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Abstract. We give a new proof of the Lefschetz trace formula for Lubin-Tate spaces. Our
proof is based on the locally finite cell decompositions of these spaces and Mieda’s theorem
of Lefschetz trace formula for certain open adic spaces. This proof is rather different
from those in the work of Strauch and Mieda, and is quite hopeful to be generalized to
other Rapoport-Zink spaces as soon as there exist some suitable cell decompositions. For
example, in another paper we have proved a Lefschetz trace formula for some unitary
group Rapoport-Zink spaces by using similar ideas here.
MSC 2010: 14G35, 14G22. Keywords: Lubin-Tate spaces, Lefschetz trace formula, cell
decomposition.

1. Introduction

We first recall some basic facts about Lubin-Tate spaces, see [18] for further details. Let
p be a prime number, F be a finite extension of Qp, O be the ring of integers of F , and

π ∈ O be a uniformizer in O. We denote F̂nr as the completion of the maximal unramified

extension of F , and Ônr its ring of integers. For any integer n ≥ 1, we consider the general
linear group GLn as well as its inner form D× over F , where D is the central division algebra
over F with invariant 1

n and D× is the reductive group defined by invertible elements in
D. Recall a formal O-module is a formal p-divisible group with an O-action over a base
over O, such that the induced action on its Lie algebra is the canonical action of O. We

consider the formal Lubin-Tate space M̂ =
∐
i∈Z M̂i over Ônr: for any scheme S ∈ NilpÔnr,

M̂(S) = {(H, ρ)}/ ', where

• H is a formal O-module of dimension one over S,
• ρ : HS → HS is a quasi-isogeny.

Here NilpÔnr is the category of schemes over Ônr on which π is locally nilpotent, H is the
unique (up to isomorphism) one dimensional formal O-module over Fp with O-height n,

and S is the closed subscheme defined by π of S ∈ NilpÔnr. For i ∈ Z, M̂i is the open and

closed subspace of M̂ such that the quasi-isogenies ρ have O-height i. There is a natural

(left) action of D× on M̂ by ∀b ∈ D×, b : M̂ → M̂, (H, ρ) 7→ (H, ρ ◦ b−1). This action
induces non-canonical isomorphisms

M̂i ' M̂0,

while one knows that there is a non-canonical isomorphism

M̂0 ' Spf(Ônr[[x1, . . . , xn−1]]).

Let M = M̂an =
∐
i∈ZMi be the Berkovich analytic fiber of M̂ ([1]). By trivializing

the local system over M defined by the Tate module of p-divisible group, we have the

Lubin-Tate tower (MK)K⊂GLn(O) over F̂nr, and the group GLn(F ) acts (on the right)
on this tower through Hecke correspondences. In particular M = MGLn(O). When K =
Km := ker(GLn(O) → GLn(O/πmO)) for some integer m ≥ 0, there is a regular model

M̂m of MKm by introducing Drinfeld structures on formal O-modules. We will not use
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these models and we will work always on the Berkovich spacesMK . Note there is a natural
action of D× on each MK , which commutes with the Hecke action.

Fix a prime l 6= p, let Ql (resp. Qp) be a fixed algebraic closure of Ql (resp. Qp), and Cp
be the completion of Qp. For each i ≥ 0, we consider the cohomology with compact support

H i
c(MK × Cp,Ql) = lim−→

U

lim←−
n

H i
c(U × Cp,Z/lnZ)⊗Ql,

where the injective limit is taken over all locally compact open subsets U ⊂ MK , see [3]
section 4 and [10]. We have

H i
c(MK × Cp,Ql) =

⊕
j∈Z

H i
c(M

j
K × Cp,Ql),

where

dimQl
H i
c(M

j
K × Cp,Ql) <∞

by theorem 3.3 in [10]. In fact we have also the usual l-adic cohomology groups H i(Mj
K ×

Cp,Ql) which are Poincaré dual to those H i
c(M

j
K × Cp,Ql), and (cf. [18] lemma 2.5.1)

H i
c(M

j
K × Cp,Ql) 6= 0⇔ n− 1 ≤ i ≤ 2(n− 1),

H i(Mj
K × Cp,Ql) 6= 0⇔ 0 ≤ i ≤ n− 1.

The groups

lim−→
K

H i
c(MK × Cp,Ql)

are natural smooth representations of GLn(F ) × D× ×WF (WF is the Weil group of F ),
and the local Langlands and Jacquet-Langlands correspondences between the three groups
are realized in these cohomology groups, see [2], [3] and [8].

In [18] Strauch had proved a Lefschetz trace formula for regular elliptic elements action
on the Lubin-Tate spaces. More precisely, we consider

H∗c (Mj
K × Cp,Ql) =

∑
i

(−1)iH i
c(M

j
K × Cp,Ql).

Let γ = (g, b) ∈ GLn(F )×D× such that both g, b are regular elliptic elements, gKg−1 = K,
vp(det(g)) + vp(Nrd(b)) = 0. Here and in the following Nrd : D× → F× is the reduced
norm, vp is the valuation on F such that vp(π) = 1. Then we have an automorphism

γ :Mj
K →M

j
K ,

which induces morphisms on cohomology groups

γ : H i
c(M

j
K × Cp,Ql)→ H i

c(M
j
K × Cp,Ql).

We define

Tr(γ|H∗c (Mj
K × Cp,Ql)) :=

∑
i

(−1)iTr(γ|H i
c(M

j
K × Cp,Ql)).

Strauch proved the following trace formula.

Theorem 1.1 ([18], Theorem 3.3.1). Under the above assumptions and notations, we have

Tr(γ|H∗c (Mj
K × Cp,Ql)) = #Fix(γ|Mj

K × Cp).
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By applying the p-adic period mapping

M→ Pn−1,an,

Strauch obtained a nice fixed points number formula for the quotient spaceMK/π
Z (theo-

rem 2.6.8 in loc. cit.)

#Fix(γ|(MK/π
Z)(Cp)) = n#{h ∈ GLn(F )/πZK|h−1gbh = g−1},

which can be rewritten as some suitable orbit integral, see [13] proposition 3.3. Here gb is an
element of GLn(F ) which is stably conjugate to b, see [18] proposition 2.6.7. This Lefschetz
trace formula and the above fixed points formula enable Strauch and Mieda to prove that
the Jacquet-Langlands correspondence between smooth representations of GLn(F ) and D×

is realized in the cohomology of the tower (MK)K , not involving with Shimura varieties as
in [8], see section 4 of [18] and [13].

There are two main ingredients in Strauch’s proof of the above theorem. The first is
some careful approximation theorems of Artin in this special (affine) case, and the second is
Fujiwara’s theorem of specialization of local terms ([7] proposition 1.7.1). In general case one
has no sufficient approximation theorems, thus his method can be hardly generalized. In [12]
Mieda proved a general Lefschetz trace formula for some open adic spaces by totally working
in rigid analytic geometry. He verified that his conditions in the special case of Lubin-Tate
spaces hold, thus he can reprove the above Lefschetz trace formula. Both Strauch and
Mieda worked in the category of adic spaces, and studied the action of γ on some boundary

stratas (outside the corresponding Berkovich space) of the analytic generic fiber of M̂m.
Their boundary stratas are linked to the theory of generalized canonical subgroups (cf. [4]
section 7) in this special case, hence their approachs can hardly be generalized.

In this note we work mainly with Berkovich spaces. We will consider Fargues’s locally
finite cell decomposition of Lubin-Tate spaces, cf. [5] chapter 1 and [6]. By studying the
action of γ on these cells, we verify the conditions in Mieda’s theorem of Lefschetz trace
formula hold. Here we use the dictionary between the equivalent categories of Hausdorff
strictly Berkovich k-analytic spaces and adic spaces which are taut and locally of finite
type over Spa(k, k0). (k is a complete non-archimedean field and k0 is its ring of integers.)
Therefore we can reprove the above theorem, by a different method. The advantage of
our method is that, once we know there exists a locally finite cell decomposition with
the fundamental domain compact, then by studying the action on the cells we will easily
verify Mieda’s theorem applies. For example, we can treat the case of some unitary group
Rapoport-Zink spaces in [16], and we will also treat the case of basic Rapoport-Zink spaces
for GSp4.

In next section we review the locally finite cell decomposition of MK , and in section 3
we study the action of γ on the cells and verify Mieda’s theorem applies.

Acknowledgments. I would like to thank Laurent Fargues sincerely for sharing the idea
of cell decomposition of Rapoport-Zink spaces, and the suggestion that this will suffice to
prove the Lefschetz trace formula. I would like to thank also Bertrand Rémy sincerely for
replying my question on buildings, and pointing me the article [15]. Yoichi Mieda had pro-
posed me some useful questions after the first version of this article, so special thanks go to
him as well. I should also thank the referee for careful reading and suggestions.

2. The locally finite cell decomposition of Lubin-Tate spaces

In [5] and [6] Fargues found some locally finite coverings ofMK . We will call these locally
finite coverings as locally finite cell decompositions, and the members of these coverings as
cells. Therefore, although these cells are not disjoint, each cell has no empty intersection
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with only finitely many others. The parameter set of cells in [5] is the set of vertices of some
Bruhat-Tits building. These cells for K varies form in fact a cell decomposition of the tower
(MK)K but not of a fixed space MK . Therefore we will mainly follow the construction in
[6], where the parameter set is essentially some set of Hecke correspondences. To consider
the group actions on cells, we will relate the parameter set to a Bruhat-Tits building by
borrowing some ideas from [5].

First consider the case without level structures. Fix a uniformizer Π ∈ D×, then it
induces isomorphisms

Π−1 :Mi ∼−→Mi+1.

Let Mss be the semi-stable locus in M, i.e. the locus where the associated p-divisible
groups are semi-stable in the sense of [6] definition 4. It is a closed analytic domain in M.
Let D =Mss,0 :=Mss ∩M0, then Mss =

∐
i∈Z Π−iD and D is the compact fundamental

domain of Gross-Hopkins, see [5] 1.5. The main results of [6] in our special case say that
we have a locally finite covering

M =
⋃

T∈GLn(O)\GLn(F )/GLn(O)
i=0,...,n−1

TΠ−iD,

where TA is the image under the Hecke correspondence T for a subset A, which is an
analytic domain if A is. In the following we shall actually work with the component M0.
We consider its induced cell decomposition

M0 =
⋃

T∈GLn(O)\GLn(F )/GLn(O)
i=0,...,n−1

((TΠ−iD) ∩M0).

For T ∈ GLn(O) \GLn(F )/GLn(O), i = 0, . . . , n− 1, we have

(TΠ−iD) ∩M0 6= ∅ ⇔ −vp(det(T )) + i = 0,

in which case we have the inclusion TΠ−iD ⊂ M0. Here the composition vp ◦ det :
GLn(F ) → Z factors through GLn(O) \ GLn(F )/GLn(O) → Z. Therefore we have the
cell decomposition for M0

M0 =
⋃

T∈GLn(O)\GLn(F )/GLn(O)
i=0,...,n−1

−vp(det(T ))+i=0

TΠ−iD.

Let K ⊂ GLn(O) be an open compact subgroup, πK : MK → M be the natural
projection. We set

DK = π−1K (D),

which is a compact analytic domain in M0
K . Since the group GLn(O) acts trivially on

M, any element in this group will stabilize DK . Therefore, for two Hecke correspondences
T1, T2 ∈ K \ GLn(F )/K having the same image under the projection K \ GLn(F )/K →
GLn(O) \GLn(F )/K, we have

T1Π
−iDK = T2Π

−iDK .

Note Π−iDK = π−1K (Π−iD) since πK is D×-equivariant. We have the following locally finite
cell decomposition at level K

MK =
⋃

T∈GLn(O)\GLn(F )/K
i=0,...,n−1

TΠ−iDK .
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We will denote the cells TΠ−iDK by

DT,i,K ,
which are compact analytic domains. For any T ∈ GLn(O) \GLn(F )/K, i ∈ Z, we denote
also DT,i,K = TΠ−iDK . Since the (right) action of F× on MK through the embedding
F× → GLn(F ), z 7→ z is the same as the (left) action of it on MK through the embedding
F× → D×, z 7→ z, the elements (z, z−1) ∈ GLn(F ) ×D× for z ∈ F× act trivially on MK .
For z ∈ F×, we have the equality

DT,i,K = DTz,i+nvp(z),K .

Now if g ∈ GLn(F ) is an element such that gKg−1 = K, and b ∈ D× is an arbitrary
element, set

γ := (g, b).

Then automorphism γ :MK →MK naturally induces an action on the set of cells ofMK :

γ(DT,i,K) = DTg,i−vp(Nrd(b)),K .

For the component M0
K , for T ∈ GLn(O) \GLn(F )/K, i = 0, . . . , n− 1, similarly as the

case K = GLn(O), we have

(TΠ−iDK) ∩M0
K 6= ∅ ⇔ −vp(det(T )) + i = 0,

in which case TΠ−iDK ⊂M0
K . Thus we have a locally finite cell decomposition

M0
K =

⋃
T∈GLn(O)\GLn(F )/K

i=0,...,n−1

((TΠ−iDK) ∩M0
K)

=
⋃

T∈GLn(O)\GLn(F )/K
i=0,...,n−1

−vp(det(T ))+i=0

DT,i,K .

In fact for any i ∈ Z, T ∈ GLn(O) \ GLn(F )/K such that −vp(det(T )) + i = 0, we have
DT,i,K ⊂ M0

K with the convention above. However, one can always by multiplying with
some z ∈ F× reduce to the cases 0 ≤ i ≤ n − 1. Now let γ = (g, b) ∈ GLn(F ) × D× be
such that gKg−1 = K, vp(det(g)) + vp(Nrd(b)) = 0, then the action of γ on MK induces
γ :M0

K →M0
K . In this case γ acts on the set of cells of M0

K in the same way as above.
To understand better the parameter set of cells of M0

K , we look at some ideas from
[5]. Consider the embedding Gm → GLn × D×, z 7→ (z, z−1) of algebraic groups over
F . Let B(GLn × D×, F ) be the (extended) Bruhat-Tits building of GLn × D× over F ,
and B = B(GLn × D×, F )/F× be its quotient by the action of F× through the above
embedding. The set B0 of vertices of B, which we define by the quotient of the vertices of
B(GLn ×D×, F ), can be described as the set of equivalence classes

{(Λ,M)|Λ ⊂ Fn is an O-lattice ,M ⊂ D is an O×D-lattice}/ ∼,
where

(Λ1,M1) ∼ (Λ2,M2)⇔ ∃i ∈ Z,Λ2 = Λ1π
i,M2 = π−iM1,

see [5] 1.5. We can understand B in the following way. The (extended) Bruhat-Tits building
of GLn over F is the product B(PGLn, F )×R of the Bruhat-Tits building of PGLn with R,
while the (extended) Bruhat-Tits building of D× over F is B(D×, F ) ' R. By construction

B = B(GLn ×D×, F )/F× ' (B(PGLn, F )× R× R)/ ∼,
where the equivalence relation is defined by (x, s, t) ∼ (x′, s′, t′)⇔ x = x′, s−s′ = t′−t = nr
for some r ∈ Z. Therefore, any point [x, s, t] in B can be written uniquely in the form [x, s′, t′]
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for x ∈ B(PGLn, F ), s′ ∈ R, t′ ∈ [0, n). The group GLn(F )×D× acts on B by ∀[x, s, t] ∈ B,
(g, b) ∈ GLn(F )×D×,

(g, b)[x, s, t] = [g−1x, s+ vp(det(g)), t+ vp(Nrd(b))].

If we consider the right action of GLn(F ) on B(PGLn, F ) by xg := g−1x, then we can also
write (g, b)[x, s, t] = [xg, s+ vp(det(g)), t+ vp(Nrd(b))].

On the other hand, consider the action of F× on GLn(O) \ GLn(F ) × D×/O×D by

z(GLn(O)g, dO×D) = (GLn(O)gz, zdO×D), ∀z ∈ F×. Then the quotient set

(GLn(O) \GLn(F )×D×/O×D)/F×

is naturally identified with the set B0 after fixing the vertex [On, OD] ∈ B0. For an element
[GLn(O)g, dO×D], the associated point in B0 can be written as

[GLn(O)F×g, vp(det(g)), vp(Nrd(d))].

Here GLn(O)F×g ∈ B(PGLn, F ) by fixing the homothety class of On. Now let K ⊂
GLn(O) be an open compact subgroup, then the set

IK := (GLn(O) \GLn(F )/K ×D×/O×D)/F×

can be identified with the image of B0 in the quotient space B/K:

B0/K.

If γ = (g, b) ∈ GLn(F ) × D× such that gKg−1 = K, then γ acts on the set IK by
[T, d] 7→ [Tg, bd]. There is a map

ψ : GLn(O) \GLn(F )/K ×D×/O×D −→ Z
(T, d) 7→ −vp(det(T ))− vp(Nrd(d)).

Since the action of F× does not change the values of the above map, ψ factors through a
map ψ : IK → Z. In fact there is a well defined continuous map

ϕ : B −→ R
[x, s, t] 7→ −s− t,

with each fiber stable under the action of K. Hence the above map ψ is induced by ϕ. Let
(GLn(O) \GLn(F )/K ×D×/O×D)0 := ψ−1(0) be the inverse image of 0 under the map ψ.
For the γ as above with further condition that vp(det(g)) + vp(Nrd(b)) = 0, it stabilizes the
subset

I0K := ψ
−1

(0) = (GLn(O) \GLn(F )/K ×D×/O×D)0/F×

for its above action on IK . For the map ϕ above, we see that I0K is identified with the
quotient set ϕ−1(0)0/K, where ϕ−1(0)0 is the set of vertices in ϕ−1(0).

For any element [T, d] ∈ IK , the cell [T, d]DK is well defined, which is what we denoted
by DT,−vp(Nrd(d)),K above. As before we denote [T, d]DK as

D[T,d],K .

Then we can rewrite the cell decompositions as

MK =
⋃

[T,d]∈IK

D[T,d],K ,

M0
K =

⋃
[T,d]∈I0K

D[T,d],K .
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For γ = (g, b) ∈ GLn(F )×D× as above, it acts on the cells in the way compatible with its
action on IK :

γ(D[T,d],K) = D[Tg,bd],K .

Recall there is a metric d(·, ·) on B, so that (GLn(F )×D×)/F× acts on B by isometries.
If d′(·, ·) is the metric on B(PGLn, F ), then for two points [x, s, t], [x′, s′, t′] with x, x′ ∈
B(PGLn, F ), s, s′ ∈ R, t, t′ ∈ [0, n) we have

d([x, s, t], [x′, s′, t′]) =
√
d′(x, x′)2 + (s− s′)2 + (t− t′)2.

The group K acts on B through the natural morphisms K → GLn(F )×D× → (GLn(F )×
D×)/F×. There is an induced metric d(·, ·) on the quotient space B/K:

d(xK, yK) := inf
k,k′∈K

d(xk, yk′) = inf
k∈K

d(xk, y) = inf
k∈K

d(x, yk), ∀ xK, yK ∈ B/K,

the last two equalities come from d(xk, yk′) = d(xk(k′)−1, y) = d(x, yk′k−1). Since K is
compact, one checks it easily that this is indeed a metric on B/K. With this metric, IK , I0K
are both infinity discrete subsets of B/K, and any closed ball in B/K contains only finitely
many elements of IK and I0K . We will directly work with the induced metric space

IK = B0/K.
For γ = (g, b) ∈ GLn(F )×D× with gKg−1 = K, one can check by definition of d that the
above action of γ on IK is isometric:

d(γx, γx) = d(x, x), ∀x ∈ IK .
Note that for [T1, d1], [T2, d2] ∈ IK , D[T1,d1],K ∩D[T2,d2],K 6= ∅ implies that vp(det((T1)))+

vp(Nrd((d1))) = vp(det((T2)))+vp(Nrd((d2))). We rewrite [T1, d1] = [x1K, s1, t1], [T2, d2] =
[x2K, s2, t2] with x1, x2 ∈ B(PGLn, F ), s1, s2 ∈ Z ⊂ R, t1, t2 ∈ [0, n) ∩ Z. Recall that these
equalities mean that ∃r1, r2 ∈ Z, such that vp(det(Ti)) = si+nri, vp(Nrd(di)) = ti−nri, i =
1, 2. Then we have s1 + t1 = s2 + t2, s1− s2 = t2− t1 ∈ [1−n, n−1]. Therefore the distance

d([T1, d1], [T2, d2]) = inf
k∈K

√
d′(x1, x2k)2 + 2(s1 − s2)2

just depends on d′(x1K,x2K) for the induced metric d′ on B(PGLn, F ), which is defined
in the same way as d. By the construction of the locally finite sell decomposition of MK ,
we have the following proposition.

Proposition 2.1. There exists a constant c > 0, such that for any [T1, d1], [T2, d2] ∈ IK
with d([T1, d1], [T2, d2]) > c, we have

D[T1,d1],K ∩ D[T2,d2],K = ∅.

Proof. We need to prove that, there exists a constant c > 0, such that for any [T, d] ∈ IK ,
and any [T ′, d′] ∈ {[T ′, d′] ∈ IK |D[T ′,d′],K ∩ D[T,d],K 6= ∅}, we have d([T, d], [T ′, d′]) ≤ c.
This comes from the construction of the locally finite cell decomposition of MK , and the
definition of d. We just indicate some key points. First, for any fixed choice of fundamental
domain VK in B for the action of K, by definition ∀x, y ∈ VK , d(x, y) ≥ d(xK, yK). Next,
by the proof of proposition 24 of [6], for any fixed Hecke correspondence T ∈ GLn(O) \
GLn(F )/GLn(O) and i ∈ Z, the finite set

A[T,i] := {[T ′, j] ∈ (GLn(O) \GLn(F )/GLn(O)× Z)/F×|TΠ−iD ∩ T ′Π−jD 6= ∅}
is such that ∀[T ′, j] ∈ A[T,i] we have −vp(det(T ′)) + j = −vp(det(T )) + i. By the Cartan
decomposition GLn(O) \GLn(F )/GLn(O) ' Zn+ = {(a1, . . . , an) ∈ Zn|a1 ≥ · · · ≥ an}, if T
corresponds to the point (a1, . . . , an) ∈ Zn+, then for j ∈ Z/nZ fixed, the set of T ′ ∈ GLn(O)\
GLn(F )/GLn(O) with [T ′, j] ∈ A[T,i], corresponds to the set of points (a′1, . . . , a

′
n) ∈ Zn+



8 XU SHEN

such that
∑n

k=1 a
′
k =

∑n
k=1 ak − i + j (mod nZ), |ak − a′k| ≤ C for all k = 1, . . . , n, where

C > 0 is a constant which doesn’t depend on [T, i]. From these two points one can easily
deduce the proposition for K = GLn(O), and the general case will be obtained as soon as
the case K = GLn(O) holds. �

In fact, by [4] corollary 9 the converse of the above proposition also holds. Thus there
exists a constant c > 0, such that for any [T, d], [T ′, d′] ∈ IK , D[T ′,d′],K ∩D[T,d],K 6= ∅ if and

only if d([T, d], [T ′, d′]) ≤ c.
We remark that, in [4] Fargues defined an OD×-invariant continuous map of topological

spaces

M0 −→ B(PGLn, F )/GLn(O),

and identified the image of D under this map. However, this map depends quite on our
special case. In general there is no such map from Rapoport-Zink spaces to Bruhat-Tits
buildings. For any open compact subgroup K ⊂ GLn(O), there is also a continuous map
M0 → B(PGLn, F )/K, and we have a commutative diagram of continuous maps between
topological spaces

M0
K

//

��

B(PGLn, F )/K

��
M0 // B(PGLn, F )/GLn(O).

These maps are Hecke equivariant, thus compatible with the cell decomposition of M0
K .

3. Lefschetz trace formula for Lubin-Tate spaces

In this section γ = (g, b) ∈ GLn(F )×D× is an element such that both g and b are regular
elliptic, gKg−1 = K and vp(det(g)) + vp(Nrd(b)) = 0. (Here we use the convention that an
elliptic element is always semi-simple.) Since γ is regular elliptic, the set of γ-fixed vertices
(B0)γ is non empty, cf. [17]. Let ô be a fixed choice of point in (B0)γ , and o ∈ IK be its
image in the quotient space. One can take the above choice of ô so that ô ∈ ϕ−1(0)0, o ∈ I0K .
Then γ(o) = o by the action γ : I0K → I0K . For any real number ρ > 0, we consider the
subset of I0K

Aρ = {x ∈ I0K | d(o, x) ≤ ρ},

which is a finite set for any fixed ρ. Moreover since γ(o) = o and d is γ-isometric, we have
γ(Aρ) = Aρ.

Definition 3.1. For any finite set A ⊂ I0K , we define two subspaces of M0
K

VA =
⋃

[T,d]∈A

D[T,d],K ,

UA =M0
K −

⋃
[T,d]/∈A

D[T,d],K .

Proposition 3.2. UA is an open subspace of M0
K , while VA is a compact analytic domain,

and UA ⊂ VA.

Proof. SinceM0
K −UA =

⋃
[T,d]/∈AD[T,d],K , which is a locally finite union of closed subsets,

therefore it is closed, and UA is open. VA is a finite union of compact analytic domains thus
so is itself. The inclusion simply comes from the fact M0

K = VA ∪ (M0
K − UA). �
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When ρ → ∞, the finite sets Aρ exhaust I0K . For any ρ ≥ 0, we denote Uρ = UAρ , Vρ =

VAρ . Since Uρ is relatively compact, we can compute the cohomology of M0
K as

H i
c(M0

K × Cp,Ql) = lim−→
ρ

H i
c(Uρ × Cp,Ql).

Moreover, for ρ >> 0 large enough, the cohomology group H i
c(Uρ×Cp,Ql) is constant and

bijective to H i
c(M0

K × Cp,Ql), see proposition 3.5.
For the γ above, we consider the action γ :M0

K →M0
K . Since γ(Aρ) = Aρ, we have

γ(Uρ) = Uρ, γ(Vρ) = Vρ.

For the cells contained in Vρ, γ acts as γ(D[T,d],K) = D[Tg,bd],K . Passing to the cohomology
of Uρ, γ induces an automorphism

γ : H i
c(Uρ × Cp,Ql)→ H i

c(Uρ × Cp,Ql).

Consider
H∗c (Uρ × Cp,Ql) =

∑
i

(−1)iH i
c(Uρ × Cp,Ql)

as an element in some suitable Grothendieck group, and the trace of γ

Tr(γ|H∗c (Uρ × Cp,Ql)) =
∑
i

(−1)iTr(γ|H i
c(Uρ × Cp,Ql)).

Let Fix(γ|M0
K × Cp) be the set of fixed points of γ on M0

K × Cp, then each fixed point is
simple since the p-adic period mapping is étale (cf. [18] theorem 2.6.8).

We will use our result of cell decomposition ofM0
K , to verify that the action of γ satisfies

the conditions of Mieda’s theorem 3.13 [12], thus we will deduce a Lefschetz trace formula in
our case. Recall that, if k is a complete non-archimedean field and k0 is its ring of integers,
then the category of Hausdorff strictly k-analytic spaces is equivalent to the category of
adic spaces which are taut and locally of finite type over spa(k, k0), see [9] chapter 8. If X
is a Hausdorff strictly k-analytic space, we denote by Xad the associated adic space, which
is taut and locally of finite type over spa(k, k0).

Theorem 3.3. Let the notations and assumptions be as above. For γ = (g, b) ∈ GLn(F )×
D× such that both g and b are regular elliptic, gKg−1 = K and vp(det(g))+vp(Nrd(b)) = 0,
there exist an open compact subgroup K ′ ⊂ GLn(O) and a real number ρ0, such that for all
open compact subgroup K ⊂ K ′ which is normalized by g and all ρ ≥ ρ0, we have

Tr(γ|H∗c (Uρ × Cp,Ql)) = #Fix(γ|M0
K × Cp).

For ρ sufficiently large, the left hand side is just Tr(γ|H∗c (M0
K × Cp,Ql)).

Proof. Since g ∈ GLn(F ) is elliptic, we first prove the following claim: for any sufficiently
small open compact subgroup K ⊂ GLn(O) such that gKg−1 = K, we have

d(x, γx)→∞, when x ∈ I0K , d(o, x)→∞.
In fact, since o, x ∈ I0K , write o = [o′K,−s, s], x = [x′K,−t, t] with o′, x′ ∈ B(PGLn, F )0,

s, t ∈ [0, n−1]∩Z, then γ(x) = [x′gK, vp(det(g))−t, vp(Nrd(b))+t] = [x′gK,−t′, t′] for some
unique t′ = vp(det(g))− t+nr ∈ [0, n−1]∩Z. If we denote the metric on B′ = B(PGLn, F )

by d′(·, ·) and the induced metric on B′/K by d′ as before, then we just need to prove that

d′(x′K,x′gK)→∞, when x′K ∈ (B′)0/K, d′(o′K,x′K)→∞.
To prove this statement, we first work with B′ itself. Since g is elliptic, the fixed points set
(B′)g is nonempty and compact. Moreover, for K sufficiently small, (B′)g = (B′)g′ for any
g′ ∈ gK (cf. the proof of lemma 12 in [17]). For o′ ∈ (B′)g fixed, a simple triangle inequality
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shows that d′(x′, (B′)g) → ∞ when d′(x′, o′) → ∞, since (B′)g is compact. On the other
hand, for any automorphism σ of B′ with (B′)σ 6= ∅, there exists a constant 0 < θ ≤ π
which just depends on B′ and σ, such that

d′(x′, σx′) ≥ 2d′(x′, (B′)σ) sin(
θ

2
),

see [15] proposition 2.3. In particular, d′(x′, x′g′)→∞ when d′(o′, x′)→∞ for any g′ ∈ gK.
As K is compact this deduces the above statement.

To use the above claim, we will study the action of γ around the boundary points of Uρ
and Vρ for ρ sufficiently large. We have

M0
K − Uρ =

⋃
[T,d]∈I0K−Aρ

D[T,d],K

Vρ − Uρ =
⋃

[T,d]∈Aρ−Aρ−c

F[T,d],

where for [T, d] ∈ Aρ,
F[T,d] = D[T,d],K ∩ (M0

K − Uρ),
which is nonempty if and only if [T, d] ∈ Aρ − Aρ−c by the above proposition 2.1 (c is the
constant constructed in this proposition), in which case F[T,d] is a compact analytic domain

in D[T,d],K ⊂ Vρ. For K sufficiently small, ρ sufficiently large and [T, d] ∈ I0K − Aρ−c, by

the above claim d([T, d], γ([T, d])) > c, in particular

D[T,d],K ∩ γ(D[T,d],K) = ∅, F[T,d] ∩ γ(F[T,d]) = ∅, for [T, d] ∈ Aρ −Aρ−c.

To apply Mieda’s theorem, we pass to adic spaces. We have the locally finite cell decom-
position of the adic space (M0

K)ad:

(M0
K)ad =

⋃
[T,d]∈I0K

Dad[T,d],K

where each cell Dad[T,d],K is an open quasi-compact subspace, Dad[T1,d1],K ∩ D
ad
[T2,d2],K

6= ∅ ⇔
D[T1,d1],K ∩ D[T2,d2],K 6= ∅, and the action of γ on (M0

K)ad induces an action on the cells

in the same way as the case of Berkovich analytic spaces. By [9] 8.2, Uadρ is an open

subspace of (M0
K)ad, which is separated, smooth, partially proper. On the other hand,

V ad
ρ =

⋃
[T,d]∈Aρ D

ad
[T,d],K is a quasi-compact open subspace. Consider the closure V ad

ρ =⋃
[T,d]∈Aρ D

ad
[T,d],K of V ad

ρ in (M0
K)ad, which is a proper pseudo-adic space. We know that V ad

ρ

(resp. Dad[T,d],K) is the set of all the specializations of points in V ad
ρ (resp. Dad[T,d],K). Moreover

γ induces automorphisms γ : V ad
ρ → V ad

ρ , V ad
ρ → V ad

ρ , Uadρ → Uadρ . Since V ad
ρ−c ⊂ Uadρ ⊂ V ad

ρ ,

Uadρ is closed under specializations, we have

V ad
ρ −V ad

ρ =
⋃

[T,d]∈Aρ−Aρ−c

Dad[T,d],K−
⋃

[T,d]∈Aρ−Aρ−c

Dad[T,d],K ⊂
⋃

[T,d]∈Aρ−Aρ−c

(Dad[T,d],K−D
ad
[T,d],K).

Note

Dad[T1,d1],K ∩ D
ad
[T2,d2],K

6= ∅ ⇔ Dad[T1,d1],K ∩ D
ad
[T2,d2],K

6= ∅.

For [T, d] ∈ Aρ−Aρ−c, let W[T,d] = Dad[T,d],K −D
ad
[T,d],K . By the paragraph above, for ρ >> 0

we have γ(W[T,d]) ∩ W[T,d] = ∅. Since we can write V ad
ρ − V ad

ρ =
⋃

[T,d]∈Aρ−Aρ−cW
′
[T,d]
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where W ′[T,d] ⊂W[T,d] is some locally closed subset for each [T, d] ∈ Aρ−Aρ−c, one sees the

conditions of theorem 3.13 of [12] hold for V ad
ρ and its compactification V ad

ρ , i.e.

Tr(γ|H∗c (V ad
ρ × Cp,Ql)) = #Fix(γ|V ad

ρ × Cp) = #Fix(γ|Vρ × Cp).

Here and in the following V ad
ρ × Cp := V ad

ρ × spa(Cp, OCp), and similar notations for other
adic spaces. By [10] proposition 2.6 (i) and lemma 3.4, we have

Tr(γ|H∗c (V ad
ρ × Cp,Ql)) = Tr(γ|H∗c (Uadρ × Cp,Ql)) + Tr(γ|H∗c ((V ad

ρ − Uadρ )× Cp,Ql)).

Since V ad
ρ − Uadρ =

⋃
[T,d]∈Aρ−Aρ−c F

′
[T,d], where F ′[T,d] ⊂ F ad[T,d] is some locally closed subset

for each [T, d] ∈ Aρ − Aρ−c, by the paragraph above, F ′[T,d] ∩ γ(F ′[T,d]) = ∅. As Aρ − Aρ−c
is a finite set, there are only finitely many orbits for the action of γ. For the union of the
subspaces F ′[T,d] over an orbit of γ, the trace of γ on its cohomology is 0. Then one can

repeat by the above argument to get that Tr(γ|H∗c ((V ad
ρ − Uadρ ) × Cp,Ql)) = 0. We can

conclude by Huber’s comparison theorem for compactly support cohomology of Berkovich
spaces and adic spaces (cf. proposition 8.3.6 of [9]),

Tr(γ|H∗c (Uρ×Cp,Ql)) = Tr(γ|H∗c (Uadρ ×Cp,Ql)) = Tr(γ|H∗c (V ad
ρ ×Cp,Ql)) = #Fix(γ|Vρ×Cp).

But by the reason above, for ρ >> 0 there is no fixed points of γ outside Vρ × Cp,

#Fix(γ|Vρ × Cp) = #Fix(γ|M0
K × Cp).

The last statement in the theorem comes from the following proposition 3.5.
�

Remark 3.4. In fact we can use Vρ to compute the cohomology of M0
K directly when

passing to adic spaces:

H i
c(M0

K × Cp,Ql) ' H i
c((M0

K)ad × Cp,Ql) = lim−→
ρ

H i
c(V

ad
ρ × Cp,Ql), ∀ i ≥ 0,

here the second equality comes from proposition 2.1 (iv) of [10]. We prefer to transfer back
the results to Berkovich spaces, so we insist on working with the open subspaces Uρ.

In fact, the formal models M̂0
K are algebraizable: they are the formal completions at

closed points of some Shimura varieties as in [8], or one can find the algebraization directly
as in theorem 2.3.1 in [18]. So we have for all integer i ≥ 0

H i
c(M0

K × Cp,Ql) ' (lim←−
r

H i
c(M0

K × Cp,Z/lrZ))⊗Zl Ql,

and similarly for the cohomology without compact support. We conclude this paper by
proving the following proposition.

Proposition 3.5. Let the notations be as above. Then for ρ >> 0 and all integer i ≥ 0,
we have bijections

H i
c(M0

K × Cp,Ql) ' H i
c(V

ad
ρ × Cp,Ql) ' H i

c(Uρ × Cp,Ql).

Proof. These two bijections come from the description of Vρ and Huber’s theorem 2.9 in
[11]. Recall the fundamental domain D ⊂ M0 is associated to an admissible open subset
Drig ⊂ (M0)rig. On the rigid analytic space (M0)rig there is a natural coordinate system
x1, . . . , xn−1, such that for x = (x1, . . . , xn−1) ∈ (M0)rig, the Newton polygon of the group
Hx[π] is given by the convex envelope of the points (qi, v(xi))0≤i≤n, where x0 = 0, xn =
1, q = #(O/π), Hx is the p-divisible group associated to x, cf. [5] 1.1.5. Under this
coordinate system

Drig = {x = (x1, . . . , xn−1) ∈ (M0)rig|v(xi) ≥ 1− i

n
, i = 1, . . . , n− 1},
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cf. loc. cit. 1.4. Thus after base change to Cp it is isomorphic to a closed ball. In [4] section
5 Fargues had described the Newton polygons of the points in a Hecke orbit. In particular

at level K = GLn(O) the admissible open subsets V rig
ρ ×Cp are locally described by closed

balls. Then this is also the case for any level K. Now pass to adic spaces, V ad
ρ × Cp is a

quasi-compact open subset and locally described by Bερ = {z ∈ (M0)ad × Cp||xi(z)| ≤ ερ}.
Since Uadρ ×Cp, (M0)ad×Cp can be described as unions of ascending chains of quasi-compact
open subsets locally in the above forms, by theorem 2.9 of [11] and proposition 8.3.6 of [9]
one can conclude. �
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