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Abstract. We prove that Shimura varieties of abelian type with infinite level at p are
perfectoid. As a corollary, the moduli spaces of polarized K3 surfaces with infinite level at
p are also perfectoid.

Contents

1. Introduction 1
1.1. Background and motivation 1
1.2. Main results and the strategy 3
1.3. Overview of the paper 6
1.4. Acknowledgments 6
2. Some preliminaries on adic spaces 6
2.1. A brief review of adic spaces 6
2.2. Inverse limits of adic spaces 7
2.3. Étale quotients for finite groups actions on perfectoid spaces 9
2.4. Some useful lemmas 13
3. Perfectoid Shimura varieties of abelian type 13
3.1. Geometric connected components of Shimura varieties 13
3.2. The algebraic construction 18
3.3. The perfectoid construction 21
3.4. The Hodge-Tate period map 28
4. Application to moduli spaces of polarized K3 surfaces 31
4.1. An example: Shimura varieties of orthogonal type 31
4.2. Moduli spaces of polarized K3 surfaces and the period map 33
4.3. The perfectoid moduli spaces of polarized K3 surfaces 35
References 36

1. Introduction

1.1. Background and motivation. The theory of perfectoid spaces was originally devel-
oped by Scholze in [24] to prove some cases of the weight-monodromy conjecture over p-adic
fields. Since then, this theory has proved to be very useful in quite a lot areas of number
theory and arithmetic geometry, cf. [25, 27, 31]. In [27], Scholze has proved that Shimura
varieties of Hodge type with infinite level at p are perfectoid, which is the key geometric
ingredient of his construction of automorphic Galois representations there. More precisely,
in [27] Scholze constructed Galois represenations associated with the mod pm cohomology
of the locally symmetric spaces for GLn over a totally real or CM field, proving conjectures
of Ash and others on the mod p version of the global Langlands conjecture. The cohomol-
ogy of the locally symmetric spaces for GLn can be realized as a boundary contribution of
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the cohomology of symplectic or unitary Shimura varieties (which are of Hodge type), and
the perfectoid structure on these Shimura varieties with infinite level at p plays a crucial
role in understanding the torsion appearing in the cohomology. In this note, we prove that
Shimura varieties of abelian type with infinite level at p are also perfectoid. As a corollary,
we get many new interesting examples of perfectoid spaces, including perfectoid quater-
nionic Shimura varieties and the moduli spaces of polarized K3 surfaces with infinite level
at p.

Shimura varieties of abelian type are exactly those studied by Deligne in [5], where he
proved that the canonical models of these Shimura varieties exist. When the weight is
rational, Shimura varieties of abelian type (over characteristic 0) are known as moduli
spaces of abelian motives (defined by using absolute Hodge cycles), cf. [18] Theorem 3.31.
Recently, Kisin (cf. [11]) and Vasiu (cf. [32, 33], as well as the more recent [34, 35]) have
proved that integral canonical models for Shimura varieties of abelian type (in the case
of hyperspecial levels at p) exist. These works and the results of Scholze in [27] are the
motivation of this paper. Recall that Shimura varieties of Hodge type are the Shimura
varieties which can be realized as closed subspaces of the Siegel Shimura varieties. In
principle, Deligne’s paper [5] suggests that, if a (reasonable) statement is true for Shimura
varieties of Hodge type, then it should also be true for Shimura varieties of abelian type,
cf. [16, 11, 21] for examples. However, the situations in [11] and [27] are quite different.
Let (G,X) be a Shimura datum. Fix a prime p. In [11], one fixes the level Kp at p as
the hyperspecial level (thus the reductive group is unramified at p), and lets the level Kp

outside p vary. Equivalently, one studies the pro-variety

ShKp(G,X) = lim←−
Kp

ShKpKp(G,X)

over the reflex field and the integer ring of the local reflex field. Here, Kp ⊂ G(Apf ) runs

through open compact subgroups of G(Apf ). In the situation of [27], one fixes the level Kp

outside p and lets the level Kp at p vary. Equivalently, one studies the object 1

lim←−
Kp

ShKpKp(G,X)ad

in the pro-étale site of the adic Shimura varieties ShKpKp(G,X)ad over a perfectoid field
like Cp. Here, Kp ⊂ G(Qp) runs through open compact subgroups of G(Qp). In this paper,
we will mainly work with the latter situation. Nevertheless, we will use in the course of the
argument (cf. Proposition 3.2.6 in subsection 3.2) the case where a hyperspecial level K` is
fixed, for a prime ` 6= p, and the level K` varies.

Recall that (G,X) is called of abelian type, if there exists a Shimura datum (G1, X1) of
Hodge type, together with a central isogeny Gder1 → Gder which induces an isomorphism

between the associated adjoint Shimura data (Gad1 , X
ad
1 )

∼→ (Gad, Xad). Thus the geometry
of Shimura varieties of abelian type and of Hodge type are very closely related. In fact, in
[5, 11, 21] Deligne, Kisin and Moonen all studied connected Shimura varieties of Hodge type
first. Then passing to a compact (finite) quotient, they got connected Shimura varieties of
abelian type. By the theory of connected components of Shimura varieties, they got results
for the non-connected Shimura varieties of abelian type. In this paper, we adapt their
methods and construction to the situation studied in [27].

1Since the usual projective limit does not exist in the category of adic spaces: the closest object to this
limit is as in Definition 2.2.1. See also Lemma 2.2.3.
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1.2. Main results and the strategy. Let (G,X) be a Shimura datum of abelian type.
Fix a sufficiently small prime to p level Kp ⊂ G(Apf ). As an orientation, we first study the

connected Shimura variety

Sh0
Kp(G,X) = lim←−

Kp

Sh0
KpKp(G,X)

as a pro-variety over Cp, following the line as in [5, 11, 21]. Let (G1, X1) be the Shimura
datum of Hodge type as above. Then we can find an open compact subgroup Kp

1 ⊂ G1(Apf ),

such that

Sh0
Kp(G,X) = Sh0

Kp
1
(G1, X1)/∆

for some finite group (cf. Proposition 3.2.6 in subsection 3.2) ∆ which acts freely on
the connected component Sh0

Kp
1
(G1, X1) of ShKp

1
(G1, X1) = lim←−K1p

ShK1pK
p
1
(G1, X1). The

finiteness of ∆ will be crucial for our later use. Now we want a perfectoid version of
this construction. First of all, with some effort, we can show that there is a perfectoid
Shimura variety S0

Kp
1
(G1, X1), which occurs as in some sense a “connected component” of

the perfectoid Shimura variety SKp
1
(G1, X1) constructed by Scholze in [27]. Moreover, it is

equipped with a free action of ∆, induced from the algebraic situation. In fact, what we are
doing is to adapt the construction of [5] 2.7 to the perfectoid situation. This (natural and
not very hard) adaption will also be a key tool in our study of perfectoid Shimura varieties
here. Then, we want to define an adic space by taking the quotient on the connected
perfectoid Shimura variety S0

Kp
1
(G1, X1) by ∆:

S0
Kp(G,X) = S0

Kp
1
(G1, X1)/∆,

which is the adic version of Sh0
Kp(G,X).

At this point, some curious reader may wonder that, why do not we first perform the
(algebraic) quotients at finite levels, and then take the limit of the associated adic spaces
to get a perfectoid space as what we want? If so, in fact one will not need to take quo-
tients at all, since the desired objects at finite levels are given by the connected Shimura
varieties Sh0

KpKp(G,X), and it is by the theory of Shimura varieties that we know each

Sh0
KpKp(G,X) can be realized as a finite quotient of some suitable Sh0

K1pK
p
1
(G1, X1), for

details see subsections 3.1 and 3.2. Therefore, if one wants to take this approach, then
the only problem is prove the existence of the limit lim←−Kp

Sh0
KpKp(G,X)ad in the sense of

Definition 2.2.1, as a perfectoid space. This is exactly what we want, up to our adaption of
Deligne’s construction above! Then, one meets an essential difficulty: it is not clear at all
that the limit (in the sense of Definition 2.2.1) exists, even as an adic space! See Lemma
2.2.3 (and Lemma 2.2.4) for some discussion on the existence of limits of adic spaces in
some cases. In fact, even in Lemma 2.2.3, one is asserting something (the existence of a
limit in the sense of Definition 2.2.1) a bit weaker than the existence of the usual limit, but
it is the unique possibility for what an adic-space limit could be (see also the footnote 1
in the second paragraph of this introduction on comparison with Kisin’s work [11]). Here
one finds some subtleties in the world of adic spaces. Thus, we come back to our previous
approach: try to construct the quotient at infinite level S0

Kp
1
(G1, X1)/∆ first as an adic

space, and then prove that it is perfectoid. As a summary, with all of our efforts so far,
we have reduced our specific problem in the setting of Shimura varieties to a problem on
quotients of perfectoid spaces.

However, it is not obvious at all that such a quotient above S0
Kp

1
(G1, X1)/∆ as adic space

exists! This leads us to study group quotients of perfectoid spaces seriously. Here come
the essential new difficulties relative to known methods in the algebraic setting. First, we
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remark that in the classical rigid analytic geometry setting and assuming that the spaces
are separated, by resorting to the associated Berkovich spaces, there exist nice results on
étale quotients of these spaces (and their counterparts in other versions of p-adic geometry,
e.g. Berkovich spaces and adic spaces) in [4]. However, we can not apply these affirmative
results in [4], as we are now working with perfectoid spaces, which are adic spaces almost
never of finite type (over a fixed perfectoid field k), while the adic spaces associated to rigid
analytic spaces and Berkovich spaces (as studied in [4]) are of finite type over the base field
k. By using the notion of diamonds introduced in [29], the group quotient above exists
naturally as a diamond. However, since we want to find some new perfectoid spaces coming
from Shimura varieties, we will not make use of the theory of diamonds in this paper. In
our specific situation, thanks to the fact that ∆ is finite, we can show that there indeed
exists such an adic space

S0
Kp(G,X),

which may be viewed as a quotient space of S0
Kp

1
(G1, X1) by ∆, see Proposition 2.3.1,

Corollary 2.3.5 and Proposition 3.3.8. In fact, in Proposition 2.3.1 (and Corollary 2.3.2)
we prove a general result on the existence of étale quotients for finite free group actions on
perfectoid spaces (over a perfectoid field). By construction, we have a finite étale Galois
cover

S0
Kp

1
(G1, X1)→ S0

Kp(G,X)

with Galois group ∆. In such a situation, as S0
Kp

1
(G1, X1) is a perfectoid space, by a theorem

of Kedlaya-Liu ([10] Proposition 3.6.22, which is the affinoid situation here), S0
Kp(G,X) is

also a perfectoid space. Then it will be not hard to construct a perfectoid Shimura variety
SKp(G,X) from S0

Kp(G,X), by using the theory of connected components of Shimura va-
rieties (see the previous paragraph on our adaption of Delgine’s construction). Moreover,
there is naturally a Hodge-Tate period map

πHT : SKp(G,X) −→ FLG,
where FLG is the p-adic flag variety associated to the Shimura datum (G,X), see subsection
3.4. The main theorem of this paper is as follows, cf. Theorems 3.3.9, 3.4.1.

Theorem 1.2.1. Assume that (G,X) is an abelian type Shimura datum.

(1) There is a perfectoid space SKp = SKp(G,X) over Cp such that

SKp ∼ lim←−
Kp

ShKpKp(G,X)ad,

where ShKpKp(G,X)ad is the adic space associated to ShKpKp(G,X) over Cp, and
the meaning of ∼ is as the Definition 2.4.1 of [31].

(2) There is a G(Qp)-equivariant map of adic spaces

πHT : SKp −→ FLG,
compatible with the construction in [3] in the case that (G,X) is of Hodge type.
The map πHT is invariant for the prime to p Hecke action on SKp. Moreover,
pullbacks of automorphic vector bundles over finite level Shimura varieties to SKp

can be understood by using the map πHT.

In fact, we can say more about the theorem above in the general setting. Let (G,X) be
a Shimura datum. Fix a prime to p level Kp ⊂ G(Apf ). Consider the statement

P(G,X) : There exists a perfectoid spaceSKp overCp such that

SKp ∼ lim←−
Kp

ShKpKp(G,X)ad.
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Fix a connected component X+ ⊂ X, and consider the statement

P(Gder, X+) : There exists a perfectoid spaceS0
Kp overCp such that

S0
Kp ∼ lim←−

Kp

Sh0
KpKp(G,X)ad.

Then we can prove that the two statements are equivalent

P(G,X)⇐⇒ P(Gder, X+).

And to prove the statement P(G,X), it suffices to work in the case that G is simply
connected, cf. Corollaries 3.3.6 and 3.3.10. This opens the way to prove a theorem like the
above toward all Shimura varieties. Here, we assume that (G,X) is of abelian type in order
to use the theorem of Scholze on Hodge type Shimura varieties as the input.

Let d be a positive integer, and Ld be the quadratic lattice over Z of discriminant 2d
and rank 21 introduced in 2.10 of [15], see also subsection 4.2. Let G = SO(Ld ⊗Q). Then
there exists a Hermitian symmetric domain X such that (G,X) forms a Shimura datum
of abelian type with reflex field Q. Fix a tame (i.e. sufficiently small) level Kp ⊂ G(Apf ).

For any open compact subgroup Kp ⊂ G(Qp) such that KpK
p is admissible (see subsection

4.2), let M2d,KpKp be the moduli space of K3 surfaces together with a polarization of degree
2d over Q, and let ShKpKp be the Shimura variety of level KpK

p associated to the datum
(G,X) over Q. By Corollaries 4.4 and 4.15 of [15], there is a period map over Q

M2d,KpKp −→ ShKpKp .

More importantly, this period map is an open immersion. This is essentially the global
Torelli theorem for K3 surfaces. Let Mad

2d,KpKp be the adic space associated to M2d,KpKp×Cp.
As a corollary of the above theorem, we get the following interesting perfectoid space.

Corollary 1.2.2. There is a perfectoid space M2d,Kp over Cp such that

M2d,Kp ∼ lim←−
Kp

Mad
2d,KpKp .

By construction, we have an open immersion of perfectoid spaces over Cp
M2d,Kp ⊂ SKp ,

where SKp is the perfectoid Shimura variety with prime to p level Kp associated to the
datum (G,X). In particular, the restriction on M2d,Kp of the Hodge-Tate period map πHT

for SKp gives rise to a Hodge-Tate period map

πHT : M2d,Kp → FLG,

which can be understood by the Kuga-Satake construction for K3 surfaces, and the Hodge-
Tate period map of [3] (and [27]).

The same method can be used to prove that some other moduli spaces of polarized
higher dimensional Calabi-Yau varieties with infinite level at p are perfectoid: use perfectoid
Shimura varieties of abelian type and the global Torelli theorem for the period map as the
input. See the last paragraph of subsection 4.3.

In [27], Scholze has also proved stronger versions of the above theorem for some compact-
ification of Hodge type Shimura varieties (but less information for the Hodge-Tate period
map). In the Siegel case, it is the minimal compactification studied there. For general
Hodge type Shimura varieties, it is not known that whether the compactification used in
[27] is the minimal one. Here, we feel that the issue of compactification will require an
independent treatment, and we will leave it to a future work.
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1.3. Overview of the paper. We now briefly describe the content of this article. In section
2, we make some preparation on adic and perfectoid spaces. In particular, we prove the
existence of the étale quotient of a perfectoid space under a free action of a finite group. In
section 3, we first review the constructions of Deligne, Moonen and Kisin as the motivation
of our construction. Then after the preparation of the construction on the scheme level, we
prove our main theorems on perfectoid Shimura varieties of abelian type and the Hodge-
Tate period map on them. In section 4, we study an example, namely Shimura varieties of
orthogonal type. In a special case, these varieties are closely related to the moduli spaces
of polarized K3 surfaces. Then we prove that these moduli spaces with infinite level at p
are also perfectoid, by using our main theorem.

1.4. Acknowledgments. I would like to thank Laurent Fargues for his constant encour-
agement and support in mathematics. I would also like to thank Peter Scholze sincerely, for
his encouragement, suggestions, and his series works with deep insight on perfectoid spaces,
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pointing out the precise reference in [10]. I wish to express my gratitude to Benôıt Stroh for
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thank Liang Xiao for proposing some useful questions. I would like to thank Brian Conrad
for helpful comments which make some parts of this paper more clear. Finally, I should
thank the referee(s) for careful reading and valuable suggestions. This work was supported
by the SFB 1085 “Higher Invariants” of the DFG.

2. Some preliminaries on adic spaces

We make some preparation on adic spaces in this section. We will use the conventions of
Scholze on adic spaces in [29] section 4, see also [31] 2.1.

2.1. A brief review of adic spaces. Consider the category CAffop, opposite of the cat-
egory of complete Huber pairs (A,A+). We give it the structure of a site by declaring a
cover of (A,A+) to be a family of morphisms (A,A+) → (Ai, A

+
i ), such that (Ai, A

+
i ) =

(OX(Ui),O+
X(Ui)) for a covering of X = Spatop(A,A

+) by rational subsets Ui ⊂ X. Here

Spatop(A,A
+) is the topological space (adic spectrum) associated to (A,A+), i.e. the set of

equivalence classes of continuous valuations | − | on A which satisfy |A+| ≤ 1, equipped the
topology generated by rational subsets. Let Spa(A,A+) be the sheafification of the presheaf

(B,B+) 7→ Hom((A,A+), (B,B+))

on the site CAffop. An adic space is a sheaf on CAffop such that locally (cf. [31] Definition
2.1.5 for the precise meaning) it is of the form

Spa(A,A+).

The category of adic spaces is denoted by Adic. In particular, this category is larger than
that studied by Huber in [8], where Huber restricted to the adic spaces built from those
(A,A+) ∈ CAffop such that the pre-structure sheaves OSpatop(A,A+) are sheaves. The adic

spaces in loc. cit. are called honest adic spaces in [29] and [31]. The category of honest

adic spaces is denoted by Adich, which is a full subcategory of Adic.
Let k be a non-archimedean field, by which we mean a field that is complete with respect

to a nontrivial non-archimedean rank one valuation. We will work with the category

Adic/Spa(k, k◦)

of adic spaces over k, where k◦ is the integer ring of k. We denote this category as Adick
for simplicity. Correspondingly, we consider complete Huber pairs over (k, k◦), and denote

this category as k−CAffop. We have the full subcategory Adichk of honest adic spaces over
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k. The full subcategory of Adick (resp. Adichk) consisting of analytic adic (resp. analytic

honest adic) spaces over k will be denoted as Adicak (resp. Adicahk ). By [29] Proposition
4.5.2, any analytic adic space X over k is the colimit of a diagram of affinoid adic spaces
Spa(A,A+), with A Tate k-algebras. We remark that the adic spaces studied in [24] are

exactly objects in Adicahk .
Recall that an adic space X over k is called locally noetherian, if it is locally of the form

Spa(A,A+), where A is a strongly noetherian Tate k-algebra. These spaces form a full

subcategory of Adicahk , which contains the essential image of the fully faithful functor

{rigid analytic spaces over k} → Adicahk

associating a rigid analytic space its corresponding adic space over k, cf. [8], p.42.

When k is a perfectoid field, there is another full subcategory Perfk of Adicahk , the category
of perfectoid spaces over k, cf. [24] Theorem 6.3.

2.2. Inverse limits of adic spaces. We recall the following definition, which will be
crucial to our study of perfectoid Shimura varieties in the next section.

Definition 2.2.1 ([31] Definition 2.4.1). Let (Xi)i∈I be a filtered inverse system of adic
spaces with quasicompact and quasiseparated transition maps, let X be an adic space, and
let fi : X → Xi be a compatible family of morphisms. We write X ∼ lim←−iXi if the map of

underlying topological spaces |X| → lim←−i |Xi| is a homeomorphism, and if there is an open

cover of X by affinoid Spa(A,A+) ⊂ X, such that the map

lim−→
Spa(Ai,A

+
i )⊂Xi

Ai → A

has dense image, where the direct limit runs over all open affinoid

Spa(Ai, A
+
i ) ⊂ Xi

over which Spa(A,A+) ⊂ X → Xi factors.

Sometimes we will not mention the compatible family of morphisms fi : X → Xi explic-
itly: once we write X ∼ lim←−iXi, we mean that there exists such a family of morphisms,
which is usually clear from the context.

We have the following immediate lemma, which may be implicitly contained in [27] and
[31].

Lemma 2.2.2. In the setting of Definition 2.2.1, let Yi ⊂ Xi be a locally closed subspace
for each i and these Yi form a subsystem, i.e. (Yi)i∈I forms a filtered inverse system under
the induced transition maps such that Yj ' Yi×Xi Xj for any j ≥ i. Then there is a locally
closed subspace Y ⊂ X such that

Y ∼ lim←−
i

Yi.

Moreover, Y ⊂ X is an open (resp. a closed) subspace if the system Yi is an open (resp.
a closed) subsystem of Xi. In particular, if X is a perfectoid space over a perfectoid field
k and the system Yi ⊂ Xi is an open subsystem of adic spaces over k, then Y is also a
perfectoid space over k.

Proof. Indeed, we may assume that for any i, Yi ⊂ Xi is locally closed. Then for any j ≥ i,
we have Yj ' Yi×XiXj → Xj with the composition giving the inclusion. Set Y = Yi×XiX,
which does not depend on i. Then by Proposition 2.4.3 of [31], we have

Y ∼ lim←−
i

Yi.
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Since Yi ⊂ Xi is locally closed, the base change map Y = Yi ×Xi X → X is a locally closed
immersion. By the same argument, Y ⊂ X is an open (resp. a closed) subspace if the
system Yi is an open (resp. a closed) subsystem of Xi. �

Recall that a complete Huber pair (A,A+) ∈ k−CAffop with A a Tate k-algebra is called
stably uniform, if OX(U) is uniform, i.e. the subring of power-bounded elements OX(U)◦ is
bounded, for all rational subsets U ⊂ X = Spa(A,A+). If (A,A+) is stably uniform, then
it is sheafy, i.e. X = Spa(A,A+) is an honest adic space over k, cf. [2] Theorem 7. The
following lemma is the global version of [31] Proposition 2.4.2, which asserts the existence
of X in Definition 2.2.1 in some cases.

Lemma 2.2.3. Let k be a non-archimedean field, and (Xi)i∈I be a filtered inverse system
of adic spaces over k with finite transition maps. Suppose that for any affinoid subsystem

Spa(Ai, A
+
i ) ⊂ Xi, the $-adic completion (A,A+) = ̂lim−→i

(Ai, A
+
i ) is stably uniform, where

$ is a pseudo-uniformizer of k. Then there exists an adic space X over k, with a compatible
family of morphisms, such that X ∼ lim←−iXi.

Proof. By the assumption that (A,A+) = ̂lim−→i
(Ai, A

+
i ) is stably uniform, in the above

Lemma 2.2.2, if each Yi = Spa(Bi, B
+
i ) ⊂ Xi is a rational subspace, then Y = Spa(B,B+)

with (B,B+) = ̂lim−→i
(Bi, B

+
i ). Therefore, we can reduce to the affinoid case: Xi = Spa(Ai, A

+
i )

with (Ai, A
+
i ) ∈ k − CAffop. Since we are working over a base field k, all the transition

maps are adic. Let X = Spa(A,A+) with

(A,A+) = ̂lim−→
i

(Ai, A
+
i ),

where the completion is taken with respect to the $-adic topology. Then by [31] Proposition
2.4.2, X satisfies the requirement. �

Let the situation be as in the above lemma. Fix an i0 ∈ I. Suppose that all the adic
spaces Xi are locally noetherian, and for any i ≥ i0, the transition map Xi → Xi0 is étale.
Then the presentation X ′ := lim←−i≥i0 Xi defines an object in the pro-étale site Xi0,proét. The

adic space X constructed in Lemma 2.2.3 is denoted by X̂ ′ in [25] section 4.
How about the uniqueness of the space X in the setting of Definition 2.2.1? In general,

not much is known. However, if X is perfectoid, then [31] Proposition 2.4.5 says that X
is unique among perfectoid spaces satisfying the condition in Definition 2.2.1. In this case,
X is locally constructed as in the Lemma 2.2.3. More precisely, we have (see also [26]
Proposition 2.22)

Lemma 2.2.4. Let k be a perfectoid field with residue field of characteristic p, (Xi)i∈I
be a filtered inverse system of adic spaces over k, with finite transition maps, and X be
a perfectoid space over k such that X ∼ lim←−iXi. Fix an i0 ∈ I. Then there exists an

affinoid covering (Spa(Ai0 , A
+
i0

)) of Xi0, such that the pullbacks Spa(A,A+) of Spa(Ai0 , A
+
i0

)
under X → Xi0 form a perfectoid affinoid covering of X (i.e. A is a perfectoid k-algebra).
Moreover, for each Xi → Xi0 with i ≥ i0, let Spa(Ai, A

+
i ) be the pullback of the affinoid

Spa(Ai0 , A
+
i0

). Then

(A,A+) ' ̂lim−→
i

(Ai, A
+
i ),

where the completion is taken with respect to the $-adic topology (as before, $ is a pseudo-
uniformizer of k), and

Spa(A,A+) ∼ lim←−
i

Spa(Ai, A
+
i ).
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Proof. Take any affinoid covering (Spa(Ai0 , A
+
i0

)) of Xi0 , let Spa(Ai, A
+
i ) be the pullback of

the affinoid Spa(Ai0 , A
+
i0

), for each Xi → Xi0 with i ≥ i0. Set

(A,A+) ' ̂lim−→
i

(Ai, A
+
i ).

By Lemma 2.2.2, Spa(A,A+) ⊂ X is an open subspace, and Spa(A,A+) ∼ lim←−i Spa(Ai, A
+
i ).

By refining the affinoid covering (Spa(Ai0 , A
+
i0

)) of Xi0 if necessary, we get that A is a

perfectoid k-algebra. These perfectoid affinoid subspaces Spa(A,A+) form a covering of
X. �

We fix a perfectoid field k with residue field of characteristic p throughout the rest of
this section. Let (Xi)i∈I be a filtered inverse system of adic spaces over k, with finite
transition maps. If the conditions in Lemma 2.2.3 are satisfied, we get an adic space X over
k, such that X ∼ lim←−iXi. By Lemma 2.2.4 and [31] Proposition 2.4.5, this space is the only
candidate for being perfectoid.

2.3. Étale quotients for finite groups actions on perfectoid spaces. Let X ∈ Perfk
be a perfectoid space, equipped with a right action over k of a profinite group G. We say
that this action is free, if the natural map

X ×G→ X ×k X,

with the natural projection on the first factor and the group action on the second factor, is
functorially injective (i.e. a monomorphism). Here, X×G is the perfectoid space associated
to (in the sense of Definition 2.2.1) lim←−H X ×G/H, where H runs through the set of open

normal subgroups of G, and X×G/H is a finite disjoint union of copies of X. This is also the
fiber product over k of X and (the perfectoid space associated to) G, see Lemma 2.4.1 (and
Lemma 2.4.2). In the above setting, let R = X×G→ X×kX be the functorial equivalence
relation defined by the free action of G on X. We denote by X/G the sheafification of the
presheaf

Y 7→ X(Y )/R(Y )

on the category Perfk equipped with the pro-étale topology (cf. [29] 8.2). By definition,
X/G is then a diamond, cf. loc. cit. 8.2.8. We would like to know whether this diamond
is representable. Examples in [29] (Proposition 10.2.6) show that, contrary to the cases of
schemes ([6]) and rigid analytic spaces ([4]), one should put additional structures to ensure
that the quotients as adic (perfectoid) spaces exist, if we only require the group G to be
profinite. More precisely, if G is a profinite rather than finite group, then Proposition 10.2.6
of [29] says that there exists a finite universal homeomorphism f : Y → Y ′ of two different
locally noetherian adic spaces, such that Y and Y ′ have the same perfectoid profinite Galois
cover X with Galois group G, and the associated diamonds of Y and Y ′ are isomorphic via
f . In this case, the quotient of X by G as a diamond exists uniquely, but both Y and Y ′

can be natural candidates of quotients of X by G as adic spaces. Therefore, we assume
that G is a finite group, and this will be the only case that will be used later. Then it is
enough to consider the category Perfk equipped with the étale topology, cf. [24] section 7.
The following proposition is an analogue of [6] Théorème 4.1 of Exposé V and [4] Lemma
3.2.1.

Proposition 2.3.1. Let (A,A+) be an affinoid perfectoid k-algebra. Assume that X =
Spa(A,A+) is equipped with a free right action of a finite group G over k. Consider the
induced G-action on (A,A+). Set

B = AG, B+ = (A+)G,
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the G-invariant subalgebras of A and A+ respectively. Then the following statements hold
true.

(1) (B,B+) is a stably uniform affinoid Tate k-algebra. In particular, Y = Spa(B,B+)
is an analytic honest adic space over k.

(2) The étale sheaf associated to Y on the category Perfk is given by X/G with the above
notation. Moreover, the natural morphism X → Y is a finite étale Galois cover with
Galois group G.

(3) Y is a perfectoid space.

Proof. (1) Let A0 ⊂ A be a ring of definition. For any g ∈ G, A0g ⊂ A is also a ring of
definition. We want to first find a ring of definition stable under the G-action. Let A◦ ⊂ A
be the subring of powerbounded elements. Then A◦ is stable under the G-action on A.
Indeed, by [24] Definition 2.6 (i), there is a subring A0 ⊂ A such that aA0, a ∈ k× forms a
basis of open neighborhoods of 0. For any x ∈ A◦, by definition, there exists some a ∈ k×
such that {xn|n ≥ 0} ⊂ aA0. Let g ∈ G be any element. Then aA0g, a ∈ k× also forms a
basis of open neighborhoods of 0, and {(xg)n|n ≥ 0} ⊂ aA0g. Therefore {(xg)n|n ≥ 0} is
bounded, i.e. xg ∈ A◦. Since A is perfectoid, A◦ is bounded, therefore a ring of definition.
The fact that B = AG is a Tate k-algebra is now clear, since aA◦G, a ∈ k× forms a basis of
open neighborhoods of 0. By construction, we have B◦ = A◦G, which is bounded, and

B+ = B ∩A+ = (A+)G ⊂ B◦

is an open and integrally closed subring. Hence (B,B+) is an affinoid Tate k-algebra.
SinceA is perfectoid, therefore stably uniform. Let f1, . . . , fn, g ∈ B such that (f1, . . . , fn)B

is open in B. Let U1 ⊂ Y = Spa(B,B+) be the rational subset defined by these elements.
By viewing f1, . . . , fn, g as elements of A by the inclusion B ⊂ A, we get rational subset
U2 ⊂ X = Spa(A,A+). We have

OY (U1)◦ = B〈f1

g
, · · · , fn

g
〉◦ = (A〈f1

g
, · · · , fn

g
〉◦)G = (OX(U2)◦)G,

where B〈f1g , · · · ,
fn
g 〉 and A〈f1g , · · · ,

fn
g 〉 are as in the proof of Corollary 2.3.3 below. There-

fore B〈f1g , · · · ,
fn
g 〉
◦ is bounded, and (B,B+) is stably uniform.

(2) By assumption, X ×G → X ×k X is a monomorphism. We view G as the constant
group scheme over k, and let k[G] be the associated group algebra. Write

Z = X ×G = Spa(C,C+), W = X ×k X = Spa(D,D+),

where C = A ⊗k k[G], D = A ⊗k A. Then arguing in the same as [7] Proposition 5.3.8,
we get that the diagonal map δZ/W : Z → Z ×W Z is an isomorphism, which implies that
C ' C ⊗D C as complete Huber rings. This implies in turn that

Spec(A)×G→ Spec(A)×k Spec(A)

is a monomorphism by [7] Proposition 5.3.8. Therefore, by [6] Exposé V, Théorème 4.1,
A is integral over B = AG, and we get an étale quotient of the affine scheme Spec(A)
by the free right action of G, which is given by Spec(B). Moreover, the natural map
Spec(A) → Spec(B) is a finite étale Galois cover with Galois group G, and we have an
isomorphism

Spec(A)×G ' Spec(A)×Spec(B) Spec(A),

i.e. an isomorphism of rings

C = A⊗k k[G] ' A⊗B A.
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By loc. cit. A+ is integral over B+ = (A+)G. Therefore, the natural morphism X → Y is
a finite étale Galois cover with Galois group G. In particular, Y = X/G as étale sheaves on
Perfk.

(3) Recall [10] Proposition 3.6.22 (a) says that, if B → A is a morphism of uniform
Banach algebras such that A is perfectoid, and A is faithfully finite étale over B (i.e. the
map B → A is finite étale and faithfully flat), then A is also perfectoid (here we have
switched the notations A and B as opposed to those in loc. cit.). Now, Spa(A,A+) is by
assumption perfectoid, by statement (2) B → A is faithfully finite étale. Thus Spa(B,B+)
is also perfectoid. �

The following corollary is immediate.

Corollary 2.3.2. Let X ∈ Perfk be a perfectoid space, equipped with a free right action of a
finite group G. Assume that there is an affinoid perfectoid covering of X with each affinoid
space stable under the action of G. Then there is a perfectoid space Y over k, together with
a natural morphism X → Y which is a finite étale Galois cover with Galois group G, such
that as étale sheaves on the category Perfk, we have the equality Y = X/G.

The next corollary says that in the above situation, the étale quotient Y is also a “geo-
metric quotient”, as in the case of schemes.

Corollary 2.3.3.
Let the situation be as in the above corollary. The associated map of adic spaces π : X →
Y induces that

(1) |Y | = |X|/G as topological spaces,
(2) (OY ,O+

Y ) =
(
(π∗OX)G, (π∗O+

X)G
)
, where (π∗OX)G (resp. (π∗O+

X)G) is the G-

invariant subsheaf of (π∗OX) (resp. (π∗O+
X)).

Proof. Since we have the equality of étale shaves Y = X/G, the associated topological spaces
satisfy |Y | = |X/G| = |X|/G. The second statement can be easily verified by looking at
all rational subsets of Y . Indeed, we check the equality (OY ,O+

Y ) =
(
(π∗OX)G, (π∗O+

X)G
)

on rational subsets as follows. Let f1, . . . , fn, g ∈ B such that (f1, . . . , fn)B is open in
B. Let U1 ⊂ Y = Spa(B,B+) be the rational subset defined by these elements. By
viewing f1, . . . , fn, g as elements of A by the inclusion B ⊂ A, we get rational subset
U2 ⊂ X = Spa(A,A+). By construction, we have U2 = π−1(U1). Consider the complete
Huber pair

OY (U1) = B〈f1

g
, · · · , fn

g
〉, O+

Y (U1) = B〈f1

g
, · · · , fn

g
〉+,

where B〈f1g , · · · ,
fn
g 〉 is the completion of B[f1g , · · · ,

fn
g ], and B〈f1g , · · · ,

fn
g 〉

+ is the com-

pletion of the integral closure of B+[f1g , · · · ,
fn
g ] in B[f1g , · · · ,

fn
g ]. Similarly, we have the

complete Huber pair

OX(U2) = A〈f1

g
, · · · , fn

g
〉, O+

X(U2) = A〈f1

g
, · · · , fn

g
〉+.

We have

B〈f1

g
, · · · , fn

g
〉 = (A〈f1

g
, · · · , fn

g
〉)G, B〈f1

g
, · · · , fn

g
〉+ = (A〈f1

g
, · · · , fn

g
〉+)G.
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Moreover, the following commutative diagram is cocartesian:

(B,B+) //

��

(A,A+)

��

(B〈f1g , · · · ,
fn
g 〉, B〈

f1
g , · · · ,

fn
g 〉

+) // (A〈f1g , · · · ,
fn
g 〉, A〈

f1
g , · · · ,

fn
g 〉

+).

Therefore, we get (OY ,O+
Y ) =

(
(π∗OX)G, (π∗O+

X)G
)
. �

We return to the situation as in Definition 2.2.1. In this paper, we will always assume
that the adic spaces Xi in Definition 2.2.1 are locally noetherian over k. In fact, we will
only work with adic spaces associated to rigid analytic spaces over k, or even adic spaces
associated to schemes of locally of finite type over k. The following proposition will be used
crucially in the next section.

Proposition 2.3.4. Let X and (Xi)i∈I be as in Definition 2.2.1, with X ∈ Perfk perfectoid,

Xi ∈ Adicahk locally noetherian. Let (Yi)i∈I be another filtered inverse system of locally
noetherian adic spaces over k with finite transition maps. Assume that there is an adic
space Y over k such that Y ∼ lim←−i Yi. Suppose that for each i, there exisits a finite étale
morphism of locally noetherian adic spaces Xi → Yi over k, and these morphisms are
compatible with the transition maps of the two systems. Suppose further that there exists
an i0 ∈ I such that Xi0 → Yi0 is a surjection, and for any i ≥ i0, the morphism Xi → Yi is
the pullback of Xi0 → Yi0 under the transition map Yi → Yi0. In other words, the following
diagrams are cartesian

Xi
//

��

Xi0

��
Yi // Yi0

for all i ≥ i0. Then Y is perfectoid, and there exists a finite étale morphism X → Y , which
is the pullback of Xi → Yi for any i ≥ i0.

Proof. We may assume that Xi = Spa(Ai, A
+
i ), X = Spa(A,A+), Yi = Spa(Bi, B

+
i ) ,

Y = Spa(B,B+) are affinoid, with

(A,A+) = ̂lim−→
i

(Ai, A
+
i ), (B,B+) = ̂lim−→

i

(Bi, B
+
i )

and A a perfectoid k-algebra. By assumption, we get finite étale morphisms of affinoid
k-algebras

(Bi, B
+
i )→ (Ai, A

+
i ),

taking limit and $-adic completion ($ is a pseudo-uniformizer of k) we get a finite étale
morphism

(B,B+)→ (A,A+),

which is the pushforward

(Bi, B
+
i ) //

��

(Ai, A
+
i )

��
(B,B+) // (A,A+)

for any i ≥ i0. By assumption, Ai is a faithfully finite étale Bi-algebra (see the proof of
Proposition 2.5 (3)), hence A is a faithfully finite étale B-algebra. As A is perfectoid, by
[10] Proposition 3.6.22, B is perfectoid too. �
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In the next section, we will apply the above proposition in the case that Xi → Yi are
finite étale Galois covers with Galois groups Gi, such that the groups Gi are constant for i
large enough. Let G = Gi for i sufficiently large, then it acts freely on X. Let X, (Xi), (Yi)
be as in the above proposition, but without the assumption of the existence of Y .

Corollary 2.3.5. There exists an affinoid perfectoid covering of X with each affinoid space
stable under the action of G. In particular, the quotient X/G exists as a perfectoid space
Y by Corollary 2.3.2. Moreover, Y ∼ lim←−i Yi.

Proof. Let Spa(Bi, B
+
i ) ⊂ Yi be an affinoid space. Let Spa(Ai, A

+
i ) ⊂ Xi be the inverse im-

age of Spa(Bi, B
+
i ) under the finite étale Galois cover Xi → Yi. Set (A,A+) = ̂lim−→i

(Ai, A
+
i ),

then shrinking Spa(Bi, B
+
i ) if necessary, these Spa(A,A+) form an affinoid perfectoid cov-

ering of X with each affinoid space stable under the action of G. Let Y = X/G be the
perfectoid space constructed by Corollary 2.3.2. As G = Gi for i sufficiently large, it is easy
to see Y ∼ lim←−i Yi. �

2.4. Some useful lemmas. The following lemma will be used.

Lemma 2.4.1. Let X be a profinite set, and k be a perfectoid field as above. Then there
exists a perfectoid space Xad over k, such that the underlying topological space |Xad| is
homeomorphic to X.

Proof. See [29] Remark 8.2.2. It is given by Xad = Spa(R,R+) with R (resp. R+) the ring
of continuous functions from X to k (resp. k◦). �

If we write X = lim←−iXi with each Xi finite, then the above perfectoid space Xad is

such that Xad ∼ lim←−iX
ad
i , where Xad

i is the finite perfectoid space over k attached to Xi.
Sometimes by abuse of notation, we denote also by X the perfectoid space associated to
the profinite set X.

The next lemma will not be used explicitly in the following2, but it is useful in the setting
of products of Shimura varieties.

Lemma 2.4.2. Let (Xi)i∈I and (Yi)i∈I be two filtered inverse systems of adic spaces over k
as in Definition 2.2.1. Let X,Y be adic spaces over k such that X ∼ lim←−iXi, Y ∼ lim←−i Yi.
Then we have

X ×k Y ∼ lim←−
i

Xi ×k Yi.

Proof. One checks directly by definition. �

3. Perfectoid Shimura varieties of abelian type

To motivate our construction, we begin with some review of the theory of geometric
connected components of Shimura varieties. For a connected reductive group G over Q, we
denote by Gder and Gad the associated derived subgroup and the adjoint group respectively.
The identity element of a group will be denoted by e usually.

3.1. Geometric connected components of Shimura varieties.

2See Remark 3.3.7.
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3.1.1. The rational case. As in [5], an important technique for proving results about Shimura
varieties is the reduction to a problem about connected Shimura varieties. We first review
some constructions in [5].

Let (G,X) be a Shimura datum. We consider the associated connected Shimura varieties.
So fix a connected component X+ of X, and consider the triplet (Gad, Gder, X+). For any
open compact subgroup K ⊂ G(Af ), let ShK(G,X)C be the associated Shimura variety
over the complex field C. Consider the inverse limit

Sh(G,X)C = lim←−
K

ShK(G,X)C,

which is a scheme (not of finite type) over C. Let Sh0(G,X)C be the connected component
of Sh(G,X)C containing the image of X+ × {e} ⊂ X × G(Af ), which is also given by the
projective limit

Sh0(G,X)C = lim←−
K

Sh0
K(G,X)C,

with Sh0
K(G,X)C defined as the connected component of ShK(G,X)C containing the image

of X+ × {e} ⊂ X × G(Af ), for each K ⊂ G(Af ). The scheme Sh0(G,X)C depends only

on (Gad, Gder, X+). More precisely, let Gad(R)+ be the connected component of Gad(R)
containing the unit for the real topology, and let Gad(Q)+ = Gad(Q) ∩ Gad(R)+. We
define τ(Gder) to be the linear topology on Gad(Q) for which the images in Gad(Q) of
the congruence subgroups in Gder(Q) form a fundamental system of neighborhood of the
identity. Then the connected Shimura variety Sh0(G,X)C is given by the projective limit
(cf. [5] 2.1.8)

Sh0(G,X)C = lim←−
Γ

Γ \X+,

where Γ runs through the arithmetic subgroups of Gad(Q)+ which are open in τ(Gder).
Here and in the following, we use the convention as in [5] 2.1.2 and [21] 1.5: we view Γ\X+

as the algebraic varieties over C by using the complex GAGA. The system
(

Γ \ X+
)

Γ
is

equipped with an action on the right of Gad(Q)+ by

Γ \X+ → γ−1Γγ \X+, [x] 7→ [γ−1x]

for any γ ∈ Gad(Q)+. Therefore, the scheme Sh0(G,X)C is equipped with a continuous
action on the right (see the paragraph above Proposition 3.3.2) of the completion Gad(Q)+∧

of Gad(Q)+ for the topology τ(Gder). We will denote this completion also as

Gad(Q)+∧(rel.τ(Gder)
)

to make precise the topology. Since ∩Γ = 1, where Γ runs through arithmetic sub-
groups of Gad(Q)+ open in the topology τ(Gder), we can identify Gad(Q)+ as a subgroup
of Gad(Q)+∧. Sometimes we also denote the connected Shimura variety Sh0(G,X)C by
Sh0(Gad, Gder, X+)C. In fact, for any triplet (G,G′, X+) consisting of an adjoint group G,
a cover G′ of G, and a G(R)+-conjugacy class of morphisms h : S → GR which satisfy the
axioms as in the definition of a Shimura datum (cf. [5] 2.1.1.1-2.1.1.3), we can define the
scheme Sh0(G,G′, X+)C in a similar way as above, cf. [17] II.1 for example.

Let the notations be as above. We can recover the scheme Sh(G,X)C from the connected
scheme Sh0(G,X)C. First, we recall the construction of [5] 2.0.1, see also [11] 3.3.1. Let G
be a group equipped with an action of a group H, and Γ ⊂ G a H-stable subgroup. Suppose
given an H-equivariant map ϕ : Γ → H, where H acts on itself by inner automorphisms,
and suppose that for γ ∈ Γ, ϕ(γ) acts on G as inner conjugation by γ. Then the elements
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of the form (γ, ϕ(γ)−1) form a normal subgroup of the semi-product GoH. We denote

G ∗Γ H
the quotient of GoH by this normal subgroup. Now we return to the previous notations.
Let Z ⊂ G be the center of the reductive group, and we denote by Z(Q) the closure of Z(Q)
in G(Af ). Let G(R)+ be the preimage of Gad(R)+ under the map G(R) → Gad(R). Set

G(Q)+ = G(Q) ∩ G(R)+, G
der(Q)+ = Gder(Q) ∩ G(Q)+. We get natural maps G(Q)+ →

Gad(Q)+, Gder(Q)+ → Gad(Q)+. Following Kisin, we denote

A(G) = G(Af )/Z(Q) ∗G(Q)+/Z(Q) G
ad(Q)+.

By [5] 2.1.13, this group acts on the right on Sh(G,X)C. Let G(Q)+ be the closure of
G(Q)+ in G(Af ) and set

A(G)0 = G(Q)+/Z(Q) ∗G(Q)+/Z(Q) G
ad(Q)+.

Then A(G)0 depends only on Gder. In fact, we have the equalities (cf. [5] 2.1.15.1, 2.1.6.2)

A(G)0 = Gad(Q)+∧(rel.τ(Gder)
)

= Gder(Q)+ ∗Gder(Q)+ G
ad(Q)+

= ρ
(
Gsc(Af )

)
∗Γ Gad(Q)+,

where ρ : Gsc → Gder is the simply connected cover, and

Γ = ρ
(
Gsc(Af )

)
∩Gder(Q) ⊂ Gder(Q)+.

The group A(G) acts transitively on the set π0(Sh(G,X)C) of connected components of
Sh(G,X)C, and the stabilizer of the component Sh0(G,X)C is given by A(G)0. The action
of A(G)0 on Sh0(G,X)C, induced by that of A(G) on Sh(G,X)C, coincides with the right
action described in the above paragraph. In particular, the profinite set π0(Sh(G,X)C) is
a principal homogenous space under the abelian group

A(G)/A(G)0 = G(Af )/G(Q)+,

cf. [5] 2.1.16. There is an A(G)-equivariant map

Sh(G,X)C → G(Af )/G(Q)+,

and the scheme Sh0(G,X)C is isomorphic to the fiber at e of this map. On the other hand,
the scheme Sh(G,X)C can be recovered by Sh0(G,X)C by some induction from A(G)0 to
A(G) in the following sense:

Proposition 3.1.1. We have the following identity

Sh(G,X)C = [A(G)× Sh0(G,X)C]/A(G)0,

where A(G)0 acts on the scheme A(G)× Sh0(G,X)C by (γ′, s)γ = (γ−1γ′, sγ).

Proof. See [5] Lemme 2.7.3 (cf. Proposition 3.3.2 below) and the paragraph under it. �

For later use, we need to consider the following situation. Let (G,G′, X+) be a triplet as
before, and let G′′ be another cover of G which is a quotient of G′. Consider the group

∆ = Ker
(
G(Q)+∧(rel.τ(G′)

)
−→ G(Q)+∧(rel.τ(G′′)

))
.

Then it acts on Sh0(G,G′, X+). This action comes from group actions on the finite levels
as follows. Let K ⊂ G′(Af ) be an open compact subgroup. Write the covering maps by
φ1 : G′ → G,φ2 : G′′ → G, π : G′ → G′′ with φ1 = φ2 ◦ π. Set

Γ1 = φ1

(
K ∩G′(Q)+

)
, Γ2 = φ2

(
π(K) ∩G′′(Q)+

)
.
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Then Γ1 ⊂ Γ2, since we have

π
(
K ∩G′(Q)+

)
⊂ π(K) ∩G′′(Q)+.

Set

∆(K) = Γ2/Γ1,

which is finite. The natural map

Γ1 \X+ → Γ2 \X+

is a finite Galois cover with Galois group ∆(K). As K ⊂ G′(Af ) varies, these groups Γ2

(resp. Γ1) form a fundamental system of neighborhood of the identity for the topology
τ(G′′) (resp. τ(G′)). Moreover, these finite Galois covers Γ1 \ X+ → Γ2 \ X+ form an
inverse system with compatible Galois groups.

Proposition 3.1.2. (1) We have ∆ ' lim←−K ∆(K).

(2) ∆ acts freely on Sh0(G,G′, X+)C and we have

Sh0(G,G′′, X+)C = Sh0(G,G′, X+)C/∆.

Proof. (1) Directly by the above construction.
(2) Since Γ1 \X+ → Γ2 \X+ is a ∆(K)-torsor, taking the limit over K, we see that

Sh0(G,G′, X+)C = lim←−
K

Γ1 \X+ → Sh0(G,G′′, X+)C = lim←−
K

Γ2 \X+

is a lim←−K ∆(K)-torsor. By (1), ∆ ' lim←−K ∆(K). In particular, the assertions in (2) hold. �

Remark 3.1.3. The equality Sh0(G,G′′, X+)C = Sh0(G,G′, X+)C/∆ also follows from [5]
2.7.11 (b).

Remark 3.1.4. (1) The arithmetic subgroups of the form Im
(
K ∩G′(Q)+ → G(Q)+

)
for K ⊂ G′(Af ) open compact defines a cofinal system in the family of all arithmetic
subgroups in G(Q)+ which are open in the topology τ(G′).

(2) If (G,X) is a Shimura datum, for any open compact subgroup K ⊂ G(Af ), we have

the Shimura variety ShK(G,X)C. Consider the connected component Sh0
K(G,X)C.

It is of the form Γ \X+, where

Γ = Im
(
K ∩G(Q)+ → Gad(Q)+

)
,

which is in general larger than

Γ′ = Im
(
K ∩Gder(Q)+ → Gad(Q)+

)
,

cf. [20] Remark 5.23. However, when studying the connected Shimura variety
Sh0(G,X)C = lim←−K Sh0

K(G,X)C = lim←−Γ
Γ \X+, we can work with the cofinal fam-

ily
(

Γ′ \ X+
)

Γ′
. This family will be more convenient in some situation, e.g. to

understand the action of ∆ on finite levels.

3.1.2. p-integral case. In [21] and [11] Moonen and Kisin have adapted the construction in
3.1.1 to the setting of integral canonical models of Shimura varieties. Let us briefly review
their construction in the following. Before going on, let us first make two remarks. Firstly,
that the “p-integral case” in the title of this subsection refers only to the level structure, in
the sense that we will only work with the Shimura varieties over C or Cp, in any case only
with the generic fibers. Secondly, we will appeal to the construction in this subsection for
a different prime ` 6= p and it will allow us to exhibit a finite group ∆ in Proposition 3.2.6,
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which we can then quotient by as in section 2. Thus from this point of view, the prime p
below will be switched to ` later.

Fix a prime p. Assume that the reductive group G is unramified at p in the rest of this
subsection. Let GZ(p)

be a reductive group over Z(p) with generic fiber G. We write G(Z(p))

and G(Zp) for GZ(p)
(Z(p)) and GZ(p)

(Zp) respectively. Consider the following scheme

ShG(Zp)(G,X)C = lim←−
Kp

ShG(Zp)Kp(G,X)C,

where Kp runs through the open compact subgroups of G(Apf ). Similarly, consider the

connected component Sh0
G(Zp)(G,X)C of ShG(Zp)(G,X)C containing the image ofX+×{e} ⊂

X ×G(Af ), which is given by the projective limit

Sh0
G(Zp)(G,X)C = lim←−

Kp

Sh0
G(Zp)Kp(G,X)C,

where for anyKp, the scheme Sh0
G(Zp)Kp(G,X)C is the connected component of ShG(Zp)Kp(G,X)C

containing the image of X+ × {e} ⊂ X × G(Af ). By [21] section 3 and [11] 3.3, we can
adapt Deligne’s construction above to this setting. Namely, we have

Sh0
G(Zp)(G,X)C = lim←−

Γ

Γ \X+,

where

Γ = Im
(

[Gder(Q)+ ∩G(Zp)Kp]→ Gad(Q)+
)

for some open compact subgroup Kp ⊂ G(Apf ). Consider the group Gad(Z(p)). Let τ(GderZ(p)
)

be the linear topology on Gad(Z(p)) having as a fundamental system of neighborhoods of

the identity the images of the {p,∞}-congruence subgroups Gder(Z(p)) ∩Kp, where Kp is

an open compact subgroup of G(Apf ). Then in the above projective limit

Sh0
G(Zp)(G,X)C = lim←−

Γ

Γ \X+,

Γ runs through the {p,∞}-arithmetic subgroups ofGad(Z(p)) which are open in τ(GderZ(p)
). On

Sh0
G(Zp)(G,X)C we have a continuous action of Gad(Z(p))

+∧, the completion of Gad(Z(p))
+

relative to τ(GderZ(p)
). If we need to specify the topology, we will denote this group by

Gad(Z(p))
+∧(rel.τ(GderZ(p)

)
)
.

Let ZZ(p)
be the center of GZ(p)

. Write G(Z(p))+ = G(Z(p)) ∩G(Q)+ and let Z(Z(p)) be

the closure of Z(Z(p)) in Z(Apf ) and G(Z(p))+
be the closure of G(Z(p))+ in G(Apf ). Set

A(GZ(p)
) = G(Apf )/Z(Z(p)) ∗G(Z(p))+/Z(Z(p)) G

ad(Z(p))
+

and
A(GZ(p)

)0 = G(Z(p))+
/Z(Z(p)) ∗G(Z(p))+/Z(Z(p)) G

ad(Z(p))
+.

The latter depends only on GderZ(p)
, and it is just the completion Gad(Z(p))

+∧(rel.τ(GderZ(p)
)
)
.

We can recover the scheme ShG(Zp)(G,X)C by Sh0
G(Zp)(G,X)C by induction from A(GZ(p)

)0

to A(GZ(p)
) (cf. [11] Proposition 3.3.10)

ShG(Zp)(G,X)C = [A(GZ(p)
)× Sh0

G(Zp)(G,X)C]/A(GZ(p)
)0.

By [11] Lemma 3.3.3, we have

A(GZ(p)
)/A(GZ(p)

)0 = A(G)0 \ A(G)/G(Zp) = G(Q)+ \G(Af )/G(Zp).
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As before, there is an A(GZ(p)
)-equivariant map

ShG(Zp)(G,X)C → A(GZ(p)
)/A(GZ(p)

)0,

and the scheme Sh0
G(Zp)(G,X)C is isomorphic to the fiber at e of this map.

Clearly, for any triplet (G,G′, X+) consisting of an adjoint group G over Z(p), a cover G′
of G, and a G(R)+-conjugacy class (G := GQ) of morphisms h : S → GR which satisfy the
axioms as in the definition of a Shimura datum, we can define the scheme Sh0(G,G′, X+)C
in the same way. Let (G,G′, X+) be such a triplet, and let G′ → G′′ be a central isogeny for
another cover G′′ of G. Consider the group

∆ = Ker
(
G(Z(p))

+∧(rel.τ(G′)
)
−→ G(Z(p))

+∧(rel.τ(G′′)
))
,

which is a finite group by [11] 3.3.9 or [21] 3.21.1. This group ∆ acts freely on Sh0(G,G′, X+)C
and we have (cf. [21] 3.21.1)

Sh0(G,G′′, X+)C = Sh0(G,G′, X+)C/∆.

This quotient can be understood on finite levels as in the paragraph above Proposition 3.1.2.

3.2. The algebraic construction. Let us first review the definition of a Shimura datum
of abelian type.

Definition 3.2.1. (1) A Shimura datum (G,X) is called of Hodge type, if there exists
an embedding into a Siegel Shimura datum (G,X) ↪→ (GSp2g, S

±).
(2) A Shimura datum (G,X) is called of abelian type, if there is a Shimura datum

(G1, X1) of Hodge type, together with a central isogeny Gder1 → Gder which in-

duces an isomorphism between the associated adjoint Shimura data (Gad1 , X
ad
1 )

∼→
(Gad, Xad).

If (G,X) is a Shimura datum of abelian type, the associated Shimura varieties ShK(G,X)
are called Shimura varieties of abelian type. Note that in (2) of the above definition, we
have an isomorphism of Hermitian symmetric domains X+ ' X+

1 . The simple factors in
Gad for Shimura data of abelian type are classified in [5] 2.3.8. It includes simple groups of
types A, B, C, and most parts of type D, cf. loc. cit. for more details. Among all Shimura
varieties, those of abelian type form an important and in fact the main class. These varieties
were studied in many places, for example see [5, 17, 11].

Remark 3.2.2. If (G,X) is a Shimura datum of abelian type, by Lemma 3.4.13 of [11], we

can find a choice of (G]1, X
]
1) satisfying the above definition, which has the maximal derived

subgroup, among all of such Hodge type datum (G1, X1), in the sense that the central isogeny

G]der1 → Gder factors through Gder1 → Gder, and makes G]der1 into a cover of Gder1 .

The class of abelian type Shimura varieties is strictly larger than the class of Hodge type
Shimura varieties. Here are some immediate examples of abelian type Shimura varieties
which are not of Hodge type. We will give some further examples in the next section.

Example 3.2.3. Let F be a totally real field and assume that F 6= Q. Let D be a quaternion
algebra over F . For each open compact subgroup K ⊂ D×(AF,f ), we have the associated
quaternionic Shimura variety ShK of level K, which is of abelian type by Degline’s classifi-
cation. These varieties ShK are of PEL type if and only if one of the following two cases
holds:

• D 'M2(F ) is split, i.e. the Hilbert modular case;
• D is a totally indefinite quaternion division algebra, i.e. for all v|∞, Dv 'M2(R),

and the associated Shimura varieties are compact.
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We claim that if the quaternionic Shimura varieties ShK are not of PEL type (e.g. the case
of Shimura curves), then they are neither of Hodge type. Indeed, for these ShK excluded
from the above two cases, the weight morphisms w are not defined over Q: for any Shimura
variety ShK associated to D, the weight morphism w is defined over the subfield of Q fixed by
the automorphisms of Q stabilizing the set of archimedean places Inc = {v|∞ |Dv 'M2(R)}.
This field of definition equals Q if and only Inc = {v|∞} = Hom(F,R), see [20] Example
5.24.

Fix a prime p from now on. In this subsection, we continue to study geometric connected
components of Shimura varieties, but with the level Kp outside p fixed. Let (G,X) be a
Shimura datum. Consider the following schemes

ShKp(G,X)C = lim←−
Kp

ShKpKp(G,X)C

and its connected component

Sh0
Kp(G,X)C = lim←−

Kp

Sh0
KpKp(G,X)C,

where in both limit Kp runs through open compact subgroups of G(Qp). The scheme

Sh0
Kp(G,X)C can be described in a similar way to those in the last subsection. More

precisely, we have
Sh0

Kp(G,X)C = lim←−
Γ

Γ \X+,

where Γ runs through the arithmetic subgroups of Gad(Q)+ in the form of

Im
(

[Gder(Q)+ ∩KpK
p]→ Gad(Q)+

)
,

for some open compact subgroup Kp ⊂ G(Qp), cf. Remark 3.1.4 (2). Consider the group

Γ0 = Im
(

[Gder(Q)+ ∩Kp]→ Gad(Q)+
)
.

This is a (p,∞)-arithmetic subgroup of Gad(Q)+. It acts on the system of varieties(
Sh0

KpKp(G,X)C

)
Kp

=
(

Γ \X+
)

Γ
,

where Γ = Im
(

[Gder(Q)+ ∩ KpK
p] → Gad(Q)+

)
for some open compact subgroup Kp ⊂

G(Qp). There is a linear topology τ(Gder) on Γ0, for which the above subgroups Γ of Γ0

form a fundamental system of neighborhood of the identity. Let Γ∧0 be the completion of
Γ0 with respective to this topology. As before, when we need to specify the topology, we
will denote it by

Γ∧0
(
rel.τ(Gder)

)
.

Then Γ∧0 (rel.τ(Gder)) acts continuously on the scheme Sh0
Kp(G,X)C. On the other hand,

the group G(Qp) acts on the scheme ShKp(G,X)C by p-adic Hecke correspondences. Let

G0 be the subgroup of G(Qp) which stabilizes the subscheme Sh0
Kp(G,X)C ⊂ ShKp(G,X)C.

Set
A(Kp) = G(Qp) ∗Kp∩Gder(Q)+ Γ0

and
A(Kp)0 = G0 ∗G0∩Kp∩Gder(Q)+ Γ0.

We have the following lemma.

Lemma 3.2.4. We have A(Kp)0 = Γ∧0
(
rel.τ(Gder)

)
. In particular, A(Kp)0 depends only

on Gder and not on G.
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Proof. See [5] 2.1.15.1. �

There is an A(Kp)-equivariant map

ShKp(G,X)C → A(Kp)/A(Kp)0 = G(Qp)/G0,

and Sh0
Kp(G,X)C is isomorphic to the fiber at e of this map. Conversely, we can construct

ShKp(G,X)C from Sh0
Kp(G,X)C by an induction.

Lemma 3.2.5. There is an isomorphism of schemes with continuous G(Qp)-action

ShKp(G,X)C
∼−→ [A(Kp)× Sh0

Kp(G,X)C]/A(Kp)0.

Proof. This is a special case of [5] Lemme 2.7.3 (cf. Proposition 3.3.2 below), see also
Proposition 3.1.1. �

Assume that we have two Shimura data (G1, X1) and (G2, X2), such that there is a central

isogeny Gder1 → Gder2 which induces an isomorphism (Gad1 , X
ad
1 )

∼→ (Gad2 , X
ad
2 ). We will not

assume that (G2, X2) is of abelian type, unless clearly stated (in the next subsection, after
Remark 3.3.7). We fix an open compact subgroup Kp

2 ⊂ G2(Apf ), then we can and we do fix

an open compact subgroup Kp
1 ⊂ G1(Apf ) such that Kp

1 ∩Gder1 (Apf ) maps to Kp
2 ∩Gder2 (Apf )

under the above isogeny. Set

∆ = lim←−
K1p

Im
(

[Gder2 (Q)+ ∩ π(Kder
1p )Kp

2 ]→ Gad2 (Q)+
)

Im
(

[Gder1 (Q)+ ∩K1pK
p
1 ]→ Gad1 (Q)+

) ,

where π : Gder1 → Gder2 is the central isogeny, K1p runs through open compact subgroups of

G1(Qp), and Kder
1p = K1p ∩Gder1 (Qp). By definition, the group ∆ depends on the choices of

Kp
1 and Kp

2 . It acts on Sh0
Kp

1
(G1, X1)C, and this action comes from the Hecke action, see

the last paragraph of this subsection. We have the following proposition.

Proposition 3.2.6. ∆ is a finite group, and it acts freely on Sh0
Kp

1
(G1, X1)C. Moreover,

there is an isomorphism of schemes with continuous A(Kp
2 )0-action

Sh0
Kp

2
(G2, X2)C

∼−→ Sh0
Kp

1
(G1, X1)C/∆.

Proof. We need only to prove that ∆ is a finite group. Take a prime ` 6= p such that Kp
1

(and Kp) is hyperspecial at `. Let ∆̃ be the finite group as in 3.1.2 for p = `. We can write

∆̃ as an inverse limit, similar to the descriptions in 3.1.1 and the definition of ∆ above.

Then we see that there is a surjection ∆̃ → ∆. The remaining statements can be deduced
in the same way as Proposition 3.1.2. �

Remark 3.2.7. Given Kp
2 , if we can choose some Kp

1 such that

Im
(

[Gder2 (Q)+ ∩Kp
2 ]→ Gad2 (Q)+

)
= Im

(
[Gder1 (Q)+ ∩Kp

1 ]→ Gad1 (Q)+
)

=: Γ0,

then as in 3.1.1 and 3.1.2,

∆ = Ker
(
A(Kp

1 )0 → A(Kp
2 )0
)

= Ker
(

Γ∧0
(
rel.τ(Gder1 )

)
−→ Γ∧0

(
rel.τ(Gder2 )

))
.

The above constructions are true over any algebraically closed field which contains the
reflex fields of the involved Shimura datum. Here we work over algebraically closed field to
make use of geometric connected components of our Shimura varieties. One can of course
work over large enough (so that the geometric connected components of Shimura varieties
are defined) perfectoid field as the base field. Fix an algebraic closure Qp of Qp, and let Cp be
its p-adic completion. From now on, we work over the p-adic field Cp. Fix an isomorphism
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of fields C ' Qp. We can base change schemes over C to Cp via the composition of this

morphism and Qp ↪→ Cp. In particular, we consider the associated Shimura varieties over
Cp. Then with the above notations, we have

Sh0
Kp

2
(G2, X2)Cp

∼−→ Sh0
Kp

1
(G1, X1)Cp/∆

and

ShKp
2
(G2, X2)Cp

∼−→ [A(Kp
2 )× Sh0

Kp
2
(G2, X2)Cp ]/A(Kp

2 )0.

We would like to briefly recall that how the above quotient is at a finite level, see the
paragraph above Proposition 3.1.2 and Remark 3.1.4. For simplicity we work over C. For
an open compact subgroup K1p ⊂ G1(Qp), we have a map of connected Shimura varieties

Γ1 \X+ → Γ2 \X+,

which is a finite étale Galois cover with Galois group denoted by

∆(K1p) = Γ2/Γ1,

where X+ = X+
1 = X+

2 , and

Γ1 = φ1

(
K1pK

p
1 ∩G

der
1 (Q)+

)
, Γ2 = φ2

(
π
(
Kder

1p )Kp
2 ∩G

der
2 (Q)+

)
.

Here as in the last subsection, φ1 : Gder1 → Gad1 , φ2 : Gder2 → Gad2 , π : Gder1 → Gder2 are
the covering maps, with φ1 = φ2 ◦ π. For K ′1p ⊂ K1p, we have a commutative diagram of
morphisms between connected Shimura varieties

Γ′1 \X+

��

// Γ1 \X+

��
Γ′2 \X+ // Γ2 \X+,

which is compatible with the map of groups ∆(K ′1p) → ∆(K1p). Taking inverse limit over

all the open compact subgroups K1p ⊂ G1(Qp), we get back the finite étale Galois cover

Sh0
Kp

1
(G1, X1)→ Sh0

Kp
2
(G2, X2)

with Galois group

∆ = lim←−
K1p

∆(K1p).

By Proposition 3.2.6, ∆ is finite. Hence, there exists some K ′1p such that for all K1p ⊂ K ′1p,
we have ∆ = ∆(K1p) = ∆(K ′1p).

3.3. The perfectoid construction. In this subsection, we will always work on schemes
or adic spaces over the perfectoid field Cp, so we omit the subscript of the base field Cp
from now on. Since we are working with the generic fiber, as in the last subsection, we
will not assume that the reductive group G of a Shimura datum (G,X) is unramified at p.
Sometimes it is convenient to fix a maximal open compact subgroup G(Zp) of G(Qp), which
means that we fix some suitable integral model GZp of G over Zp and take G(Zp) = GZp(Zp).

Let (G,X) be a Shimura datum. For Kp ⊂ G(Apf ) fixed, the scheme

ShKp(G,X) = lim←−
Kp

ShKpKp(G,X)

forms a pro-finite étale cover of the Shimura variety ShG(Zp)Kp(G,X) over Cp. In fact,

ShKp(G,X) −→ ShG(Zp)Kp(G,X)
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is a G(Zp)-torsor for the pro-étale topology on ShG(Zp)Kp(G,X). If we use the language of
pro-étale topology as developed in [25],

ShKp(G,X) = lim←−
Kp

ShKpKp(G,X)

is an object in the pro-étale site ShG(Zp)Kp(G,X)proét. In fact, it is in the pro-finite étale
site ShG(Zp)Kp(G,X)profét. We use the fully faithful embedding of categories

ShG(Zp)Kp(G,X)profét ⊂ ShG(Zp)Kp(G,X)proét

to view it as an object of the pro-étale site.
For any open compact subgroup Kp ⊂ G(Qp), let ShKpKp(G,X)ad be the associated adic

space of ShKpKp(G,X) over Cp. We have the following theorem of Scholze.

Theorem 3.3.1 ([27],Theorem IV. 1.1). If (G,X) is a Hodge type Shimura datum, then
there is a perfectoid space SKp over Cp such that

SKp ∼ lim←−
Kp

ShKpKp(G,X)ad,

where ∼ is as in Definition 2.2.1.

We keep to assume that (G,X) is of Hodge type. Scholze’s theorem says that, the object

ShKp ∈ ShG(Zp)Kp(G,X)adproét

with the pro-étale presentation ShKp = lim←−Kp
ShKpKp(G,X)ad is perfectoid, and SKp is the

associated perfectoid space, cf. [25] Definition 4.3 (ii). Since there is a morphism of ringed
spaces

ShKpKp(G,X)ad → ShKpKp(G,X)

by construction, passing to limits over Kp, we get a map on the underlying topological
spaces

|SKp | = lim←−
Kp

|ShKpKp(G,X)ad| → |ShKp(G,X)| = lim←−
Kp

|ShKpKp(G,X)|.

We have a natural map of sites

ShG(Zp)Kp(G,X)adproét −→ ShG(Zp)Kp(G,X)proét,

given by the analytification functor. Clearly, ShKp is sent to ShKp(G,X) = lim←−Kp
ShKpKp(G,X)

under the map

ShG(Zp)Kp(G,X)adproét −→ ShG(Zp)Kp(G,X)proét.

Before proceeding further, we would like to discuss the perfectoid version of [5] 2.7.1-
2.7.3. Let us recall the setting, for which we have already seen several examples given
by Shimura varieties in the previous subsections. Let Γ be a locally profinite group, and
consider a projective system (SK)K of schemes, indexed by the open compact subgroups K
of Γ. Suppose that for each g ∈ Γ, there is a given isomorphism of schemes

ρK(g) : SK → SgKg−1 ,

such that

• ρK(k) = id, ∀ k ∈ K,
• if L C K is a normal subgroup, then those ρL(k) define a right action of K/L on
SL, and we have

SL/(K/L) ' SK .
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Let S = lim←−K SK . We call it a scheme equipped with a continuous right action of Γ. Let π
be a profinite set, equipped with a continuous right action of Γ. We assume that this action
is transitive, and the orbits of an open compact subgroup are open. Fix a point e ∈ π.
Let ∆ be the stabilizer of e in Γ. Then we have a homeomorphism Γ/∆ → π induced by
the group action. Let S be a scheme equipped with a continuous right action of Γ, and a
continuous Γ-equivariant map S → π. Let Se the fiber of S over e. It is equipped with a
continuous right action of ∆: for K ⊂ Γ open compact, Se/(K ∩∆) is the fiber over eK of
S/K → π/K, and

Se = lim←−
K

Se/(K ∩∆).

Proposition 3.3.2 ([5] Lemme 2.7.3). S 7→ Se is an equivalence of the category of schemes
equipped with a continuous right action of Γ and a continuous equivariant map to π, and
the category of schemes equipped with a continuous right action of ∆.

For S and Se as in the above proposition, we have

S = [Γ× Se]/∆,
where ∆ acts on Γ× Se by (γ′, s)γ = (γ−1γ′, sγ).

Let k be a perfectoid field, and S be a scheme equipped with a continuous right action
of Γ over k, such that for any K, the scheme SK is locally of finite type over k. Let π, e, Se
and ∆ be as above. Let SadK , (Se/(K ∩∆))ad be the adic spaces over k associated to SK and
Se/(K ∩∆) respectively.

Proposition 3.3.3. Assume that there exists a perfectoid space S over k such that S ∼
lim←−K S

ad
K .

(1) There is an induced action of Γ on S.
(2) There is a Γ-equivariant map S → π. If we view π as a perfectoid space over k (cf.

Lemma 2.4.1). Then the map S → π is a morphism of perfectoid spaces.
(3) Let Se be the fiber over e of this morphism. Then Se is equipped with a right action

of ∆, and we have

Se ∼ lim←−
K

(Se/(K ∩∆))ad.

In particular, Se is perfectoid. Moreover, we have an isomorphism of perfectoid
spaces

S ' [Γ× Se]/∆.

Proof. (1) For each g ∈ Γ, by GAGA, we get an isomorphism of adic spaces

ρK(g) : SadK → SadgKg−1 ,

satisfying the similar properties to the case of schemes. By assumption, we have a com-
patible family of morphisms fK : S → SadK . Then, the composition morphisms ρK(g) ◦ fK
form a compatible family. Since S is perfectoid, by [31] Proposition 2.4.5, there is a unique
morphism g : S → S, such that ρK(g) ◦ fK = fK ◦ g. In this way we get a right action of Γ
on S.

(2) and (3): For each K, we get an induced map SK = S/K → π/K. View π/K as a
finite scheme over k. Then passing to the adic spaces, we get SadK → (π/K)ad. Composing

this map with fK : S → SadK , we get a compatible family of morphisms

S → (π/K)ad.

Note the underlying topological spaces of π/K and (π/K)ad are the same. If we view π as
a perfectoid space over k, then π ∼ lim←−K(π/K)ad. Again, by applying Proposition 2.4.5 of
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[31], we get a morphism of perfectoid spaces

S → π,

which is easily to seen Γ-equivariant. If we consider the fiber Se over e ∈ π of this morphism,
then by construction, Se is ∆-invariant under the right action of Γ on S. To show that

Se ∼ lim←−
K

(Se/(K ∩∆))ad,

we note first that the image of the composition

Se ↪→ S → SadK → (π/K)ad

is eK. Thus fK induces Se → (Se/(K ∩∆))ad. Moreover, the following diagram is catesian

Se

��

// S

��
(Se/(K ∩∆))ad // SadK .

Thus we can conclude, cf. Proposition 2.2.2. Finally, the isomorphism

S ' [Γ× Se]/∆
is deduced by the isomorphism

S ' Se × π = Se × (Γ/∆).

�

We apply the above construction to the perfectoid Shimura variety SKp in Theorem 3.3.1.

Corollary 3.3.4. Let (G,X) be a Hodge type Shimura datum and Kp ⊂ G(Apf ) be a suffi-

ciently small open compact subgroup.

(1) There is an action of A(Kp) on the perfectoid space SKp, and a A(Kp)-equivariant
morphism of perfectoid spaces

SKp → A(Kp)/A(Kp)0.

(2) There is an open and closed perfectoid subspace S0
Kp ⊂ SKp over Cp such that

S0
Kp ∼ lim←−

Kp

Sh0
KpKp(G,X)ad.

The subspace S0
Kp is stable under the action of the subgroup A(Kp)0 of A(Kp).

Moreover, we have an isomorphism of perfectoid spaces

SKp ' [A(Kp)× S0
Kp ]/A(Kp)0.

As the case of SKp , we have an explanation of S0
Kp in the above corollary by using

pro-étale sites as follows. Let

Sh0
Kp ∈ Sh0

G(Zp)Kp(G,X)adproét

be the object with pro-étale presentation Sh0
Kp = lim←−Kp

Sh0
KpKp(G,X)ad. Then it is perfec-

toid, and the associated perfectoid space Ŝh0
Kp is exactly S0

Kp . Similar to the case of SKp ,

Sh0
Kp is sent to Sh0

Kp(G,X) = lim←−Kp
Sh0

KpKp(G,X) under the map of sites

Sh0
G(Zp)Kp(G,X)adproét −→ Sh0

G(Zp)Kp(G,X)proét.

We will need a construction from the inverse direction as in Proposition 3.3.3.
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Proposition 3.3.5. Let the setting be as in the paragraph above Proposition 3.3.3. Assume
that there exists a perfectoid space Se over k such that Se ∼ lim←−K(Se/(K ∩ ∆))ad. Then
there exist a right action of ∆ on Se, and a perfectoid space S over k, equipped an action
of Γ and a Γ-equivariant morphism of perfectoid spaces

S → π,

such that S ∼ lim←−K S
ad
K and Se is isomorphic to the fiber at e of this morphism.

Proof. The fact that ∆ acts on Se follows by the same argument in the proof of (1) of
Proposition 3.3.3. We consider the adic space

S := Se ×k π = Se ×k Γ/∆.

Since Se and π are perfectoid spaces, S is also a perfectoid space, with underlying topological
space

|S| =
∐
i∈π
|Se| ' lim←−

K

|SadK |.

The condition on rings in Definition 2.2.1 can be verified directly by using the relation

SadK =
∐

γ∈π/K'∆\Γ/K

(Se/γKγ
−1 ∩∆)ad.

The other assertions are clear. �

By the above Propositions 3.3.3 and 3.3.5, the following corollary is immediate.

Corollary 3.3.6. Let (G,X) be a Shimura datum. Fix a prime to p level Kp ⊂ G(Apf ).

Consider the statement
P(G,X): There exists a perfectoid space SKp over Cp such that

SKp ∼ lim←−
Kp

ShKpKp(G,X)ad.

Fix a connected component X+ ⊂ X, and consider the statement
P(Gder, X+): There exists a perfectoid space S0

Kp over Cp such that

S0
Kp ∼ lim←−

Kp

Sh0
KpKp(G,X)ad.

Then the two statements are equivalent

P(G,X)⇐⇒ P(Gder, X+).

Remark 3.3.7. In [21] 2.10, there is a list (a)-(e) of properties of a statement P(G,X) for
a Shimura datum (G,X). Let P(G,X) be as in the above corollary. Then the results of [27]
imply that it satisfies (a) and (b) of [21] 2.10. Our results in this paper imply that P(G,X)
satisfies (c) and (e) of loc. cit.. Finally, it is not hard to verify that the statement P(G,X)
also satisfies (d) of loc. cit. on products, cf. Lemma 2.4.2. Thus P(G,X) satisfies the list
(a)-(e) of [21] 2.10.

Now we assume that (G,X) is of abelian type. By Definition 3.2.1 (2), there exists a
Shimura datum (G1, X1) of Hodge type, together with a central isogeny Gder1 → Gder which

induces an isomorphism (Gad1 , X
ad
1 )

∼→ (Gad, Xad). These data put us into the situation of
the last subsection by setting (G,X) = (G2, X2). Fix open compact subgroups Kp ⊂ G(Apf )

and Kp
1 ⊂ G1(Apf ) such that the isogeny induces a map Kp

1 ∩ Gder1 (Apf ) → Kp ∩ Gder(Apf ).
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Since (G1, X1) is of Hodge type, by Theorem 3.3.1, there is a perfectoid Shimua variety
SKp

1
(G1, X1) such that

SKp
1
(G1, X1) ∼ lim←−

K1p

ShK1pK
p
1
(G1, X1)ad.

Applying Corollary 3.3.4, we get the connected perfectoid Shimura variety S0
Kp

1
(G1, X1)

equipped with an action of A(Kp
1 )0 = (Γ1

0)∧
(
rel.τ(Gder1 )

)
, where Γ1

0 = Im
(

[Gder1 (Q)+ ∩

Kp
1 ]→ Gad1 (Q)+

)
, such that

S0
Kp

1
(G1, X1) ∼ lim←−

K1p

Sh0
K1pK

p
1
(G1, X1)ad.

Moreover, there is an action of A(Kp
1 ) on SKp

1
(G1, X1), compatible with the action of

A(Kp
1 )0 on S0

Kp
1
(G1, X1). Consider the group

∆ = lim←−
K1p

Im
(

[Gder(Q)+ ∩ π(Kder
1p )Kp]→ Gad(Q)+

)
Im
(

[Gder1 (Q)+ ∩K1pK
p
1 ]→ Gad1 (Q)+

) .

By Proposition 3.2.6, this is a finite group. For K1p sufficiently small, ∆ acts freely on

Sh0
K1pK

p
1
(G1, X1)ad. Therefore, it also acts freely on S0

Kp
1
(G1, X1). We want to take the

quotient

S0
Kp

1
(G1, X1)/∆.

The following proposition says that such a quotient S0
Kp(G,X) = S0

Kp
1
(G1, X1)/∆ indeed

exists, cf. Corollary 2.3.5.

Proposition 3.3.8. There exists a perfectoid space S0
Kp(G,X) over Cp, such that

S0
Kp(G,X) ∼ lim←−

Kp

Sh0
KpKp(G,X)ad.

We have a finite étale Galois morphism

S0
Kp

1
(G1, X1)→ S0

Kp(G,X)

with Galois group ∆.

Proof. We verify that the conditions in Proposition 2.3.4 and Corollary 2.3.5 hold. By
construction, the action of ∆ on S0

Kp
1
(G1, X1) comes from a system of finite étale Galois

cover XK1p → YK1p with Galois group ∆(K1p), such that

Sh0
Kp

1
(G1, X1) = lim←−

K1p

XK1p , ∆ = lim←−
K1p

∆(K1p),

see the last paragraph in the subsection 3.2. By the description there, for each K1p ⊂
G1(Qp), we have a ∆(K1p)-torsor XK1p → YK1p of varieties over Cp. By GAGA, the

morphism of the associated adic spaces Xad
K1p
→ Y ad

K1p
is a ∆(K1p)-torsor. As S0

Kp
1
(G1, X1) ∼

lim←−K1p
Xad
K1p

, and ∆ is finite, we see that the conditions in Proposition 2.3.4 and Corollary

2.3.5 hold true. Therefore, S0
Kp(G,X) := S0

Kp
1
(G1, X1)/∆ is a perfectoid space,

S0
Kp(G,X) ∼ lim←−

K1p

Y ad
K1p

= lim←−
Kp

Sh0
KpKp(G,X)ad,
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and we have a finite étale Galois morphism S0
Kp

1
(G1, X1) → S0

Kp(G,X) with Galois group

∆. �

Finally, we can prove the following theorem, which asserts that Shimura varieties of
abelian type with infinite level at p are perfectoid. In the next subsection we will discuss
the Hodge-Tate period map.

Theorem 3.3.9. Assume that (G,X) is an abelian type Shimura datum. There is a per-
fectoid space SKp = SKp(G,X) over Cp such that

SKp ∼ lim←−
Kp

ShKpKp(G,X)ad,

where ShKpKp(G,X)ad is the adic space associated to ShKpKp over Cp.

Proof. This is a direct consequence of our Propositions 3.3.8 and 3.3.5. �

We remark that, by [31] Proposition 2.4.5, the perfectoid space SKp in the above theorem
does not depend on the choices of the Hodge type Shimura datum (G1, X1) and the prime
to p level Kp

1 .
Going through the arguments that we used, combined with the results of [16] section 3,

we get the following corollary.

Corollary 3.3.10. Let the situation be as in Corollary 3.3.6. Then to prove the state-
ment P(G,X), it suffices to prove the case for a Shimura datum (G,X) with Gder simply
connected.

Let the situation be as in Theorem 3.3.9. Recall that we have fixed the prime to p
level Kp. Now let Kp vary, we get a family of perfectoid Shimura varieties (SKp)Kp over
Cp. As usual, we get a prime to p Hecke action on this family of perfectoid spaces. More
precisely, if (Kp)′ ⊂ Kp be another open compact subgroup, we get a natural morphism
S(Kp)′ → SKp , which is a finite étale morphism of perfectoid spaces. For any γ ∈ G(Apf ),

we get an isomorphism of perfectoid spaces Sγ−1Kpγ → SKp . In particular, for γ ∈ G(Apf ),

we get a prime to p Hecke correspondence of perfectoid spaces

SKp∩γ−1Kpγ

p1

yy

p2

&&
SKp SKp ,

where p1 is the natural projection, p2 is the composite of the natural projection SKp∩γ−1Kpγ →
Sγ−1Kpγ with the isomorphism Sγ−1Kpγ ' SKp .

We would like to give a corollary on completed cohomology. Let (G,X) be a Shimura
datum such that the associated Shimura varieties ShK are proper (i.e. G is anisotropic
modulo center). Fix a tame level Kp ⊂ G(Apf ) and an integer n ≥ 1. We consider the

following cohomology groups

H i(Kp,Z/pnZ) = lim−→
Kp

H i
ét(ShKpKp,Q,Z/p

nZ), H̃ i(Kp) = lim←−
m

lim−→
Kp

H i
ét(ShKpKp,Q,Z/p

mZ).

Corollary 3.3.11. Let (G,X) be a Shimura datum of abelian type such that the associated
Shimura varieties are proper, e.g. the non PEL type quaternionic Shimura vaieties in
Example 3.2.3. With the above notations, for i > dim ShK , we have

H i(Kp,Z/pnZ) = H̃ i(Kp) = 0.
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Proof. Identical to the proof of Corollary 6.2 in [26]; see also Theorem IV. 2.1 in [27] and
Theorem 17.2 in [28]. The key point is that under our assumption, by Theorem 3.3.9

SKp ∼ lim←−Kp
ShadKpKp , which gives

lim−→
Kp

H i
ét(ShadKpKp ,O+

Shad
KpKp

/pn) = H i
ét(SKp ,O+

SKp
/pn),

cf. [24] Corollary 7.18. Then, the étale cohomology on the right hand is almost equal to
the coherent cohomology H i

an(SKp ,O+
SKp

/pn), and the latter admits the standard bound

dim ShK for the cohomological dimension. We refer to the proofs of Corollary 6.2 in [26]
and of Theorem IV. 2.1 in [27] for more details. �

We can also give a generalization of Theorem IV. 3.1 of [27] to the above situation, which

says roughly that all Hecke eigenvalues appearing in H̃ i(Kp) come via p-adic interpolation
from Hecke eigenvalues in the space of classical automorphic forms. However, we will not
do this task at this moment. As remarked in the introduction, we will prefer to first extend
our Theorem 3.3.9 to some suitable compactifications (e.g. the minimal compactification).
Then we will generalize our Corollary 3.3.11 and the Theorem IV. 3.1 of [27] in that setting.

3.4. The Hodge-Tate period map. As in the last subsection, let (G,X) be a Shimura
datum of abelian type. We take a Shimura datum (G1, X1) of Hodge type, together with a

central isogeny Gder1 → Gder which induces an isomorphism (Gad1 , X
ad
1 )

∼→ (Gad, Xad). Let
Kp,Kp

1 be the prime to p levels as in the last subsection. Recall that for a Shimura datum
(G,X), we can associate to it a conjugacy class {µ} of cocharacters µ : Gm → GCp , which
is in fact defined over the local reflex field inside Cp. Fix a choice µ ∈ {µ}, and let Pµ be
the parabolic subgroup of GCp which stabilizes the filtration opposite to the usual Hodge
filtration attached to µ. One can also define it over C first directly as

Pµ = {g ∈ GC| lim
t→0

ad(µ(t))g exists},

where ad(h)g = hgh−1 for any h, g ∈ GC. Then this parabolic is defined over the local
reflex field E, and we can pull back it to a parabolic subgroup of G over Cp. Set

FLG = (GCp/Pµ)ad,

the adic space associated to the flag variety GCp/Pµ over Cp. For our Shimura datum of
abelian type (G,X) and the datum (G1, X1) of Hodge type as above, the isomorphism
Gad ' Gad1 induces an isomorphism of the p-adic flag varieties FLG ' FLG1 . By [3], there
exists a G1(Qp)-equivariant Hodge-Tate period map

SKp
1
(G1, X1)→ FLG1

of adic spaces over Cp. In the Siegel case (G1, X1) = (GSp2g, S
±), this map sends a Cp-point

of SKp
1
(G1, X1) to the Hodge-Tate filtration of its associated abelian variety A over Cp (cf.

[27] III.3)

0→ LieA(1)→ Tp(A)⊗Zp Cp → (LieA∨)∨ → 0.

Here A∨ is the dual abelian variety of A. In the general Hodge type datum case, one should
also consider the additional Hodge tensors defining G.

Recall the group A(Kp
1 ) defined in the subsection 3.2. By construction, we have a natural

projection A(Kp
1 )→ G1(Qp). Let A(Kp

1 ) act on FLG1 via this projection. Then the Hodge-
Tate period map SKp

1
(G1, X1) → FLG1 is A(Kp

1 )-equivariant. We note that the group ∆

defined as in the last subsection acts trivially on FLG1 . Let Mµ ⊂ Pµ be the centralizer of
µ, which is a Levi subgroup of Pµ. Let RepMµ be the category of algebraic representations
of Mµ over Cp. The Shimura variety with level KpK

p (over Cp) associated to the datum
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(G,X) will be denoted simply by ShKpKp , and the perfectoid Shimura varieties will be

denoted by SKp and S0
Kp . For expositional simplicity, we assume that the maximal Q-

anisotropic R-split subtorus Zs of the center Z of G is trivial. (Otherwise, we shall assume
instead that all representations we consider below have trivial restrictions to Zs, cf. [17]
III.8.)

Theorem 3.4.1. (1) There is a G(Qp)-equivariant map of adic spaces

πHT : SKp −→ FLG,

compatible with the construction in [3] in the case (G,X) is of Hodge type. The map
πHT is invariant for the prime to p Hecke action on SKp, and does not depend on
any other choices.

(2) The pullbacks of automorphic vector bundles over finite level Shimura varieties to
SKp can be understood by the map πHT. More precisely, there is an isomorphism of
tensor functors

RepMµ → {G(Af )− equiv. vector bundles onSKp}

given by

RepMµ
//

��

{G(Qp)− equiv. vector bundles onFLG}

π∗HT

��
{Auto. vector bundles on ShKpKp} // {G(Af )− equiv. vector bundles onSKp}.

Here, the upper horizontal (resp. left vertical) arrow is the usual construction of
vector bundles (resp. automorphic vector bundles) on FLG (resp. ShKpKp), the
lower horizontal arrow is the composition of the GAGA functor (which identifies

vector bundles on ShKpKp and on ShadKpKp) and the pullback functor f∗Kp
associated

to the projection fKp : SKp → ShadKpKp, and finally, the right vertical arrow is the
pullback functor π∗HT associated to the Hodge-Tate period map πHT.

Proof. Both are deduced from Theorem 2.1.3 in [3].
For (1), we note that, when restricting the map SKp

1
(G1, X1) → FLG1 to the subspace

S0
Kp

1
(G1, X1), it is ∆-equivariant, as the group action of ∆ on S0

Kp
1
(G1, X1) is induced by

the Hecke action. Since ∆ acts trivially on FLG1 , the map S0
Kp

1
(G1, X1) → FLG1 factors

through S0
Kp . Applying the A(Kp)-action, we get an extension of S0

Kp → FLG = FLG1 to
a map πHT : SKp −→ FLG, which is G(Qp)-equivariant. By construction, πHT is invariant
for the prime to p Hecke action on SKp , and it does not depend on the choices of Hodge
type Shimura datum (G1, X1) and the prime to p level Kp

1 , cf. Remark 3.2.2.
For (2), we may reduce the problem to the corresponding one for automorphic vector

bundles over connected Shimura varieties (cf. [17]). Then it follows from the result of [3]
for the case of (G1, X1). �

At this point, we remark that in [9] Hansen has recently constructed the Hodge-Tate
period map for general Shimura varieties, by working on the diamonds associated to Shimura
varieties, and by applying the theorem of Liu-Zhu that the tautological Qp-local systems on
Shimura varieties are de Rham (cf. [13] Theorem 1.2). When the Shimura datum (G,X)
is of abelian type, our Hodge-Tate period map above πHT coincides with Hansen’s after
passing to diamonds, cf. subsection 1.2 of [9].

To conclude this subsection, we would like to discuss an example of the Hodge-Tate
period map, which is related to the one studied in section 6 of [30]. Let F and D be as in
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Example 3.2.3, and ShadKpKp be the adic quaterionic Shimura varieties which are not of PEL

(Hodge) type. Fix a tame level Kp. For simplicity, assume that p is inert in F . Suppose
that D is ramified at p and split at only one archimedean place ∞F . Then dimShK = 1,
and the associated p-adic flag variety is just the p-adic projective line P1

Cp
. Let SKp be the

associated perfectoid Shimura curve of abelian type, and

πHT : SKp → P1
Cp

be the Hodge-Tate period map constructed by Theorem 3.4.1. On the other hand, by our
assumption that D is ramified at p, the theorem of Cerednik (cf. [1] Corollary 3.4) on p-adic
uniformization of Shimura curves implies that

SKp ' G(F ) \MDr,∞,Cp ×G(ApF,f )/Kp,

where G = (D′)× is the multiplicative group of another quaternion algebra D′ which is
locally isomorphic to D at all places outside p and ∞F , and such that D′p is split while
D′∞F

is ramified. The space MDr,∞,Cp is the perfectoid Drinfeld space associated to Dp

over Cp (cf. [31] 6.3). By [31] Proposition 7.1.1, there is a Hodge-Tate period map

πMHT :MDr,∞,Cp → P1
Cp
,

which induces a map
πSh

HT : SKp → P1
Cp

by definition and the construction of p-adic uniformization. The following claim confirms
the concern in Remark 6.4 of [30].

Claim 3.4.2. We have the identity of morphisms from SKp to P1
Cp

πHT = πSh
HT.

Proof. Take a totally imaginary CM extension E of F , and consider the simple unitary
group G1 over Q associated to D ⊗F E (cf. [1] p. 47, where it is denoted by G•). G1 sits
in the following exact sequence

1→ Z → D× × ZE → G1 → 1,

where Z = ResF |QGm,F , ZE = ResE|QGm,E , the map Z → D× × ZE is given by f 7→
(f, f−1), and D× × ZE → G1 is given by (d, k) 7→ d ⊗ k. Write (G2, X2) as the Shimura
datum (of abelian type) associated to D. After choosing a morphism hE : S → ZE,R, we
get the conjugacy class X1 of morphisms S→ G1R by the using the above sequence. Then
(G1, X1) forms a PEL type Shimrua datum. Moreover, we have Gder1 = Gder2 . We choose
a prime to p level Kp

1 ⊂ G1(Apf ) constructed from Kp
2 = Kp by (3.10) of [1]. By the proof

of Theorem 3.4.1, we can use the Hodge-Tate period map for SKp
1
(G1, X1) to define the

Hodge-Tate period map
πHT : SKp

2
(G2, X2) = SKp → P1

Cp
.

In fact, since Gder1 = Gder2 , we have the equality of geometric connected components

Sh0
K1pK

p
1
(G1, X1)Cp = Sh0

K2pK
p
2
(G2, X2)Cp

for compatible K1pK
p
1 and K2pK

p
2 . That is, the finite group ∆ in the last subsection is

trivial, and
S0
Kp

1
(G1, X1) = S0

Kp
2
(G2, X2).

For the unitary Shimura curves Sh0
K1pK

p
1
(G1, X1)Cp , we have also the global p-adic uni-

formization by MDr,∞,Cp (cf. [1] 1.51 and (3.8)). Then, we can reduce the claim to the
corresponding identity for the perfectoid unitary Shimura curve SKp

1
(G1, X1). For the latter
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case, one sees easily that the identity holds, by the definition of the Hodge-Tate period map
in the PEL case and the construction of p-adic uniformization. �

4. Application to moduli spaces of polarized K3 surfaces

In this section, we investigate some special (and very interesting) examples of Shimura
varieties of abelian type, namely, the Shimura varieties associated to the orthogonal group
SO(V ), with V a Q-vector space equipped with a non degenerate quadratic form Q such
that VR has signature (2, n) for some integer n ≥ 1. These Shimura varieties appear in
Kudla’s program on special cycles and their generating series, see [12] for example. The
case that n = 19 is closely related to moduli spaces of polarized K3 surfaces. In particular,
we can apply results of the last section to prove that the moduli spaces of polarized K3
surfaces with infinite level at p are perfectoid.

4.1. An example: Shimura varieties of orthogonal type. Let R be a commutative
ring in which 2 is invertible, and (L,Q) be a non-degenerate quadratic space over R. We
have the associated Clifford algebra C := C(L) over R, equipped with an embedding L ↪→ C
and a natural decomposition C = C+ ⊕C−, so that C+ is a sub-algebra of C. We define a
reductive group scheme G1 := GSpin(L,Q) over R as follows. For any R-algebra S,

G1(S) = {x ∈ (C+
S )×|x(LS)x−1 = LS}.

Let G = SO(L,Q) be the special orthogonal group. Then there is an exact sequence of
group schemes over R:

0→ Gm → G1 → G→ 0,

where the natural morphism of group schemes G1 → G is given by g 7→ (v 7→ gvg−1). On
the other hand, there is a canonical character, the spinor norm, ν : G1 → Gm. Let G′1 be
the kernel of ν, which is usually denoted by Spin(L,Q). Then G′1 = Gder1 is the derived
subgroup of G1, which is simply connected, and we have the following exact sequence of
groups over R

0→ G′1 → G1 → Gm → 0.

Moreover, the morphism G1 → G induces the following exact sequence of groups over R

0→ µ2 → G′1 → G→ 0.

Consider the case R = Q. We denote L = V as a vector space over Q. Assume that the
quadratic space (V,Q) has signature (2, n) over R for some n ≥ 1. We have the reductive
groups G1 and G over Q. Let X be the space of oriented negative definite 2-planes in VR.
The points of X correspond to certain Hodge structures of weight 0 on the vector space
V , polarized by Q, cf. [14] 3.1. The pairs (G1, X) and (G,X) form Shimura data, both of
which have reflex field Q since n ≥ 1.

For any δ ∈ (C+)× such that δ∗ = −δ, the form

(x, y)δ 7→ tr(xδy∗)

on C+ is symplectic, non-degenerate. Here ∗ is the canonical involution on C. Thus this
form (·, ·)δ induces an closed embedding of group schemes G1 ↪→ GSp(C+, (·, ·)δ), and an
embedding of Shimura data (G1, X) ↪→ (GSp(C+, (·, ·)δ), S±). Accordingly, the Shimura
datum (G1, X) is of Hodge type, and (G,X) is of abelian type.

Let K1 ⊂ G1(Af ) be an open compact subgroup. We will assume that K1 is of the
form K1pK

p
1 with K1p ⊂ G1(Qp) and Kp

1 ⊂ G1(Apf ). As before, we assume that Kp
1 is

chosen to be sufficiently small and fixed. We will only let the level K1p at p vary. Let
K ⊂ G(Af ) be the image of K1 under the above map G1 → G. It has the form as
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KpK
p with Kp,K

p the images of K1,p,K
p
1 respectively. Now we get the associated Shimura

varieties ShK1(G1, X),ShK(G,X) over Q, and a morphism

ShK1(G1, X)→ ShK(G,X).

We have identifications of complex analytic varieties:

ShK1(G1, X)anC = G1(Q)+ \X+ ×G1(Af )/K1,

ShK(G,X)anC = G(Q)+ \X+ ×G(Af )/K.

Since H1(k,Gm) = 0 for any field k of characteristic zero (Hilbert’s Theorem 90), we find
that the map ShK1(G1, X)→ ShK(G,X) is a finite étale Galois cover with Galois group

∆(K1p) = Q× \ α−1(K)/K1,

where α : G1 → G is the morphism g 7→ (v 7→ gvg−1) as before, cf. [19] Lemma 4.13. If
K ′1p ⊂ K1p is another open compact subgroup, we have the following commutative diagram
of morphisms

ShK′1pK
p
1
(G1, X) //

��

ShK1pK
p
1
(G1, X)

��
ShK′pKp(G,X) // ShKpKp(G,X).

Moreover, we have a surjective morphism of finite groups ∆(K ′1p) → ∆(K1p). Since the

weight of (G,X) is defined over Q, by Theorem 3.31 of [18], the associated Shimura vari-
eties are moduli spaces of some abelian motives. For the Shimura varieties of Hodge type
associated to (G1, X), we have the following list when n is small.

Examples 4.1.1. (1) In the case that n is small, (G1, X) is of PEL type: the varieties
ShK1(G1, X) are
• n = 1, modular curves and Shimura curves,
• n = 2, Hilbert modular surfaces and their quaternionic versions,
• n = 3, Siegel threefolds and their quaternionic versions.

(2) In the next subsection, we will investigate the case n = 19 (for (G,X)).

We keep the notations as above. Consider the varieties ShK1(G1, X),ShK(G,X) over
Cp. Recall the spinor norm ν : G1 → Gm. We have the following description of the sets of
connected components:

π0(ShK1(G1, X)) = G1(Q)+ \G1(Af )/K1

= Q×R×>0 \ A
×/ν(K1)

= Q>0 \ A×f /ν(K1),

π0(ShK(G,X)) = G(Q)+ \G(Af )/K.

In this special case, the morphism α induces a surjection G1(Af ) � G(Af ) and thus a
surjection π0(ShK1(G1, X))� π0(ShK(G,X)). One sees that π0(ShK1(G1, X)) is a ∆(K1p)-
torsor over π0(ShK(G,X)). The map on the connected Shimura varieties

Sh0
K1

(G1, X)→ Sh0
K(G,X)

is an isomorphism, since

α
(
K1 ∩G1(Q)+

)
= K ∩G(Q)+.

Using the notation of of the last section, we have ∆ = {id}. By GAGA, the associated map
between the corresponding adic spaces

Sh0
K1

(G1, X)ad → Sh0
K(G,X)ad
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is an isomorphism. Let K1p vary. We get the connected perfectoid Shimura variety
S0
Kp

1
(G1, X) such that

S0
Kp

1
(G1, X) ∼ lim←−

K1p

Sh0
K1pK

p
1
(G1, X)ad.

Moreover, we get the perfectoid space S0
Kp(G,X) which is isomorphic to S0

Kp
1
(G1, X) such

that

S0
Kp(G,X) ∼ lim←−

Kp

Sh0
KpKp(G,X)ad.

By Proposition 3.3.5, we find the perfectoid Shimura variety SKp(G,X) such that

SKp(G,X) ∼ lim←−
Kp

ShKpKp(G,X)ad.

4.2. Moduli spaces of polarized K3 surfaces and the period map. In this subsection,
we specialize our Shimura varieties in the last subsection further to the case n = 19, i.e. the
case of orthogonal Shimura varieties associated to SO(2, 19). We will discuss the relation
with moduli spaces of polarized K3 surfaces, cf. [15] sections 2 and 4, [22] section 6.

Let U be the hyperbolic lattice over Z of rank 2, and E8 be the positive quadratic lattice
associated to the Dynkin diagram of type E8. Set N = U⊕3 ⊕ E⊕2

8 , which is a self-dual
lattice. Let d ≥ 1 be an integer. Choose a basis e, f for the first copy of U in N and set

Ld = 〈e− df〉⊥ ⊂ N.

This is a quadratic lattice over Z of discriminant 2d and rank 21 (in [22] it is denoted by
L2d ). Let Vd = Ld ⊗Q and L∨d ⊂ Vd be the dual lattice. Set

G = SO(Vd),

which is isomorphic to the special orthogonal group over Q of signature (2, 19). Let K ⊂
G(Af ) be an open compact subgroup which stabilizes L

d,Ẑ and acts trivially on L∨
d,Ẑ
/L

d,Ẑ.

Such compact opens are called admissible. We fix an open compact subgroup Kp from
now on. We only consider open compact subgroups Kp ⊂ G(Qp) which is contained in the
discriminant kernel of Ld,Zp (i.e. the maximal subgroup of G(Qp) which stabilizes Ld,Zp and
acts trivially on L∨d,Zp

/Ld,Zp) with finite index. In particular, KpK
p is admissible, cf. [22]

5.3. For the reductive group G, we have the associated Shimura varieties ShKpKp , which
are defined over Q.

Let k be a field. Recall that a K3 surface X over k is a projective smooth surface over
k such that Ω2

X/k ' OX and H1(X,OX) = 0. Recall also that (cf. [22] Definition 1.1.5) a

K3 surface X over a scheme S is a proper smooth morphism f : X → S of schemes whose
geometric fibers are K3 surfaces. We can extend this definition to algebraic spaces: a proper
smooth algebraic space f : X → S over a scheme S is called a K3 surface if there is an
étale cover S′ → S such that the pullback of f to S′ is a K3 surface in the above sense.
A primitive polarization (resp. quasi-polarization) on a K3 surface f : X → S as above
is a global section λ ∈ PicX/S(S) such that for every geometric point s of S the section
λs ∈ PicXs/k(s)(k(s)) is a primitive polarization (quasi-polarization) of Xs.

Let M2d (resp. M∗2d) be the moduli spaces of K3 surfaces f : X → S together with a
primitive polarization ξ (resp. quasi-polarization) of degree 2d over Q (in [15] section 2,
these spaces are denoted by M◦2d and M2d respectively). These are Deligne-Mumford stacks
of finite type over Q. The natural map M2d → M∗2d is an open immersion. Moreover, M2d

is separated and smooth of dimension 19 over Q, cf. [22] Theorem 4.3.3, Proposition 4.3.11
and [15] Proposition 2.2.
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Let (f : X → M2d, ξ) be the universal object over M2d. For any prime `, we consider
the second relative étale cohomology H2

` of X over M2d. This is a lisse Z`-sheaf of rank
22 equipped with a perfect symmetric Poincaré pairing 〈, 〉 : H2

` × H2
` → Z`(−2). The

`-adic Chern class ch`(ξ) of ξ is a global section of the Tate twist H2
` (1) that satisfies

〈ch`(ξ), ch`(ξ)〉 = 2d. The product

H2
Ẑ =

∏
`

H2
`

is a lisse Ẑ-sheaf, and the Chern classes of ξ can be put together to get the Chern class
chẐ(ξ) in H2

Ẑ
(1). Recall that we have the quadratic lattice N of rank 22 over Z.

Definition 4.2.1. Consider the étale sheaf over M2d whose sections over any scheme T →
M2d are given by

I(T ) = {η : N ⊗ Ẑ ∼→ H2
Ẑ,T (1) isometries, with η(e− df) = chẐ(ξ)}.

Let K ⊂ G(Af ) be an admissible open compact subgroup. Then I admits a natural action
by the constant sheaf of groups K. A section η ∈ H0(T, I/K) is called a K-level structure
over T (in [22] 5.3 it is called a full K-level structure).

As before, we assume that K is of the form KpK
p. Let M2d,KpKp (resp. M∗2d,KpKp) be the

relative moduli problem over M2d (resp. M∗2d) which parametrizes KpK
p-level structures.

For Kp small enough, these are smooth algebraic spaces. Moreover, the maps

M2d,KpKp → M2d, M∗2d,KpKp → M∗2d

are finite étale. For another admissible K ′ = K ′pK
p′ ⊂ K, we have natural finite étale

projections

M2d,K′ → M2d,K , M∗2d,K′ → M∗2d,K

as algebraic spaces over M2d,M
∗
2d respectively. When K ′ is a normal subgroup of K, these

projections are Galois with Galois group K/K ′.
For any prime `, we have the primitive cohomology sheaf

P` = 〈ch`(ξ)〉⊥ ⊂ H2
` .

Let H2
B and H2

dR be the second relative Betti and de Rham cohomology respectively of the
universal K3 surface X → M∗2d,KpKp,C. We have also the primitive cohomology sheaves

PB = 〈chB(ξ)〉⊥ ⊂ H2
B, PdR = 〈chdR(ξ)〉⊥ ⊂ H2

dR.

Consider M̃∗2d,KpKp → M∗2d,KpKp , the two-fold finite étale cover parameterizing isometric

trivializations det(Ld)⊗Z2
∼→ det(P2) of the determinant of the primitive 2-adic cohomology

of the universal quasi-polarized K3 surface. We can identify M̃∗2d,KpKp with the the space

of isometric trivializations det(Ld)
∼→ det(PB) of the determinant of the primitive Betti

cohomology. There is a Hodge-de Rham filtration F •PdR on PdR, and we have a natural
isometric trivialization η : disc(Ld)

∼→ disc(PB) and the the tautological trivialization β :

det(Ld)
∼→ det(PB). The tuple (PB, F

•PdR, η, β) gives rise to a natural period map

M̃∗2d,KpKp,C → ShKpKp,C,

cf. [15] Propositions 4.2 and 3.3. There is a section map M2d,KpKp,C ⊂ M∗2d,KpKp,C →
M̃∗2d,KpKp,C, whose composition with the above period map gives us the period map

M2d,KpKp,C −→ ShKpKp,C.



PERFECTOID SHIMURA VARIETIES OF ABELIAN TYPE 35

Theorem 4.2.2. The period map

M2d,KpKp,C −→ ShKpKp,C

is defined over Q. Moreover, it is an open immersion.

Proof. The first assertion follows from [23] Theorem 3.9.1, and the second follows from loc.
cit. Proposition 2.4.6, which is essentially the global Torelli theorem for K3 surfaces: see
loc. cit. for more references therein. �

In the case Kp = KLd,p, see also [15] Corollary 4.4 for the above first assertion, where

KLd
⊂ G(Ẑ) is the largest subgroup which acts trivially on the discriminant L∨d /Ld, i.e. the

largest admissible open compact subgroup. For the second assertion, in the caseKp = KLd,p,
see [15] Corollary 4.15. For the general case of open compact subgroups Kp ⊂ KLd,p, we
note that the following diagram is cartesian:

M2d,KpKp,C //

��

ShKpKp,C

��
M2d,KLd,p

Kp,C // ShKLd,p
Kp,C.

As a corollary, we see that for Kp small enough, M2d,KpKp is a scheme for any open compact
Kp ⊂ KLd,p.

4.3. The perfectoid moduli spaces of polarized K3 surfaces. Let the notations be
as in the last subsection. Fix an embedding Q ⊂ Cp. We consider spaces and varieties over

Cp. Let Mad
2d,KpKp (resp. ShadKpKp) be the adic space associated to M2d,KpKp × Cp (resp.

ShKpKp × Cp) for Kp and Kp as above. By Theorem 4.2.2, we get an open subsystem

Mad
2d,KpKp ⊂ ShadKpKp . Applying Lemma 2.2.2 and Theorem 3.3.9, we get the following

corollary.

Corollary 4.3.1. There is a perfectoid space M2d,Kp over Cp such that

M2d,Kp ∼ lim←−
Kp

Mad
2d,KpKp .

By construction, we have an open immersion of perfectoid spaces over Cp
M2d,Kp ⊂ SKp ,

where SKp is the perfectoid Shimura variety with prime to p level Kp such that SKp ∼
lim←−Kp

ShadKpKp . In particular, the restriction on M2d,Kp of the Hodge-Tate period map πHT

for SKp gives rise to a Hodge-Tate period map

πHT : M2d,Kp → FLG,
which can be understood by the Kuga-Satake construction for K3 surfaces (cf. [23] 5.2),
and the Hodge-Tate period map for the perfectoid Shimura variety SKp

1
(G1, X) (cf. [3]) for

the GSpin Shimura datum (G1, X). Here as before, Kp
1 ⊂ G1(Apf ) is a suitable prime to p

level structure, compatible with Kp.
In the proof of the corollary above, the key ingredients that we used are perfectoid

Shimura varieties of abelian type and the global Torelli theorem for K3 surfaces. With
our Theorem 3.3.9 at hand, once we have a suitable global Torelli theorem, we can prove
that some other moduli spaces of polarized higher dimensional Calabi-Yau varieties with
infinite level at p are perfectoid. For example, we can treat the case of moduli spaces of
cubic fourfolds exactly as here, see 5.13 and 5.14 of [15]. In particular, we get some new
interesting examples of perfectoid spaces.
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