WORKSHOP ON "INTERGRAL p-ADIC HODGE THEORY"

Let C be the completion of an algebraic closure of \mathbb{Q}_p , \mathcal{O}_C be its integral ring, and $k \cong \overline{\mathbb{F}}_p$ be the residue field. Let $A_{\inf} = W(\mathcal{O}_C^{\flat})$. Bhatt, Morrow and Scholze [BMS16] developed recently a new cohomology theory $R\Gamma_{A_{inf}}(\mathfrak{X})$ for a proper smooth formal scheme \mathfrak{X} over \mathcal{O}_C . The cohomology groups $\mathrm{H}^i_{A_{\mathrm{inf}}}(\mathfrak{X})$ are finitely presented A_{inf} -modules equipped with a semi-linear Frobenius action satisfying certain properties. Such objects are called Breuil-Kisin-Fargues modules, and they can be viewed as analogues of Drinfeld's shtukas with one leg in mixed characteristic. This A_{inf} -cohomology can be practically viewed as a universal padic cohomology theory in the sense that it specialized to all other known p-adic cohomologies such as crystalline cohomology for the special fiber \mathfrak{X}_k , the *p*-adic étale cohomology for adic generic fiber $\mathfrak{X}_C^{\mathrm{ad}}$, and the de Rham-Witt cohomology for \mathfrak{X} . More importantly, this new cohomology theory preserves the information on torsions in various *p*-adic cohomology. It can be used to establish a comparison theorem between p-adic étale cohomology on the generic fiber $\mathfrak{X}_C^{\mathrm{ad}}$ and the crystalline cohomology on the special fiber \mathfrak{X}_k with integral coefficients. In his report for ICM 2018 [Sch17], Scholze considers this as a first step towards an explicit universal cohomology theory for algebraic varieties over \mathbb{Q} that plays practically the same role as the conjectured motives.

The aim of this workshop is to understand the construction of this A_{inf} -cohomology theory and its applications to *p*-adic integral Hodge theory. Basic requisites include Scholze's theory of perfectoid spaces, and the pro-étale site for rigid analytic varieties.

0.1. **Introduction.** Give an introduction to the main results of [BMS16] and discuss some interesting examples. Section 1 and 2 of [BMS16].

0.2. Algebraic properties of A_{inf} -modules. Section 4.2 of [BMS16]. Structure of finite presented modules over A_{inf} . The equivalence between the category of vector bundles over $\text{Spec}(A_{inf})$ and $\text{Spec}(A_{inf}) \setminus \{\mathfrak{m}\}$, where \mathfrak{m} is the maximal ideal of A_{inf} .

0.3. Breuil–Kisin modules and Breuil–Kisin–Fargues modules. Section 4.1, 4.3, 4.4 of [BMS16]. Explain Fargues' theorem [BMS16, Theorem 4.28] on the equivalence between the category Breuil–Kisin–Fargues modules and that of pairs (T, Ξ) , where T is a finite free \mathbb{Z}_p -module and Ξ is a B_{dR}^+ -lattice in $T \otimes_{\mathbb{Z}_p} B_{dR}$.

 $\mathbf{2}$

0.4. Review of Scholze's Pro-étale site. Give a review on Scholze's pro-étale site on rigid analytic varieties and Scholze's primitive comparison Theorem [Sch13, Corollary 5.11].

0.5. De Rham comparison theorem for rigid analytic varieties over C. For a rigid analytic variety X/C, introduce the cohomology group $\mathrm{H}^{i}_{\mathrm{crys}}(X/B^{+}_{\mathrm{dR}})$, explain its comparison with étale cohomology and usual de Rham cohomology if X descends to a finite extension of \mathbb{Q}_{p} . [BMS16, Section 12]

0.6. $L\eta$ -operator. Construction of $L\eta$ -operator on the derived category of abelian categories. Basic properties. [BMS16, Section 6] and Lemma 8.11.

0.7. The complexe $\tilde{\Omega}_{\mathfrak{X}}$ and local computations. Define the complex $\Omega_{\mathfrak{X}}$ and compute it in local situations. Show that $\tilde{\Omega}_{\mathfrak{X}}$ is a perfect complex of $\mathcal{O}_{\mathfrak{X}}$ -modules, and one has an isomorphism $\mathrm{H}^{i}(\tilde{\Omega}_{\mathfrak{X}}) \cong \Omega^{i,cont}_{\mathfrak{X}/\mathcal{O}} \{-i\}$ (Theorem 8.3) [BMS16, Section 7 and 8].

0.8. Relative De Rham-Witt complex. Give a review on the relative de Rham-Witt complex and its relation with crystalline cohomology. [BMS16, Section 10] and [LZ04, Theorem 3.5].

0.9. The complexe $A\Omega_{\mathfrak{X}}$. Introduce the complex $A\Omega_{\mathfrak{X}}$, explain its basic properties. [BMS16, Section 9]

0.10. Comparison with de Rham-Witt complex. Compare the complex $A\Omega_{\mathfrak{X}}$ with the de Rham-Witt complex. [BMS16, Section 11].

0.11. Comparison with crystalline cohomology over A_{crys} . Prove that we can recover the crystalline cohomology of \mathfrak{X} over A_{crys} from the complex $A\Omega_{\mathfrak{X}}$ [BMS16, Theorem 12.1].

References

- [BMS16] B. Bhatt, M.Morrow, P. Scholze, Intergral p-adic Hodge theory, preprint in 2016, arXiv:1602.03148
- [LZ04] Langer, A., and Zink, T. De Rham-Witt cohomology for a proper and smooth morphism. J. Inst. Math. Jussieu 3, 2 (2004), 231-314.
- [Sch13] P. Scholze, p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi, 1, e1, 2013.
- [Sch17] P. Scholze, *p*-adic geometry, talk for ICM 2018, available at author's homepage.