular, as Z is uniruled, it follows that Z is a
Fano threefold of Picard number 1. Note that (KZ +2L)|S = KS + L̄ is globally generated,
but not big. This implies that −KZ = 2L. In particular, the pair (Z,L) is isomorphic to
either (P3,OP3(2)) or a del Pezzo threefold. If Z is a del Pezzo threefold, then S is a del
Pezzo surface with b2(S) = 2 and −KS = L̄. However, according to the classification of del
Pezzo threefolds of Picard number 1, we must have d = L̄2 = K2

S ≤ 5. This implies that
b2(S) ≥ 4, which is a contradiction. Hence, 2d∗ = d if and only if (Z,L) is isomorphic to
(P3,OP3(2)); that is, the projective variety Z ⊂ PN is projectively equivalent to either the
second Verenose variety ν2(P3) ⊂ P9 or its isomorphic projection in P8.

Finally we assume that Z satisfies the equality (1.2). Then we have 5d∗ = 2(N + 1). In
particular, by our results above, we must have

4(N + 1)

5
= 2d∗ ≥ d ≥ N − 2.

This implies N ≤ 14 and d∗ ≤ 6. Then, by the classification of smooth projective threefolds
of codegree at most 6 given in [LT87], one can easily check that the only possibilities are
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the quadric threefold Q3 ⊂ P4 (with d∗ = 2) and the Veronese variety ν2(P3) ⊂ P9 (with
d∗ = 4). �

4.C. Proof of Theorem 1.9. We start with the following classification of del Pezzo sur-
faces with pseudoeffective normalized tangent bundle, which is easily deduced from [Nak04,
IV, Theorem 4.8].

4.8. Theorem. Let S be a smooth del Pezzo surface, i.e. −KS is ample. Then the
normalized tangent bundle of S is pseudoeffective if and only if S is isomorphic to the
quadric surface P1 × P1.

Proof. Note that TS is always semi-stable with respect to −KS by [Fah89] and its nor-
malization is not nef by Theorem 1.1. As a consequence, since S is simply connected, by
[Nak04, IV, Theorem 4.8], either TS splits as a direct sum L1 ⊕ L2 or −KS ≡ 2L for some
line bundle L on S. In the latter case, it is easy to see that S is isomorphic to the quadric
surface from the classification of del Pezzo surfaces. In the former case, the surface S is
isomorphic to a product of curves (see for instance [Hör07, Theorem 1.4]). This implies
immediately that S is isomorphic to the product P1 × P1 as S is rationally connected. �

From now on, we will assume that n ≥ 3. To prove Theorem 1.9 , we start with the
following:

4.9. Theorem. Let X be an n-dimensional Fano manifold of Picard number 1 equipped a
dominating family K of minimal rational curves. Assume that the VMRT Cx ⊂ P(ΩX,x) at
a general point x ∈ X is not dual defective. If dim(Cx) ≥ 1 and n ≥ 3, then codeg(Cx) ≥ 2
and the following statements hold.

(1) If codeg(Cx) = 2, then X is a smooth quadric hypersurface in Pn+1.
(2) If the normalized tangent bundle of X is pseudoeffective and the VMRT Cx is smooth

with codeg(Cx) = 3, then X is one of the following varieties: the Lagrangian Grassmann
variety LG(3, 6), the Grassmann variety Gr(3, 6), the 15-dimensional Spinor variety S6

and the 27-dimensional E7-variety E7/P7.

Proof. By the biduality theorem, the dual variety Čx does not contain hyperplanes as ir-
reducible components since Cx is purely dimensional, and hence codeg(Cx) ≥ 2. Let us
denote by Pm = P(W ) ⊂ P(ΩX,x) the linear span of Cx.

Firstly we assume that codeg(Cx) = 2, i.e., the dual Čx ⊂ P(TX,x) is an irreducible
quadric hypersurface of P(TX,x). Then the VMRT Cx itself is irreducible. On the other
hand, if Čx is not smooth, then it is an irreducible quadric cone. According to the biduality
theorem, since Cx is not dual defective, the VMRT Cx is a smooth quadric hypersurface in
Pm ⊂ P(ΩX,x). Then it follows from [Hwa01, Proposition 2.4 and Proposition 2.6] that we
must have Pm = P(ΩX,x). Therefore, by Theorem 1.5, the variety X is isomorphic to a
quadric hypersurface.

Next we assume that Cx is smooth with codeg(Cx) = 3 and the normalized tangent bundle
of X is pseudoeffective. Then Čx is an irreducible hypersurface of degree 3 and hence Cx is
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irreducible and smooth. By Zak’s classification of linearly non-degenerate smooth varieties
with codegree 3 [Zak93, Theorem 5.2], we obtain that dim(Cx) ≥ 2 and

dim(Cx) >
m− 1

2

unless Cx ⊂ Pm is ν2(P2) ⊂ P5. On the other hand, it can be directly checked that the
tangential variety of ν2(P2) ⊂ P5 is linearly non-degenerate. Therefore, it follows from
[Hwa01, Proposition 2.6] that the tangential variety of Cx is linearly non-degenerate. Then
we can apply [Hwa01, Proposition 2.4] to obtain that Pm = P(ΩX,x). In particular, as Cx
is assumed to be not dual defective, it follows from Proposition 4.3 that Cx ⊂ P(ΩX,x) is
projectively equivalent to one of the four Severi varieties. Then one can apply Theorem 1.5
to conclude that X is isomorphic to one of the four varieties in the theorem. �

Comparing with Proposition 4.3, we do not require that the VMRT of X at a general
point is irreducible or linearly non-degenerate in Theorem 4.9 above.

Proof of Theorem 1.9. For the statement (1), we assume that the VMRT Cx ⊂ P(ΩX,x) is
irreducible, linearly non-degenerate and not dual defective. Let Č ⊂ P(TX) be the total
dual VMRT. Write [Č] ≡ aΛ−bπ∗H, where Λ is the tautological divisor of the projectivized
tangent bundle π : P(TX) → X and H is the ample generator of Pic(X). Let iX be the
index of X. By Theorem 3.4, we may assume that TX is big and hence b > 0 and we obtain

α(X,−KX) =
b

aiX
=

b

iX codeg(Cx)
≤ b

iX
· dim(Cx) + 2

2 dim(X)
.

The last inequality follows from the Segre inequality (1.1). In particular, note that we have
dim(Cx) + 2 = −KX · K = iXH · K and bH · K ≤ 2, thus we get

α(X,−KX) ≤
1

dim(X)

with equality only if the VMRT Cx ⊂ P(ΩX,x) satisfies the equality (1.2). Hence, if the
normalized tangent bundle of X is pseudoeffective and Conjecture 1.6 holds, then the
VMRT Cx ⊂ P(ΩX,x) is projectively equivalent to one of the varieties listed in Conjecture
1.6 and we then conclude by Theorem 1.5 and Table 1.

For the statement (2), assume that the VMRT Cx ⊂ P(ΩX,x) is not dual defective and
the normalized tangent bundle of X is pseudoeffective. By Proposition 4.3, if the condition
(2.1) (resp. condition (2.2)) holds, then we get codeg(Cx) < 3 (resp. codeg(Cx) < 4) and
the results follows from Theorem 4.9 above. If the condition (2.3) holds, then it is clear
that dim(Cx) ≥ 1 as the VMRT can not be a single point. Then the result follows from the
statement (1.2), Proposition 1.8 and 4.4. �

Proof of Corollary 1.10. By assumption, the VMRT Cx ⊂ P(ΩX,x) is either a non-linear
smooth curve, or a non-linear smooth surface, or a non-linear smooth hypersurface (n = 5).
In particular, the VMRT Cx is not dual defective by [Tev05, Example 1.19 and Example
7.5 and Theorem 4.25]. Then the result follows directly from Theorem 1.9 (2.2). �

Proof of Corollary 1.12. The result follows from Theorem 1.9 (2.2) and (2.3). �
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5. Rational homogeneous spaces

Throughout this section, for a vector bundle E over a variety X, we denote by P(E) the
projective bundle over X, whose fiber over x ∈ X is the set of lines in Ex. It is isomorphic
to P(E∗) in our previous notation. Moreover, all the varieties in this section are assumed to
have dimension at least 2. The main aim of this section is to calculate the cones of divisor
of P(T ∗

G/P ) = P(TG/P ) for a rational homogeneous space G/P with Picard number 1.

5.A. Springer maps. Let G be a complex simple Lie algebra and let g be its Lie algebra.
Then G has the adjoint action on g. The orbit Ox of a nilpotent element x ∈ g is called a
nilpotent orbit, which is invariant under the dilation action of C∗ on g. For any parabolic
subgroup P of G, the group G has a Hamiltonian action on the cotangent bundle T ∗

G/P and
the image of the moment map T ∗

G/P −→ g ' g∗ is a nilpotent orbit closure O, which will
be called the Richardson orbit associated to P . The induced morphism

ŝ : T ∗
G/P → O

will be called the Springer map associated to P , which is a generically finite G × C∗-
equivariant projective morphism. We denote by

T ∗
G/P

ε̂−→ Õ τ̂−→ O
the Stein factorisation of ŝ. It follows that ε̂ is birational and τ̂ is a finite morphism. Note
that ŝ−1(0) = G/P is irreducible, the pre-image τ̂−1(0) is a single point in Õ. This implies
that the projectivised Springer map

s : P(T ∗
G/P )→ P(O)

has the Stein factorization given by

P(T ∗
G/P )

ε−→ P(Õ) τ−→ P(O).

From now on, we shall assume that G/P is a rational homogeneous space with Picard
number 1; that is, P corresponds to a single-marked Dynkin diagram.

5.1. Example. Given an (n+1)-dimensional complex vector space V , the rational homo-
geneous spaces for the group SLn+1 = SLn+1(V ), are determined by the different markings
of the Dynkin diagram An. For instance, the Grassmannian variety Gr(k, n+1) corresponds
to the marking of the k-th node:

1 2 3 k n

5.2. Proposition. [Nam06, Propostion 5.1] Assume G/P is of Picard number 1. Then
the projectivised Springer map s : P(T ∗

G/P ) → P(O) is birational and small if and only
G/P is one of the following. Furthermore the pair (P,Q) in each group has the same
Richardson orbit and the corresponding Springer maps give a birational map µ̂ : T ∗

G/P 99K
T ∗
G/Q, which is called the stratified Mukai flop of type An,k (resp. Dn, E6,I , E6,II) according

to the types of corresponding marked Dynkin diagram. In this case, there exists a (non-
canonical) isomorphism G/P ' G/Q.
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An

(
k < n+1

2

)
k n− k

Dn (n: odd ≥ 5)
n− 1

n

E6,I
1

2

3 4 5 6 1

2

3 4 5 6

E6,II
1

2

3 4 5 6 1

2

3 4 5 6

5.3. Proposition. [Nam08, Propostion 3.1] Assume G/P is of Picard number 1. Then
the birational contraction ε : P(T ∗

G/P ) → P(Õ) is small if and only if either G/P is as in
Proposition 5.2 or ŝ has degree 2 and G/P is one of the following. In the latter case, by
interchanging the two points in general fibers of ŝ, this gives a stratified Mukai flop of type
Bn,k (resp. Cn,k, Dn,k) µ̂ : T ∗

G/P 99K T ∗
G/P according to the types of corresponding marked

Dynkin diagram.

Bn (k: even, k ≥ 2n+1
3

)
k

Cn (k: odd, k ≤ 2n
3

)
k

Dn (k: odd, 2n
3
≤ k ≤ n− 2).

k

We will describe in details these flops in Section 5.D.

5.4. Proposition. The Springer map ŝ : T ∗
G/P → O is not birational if and only if G/P

is as in Proposition 5.3 or G/P is G2/P1 or F4/P3 with deg(ŝ) being 2 and 4 respectively.

Proof. For classical cases, this follows from the proof of [Nam08, Propostion 3.1]. For
exceptional cases, Assume G is of exceptional type. In most cases O is an even orbit or an
orbit with trivial fundamental group, which implies that ŝ is birational. For the remaining
cases, the degree is computed in [Fu07, Appendix]. �

5.B. Cones of divisors. We start with the following result which describes the cones of
divisors on P(T ∗

G/P ) = P(TG/P ).

5.5. Theorem. Let G/P be a rational homogeneous space of Picard number 1, but not a
projective space. Denote by H the ample generator of Pic(G/P ). Let Γ be the exceptional
locus of ε : P(T ∗

G/P )→ P(Õ). Then the following statements hold.
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(1) If Γ has codimension at least 2, i.e., ε is small, then there exists a commutative diagram

P(T ∗
G/P ) P(T ∗

G/Q)

G/P P(Õ) G/Q

µ

ε
π1

ε
π2

where µ : P(T ∗
G/P ) 99K P(T ∗

G/Q) is a non-isomorphic flop with G/P ' G/Q. In
particular, we have

Eff(P(T ∗
G/P )) = Eff(P(T ∗

G/P )) = Mov(P(T ∗
G/P )) = Mov(P(T ∗

G/P )) = 〈[µ∗π∗
2H], [π∗

1H]〉 .
(2) If Γ has codimension 1, i.e., ε is divisorial, then Γ is a prime divisor such that

Mov(P(T ∗
G/P )) = Mov(P(T ∗

G/P )) = 〈[Λ], [π∗H]〉
and

Eff(P(T∗
G/P)) = Eff(P(T∗

G/P)) = 〈[Γ], [π∗H]〉 .

Proof. Since G/P is not isomorphic to projective spaces, the birational contraction ε :

P(T ∗
G/P )→ P(Õ) is not an isomorphism and Nef(P(T ∗

G/P )) = 〈[Λ], [π∗H]〉. Let α(G/P,H)

be the pseudoeffective threshold of G/P with respect to H, then [Λ−α(G/P,H)π∗H] gener-
ates an extremal ray of Eff(P(T ∗

G/P )). The statement (2) follows directly from Proposition
3.13. Thus it remains to prove the statement (1).

By our assumption, the birational contraction ε is small. By Propositions 5.2 and 5.3,
there exists a flop µ : P(T ∗

G/P ) 99K P(T ∗
G/Q) , with G/P ' G/Q as projective varieties. It

follows that the pull-back µ∗Nef(P(T ∗
G/Q)) is contained in Mov(P(T ∗

G/P )) (cf. Lemma 3.7).
Moreover, it is clear that we have µ∗Λ = Λ since−KP(T ∗

G/P
) = nΛ and µ is an SQM. This im-

plies that the pull-back µ∗Nef(P(T ∗
G/P )) is contained in the cone 〈[Λ−α(G/P,H)π∗

1H], [Λ]〉.
Nevertheless, as π∗

2H is not big, it follows that [µ∗π∗
2H] is not contained in the interior of

Eff(P(T ∗
G/P )). So we get

Eff(P(T ∗
G/P )) = Mov(P(T ∗

G/P )) = 〈[µ∗π∗
2H], [π∗

1H]〉.
On the other hand, as π∗

2H is globally generated and µ is an SQM, the stable base locus
B(µ∗π2H) has codimension at most 2. Hence, we obtain

Eff(P(T ∗
G/P )) = Eff(P(T ∗

G/P )) = Mov(P(T ∗
G/P )) = Mov(P(T ∗

G/P )).

This finishes the proof. �

While Theorem 5.5 already gives a very nice geometric description of the cones of divisors
of P(T ∗

G/P ), it is not very easy to apply it to compute explicitly the cones in terms of Λ
and π∗H. We introduce the following notion to divide G/P into several groups in order to
carry out this computation.

5.6. Definition. Let G/P be a rational homogeneous space of Picard number 1 corre-
sponding to a single marked Dynkin diagram.
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(1) G/P is said of the first type (I) if s is a birational small morphism (cf. Proposition
5.2).

(2) G/P is said of type (II-s) if s is not birational and ε is small (cf. Proposition 5.3).
(3) G/P is said of type (II-d-d) if ε is divisorial and the VMRT of G/P is dual defective.
(4) G/P is said of type (II-d-A1) (resp. (II-d-A2) ) if ε is divisorial but the VMRT of

G/P is not dual defective, and P(Õ) is of type A1 (resp. A2) (cf. Definition 3.11).

5.7. Remark. Recall there are following isomorphisms between differenet rational homo-
geneous spaces: Cn/P1 ' A2n/P1, Bn/Pn ' Dn+1/Pn and G2/P1 ' B3/P1. Their types
are the same except the following cases: Cn/P1 is of type (II-s), while A2n/P1 is of type
(I); and for n even, Bn/Pn is of type (II-s) while Dn+1/Pn is of type (I). In fact, Note that
that Cn/P1 ' P2n−1. Let Omin ⊂ sl2n be the minimal nilpotent orbit (corresponding to
the partition [2, 12n−2]), then there exists a generically 2-to-1 morphism Omin → Od. The
flop Cn,1 is nothing else but the Mukai flop A2n,1. Moreover, by [Nam08, Example 3.3],
Bn,n-flop is the same as Dn+1-flop for n even.

5.8. Proposition. Under the notation and assumption as in Theorem 5.5. Assume that ε
is small. Let ℓi be a general line in a general fibre of πi. If a(H) and b(H) are the unique
positive integers such that

[µ∗π∗
2H] ≡ a(H)[Λ]− b(H)[π∗

1H],

then we have

a(H) = π∗
2H · µ∗(ℓ1) and a(H)− b(H)π∗

1H · µ−1
∗ (ℓ2) = 0.

Moreover, the morphism µ(ℓ1)→ π2(µ(ℓ1)) is birational. In particular, we have

a(H) = H · π2∗µ∗(ℓ1).

Proof. Since µ is an SQM and ℓi’s are general, we may assume that both µ and µ−1 are
isomorphisms in a neighbourhood of ℓi. In particular, we have

a(H) = (a(H)Λ− b(H)π∗
1H) · ℓ1 = µ∗π∗

2H · ℓ1 = π∗
2H · µ∗(ℓ1)

and
0 = π∗

2H · ℓ2 = µ∗π∗
2H · µ−1

∗ (ℓ2) = a(H)− b(H)π∗
1H · µ−1

∗ (ℓ2).

Here we note that µ∗Λ = Λ and Λ · ℓi = 1. Now it remains to show that the morphism
µ(ℓ1)→ C := π2(µ(ℓ1)) is birational. Let f : P1 → C be the normalization. As TG/Q is nef,
there exist integers a1 ≥ · · · ≥ ak > ak+1 = · · · = an = 0 (with k ≤ n) such that

f ∗TG/Q
∼=

k⊕
i=1

OP1(ai)⊕O⊕(n−k)

P1

Denote by d the degree of µ(ℓ1)→ C. Then we have

π∗
2TG/Q|µ(ℓ1) ∼=

k⊕
i=1

OP1(dai)⊕O⊕(n−k)

P1 .
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As Λ · µ(ℓ1) = 1, if d ≥ 2, then µ(ℓ1) is contained in

P(O⊕(n−k)

P1 ) ⊂ P(f ∗TG/P ).

On the other hand, as P(O⊕(n−k)

P1 ) is dominated by curves with Λ-degree 0, thus P(O⊕(n−k)

P1 )
is contained in the exceptional locus of ε and so is µ(ℓ1), which is absurd. �
5.9. Proposition. Under the notation and assumption as in Theorem 5.5. Assume that
ε : P(T ∗

G/P ) → P(Õ) is divisorial. Let a(Γ) and b(Γ) be the unique positive integers such
that

[Γ] ≡ a(Γ)[Λ]− b(Γ)π∗H.

Then the following statements hold.

(1) The projective variety P(Õ) is a Q-factorial variety of Picard number 1. Moreover, let
Λ′ and H ′ be the push-forward of Λ and π∗H by ε. Then we have

b(Γ)

a(Γ)
=

Λ2n−1

Λ2n−2 · π∗H
and H ′ ≡ a(Γ)

b(Γ)
Λ′.

(2) If G/P is of type (II-d-A1) or (II-d-A2), then a(Γ) = codeg(Co), where Co is the VMRT
of G/P at a referenced point o ∈ G/P .

(3) b(Γ) ≤ 2 with equality if and only if G/P is of type (II-d-A1).
(4) G/P is of type (II-d-A2) if and only if P(Õ) has cA2-singularities in codimension 2.

Proof. Firstly note that the morphism ε is a Mori extremal contraction with respect to a
klt pair (P(T ∗

G/P ),∆) (see [MOSC+15, Proposition 5.5]). Thus, as ρ(P(T ∗
G/P )) = 2, ε is

divisorial and P(T ∗
G/P ) is rationally connected, it follows that P(Õ) is a Q-factorial Fano

variety of Picard number 1. Moreover, note that we have Γ · Λ2n−2 = 0. This implies
immediately

b(Γ)

a(Γ)
=

Λ2n−1

Λ2n−2 · π∗H
.

Let H̃ be a general member in |π∗H| and set H ′ = ε∗H̃. As P(Õ) is Q-factorial, there
exists a rational number r such that H ′ ≡ rΛ′. Moreover, by the negativity lemma, there
exists a non-negative rational number α such that

ε∗H ′ ≡Q H̃ + αΓ.

As ε∗Λ′ = Λ, we obtain
rΛ ≡ ε∗H ′ ≡ π∗H + α(a(Γ)Λ− b(Γ)π∗H).

Since Λ and π∗H are linearly independent, comparing the coefficients shows that we have
αb(Γ) = 1 and αa(Γ) = r.

This implies r = a(Γ)/b(Γ) and the statement (1) is proved.
If G/P is of types (II-d-A1) or (II-d-A2), the the total dual VMRT is a divisor. It

follows from Corollary 2.5, Theorem 3.4 and Proposition 3.13 that we have Č = Γ and
hence a(Γ) = codeg(Co).
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For the statement (3), by Proposition 3.13, we have b(Γ) ≤ 2 with equality if and only
if P(Õ) is of type A1 and there exists a dominating family K of minimal rational curves
on G/P such that Č = Γ and H · K = 1. Note that in our situation, there exists only one
dominating family K of minimal rational curves on G/P and H · K = 1. Thus b(Γ) = 2 if
and only Č = Γ and P(Õ) is of type A1. The latter conditions are equivalent to say that
G/P is of type (II-d-A1) by definition.

For the statement (4), if G/P is of type (II-d-A2), it follows from defintion that P(Õ)
has cA2 singularities in codimension 2. Conversely, from the proof of Proposition 3.13, it
is known that b(Γ)π∗H · F ≤ 2 with equality if and only if Γ is smooth along F , where
F is an irreducible component of a general fibre of Γ → ε(Γ). In particular, if P(Õ) has
cA2-singularities in codimension 2, then we must have b(Γ) = π∗H · F = 1. Then Claim
2 in the proof of Proposition 3.13 implies that Č = Γ and consequently G/P is of type
(II-d-A2). �

As an immediate application of Proposition 5.9, one can easily derive the following result.

5.10. Corollary. Under the notation and assumption as in Theorem 5.5. Assume that ε
is divisorial. Then the following statements hold.
(1) G/P is of type (II-d-d) if and only if Č 6= Γ, and if and only if b(Γ) = 1 and P(Õ) has

only cA1 singularities in codimension 2.
(2) G/P is of type (II-d-A1) if and only if b(Γ) = 2 and Č = Γ, and if and only if P(Õ)

has cA1-singularities in codimension 2 and Č = Γ.
(3) G/P is of type (II-d-A2) if and only if b(Γ) = 1 and Č = Γ, and if and only if P(Õ)

has cA2-singularities in codimension 2.

5.C. Types of rational homogeneous spaces. By Proposition 5.8 and Proposition 5.9
in the previous subsection, to compute a(E), b(E), a(H) and b(H), we need to determine
the types of G/P . Proposition 5.2 and Proposition 5.3 give respectively the classification
of G/P of type (I) and type (II-s). In this subsection, we will determine the types of all
other G/Pk, where Pk is the maximal parabolic subgroup associated to the k-th simple root
of G.

The VMRT Co of G/Pk is determined in [LM03, Theorem 4.8], which is again a rational
homogeneous space if Pk corresponds to a long root. When Pk corresponds to a short root,
Co is a two-orbit variety. The embedding Co ⊂ P(TG/P,o) is in general degenerated and the
dual defect of Co can be computed from the following when it is homogeneous (cf. [Sno93],
[Tev05, Theorem 7.54 and Theorem 7.56]).

5.11. Proposition. Let G/P ⊂ PN be the minimal G-equivariant embedding. Then it is
dual defective if and only if G/P is one of the following:

(a) Pn with def = n.
(b) Gr(2, 2m+ 1) with def = 2.
(c) the 10-dimensional spinor vareity S5 with def = 4.
(d) a product G1/P1 ×G2/P2 with G1/P1 as above such that def(G1/P1) > dimG2/P2.

In this case, the dual defect is def = def(G1/P1)− dimG2/P2.
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5.12. Proposition. Let X = G/Pk be a rational homogeneous space such that Pk corre-
sponds to a short root. Then the VMRT Co of X is dual defective if and only if X is one
of the following:

Bn/Pn (n ≥ 3 odd), Cn/Pk (2n ≥ 3k) and F4/P4.

Proof. If X = G/Pk is one of the following: Bn/Pn, Cn/P1 and G2/P1, then it is isomorphic
respectively to Dn+1/Pn+1, A2n−1/P1 and B3/P1. In particular, the VMRT of X is still a
rational homogeneous space in these cases and we can apply Proposition 5.11. If X = G/Pk

is the rational homogeneous space of type Cn/Pk with k ≥ 2, it is shown in Lemma A.1
that the VMRT Co ⊂ P(ΩX,o) is dual defective if and only if 2n ≥ 3k. If X = G/Pk is the
variety F4/P3, then it is shown in Lemma A.2 that the VMRT Co ⊂ P(ΩX,o) is not dual
defective with codegree 8. If X = G/Pk is the variety F4/P4, then the VMRT Co ⊂ P(ΩX,o)
is a hyperplane section of S5 ⊂ P15. Recall that the dual defect of S5 ⊂ P15 is equal to 4,
thus the dual defect of the VMRT Co ⊂ P(ΩX,o) is 3 by [Tev05, Theorem 5.3]. �

Now we determine the singularity type of P(Õ).

5.13. Proposition. Assume that ε : P(T ∗
G/P ) → P(Õ) is divisorial and the VMRT of

G/P is not dual defective. Then P(Õ) is of type A1 except for G/P = E7/P4, which is of
type A2.

Proof. Consider first the case where ŝ is birational, then P(Õ) is just the normalization
of P(O), whose generic singularity type is determined in [FJLS17]. It turns out only for
E7/P4, the generic singularity is of type A2 while all others are of type A1.

Assume now ŝ is not birational. By Proposition 5.4, G/P is either G2/P1 or F4/P3 as
ε is divisorial. Consider first the case of G2/P1, which is isomorphic to the 5-dimensional
quadric Q5. Let O be the 10-dimensional nilpotent orbit in g2 and O′ ⊂ so7 the nilpotent
orbit corresponding to the partition [3, 14]. Then there is a generically 2-to-1 morphism
ν : O′ → O which is induced from the projection so7 → g2. The map ŝ : T ∗

G2/P1
→ O

factorizes through ν. As O′ is normal, we have Õ = O′ which has generic singularity type
A1.

Now consider the case of F4/P3. In this case, the Springer map ŝ : T ∗
F4/P3

→ OF4(a3) has
degree 4 ([Fu07, Appendix]). By Theorem 1.3 in [FJLS17], the transverse slice T from the
codimension 6 orbit OA2+Ã1

to OF4(a3) is isomorphic to the quotient (C3⊕C3∗)/S4, where
S4 acts on C3 by reflection representation. The only index 4 subgroup of S4 is S3, hence
the degree 4 map τ̃ : Õ → OF4(a3) is locally the quotient (C3 ⊕C3∗)/S3 → (C3 ⊕C3∗)/S4.
Hence the generic singularity of Õ is the same as that of (C3 ⊕ C3∗)/S3, which is of type
A1. �

We can summarize the types of G/P in the following table. By Proposition 5.9 and
Corollary 5.10, we get the number a, b for G/P not of type (I) and (II-s), the latter cases
will be done in the next subsection by applying Proposition 5.8.
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Table 2. Types of rational homogeneous spaces

II-d-d II-d-A1 II-d-A2

An - k = n+1
2 -

Bn
2n+1

3 ≤ k ≤ n− 1 and k odd
{
k ≤ 2n

3

k = n and n ≥ 3 odd
-

Cn 2 ≤ k ≤ 2n
3 and k even k ≥ 2n+1

3 -

Dn
2n
3 ≤ k ≤ n− 2 and k even

{
k ≤ 2n−1

3

k = n− 1 or n, and n ≥ 4 even
-

En E6/P2, E7/P6, E8/Pk (k = 3, 4, 6) otherwise E7/P4

F4 k = 4 k = 1, 2, 3 -

G2 - k = 1, 2 -

As an immediate application, we obtain:

5.14. Proposition. Let X = G/P be a rational homogeneous space of Picard number 1.
Denote by H the ample generator of Pic(X) and by π : P(TX)→ X the natural projection.
(1) If X is isomorphic to one of the varieties listed in Conjecture 1.2, then the normalized

tangent bundle of X is pseudoeffective but not big.
(2) If X is a homogeneous Fano contact manifold different to projective spaces, then the

total dual VMRT Č ⊂ P(TX) is a prime divisor satisfying
[Č] ≡ 4Λ− 2π∗H.

Proof. For the statement (1), this is already proved in [Sha20]. Here we use the total dual
VMRT to give a new proof. In fact, this can be easily derived from the table below:

G/P Qn Gr(n, 2n) S2n LG(n, 2n) E7/P7

VMRT Co Qn−2 Pn−1 × Pn−1 Gr(2, 2n) Pn−1 E6/P1

embedding Hyperquadric Segre Plücker second Veronese Severi

codegree a 2 n n n 3

Note that the VMRT of X is not dual defective and its codegree is given in the last row
of the table above. Moreover, by Proposition 5.13 and Corollary 5.10 that we have

[Č] ≡ aΛ− 2π∗H.

Then one can easily check that we have a·index(X)−2·dim(X) = 0. Hence, the normalized
tangent bundle of X is pseudoeffective but not big by Theorem 3.4.

For the statement (2), it can be derived from the table below by the same argument as
above
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G/P OG(2, n+ 6) E6/P2 E7/P1 E8/P8 F4/P1 G2/P2

VMRT Co P1 ×Qn Gr(3, 6) S6 E7/P7 LG(3, 6) P1

embedding Segre Plücker Spinor O(1) O(1) O(3)

Note that all the VMRTs above are not dual defective with codegree 4 (see [Tev05,
p.169]). In particular, by Proposition 5.13 and Corollary 5.10, we have [Č] ≡ 4Λ−2π∗H. �

5.D. Geometry of stratified Mukai flops. This subsection is devoted to explicitly cal-
culate the positive integers a(H) and b(H) in Proposition 5.8. It turns out that the flops
are symmetric, hence we always have b(H) = 1. It remains to determine a(H), which by
Proposition 5.8 can be interpreted as the degree of the image under the flop of a general
line in the projectivised cotangent space. We will describe in details the flops which will
enable us to determine this degree.

For a stratified Mukai flop µ̂ : T ∗
G/P 99K T ∗

G/Q (where P may coincide with Q), it induces
a rational map ν : P(T ∗

G/P,o) 99K G/Q by composing the projectivization of µ̂ with the
projection P(T ∗

G/Q)→ G/Q. The aim of this section is to describe the rational map ν and
then compute the degree of ν(ℓ) for a general line ℓ in P(T ∗

G/P,o). The result is summarised
in the following table:

Table 3. Degree of lines under stratified Mukai flops

Type An,k D2n+1 E6,I E6,II Bn,k Dn,k Cn,k

degree ν(ℓ) k n 2 4 2n− k 2n− 1− k 2k − 2

condition for
k

2k < n
2n+1

3 ≤ k ≤ n− 1,
k even

2n
3 ≤ k ≤ n− 2,

k odd
2 ≤ k ≤ 2n

3 ,
k odd

5.D.1. Preliminary. Recall that for a simple Lie algebra g, there exist only finitely many
nilpotent orbits in g. In classical types, these orbits are parametrized by certain partitions,
which correspond to sizes of the Jordan blocks in each conjugacy class.

Now we consider classical B-C-D types. Let ϵ ∈ {0, 1} and V a d-dimensional vector
space with a non-degenerate bilinear form such that 〈v, w〉 = (−1)ϵ〈w, v〉 for all v, w ∈ V .

Given a nilpotent element ϕ : V → V preserving the bilinear form, we can associate to
it a partition d = [d1, · · · , dl] of d. Except a few cases in type D, this partition uniquely
determines the conjugacy class of ϕ, denoted by Od.

We identify the partition d with a Young table consisting of d boxes, where the i-th row
consists of di boxes for each i. We denote by (i, j) the box of d lying on the i-th column
and j-th row. Let us recall the following classical result (cf. Proof of [Nam06, Theorem
4.5]).
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5.15. Proposition. For an element ϕ ∈ Od, there exists a basis e(i, j) of V indexed by
the Young diagram d with the following properties:

(a) ϕ(e(i, j)) = e(i− 1, j) for all (i, j) ∈ d.
(b) 〈e(i, j), e(p, q)〉 6= 0 if and only if p = dj−i+1 and q = β(j), where β is a permutation

of {1, 2, · · · , l} (l is the length of the partition) which satisfies β2 = id, dβ(j) = dj, and
β(j) 6≡ j(mod 2) if dj 6≡ ϵ(mod 2). One can choose an arbitrary β within these restrictions.

We start with the following elementary result.

5.16. Proposition. Let a < b be two integers and m an odd integer. Let A,B,W be vector
spaces of dimension a, b,m respectively.

1) Consider the rational map ν1 : P(Hom(A,B)) 99K Gr(a,B) by sending a general
element ψ ∈ Hom(A,B) to its image Im(ψ) ⊂ B. Then ν1 sends a general line in
P(Hom(A,B)) to a curve of degree a in Gr(a,B).

2) Consider the rational map ν2 : P(∧2W ) 99K PW ∗ by sending a general element
ψ ∈ ∧2W to its kernal Ker(ψ) (by viewing ψ as a map from W ∗ to W ). Then ν2 sends a
general line in P(∧2W ) to a curve of degree m− 1 in P(W ∗).

Proof. 1) Take a general (parameterised) line [ψλ] ∈ P(Hom(A,B)) (with λ ∈ P1), then
ψλ : A→ B is injective. Take a basis e1, · · · , ea of A, then Im(ψλ) ⊂ Gr(a,B) corresponds
to the curve (under the Plücker embedding)

λ 7→ ψλ(e1) ∧ · · · ∧ ψλ(ea),

which is of degree a as ψλ is linear in λ.
2) For a general element ψ ∈ ∧2V , it has the maximal rank m− 1 as m is odd. Take a

general subspace W ∗
0 ⊂ W ∗ of codimension 1, then ψ : W ∗

0 → Im(ψ) is an isomorphism. By
taking a basis of W ∗

0 and using a similar argument as in 1), we see that ν2 maps a general
line to a degree m− 1 curve in Gr(m− 1,W ) ' PW ∗. �

5.D.2. Type An,k. Let V be an (n + 1)-dimensional vector space and k < (n + 1)/2 an
integer. The An,k flop is the birational map µ̂ : T ∗Gr(k, V ) 99K T ∗Gr(k, V ∗) which is given
as follows:

For any [F ] ∈ Gr(k, V ), there exists a natural isomorphism T ∗
[F ]Gr(k, V ) ' Hom(V/F, F ).

An element ϕ ∈ Hom(V/F, F ) gives naturally an element

ϕ∗ ∈ Hom(F ∗, (V/F )∗) ⊂ Hom(F ∗, V ∗).

If ϕ is general, then ϕ : V/F → F is surjective as dimF < dimV/F . This gives an
injective map ϕ∗ : F ∗ → (V/F )∗, whose image gives an element [Im(ϕ∗)] ∈ Gr(k, (V/F )∗) ⊂
Gr(k, V ∗). The flop µ̂ sends ([F ], ϕ) to ([Im(ϕ∗)], ϕ∗). Hence the rational map ν is given by

ν : P(T ∗
[F ]Gr(k, V )) 99K Gr(k, (V/F )∗) ⊂ Gr(k, V ∗), [ϕ] 7→ [Im(ϕ∗)].

By Proposition 5.16, ν maps a general line to a curve of degree k on Gr(k, V ∗).
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5.D.3. Type D2n+1. Let (V, 〈, 〉) be an orthogonal space of dimension 4n + 2. The spinor
variety S := S2n+1, which parametrizes (2n+1)-dimensional isotropic subspaces of (V, 〈, 〉),
consists of two irreducible components S+,S−. It turns out the Richardson orbits in so4n+2

associated to S+ and S− are the same, which corresponds to the partition [22n, 12]. The
two Springer maps T ∗S+ ŝ+−→ O ŝ−←− T ∗S− are birational, which gives the D2n+1 flop µ̂ :
T ∗S+ 99K T ∗S−.

The flop µ̂ can be described as follows (cf. Lemma 5.6 [Nam06]): given a general element
ϕ ∈ O, the kernal Ker(ϕ) is of dimension 2n+ 2 which contains the 2n-dimensional vector
subspace Im(ϕ). The quotient V̄ := Ker(ϕ)/Im(ϕ) is a 2-dimensional orthogonal vector
space, which has exactly two isotropic lines (say L+, L−). Then their pre-images in Ker(ϕ)
give two (2n + 1)-dimensional isotropic subspace F+, F− of V . This gives two points
[F±] ∈ S±. The flop µmaps ([F+], ϕ) to ([F−], ϕ). Note that we have a natural isomorphism
F−/Im(ϕ) ' Ker(ϕ)/F+, which shows that F− is the linear span of Im(ϕ) and Ker(ϕ)/F+.

For an element [F ] ∈ S+, we have a natural isomorphism V/F ' F ∗ induced from the
pairing 〈, 〉 on V as F = F⊥. Further more T ∗

[F ]S+ ' ∧2F . We fix a (non-canonical)
isomorphism V ' F ⊕F ∗ such that the pairing 〈, 〉 on V corresponds to the natural pairing
on F ⊕ F ∗.

For general ϕ ∈ ∧2F , its kernal is one-dimensional (as dimF is odd), which defines a
point [f ∗

ϕ] ∈ PF ∗. Then Im(ϕ) is just the hyperplane Hϕ in F annihilating f ∗
ϕ = 0. Thus

the rational map ν is the composition of maps

P(∧2F ) 99K PF ∗ ⊂ S−, [ϕ] 7→ [f ∗
ϕ] 7→< Hϕ, f

∗
ϕ > .

By Proposition 5.16, ν maps a general line in P(∧2F ) to a curve of degree 2n in the Plücker
embedding of S−.

Note that the composition S− ⊂ Gr(2n+1, V ) ⊂ P(∧2n+1V ) is induced by OS−(2), hence
this gives a degree n curve on S−.

5.D.4. Type E6,I . Consider the E6,I flop µ̂ : T ∗(E6/P1) 99K T ∗(E6/P6). Fix a point o ∈
E6/P1, then the cotangent space T ∗

o (E6/P1) can be identified with the spinor representation
S of Spin10. Let Q8 be the smooth 8-dimensional hyperquadric. By [Cha06, Proposition
1.5 ], there exists a unique C∗ × Spin10-equivariant rational map ν̂ : S 99K Q8, which is
defined as follows: the affine cone of the 10-dimensional spinor variety Ŝ5 ⊂ S is defined by
10 quadratic equations Q1 = · · · = Q10 = 0, and the map ν̂ is given by z 7→ [Q1(z) : · · · :
Q10(z)] ∈ P9 whose image is contained in Q8. This implies that if we take a general line ℓ
in PS, then ν(ℓ) is a conic on Q8.

By [Cha06, Theorem 3.3], the map ν̂ is the composition of µ̂ with the projection
T ∗(E6/P6) → E6/P6 (under the natural embedding Q8 ⊂ E6/P6). This shows that the
rational map ν : PT ∗

o (E6/P1) 99K E6/P6 maps a general line to a conic.

5.D.5. Type E6,II . Let F be a 5-dimensional vector space. By [Cha06, Proposition 2.1],
there exists a unique GL2 ×GL(F )-equivariant rational map

g : ∧2F ∗ ⊕ ∧2F ∗ 99K Gr(3, F )
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which maps a general element (ω1, ω2) ∈ ∧2F ∗ ⊕ ∧2F ∗ to Ker(ω1)
⊥ω2 ∩ Ker(ω2)

⊥ω1 . Here
ωi ∈ ∧2F ∗ is viewed as a two form on F and Ker(ω1)

⊥ω2 means the orthogonal space with
respect to ω2 of the subspace Ker(ω1). As ωi is general, it has rank 4, hence Ker(ωi) is 1-
dimensional, which shows that Ker(ω1)

⊥ω2 ∩Ker(ω2)
⊥ω1 is a 3-dimensional vector subspace

in F . By [Cha06, Lemma 2.3], we have g(aω1 + bω2, a
′ω1 + b′ω2) = g(ω1, ω2) for a general

element

a b

a′ b′

 in GL2. By [Cha06, Lemma 2.4], a general element ϕ = (ω1, ω2) ∈

∧2F ∗ ⊕ ∧2F ∗ can be co-diagonalised as follows (under a suitable basis f ∗
1 , · · · , f ∗

5 of F ):
ω1 = f ∗

2 ∧ f ∗
4 + f ∗

3 ∧ f ∗
5 , ω2 = f ∗

1 ∧ f ∗
5 + f ∗

3 ∧ f ∗
4 .

Take another element ϕ′ = (ω′
1, ω

′
2) defined as follows:

ω′
1 = f ∗

1 ∧ f ∗
4 + f ∗

3 ∧ f ∗
5 , ω′

2 = f ∗
1 ∧ f ∗

2 + f ∗
3 ∧ f ∗

4 .

Consider the following plane in ∧2F ∗ ⊕ ∧2F ∗ given by ϕs,t = sϕ + tϕ′ = (ωs,t
1 , ω

s,t
2 ) for

(s, t) ∈ C2. By a direct computation, we have
Ker(ωs,t

1 ) = C(sf1 − tf2), Ker(ωs,t
2 ) = C(sf2 − tf5).

One remarks that for any (s, t) 6= (0, 0), the subspaces Ker(ωs,t
1 ) and Ker(ωs,t

2 ) are 1-
dimensional and they intersect only at (0, 0). Moreover, one shows directly that

ω2(Ker(ωs,t
1 ), ·) ∩ ω1(Ker(ωs,t

2 ), ·) = {0}.
This shows that g(ϕs,t) is well-defined for (s, t) 6= (0, 0). By a direct computation, we have

g(ϕs,t) = {
∑
i

xifi|x5 =
t2

s2
x1 −

t

s
x2, x4 =

(s+ t)t

s2
x3}.

This gives a basis for g(ϕs,t), which, under the Plücker embedding, is mapped to the
following curve on Gr(3, F )

[s : t] 7→ [(f1 +
t2

s2
f5) ∧ (f2 −

t

s
f5) ∧ (f3 +

(s+ t)t

s2
f4)].

Note that this gives a degree 4 curve on Gr(3, F ).
Consider the E6,II flop µ̂ : T ∗(E6/P3) 99K T ∗(E6/P5). By [Cha06, Theorem 4.3], the

composition T ∗
o (E6/P3) 99K T ∗(E6/P5)→ E6/P5 can be identified with the composition of

g with the natural embedding Gr(3, F ) ⊂ E6/P5. The precedent argument shows that a
general line in PT ∗

o (E6/P3) is mapped to a degree 4 curve on E6/P5.

5.D.6. Type Bn,k. Let (V, 〈, 〉) be an orthogonal space of dimension 2n + 1. A vector sub-
space F ⊂ V is said orthogonal if F ⊂ F⊥. The k-th orthogonal Grassmannian Bn/Pk

parametrizes k-dimensional orthogonal vector subspaces in V . There exists an isomor-
phism:

T ∗(Bn/Pk) ' {([F ], ϕ) ∈ Bn/Pk × so(V )|ϕ(V ) ⊂ F⊥, ϕ(F⊥) ⊂ F ⊂ Ker(ϕ)}.
Under this isomorphism, the Springer map ŝ : T ∗(Bn/Pk)→ Od sends ([F ], ϕ) to ϕ.
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When k is even such that k > 2n+1
3

, the Springer map π is generically finite of degree 2
and d = [32n+1−2k, 23k−2n−2, 12]. The involution on general fibers of π gives the Bn,k-flop:
µ̂ : T ∗(Bn/Pk) 99K T ∗(Bn/Pk).

For ϕ ∈ Od, we choose a basis e(i, j) of V as described by Proposition 5.15 (by tak-
ing β satisfying β(k) = k + 1). Then Ker(ϕ) has dimension k + 1 and is generated by
e(1, 1), e(1, 2), · · · , e(1, k+1). The two fibers π−1(ϕ) are given by the following two orthog-
onal subspaces (cf. proof of Theorem 4.5 in [Nam06])

F1 =
∑

1≤j≤k

Ce(1, j) and F2 =
∑

1≤j≤k−1

Ce(1, j) + Ce(1, k + 1).

One notes that F0 := F1 ∩ F2 = F1 ∩ Im(ϕ) = Im(ϕ) ∩ Ker(ϕ) is of dimension k − 1
and F2/F0 is naturally isomorphic to Ker(ϕ)/F1. The flop µ̂ interchanges the two fibers.
Namely the flop µ̂ sends ([F1], ϕ) to ([F2], ϕ) where F2 is the linear span of F1 ∩ Im(ϕ) and
Ker(ϕ)/F1, the latter being one-dimensional. Furthermore, 〈Ker(ϕ)/F1, F0〉 = 0 and as
F0 ⊂ F1 is a hyperplane, it is exactly the orthogonal part in F of Ker(ϕ)/F1. This implies
that F2 is in fact uniquely determined by Ker(ϕ)/F1. We summarize these in the following
picture on Young table.

ϕϕ

2n+ 1− 2k

3k − 2n− 2

2

kerϕ

F0

F1/F0

F2/F0

F⊥
1 /F1

F1

F2 V/F⊥
1

Fix an orthogonal space [F ] ∈ Bn/Pk, then F⊥/F is an orthogonal space of dimension
2n + 1 − 2k and V/F⊥ is isomorphic to F ∗ via the pairing F × V/F⊥ → C induced from
the bilinear form on V . We fix a (non-canonical) isomorphism V ' F ⊕ F ∗ ⊕ F⊥/F such
that the orthogonal form on V is given by that induced on F⊥/F and the natural one on
F ⊕ F ∗.

By [LM03, Proposition 5.1], we have

ιF : T ∗
[F ](Bn/Pk) ' Hom(F⊥/F, F )⊕ ∧2F.
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This isomorphism is given as follows: for ϕ ∈ T ∗
[F ](Bn/Pk), it induces a map ϕ0 ∈

Hom(F⊥/F, F ) as F ⊂ Ker(ϕ) and ϕ(F⊥) ⊂ F . As ϕ(V ) ⊂ F⊥, it induces a map
(ϕ1, ϕ2) : V/F⊥ → F⊥/F ⊕ F . It turns out that ϕ ∈ so(V ) is equivalent to the fol-
lowing: (1) the map ϕ1 : V/F⊥ ' F ∗ → F⊥/F is the dual −ϕ∗

0 of the map −ϕ0 (here
F⊥/F is self-dual). (2) the map ϕ2 : V/F

⊥ ' F ∗ → F is in fact an element in ∧2F . Then
the isomorphism ιF sends ϕ to (ϕ0, ϕ2).

Conversely, given (ϕ0, ϕ2) ∈ Hom(F⊥/F, F )⊕∧2F , we construct ϕ̄ as a map from V/F '
V/F⊥ ⊕ F⊥/F to F ⊕ F⊥/F , which is given as follows

ϕ̄ =

 ϕ2 ϕ0

−ϕ∗
0 0


Thus ϕ̄ is represented as an anti-symmetric matrix of size dimV/F = 2n+ 1− k. Note

that dimV/F is odd as k is even, so for a general choice of (ϕ0, ϕ2), the map ϕ̄ is of
maximal rank 2n − k and Ker(ϕ̄) is one-dimensional. Note that Ker(ϕ̄) = Ker(ϕ)/F . By
the natural quotient V/F → V/F⊥ ' F ∗, the image of Ker(ϕ̄) gives a line Cf ∗ ⊂ F ∗.
Then the flop µ maps ([F ], ϕ) to ([F ′], ϕ), where F ′ ⊂ F ⊕ F ∗ ⊂ V is the subspace
generated by Hf∗ and f ∗, here Hf∗ is the hyperplane in F defined by f ∗ = 0. Then the
map ν : P(T ∗

[F ](Bn/Pk)) 99K Bn/Pk is then given by [ϕ0, ϕ1] 7→ [F ′].
Note that Hf∗ is uniquely determined by f ∗, while f ∗ is given by the kernal Ker(ϕ̄∗).

By Proposition 5.16, ν maps a line to a curve of degree 2n − k on Bn/Pk for the Plücker
embedding of Bn/Pk. Thus for k 6= n, this gives a degree 2n − k curve on Bn/Pk, while
for k = n, this gives a curve of degree n/2 on Bn/Pn as Bn/Pn ⊂ Gr(n, 2n + 1) ⊂ PN is
induced by O(2).
5.17. Remark. By Example 3.3 [Nam08], B2n,2n-flop is the same as D2n+1-flop. Hence we
recover the result in Section 5.D.3.

5.D.7. Type Dn,k. Let (V, 〈, 〉) be an orthogonal space of dimension 2n. As in the Bn,k-flop
case, we have the following isomorphism of the cotangent bundle of the k-th orthogonal
Grassmannian Dn/Pk:

T ∗(Dn/Pk) ' {([F ], ϕ) ∈ Dn/Pk × so(V )|ϕ(V ) ⊂ F⊥, ϕ(F⊥) ⊂ F ⊂ Ker(ϕ)}.
Under this isomorphism, the Springer map ŝ : T ∗(Bn/Pk)→ Od sends ([F ], ϕ) to ϕ.

When k is odd such that n − 2 ≥ k > 2n
3

, the Springer map ŝ is generically finite of
degree 2 and d = [32n−2k, 23k−2n−1, 12]. The involution on the general fibers of ŝ gives the
Dn,k-flop: µ̂ : T ∗(Dn/Pk) 99K T ∗(Dn/Pk).

This flop is similar to the Bn,k-flop. By the similar argument, we see that a general line
in PT ∗

[F ](Dn/Pk) is mapped to a curve of degree 2n− k − 1.

5.D.8. Type Cn,k. Let (V, ω) be a symplectic vector space of dimension 2n. A vector sub-
space F ⊂ V is said isotropic if F ⊂ F⊥. The k-th symplectic Grassmannian Cn/Pk

parametrizes k-dimensional isotropic vector subspaces in V . There exists an isomorphism:
T ∗(Cn/Pk) ' {([F ], ϕ) ∈ Cn/Pk × sp(V )|ϕ(V ) ⊂ F⊥, ϕ(F⊥) ⊂ F ⊂ Ker(ϕ)}.
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Under this isomorphism, the Springer map ŝ : T ∗(Cn/Pk)→ Od sends ([F ], ϕ) to ϕ.
When k is odd such that k ≤ 2n

3
, the Springer map π is generically finite of degree 2

and d = [3k−1, 22, 12n−3k−1]. The involution on the general fibers of π gives the Cn,k-flop:
µ̂ : T ∗(Cn/Pk) 99K T ∗(Cn/Pk).

When k = 1, then d = [22, 12n−4] and an element ϕ ∈ Od has rank 2, so Im(ϕ) is two
dimensional. The flop µ sends ([F ], ϕ) to ([Im(ϕ)/F ], ϕ). In this case, if we take a general
pencil ϕλ ∈ T ∗

[F ](Cn/P1), then the flop µ̂ maps it to a line in Cn/P1.
Now we consider the case 3 ≤ k ≤ 2n

3
. Fix [F ] ∈ Cn/Pk and take a general pencil

ϕλ ∈ T ∗
[F ](Cn/Pk). Note that ϕ2

λ = ϕλ ◦ϕλ has rank k−1, hence Im(ϕ2
λ) is a vector subspace

of dimension k − 1 in F . It defines an element f ∗
λ in F ∗ ' V/F⊥, which is unique up to

a scalar. Then the image of ([F ], ϕλ) under the flop µ̂ is ([Fλ], ϕλ) where Fλ is spanned
by Im(ϕ2

λ) and f ∗
λ . This gives a curve on Cn/Pk, which is given in the Plücker embedding

ϕ2
λ(v1) ∧ ϕ2

λ(v2) · · · ∧ ϕ2
λ(vk−1) for a general chosen k − 1 vectors v1, · · · , vk−1 of V , as ϕ2

λ is
quadratic in λ. This gives a curve of degree 2(k − 1).

5.E. Proof of Theorem 1.14. If the morphism ε : P(T ∗
G/P ) → P(Õ) is a divisorial

contraction, then Proposition 5.9 and Corollary 5.10 can be applied to determine a and b.
Nevertheless, in general it is not easy to compute the Segre classes Λ2n−1 and Λ2n−1 · π∗H.
In the following, we shall use a similar method as the previous subsection to determine
a and b in the classical cases. We start with the following result which computes the
pseudoeffective threshold for G/P of type (II-d-d).

5.18. Proposition. Let G/P be a rational homogeneous space of type (II-d-d) of classical
type. Then the pseudoeffective threshold of G/P is given by αG/P = 1/a where a is the
integer given by the following table.

Table 4. values of a in the case (II-d-d)

g node nilpotent orbit O a

Bn
2n+1

3
≤ k ≤ n− 1 and k odd [32n+1−2k, 23k−2n−1] 2n+ 1− k

Cn 2 ≤ k ≤ 2n
3

and k even [3k, 12n−3k] 2k

Dn
2n
3
≤ k ≤ n− 2 and k even [32n−2k, 23k−2n] 2n− k

Proof. Note that for G/P of type (II-d-d), the Springer map ŝ : T ∗
G/P → O is birational by

Proposition 5.4. Let Γ be the exceptional divisor and write [Γ] ≡ a(Γ)Λ − b(Γ)π∗H. By
Corollary 5.10, we have b(Γ) = 1. By Theorem 5.5, we have αG/P = 1/a(Γ). By Proposition
5.9, we have a(Γ)Λ′ ≡ H ′, which can be used to determine a(Γ) for the classical cases.

As P(T ∗
G/P ) → P(O) is birational, this gives a rational map η : P(O) 99K G/P . For

any point x ∈ O, there exists an sl2-triplet (x, y, h) by the Jacobson-Morozov theorem.
The nilpotent elements in this sl2 give a conic C on P(O) passing through [x]. In other
words, P(O) is covered by conics. Now we show that η : C → η(C) is birational: let n ⊂ g
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be the nilradical of p, which is naturally identified with T ∗
G/P,o. As O is Richardson, the

intersection n ∩ O is dense in n, thus n ⊂ O. This implies that fibers of T ∗
G/P → G/P are

mapped to linear subspaces in O. For any y ∈ G/P , denote by ny this linear subspace.
Then P(ny) ∩ C = P(ny) ∩P(sl2) ⊂ C. As C is a conic, while P(ny) ∩P(sl2) is linear, we
have P(ny)∩P(sl2) is just a point, which shows η : C → η(C) is birational. It follows that
a(Γ) = η∗(C)·H

2
. Thus we only need to compute the degree of the curve η∗(C).

Consider the case of Bn/Pk with k odd and k ≥ 2n+1
3

. Then O corresponds to the
partition [32n+1−2k, 23k−2n−1]. Take an element ϕ ∈ O ⊂ so(V ), then Ker(ϕ) has dimension
k as rk(ϕ) = 2n+ 1− k. Using the identification

T ∗(Bn/Pk) ' {([F ], ϕ) ∈ Bn/Pk × so(V )|ϕ(V ) ⊂ F⊥, ϕ(F⊥) ⊂ F ⊂ Ker(ϕ)},

it follows that the map η is given by η(ϕ) = [Ker(ϕ)]. By Proposition 5.16, η∗(C) is a curve
of degree 2(2n + 1 − k), which gives a = 2n + 1 − k. The case of Dn/Pk is completely
similar.

Consider Cn/Pk with k even and k ≤ 2n
3

. The nilpotent orbit O corresponds to the
partition [3k, 12n−3k]. Take an element ϕ ∈ O, then it is easy to see that η(ϕ) = [Im(ϕ2)].
This shows that η(C) is a curve of degree 4k, hence a = 2k. �

There are five G/P of type (II-d-d) in exceptional Lie algberas. Although the similar
approach works, but the map η is not explicit, which prevents us to do the computation.
In a similar way, we can get the following:

5.19. Lemma. The pseudoeffective threshold of Cn/Pk with k ≥ 2n+1
3

is 2
2n−k

.

Proof. Note that Cn/Pk with k ≥ 2n+1
3

is of type (II-d-A1) and the Springer map ŝ :

T ∗
Cn/Pk

→ O[32n−2k,23k−2n] is birational by Proposition 5.4. Let Γ be the exceptional divisor
and write [Γ] ≡ a(Γ)Λ− b(Γ)π∗H. By Corollary 5.10, we have b(Γ) = 2. By Theorem 5.5,
we have αCn/Pk

= 2/a(Γ). To compute a(Γ), we consider the rational map

η : PO[32n−2k,23k−2n] 99K Cn/Pk, ϕ 7→ [Ker(ϕ)].

As in the proof of Proposition 5.18, take a conic curve C on P(O), then its image η(C)
is a curve of degree 2(2n− k). This gives a(Γ) = 2n− k. �

Now we are ready to prove our main result.

Proof of Theorem 1.14. The statement (1) is a direct consequence of Theorem 5.5, Propo-
sition 5.8 and Proposition 5.9.

For the statement (2), let r and d be two positive integers. Then there exists an effective
divisor D ⊂ P(TG/P ) such that D ∼ rΛ− dπ∗H if and only if

H0(G/P, (SymrTG/P )⊗OG/P (−dH)) 6= 0.

Firstly we assume that the morphism ε : P(T ∗
G/P ) → P(Õ) is divisorial with exceptional

divisor Γ. Then Γ is dominated by curves with Λ-degree 0 and Γ ≡ aΛ − bπ∗H by our
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definition of a and b. Let m be the multiplicity of D along Γ. Then the restriction of the
following effective divisor

D −mΓ ≡ (r − am)Λ + (bm− d)π∗H

to Γ is pseudoeffective. Then we obtain r − am ≥ 0 and bm− d ≥ 0. This yields

d ≤ bm ≤ b
⌊r
a

⌋
,

where the second inequality follows from the fact that m is an integer. Conversely, if r and
d are two positive integers satisfying d ≤ bb r

a
c. We define m = b r

a
c. Then we get

rΛ− dπ∗H ∼ mΓ + (r − am)Λ + (bm− d)π∗H.

Note that r − am ≥ 0 and bm − d ≥ 0 by our assumption. As Λ and H are globally
generated, it follows that there exists an effective divisor D′ such that

rΛ− dπ∗H ∼ mΓ +D′ ≥ 0.

Next we assume that the morphism ε : P(T ∗
G/P ) → P(Õ) is small. We consider the

stratified Mukai flop µ : P(T ∗
G/P ) 99K P(T ∗

G/Q). Let D ⊂ P(T ∗
G/P ) be an effective divisor

such that
D ∼ rΛ− dπ∗

1H.

By Proposition 5.8, the push-forward by µ shows
µ∗D ∼ rΛ′ − dµ∗π

∗
1H ∼ rΛ′ − d(aΛ′ − π∗

2H) ∼ (r − da)Λ′ + dπ∗
2H,

where Λ′ is the tautological divisor of P(T ∗
G/Q) and we use the fact that b = 1 in this case.

As µ∗D is effective, we obtain r − da ≥ 0. Conversely, if r and d are two positive integers
satisfying d ≤ bb r

a
c. Then we get ad ≤ r as b = 1. In particular, as Λ′ and H are globally

generated, there exists an effective divisor D′ such that D′ ∼ (r− ad)Λ′ + dπ∗
2H. Then the

pull-back µ∗D′ is an effective divisor such that
µ∗D′ ∼ (r − ad)Λ + dµ∗π∗

2H ∼ rΛ− dπ∗
1H.

For the statement (3), note first that the tangent bundle TG/P is semi-stable. Thus by
Lemma 2.8 we have

b

a
= αG/P = index(G/P ) · α(G/P,−KG/P ) ≤

index(G/P )

dim(G/P )
.

In particular, the normalized tangent bundle of G/P is pseudoeffective if and only if
a · index(G/P ) = b · dim(G/P ).

Consequently, as b ≤ 2, it follows that 2 dim(G/P ) is divided by index(G/P ). Thus, for G
of exceptional type, one can check by Appendix A that the normalized tangent bundle of
G/P is pseudoeffective if and only if G/P is isomorphic to either E7/P7 or G2/P1 = Q5.

Type An/Pk. Note that An/Pk is isomorphic to An/Pn+1−k. Thus we may assume that
2k ≤ n+ 1. Firstly we assume that 2k ≤ n, then a = k and b = 1. Then we have

a · index(An/Pk)− b · dim(An/Pk) = k(n+ 1)− k(n− k + 1) = k2 > 0.
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Hence, the normalized tangent bundle of An/Pk is not pseudoeffective if 2k 6= n+ 1. Next
we assume that 2k = n+ 1, then we have a = k and b = 2 and we have

a · index(An/Pk)− b · dim(An/Pk) = k(n+ 1)− 2k(n− k + 1) = k(2k − n− 1) = 0.

Hence, the normalized tangent bundle of X = An/Pk is pseudoeffective if 2k = n + 1 and
X is isomorphic to the Grassmann Gr(k, 2k) in this case.

Type Bn/Pk. Firstly we assume that 3k ≤ 2n. Then a = 2k and b = 2. In particular, we
have

a · index(Bn/Pk)− b · dim(Bn/Pk) = 2k(2n− k)− k(4n− 3k + 1) = k(k − 1) ≥ 0

with equality if and only if k = 1. Hence, if 3k ≤ 2n, then the normalized tangent bundle
of Bn/Pk is pseudoeffective if and only if k = 1, which is isomorphic to the (2n − 1)-
dimensional quadric Q2n−1. Next we assume that 2n+1 ≤ 3k ≤ 3(n−1). Then a = 2n−k
(k even) or 2n− k + 1 (k odd), and b = 1. Nevertheless note that we have

2a · index(Bn/Pk)− 2b · dim(Bn/Pk) ≥ 2(2n− k)2 − k(4n− 3k + 1)

= 8n2 − 12nk + 5k2 − k
= (2n− 2k)(4n− 2k) + k2 − k > 0.

Therefore, if 2n + 1 ≤ 3k ≤ 3(n − 1), then the normalized tangent bundle of Bn/Pk is
not pseudoeffective. Finally, we assume that k = n. Then a = bn+1

2
c, and b = 1 (n even)

or b = 2 (n odd). On the other hand, note that Bn/Pn is the n(n+1)
2

-dimensional spinor
variety Sn+1 with index 2n. In particular, one can easily obtain that the normalized
tangent bundle of Bn/Pn is pseudoeffective if and only if n is odd.

Type Cn/Pk. If k = 1, then Cn/P1 is isomorphic to P2n−1 whose normalized tangent
bundle is known to be non-pseudoeffective. Now we assume that 6 ≤ 3k ≤ 2n, then
a = 2k − 2 (k odd) or a = 2k (k even) and b = 1. If k ≥ 3, then we have

2a · index(Cn/Pk)− 2b · dim(Cn/Pk) ≥ 2(2k − 2)(2n− k + 1)− k(4n− 3k + 1)

= 4nk − k2 + 7k − 8n− 4

=
2nk

3
− k2 + 10nk

3
− 8n+ 7k − 4 > 0.

Hence, the normalised tangent bundle of Bn/Pk is not pseudoeffective if 9 ≤ 3k ≤ 2n. For
k = 2 and n ≥ 3, one can easily check that the normalized tangent bundle of Bn/P2 is not
pseudoeffective in the same way. Finally we assume that 3k ≥ 2n + 1. Then a = 2n − k
and b = 2. Then we obtain

a · index(Cn/Pk)− b · dim(Cn/Pk) = (2n− k)(2n− k + 1)− k(4n− 3k + 1)

≥ (2n− 2k + 1)(2n− 2k) ≥ 0

with equality if and only if k = n. In particular, if 3k ≥ 2n + 1, then the normalized
tangent bundle of Cn/Pk is pseudoeffective if and only if k = n, which is the Lagrangian
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Grassmann LG(n, 2n).

Type Dn/Pk. Firstly we assume that 3k ≤ 2n − 1. Then a = 2k and b = 2. Then we
obtain

a · index(Dn/Pk)− b · dim(Dn/Pk) = 2k(2n− k − 1)− k(4n− 3k − 1) ≥ k2 − k ≥ 0,

with equality if and only if k = 1. Hence, if 3k ≤ 2n − 1, then the normalized tangent
bundle of Dn/Pk is pseudoeffective if and only if k = 1, which is the (2n− 2)-dimensional
quadric Q2n−2. Next we assume that 2n ≤ 3k ≤ 3(n− 2), then a = 2n− k − 1 (k odd) or
a = 2n− k (k even), and b = 1. Then we have

2a · index(Dn/Pk)− 2b · dim(Dn/Pk) ≥ 2(2n− k − 1)2 − k(4n− 3k − 1)

= 8n2 − 12nk + 5k2 + 5k − 8n+ 2

= (2n− 2k)(4n− 2k) + k2 + 5k − 8n+ 2

≥ 4(2n+ 4) + k2 + 5k − 8n+ 2 > 0,

where the fourth inequality follows from the fact that k ≤ n − 2. In particular, the
normalized tangent bundle is not pseudoeffective if 2n ≤ 3k ≤ 3(n−2). Finally, if k ≥ n−1,
then Dn/Pk is isomorphic to the spinor variety Sn = Bn−1/Pn−1 and hence the normalized
tangent bundle of Dn/Pk with k ≥ n− 1 is pseudoeffective if and only if n is even. �

6. Two non-homogeneous examples

As mentioned in the introduction, besides rational homogeneous spaces, there are only
two known examples of Fano manifolds with Picard number 1 and big tangent bundle: the
del Pezzo threefold V5 of degree 5 and the horospherical G2-variety X. In this subsection,
we describe the pseudoeffective cones of the projectivised tangent bundle of V5 and X. Re-
call that V5 is actually a codimension 3 linear section of Gr(2, 5) ⊂ P9 and the bigness of
TV5 is proved in [HLS20] using the total dual VMRT. In particular, this gives the pseudoef-
fective cone of P(TV5) by applying Theorem 3.4. Actually, we have the following complete
descriptions of the cones of divisors of P(TV5).

6.1. Proposition. Let X be the del Pezzo Fano threefold V5 of degree 5. Denote by
π : X := P(TX)→ X the projectivised tangent bundle of X. Let H be the ample generator
of Pic(X) and let Λ be the tautological divisor of P(TX). Then we have

Eff(X ) = 〈3Λ− π∗H, π∗H〉
Mov(X ) = 〈Λ, π∗H〉
Nef(X ) = 〈Λ + π∗H, π∗H〉 .

In particular, the cones of divisors Eff(X ), Mov(X ) and Nef(X ) are closed rational cones
in N1(X ).
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π∗H−π∗H

Λ
Λ + π∗H

Nef(X )

Mov(X )3Λ− π∗H

Eff(X )

Proof. The description of the effective cone Eff(X ) of X follows from Theorem 3.4 and
[HLS20, Theorem 5.4].

Note that Č is dominated by curves with Λ-degree 0. It follows that Č ⊂ B+(Λ). In
particular, by Lemma 2.3 that [Λ] is not contained in the interior of Mov(X ). Thus, it
remains to show that Λ is actually movable. Note that X is quasi-homogeneous under the
action of Aut(X) = PGL2(C) and there are exactly three orbits X0 tX1 tX2, where X0 is
the open orbit and Xi has codimension i for 0 ≤ i ≤ 2. Moreover, the closure X1 = X1tX2

of X1 is a prime divisor in the complete linear system |2H|. In particular, the base locus
of |Λ| is contained in π−1(X1). Let D ∈ |Λ| be an arbitrary element. If Λ is not movable,
then π∗X1 is contained in Supp(D). In particular, D − π∗X1 is an effective divisor. This
shows that Λ − 2π∗H is contained in Eff(X ), which contradicts the description of Eff(X )
above. Hence, Λ is movable and we have Mov(X ) = 〈Λ, π∗H〉.

Recall that there exists a one-dimensional family of lines l ⊆ X on X such that

TX |l ∼= OP1(2)⊕OP1(1)⊕OP1(−1).

In particular, the nef cone Nef(X ) of X is contained in the cone 〈Λ + π∗H, π∗H〉. Thus,
it remains to show that Λ + π∗H is nef. Note that X is embedded in P6 by the complete
linear system |H|. Therefore, thanks to [HLS20, Lemma 3.1], the vector bundle

TX ⊗OP6(3)|X ⊗OX(KX) ∼= TX ⊗H

is globally generated. Hence, the Cartier divisor class Λ + π∗H is nef. �

Now we consider the horospherical G2-variety X. We briefly recall the geometric descrip-
tion of X and we refer the reader to [Pas09] for more details. Firstly X is a 7-dimensional
Fano manifold of Picard number 1 and index 4. The automorphism group Aut(X) acts on
X with two orbits and the unique closed orbit Z ⊂ X is a smooth 5-dimension quadric such
that H|Z ∼= OQ5(1), where H is the ample generator of Pic(X). In particular, Λ is movable.
On the other hand, by [PP10, Proposition 2.3], it follows that there exists a deformation
X → ∆ such that Xt

∼= B3/P2 if t 6= 0 and X0
∼= X. Then the semi-continuous theorem

implies that TX is big. On the other hand, for X = B3/P2, the total dual VMRT Č ′ is a
prime divisor such that

[Č ′] ≡ 4Λ′ − 2π′∗H ′,
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where Λ′ is the tautological divisor of π′ : P(TB3/P2)→ B3/P2 and H ′ is the ample generator
of Pic(B3/P2) (see Proposition 5.9). Moreover, the VMRT of X at a general point is the
smooth surface P(OP1(1) ⊕ OP1(3)) embedded by O(1). This implies that the total dual
VMRT Č of X is a prime divisor satisfying

[Č] ≡ 4Λ− 2π∗H.

In particular, the class [Λ] is not contained in the interior of Mov(P(TX)) since B−(Λ)
contains Č. This shows that [Λ] generates an extremal ray of Mov(P(TX).

Next, denote by N the normal bundle of Z in X. Then by adjunction formula, we have
det(N ) ∼= OQ5(−1). Denote by X′ → X the blow-up along Z with exceptional divisor
E. Then it is known that E is isomorphic to the complete flag manifold of G2-type. In
particular, the variety E ∼= P(N ∗) is isomorphic to P(C) over Q5, where C is the Cayley
bundle over Q5 (see [Ott90]). As det(C) ∼= OQ5(−1), there is an isomorphism N ∼= C∗(−1).

We claim that we have an isomorphism C∗(−1) ∼= C. Indeed, it is clear that C∗(−1) is
stable as C is stable ([Ott90]). Moreover, an easy computation shows that we have

c1(C∗(−1)) = c1(C) and c2(C∗(−1)) = c2(C).

By [Ott90, Main Theorem], the vector bundle C∗(−1) is isomorphic to C.
Finally, by [Ott90, Theorem 3.7], the vector bundle C(2) and hence N (2) are globally

generated. As a consequence, it follows from the tangent sequence of Z that the restriction
TX(2)|Z is nef. Moreover, note that TX is globally generated outside Z, thus the vector
bundle TX(2) is nef. On the other hand, by [Ott90, Theorem 3.5], there exist lines l on
Z = Q5 such that

C|l ∼= OP1(−2)⊕OP1(1).

This implies that TX(a) cannot be nef for any a < 2 and hence the divisor Λ+ aπ∗H is nef
if and only if a ≥ 2. In summary, we have the following result.

6.2. Proposition. Let X be the horospherical G2 variety X, and let H be the ample
generator of Pic(X). Denote by Λ the tautological divisor class of the projectivised tangent
bundle π : X = P(TX)→ X. Then we have

Eff(X ) = 〈4Λ− 2π∗H, π∗H〉
Mov(X ) = 〈Λ, π∗H〉
Nef(X ) = 〈Λ + 2π∗H, π∗H〉 .

Appendix A. Big table for rational homogeneous spaces

In this appendix we summary the results for rational homogeneous spaces of Picard
number one proved in Section 5 and provide more details about the invariants and geometric
informations of them. Let X = G/Pk be a rational homogeneous space of Picard number
1. Denote by P(T ∗

X)
ε−→ P(Õ)→ P(O) the Stein factorisation of the projectivised Springer

map. Nota that the variety G/P is 1-dimensional if and only if it is one of the following:
A1/P1, B1/P1, C1/P1, D2/P1 and D2/P2. In particular, the variety G/P is isomorphic to
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P1. As the invariants for P1 are trivial, in the table below we shall always assume that
G/P has dimension at least 2.

The first column of the table below gives the type of the Lie group G. The second
column is the numeration of the corresponding node in the Dynkin diagram. The third
column contains the type of X (see Definition 5.6 and Table 2). The fourth column and
fifth column give the values of a and b in Theorem 1.14, respectively. The column 6 gives
the type of singularities of P(Õ) in codimension 2 (cf. Definition 5.6 and Corollary 5.10)
and the notation "-" means that P(Õ) is smooth in codimension 2. The column 7 describes
the nilpotent orbit O and the column 8 gives the dual defect of the VMRT Co ⊂ P(ΩX,o)
of X at a referenced point o ∈ X. The columns 9 and 10 contain the index and dimension
of X, respectively, and the last two columns describe the VMRT Co and its embedding in
P(ΩX,o), respectively.

The values of a and b are given in Section 5 according to the types of X = G/Pk. Let
us summarise them as follows.
(1) If X = G/Pk is of type (I) or type (II-s), the method to compute a and b is provided

by Proposition 5.8. In particular, we always have b = 1 and the value of a are provided
in Table 3.

(2) If X = G/Pk is of type (II-d-d), the method to compute a and b is to use Proposition
5.9(1). In particular, we again have b = 1. The values of a are explicitly determined
in Table 4 for G of classical type. The remaining cases for G of exceptional type are
E7/P6, E8/P3, E8/P4, E8/P6 and F4/P4. In these cases, the induced rational map
η : P(Õ) 99K X is not explicit, so it prevents us to do the computation as that done
for classical types in Proposition 5.18. However, the formula provided in Proposition
5.9(1) still works in these cases and we leave the calculation of the value a in these five
cases for the interested reader.

(3) If X = G/Pk is of type (II-d-A1), the method to compute a and b is given by Proposition
5.9(2) and (3). In particular, we have b = 2 and a is equal to the codegree of the VMRT
Co ⊂ P(ΩX,o) of X. Moreover, if the VMRT Co is a rational homogeneous space, then
the codegree of Co can be found in [Tev05, p.39 Table 2.1 and p.40 Table 2.2]. The
remaining cases are Cn/Pk (3k ≥ 2n + 1) and F4/P3 (see Proposition 5.12 and Table
2) and we prove the following two lemmas for them.

Before giving the proof, let us briefly recall the basic definition and properties of nef
value morphism. Given a polarised projective manifold (X,H), if KX is not nef, the
nef value of (X,H) is defined as

τ := min{t ∈ R |KX + tH is nef}.
The nef value morphism of (X,H) is the morphism Φ : X → Y defined by the complete
linear system |m(KX + τH)| for m � 0. If assume in addition that the complete
linear system |H| defines an embedding X ⊂ PN , then the dual defect def(X) can be
determined by the nef value morphism Φ. More precisely, by [BFS92] (see also [Tev05,
Theorem 7.48 and Theorem 7.49]), if def(X) > 0, then the general fibre F of Φ has
Picard number 1 and we have

def(X) = def(F )− dim(Y ),
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where def(F ) is the dual defect of F ⊂ Pd embedded by |H|F |.

A.1. Lemma. Let X = Cn/Pk be a rational homogeneous space of type C with k ≥ 2,
and let Co ⊂ P(ΩX,o) be the VMRT at a referenced point o ∈ X. Then Co is isomorphic
to the following projective bundle

π : P(OPk−1(2)⊕OPk−1(1)⊕(2n−2k))→ Pk−1.

with embedding given by the complete linear system |O(1)|, where O(1) is the tautolog-
ical line bundle. Moreover, the following statements hold.

(i) The VMRT Co ⊂ P(ΩX,o) is dual defective if and only if 3k ≤ 2n, and if so
then we have def(Co) = 2n− 3k + 1.

(ii) If 3k ≥ 2n+1, then the dual variety of the VMRT Co ⊂ P(ΩX,o) is a hypersurface
of degree 2n− k.

Proof. The description of the VMRT Co ⊂ P(ΩX,o) follows from [LM03]. For the state-
ment (i), by [Tev05, Theorem 7.21], if 2n ≥ 3k, then Co ⊂ P(ΩX,o) is dual defective with
def(Co) = 2n− 3k + 1. For the converse, we assume to the contrary that 3k ≥ 2n + 1
and def(Co) > 0. Note that we have

OCo(KCo)
∼= O(−(2n− 2k + 1))⊗ π∗OPk−1(2n− 3k + 1).

Thus the nef value τ of (Co,O(1)) is equal to 2n−2k+1. Then the nef value morphism
Φ is defined by the complete linear system |π∗OPk−1(2n− 3k+1)|. In particular, either
Φ is a map to a point (if 2n − 3k + 1 = 0) or Φ is just the natural projection π (if
2n − 3k + 1 > 0). Let F be a general fibre of Φ. In the former case, we have F = Co
and therefore ρ(F ) ≥ 2, which is a contradiction. In the latter case, the variety F is
isomorphic to P2n−2k and we have def(F ) = 2n− 2k. In particular, we obtain

def(F )− dim(Pk−1) = 2n− 3k + 1 ≤ 0,

which is again a contradiction. Hence, if 3k ≥ 2n + 1, the VMRT Co ⊂ P(ΩX,o) is not
dual defective.

For the statement (ii), as 3k ≥ 2n+1, the VMRT Co ⊂ P(ΩX,o) is not dual defective.
Thus we have codeg(Co) = a by Proposition 5.9 and the value of a in this case is
computed in Lemma 5.19. �

A.2. Lemma. Let X be the rational homogeneous space F4/P3, and let Co ⊂ P(ΩX,o)
be the VMRT of X at a referenced point o ∈ X. Then Co is isomorphic to a smooth
divisor in |OP(∧2E)(2)⊗ π∗OP1(−3)| and the embedding is given by the complete linear
system |OP(∧2E)(1)|, where E is the vector bundle OP1(1)⊕3 ⊕OP1 and π is the natural
projection P(∧2E)→ P1.

In particular, the dual variety of Co ⊂ P(ΩX,o) is a hypersurface of degree 8.

Proof. By [HM04b], the VMRT Co is isomorphic to the Grassmanniann bundle of 2-
planes in the dual bundle E∗ with embedding given by the complete linear system of
Plücker bundle on Co. Thus we have a natural embedding Co ⊂ P(∧2E) such that the
restriction of OP(∧2E)(1) to Co is exactly the Plücker bundle. Moreover, note that the
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Grassmann variety Gr(2, 4) ⊂ P5 defined by Plücker embedding is the quadric fourfold.
Thus the Co is a smooth divisor in P(∧2E) such that

Co ∈ |OP(∧2E)(2)⊗ π∗OP1(a)|

for some a ∈ Z. Let S ⊂ Co be the P2-bundle corresponding to the quotient bundle
∧2E → O⊕3

P1 . Then S ∼= P1 × P2 and denote by p2 : P1 × P2 → P2 the natural
projection. Consider a rank 2 subbundle V = OP1(−1)⊕OP1 of E∗. Then V defines a
section l = P(∧2V ∗) ⊂ S of Co → P1 such that l is a fibre of p2. Note that the normal
bundle N1 of l in P(∧2E) is isomorphic to the restriction of the relative tangent bundle
of π : P(∧2E) → P1 to l. Thus one can easily derive from the relative Euler sequence
of P(∧2E) that we have

N1
∼= OP1(−1)⊕3 ⊕O⊕2

P1 .

On the other hand, the normal bundle N2 of l in Co is isomorphic to the restriction of
the relative tangent bundle of π|Co : Co → P1 to l. Thus we have

N2
∼= Hom(V,E∗/V ) ∼= V ∗ ⊗ (E∗/V ) ∼= OP1(−1)⊕2 ⊕O⊕2

P1 .

In particular, it follows that the restriction of the normal bundle of Co in P(∧2E) to l
is isomorphic to N1/N2

∼= OP1(−1). This implies
OP1(−1) ∼= OP(∧2E)(Co)|l ∼= OP1(2 + a).

Hence, we have a = −3. Then one can easily obtain by adjunction formula that
OCo(KCo)

∼= (OP(∧2E)(−4)⊗ π∗OP1(4))|Co .
In particular, the nef value of (Co,OP(∧2E)(1)|Co) is 4 and the nef value morphism Φ
is just the projection π|Co : Co → P1. Let F be a general fibre of π|Co . Then F is
isomorphic to the quadric fourfold Q4 and OP(∧2E)(1)|F ∼= OQ4(1). In particular, we
obtain

def(F )− dim(P1) = −1 < 0.

Hence, the VMRT Co ⊂ P(ΩX,o) is not dual defective. Then applying [Tev05, Theorem
6.2] yields

codeg(Co) =
5∑

i=0

(i+ 1)c5−i(ΩCo) · ζ i,

where ζ is the restriction of the tautological divisor of P(∧2E) to Co. Then a straight-
forward calculation shows that the Chern classes of ΩCo are as follows:

c1 = 4F − 4ζ, c2 = 7ζ2 − 13ζF , c3 = 13ζ2F − 6ζ3,
c4 = 3ζ4 − 6ζ3F , c5 = −6ζ4F .

Finally we conclude by the fact that ζ5 = 15 and ζ4F = 2. �
(4) If X = G/Pk is of type (II-d-A2), then X is isomorphic to E7/P4 (cf. Table 2). The

method to compute the values of a and b are provided in Proposition 5.9(2) and (3).
In particular, we have b = 1 and a is equal to the codegree of the VMRT Co ⊂ P(ΩX,o),
which is the Segre embedding of P1×P2×P3. In particular, by [Tev05, p.39 Table 2.1],
the codegree of Co is equal to 15.
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(5) If the VMRT Co ⊂ P(ΩX,o) is homogeneous, then the dual defect of Co can be calculated
by Proposition 5.11 (see also [Tev05, p.39 Table 2.1 and p.40 Table 2.2]). If the VMRT
Co ⊂ P(ΩX,o) is not homogeneous, then its dual defect is calculated in Proposition 5.12,
Lemma A.1 and Lemma A.2.
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