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Abstract

In this paper we prove that the p-adic L-function that interpolates the Rankin-Selberg prod-
uct of a general modular form and a CM form of higher weight divides the characteristic ideal
of the corresponding Selmer group. This is one divisibility of the Iwasawa main conjecture for
this p-adic L-function. We prove this conjecture using congruences between Klingen Eisenstein
series and cusp forms on the group GU(3,1), following the strategy of a recent work of C.
Skinner and E. Urban. The actual argument is, however, more complicated due to the need
to work with general Fourier-Jacobi expansions. This theorem is used to deduce a converse of
Gross-Zagier-Kolyvagin theorem and the p-adic part of the precise BSD formula in the rank one
case.

1 Introduction

Let p be an odd prime. Let K C C be an imaginary quadratic field such that p splits in K as
(p) = voUp. We fix an isomorphism ¢ : C, ~ C and suppose v is determined by ¢. There is a unique
Z2-extension Ko /K unramified outside p. Let Tx := Gal(K/K). Suppose f is a Hida family
of ordinary cuspidal eigenforms new outside p with coefficient ring I, a normal finite extension of
the power series ring Zy[[W]] of one variable W. Let L be a finite extension of @, with integer
ring Op. Suppose £ is an L-valued Hecke character of Ag/K* whose infinite type is (§,—%5) for
some even integer £ > 6 and such that ord,,(cond(§,,)) < 1 and ordg,(cond({s)) < 1. Denote by
& the Op[[I'k]]-adic family of Hecke characters containing £ as some specialization (we make this
precise later). In this paper we associate with f, IC and & a dual Selmer group X¢ i ¢, which is a
finite module over the ring I[[I'c]]. On the other hand, there is a p-adic L-function L k¢ € Fyjry)
interpolating the algebraic parts of the special L-values Lic(fgs, &g, 5), where fy and & are elements
in the families f and £ and F} is the fraction field of A (f, has weight 2 and £, has infinite type
(k/2,—K/2). Welet Ly xc¢ be the specialization of L¢ x ¢ to a single form fy of weight 2 and trivial
character in the family f, which we assume is defined over L. We write (’5%” for the completion of
the maximal unramified extension of O}" and [“" for the normalization of the ring corresponding
to an irreducible component of ]I®(9L (’A)z’" For a finite set of primes 3 containing all bad primes, we
construct in this paper the “X-primitive” p-adic L-functions Efzf’,c e I"[[Tk]], E?,g,lc c Oy k)]
using the doubling method. The general case is obtained by putting back the local Euler factors
at primes in 3. In Section [7] we also recall closely related p-adic L-function constructed by Hida:
Lgéljéda, Eflgd,g The Iwasawa-Greenberg main conjecture for Lr x ¢ essentially states that the char-
acteristic ideal (to be defined later) of X¢ x ¢ is generated by L x ¢. We also associate with f, IC, £

a dual Selmer group X x ¢ over O [[[c]]. The Iwasawa-Greenberg main conjecture says that its



characteristic ideal of Xy i ¢ is generated by Ly x ¢.

Let Q C C be the algebraic closure of Q and let Gg = Galﬁ@/@) be the Galois gruop. Let G, C Gg
be the decomposition group determined by the inclusion Q C @, coming from ¢. We write € for the
cyclotomic character and w for the Techimuller character of Gg.

Let g be a cuspidal eigenform on GLo/Q with the associated p-adic Galois representation py :
Go — GL2(Opr). We say g satisfies (irred) if:

e The residual representation p, is absolutely irreducible.

If g is nearly ordinary at p, then py|q, is equivalent to an upper triangular representation and we
say it satisfies (dist) if:

o The characters of py|c, on the diagonal are distinct modulo the maximal ideal of O

We will see later (in Section (7)) that if the CM form g¢ associated to £ satisfies (irred) and (dist)
then ,Cf’;gg S HHFICH

In this paper, under certain conditions on f,&, K, we prove one inclusion (or divisibility) of the
Iwasawa-Greenberg main conjecture for Lg ¢ xc. Our first theorem is a three-variable result for Hida
families.

Theorem 1.1. Let f be a Hida family of ordinary eigenforms that are new outside p of square-free
tame level N, and suppose f has a weight two specialization f that has trivial nebentypus and is
the ordinary stabilization of a newform of level N. Let p be the mod p residual Gg-representation
associated with the Hida family £. Let & be a Hecke character of IK*\Ag with infinite type (5, —%5)
for some k > 6. If

(a) p>5;

(b) £|A6 =woNm and k = 0(mod 2(p — 1));

(¢) pglc, is irreducible;

(d) there exists q|N that does not split in K and such that pg is ramified at q;

(e) the CM eigenform ge associated to the character & satisfies (dist) and (irred);

(f) For each non-split prime v of Q we have the conductor of &, is not (w,) where w, is a
uniformizer of the integer ring of ICy, and that

L=t

E(anfva 9

(As in [18] the (7.4, Ev, %) is the local root number for the base change of ws,, to ICy twisted
by & . It differs from the local root number for the Rankin-Selberg product of w¢, and ge, by

a factor xx/0,0(—1).)

Then Eflgd,g € ﬁ“"[[f’;c]] and (.Cflfcdg) D) Charﬁur[[FK]](Xf,]Qg) as ideals of T“"[[Tx]]. Here char means
the characteristic ideal.



We also have a two variable theorem for a single form.
Theorem 1.2. Let N, f, k and & be as before. If
(a) p = 5;
(b) the p-adic avatar of £| - |*/?(w™"' o Nm) factors through T and k = 0(mod 2(p — 1));
(¢c) ptlaye is irreducible;
(d) there exists q|N that does not split in IC and such that py is ramified at q.

Then
(Lrx6) 2 chatgurp e, L(Xf16)

is true as fractional ideals of OV [[Tx]] ®o, L.

Hida’s p-adic L-functions Eflgd,g are more canonical than the L¢¢ x in that there is a constant

in @; showing up in our interpolation formula (see Proposition that depends on some choices.
Under the assumptions of Theorem [I.1] we show that Hida’s p-adic L-function is integral: it belongs
to I“"[[[x]]. Note that in the setting of Theorem we do not know if Ly, k¢ is actually in
Oy (ITk]).

The assumptions on pr x and the local e-factors are needed to appeal to results of M. Hsieh
[17], [18] in proving the non vanishing modulo p of some special L-values or vanishing of the anti-
cyclotomic p-invariant. The square-freeness of N is put at the moment for simplicity (mainly to
avoid local triple product integrals for supercuspidal representations and we may come back to
remove it in the future).

Hypothesis (b) of Theorem means that Ly ¢ can be evaluated at the trivial character of
T'ic, though it is not a point at which it interpolates classical L-values. As a result, Theorem
has interesting applications for the usual Bloch-Kato Selmer group of f.

Skinner [44] has recently been able to use Theorem [1.2]to prove a converse of the Gross-Zagier-
Kolyvagin theorem: if the Mordell-Weil rank of an elliptic curve over Q is exactly one and the
Shafarevich-Tate group is finite, then its L-function vanishes to exactly order one at the central
critical point. The author has been able to prove an anti-cyclotomic main conjecture of Perrin-
Riou when the root number is —1 [49] (by comparing the Selmer group in the theorem with the one
studied by Perrin-Riou, using the Poitou-Tate long exact sequence and applying F. Castella’s gen-
eralization [2] of a formula of Bertolini-Darmon-Prasanna relating the different p-adic L-functions).
There is also an ongoing joint work of the author with Skinner and Jetchev that uses Theorem
to deduce the p-adic part of the precise BSD formula in the rank one case [50]. Finally the methods
of this paper can be adapted (with some additional arguments) to the case when f is non-ordinary
as well. This forms the foundation of the author’s recent proof of the Iwasawa main conjecture
for supersingular elliptic curves formulated by Kobayashi (see [51]). We remark that in all of the
above mentioned applications one can not appeal to the main conjecture proved in [45] since the
global sign of the L-functions has to be 41 in loc.cit.

Our proofs of Theorem and Theorem use Eisenstein congruences on the unitary group
U(3,1), which first appeared in Hsieh’s paper [19]. Recent works with a similar flavor include
Skinner-Urban’s [45] using the group U(2,2), and the work of M. Hsieh [16] for CM characters us-
ing the group U(2,1). The difference between our results and Skinner-Urban’s is that they studied



the p-adic L-function of Rankin-Selberg product of a general modular form and a CM form such
that the weight of the CM form is lower, while in our case the weight of the CM form is higher.
This is the very reason we work with unitary groups of different signature.

We also mention there are works establishing the other divisibility of the main conjecture using
Euler systems ([49], [31]) under some more restrictions. Together with Theorem and Theorem
these give the full equality of the main conjecture in the case when all hypotheses are satisfied.

For the reader’s convenience we briefly discuss our proof of the theorems. The proof follows the
main outline of Skinner-Urban’s proof in [45] (which in turn followed the main outline of Wiles’
proof of the Iwasawa main conjecture for totally real fields). But carrying this out requires new
arguments. The main steps are: (1) constructing a p-adic family of Eisenstein series whose constant
terms are essentially the p-adic Rankin-Selberg L-function EfEJC?g; (2) proving that the Eisenstein
series is coprime to p-adic L-function (that is, modulo any divisor of the p-adic L-function it is still
non-zero), which shows that its congruences with cuspforms is ‘measured’ by the p-adic L-function;
(3) the Galois argument. The main differences between our proof and that of Skinner-Urban
are in steps (1) and (2). First of all we need to work with the unitary group U(3,1) instead of
U(2,2) which is used in [45]. The reason is that by our assumption that the CM form has higher
weight than f, the L-values interpolated by the p-adic L-function Lf x ¢ show up in the constant
terms of holomorphic Eisenstein series on the group U(3,1) that are induced from the Klingen
parabolic subgroup with Levi U(2) x K*. The cuspidal representations on U(2) is determined by
the automorphic representation 7; and a Hecke character of A,é whose restriction to Aé is the
central character of ;. As a result, the construction of the p-adic families of Eisenstein series via
the pullback formula requires finding the right Siegel section at p (which turns out to be different
from the one used in [45]). To have the right pullback and to make the Fourier-Jacobi coefficient
computation not too hard, such choice of section is quite subtle. The idea for our choice is similar
to that in [3] and is inspired by the formula for differential operators on Fourier expansions.

Step (2) is the core of the whole argument. In [45], the Klingen Eisenstein series on U(2,2) has
a Fourier expansion Efjing = ZT aTqT, with T" running over 2 x 2 Hermitian matrices. By the
pullback formula we have ar = (FJrFEsicg, or)u(1,1), Where Eye, is a Siegel Eisenstein series on
U(3,3), FJrEsjeq is its T-Fourier-Jacobi coefficient (regarded as a form on U(1,1)), and ¢, is a
vector in the U(1,1) automorphic representation 7 considered in [45] (again determined by 7; and
a Hecke character of A,XC) Computation tells us F'JrEy;eq is essentially a product of an Eisenstein
series and a theta function, and thus this pairing, and hence ar is essentially a Rankin-Selberg
product. In our case, forms on U(3,1) only have Fourier-Jacobi expansions (instead of Fourier
expansions):

F ) an(F)q" = FJ(F)
neQ

with a,(F) € H°(B,L(n)), where B is a 2-dimensional abelian variety which is the abelian part
of the universal semiabelian scheme over a point in the boundary of a toroidal compactification
Shimura variety for GU(3,1). The L(n) is a line bundle on B. We can view each a,(F') as an
automorphic form on the group U(2) - N, where U(2) is the definite unitary group appearing as a
factor of the Levi of the Klingen parabolic subgroup of U(3,1), and N is the unipotent radical of



1 x X
1

X X X

the parabolic, which is a Heisenberg group. It consists of matrices of the form 1

1
To study a,(F) we use a functional ly, on H°(B,L(n)). This is just the pairing over N (modulo
its center) with an explicit theta function 6; on U(2)- N. We first compute the n-th Fourier-Jacobi
coefficient of a Siegel Eisenstein series, considered as a form on the Jacobi group N'-U(2,2) C U(3, 3)

with N/ a unipotent subgroup of U(3,3). It consists of matrix of the form
1 x X X X
1

1

X X = X X X

1

This turns out to be of the form F - ©, with E a Siegel Eisenstein series on U(2,2) and O a theta
function on the Jacobi group. Next we restrict this n-th Fourier-Jacobi coefficient to the group

(N-U(2)) x U(2) c U(3,1) x U2) NN - U(2,2).

Another computation shows that © essentially restricts to a form 6 x 63 on (N - U(2)) x U(2)
(the actual situation is slightly more complicated, see Lemma . Applying lg,, we show that
(02,01) N is a constant function on U(2) (which we manage to make nonzero). So using the pullback
formula, we get

lg, (an(F") = (Elu@)xu(): ¢ - 03)1x0(2)

regarded as a form on the first U(2), which is the U( ) in the Levi of the Klingen parabolic. To
study its p-adic property, we pair it with an auxiliary (Hida family of) form A on U(2):

(Elu@yxu@): ¢ - 03)1xu(2): Mue) = (¥) - (h, oz - 03).

To obtain this formula we use the doubling method formula for U(2) x U(2) — U(2,2) applied to
h. The (x) is some p-adic L-function factor for h coming from this. The pairing on the right hand
side is just a triple product integral f[U(QH h(g)03(g)f(g)dg. The fact that the f3 can be taken to
be an eigenform follows from considering the central character (see the proof of Proposition
We use Ichino’s formula to evaluate this:

( / h(9)03(9) 1 (9)dg) / h(9)05(9) f()dg)
[U(2)] [U(2)]

LP(3,m x x1) L7 (3,7 X x2) H L(h@03® fhebs® f)
LE(Q ﬂ-f’ad)LZ(Q 7T937ad>LE 2 Wh’ad s hvah ><‘93,v793,v><fvafv>

= (h, h) (03, 03)(f, )-

Here "means some forms or vectors in the contragredient representation of the automorphic repre-
sentation for h, 63 and f. The factor I, is a local integral defined by Ichino, and y; and y2 are two
CM Hecke characters showing up in the computation. We interpolate everything in p-adic families
and compare it to the product of several p-adic L-functions of modular forms or Hecke characters.
Furthermore:



e We can choose h and 63 so that these p-adic L-functions are essentially units in I%"[[T'x]]*.

e The ratio of the triple product and the product of these p-adic L-functions is a product of
local factors (we show that the triple product is a p-adic analytic function, so the product of
these local factors is a p-adic meromorphic function). We make the local choices such that for
inert or ramified primes these local factors involve only the Hida-family variable of f (which
has nothing to do with I’Z or I'-). For split primes we compute these local factors explicitly.

The constructions above finally provide a nonzero element of I, which is good enough for our use.
After this we can use the same argument as in [45] to deduce our main theorem: by a geometric
argument we construct a cuspidal family on U(3,1) congruent modulo the p-adic L-function Lg x ¢
to the Eisenstein family constructed as above. Passing to the Galois side, we get a family of Galois
representations coming from cuspidal forms that is congruent to the Galois representations coming
from our Klingen Eisenstein family, but which is “more irreducible” than the Eisenstein Galois rep-
resentations. Then an argument (the “lattice construction”) of Urban gives the required elements
in the dual Selmer group.

Remark 1.3. We emphasize here that the 6 is fixed throughout the whole p-adic family (instead of
varying). Note also that the space of theta functions with given Archimedean kernel function and
level group at finite places is finite dimensional. The space H°(B, L(n)) ®z, Q, is generated by a
finite number of such theta functions. We will show in the text that by pairing the I"[[['x]]-adic
Fourier-Jacobi coefficient with one rational theta function (not necessarily p-integrall), we get an
element in I [Tk]] ®z, Qp. We then show that by choosing the datum properly, this element is the
product of a unit in ﬁur[[F;C]] and a non-zero element in Q,, and proving it is prime to the p-adic
L-function we study. Such strategy is notably different from the one adopted in [18], where Hsieh
argued p-integrally and proved stronger result that the Fourier-Jacobi coefficient is already a unit.
This is the very reason why we do not need to study the theory of p-integral theta functions.

Remark 1.4. In [54] the special L-value showing up in the Fourier-Jacobi expansion is the near
central point of the Rankin-Selberg L-function, while in our case it is the central value of the triple
product L-function. Moreover the Fourier-Jacobi coefficient considered in [54] is non-zero only
when f is a CM form (see Theorem 4.12 in [oc.cit). This is due to the fact that we are paring the
Fourier-Jacobi coefficient with the product of a theta function and an auxiliary form h on U(2),
while Zhang paired it with the theta function only (i.e. taking the h in our case to be the constant
function). Our strategy has the advantage that these central L-values are accessible to various
results of non-vanishing modulo p by Hsieh.

This rest of this paper is organized as follows. In section 2 we recall some backgrounds and formu-
late the main conjecture. In section 3 we discuss automorphic forms and p-adic automorphic forms
on various unitary groups. In section 4 we recall the notion of theta functions which plays an impor-
tant role in studying Fourier-Jacobi expansions as outlined above. In sections 5 and 6 we make the
local and global calculations for Siegel and Klingen Eisenstein series using the pullback formula of
Shimura. In section 7 we interpolate our previous calculations p-adically and construct the families.
In section 8 we prove the co-primeness of (the Fourier-Jacobi coefficients of ) the Klingen-Eisenstein
series and the p-adic L-function. Finally, we deduce the main theorem in section 9.
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2 Backgrounds

We first introduce some notations. We will usually take a finite extension L/Q, and write Oy, for its
integer ring and wy, for a uniformizer. Let Gg and G be the absolute Galois groups of Q and K.
Let F,% be the subgroups of I'x such that the complex conjugation acts by +1. We take topological
generators 7% so that rec™!(y*) = ((1+p)2, (1+p)2) and rec™ (y~) = ((1+p)2, (1+p)~2) where
rec : AZ — G;‘Cb is the reciprocity map normalized by the geometric Frobenius. Let Wi be the
composition

G/C — ' — Zp[[F,d]X.

Define Ak := Or[[I'k]]. Recall we defined a character £ in the introduction. We will write o¢ for
the Galois character corresponding to & via class field theory. We also let Q. be the cyclotomic Z,
extension of Q and let I'g = Gal(Qx/Q). Define Wq to be the composition Gg — I'g — Zy[[T'g]]*.
We also define ex and eg to be the compositions K*\AZ 5 G¥ — Z,[[I'k]]* and Q*\Ag s

G?Qb — Zp|[I'g]]* where the second arrows are the Wy and g defined above. Let w and € be the
Techimuller character and the cyclotomic character.

2.1 p-adic Families for GLy/Q

Let M be a positive integer prime to p and x a character of (Z/pMZ)*. Let Ag = Zy[[W]] (we call
Ag the weight space). Let I be a domain finite over Ag. A point ¢ € Spec(I) is called arithmetic if
the image of ¢ in SpecA(Q,) is the continuous Z,-homomorphism sending (1 + W) ~ ((1 + p)~—2
for some k > 2 and (¢ a p-power root of unity. We usually write x4 for this &, called the weight of
¢. We also define x4 to be the character of Z; ~ (Z/pZ)* x (1 + pZ,) that is trivial on the first
factor and given by (1 4 p) — ¢ on the second factor.

Definition 2.1. An [-adic family of modular forms of tame level M and character x is a formal q-
expansion £ = 3" anq", a, € I, such that for a Zariski dense set of arithmetic points ¢ € Spec(I)
the specialization fo =Y o7 d(an)q" of £ at ¢ is the g-expansion of a modular form of weight kg,
character Xx¢w2*”¢ (where w is the Techimuller character), and level Mp's for some tys > 0.

The U, operator is defined on both the spaces of modular forms and families. It is given by:

[o¢] o0
Up(Y_ and") =) apng".
n=0 n=0

Note that (U,-f)y = U,-fs. Hida’s ordinary idempotent e, is defined by e, := lim,, U;!. A form
f or family f is called ordinary if e, f = f or e,f = f. (See for instance [9, Page 550].) A well known
fact is that every ordinary eigenform fits into an ordinary family of eigenforms f ([I0, Theorem
I1] for example). By results of Deligne, Langlands, Shimura et al there is a Galois representation
py:Gg — GLy(Qyp) for f. If the residual representation p ¢ is irreducible then one can construct a
Galois representation pg : Gg — GLa(Il) such that it specializes to the Galois representation pg, of
f, at each arithmetic specialization ¢ € Spec(Il).



2.2 The Main Conjecture

Before formulating the main conjecture, we first define the characteristic ideals and the Fitting
ideals. We let A be a Noetherian ring. We write Fitt 4(X) for the Fitting ideal in A of a finitely
generated A-module X. This is the ideal generated by the determinant of the r x r minors of the
matrix giving the first arrow in a given presentation of X:

AP - A" =2 X = 0.

If X is not a torsion A-module, then Fitt4(X) = 0.

Fitting ideals behave well with respect to base change. For I C A an ideal
Fitt /7 (X/1X) = Fitt4(X) mod I.

Now suppose A is a Krull domain (a domain which is Noetherian and normal). Then the charac-
teristic ideal is defined by:

chary (X) := {z € A: ordg(x) > length,(X) for any height one prime Q of A}.
If X is not a torsion A-module, then we define char4(X) = 0.

We consider the Galois representation:
Tt i := Tr®z, Ak

with the G action given by pfagce% @Ak (V). We define the Selmer group (recall « is assumed
to be even)

Selg xc.e := ker{ H"(IC, Tt c ¢ @uryc LT k)*) = H' (I, Tt e e ®T[[Cic]]*) x H HY (I, Ty e @T[[Tkc]]*)
vip

where * means the Pontrayagin dual Homgz, (—,Q,/Z,). We also define the -primitive Selmer
groups:

Selg ¢ == ker{H" (K, Tt jc.c @ I[Tk]]*) = H' (In, Tt e ® I[[Tkc]]*) x H HY (I, Ty e @ I[[Txc]]").
vEN

We let
XfJC,g = (Self’]c,g)*.

Xiice = (Selrxe)”

These are finitely generated I[[T'x]]-modules (see e.g. [45, Lemma 3.3]). We take the extension
of scalars of them to I""[[I'x]] and still denote them using the same notations. In section (7| we
are going to construct p-adic L-functions Eflfcd‘g and Efz }éhda which are elements in I""[[I'c]] or its

fraction field. Their interpolation formulas are given in equation (see also Remark [7.6)). The
3-variable Iwasawa main conjecture is



Conjecture 2.2. X¢ ¢ and szlcg are torsion 1" [[Tx]]-modules and
i
chargu e Xexe = (LE4E):

b 3, Hid
charpur, n Xece = (Leicg -

We can also replace f with a single form fy and have the two-variable main conjecture

Conjecture 2.3. Xy ¢ and XfEO K¢ are torsion O ([Txc]]-modules and

Haid
char gurp Xfo g = (Lipicie):

N _ / »3, Hida
Char@gr[[r,anfoJC,f = (Lfo,lc,é )-

2.3 Control of Selmer Groups

In this subsection we prove a control theorem of Selmer groups which will be used to prove Theorem
Let ¢y € Specl[[T'k]](Q,) to be the point mapping v+ to 1 and such that ¢y corresponds
to a form fy. Let p = kergg|r of weight two and trivial character. Then we prove the following
proposition.

Proposition 2.4. There is an exact sequence of Op[[['k]]-modules
M = Xeice/9Xexe = Xjoxe =0
where M ®p, L has support of codimension at least 2 in SpecOp[[I'k]] @ L.

Proof. We write I for I[[I'x]] for simplicity. Write T = T¢x¢ as a Ix-module. Let T' be the
Ax-module Ty, x ¢. Recall that p = votg. We have an exact sequence

0— T ®p A — Ty I — Ty, (plk)* — 0.

Write Gy, for the Galois group over K of the maximal algebraic extension of K unramified outside
3. From this we deduce

H'(Gry, T ®a Ag) = H' Gy, T @1 i) [
as in [45, Proposition 3.7]. We also have an exact sequence:
HO (I, T @rqrygy (HT))) = HO (g, T @1prggy (9[Tkc]]))
= H'(Iy, T @0, () (OLl[Tx]") = H' (I, T @prgg U[Tx]]*))-

From these we deduce an exact sequence of Ag-modules

M := ((cokers1)“"0)* /p(cokers1) 9™ <> X7y o/0Xixe = X e — 0.

Let Kooz, (resp. Koouw,) be the Zj-extension of K unramified outside vy (resp. vp) and let
Iz, = Gal(Koo 5y) (resp. I'yy = Gal(KCyy /K)). Let vy, € I'y, and vy, € I'y, be topological generators.
Note that we have

0T =T —=T/Tt -0



as Gq,-modules. By the description of the Galois action, there is a v € Iy, such that v — 1 acts
invertibly on T @yp. (I[[Tx]]*)). We take a basis (v1,vz) such that vy generates TF and the
action of y on T is diagonal under this basis. Then it is not hard to see (by looking at the I;,-action)
that if

v € HY(Iy,, T @y, I§)

we have v € (I[[Ty,]])* - v2 and if v € HO(I5, T @i, (plk)*) then v € (plx)*ve. From the above
discussion we know that ((cokersi)@)* /kerd)(cokers;)% is supported in

SpecOy[[l',]] ® L.

Moreover by looking at the action of Frobg, we see it is killed by the function a, 'R — 1 where
ap is the invertible function in I which gives the U,-eigenvalue of f and R is the image in I', of
Frobg, under class field theory. But a,(¢o) # 1 and R(¢o) = 1 so a,, 'R —1 is non zero at ¢g. So
the support of M ®¢p, L has support of dimension at most zero and this proves the proposition.

O

3 Unitary Groups

In this section we introduce our notation for unitary groups and develop Hida theory on them.
We define S, (R) to be the set of n x n Hermitian matrices with entries in Ox ®z R. We define
amap ey = [[, ey : Ag = C* where for each place v of Q e, is the usual exponential map at v.
We refer to [16, Section 2.8] for the discussion of the CM period Q. and the p-adic period €.
For two automorphic forms f1, fo on U(2) we write (fi, fo) = f[U(2)} f1(g9)f2(g)dg. Here the Harr
measure is normalized so that at finite places U(2)(Z;) has measure 1, and at co the compact set
U(1)(R)\U(2)(R) has measure 1.

3.1 Groups

Let 0 € K be a totally imaginary element such that —id is positive. Let d = Nm(d) which we
assume to be a p-adic unit. Let U(2) = U(2,0) (resp. GU(2) = GU(2,0)) be the unitary group
(resp. unitary similitude group) associated to the skew-Hermitian matrix ( = 50 5 for some
s € Z4 prime to p. More precisely GU(2) is the group scheme over Z defined by: for any Z algebra
A,

GU(2)(A) = {g € GLa(A ®z Ox)['gCg = Mg)¢, Ag) € A*.}
The map p : GU(2) — Gy, g — A(g) is called the similitude character and U(2) C GU(2) is the

kernel of u. Let G = GU(3,1) (resp. U(3,1)) be the similarly defined unitary similitude group
1

(resp. unitary group) over Z associated to the skew-Hermitian matrix ¢ . Let P C G be
-1

the parabolic subgroup of GU(3,1) consisting of those matrices in G of the form

X X X
X X X
X X X X

10



Let Np be the unipotent radical of P. Then if Xy is the 1-dimensional space over I,
MP = GL(XIC) X GU(2) — GU(V)’ (aagl) = diag(avglnu’(gl)a‘_l)

is the Levi subgroup. Let Gp := GU(2)(C Mp) — diag(1, g1, 1(g)). Let dp be the modulus char-
acter for P. We usually use a more convenient character § such that 6% = dp.

Since p splits as vovp in K, GLy(Ox ® Z,) = GL4(Ok,,) x GL4(Ox,, ). Here
U(3,1)(Z,) = GL4(OICUO) = GL4(Z)y)

with the projection onto the first factor. Let B and N be the upper triangular Borel subgroup of
G(Qp) and its unipotent radical, respectively. Let

K, = GU(3,1)(Zp) ~ GL4(Zp),

and for any n > 1 let K be the subgroup of K consisting of matrices upper-triangular modulo p".
Let K1 C K{ be the subgroup of matrices whose diagonal elements are 1 modulo p™.

The group GU(2) is closely related to a division algebra. Put

D = {g € My(K)|g'@g = det(g)¢}-

Then D is a definite quaternion algebra over Q with local invariants inv, (D) = (—s, =Dy /g)v (the
Hilbert symbol). The relation between GU(2) and D is explained by

GU(Q) = D* XGm RGSIC/@Gm.

For each finite place v we write D} for the set of elements g, € D¢ such that |[Nm(g,)|, = 1, where
Nm is the reduced norm.

Let ¥ be a finite set of primes containing all the primes at which I/Q or ¢ is ramified, the primes
dividing the level of fp (as in the introduction), the primes dividing s, the primes such that U(2)(Q,)
is compact and the prime 2. Let X! and X2, respectively be the set of non-split primes in ¥ such
that U(2)(Q,) is non-compact, and compact. We will sometimes write [D*] for D*(Q)\D*(Ag).
We similarly write [U(2)], [GU(2,0)], etc.

1
We define G,, = GU(n, n) for the unitary similitude group for the skew-Hermitian matrix < 1 n)
—in

and U(n,n) for the corresponding unitary groups.

3.2 Hermitian Spaces and Automorphic Forms

Let (r,s) = (3,3) or (3,1) or (2,0). Then the unbounded Hermitian symmetric domain for GU(r, s)
is

Xt = X, s={r= (;) |z € Ms(C),y € M(T,S)XS((C),Z'(Q:* —x) > iy*Cily}.

11



We use xg to denote the Hermitian symmetric domain for GU(2), which is just a point. We have
the following embedding of Hermitian symmetric domains:

L X3,1 X X270 — X3’3

(7—7 1’0) — ZT:

where Z, = <a: ?) for = (x)
Yy 3 Yy

Let Gys = GU(r,s) and H, s = GL, x GLs. Let G, s(R)" be the subgroup of elements of G, s(R)
whose similitude factors are positive. If s # 0 we define a cocycle:

J:Gs(R)" x Xt — H, 4(C)

a b c
by J(a,7) = (k(a,7), u(e, 7)), where for 7 = (;) and « = [¢g e f ] (blocks matrix with
h 1 d

respect to the partition (s + (r — s) + s)),

_ hlv +d hly +1¢
o= (LA i e

in the GU(3,1) case and

),umﬂ0=hx+@+d

k(a,7) = h'z +d, pla,7)=hx+d
in the GU(3,3) case. Let i € XT be the point <Zés> Let KX be the compact subgroup of
U(r, s)(R) stabilizing 7 and let K, be the groups generated by K and diag(1,+s, —15). Then
K% — H(C), koo v J(koo,d)
definesis an algebraic representation of K.
Definition 3.1. A weight k is defined to be an (r + s)-tuple
k= (Crisy ey Csi1;Clynnny Cs) € LTS
with ¢1 > ... > Cpys.

We refer to [16, Section 3.1] for the definition of the algebraic representation L;(C) of H with
the action denoted by p; (note the different index for weight) and define a model LE(C) of the
representation H(C) with the highest weight k as follows. The underlying space of L%(C) is Li(C)
and the group action is defined by

pE(h) = pr(h™"),h € H(C).
Our convention for identifying a weight with a tuple of integers is different from others in literature.

For example our csy; (1 <4 < r)and ¢; (1 < j < s) corresponds to —a,41—; and bs11; in [16,
Section 3.1]. We also note that if each k = (0, ...,0; &, ..., &) then LE(C) is one dimensional.
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For a weight k, define ||k|| by:
k|| := —Csq41 — coo — Cspr + €1+ ...+ ¢

and |k| by:
|E’ = (Cl 4+ ...+ Cs)-a — (CS+1 + ...+ CS_Hn).O'C S ZI.

Here I is the set of embeddings L < C and ¢ is the Archimedean place of K determined by our fixed
embedding K < C. Let x be a Hecke character of K with infinite type |k|, i.e. the Archimedean

part of x is given by:

ZC1+--~+CS Cs+1+-~-+cs+7‘)>.

Xoo(2) = ( -z

Definition 3.2. Let U be an open compact subgroup in G(Ay). We denote by My(U,C) the space
of holomorphic LE(C)-valued functions f on X+ x G(Ay) such that for 7 € X+, a € G(Q)" and
u € U we have

flar,agu) = p(a) (I (a, 7)) f (7, 9).

Now we consider automorphic forms on unitary groups in the adelic language. The space of
automorphic forms of weight k£ and level U with central character y consists of smooth and slowly
increasing functions F': G(A) — Ly (C) such that for every (a, koo, u, 2) € G(Q) x KI x U x Z(A),

F(zagksou) = p*(J (koo 1)) F(g)x ™ (2)-

We can associate a Ly-valued function on X+ x G(Af)/U given by

F(1,9) = X5 (1(9)PF(J (9o, 1)) F ((f: 9))

where goo € G(R) such that go(i) = 7. If this function is holomorphic then we say that the
automorphic form F' is holomorphic.

3.3 Galois representations Associated to Cuspidal Representations

In this section we follow [45, Theorem 7.1, Lemma 7.2] to discuss the Galois representations asso-
ciated to cuspidal automorphic representations on GU(r, s)(Ag). Let 7 be an irreducible automor-
phic representation of GU(r, s)(Ag) generated by a holomorphic cuspidal eigenform with weight
k = (¢r4sy..eyCsy15€1, ..., Cs) and central character x,. Let X(7) be a finite set of primes of Q
containing all the primes at which 7 is unramified and all the primes dividing p. Then for some L
finite over Q, there is a Galois representation (see [42], [33] and [43]):

R,(m) : Gx — GL,(L)
such that:

(a) Ry(m)° ~ Ry(m)¥ ® Py X1+cel_” where p,, 1+ denotes the p-adic Galois character associated

1+4+c

¢ by class field theory and e is the cyclotomic character.

to x
(b) Rp(m) is unramified at all finite places not above primes in ¥(7), and for such a place w { p:

1—-n,_,
2 )

det(1 — Ry(m)(Froby)q,*) = L(BC(T)w @ X5 S +

13



Here the Frob,, is the geometric Frobenius and BC' means the base change from U(r,s) to
GL;4s. Suppose 7, is nearly ordinary (see Subsection and unramified at all primes v
dividing p with respect to k. Recall vy|p corresponds to ¢ : C ~ C,. If we write k; = s —i+¢;
forl<i<sandk;=c;+s+r+s—ifors+1<i<r+s, then

Erqsp€ TS * * %
é‘ 1 ehrt+s—1 *
Ry ()| Gl = e ;
0
gl,ve_nl

where &; ,, are unramified characters. Using the fact (a) above we also know that R, (), is
equivalent to an upper triangular representation as well (with the Hodge-Tate weight being
(—(k1+1—=7—35—k|), ..., —(kpys +1—7—5—|E|])) (in our geometric convention ¢! has
Hodge-Tate weight one).

3.4 Shimura varieties

Now we consider the group GU(3,1). For any open compact subgroup K = K,K? of GU(3,1)(Ay)
whose p-component is K, = GU(3,1)(Z,), we refer to [I6, Section 2.1] for the definition and
arithmetic models of the associated Shimura variety, which we denote as Sg(K) /O (v The
scheme Sg(K) represents the following functor: for any Oy (,)-algebra R, A(R) = {(4, A 0, 7P)}
where A is an abelian scheme over R of relative dimension four with CM by O given by ¢, A
is an orbit of prime-to-p polarizations and 7* is an orbit of prime-to-p level structures. There is
also a theory of compactifications of Sg(K) developed in [29]. We denote by Sg(K) a toroidal
compactification and S¢(K) the minimal compactification. We refer to [16], Section 2.7] for details.
The boundary components of SE(K) is in one-to-one correspondence with the set of cusp labels
defined below. For K = K,K? as above we define the set of cusp labels to be:

C(K) = (GL(Xx) x Gp(As))Np(Ap)\G(Ay)/K.

This is a finite set. We denote by [g] the class represented by g € G(A¢). For each such g whose
p-component is 1 we define K¢, = Gp(Ay)NgKg~! and denote S|, := Sg,(K$) the corresponding
Shimura variety for the group Gp with level group K%. By strong approximation we can choose a
set C(K) of representatives of C'(K) consisting of elements g = pk® for p € P(ASCE)) and k¥ € K
for K° the maximal compact subgroup of G(Ay) defined in [16, Section 1.10].

3.5 Igusa varieties and p-adic automorphic forms

Now we recall briefly the notion of Igusa varieties in [16, Section 2.3]. Let M be the standard
lattice of V and M, = M ®z Z,. Let Pol, = {N~1, N} be a polarization of M,. Recall that this
means that N~! and N? are maximal isotropic Ox ® Zp-submodules in M,, such that they are dual
to each other with respect to the Hermitian metric on V', and

rankZqujol = rankZpNgo = 3,1@1{11{213]\7{01 = rankZpNBO = 1.

We mainly follow [16], Section 2.3] in this Subsection. The Igusa variety of level p™ is the scheme
over Ok (y,) Tepresenting the quadruple A(R) = {(A, A,+, %)} for Shimura variety of GU(3,1) as
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above, together with an injection of group schemes
J o+ ppn @z NO — Alp"]

over R which is compatible with the Ox-action on both hand sides. Note that the existence of j
implies that A must be ordinary along the special fiber. There is also a theory of Igusa varieties
over Sg(K). Let w be the automorphic vector bundle on Sg(K) as defined in [?, 2.7.3]. As in loc.cit
let Hy,_; € HO(Sg(K)/F, det(w)?~!) be the Hasse invariant. Over the minimal compactification,
some power (say the ¢tth) of the Hasse invariant can be lifted to O,,, by the ampleness of detw. We
denote such a lift by E. By the Koecher principle we can regard E as in H?(Sg(K), det(w!®P~1)).
Let O, := Ok /D™ Okc vy~ Set Tom = Sa(K )[I/E]/@ For any positive integer n define T}, ,, :=
Ic(K"),0,, and Ty m = 1m Tym- Then Ty ,, is a Galois cover over Ty, with Galois group
H ~ GL3(Zy,) x GL1(Z,). Let N C H be the upper triangular unipotent radical. Define:

Vn,m =H" ( n,m OTn,m)'

Let Voo = hﬂn Vam and Vg oo = @1 Voo,m be the Space of p-adic automorphic forms on GU(3, 1)

with level K. We also define Wy, ,,, = V,?Im,
VO

n,m?

Weom = OO m and W = lénn hﬂm Wh.m. We define
etc, to be the cuspidal part of the corresponding spaces.

We can make similar definitions for the definite unitary similitude groups Gp as well and define
Vn,m,PaVoo,m,Pa Voo,oo,Pa Vnm P> WP7 etc.

Let K" and K7 be the subgroup of H consisting of matrices which are in Bs x By or N3 x 'Np
modulo p”. (These notations are already used for level groups of automorphic forms. The reason for
using the same notation here is that automorphic forms with level group K are p-adic automorphic
forms of level group K7'). We sometimes denote Ig(K?) = Ig(K™)XT and Ig(KY) = Ig(K™)%0.

We can define the Igusa varieties for Gp as well. For e = 0,1 we let K¥%7 := gK"g71 N Gp(Ay)
and let Ijg)(Ky) = Ig, (Kg’n) be the corresponding Igusa variety over Si;. We denote A’f] the

coordinate ring of Ij,(KT). Let A‘[Xi = lim A[ and let A‘[Xi be the p-adic completion of A‘[X’] This
is the space of p-adic automorphic forms for the group GU(2,0) of level group gKg~' NG p(Ay).

For Unitary Groups

Assume the tame level group K is neat. For any ¢ an element in QJF\A@’ s/ H(K). We refer to [16,
2.5] for the notion of c-Igusa schemes 18(2)(1( ,c¢) for the unitary groups U(2,0) (not the similitude
group). It parameterizes quintuples (A4, A, ¢, ﬁ(p), 7) /s similar to the Igusa schemes for unitary simil-
itude groups but requiring A to be a prime to p c-polarization of A such that (4, \, L,ﬁ(p),j) is a
quintuple as in the definition of Shimura varieties for GU(2). For g, with u(g) € A(XI in the class of
c. Let °K = g.Kg,' NU(2)(Ag,f). Then the space 18(2) (K, ¢) is isomorphic to the space of forms

on 18(2) (°K, 1) (see loc.cit).

FEmbedding of Igusa Schemes
In order to use the pullback formula geometrically we need a map from the Igusa scheme of U(3,1) x
U(0,2) to that of U(3,3) (or from the Igusa scheme of U(2,0) x U(0,2) to that of U(2,2)) given by:

i([(A1, A1y 0, VK, 1)) [(Ag, Aoy ee, mh Ko, j2)]) = [(Ar X Ao, A1 X A, i1, b2, () X nh) K3, 1 X j2)].
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We define an element T € U(3,3)(Q,) such that Ty, = St and T, = Sgol’/, where S is defined
at the end of Section 6.2. Similar to [16], we know that under the complex uniformization, taking
the change of polarization into consideration the above map is given by

il gl, [xo, h]) = [Z+, (9, h) Y]

(see [16, Section 2.6].)

3.6 Fourier-Jacobi expansions

Analytic Fourier-Jacobi Coefficients:

Let us go back to the Fourier-Jacobi coefficients of automorphic forms on G := GU(3,1). Let
B € Q4. Over C we have the S-analytic Fourier-Jacobi coefficient for a holomorphic automorphic
form f given by:

1 n

FJs(f,g9) = /Q\A f( 19 g)ea(—pn)dn.
1

The Harr measure is normalized so that the set (Q\A) has measure 1.
p-adic Cusps

As in [16] each pair (g,j) € C(K) x H can be regarded as a p-adic cusp, i.e. cusps of the Igusa
tower. In the following we are going to give the algebraic Fourier-Jacobi expansion at p-adic cusps.

Algebraic Theory for Fourier-Jacobi expansions

We follow [16, Pages 16-17] to give some backgrounds about the algebraic theory for the group
G = GU(r, 1). Recall [g] is a cusp label corresponding to class g € G(Ay). One defines Z|;) a group
scheme over S| using the universal abelian variety as in loc.cit and denote ZP, the connected
component over S[g. It is well known that there is a Fourier-Jacobi expansion for modular forms
by evaluating the form at the Mumford family (9%, wey) over the ring

[Tz €0 B) 94, HO(Z5), £(3))
B

(we again refer to loc.cit).

Now let f € H(Ig(KY) g, wx) be a scalar weight £ > 6 (i.e. of weight (0,0,0; %)) modular form
over an O algebra R, then by ([16, 3.6.2]) there is a Fourier-Jacobi expansion of f at the p-adic
cusp (g, h) for h € H:

FIly(f) = aly(8, fd’

BeAq)

where R
alt (B, f) € (A75 @0 R) ®a,,, HY(Z5;, L(8))

and .7y is a sub-lattice of Q determined by the level subgroup. This is given by evaluating f at
the Mumford family (99T, h~1jon, wen) where joy is a fixed level structure (see [16], 2.7.4]). (note that
we do not have the subsript N}, since it is a scalar weight £.)
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Siegel Operators

We have a Siegel @ operator at the p-adic cusp (g, h) defined by:

@@] : HO(Ig(K{L)/mWH) — A?g] ®o 1

e @ (f) = afy (f) = a0, f).

The Siegel operator at [g] can be defined analytically as follows:
For any g € G(Ay) we define:

Bpy(f) = / f(ng)dn.
Np(Q)\Np(Ag)

We fix the Haar measure on Np(Q)\Np(Aqg) as in [45, Section 8.2]. The relation between the
algebraic and analytic Siegel operator is given in [16, (3.12)].

3.7 Weight Space for GU(3,1)

Let H = GL3 x GL; and T' C H be the diagonal torus. Then H ~ H(Z,). We let Ay = A be
the completed group algebra Zy[[T'(1 + Z,)]]. This is (non-canonically) isomorphic to a formal
power series ring with four variables. There is an action of T'(Z,) on the Igusa scheme given by
its action on the embedding j : p,» ®z N° < A[p"]. (See [16, 3.4]) This gives the spaces of
p-adic modular forms for GU(3,1) a structure of A-algebra. A Q,-point ¢ of SpecA is call arith-
metic if it is determined by a character [k] - [¢] of T(1 + pZ,) ~ (1 + pZ,)* where k is a weight
and ¢ = ((1,(2,(3;Cq) for ¢; € ppo. Here [k] is the character by regarding k as a character of
T(1+ Zy) by [k](t1,t2,t3,ta) = (t] ““t5t3t,“") and [(] is the finite order character given by
mapping (1 + p) to ¢; at the corresponding entry of T'(Z,). We often write this point k.. We
also define wlk! a character of the torsion part of T'(Z,) (canonically isomorphic to (Fy )4) given by

Wl (11, o, t3,t4) = w(t] 5 Bt3 2, ).
We can define the weight ring Ap for the definite unitary group Gp as well.

3.8 Nearly Ordinary Forms

We refer to [16], 3.8.3, 4.3] for the notion and definition of Hida’s idempotent e acting on the space
Voli « of p-adic automorphic forms on GU(3,1) and the nearly ordinary subspace of the space of
the p-adic modular forms. The spaces of nearly ordinary automorphic forms are denoted as W,,q,
WOT 4> etc. For ¢ =0 or () we let VgT 4 be the Pontryagin dual of Wgr 4+ Then we have the following

o

theorem (16, Theorem 4.21])

Theorem 3.3. Let g =0 or 0. Then:
(1) V2 . is a free A module of finite rank;
(2) For any k very regular we have nature isomorphisms:

M (K, N) @ APy = eMJ(K, Op)

ord

where M? (K, A) is defined in Definition . Here we identify eMEq(K, O.,) with its image in the

space of p-adic automorphic forms of weight k under Bj,.
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Remark 3.4. If K is a general CM field, then the statement of the corresponding result is more
complicated; see [16, Section 4.5].
3.9 A-adic forms

Definition 3.5. For any finite A algebra A, and g = 0 or () we define the space of A-adic ordinary
forms to be:

M1
Similarly, if A is a Ap-algebra, then we define:

Mord,[g],P(KP,[g]a A) = HomAp (Vord,P,[g]a A)

(K, A) := Homy (V2  A).

ord ord’

Here the subscript means the prime to P level is K][g] defined before.

For any f € M,,q(K, A) we have an A-adic Fourier-Jacobi expansion:

FJly(f) = > a8, Hd’

BeAgq)

obtained from the Fourier-Jacobi expansion on WY .. where a (ﬁ f) € A®A[g] ® Ay, HO (Z[g],ﬁ(ﬁ))
(see [16 4.6.1]). We also have a A-adic Siegel operator Wthh we denote as Cf'[] Let wj =

1
€ GL4(Zp) ~ U(3,1)(Zy). (Notice that we used the place vy to identify GL4(Z))

with U(3,1)(Zy) here. The matrix itself is not in U(3,1)(Z,). We use w} instead of

1

ws as in [16, Page 35] to distinguish it from ws € U(3,3)). Now we have the following important
theorem

Theorem 3.6. [10, Theorem 4.26] Let A be as before. We have the following short ezact sequence

S =gpd v
0— Mord(K7 A) - Mord(Kv A) —[g]> @QEC( )Mord(Klg;, A) — 0.

We need one more theorem which gives another definition of nearly ordinary p-adic modular forms
using Fourier-Jacobi expansions.

Definition 3.7. Let A be a finite torsion free A-algebra. Let X (K) be the set {(g,w4)} where g runs
over a set of representatives of cusp labels C(K). Let Ny.q(K, A) be the set of formal Fourier-Jacobi
expansions:

F={) aB,F)d’a(B,F) € AA @ H(Z}), L(8))}gex(x)
BEeAgq)

such that for a Zariski dense set X of points ¢ € Spec(A) such that the induced point in Spec(A)
is some arithmetic weight k., the specialization Fy of F is the Fourier-Jacobi expansion of a nearly

ordinary modular form with prime to p level K, weight k and nebentype at p given by [k] [Q]w*[ﬁ].
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Then we have the following theorem (|16, Theorem 4.25])

Theorem 3.8.
Mord(Ka A) = Nord(Ka A)

4 Backgrounds for Theta functions

Now we recall briefly the basic notions of theta functions and theta liftings, following closely to [54]
with some modifications. The author claims no originality in this section.

4.1 Heisenberg Group

Let W be a finite dimensional vector space over QQ, with a non-degenerate alternating form ().
We define:
HW) :={(w,t)|lw e W,t € Q,}

with multiplication law: (w1, t1)(ws,t2) = (w1 + we, t1 + to + %(wl, wa)).

4.2 Schrodinger representation

Fix an additive character 1 of Q, and a complete polarization as W = X @Y of W where X and Y
are maximal totally isotropic subspaces of W. Let S(X) be a space of Bruhat-Schwartz functions
on X, and define a representation py of H(W) on S(X) by:

pp(@)f(2) = flx +2),2 € X
pu)f(2) =9z 9)f(2),y €Y
pu(t)f(2) = () f(2),t € Qy

This is called the Schrodinger representation. By the theorem of Stone and von Neumann, py is
the unique irreducible smooth representation on which Q, acts via the character .

4.3 Metaplectic Groups and Weil representations

Let Sp(W) be the symplectic group preserving the alternating form (,) on W. Then Sp(WW) acts on
H(W) by (w,t)g = (wg,t) (we use row vectors for w € W and the right action of Sp(W) instead of
the left action as in [54]). By the uniqueness of py, there is an operator wy(g) on S(X), determined
up to scalar, such that

pu(w'g, hwy(g) = wy(9)py(w, t)
for any (w,t) € H(W). Here g is the transpose of g. Define the metaplectic group S7p¢(W) =

{(g,wy(g)) as above } which we often write Sp for short. Thus Sp(W) has an action wy, on S(X)
called the Weil representation.

Suppose 1 = [], 1, is a global additive character of Q\Ag. We can put the above construction
together for all v’s to get a representation of Sp(W)(A) on S(X(A)). This can be viewed as
a projective representation of Sp(W) (a representation with image in the infinite dimensional
projective linear group). We now give formulas for this representation. Let {e1,...,en; f1,..., fn}
be a basis of W = X @Y such that (e;, fj) = d;;. With respect to this basis the projective
representation of Sp(W)(Ag) on ProjS(X(A)) is given by the formulas
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can((t )0t = det Al o(oa)

v au((M 7 )ot) = v ota)

o ww((_l 1))¢(x) = ~v¢(x) where ¢ means the Fourier transform of ¢ with respect to the
additive character ¢». The ~ is an 8-th root of unity which is called the Weil constant.

4.4 Dual Reductive Pairs

A dual reductive pair is a pair of subgroups (G, G’) in the symplectic group Sp(W) satisfying: (1)
G is the centralizer of G’ in Sp(W) and vice versa; and (2) the action of G and G’ are completely
reducible on W. We are mainly interested in the following dual reductive pairs of unitary groups.
Let K be a quadratic imaginary extension of Q, (V1,(,)1) be a skew Hermitian space over K and
(Va, (, )2) a Hermitian space over K. Then the unitary groups U(V7) and U(V2) form a dual reductive
pair in Sp(W), where W = Vi ® V4 is given the alternating form 1tryc,q((,)1 ® (,)2) over Q. The
embedding of the dual reductive pair (U(V1),U(V2)) into Sp(W) is

e:U(V1) x U(V2) — Sp(W)
e(g1,92) - (11 ®v2) = 0191 ® g;lvz-

4.5 Splittings

Suppose dimxgV; = n and dimgV, = m. If x7 and x2 are Hecke characters of K* such that
X1lax = Xk and x2|,x = X}, then there is a splitting (see [15], Section 1])
F F

s:U(V1) x U(Va) = Sp(W)

determined by x2 and xi. This enables us to define the Weil representations of U (V1) x U(V2) on
S(X(A)) which we denote as Wy, y, = Wy, @ Wy,.

4.6 Theta Functions

Now let us define theta functions.

Definition 4.1. Let ¢ € S(X(Ag)). Define

leX(Q)

Using the Weil representation of the dual reductive pair above (with the choices of the splitting
characters) we define the theta kernel for the theta correspondence as follows:

Definition 4.2.
9¢(91792) = 0(w(g1,92))0)
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Let J = H(W) x Sp(W) (~j = H(W) x Sp(W)) be the Jacobi group with Sp(W) acting on
H(W) by (w,t) - g = (wg,t) (Sp(W) acts on H(W) by (w,t) - g = (wg,t), where g is the image of
g in Sp(W)). We define a theta kernerl on J(Ag).

Definition 4.3. Let § € Sp(W) and (w,t) € H(W), define

9¢((wat)§): Z p¢(wat)§~¢(l)
leX(Q)

4.7 Intertwining Maps

We are going to study the intertwining maps between theta series corresponding to different po-
larizations (X,Y’) of W. Suppose r € Sp(W), then (Xr,Yr) gives another polarization of W, and
all polarizations are obtained this way. If ¢ € S(X) the we define an intertwining map (local or
global) 6, : S(X) — S(X7r) by

Sp0(ar) = wy(r)(x)

for x € X. It is easy to check that d, is an isometry intertwining the action of J.

Let W~ be the skew Hermitian space which is isomorphic to W as (),,-vector spaces but equipped
with the alternating pairing —(,). For a polarization (X,Y) of W we are going to study the
intertwining formula for the two polarizations (X @ X7 )& (Y @Y ") and {wdw,w e W} d {wa
—w,w € W} of WaW ™. We write the formula for the map 6, : S(X(Q,) & X~ (Qy)) = S(W(Qy))
and its inverse:

T1+T2 T2 — 21

2 2

56(8)(@1,y) = / (s, y))o( Jdas

55 @) = [ 0l(-1 22,01 — o2,)dy,

Another important property is that if the two polarizations (X,Y) and (Xr,Yr) are globally
defined, then the theta kernels ©4 and ©;,(4) are defined and

Op(u, ng) = O, (¢ (u, (nr)g).

4.8 Special Cases
4.8.1 Case One

We write V' for the Hermitian space for ¢ with respect to the basis (v1,v3), V™~ for the Hermitian
space for —( with respect to the basis (v] ,v5 ), and V; for the 1-dimensional Hermitian space with
the metric 1 with respect to the basis v. Let W =V ® Vi and W~ =V~ ® V. We define several
polarizations for the Hermitian space W := W & W~ (the alternating pairing being the direct sum
of those for W and W™).

Definition 4.4.
X =QuuevedQueu

X7 =Qu ®vdQuy ®v
Y (= Qév1 @ v D Qv @
Y™ = Qév; ®vd Qévy ®v.
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Fix the additive character ¢ = [[¢,. Thus W = X @Y and W~ = X~ @& Y~ are globally
defined polarizations. For a split prime v we write v = ww for its decomposition in K. We will often
use an auxiliary polarization W, = X! @Y, of W, = W ®x K, with respect to K, ~ K,y x K =~ Q?
and W, = X;_ &) Yv/_ that is defined by X! = Kp,v1 @ v ® Kypv2 @0, Y, = Kgvr @ v ® Kgva ® v and
similar for X;_, Yv/_. This polarization is better suited for computing the Weil representation. For
split primes v let 0, : S(X;) — S(X,) and 5;’" : S(Xv_’,) — S(X,") be the intertwining operators
between Schwartz functions defined above.

Let We = {w @ w,w € W}. We denote the intertwining maps:
5y S(Xy @ X)) — S(W)

and if v splits,
5t S(X[ @ X)) — S(W).

Remark 4.5. In application in Section [6] we are going to compute the intertwining operator
5y S(Xy @ X)) — S(W)

(for W= (V@ V~)®V}) in this special case and the Weil representations restricting to semidirect

products H(W) x (UV & V™) x U(V1)) (recall UV @ V™) x U(V1) — Sp(W)). We provide the

matrix forms of these semidirect products that will be used in Section[6] Let U; and Uy be unitary
1

¢

groups associated to the matrices | 1

1
and ( 1 3) respectively, and let U} and
—13
—¢
U/, be the unitary groups associated to << C> and ( 1 12), considered as subgroups of Uj
- )

and Uy respectively in the obvious way. Let Nj be the subgroup of U; consisting of matrices

1 x * To
12 CJ}T .. .
of the form 1 , and Na C Uy the subgroup consisting of matrices of the form
—CCL‘; 1o
1 = t+%(xy*—yx*) Yy
*
L2 yl 0 . The corresponding semidirect products mentioned above are J; =
—z* IQ

NlUll and JQ = NQU/2.

4.8.2 Case Two

Now we discuss another special situation which will be used in the Fourier-Jacobi coefficient com-
putations for Siegel Eisenstein series on GU(3, 3).

The local set-up.
Let v be a place of Q. Let h € S1(Q,),det h # 0. Let Uy be the unitary group of this matrix and
let V,, be the corresponding one-dimensional Hermitian space. Let

VQW:ICEEBIC?;:XU@Yv
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be the Hermitian space associated to Uy = U(2,2) with the alternating pairing denoted as (, )a.
Let W =V, ®x, V2. Then

(= =) =Tre, /0, (= —)n ®x, (— —)2)

is a Q, linear pairing on W that makes W into an 8-dimensional symplectic space over Q,. The
canonical embedding of Uy, x Us into Sp(W) realizes the pair (U, Us) as a dual pair in Sp(W).
Let A\, be a character of KX such that )\U|va = Xk/Qu- As noted earlier there is a splitting
Un(Qy) x Uz(Q,) = Sp(W,Q,) of the metaplectic cover Sp(W,Q,) — Sp(W,Q,) determined by
the character A,. This gives the Weil representation wy, 1, which we denote here as wy, ,(u, g) of
Un(Q,) x Ux(Q,) where u € Up(Q,) and g € Uy(Q,), via the Weil representation of Sp(W,Q,) on
the space of Schwartz functions S(V,, ®x, X,) (we use the polarization W = V, @k, X, ®V, @k, Yy).
Moreover we write wy, , (¢) to mean w, (1, g). For X € Mj42(K,), we define (X, X); := XhiX (note
that this is a 2 x 2 matrix). We record here some useful formulas for wy, , which are generalizations
of the formulas in [45].

o who(, 9)(X) = whe(1,9)P(u"'X)

o who(diag(A, A1) B(X) = A(det A)| det A[ZB(X A),
o Wiy (r(9))P(X) = ®(X)e, (tr(X, X)pS),
o why(MP(X) = [dethly [ @(Y)eu(Trx,/k, (tr(Y, X)5))dY.

Global setup:
Let h € S1(Q),h > 0. We can define global versions of U, GUp, W, and (—, —), analogous to the
above. Fixing an idele class character A = @\, of Ag/K* such that A|gpx = Xllc /@ the associated

local splitting described above then determines a global splitting Uy, (Ag) x Ui(Ag) < Sp(W, Ag)
and hence an action wy, := ®Quwp, of Up(Ag) x Ui(Ag) on the Schwartz space S(Vy, ® X). In
application we require the infinite type of A to be (—3, %)

For any ® € S(Vj, ® X) we define the theta function associated to it by:

On(®,u,9) = Y walu,g)d(x).
zeVRX

4.9 Theta Functions with Complex Multiplication

We consider the situation of theta correspondences for U(¢) = U(V) and U(V1). Let V be a 2-
dimensional Hermitian vector space over I and L is a Ok lattice. This gives an abelian variety
Ar = C?/L. Let H be a Riemann form on V and € : L — U be a map where U is the unite circle
of C (in application the € is given by the formula after [54] (38)], there is a line bundle £5 ¢ on A,
associated to H and e as follows: define an analytic line bundle £y, ~ C x C? /L with the action
of L given by

[ (w,z) = (w+ l,e(l)e(%H(l,w + %))x),l €L, (wx)eC*xC
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where e(z) = €*™. The space of global sections of this line bundle is canonically identified with

the space T'(H, ¢, L) of theta functions consists of holomorphic functions f on V such that:
1 l
flw+l) = f(w)e(l)e(;iH(l +w+ 5)),11) eV,lelL.

There are arithmetic models for the above abelian variety and line bundle. Shimura defined sub-
spaces T%"(H, e, L) C T(H,¢, L) of arithmetic theta functions by requiring the values at all CM
points are in Q which under the canonical identification, are identified with rational sections of
the line bundle (see [28]). Also inside the Cp-vector space I'(Ar ®,, Cp, £u,c ®,, C,) we have the
module of p-integral sections which we denote as T%"(H, ¢, L).

Adelic Theta Functions
Now we consider Theta functions for U(3,1). Let the Hermitian form on V' be defined by:

_ * *
; == — .
(v1,v2) = v1¢V5 — valv]

Let Uy be some compact subgroup of U¢(Ay) such that the level is prime to p, we define the space
Ta(m, L,Uy) of adelic theta functions as the space of function:

0 : N @QU(O@\N(A)U()(A)/U(C)ecUsN(L)f — C,
where N = Np C U(3,1) and U(¢) — U(3,1) as before;

wlw*
2

N(L)y = {(w, )|z € Lt + € u(L)Ox},

where p(L) is the ideal generated by w(w* for w € L and © satisfies
©((0,1)r) = e(Bt)O(r),r € N(A)U(C)(A).

Since U(() is anisotropic U(¢)\U(¢)(A)/U({)oo U consists of finite points {x1, ..., zs} C U(C)(Af).
We assume that for each u; the p-component is within GL2(Z,) under the first projection U(Q)) ~
GL2(Qp). Then:

TA(m, L, Uf) = @leT(m, .QJZ‘L)

such that ©;(n) = O(nz;) for n € N(A) are functions on N(A). Then for each ¢ the function:

0;(weo) = e(—mwTw*)@i((woo,O)) is a classical theta function in T'(H,e€,2;L) where H and € are

defined using x; L.

A functional

Recall that we constructed a theta function 64 on H x U(V) from some Schwartz function ¢. As
mentioned in the introduction we only need to develop a rational theory on theta functions instead
of p-integral theory. Upon choosing v; € Vi such that < v1,v; >= 1 we have an isomorphism
VW =V. Weconsider W~ =V~®Vj. It is the space W but with the metric being the negative
of W. Let H- = H(W ™) be the corresponding Heisenberg group. We have an isomorphism of H
and H~ (as Heisenberg groups) given by:

(w,t) = (w, —t).
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We construct a theta functions 6; = 4, on H~ x U(V ™) for some Schwartz function ¢;. We have
chosen a set {z1,...,xs} above. We write

(0611 0p5)2; = O, 1 () (61) (1) ooy (1) () (M)A

/N (@\N(Ag)

and

(61, 62)a, = /X o )@ 02) @)
Q

Then it is easy to check
<9¢179¢2>1i = (¢1, ¢2)¢' (1)

We first construct a functional lt/91 on the space H O(Z[‘; E
use) with values in Ay as follows: first on % eH Oze

Qxc l9)’
define:

L(B)) (we save the notation lg, for later

L(B)) for some Schwartz function ¢, we

(o)) = /N gy s 5006 e o (1) = /X o O ODEA ) )

The last equality is easily seen and we denote the last term as (wy ' (2;)(¢1), wx(7:)(¢)). Note that
in the N(Q)\N(Ag) we identified H with H~ using the above isomorphism. (In the literature
people usually consider | N(@\N(Ag) 04(n)bs, (n)dn. We use a different convention for the sake of

simplicity.) The general elements in H O(Z@ },E(ﬂ)) is a linear combination of g%’s with coeflicients
in Afy. Moreover all the ¢’s have the same ¢, and the ¢;’s for £ < co are smooth functions taking
algebraic values .(This can be seen by interpreting the theta functions defined before [54, Theorem
B.2] in terms of Weil representations presented here. Note that the CM period x is missing in
[54, Theorem B.2]. The algebracity follows from [39, Theorem 2.5]. In fact in [39] the period is
h(zp) for some weight % form h on Sp,, as our Hermitian space is 2 dimensional, and zp is a CM
point with h(zp) # 0. This h(zp) is just Qx up to multiplying by a non-zero algebraic number). So
by taking appropriate ¢; the lgl is a rational functional. We extend the definition of lgl linearly.
It is easily seen to be well defined.

Lemma 4.6. The lgl takes values in the space of constant functions on any theta function 04 as
above.

Proof. We note that for any ¢,

(wWr—1(zi)(P1)wa(zi)(9)) = (41, 0). (2)
One way of seeing this is to consider the intertwining operator é,(¢1 X ¢)(0) = (¢1, ¢) and use the
formula for the Weil representation wy on U(2,2) and note also that (g, g) = <g C_19C> e U(2,2)

and wy-1 = wy.(A"! odet). The lemma follows from the above equation. O

Remark 4.7. Later we will use this functional on Fourier-Jacobi coefficients for U(3,1). We can view
it as a function on GpNp(A) by FJy(p, f) = FJp(pg, f) for p € GpNp(A) and thus an adelic
theta function. [28] has proved the following compatibility of the analytically and algebraically
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defined Fourier-Jacobi expansions using the usual idenfitication of the global sections of £(f) and
(classical or adelic) theta functions, keeping the integral and rational structures:

Fig (= f) = FI()(-)

Note that the period factor appearing in [16], 3.6.5] is 1 since we are in the scalar weight .

5 Klingen-Eisenstein Series

5.1 Archimedean Picture

Let (7oo, Vo) be a finite dimensional representation of DX . Let 1o and 7o be characters of
C* such that t)u|gx is the central character of 7. We assume here that 7o,(z) = 27222 and
oo is trivial. Then there is a unique representation m,; of GU(2)(R) determined by 7o and tso
such that the central character is 9. These determine a representation my; X 7o of Mp(R) ~
GU(2)(R) x C*. We extend this to a representation ps, of P(R) by requiring Np(R) acts trivially.
Let I(Vy) = Indgggpoo (smooth induction) and I(ps) C I(Vs) be the subspace of Ko -finite
vectors. (Elements of I(V4) can be realized as functions on K,) For any f € I(V) and z € C* we
define a function f, on G(R) by

3

fo(g) = 8(m)2 "% p(m) f(k), g = mnk € P(R) K.
There is an action o(p, z) on (V) by
(0(p, 2)(9)) (k) = f2(kg)-

As in [45, Section 9.1] we let (7Y, Vi) be the irreducible representation of DX given by the same
space of 7 but

7/(z) = n(Ad(w) - z).
We let pYl, and I(pY) be the corresponding objects by replacing oo, ¥oo; Too DY Too @ (Too ©

1

1

Nm), Yoo Too TS, Toe- Let w = 1 . Then there is an intertwining operator A(peo, 2, —) :

.
I(po) = I(ps) by:
Alpo, 2, F) (k) 1= / I (wnk)dn.

Np(R)
In this paper we use the case when 7, is the trivial representation. Then by Frobenius reciprocity
law there is a unique (up to scalar) vector © € I(p) such that k.0 = det u(k,4) "0 for any k € K1,.
We fix v and scale © such that (1) = v. In 7V, m(w)v (w is defined in section 3.1) has the action
of KX given by multiplying by det p(k,4)™". There is a unique vector ©V € I(p") such that the
action of K1 is given by det u(k,i) ™" and 9" (w) = m(w)v. Then by uniqueness there is a constant
c(p, z) such that A(p,z,0) = c(p, 2)0".

Definition 5.1. We define F,. € I(p) to be the ¥ as above.
We record the following lemma proved in [48].

Lemma 5.2. Let K > 6 and z, = “T_?’ Then c(p, zx) = 0.
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5.2 /-adic Picture

Let (g, V) be an irreducible admissible representation of D*(Qy) and 7y is unitary and tempered
if D is split at £. Let 1) and 7 be characters of K, such that @Z)|QZX is the central character of .
Then there is a unique irreducible admissible representation my of GU(2)(Qy) determined by
and 1y. As before we have a representation 7y x 7 of Mp(Q,) and extend it to a representation py

of P(Qy) by requiring Np(Qy) acts trivially. Let I(ps) = Indgggg p¢ be the admissible induction.

Similarly we let 7V be the D*(Qy) representation whose space is that of w but the action is given
by

7V(z) = 7(Ad(w) - x).
Define f, for f € I(ps) and p;,I(p)), A(pe, 2, f) etc as before. For v ¢ ¥ we have D*(Qp) ~
GL2(Qy). Moreover we can choose isomorphism as a conjugation by elements in GLa(Ok () (note

that both groups are subgroups of GLa(KC;). We have 7y, )y, 74 are unramified and ¢, € V is
a spherical vectors then there is a unique vector fge € I(p¢) which is invariant under G(Z,) and

0 —

5.3 Global Picture

Now let (m = ®,my, V') be an irreducible unitary cuspidal automorphic representation of D(Ag) we
define I(p) to be the restricted tensor product of ®,I(p,) with respect to the unramified vectors

gé for some ¢ = ®,¢, € m. We can define f., I(p¥) and A(p, z, f) similar to the local case. The
f» takes values in V' which can be realized as automorphic forms on D(Ag). We also write f, for
the scalar-valued functions f,(g) := f.(g)(1) and define the Klingen Eisenstein series:

E(f,z9)= Y,  [(79)
+1eP(Q\G(Q)

This is absolutely convergent if Rez >> 0 and has meromorphic continuation to all z € C.

5.4 Constant Terms
Definition 5.3. For any parabolic subgroup R of GU(3,1) and an automorphic form ¢ we define
wR to be the constant term of ¢ along R given by the following:

or(9) = ¢(ng)dn.

/NR(@)\NR(AQ)
The following lemma is well-known (see [34], I1.1.7]).

Lemma 5.4. Let R be a standard Q-parabolic of GU(3,1) (i.e, R 2 B where B is the standard
Borel). Suppose Re(z) > 3.

(i) If R # P then E(f,z,9)r = 0;

(ZZ) E(fv 2, *)P = fz + A(ﬂ? fa Z)fz-
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5.5 (Galois representations

For the holomorphic Klingen Eisenstein series we can also associate a reducible Galois representation
with the same recipe as in subsection Write 7/ for the restriction of 7 to Ag and let o/ be the
corresponding Galois character of G via class field theory. The resulting Galois representation is
easily seen to be
—K _3 _kE3

Or1Oyc€ " D oyece ~ D Pry-Orc€ 2 .
Note that x + 3 is an odd number. However 7 is a unitary representation whose L-function is
the usual L-function for f shifted by % So it makes sense to write in the above way. This can be
obtained in the same manner as [45, Sections 9.5, 9.6].

6 Siegel Eisenstein Series and Pullback

6.1 Generalities

Local Picture:

Our discussion in this section follows [45, 11.1-11.3] closely. Let @ = @, be the Siegel parabolic

subgroup of GU,, consisting of matrices (jé(l)q IB;q
q

block is zero. For a place v of Q and a character x of ICX we let I,,(x,) be the space of smooth

K, ,-finite functions (here K, , means the maximal compact subgroup Gy(Z,)) f : Ky, — C

such that f(gk) = xu(det Dy)f(k) for all ¢ € Q,(Qy) N K, (we write ¢ as block matrix ¢ =

(%q gq)). For z € C and f € I(x) we also define a function f(z,—) : Gn(Q,) — C by
a

F(z,gk) := x(det Dy))| det A, Dy 72 £(k), q € Qu(Qy) and k € K.

). It consists of matrices whose lower-left n x n

For f € I,(xv), 2z € C, and k € K, ,, the intertwining integral is defined by:

M £ = o) [k

NQn(FU)

For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uniformly, with
the convergence being uniform in k. In this case it is easy to see that M(z, f) € I,(x5). A standard
fact from the theory of Eisenstein series says that this has a continuation to a meromorphic section
on all of C.

Let U C C be an open set. By a meromorphic section of I,(x,) on U we mean a function
¢ : U — I,(xv) taking values in a finite dimensional subspace V' C I,,(x,) and such that ¢ : U — V
is meromorphic.

Global Picture

Recall that we defined z,, = ”T_S We also define 2], = ”T_Q For an idele class character y = ®x, of

A;é we define a space I,,(x) to be the restricted tensor product defined using the spherical vectors
sph o I,,(xv) (invariant under K, ,) such that ffph(Km,) = 1, at the finite places v where Y, is

unramified.
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For f € I,,(x) we consider the Eisenstein series
E(f;zg9) = >, [f(z79)
7€Qn(Q)\Gn(Q)

This series converges absolutely and uniformly for (z,g) in compact subsets of
{Re(z) > n/2} x G, (Aq).
The defined automorphic form is called Siegel Eisenstein series.

The Eisenstein series E(f;z,g) has a meromorphic continuation in z to all of C in the following
sense. If ¢ : U — I,(x) is a meromorphic section, then we put E(p;z,g) = E(¢(z);z,g). This is
defined at least on the region of absolute convergence and it is well known that it can be meromor-
phically continued to all z € C.

Now for f € I,(x),z € C, and k € Hv;(oo Ky, HU‘OO K there is a similar intertwining integral
M (z, f)(k) as above but with the integration being over Ng, (Ar). This again converges absolutely
and uniformly for z in compact subsets of {Re(z) > n/2} x K,,. Thus z — M(z, f) defines a
holomorphic section {Re(z) > n/2} — I,(x¢). This has a continuation to a meromorphic section
on C. For Re(z) > n/2, we have

M(Z, f) = ®1)M(Z7 fv)a [ =&f.
The functional equation for Siegel Eisenstein series is:
E(f,z,9) =X"(u(9))E(M(z, f); =z, 9)

in the sense that both sides can be meromorphically continued to all z € C and the equality is
understood as of meromorphic functions of z € C.

6.2 Embeddings

We define some embeddings of a subgroup of GU(3,1) x GU(0,2) into some larger groups. This
will be used in the doubling method. First we define G(3,3)" to be the unitary similitude group

associated to:
1

and G(r + s, + s)’ to be associated to

=)

a:{g1 x g2 € GU(3,1) x GU(0,2), u(g1) = pu(g2)} — GU(3,3)’

We define an embedding
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and

o : {gl x g2 € GU(2,0) x GU(0,2), u(g1) = N(QQ)} — GU(2, 2)/

as a(g1,92) = <g1 92> and o/ (g1, g92) = <g1 ) We also define an isomorphism:

g2

3:GU(3,3) = GU(3,3)

and
B GU(2,2) = GU(2,2)
by:
g— S¢S
or
g— S'1gs
where
1
B R
5= 1
-1 _%
and

s=(1 "~
-1 -

We write v and +/ for the embeddings S o a and 3’ o «

)

, respectively.

OOy

~

6.3 Pullback Formula

We recall the pullback formula of Shimura (see [48] for details). Let x be a unitary idele class
character of Ag. Given a cuspform ¢ on GU(2) we consider

Fo(fizg) = / £(25 g, 91h)S)X(det g19)p(g1h)dn,
U(2)(Aq)

fez(x),9 € GUB, 1)(Ag), h € GU2)(Aq), u(g) = p(h)

FL(f's2.g) = / F(2,8 1alg, 1h)S") x(det g19) (g1 1) dgy
U(2)(Ag)

f € I(x),g € GU2)(Aqg), h € GU(2)(Ag), u(g) = p(h)

This is independent of h. The pullback formulas are the identities in the following proposition.

Proposition 6.1. Let x be a unitary idele class character of Ag.
(i) If f' € Ix(x), then F(f';z,g) converges absolutely and uniformly for (z,g) in compact sets of
{Re(z) > 1} x GU(2,0)(Aq), and for any h € GU(2)(Ag) such that u(h) = p(g)

/ E(f'; 2,9 alg, g1h)S")x(det g1h)p(g1h)dgr = F(f; 2, g)-
U2)(Q\U(2)(Ag)
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(1) If f € I3(x), then F,(f;z,g) converges absolutely and uniformly for (z,g) in compact sets of
{Re(z) > 3/2} x GU(3,1)(Aq) such that p(h) = u(g)

E(f; 2,8 a(g, g1h)S)x(det g1h)(g1h)dgy

= Z FQD(fVZ?’yg)a

YEP(Q\GU(3,1)(Q)

/U(2)(@)\U(2)(AQ)

with the series converging absolutely and uniformly for (z,g) in compact subsets of
{Re(z) > 3/2} x GU(3,1)(Aq).
This is a special case of [48, Proposition 3.5].

6.4 Fourier-Jacobi expansion

From now on we fix a splitting character A of K*\A* of infinite type (—%, %) which is unramified

at p and unramified outside ¥ and such that | A% = XK/Q- The following formula is proved in [48],
3.3.1]. Let 7 be a Hecke character of X*\Ag of infinite type (—%,%5).

Definition 6.2. For § € S,(Q) and ¢ a holomorphic automorphic form on GU(n,n) we define
the B-th Fourier-coefficient

ep(9) = / so((l" fn ) g)ea(—TrpS)dS.

For a prime v and f, € I,(T) we also define the local Fourier coefficient at g, € GU(n,n)(Qy,) as

fv,ﬁ(279v):[q (Q)fv(z,wn(<1" i) go)eu(—TrBS,)dS,.

For ¢ a holomorphic automorphic form on GU(3,3) and 8 € QT we define

S 0
0 0 |glea(=TrBS)dS.
13

FJs(9)(g) = / o1

(The S has size (1 x 1). For E(f;z,g) with f € I3(T) we define

Fls(fi2,9) = FJs(E(f;2,—))(9)-

Proposition 6.3. Suppose f € I3(7) and f € S1(Q), B is positive. If E(f;z,q) is the Siegel
Fisenstein Series on GU(3,3) defined by f for some Re(z) sufficiently large then the B-th Fourier-
Jacobi coefficient Eg(f;z,g) satisfies:

1, 2
Es(fing) = 3 3 | /Sm(A)f(ws G0 | as(l,7)g)es(~TeBS)dS

YEQ2(Q)\GU2(Q) yeM1x2(K 13
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. A B A B
where if g1 = <C D> 1 g2 = <C” D’> then:

A B
D’ c’
04(91792) = C D

B’ A
(the notation « is already used before. However the meaning should be clear from context.)

Definition 6.4. If g, € U2(Qy),z € GL1(K,), then define:

Sy
1 _ . _
FIs(fo; 29, 9,7) = / fows [ % 0 | a(diag(z, 7). g))eq, (~TeBS)dS
Sl(@v) ]_3
Since
1 1 XBA! S—XBX XA
PR A A s
1 1
I3 BA-! A BA-! A Ln

it follows that:
A BA™!
FJB(fm%ZA( /_171 >gvx):

7¢(det A)~1| det AA[Z e, (= Tr(ZBxB))FJs(f; 2, yA, g, x)
Also we have:
+3)

FJs(f;2,9,9,7) = Ty(det )| det m’flg(z Flag.(fiz,27 'y, g,1).

1 oz t4 Wy oy

*
We write (z,y,t) for 1y yl 0 so that it becomes a Heisenberg group if we give
—z* ]_2

the pairing ((z1,y1), (z2,v2)) = 21Y5 + yox] — xoy; — y125. (see [54, section 4))

Lemma 6.5. Suppose for some place v the local Fourier Jacobi coefficient

Fjﬁ(fv; 2y (07y7 O)Q(L u)) = f(ua Z)w)\<u)¢(y>

for anyu € U(2,2) andy € W? and some Schwartz function ¢ € S(W9) and some f € I((T/\)y, 2),
then we have:

FIS (for2, (@, y, )a(1,w)) = f(u, 2)r((,y, £).1)6(0)
for any (z,y,t).

Proof. This is a consequence of:

1 —x 1 = t+ 711’*;’“ y 1 t— L*;ym*
12 _ 1o y* 02 1o y* 02
1 1 1
where we write z* for . O
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6.5 Archimedean Cases

We let i := (l C> or % depending on the size 3 X 3 or 2 x 2. The Siegel section we choose

2
iS fsiegoo = [fu(g,2) == J3(g,1) "|J3(g,1)[*%*73 and fL(g,2) = Ja(g,1) "|Jn(g,1)|*"2*72. For
® € T we define the pullback sections:

Fo(zg) = / Fulz, 5 ag, g1)S)F(det g1) (g1 ) odgs
U(2)(R)

and

Fi(z,9) = /U(Z)(R) fl(z, 8 alg, 1)S")7(det g1)7(g1)pdg
)

If we define an auxiliary fg,(z,9) = Ju(g,iln) "|Jn(g,i1,)|" 27" for n = 2,3, then fx(g,2) =
fes(990) and fi.(g,2) = [ 2(g990) for

. (1 di
g dlag ’ ’ )
0 \/i \/é

or

M\H
MH

depending on the size.

Lemma 6.6. The integrals are absolutely convergent for Re(z) sufficiently large and for such z,
we have:

i
v FKlingoo(2,9) = F(z,9) = Fy 2(9);
(ii)
F(2,9) = n(9);
where F. , is defined in deﬁm’tz’on using @ as the v there.

Fourier Coefficients
The following lemma is [45, Lemma 11.4].

Lemma 6.7. Suppose € S,,(R). Then the function z — f. s(z,g) has a meromorphic continua-
tion to all of C. Furthermore, if k > n then fi.n g(2,9) is holomorphic at z. := (k —n)/2 and for
y € GL,(C), §7n75(zm,diag(y,tg*1)) =0 ifdet 8 <0 and if det 8 > 0 then

(_2)—71(27ri)nn(2/7r)n(n—l)/2
(k=7 —1)
The local Fourier coefficient for f, can be easily deduced from that for fg.

Fourier-Jacobi Coefficients
The following lemma can be found in [48, Lemma 4.4].

e(iTr(By'g)) det(8)* " det .

fenp(ze, diag(y,'y™")) =
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Lemma 6.8. Let z,, = ’QT*?’, g€ S1(R), det 8 > 0. then:

(i) FJg(ze, fQ3,2.m,1) = f§,1,5(zn + 1, De(iTr('zfz));
(i) If g € U(2,2)(R), then

F‘Iﬁﬁ(zm f:,?w T, 9, 1) - e(iTr13>cl (ﬂv H)ffg—lﬁ(zm g/)wﬁ(g,)@ﬁpo(m)'

where g’ = 19 p 1o , (B, k) = M det 851 and ®p oo = e 2TTH(<T>0),
Lemma 6.9. We have

FJg(fu,2,9,1) = e(iTrB)e1(B, £)J (g, 4) " wp(g'g0) P00 ()
for all g € U(2,2)(R),z € C2.
Proof. Note that

Vd

Filgsze) = J(9,4)™" = J(g90,9) "I (90,8)" = ()" (990,9) "

Lemma 6.10. Let x1 = (11, 212), T2 = (221, X22) where the x;; € R. Then

1.1
1k
5;1(OJ1,>\(7790)(I)00)(5517 xg) — %eme/a(ﬁxflerfQ)67277\/3(5:@14@%2)

Proof. Straightforward from the expression for ®,, and dy. O

Definition 6.11.
Poo = wi1(90)P1,00, Pl = wi1(190) Poc,

fo.00(9) = fro1(990), fo 00 (9) = fr_1(gm90),

1 1
sids _ 2,2
P1,00(21, T2) = P2.00(T1,22) = ——€ 2md(sx}+a3)

5 ,T1, Ty € R.

6.6 Unramified Cases
Let v be a prime outside ¥ (in particular v { p). Then the Siegel sections f, sicqg = fo " and

b sicg = sPh" is defined to be the unique section that is invariant under GU(n,n)(Zy) (n = 3,2)

and is 1 at identity.

Lemma 6.12. Suppose m,1 and T are unramified and ¢ € w is a newvector. If Re(z) > 3/2 then
the pull back integral converges and

L(7, &, z+1)
[0 L(22+3—i,7'xk)
where F, is the spherical section defined using ¢ € w. Also:
L(7,& 2+ 1)
[Tio L(22 +2 — i, 7/x%)

Fso(f{jph;'zvg) = Fp,z(g)

FL(fth 2, g9) =

v

m(g)p.
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Fourier Coeflicients

Definition 6.13. Let ®qy be the characteristic function of O,zc.
Lemma 6.14. Let § € S,,(Q,) and let r := rank(B). Then for y € GL,(K,),
£z, diag(y, g Y)) = 7(dety)|detygl, =2 Dy "D

H?:_rl L(2z4i—n+1,7'x%) 72z7n)

Iy L@e i x) voy(T (20)4

where hy yp, € L[X] is a monic polynomial depending on v and By but not on 1. If f € Sp(Zy)
and det 8 € Z;, then we say that 3 is v-primitive and in this case h, g = 1.

Fourier-Jacobi Coeflicients
In this subsection we consider a prime v € ¥ not dividing p.

Lemma 6.15. Suppose v is unramified in K. Let f € S1(Q,) such that det3 # 0. Let y €
GLo(Ky) such that By € S1(Zy), let X be an unramified character of K such that Ng,x = 1. If
B € GL1(Ok,v), then for u € Ug(Qy):

1 572 0) (s, g ) Bo) (@)

sph _
Fjﬁ(fi%p §27$agau) = T(detu)|detuu|v L(QZ + 377:/)

19 19
Here ¢ )

For these primes we define ¢, and ¢2, to be the Schwartz function on X, which is the
characteristic function of Z2. We define fa, = fo¥ "' and @, = By = Y.

6.7 Ramified Cases

1 11
The Siegel section we choose is I3(T) 3 fu sieg = fT(93) where 7, is 2 2

y € O, is some fixed element such that the valuation is sufficiently large. We also define

IQ(T) > fz/),sz'eg = fT(g:y:))

Pullback Formulas
The proofs of the following lemmas are just special cases of [48, Lemma 4.9, 4.10].

1 f ¢
Lemma 6.16. Let KSQ) be the subgroup of G(Q,) of the form 1o g | where
1

9= (e LS €2 f € ()9 € (Cup)oc € Oy

Then Fy(z; g, f) is supported in Pqu(,z) and is invariant under the action of Kq(,z).
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Now we let ) be the set of matrices A € U(2)(Q,) such that M = A — 1 satisfies:

¢ _ _
M(1+§yy+ny) = Cyy

for some N € Ms(O,).

Lemma 6.17. Let ¢ be some vector invariant under the action of ) defined above, then

Fo(z,w) = 7(49) | (952~ > Vol(D) -

Also F(f} sieqi2:9) = 7(y9)|(y5)?[; 7 Vol(D) - w(g) -

Fourier Coeflicients

Lemma 6.18. (i) Let B € S3(Q¢). Then f,(2,1) =0 if B & S3(Z¢)*. If B € S3(Z¢)* then

Fo.5(z diag(A, A1) = D; 7(det A)| det AA|; 2 (W)
where Dy is the discriminant of Ky.

(ii) If 5 € S2(Qy), then fvﬁ(z, 1) =01if B € So(Zp)*. If B € S2(Zy)* then

f1 5z, diag(A, ‘A1) = D, *r(det A)| det AAQ”%Z(B”;&?).
Fourier-Jacobi Coefficients
Lemma 6.19. If 3 ¢ S1(Z,)* then FJs(f1;2,u,9,1) = 0. If B € S1(Zy,)* then

FJs(f52,u,9,1) = (2, g'mws(h, g'n") Po(w). Vol(S1(Zy)),
where ¢’ = (12 _12> g (12 _12>.

Let A= %12. So:
Flfasguiing ) = 11 (g ) misting (L)) ) mneota

for h € Ug(Qy). We define @) := [3(<1 f))q)o and ¢, = w5(< 1A 1) n)®g. We also define

fro=nl(Ly )0t e ).

Split Case

Suppose v = ww is a split prime. Recall we have the local polarization X, @ Y,. Now we write
x) = (2, 2],) and zh, = (ah, 24y) with respect to K, ~ Ky X K. The following lemma follows
from a straightforward computations and will be used later. Let Ag, be a character of IC}.
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Lemma 6.20. Let xg,, be a character of Z . It is possible to choose a Schwartz function ¢} such
that the function: ¢4(xh) = fX{ 5;‘1((I>Z)(x’1,x’2)¢1(m’1)dm’1 is given by

¢/ (x/) _ )\Q,UXO,’U(:EIQQ) :LJ21 S Zv7 $,22 € Z;)(
2372 0 otherwise.

Moreover when we are moving our datum in p-adic families, this ¢! is not going to change

1 1

We define ¢, = 5;’ (@), b2 = 5;’ (05).

Non-split Case
Lemma 6.21. We consider the action of the compact abelian group U(1)(Q,) on 51;1(@;) by the

Weil representation (Weil representation using the splitting character \) of

1x U)(Q) < 1 x UR)(Q) = UE)(Q,) x UR)(Q) > U2, 2)(Qy).

We can write 5;1(4)2;) as a sum of eigenfunctions of this action. Let m = max{ord,(cond\,),3)+1.

If ord, (yy) > m, then there is a such eigenfunction ¢ whose eigenvalue is a character )\gxg’v for
Xo, of conductor at least w,'. Moreover there is a p-integral valued Schwartz function ¢1 and a

set of p-integral Cy; € Qp and u,,; € U(1)(Qy)’s such that the function

d2(x2) = /X (Q )25;1(01;,@'00,\(%,@',1)‘I>Z)($1,I2)¢1($1)d561

(here 1 € U(2,2)(Qy)) is a non-zero multiple of ¢b.

Proof. Consider the embedding U(1,1) < U(2,2) by

For g1 € U(1)(Qy),
Fop(i(1,01), 3) = (@a( 0 i(1, 90)))(0) = (o1, 92)5,¥)(0)

here in the first and last expression 1 € U(2)(Q,) and g; is viewed as the element in the center of
U(2)(Qy). Thus we are reduced to proving the following lemma. O
Lemma 6.22. Let g1 = 1+w)".a € U(1)(Qy) for m as in the above lemma and a € Ok, if n = yy

is such that ordyn > m then for(i(1,91);3) # for(1;3).
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Proof. We have that:

Il
/l—\ /I—\
Oflzmpa Olwm\_n
— —
| |
S |
.I—\I\D‘E —
E N——"
~—— ——
/I—\ =
- s
N———
| I
IS NJ[s9) |
N— -
[
SIS N[V
N———

2
é [
= < 7%1+%171 _11 +9141>
0"+ g 5+ %
and
o BV (U RY_ (0 grny_ (e s (1
c d 1 c -+d 0 <1d 1+"%d 1]
Now the lemma follows readily. O

In all cases we write @14, ¢2, for the ¢1, @2 above.

Remark 6.23. Later when we are moving the datum p-adic analytically, this choice of ¢; is not
going to change.

6.8 p-adic Cases

We recall some results in [48] with some modifications. Recall that we have the triple mp, ¢y, 7
and &, := 1, /7, Xp is the central character of m, and T,ZJp|Q;< = Xp- Suppose 7, is nearly ordinary

in the sense that m, = m(x1,, X2,p) such that ordy(x1,(p)) = —3% and ordy(x2,(p)) = 3. We
write 7, = (71,72) and &, = (£1,&2). We call the triple is generic if there is a t > 2 such that
§1.ps €2.p5 Xp» Xp 1514,, Xp 1§p72 all have conductor pf. Later when we are working with families, it is
easily seen that these points are Zariski dense due to the fact that p > 5 (in fact this is the only
place where we used the fact p > 5). Although the definition for generic points is different from
[48] however the argument there goes through since the only place using this definition is lemma
4.4.3 there, which can be proved completely in the same way under our definition for generic. We
define: EI = x1&2, 5; = x2&2. We define f; to be the section supported in Q(Q,) K, invariant under
K, and takes value 1 on the identity. Define

Foean(e) = 0lr) e (7, —2)p o)l (- Da(eh) b (e ' )l (D)
1 a+bmn bm
1 bn b
1
X Z fi(gT 1 )-
a,be€p—tZy Ly, mnELy /Pt Ly 1
1
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and

(@) = o(r)) ez (7, —2)pa(€))eE] (—Da(e]) b (—1)E] (pla)EL (p'D)
1 a bm
1 b
x > filgY b )
a,bep=tZy | ZpnEZy /Pt Ly 1
1

We also define:

Ficgnle) = 0(m) e (7 2 a(EDE (- DaEh) (- DE (' a)E (p'D)
1 a+bmn bm
1 bn b
X Z fe(gY 1 )-
a,be€p=tZy Ly, mnELy /Pt Ly 1
1
1.12 —112
where T € U(3,3)(Q)) is such that it is 2 1 2 via the first projection U(3, 3)(Q,) ~

—¢! —¢!

GLG(Qp) and Cn(T,, Z) — T/(pnt)p2ntz—tn(n+1)/2.

Pullback Formulas

We refer to [48] 4.4.1] for the discussion of nearly ordinary vectors, which means the vector whose

Up-eigenvalues are p-adic units. Let ¢ = 0o ¢ mp be a nearly ordinary vector. Define foe I,(p)

to be the nearly ordinary Klingen section supported in P(Q,)w4B;(Z,) where Bi(Z,) consists of
1

1

matrices in GL4(Z,) which are upper triangular modulo pt and wh = 1

S GL4(ZP)

1
and the right action of By(Z,) on f is given by a character (see [48, section 4], note the differences
in the indices discussed there). Moreover we require the value of f° on wy is given by

a(m)) (0 PTG XX (P a(EpXT b 8(EpXa )@

The fact that it is indeed a nearly ordinary vector is explained in the discussion before [48], Definition
4.43]. Then by the computations in [48] we have the following (see the end of [48, Section 4].

Lemma 6'24' (1) Ftp(fsieg,pa zlmg)lz flo(g) = FKlingip;. 1
(2) Fl(fricgpr 2r:9) = DI X T X0 (07 )8(610X 1 p)8(E1pX5 )T (9) 0.

Fourier Coefficients

d

is such that both its determinant and a are in Z,; then @4 (z) = fI (a)ﬁg(de@%). Otherwise @4 = 0.
The following lemma is proved in [4§].

We define the function @, as the function on the set of (2x2) Q,-matrices as follows. If z = (Z b>
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Lemma 6.25.

Ba1 ﬂ22>
sie = Py
Fsicg.r.6 éT(<531 P32 )
Bi1 Pz Pi3
for 8= B21 Bz o3| with P11, B2, 513, 823, B33 € Zyp, and is 0 otherwise.
B31 P32 P33

Fourier-Jacobi Coeflicients
For g € 51(Q,) N GL1(Z,) we are going to compute the Fourier-Jacobi coefficient for f; at 3. We
have the following ([48], lemma 4.54])

1

D 1
(a) FJﬁ(ft;_Z7U7aj77_lal) =04 D gptMQ(ZP)7

(b) if D € p! Ms(Z,) then FJg(fe; —2z,v,2n7 1) = c(B,7,2)Po(v), where

c(B,7,2) == 7(— det B)| det B3 2g(")g (7)1, (0" )p ™27

Lemma 6.26. Let z := < ) (this is a block matriz with respect to (2 + 2)).

Note the formula:

/

a(my) 7y (P

/ /
3’7'

Q(Tp) p(p R

/ /
27'

a(my) (P )

3t) 2t)

p p
We get:
Lemma 6.27.

13 b

9(mp) Pes(T, =20 Xy F 1 (p Fopi 2es v, 9)E) (—p'a)ED(—p')a(€])a(ed)

13

= (a(ry) %y (7 —2)p ' 8(ED) 0, E (D) fulg < Al_b 1) ) (9(6])p™Hws(g) @) (01, v2, v3,v4)).

Here A, = <8 g) Also under the projection U(3,3)(Q,) ~ GLg(Qyp), the vi,va,v3,v4 are
1 V3 VU4 ]
1 (%]
1 1}12 The Weil representations are the one in subsection (4.8 We use p to
1
1

denote the right action of GU(3,3)(Qp) on the Siegel sections. And

E{(a), V1,V € Zyp,v4 € p~ Ly, v3 € 1% + Zy for some a € L

(I)/ (1)1 V2, U3 1)4) =
presr e 0, otherwise.
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Proof. First we fix b and consider the Fourier-Jacobi expansion of:

1 a bm
1
1
> . )fe (3)
a,m
1
1
note that:
1 a bm
t V3 V4 1
13 v1 D1 Do 1 1
w3 va D3 Dy O‘(LU ) 1
13 1
1
1 —a —-bm
1 t v )
o 1 13 U1 D1 D2 -1
= w3 1 vy D3 D4 04(1,77 )
1 13
1

where v = v3 + Dy.a + D3.bm,v) = vq + Da.a + Dy.bm,t’ =t + vi.a + vo.bm. From this a simple
calculation shows that the Fourier-Jacobi expansion of at g is:

(0(70)2c3 (7 —2)p~ 0 (D) p(n) £ (9 (8(ED)p™ 2w (g) @)) (v1, v2, v3, va).

So the Fourier-Jacobi expansion of

1 a bm
1 b
1
bZ o . )i
a,b,m 1
1

St 2 - sl () ) i)l ()

b

1 . : . .
Note that w( ( A 1) )@; = <I>;,, we get the required Fourier-Jacobi expansion. O
—b

W define o, = 5y a(€ -0 2 -2l (L) i and @, = a(€p 2,
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We record some formulas:

p(n) fop = fé/,p = ;—p(—l)g(g’;)zg(b)g(fp) 202—1( Tp» —Z)P(<1 x‘ib))ft

p b

I(— Z L3 ,vs € p'L.
P — fl( Ul)a U3, V4 € py U1 € D , U2 © D Lup 4
(wa(n)®p)(v1, v2, v3,v4) { 0. e (4)

We define two Schwartz functions on X, . by letting <;5’17p to be the characteristic function of ZZ C QI%
and ¢'27p(§I(—a;1)) if 11 € Z;, 79 € p'Z, and is zero otherwise.

Definition 6.28. We define ¢1, =0, (¢ ,), d2p = 0,7 (¢5,)-

6.9 Pullback Formulas Again

In this section we prove the local pullback formulas for U(2) x U(2) < U(2,2) which will be used
to decompose the restriction to U(2) x U(2) of the Siegel Eisenstein series on U(2,2) showing up in
the Fourier-Jacobi expansion of Ege, on U(3,3). Fortunately, the local calculations are the same
as in the previous sections for f’. and F;’s except for the case v = p.

sieg
p-adic case:
We temporarily denote the p-component of automorphic representation 7, of some h on U(2)(Q,)
as m(x1,x2) with v,(x1(p)) = —3%,vp(x2(p)) = 3. We also write temporarily write 7 for 7/X

in this subsection. We let 7, = (71, 72) and require X1Ty 1 and X2Ty 1§; are unramified. We let

1
@ = * € Ty for ¥ = my( <pt ))goord for some nearly ordinary vector ¢, Define

Fonlg) = o) 2er(r 2/ () S Eep (1 A”))ﬂ( )

,tZX
be? 2
Zp

It is hard to evaluate the integral directly. So we use the trick of using the functional equation as
in [45, Proposition 11.13]. We first do the integration for the auxilliary

Folfl i) = /U o ot 001 ) S) 7 )91l
P

at g = w where ¢ € 7, and

£ ,(9) = po(e) Zé*(bpt)p((l “}b)wgr), FO € 1(7).

b

For A € U(2)(Qp) ~ GL2(Q,) note that

sian(* )=(* ) ()
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So in order for this to be in suppr we must have A~ 4+ 4, € MQ(ZP)- So A~ can be written as
(1 > (v U) (7711 1> for v € Z,\{0}, u € —=b+ Z, and m,n € p'Z,. Thus

=) 66

A direct computation gives the integral equals:

xa(=Dxaxa ()P E (=, 1)) Y a7t 1)p 22 )i
=1
= P ((—pt, 1) Ly(m, 7, 2 + X @txa(-1).

2

The 7 in the L-factor means the base change of 7 from U(2) to GLy. Note that it is not convergent
at z = —z, and is defined by analytic continuation at that point.

Now we apply the functional equation trick to evaluate the pullback integral for fs,. As in [45)]

Proposition 11.28] the local constant showing up when applying the intertwining operator at z =
—2z, 18

. }__- i\ (= t\ (= —1/.t\, 3Kk—6

e(m, 7, —ze + 5) = 8(Tx)Txa (P)a(Tix2) Tixe ()8 (7exe) Toxg - (7)p2"

To sum up our original local integral equals

_ 1, . _ _ _ +
Lp(mn, 7 25 + 5 )a(F 1) X (01 g(Fixe) T x2 (1) p 2Dy (ph)pz p°rd.

. ~ t 1
Note that < ¢o%, % >=< ¢ v, > .Xl(pt)pé where we define o, = 7rp(<1 ))cpord. Thus
if we replace ¢** by 0 in the definition for pullback integral then it equals

1

Ly(mh, 7% 26 + 5)8(T1X1) T1X1 (Pt)g(ﬁiz)ﬁXQ(pt)P

(2k—5)t, ord
2 L

Remark 6.29. Later when we are defining Ej;eg2 the 7 here should be 1.

6.10 Global Computations

We first define two normalization factors as in [48], 5.3.1]

Q2rFo0  (_0)=3(274)3%(2/1)3\ _1 772 C
BD = ngoizoo (( 1212:(0(,;2]‘_(1)/! ) ) ! Hi:o LE<2ZH +3 - %TIX;C)v

Q2r¥co  (_g9y—2 N2k _ o,
Bp: = gho (SRS 7 T L2 (25 +2 — 6,70k

The z, = "‘773 and 2], = ”‘772 We define Egieg(2,9) = Esieq(2, fsieg,9) on GU(3,3) for feeq =
BD Hv fsieg,v and E;ieg(zhg) = Eéieg(zv ;ieg?g) on GU(373) for f;ieg = BID Hv f;ieg,v' (NOte that
compared to [48], the normalization factors at p here are already included in our definitions of
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p-adic Siegel sections.) We also define Egeg(g) = F(z, fsmieg,g) where Eeg is the same as fgeq at
. o e 7. . |:|
all primes not dividing p and is fg, ., at p.

For some g; € U(2)(Ag) (which we are going to specify in section [8)) we define Erjig by:

1
FEkiing(2,9) = /[U(Q)] Eicg(2,7(g, hg'))7(det ¢")p(g'g1)dy’.

0z
This is the Klingen Eisenstein series constructed using the Klingen section Fjing = IL, F Kling,v-
The period factor showing up is to make it rational (see [16, 2.8]). The ¢ is defined as follows.
First recall that given a CM character ¢ and a form on D> whose central character is 9[s, we
can produce a form on U(2) whose central character is the restriction of 1. So we often construct
forms on D* and get forms on U(2) this way. In section 8.2 we are going to construct a Dirichlet
character ©. We define

fo=( ] 7r<(m 1>>—xl,v<wv>qé>fnew
vEX,VIN

where fpnew 18 @ new vector in 7 and define fy € 7 by

S

fo= 1 S ozneTl(s ) (7 1)

vey split Jutp {ave wo g Yo

Wil;+sv Zy

where the s, above is the order of the conductor of ¥ at v and ¢, is the order of the conductor of
m at v. Define ¢ =[], ¢u = (1) fy for some g; defined in section |8 We record the following easy
lemma, which explains the motivation for the definition of fx;: to pick up a certain Iwahari-invariant
vector from the unramified representation m, for v € X\{v,v|N}.

Lemma 6.30. Consider the model for the unramified principal series representation

A xze) = (F K = €)= aa@nan@ba@f .0 = (* ) € BE).

Let fu- be the constant function 1 on K,, fo be the function supported and takes value 1 on Ky for
a b
K, = {(C d> |coy|c}. Then

(@t = xa@abfo = ()~ xan@ el fr

Fourier-Jacobi Coeflicients

Proposition 6.31. The Fourier-Jacobi coefficient for 5 =1 at [1] is given by:

FJ1(ESieg)(zH,diag(u, 12, u, 12)n/g) = Z Esieg,Q(Zm f2797(17 <i 1) ))®q>(u,n/g'y(1, (Tll 1> ))

NELy /P Ly p P

for n' € Ny (Ny defined in subsection[{.7), g € U(2,2)(Ag) and u € U(1)(Ag). Here f2 =TT, f2.0
and ® =[], @, are given in previous subsections. Egjeq 2 is considered as a function on U(2,2)(Ag).
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Proof. This follows from our computations for Fourier-Jacobi coefficients and lemma [6.5] ]

1
So far we have used the embedding «(1,g) = Dy ] Cy for g = <é g), to keep
By Ay
accordance with the convention of [26]. In our actual applications later on we will use another
embedding o’ as below. Now that we have

FJl(Egega Zﬁ,g7I,U) - Esieg,Z(Zm f2)g/)®¢(u7g/)'

1
Ay By
1
Cy Dy
p(n) f2 and we let F'J5 be defined as F'Jg but replacing o by . By observing that Eg;eq,2 and ©
1

Now we consider another embedding o (1,g) = Let ®" = wg(n)® and f) =

are automorphic forms and thus invariant under left multiplication by n~", we get:

FJg(EsD@'eg7znag7xuu) = Esieg,Z(Zﬁ)félug)eq)”(uug)' (5)

Lemma 6.32. Suppose 5;1(CI>ZO) = P1,00 X P2 0, and for each v < oo

P2.0(2) = . 3, (@) (2, )1 (2" da”

Then

b,, (1 (90))(x) = 04, ().
Here we consider v~1(0g) as a function on (NU(2)) x U(2) < U(3,1) x U(2) and apply lém to it
on the NU(2) part.

The lemma follows easily from writing (51;1<I> into a finite sum of expressions of the form ¢ X ¢o
and then applying and .

Corollary 6.33.

l4,91 (FJl(H Z p(diag(m,v, 1o, Ul,v)))EKling)(g)

v (3
— e X Bl () ) gt () o)
n€Ly /Pt Ly p p
where 01 and 03 are the theta function on U(—()(Aqg) defined using the kernel ¢ = [, ¢1,0 or 2 =
[1, ¢2.0 for é14 and ¢2,’s defined as before. Note that the ¢ is defined using ¢1, which explains the
dependence of the right hand side on ¢1. The inner product is over the group 1 x U(2) — U(3,3).
Moreover suppose p,, € m, 1s chosen such that ¢, is the ordinary vector, then the above expression
is:

(E(a(g, =) - 02(=), 0(=))-
Proof. 1t follows from the above proposition and our discussions for intertwining maps in subsection

The last sentence follows from a description of the paring between 7, and 71';/ . O
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7 p-adic Interpolation

7.1 Eisenstein Datum

Definition 7.1. An Eisenstein datum D = (L,1,f,£) consists of:
o A finite extension L/Q,;
e a finite normal Or[[W]]-algebra I;

e an l-adic Hida family £ of cuspidal ordinary eigenforms new outside p, of square-free conduc-
tor N such that some weight 2 specialization fy has trivial character; Assume moreover that
for some odd prime q non-split in K we have q||N.

e a finite order L-valued Hecke character & of K*\Ag whose p-part conductor divides p.

Now we need to modify our I. By taking an irreducible component of the normalization of
a series of quadratic extension of I we may assume that for each v € ¥ not dividing N, we can
find two functions ., 8, € I interpolating the Satake parameters of m,. This enables us to do the
constructions in the global computations in section [6] in families. We still denote I for the new
ring for simplicity. At the end of this paper we will see how to deduce the main conjecture for the
original I from that for the new I.

Let I := [[[T'x]]. We define a : Or[[T'xc]] = I[[I'y]] and B : Or[[T'xc]] = I[[I'x]] by:

N|=

a(yy) =1+ W)z, a(r-) =7, B014) = 7+, B(y-) = 71—
Welet ¢ = a0V, & = (BoW¥x)-£. Define: 1y = ¢pop and g = ¢po§. Let Ap = I[[['k]][['c]]. We
give Ap a As-algebra structure by first give a homomorphism I's = (1 + pZ,)* — T x Tk given
by:

(a,b,¢,d) — reci(db,ate™t) x reck(d7L, ¢)

and then compose with a ® .

We remark here that only the quotient I[[I'x]] of Ap really matters: the I'y. variable corresponds
to twisting everything by the same character and does not affect the p-adic L-functions and the
Selmer groups.

Now we consider Ap-adic forms. For X a Zariski dense set of arithmetic points. Suppose
Us € D(Ay) be a compact open subgroup such that the level is prime to p. A point ¢ € SpecAp
is called arithmetic if ¢(1 + W), d(v1),d(y7) for v~ € T'x and T are all p-power roots of unity.
We call it generic if (fg,1¢,&s) is generic in the sense defined in section 5. We let X' be the set of
arithmetic points and X9¢" be the set of generic arithmetic points.

7.2 Congruence Module and the Canonical Period

We now discuss the theory of congruences of modular forms on GL2(Q). Let R be a finite exten-
sion of Z, and ¢ a finite order character of Z* whose p-component has conductor dividing p. Let
M 4(Mp", &; R) be the space of ordinary modular forms on GLy/Q with level N = Mp", character
¢ and coefficient R. Let So"¢(Mp", e; R) be the subspace of cusp forms. Suppose R is a finite exten-
sion of Z, we let T"¢(N,¢; R) (T2"(Mp",&; R)) be the R-sub-algebra of Endg(M2(Mp",&; R))
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(respectively, Endr(S24(Mp", e; R))) generated by the Hecke operators T}, (these are Hecke opera-

tors defined using the double coset I'1 (N), (w” 1) I'1(N), for the v’s). For any f € S74(N,¢; R)

a nearly ordinary eigenform. Then we have 1 € To"(N,e: R) @ Fr = T'. x F the projection
onto the second factor.

Let m; be the maximal ideal of the Hecke algebra corresponding to f. Suppose that the localization
of the Hecke algebra at my satisfies the Gorenstein property. Then TordO(M, e; R)m ; 1s a Goren-
stein R-algebra, so T"49(M,e; R) N (0 ® Fg) is a rank one R-module. We let £ be a generator; so
Ly =ny¢ly for some ny € R. This 1y is called the congruence number of f.

Now let I be as at the beginning of this section. Suppose f € M°"¢(M, ;1) is an ordinary I-adic cus-
pidal eigenform. Then as above T"%0(M, &;1) ® Fy ~ T’ x Fy, F being the fraction field of I where
projection onto the second factor gives the eigenvalues for the actions on f. Again let 1¢ be the
idempotent corresponding to projection onto the second factor. Then for an g € S"¢(M, ;1) ®1 Fy,
lgg = cf for some ¢ € Fy. As above, under the Gorenstein property for Tg, we can define £¢ and 7.

From now on we will define D* to be the unique quaternion algebra ramified exactly at oo and the
¢ in our main theorems in the introduction. We choose the group U(2) with D* being its associated
quaternion algebra. We also make the following definition for p-adic families of forms on D*.

Definition 7.2. For any complete local Or[[W]]|-aglebra R (need not be finite over OL[[W]]) we
define the space of R-adic families on D> with level group Kp C D*(Ay) which is GLa(Zy) at p
to be
(lim lim M (K p(p"), O /p"Or)&R) %IV

where Kp(p™) is obtained by replacing the p-component of Kp by T'1(p™). The action of Zy[[W]] is
given by the usual action as nebentypus on the first factor, and byt — t~1 on the second factor. The
M(Kp(p"),Or/p™OL) is the space of forms on D*(Aqg) with level group Kp(p™) and coefficient
ring Or/p™Oy. It is not hard to see that each R-adic family gives a continuous R-valued function
on D*(Q)\D*(Ag)/K®) where we give the last set the topology induced from the p-adic Lie-group
GL2(Zy).

The Ordinary Family f on D*

Let f be a Hida family of ordinary eigenforms new outside p as in the main theorem. Suppose Ty,
is Gorenstein. Thus we have the integral projector f¢. We are going to construct from it a Hida
family of ordinary forms on D*(Ag), also denoted as f. We refer to [10] for the definition and
theory of ordinary forms on quaternion algebras. By our assumption we may choose fy a form on
D*(Ag) which is in the Jacquet-Langlands correspondence of fy in GL2(Ag) with values in Oy, and
fo is not divisible by m7. If we are under the assumption the main theorem in the introduction we
can choose some gg € Sé”"d(Kfo, Or,) such that £4,go is a p-adic unit times fy as forms on D*(Aq).
Note that £, fo is not a p-adic unit times fy. (This is possible by our assumptions in Theorem
on f. The local Hecke algebras for fy on GLy and D* are the same, thus they have the same con-
gruence numbers. On the other hand such congruence number is generated by the Petersson inner
product of fp by result of Pollack-Weston [36]). Since the space of ordinary I-adic forms is finite
and free over I by [10] section 10], and, by loc.cit section 9 we can choose an ordinary I-adic form g
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such that some weight 2 specialization is gg. Thus we can define f := f¢g. We make the following
important remark: we can find a point (still denote as go) on U(2)(Ag) such that the value of ¢ is
a p-adic unit. We only need to see that there is go € D*(Ag) with det go € Q* - Nm(Ag /Ag) with
f(go) being a p-adic unit. This follows easily from the assumption that f has square-free conductor.

7.3 Siegel Eisenstein Measure
Proposition 7.3. There are Ax-adic formal Fourier expansions Ep seq and E’, sieg which when
specializing to an arithmetic point ¢ are the Siegel Fisenstein series we constructed from the datum

(fo,84:00) at ¢ and our choices of Siegel Eisenstein sections fsieg,v-

Proof. Tt is a special case of [48, Lemma 5.7] and follows from our computations of the local Fourier
coefficients for Siegel Eisenstein series. For example the S-th Fourier coefficient of

2KkY 00
Qp

Q2%

)_lEsieg(fsieg; 2Ky g)

(

at diag(y,y) for y € GL3(Ax f) is given by

_3 _K
[T Dy ?r(detye)| det yegl, e, (P22t O3,
tex,tp YelYe
X H P tg, 3y, (T (0)L7)
g,
X %t((éi g§§>)'Chal"(Zp,511)Char(zp7512)0haf(zp7513)Char(zp7523)Chal"(Zp,ﬁ33)

where char(Z,, z) is the characteristic function for Z, for the variable x. This expression is clearly
interpolated by an element in the Iwasawa algebra. The case for

2K 00
QP

Q2%

(

)71E;ieg<féieg; 279)

is similar. We finally remark there that the CM and p-adic periods will show up when pulling back
the forms on U(3,3) (U(2,2)) to U(3,1) x U(2) (U(2) x U(2), respectively). O

This formal Fourier expansion gives measures on I'ic X Z,, with values in the space of p-adic auto-
morphic forms on GU(3, 3), which we denote as Ep sieq and 51/)7 sieg? respectively.

We make an additional construction for interpolating Petersson inner products of forms on definite
unitary groups. Write N~ for the lower triangular unipotent subgroup of GLs. For a compact
open subgroup K of U(2)(Ag) which is U(2)(Z,) at p we take {g;}; a set of representatives for
U(2)(Q)\U(2)(Ag)/Ko(p) (Ko(p) is obtained by replacing the p-component of K by the I'g(p) level
subgroup). Suppose K = [[, K, is sufficiently small so that for all i we have U(2)(Q)Ng;Kg; ' = 1.

Let x be the central character of f we write £V for the family ( <1 1) )£ ® x"!(det —)). For

p
the Hida family £V of eigenforms (with lower triangular level group at p) we construct a set of
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t1
bounded R-valued measure p; on N~ (pZyp) as follows. Let T~ be the set of elements <p pt2>

with ¢3 > ¢;. We only need to specify the measure for sets of the form nt~ N~ (Z,)(t~)~! where
n € N~ (Zp,) and t~ € T—. We assign fV(g;nt~)A(t7)~! where A\(¢7) is the Hecke eigenvalue of fV
for U;~. This measure is well defined by the expression for Hecke operators U;-.

Proposition 7.4. If we define
<f,fv> = / f(gm)dui el
Z neN~(pZp)

Then up to a constant depending only on the quaternion algebra D and the level group K, we have
for all ¢ € X9" the specialization of < £,£¥ > to ¢ is (£, f(;)/> -Vol(Ky) ™! where Ky = Ko(p'®) for
pte the conductor at ¢.

Proof. For each ¢ € X9°", we choose t~ such that t~ N~ (pZ,)(t~)~! C K,. We consider
(£, 7, ().

Unfolding the definitions, note that X(Zl(t—)é B(t™) gives the Hecke eigenvalue \(¢~) acting on fV.
This gives Vol(Ky) - 5B(t_)xqjl(t_) > anN_(pr) f(gin)dp;. On the other hand, using the model
of 7g, , and gy p AS the induced representation 7(x1,4, .-, Xr,¢) and ﬂ(xi;, - X;dl)) of GL,(Qy), we
get that

(£, 7, (E)E) = 0Bt )x, ' (1) {Es, £)).
This proves that the specialization of (f,f") to ¢ is (f,, f(;/) - Vol(Ky)~L. O

The above set {y;}; can be viewed as a measure on U(Q)\U(Ag), which we denote as ps.

7.4 p-adic L-functions

We have the following proposition for p-adic L-functions:

Proposition 7.5. Notations as before. There is an element L'fzg,c in T [[Tx]], and a p-integral
element C’fz’&,c € @If such that for any generic arithmetic point ¢ we have:

PUTIER X pXa (P86 p X0 ) 8(E1pXa ) LZ (K, 75, X 5 — 5) (k= 1)k — 2)12p7

¢(£fz,g,ic) = CEE,IC (27.‘.1')2»@7192/«@

(6)
Here X1,p, X2,p 15 such that the unitary representation 7y, =~ 7(x1,p, X2,p) With valp(x1,(p)) = —%

val(x2,(p)) = 3-

)

Proof. If we are under the assumption of Theorem Take go to be a point on the Igusa scheme
for GU(2) defined over O}" such that f(go) is a unit in I"*" and take a hy € GU(2)(Ag) such that
1(go) = p(ho). It is noted in [16, Section 2.8] that

Igu(e)(KT)(OF) = GU(2)(Q) '\GU(2)(Af) /KT
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We define LfZ@K such that

ERerc = £a0) ™" [ e¥ip (07 (Eh g (= T)7(det 92 bt
92

Here evy, means evaluation at gy. By 7,201 (€D sieq) We mean pullback a form on {(g1,92) €
GU(2,0) x GU(0,2), u(g1) = p(g2) = p(ho)}. Let the character 7 = /€. The function 7(det g2)
means the function taking value 7(det go) at the point (g1, g2) in the above set. The integration
is in the sense of subsection [7.3| with respect to the level group hy'(Kp N (1 x GU(2)(Af))ho (In
fact by pullback we get a measure of forms on the hg-Igusa schemes, see the last part of subsection
. This £f27£,,c satisfies the proposition.

If we are under assumption of Theorem [I.2]then we just pick up a go such that the specialization
of f at go has non-zero specialization at go. Note that the period factor Q2% and Q;” comes from

the pullback as discussed in [16], 2.8]. O

Definition 7.6. Now we define Hida’s p-adic L-function Eg,’cdg First take the p-adic L-function
constructed in [11l, Theorem I] choosing f there to be the Hida family of nearly ordinary CM eigen
forms g¢ associated to £ and g there to be the nearly ordinary eigenforms of our f. The period
factors in Hida’s construction are the Petersson inner product of g4’s instead of the CM period
Qoo. There is a Katz p-adic L-function L’,Ié’%tz € Oy [[Tk]] interpolating near central L-values of

£17¢ twisted by characters of I'c (i.e. it interpolates the values

P'L(EE, ¢, 1)2r
G(&8y )02

where &, is & multiplied by some finite order character of U'ic of conductor p'.). We have Cl - E%fgz

interpolates the ratio of the Petersson inner product of g4’s and 2 (Clg is the class number for IC.

See e.g. [21, Section 7] for a detailed discussion). Then we multiply Hida’s p-adic L-function by
Clg - ,C,Ié%tz and denote this new p-adic L-function as ng% The interpolation formula for it is
P XX (P 8(E1px T ) 8(E1pxa ) LUK, Tr, Xobor 5 — 3) (5 — 1)!(k — 2)102F

(2mi)2m—10)28 '

(7)

(Here we removed the product of prime to p root numbers in loc.cit which are p-units and moves
p-adic analytically.) If € is such that g¢ satisfies the (dist) and (irred) in the introduction, then
the local Hecke algebra for ge is Gorenstein. By the main conjecture proved in [21)], [22] and [13]
(see the discussion after the Conjecture in [21), page 192], the Cli - Eg%tz generates the congruence

§¢,1,p(p)

B(LEE%) =

module for g and our Et{{gd,g is integral (i.e. in Ap).

Given a finite set of primes > we can define the Y-primitive Hida p-adic L-function [,fz;é]éda by
removing local Euler factors at ¥. Note that Hida proved the interpolation formula for general
arithmetic points. We may compare @ . If we write E?O,UC for the specialization of E?,E,K to

O ([Tx]] at fo, then we get the interpolation formula

PO X Xa (0 8(E1 X1 ) 8(E1pXa ) L7 (K, Tgy, €6, 5 — 5) (K — Dk — 2)1005F
(2mi)2e—10)2s '
(8)

O(LY ex) = Crex
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for £,’s of conductor (pt, pt) at p.

Anti-cyclotomic p-invariants:

Now assume we are under assumption of Theorem in the introduction. We define ¢g to be
the arithmetic point in Specl[[I'x]] sending 4* to 1 and such that ¢g|; correspond to fo. Our
assumptions on ¢ and ~ ensures that it is in the component of our p-adic L-function. (This is
not an arithmetic point by our definition, however it still interpolates the algebraic part of the
special L-value by [II] ). Consider the 1-dimensional subspace of of Specl[[I'x]] of anti-cyclotomic
twists by characters of order and conductor powers of p that passes through ¢g. The specialization
of Hida’s p-adic L-function to this subspace is nothing but the anti-cyclotomic p-adic L-function
considered by [18]. Thus the anti-cyclotomic p-adic L-function has p-invariant 0. As in [45, 12.3]
the corresponding p-invariant for the -primitive p-adic L-function is 0 as well. Thus it is easy to

see that any height 1 prime P of [[[I'x]] containing Efz ggda can not be the pullback of a height 1

prime of H[[F,‘gﬂ Therefore for any height 1 prime containing Efz ’,é{gda,

ordp(ﬁfz’;géda) = ordp(ﬁg,c,g)
and ordp(K?GE) =0.

7.5 p-adic Eisenstein Series

Proposition 7.7. There is o 1“"[[[x]]-adic formal Fourier-Jacobi expansion Ep Kiing such that for

each generic arithmetic point ¢ € Specﬁ“’"[[FK]], the specialization Ep ging ¢ is the Fourier-Jacobi
expansion of the nearly ordinary Klingen Eisenstein series Exjing we constructed in section@ using
the Eiseinstein datum at ¢. Moreover, the constant terms are divisible by 'CfE,S,ICL%f" Where E%/

is the element in ]I[[F,JEH which is the Dirichlet p-adic L-function interpolating the algebraic part of
the special values L* (XS ki — 2).-

Proof. Tt is a special case of 48, Theorem 1.1 (3)]. In our cases the local choices are slightly
different but the arguments are the same. We take a basis (6,---,0,,) of the Or-dual space of
HY(B, L(B)) consisting of theta functions. Suppose 6 is one of the @s. For any g € GU(2)(Ag) we
take h € GU(2)(Aq) such that p(g) = p(h). We define

FJ300(Ep.scing) = [ 05510035 (Ep,seg(~0)7 (et 92) e
92

Here by y}jl(gD,sieg) we mean the form on {(91792) € GU(3> 1) X GU(Ov 2))“(91) = ﬂ(g2) = lu(h’)}
The integration is in the sense of subsection with respect to the level group h=1(Kp N (1 x
GU(2)(A¢))h (In fact by pullback we get a measure of forms on the h-Igusa schemes). O

The family ¢ will be chosen in the last paragraph of Section [8.4] It follows that the formal
Fourier-Jacobi expansion Ep gjingy comes from a family in MO KPAp), which we still denote as
Ep kiing. (In fact Theorem [3.8]is still true after replacing A = I[[T'x]] by I“"[[Tx]].)

8 p-adic Properties of Fourier-Jacobi Coefficients

The purpose of this section is to prove proposition [8.25|.
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8.1 Preliminaries

Some Local Representation Theory

Let v € X! then D ~ GLy(Q,). For some irreducible admissible representation 79 of U(2),, we
can find a representation 7GU( of GU(2),, such that 7V®) is a summand of 7GV2)v restricting
to U(2),. The cases that we are interested in are those such that the restriction 7GU2)v| . is

v

supercuspidal of level at least w? and higher than the conductor of the central character of it. In
this case the SLy L-packet in [30] has two elements. Thus by the discussion in [30] for the local
L-packets for SLo, we have:

AGU@)| — 7U@0 g0 U@

U(2)y

for irreducible representations 7V(2(@) of U(2)(Q,). Here v = (wv 1) or a = <EU ) for some

1
€ € X /(ZX)? depending on whether it is an unramified or ramified supercuspidal representation
in the sense of [30]. The “ means the representation composed with the automorphism given by
conjugation by «. Also the restriction of 7Y@ to D is clearly irreducible. There is a newform
Unew (up to scalar) of 7P Note that the conditions on the conductors there are satisfied. We
define the “new vector in our sense” v € 79 (up to scalar) to be the new vector of 7V |SL(Qu)-
Thus vpew = T(Q)V OF Vpew = v + m(a)v (see [30, Proposition 3.3.3, 3.3.7]).

If D¢ modulo center is compact then we let a be some element such that Nm(«) ¢ Nm(K, /Q,). For
7Y@ we similarly have 76U @)
tions of finite groups. 76U

, 707 These can all be considered as finite dimensional representa-
v — 7TDX GU(2), |U( — 7U2)v op 7U2)w @aﬂ.U(Z)v‘

v as vector spaces and 7
Forms on D* and U(2)

We first define D*(Ag) C D*(Ag) as the index 2 subgroup consisting of elements whose deter-
minants are in Q*Nm(Az) and D*(Q,) be the set of elements whose determinant is in Nm(Q,).
Suppose ¢ is a form on U(2)(Q)\U(2)(Ag), x is a Hecke character of I*\Ag. Suppose the central
action of U(1)(Z,) on ¢ is given by X|u(1)z,), we can define a form gpf on D*(Ag) as follows. We
first define ¢ on U(2)(Ag) such that, consider the action of the center U(1)(Ag) of U(2)(Ag), ¥}
is the x-eigen part of ¢ under this action. Let C be the cardinality of

U(1)(Q)\U(1)(Ag)/U(1)(Zyp) x (prime to p level of x).

We define a form on D*(Ag). First for g such that det g is in the image of Nm(Ag /Ag) then we
can write g = ag’ where a € Ag and ¢’ € U(2)(Ag). Define ©P(9) = x(a)C¢/ (g). For general
g € D(Ag) we can find a central element b € D*(Q) such that det(b~'g) € Nm(Ag/Ag), we define
©P(g) == ¢2(b~1g). Note that this is well defined since Q* N Nm(Ag/Ag) = Nm(K* /Q*). For
g outside lv)X(AQ) we define (pf (9) = 0. When x is clear from the context we simply drop the
subscript x.

Lemma 8.1. If ¢ is in the irreducible automorphic representation on U(2) whose restriction to
SLo is the rstriction of the GLa automorphic representation m¢ associated to a CM character § over
K. Then <,0§D itself is in me.
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Proof. Clearly the go? and m¢ have the same Hecke eigenvalues outside a finite set of primes: this is
obvious for split v’s. For inert v’s the Hecke eigenvalues for T; on ¢p is 0 since it is a CM form. [

We relate the integrals over [U(2)] to that over a subset of [Q*\D*](Ag). It is elementary to check
that there is a constant C’I[J)(Q) depending only on the groups D* and U(2) such that if y = 1 then:

/ eu()(9)dg = Cliy @ (9)dg.
[U(2)]

/DX (QAZ\D* (Ag)

Here we normalize the Haar measure so that the measure U(1)\[U(2)] = 1 and the measure of [D*]
modulo center is also 1.

8.2 Choosing some characters

We first give a result of Pin-Chi Hung (a student of M-L Hsieh) [23]. Let x be a finite order Hecke
character of K*\AZ of conductor Z = MOy for some M > 0. Let f € Si(T'o(NN)) be an elliptic
cusp form of weight k, level I'g(N) with g-expansion

Fl@) = an(Ha"

n>0

We decompose N = NTN~, where NV is a product of primes split in K and N~ is a product of
primes ramified or inert in K. Suppose N~ is square-free and N~ = N 7 Ny where N 7 is a product
of an odd number of primes coprime to M and Ny is a divisor of M. Let £ be a rational prime

split in KC. Let K, be the unique abelian anticyclotomic Zs-extension of K and I'" be the Galois
group Gal(IC, /).

Theorem 8.2. Suppose (21 N. Let p be a rational prime such that
e pt{NDx andp >k — 2,
e for every non-split q|M, q+ 1 is not divisible by p,
o for every q|N, ramified in K, aq(f) = x(q)(= £1), where ¢ = q2,
o the residual Galois representation ﬁf:>\|Gal(Q7IC) 18 absolutely irreducible.

Then there is a finite extension L/Q, with integer ring Or, and uniformizer \. We have for all but
finitely many characters v : I'™ — gy, we have

Here the Qy n- is a period factor defined in loc. cit.

Now we choose the characters needed. From now on we fix once for all a split prime ¢ outside X
and write a new “X” for ¥ U {¢}. We choose xg a Hecke character of K*\Ag as follows: xp o0 is
trivial. At p we require that y is unramified. For v € ¥ non-split in K/Q, then we let xg, (1) to be
the character chosen in section 6. For split v € ¥, v ¢ p, ¥, v = ww, suppose cond(m,) = (wf,l’”), we
require that xg,,, is unramified and cond(xg,4) = (wff’”) for 9, > 2t1, + 2. We choose a character
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Xauz Of K*\AE as follows: Xquz| Al = 1, it is trivial at oo, and is only ramified at primes in ¥ not

dividing p such that U(2)(Q,) is not compact. For split such v we require that

t2,'u _tl,v .
cond (xous) = { ) Bhero

(@™ ity , =0
At non-split such primes we require that
Cond(Xaux,v) > CODd(?Tv), Condv()‘QX;CXGXau:L‘) > CODd(TI’v)

and Xaum’v‘(@;f has smaller conductor than ygue. (here > means the conductor of the former is
of higher power of the uniformizer than the latter). Also for each prime g such that U(2)(Q,) is
compact and ¢ is ramified as w? in K, suppose mg = steinberg ® x4,1 for some unramified quadratic
character x,,1 we require that x4.1(¢) = Xauz(@w) (These are used in the next paragraph to make
sure that the special L-values are of the correct local signs when applying Theorem . Let

Xh = Xe_chux‘

L(m s A2X0Xn,3)

_ —c k=2
We further require that TEHIP<7Tf7)‘2XGXh, %)’ I(k 1)L(>§;§:T 55 )EUIp(XaWch, Hgg)
— 2y ¢ -1 k=2
and T2 XGQRX_GQX“”T — )Eulp()\2X9_CX9Xaux7—_17 5-2) are p-adic units where the Eul, are the

local Euler factors for the corresponding p-adic L-functions at p when everything is unramified at
p (we refer to [I8] (0.2)], [20, 4.16] for their precise definitions). The first uses [18]. Our assump-
tions above on conductors imply that at all non-split primes the local root numbers in Theorem
A of loc.cit are all +1. Then we take a split prime ¢ t+ Np and apply that theorem to see that
there exists a twist by anticyclotomic character of ¢-power conductor which satisfies the require-
ments. The second and third uses [I7] (we are in his residually non self-dual case) and again we
can achieve the requirements by twisting by an appropriate anti-cyclotomic character of conduc-
tor powers of £. Moreover we assume that 1 — a,(f) ™ x0.p.2Xnp.1(P)s 1 — ap(f)Xop1Xnp2(p) " and

1 —)\?)72xh,p72x9,p727f21 (p)p_NT_2 are p-adic units. At each prime v of K above a prime where U(2)(Q,)

K—2 1

. . _ -2, . . . L(7 s X5Xh, %) .
is compact, we require 1 — Xaquz7 “(qv)gv * is a p-adic unit. We also require that % is
£

non-zero (do not need to be non-zero modulo p!) using the Theorem recalled above (by choosing

[198%}

a different “p” and prove non-vanishing the new p).

Now we define some characters 1 of @X\Aa (the reason for doing so is just a cheap way to use
the newform theory at split primes to pick different vectors inside an antomorphic representation
of U(2)). We require that these are ramified only at split primes in X\{p}. At such v = ww and
require that ﬂ]zvx = Xal or.- These uniquely determine the character 1.

8.3 Constructing Auxiliary Families of Theta Functions

From now on we usually do the computations at a generic arithmetic point ¢, but drop the subscript
¢ for simplicity. Define Ap-adic families of characters xg and xp as follows: let xg be such that
the specialization to ¢ (¢¢ is defined in section [7.4)) is xp defined before and the specialization to

¢ satisfies (X9)¢7p:1’2,§ =1 and (Xg)¢’p72]Z; = eqp 1|Z;. Let xp be such that the specialization to
@g is xp and (Xh)¢7p,2|zg =1, (Xh)¢7p71|zg = X;}zﬁ@,pﬂzﬁ' So from now on our Yy and Y might
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be ramified at p.

Rallis Inner Product Formula

UL D(wyz)  UR)(wa) x U2)(wn)

U (wre) x UM)(wre)  UR)(wre)
We will use the results in [I5] freely. We consider the seesaw pair above. The U(2) above is for
the Hermitian matrix <5 1> and the U(1)’s are for the skew-Hermitian matrices 6 and —¢. The

embedding U(1) x U(1) < U(1, 1) are given by the i defined in the proof of lemma[6.21] In fact the
theta functions showing up in the Fourier-Jacobi expansions arise from theta liftings from U(V})
to U(¢) and U(¢). The Weil representations are the same as explained in [I5] if we identify U(V})
with U(1) above and U(+(¢) with U(2) above. The splittings used are indicated in the bracket
beside the groups. We want to consider the component of theta correspondence such that the first
U(1) on the lower left corner acts by A?yg and the second U(1) acts by X(;l. We consider a theta
function on U(2,2) by the dual reductive pair U(2,2) x U(V}) and some Schwartz function ¢ such
that ¢ = 0y(¢3 X @) for some ¢3 and ¢ (recall the notion of intertwining operators in section
Here Vj is the 1-dimensional hermitian space where (x,y) = Zy. The characters used in the
splittings are: A for U(2,2) and 1 for V;. We consider:

/ / Op(ur,uz, 9N xp " (u1)xo(uz) A(det g)duiduzdg
[U2)] JU@)]x[U(1)]

here A(det g) showing up is due to the splitting wy> on U(2). On one hand, one can check that
this is nothing but the inner product of the theta liftings 84, »(Axg) and 04, x(A"1xy ") - (A o det)
(by writing 4 » we take the splitting character for U(1) is trivial and for U(2) is A. (We need to
notice the different choices of splitting characters). On the other hand if we change the order of
integration using the Siegel-Weil formula for U(1,1) x U(2) as proved by Ichino ([25]). This equals:

1. o
/ E(fs,() 5011, u2)) X Xy (ur)xo(uz)dus dusy
[UIx[U)]
Here i is defined right before lemma and fs, (g) 18 the Siegel section defined by:

f(9) == wx2(5(9))dy(¢)(0),9 € U(1,1)

where j is defined in the proof of lemma [6.21] Thus we reduced the Petersson inner product of
theta liftings to the pullback formula of Siegel Eisenstein series on U(1,1).

Functorial Properties of Theta Liftings
For any Hecke character x of U(1) (in application x(zs0) = 2Z! for 2z, € U(R)), we describe the
L-packet of theta correspondence ©(x) (possibly zero) of x to U(2) where \ is a Hecke character

v

of AY such that )“Aé = wi/g- We pick a Hecke character x such that X’U(l)(A@) = x ! Let
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7y be the Jacquet-Langlands correspondence on D* of the automorphic representation of GL2/Q
generated by the CM form 6y. We form an automorphic representation in the way we introduced
before: my B x 7'\ of GU(2). Then by looking at the local L-packets (see [15] section 7]) 6 (x)
is a subspace of the restriction of this representation to U(2). (This restriction is not necessarily
irreducible. In fact for any v inert in KC the local representation at v splits into 2 irreducible pieces.
see [30] . The representation at split primes are irreducible. So we still have not specified the
automorphic representation on U(2).)

Constructing Families of Theta Liftings

Let v be a prime inert or ramified in K. Thanks to the recent work [7] we know Howe duality
conjecture is true for any characteristic. Consider the theta lifting from U(1) to U(2) at v (the
U(2)(Qy) might be U(1,1) or compact). Write S(XU,Xe_ﬂlj) for the summand of S(X,) such that

U(1) acts by Xe_,i' Given a theta kernel ¢¥ on ®4,5(X,) we consider the map S(XU,X;i) — Ty

by ty 1 Py = Ogrge, (Xe_l)- By the Howe duality conjecture we know that there is a maximal proper
subrepresentation V, of S(X,, Xg_j)) such that S (Xv,xe_ﬂl)) such that S(X,, Xg_j}) /Vy is irreducible
and isomorphic to the local theta correspondence 7y ,, of Xg_ﬂl, by the local and global compatibility
of theta lifting (see [38, Theorem 8.5]). Suppose there is some ¢, so that ¢, (¢,) # 0, it is a finite
sum of pure tensors in mg. We consider the representation of U(2)(Q,) on mg(U(2)(Qy)(¢(¢y)). This
is a subrepresentation of a direct sum of finite number of 79 ,’s. ¢ gives a homomorphism of repre-
sentations of U(2)(Qy) from S(X,) to m(U(2)(Qy))(¢(¢y)) — @mp,. Note that the automorphism
group of the representation 7y, consists of scalar multiplications. Thus it is easy to see that the
kernel of the above embedding is exactly V,, and we have the following lemma:

Lemma 8.3. Fiz the ¢¥ as above. Let vy, be the image of ¢, in mg, under the Howe duality
isomorphism to S(XU,Xe_llj)/Vv. Then ty(¢y) € T can be written as a finite sum of pure tensors of

the form
/Ud)v ® (Z H ¢w,i)
i wFv
for ¢y € Ty

Proposition 8.4. We can construct a Ao®z,Qp-adic family of theta functions on U(2) interpolating
the forms

hxc .
0lg) = > gali) ™ 2E
=1

where 03 is the one appearing in Corollary[6.33.

Proof. We are going to construct p-adic families of eigenforms which are theta functions of U(2)
as subgroups of U(2,2) under U(2) x 1 — U(2,2) and 1 x U(2) — U(2,2), using the theta liftings
from U(1) to U(2). For an eigenform 6 such constructed we sometimes write 7y for the automor-
phic representation of U(2) of §. First we discuss the choices for the Schwartz function ¢ for the
construction using the embedding 1 x U(2) — U(2,2).

Local Computations
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Case 0:
At finite places outside X we choose the obvious spherical kernel functions.

Case 1:
s52d

If v = oo, we let ¢, = wr(ngo)Ps. Recall that gy = diag( Yo

Nl
=

1 1
ab (2ahy (4hym1) ana

1
4 —2Wf(5x21 +J:22)

b = 6—27rTr(<a:,x)1)‘ Let ¢3v _ sd) —27‘(‘\/&(5.73%14—.1‘%2) and ¢2v — (s )
computation in section 6.5 we have: 5(q§3ﬂ, X p2,) = ¢

By our

Case 2:

If v € S is split and v 1 p we recall that we have two different polarizations W = X, @Y, = X/ &Y,
where the first one is globally defined which we use to define theta function and the second is defined
using K, = Q, x Q, which is more convenient for computing the actions of level groups. We have
defined intertwining operators 5;2 between S(X,) and S(X) intertwining the corresponding Weil
representations. Consider the theta correspondence of U(1) to U(2) on S(X,) and S(X, ). We

: / " - / "
write X, > a5, = (23, 73,) and X~ > 25, = (25, 75,). We define

¢ ( 2 ) = ()‘XG)EI(xg,v) .’L‘g,v € Ly :L‘g”@ S wth
3,0\ T3,00 T30 0 otherwise.

where @’y is the conductor of xg, and

(b ( 2 ) _ (/\XQ)U(J’JQI,U) ;U/Q/,v € ZX xIQHU € Ly
2,0\T2,00 P20 0 otherwise.

We define ¢, € S(W9) by ¢, = %(qﬁgm X ¢2,) and define ¢g, = (5;’ ( ’271}), 30 = (5&’)(%71}). Then
if f, € I,(\?) is the Siegel section corresponding to ¢, in the Rallis inner product formula, we have

f(i(1, uz)) = (@30, w(uz, 1)d2,0)

by the formula for the intertwining operator. This is zero unless ug € Z; (U(1)(Q,) ~ Q) and
equals A2y (ug) for those wug’s. To sum up, for such v the local integral is a nonzero constant c,.
Later when we are moving things p-adically, this constant is not going to change.

Case 3:

For v € S ramified or inert such that U(2)(Q,) is not compact. In this case U(1)(Q,) is a compact
abelian groups. We let ¢9 ,, be the Schwartz function on S(X, ) constructed in section 5. Let ¢3 , be
a p-integral valued Schwartz function on S(X,) such that (¢3., ¢2,4) = fXU:X; $3,0(T)p2,0(z)dx # 0
and that the action of U(1)(Q,) via the Weil representation is given by a certain character. (It is
easy to see that this character is A2yg,, thus the action of the center of U(2)(Q,) via U(2) x 1 is
given by x ). We define ¢, = 0y (¢3, K ¢2,) € S(WY).

Case 4:

For v such that U(2)(Q,) is compact. Note that the local representation g, is finite dimensional
with some level group K,. We write v for the image of ¢2, in mg, under Howe duality. We fix an
U(2)(Qy)/ K,-invariant measure of mg, and extend vy to {vi,..,v4,} an orthonormal basis of 7g,,.
Let (01, ...) be the dual basis. Let ¢3, be a p-integral valued Schwartz function on S(X,) such that
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the action of U(1)(Q,) via the Weil representation is given by a certain character. (It is easy to
see that this character is A2xj,,, thus the action of the center of U(2)(Q,) via U(2) x 1) is given by
Xg_qu). We require also that the image of ¢3 in the representation of U(2)(Q,) (which is the dual of

7o) is U1. We define ¢, = dy(h3.0 X ay) € S(Wd).

Case 5:

We will often write x4, for Xp|@§- For v = p, W), = X}, © Y}, we write elements

zp = (21, ¥p2) € Xy = (W10 Yp2) € Y-

We define ¢, ( }wy;) = Xop(Yp1) if 2,5 € Z) and ), 1, Y, 1, Y2 € Zp and ¢p(y,y,) = 0 otherwise.
We also write @3 , = (25, 25,) € X, 75, = (25, x’z”p) € X, (note that we use x5, to distinguish

from xp’z above). A stra1ghtforward computation gives

r—1 g(xop) 1
35 (@ (X)(p)) (25, 23 ) = ptp Xo.p(—25,0")
if vy, €p ~'Z; and T3, T3 s Ty, € Zy and equals 0 otherwise. We write @3, to be the character-

(X@ p)

istic function of Z2 on X}, and define ¢ (x5 ) = X@p( ay pt) if oy € ptZy and Y, € Z,
and is 0 otherwise. Here we write xg,, for its restrlctlon to Q,; as well. We define <;537p and gbg,p as

their images under (5;; o dy

Global Case:

Now by looking at the g-expansion we find that when we fix the Schwartz functions at v # p and
let x¢ move in p-adic families according to xg, at p. Our corresponding theta kernel functions ©
on U(2,2) move in a p-adic As-adic analytic family whose g-expansion interpolates

> [[ov@)a™

zeQ? v

as in [45] 10.3]. (We note that the ¢ here is ®; o right translated by go. On the other hand our
distinguished point % is ( € X9 is chosen as (). As in the doubling method for U(2) x U(2) —
U(2,2), the ®(—=T) pulls back to p-adic analytic family of forms on U(2) x U(2). Moreover it is
in fact of the form 64, X 04, where ¢3 is fixed along the family by definition. By the Rallis inner
products formula and the non-vanishing of the Petersson inner product (ensured by our choices)

that for some uguz € U(2)(Ag), Op;(Uauz) # 0. When we move xy p-adically our 0y, is fixed so
we know that Wﬂm is a As-adic family of forms on 1 x U(2) — U(2,2). Now we take a

representative (1, ...0p, ) of U(1)(Q)Ui(R)\U(1)(Ag)/U(1)(Z 7) considered as elements of the center
of U(2).

Definition 8.5. We define:

0:= ZX@(ﬁj)_lwA—l(ﬁj)(% - X).

We denote @ for the Ay-adic family constructed this way (we omit the corresponding map of the
weight ring of U(2) into Ap).
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The property required by the proposition follows from comparing our choices of theta kernel
function with the computations for 6, in Section [6] O

We can do the same thing to construct a Ap-adic family of forms on U(2) x 1 < U(2,2). This
time we define ¢ such that for v # p the local components are as before. If v = p recall that
Wy, = X, @Y, Ifz, = (z,1,7,5) and y, = (y,1,Y,9) we define ¢,(z,v,) = xop(z7,) for
xy, € Z; and @, y1 Y5, € Zp and ¢p(wy,,y,) = 0 otherwise. Direct computation by plug-
1p) and 25, = (25, 23)),
/’_1 .
51!3,20 (A(D)p) (2], 75 ,) = xop(2],) if 21, € Z)S and 27,25 ,, 25, € Z, and equals 0 other-
wise.

ging in the intertwining operator gives, if we write m’l’p = (x’l’p,:p

Then as before we move xy p-adically our 6y, is fixed and non zero at some point uy,,, € U(2)(Ag)

and 6y, is moving p-adic analytically. Thus %2”“’)9(;53 is a Ap-adic form on U(2) x 1 C U(2,2).

2
o

As before we define 03 (or 83 for the family) by
hx
D 0o ()Xo ().
i=1

Definition 8.6. We define forms 0 and 9~3D on D*(Aq) using 6 and 05 and characters xg and Xg,
using the procedure at the beginning of subsection[8.1. Sometimes we drop the superscript D when
it is clear from the context. The key functorial property of it (and some other forms constructed)
is summarized in Remark[8.9.

As before we let Eﬁggg’fz be the Katz p-adic L-function interpolating the values
L()\2)\97¢X;7;, 1)912)
(A2X0,6X0.6)20G (A X0,6Xg )5

We are going to compute the Petersson inner product of § and 03 at a generic arithmetic point.

Proposition 8.7. Up to multiplying by a non-zero element of @p which is fixed throughout the
family (i.e. independent of the arithmetic point ¢), we have

P / 6(g)f3(9)dg = S(LED).
[U(

(Here p' is the conductor of the point ¢. Note that the 8 is the specialization of the 6 to ¢ and
similarly for 6s.)

Proof. For v 1 p the corresponding local integrals are non-zero constants which are fixed along the
p-adic families. For v = p. We construct the Schwartz function in S(W},) = S(X, @ Y,) first and

apply the intertwining operators 5;1. We write z, = (7},1,7,5) € X, and y, = (y,1,¥,2) € Y,
We define: ¢p(p, yp) = X0.p(7p 15 Yp 1) if 7, 1,9,1 € Z) and x, 5,9, 5 € Z; and equals 0 otherwise.
Now as before we can compute that 6¢’_1(¢p) = 3 x ¢2 € S(X7,) x S(Xa,) where: ¢3(z7 ,,27,) =
xop(z7,) if 21, € Zy, Y", € Z;, and equals 0 otherwise,

o 7 m ) = g(XQ,p) —1( " )

L2.p>T2,p pt Xo,p\T2,p
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"
2,p

inner product we want to compute. Now we compute the Siegel section f € I;(A?) on U(1,1)(Q,).
From the form of ¢ it is easy to see that fy = f1,f2, for fo, € I1()) to be the spherical which
takes value 1 on the identity and fi, € I1 () is the Siegel Weil section on U(1,1) of U(1,1) x U(1)
for the Schwartz function ¢, € S(K,) which with respect to IC,, = Q, x Qy is ¢(x1, x2) = xg,p(T1-72)
for x1, 29 € Z; and ¢(x1,22) = 0 otherwise. But this section is nothing but the Siegel section ft
we constructed in [48], section 4] for the 1-dimensional unitary group case. So the local integral is
easily computed to be:

if :c’2’7p € p_tZ; and x5 ) € Zj, and equals 0 otherwise. So these are exactly the theta functions whose

g(X@,p)
pt

A2 (07 e A (p ! 1) = AX((1,0")a(xe,p)-

To sum up, up to multiplying by certain fixed constants in Qp, this Petersson inner product is the

value interpolated by the Katz p-adic L-function Efg?;z. O

Definition 8.8. (Constructing h) We will repeat the above process to construct another family h
which will be used in computing the Fourier-Jacobi expansion as well. First we construct a family
W and hs using theta liftings similar to 0 and 05, with xp, in place of xg and slightly different theta
kernels described as follows. For the theta kernel functions ¢o and ¢3 as above, at each primes v in
Y2, note that Ty v 08 the dual of mg,, we choose the local theta kernel ¢o,, at v so that the image
in Ty, s U1 (notations as before) and the theta kernel ¢z whose image is vi. At each prime v in
1, we take some theta kernel ¢2.0 and @3, such that the images in the local theta lifting are the
new vector for U(2) in our sense (subsection . We make the choices at split primes including p
similar to the 0 case. Again we define hP on D*(Aq) using the character x, using the procedure
at the beginning of Section|8.1].

Remark 8.9. The automorphic representation for h” (#”) is the Jacquet-Langlands correspondence
of the CM form associated to Axp (A\xy respectively). We define h on GU(2)(Ag) using h” and
the character Xgl (not x3!) as the central character. This is just a twist of h'. We write 7, for
the corresponding automorphic representation. Also the automorphic representation Wé) on D* is
associated with the CM character Af.

Convention: .
sometimes when we constructed ¢ € my then by 6 € 7; we mean 0 - (X(;I o det). If we have con-

structed 53, then by 03 we mean 53 - (xo o det). We use the same conventions for h’s as well. We
write h, @ for the corresponding p-adic families thus constructed.

We have the following immediate corollary:

Corollary 8.10. The 0, 05, O, 53?, h, hs, hP, iLgD constructed before are pure tensors in the
corresponding automorphic representations.

8.4 'Triple product formula

Backgrounds for Ichino’s Formula

Let 71,79, m3 be three irreducible cuspidal automorphic representations for GLo/Q such that the
product of their central characters is trivial and the archimedean components are holomorphic
discrete series of weight 2. Let TriD be the Jacquet-Langlands correspondence of them to D* (assume
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they do exist). Let ¢; € 7P and be 7D, Write IT = Hf‘zl i, ¢ =11, ¢: €11, b= IL é; €I, and r
the natural 8-dimensional representation of GLo x GLo x GLo. We write

I(p®¢) = ( " P1(9)2(9)¢3(g)dg)( > $1(9)2(9)d3(g)dg).

Now look at the local picture. Suppose ¢; = ®,¢;, and b = ®v§5m- We fix (,) a D} invariant
pairing between 7rZ-D and frZD . Let ¢ be the Riemann zeta-function. Define:

_ Lv(l Hv Ad) / g
27—7- Wf@v Ty), P dxxv-
Lv(1/27H”UaT) QX\D*(Qy) ];[< ( ) >

Note that this depends on the choice of the pairing.

Iv(@) ® ﬁgv) = CU(Q)

Let ¥ be a finite set of primes including all bad primes, then we have the following formula of
Ichino [24]:
[¢®9) _C o LG IL1) 11 Lu(d © dy)
1000 _ G LI T]

Hz<d)“¢;l> 8 LE(LH’Ad veEY <¢va¢~)v>

where C' is the Tamagawa number for D*. This does not depend on the choice of the pairing.

In application our (¢, gZ)) is usually 0, thus we need a slight variant of the above formula. Suppose
we have elements g; = [], gi» such that (¢;, 7(gi)¢:) # 0 for i = 1,2,3, where g;, are elements in
the group algebra Q,[D*(Q,)]. Then:

H6©d)  Co LPGILY) 11 L d)
Mion @iy~ 8¢ P ag L g 2nis

with g, =[], gi.0-
Local Triple Product Computations

Split Case Principal Series

Suppose v is a split prime of £/Q. We assume 7, and g, are principal series representation and
73, 18 either principal series representation or special representation with square-free conductor. For
K = GLy(Z,) the maximal compact subgroup. We use the realizations of induced representations
as functions on K:

Ind5 2% (X106 X20) = {v: K = Cv(qk) = x(q)v(K), g € B(Q,) N K}

where x(¢) = x1,0(a)x2,0(d)dp(q) for ¢ = (a Z) We realize the inner products as

<1)1,1)2>:/K1}1(k‘)1}2(k3)dk

for v; € Ind%Lz (X105 X2.0)5 V2 € Indng (quljaXQ_,qu)'N For a positive integer ¢ let K; C K consist of
matrices in B(Z,) modulo w’. For f € 7(x1,x2), f € 7(x7*, x5 '), we define the matrix coefficient

0, 5(0) = (o). . Let o = ().
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Lemma 8.11. Suppose t > 1, cond(x1x5 ') = (w?). Let w = (1 1> in this lemma. If

0, otherwise

fy(ky) = { xi(a)xa(d), k, € K

and fX—l is defined similar to f, but with x replaced by x~ L. Then (I)fx P (9) =0 on

*x

UnKiwo, K1 Uy, KiopwKy.

On U, K0, K1 U, Kywo,wKy, it is supported in

1 1 wy 1 w, "Zy
(") (e, o) () (077

n n

The corresponding values are: Vol(K;)afq™ 2 and Vol(K;)ajq™ 2 where a; = x4(wy) fori=1,2.

Proof. 1t is easy to check by considering the supports of f, and fx that (I)fx 7. (9) =0on ano KiopwK;.
(K10pwK does not intersect supp fy.)

Now suppose g € Kywo, K for n > 1, without loss of generality we assume

(o)== () (2 )0 )

AW
for @,|b, wy|c. Plugging in the formula for matrix coefficients, write K; 5 ¢’ = <a d’> < , 1)
for o', d € 2, b € Zy,c € w!Z,.

/

99

= e )l
- D0 (&) )
- ()0 )00 )l )

Here we write ¢/ = ¢ *C We need to fix g and do the integration for ¢’. The first observation is

that we only need to cons1der integration with respect to ¢/. Next we can integrate for those ¢/
such that pt|b+ C,,. We divide the problem into four cases according to whether w@!|c and whether
w!|b. In any case it is not hard to check that the integration is 0 since cond(x1x~!) = (w!). We
leave the verification for g € K10,K7 and KywowK; to the reader. O

Lemma 8.12. Suppose cond(x1x;') = (@), t > 0 and ¥ is a character with conductor (w?).
Define
Xl( )XQ(d)ﬁ(Lt% a,d e O’l>]<7c € WZZ;;

Wy

Fealt) = {

0, otherwise
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for k, = (CCL Z) Then on U, K0, K1 Uy, Kqywo,wKy <I>f7];(g) is supported in Ki1s—1. More over

if g = (i 1) with w57 1|c then ®(g) = —q~ '~ L. If w!t®|c then ®(g) = (¢ — 1)gt 1.

n
(9 #0. If g € K <w” 1 K, for some n > 0, then as before

n —n / /
we have g € <w” 1> <1 w”lZU> K;. For ¢ € Ky, ¢ = <a Z/> <cl’ 1). Without loss of

n
generality assume g = (1 ll)) (w” 1) ((1: 1) for b € Z,, w!|c. Then

o= (") ) C ) ) )

Plugging in the formula for matrix coefficients we need to integrate for a’,¥’, ', d’. Again we only
need to consider integration with respect to ¢’ € w!Z,. But

CCDE DCE)-C A v () ()¢ )

If n > 1 then the integration is 0. If n = 0 and ®(g) # 0 then g € K;. Suppose g = <i 1> and

Proof. Suppose (I)fxu%fx

—11,‘9—1

9/ — <C1:, 1) we have: ifpt+s—1||c then (I’(g) — _q—t—l; ifpt+s|c then <I>(g) _ q—t—l(q_ 1)' In other

1
o) (et 1) 5

. . . 1 1 _ a v 1
Without loss of generality write g € < w”) <c 1) forc € wl "Z,, K; > ¢ = ( d’) (c’ 1>,

(2

cases ®(g) = 0. If g € Kjw <w” 1) wkK again if ®(g) # 0 then g €

/ / 1 1
dg= (a Z’) ( w") < ¢ L. 1). If n > 1, then one can check that the integration is again

O]

Suppose Y~ x2 is unramified and v has conductor (z?) then we define fx,9 € ™ by:
. _fa b\ (1 a b y
fx,ﬁ(kv) _ Xl(a)X2(d)19(w7v)v 9= < d> (C 1) ) ( d) € B(Zv)vc € wyl,
0 otherwise
We define similarly f)z 5 € T by replacing x, 9 by Lot

Lemma 8.13. Write f = f, v, f= j}@ € 7 then on U, Koo, Ko Uy, Kowo,wKq it is supported in
K and:

i Vol(o() o= (L) wille

D, 7 (g) =
fif
Li]:l Vol (Ko (wy)) if g = (1 1> w, 1|C
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Proof. Similar to the above lemma. O

Lemma 8.14.

> oty ) (7 )0 w0 g b @am (T )

equals x1(w, *)qy 2 fo.
Proof. Straightforward computations. O

Now we are going to evaluate the local triple product integral for certain sections. The following
lemma follows from the lemmas above.

Lemma 8.15. Let xt1,Xf.2, X6,1, X0,2: Xh,1, X60,2,V are characters of Q) and t; < s < ta are non-
negative integers such that if t1 # 0 then t1 + s = to, if t1 = 0 then s+ 1 = to. Suppose
cond(xﬁlxﬁ) = (@!!) and cond(V) = (w,)® and cond(ngX;é) = cond(Xh’lx,;;) = (w!?). As-
sume: Xf1.X0.1-Xh1-9 = 1 and X f2.X9.2-Xn29"+ = 1. W:e also~ de]?ne Fxpo € T(X£1, X1.2)s fro €
7(X0,1,X0,2), fxn € T(Xn1,Xn2) as above. Similarly for f;zf,&?ffce’ffch' Then Ichino’s local triple

product:
v

Qv — 1
(In this lemma the xp, xo are defined using xn1, Xn,2: X0,1, Xo,2 similarly as in lemma|8.11])

Iv(foﬁ®er®th’f>2f,q§®f>Ze®f>~<h) = Vol(K, ).

Special Representations
We consider the induced representation 7(x1,x2) = {f : K, — K, f(qk) = x1(a)x2(d)dp(q),q =

b
(a d) € B(Z,)} where x2 = x1]|.|. The special representation o(x1, x2) C 7(x1, x2) consisting of

functions f such that [, f(k)dk = 0. We consider the case when m3 is the special representation

(Xv,15 Xv,2) C Indg%&?”)(xvyl, Xv,2) at v with square free conductor. Here x,, ; are unramified char-

acters. Similar to the unramified principal series case, we use the model of induced representations.
It is easy to see that the f, y defined above is inside o(X1,4, X2,0). The inner product of o(x1,4, X2,v)
is still given by (vi,v2) = [, v1(k)va(k)dk. The formula for the triple product integral is the same
as the one in the case of principal series representations.

Let fnew € o(x1, x2) be such that f(k) = g, for k € K; and f(k) = —1 otherwise. Then we have
the following lemma

Lemma 8.16.

> -y ) () e

wy Ly
ac
waj-'»st

_s
2

is X1 (w;s)(Cﬁl,_5 + qv ?) fy,9 where f\ g is defined above.
Proof. Let fy and fi be he characteristic functions on Ky and KywKji. Then frew = qufo — f1- A

computation shows that
1 wv_s N
w5 ) (57 =t

>l

(2
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The lemma follows. O

Remark 8.17. The reason why the local integrals showing up in the triple product formula later on
are the ones considered in this subsection is a consequence of the computations in subsection [6.7]
and the remarks at the end of subsection 4.3

Non-split Case 1

If U(2)(Qy) is compact. This case is easier since we are in the representation theory for finite
groups. By our assumptions on xg,Xn» and 7, and our chosen vectors h,0, 9~3,iL3 and that
77}?71} is 1-dimensional, we conclude that: by the inner product formula of matrix coefficients of

representations of finite groups the local triple product integral is % where d,  is the dimension
Th,v )

of the representation 7y_,. (see e.g. [5] ). When we are moving our datum p-adic analytically, this
integration is not going to change.

Non-split Case 2

Recall that we fix a generic arithmetic point. By [37] we know that there are

91,05 92,05 93,05 940 € DX(QU) - GU(Q)(Q’U)

such that
Iv(ﬂh,v(glv)th ® U{;ij ® Wf,v(gl,v)fgva frh,v(gll,v)ﬁvD ® 175” ® ﬁf,v(gfi,v)fé?v) # 0.

(We write va for the image of vy, in the corresponding D*(Q,) representation and similarly for
f)gv . Note that the local signs are correct by our choices.)

Definition 8.18. We define

gi = H [RY

v

fori=1,2,3,4. (We take gi, =1 if v is non-split in K/Q.

The local triple product integrals are also non-zero by our computations. By Ichino’s formula
and that the special L-values are non-vanishing (by our choices of characters, note that the product
of the central characters for f, 8, h is obviously trivial) the global trilinear form is also non-zero. So
by our definitions for h”, 0P, etc, we know that [], g2, is in D* (Ag). We can find

U(2)(Aqg) > g5 = a2g2
for a9 € Aé. So

/ (r(g2)hP)(9)0” (9) ((91) fo) (9)dg = —= x1(a) / (m(6)1) (@)0(9) (m(g1) £2)(9)dg.
[DX] [U(2)]

Cp

Similarly we have [, g4 € D*(Ag) and can find U(2)(Ag) > g = a4ga for ay € Ag.
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Remark 8.19. These g;, and g; , are chosen only at the arithmetic point ¢. We are going to fix
them when moving the Eisenstein datum in p-adic families. Then for the arithmetic points ¢
with fixed o[, the F}?v and Wé)v only move by twisting by unramified characters which are con-
verse to each other. 7(In fact the Weil representations on unitary groups are unchanged since
xolu() are. The difference only comes from extending a form on U(2) to GU(2)). Thus if
the theta kernel we used to define h and 6 are fixed then the local triple product integrals

I’u(ﬂ'h,u(glv)hD(g’UD ®7Tf,'u(gl,v)f19D, 7ﬁh,v(g4,v)ﬁD®ﬁD ®ﬁ'f,'u(g3,'u)fp ) .
ot M L 22~ does not change (note that since 7 has
<h1} ’h3,’v><vl U1 ><f19,v’f7§y,u>

square-free conductor, the ( fé?,u, f é?v) has non-zero inner product). Later on we will see that certain

product of such local factors move p-adic analytically. Thus this is an analytic function depending
only on the Hida family variable of f. This observation is crucial in studying the p-adic properties
of the Fourier-Jacobi coefficients.

Interpolation the fy’s

We will interpolate fy’s as I-adic families from the family f using Lemma and However
in order to do so we make have to replace I by a larger normal domain finite over I, so that the
X1,0(@y) and x2.,(wy)’s at primes in ¥ where 7¢ is unramified will be elements of this newly defined
I. We choose this family as the ¢ in Proposition

8.5 [Evaluating the Integral

Now we construct: for any Ap-adic family F,

Uy,i

)

loy(F) = Uy, P TT (D Cuin( I )(F)))

vexlux? ¢ Uy 5
whose value is a Ap-adic family on U(2). Here C,; are defined in lemma
Lemma 8.20. The Iy, (F) is a Ap ®z, Qp-adic form on U(2).

Proof. The proof is simple: as before we just take a basis of Or-dual space (67, - ,0,,) of the finite
dimensional space H'(B, £(). Pairing the Ap-adic Fourier-Jacobi coefficient of F' with these 6!
we get a Ap-adic family in A. But our 6 is in the L-linear combination of the ¢;’s. Thus we get a
Ap ®z, Qp-adic family on U(2). O

We also define
B = /l91 (ED,Kling)dNW(gé)h'

We can evaluate this expression by Ichino’s formula for triple products.

Definition 8.21. For any nearly ordinary form f or family f (we use the same notations for h,

0, etc) we define fion(g) == f(g (1 1> ) (under the identification D ~ GL2(Qp) given by the vo
p ~
projection). Also, if x is the (family of) central characters of £ we define f = f.(x~! o Nm). We

1
aso deine £2(9) = 1G9 (1) ).
p P
We have the following
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Proposition 8.22. Up to multiplying by a constant in @; which is fived along the family and a

unit in 1%, we have for any generic arithmetic point ¢,
¢(B1) = p'Cfig)L5L6 % ( / m(g2)h5 () (91) £59(9)05 1000 (9)dg)
Ag DX (Q)\D*(Aqg)

where L5 and Lg are certain p-adic L-functions interpolating the the L-values

Ik —1)Qr k=2
EU‘IP : TPL(XGUQ:T C» 9 )
and ( ) )
'k —2)Q8 B k=2
Eul, - —_QPL()\QXG “XoXauzT —).
Q% 2

(We refer the corresponding normalization factors Eul, at p to [20, (4.16)]) are the Euler factors
defined).

Proof. This is a consequence of the pullback formula. We first apply and then further factorize
the Egjeq,2 via the embedding U(2) x U(2) < U(2,2) of Eyjcq,2 and pair with h. The L5 and Lg come
from the factors show up here. Also note that the 6 part appearing in the first integral above should
be 0, @ A constructed before (not an eigenform). However in view of the central character of h and
f, only the component 6 of 5 with the correct central character matters. Also by the construction

1
this 6 part is a multiple of #°° which, after applying the operator Znezp Ip', 779(<n 1>) is Oiow

from the definition of ¢2,. Comparing L5 - L with the factor coming from the doubling method for
h under U(2) x U(2) < U(2,2), it is easy to see that the ratio comes from the local Euler factors
at p computed in Subsection Euler factor for £5 at primes in ¥? and Euler factors for Lg at
p, which are units by our choice of characters (See |20} (4.16)] for the Euler factor at p). Then the
lemma follows. O

By our choices for characters the corresponding non-3-primitive p-adic L-functions L5 and Lg
are units in AJ.

In the following we often omit the superscript D for simplicity. We construct a form ji; €7 in
a similar way to fy at primes outside p and is the nearly ordinary vector (with respect to the upper
triangular Borel) at p. Up to a constant in Q; (which does not change along the family) we have

PBr- ([ (1640 Fa) () (99 5) (0) 1))

= w2 000 @[ (g )90 ) (016 (9)do)
< [ (maldidha) ) (920 F3) )55 ()i

= A3 (0)xg 5 ()PP ( / (m(92)h) (9) (1 (91) f9)(9)6°* (9)dg)

< [ (rlahli) ™ (9 5(92) 75> () (9)dg)
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(Note that by our discussion before Proposition we know up to multiplying by an element in
QX the

@ / (m(94)723)(9) (7 (95) F5) (@) 3.0 (9)dg)

is interpolated by an element in 1 [[T'c]].)

Definition 8.23. Suppose 7y, is the principal series representation (X f,s, X f,0) where valy(xss) =
1

% and valy(xfo0) = —5-
We write the p-component of A2xgxn as (A2 xgxn)1, (A2xexn)2) and f the normalized GLy ordinary
form new outside p. We also define the following (to make notations less cumbersome in the next
few formulas we omit the subscript ¢, e.g. xp2 stands for xp 24 for an arithmetic point ¢): the
p-adic L-function £y interpolates values

8(x6.2)80x,1) L, XXoxn, 5) (X1,5(0)X 1.0(P)) " (A2 X0x)2(p).0) " *'D"
T2 ’

the p-adic L-function L9 interpolates values

(1= ap(f) " "X0p1Xnp2(@ ") (1 = ap(f)xop2xnpi(@p)
(1 - ap(f)x@,p,IXh,p, ( ) 1) (1 - ap( ) X@,p,QXh,p,l(p))
a0 DL XX 3) (0 (IPE (xnx§)1(p))

)

7T2<f7 fc| <N _1>>FQ(N)

the p-adic L-function L3 interpolates values

Gue (1) 80x0) LN x0xg “, D ((AX0X4 “)2(p)P) P

s T ’

the p-adic L-function £4 interpolates values

Ge(D) 8 00, 1) L xax;, S (A2 xnxg, ©)2(p)-p) 0!
s T

We refer to [18], [20] for the justification of their interpolation formulas. These values are interpo-
lated by some p-adic L-functions in I¢". Note that

g(x; Y L(ad, £, )M e(M)(p — 1)(Xf,0X7 s (0)0) "

=1
247T3<f7f| <N _1>>FQ(N)

Note also that £ is in fact a non-zero element in Frac(ll) (i.e. does not depend on the variable
I'c) by checking the p-components of x§x; and nonzero by our choice of characters in subsection
It can actually be written as the ratio of two elements whose specializations to all but finitely
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many generic arithmetic points are non-zero. By our choices for xy and x5, we know that £; is in

I“[[Tx]]*. We consider the expression:

D <f7 f~85><h7 ﬁss><é7 058>X9_j(pt)£1£2£5['6 3

Cue) Lala X7.5(P)A5 1 (0)X0,1 (D) Xh,1 (P)P
_ CD <f7 ﬁow) <h7 illow> <07 élow>£1£2£5/:’6 3t
- U(2) £3£4 D

We first give the following lemma for the local triple product integral at p.

Lemma 8.24. At a generic point the local triple product integral at p is given by:

p'(1—-p) 1 . 1
1 +p 1- ap(f)XG,p,th,p,? (p)pil 1- ap(f)ilxe,p,ZXh,p,l(p)

Proof. This follows from Lemma [8.11

We examine the ratio between @ and the expression for

P B / (m(94)23) (9) (£ (93) F) (9) P10 (9) )

3
2

(9)

(10)

(11)

using Ichino’s formula. By our calculations for the local triple product integrals, and the Petersson

inner product of < 6,05 > and < h, hs >, the ratio is a product of:
e Euler factors for ¢, (1) at X;

e the local Euler factors for L(ad, f,1) at ¥;

e p' times the local triple product integral for v = p, which are units times a constant in @p by

our choices;

o (fP, f£l0w> J{fP, ﬁ€w> which is interpolated by a non-zero element in I;

e The local Euler factors of L5 and Lg at X2 and p which are units by our choices;

e The local integrals showing up in the Rallis inner product formula at ¥, which is fixed along

the family;

e The local Euler factors at 2 of L(f, XgXhs %) which are non-zero elements in I.

e The local triple product integrals for v { p;

Thus we have the following proposition:

Proposition 8.25. Any height 1 prime of I“"[[T'x]] containing [ g, (Ekiing,p)dHr(g)n must be the

pullback of a height 1 prime of e,
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Proof. The last item we listed above has two parts: at split primes and non-split primes. The
integrals at split primes are non-zero numbers in @; which are fixed throughout the family. At
non-split primes we do not know much about it. We only know that at the generic arithmetic
point ¢ at which we choose our g1, g2, g3, g4, this integral is not zero. We may assume that at this
¢ the expression @D is non-zero (in fact just need Ly to be non-zero finite number here). Thus
the expression is not identically zero. So the ratio of over @ is a non-zero element of
Frac(I*"[[Cx]]). On the other hand the integral in the last item above only depends on ¢|; as
observed in Remark . So if we evaluate this ratio at the generic arithmetic points where @[}
is not zero, it depends only on ¢|;. From this it is not hard to prove that (say using the following
lemma) the ratio is a non-zero element of Frac(I*") and the proposition is true. O

Lemma 8.26. Suppose A is an element in I[[Tx]] ®z, Qp. If for any generic arithmetic points
¢, ¢ €I[[k]] such that Pl = ¢, we have ¢p(A) = ¢'(A). Then A € I.

Proof. This lemma is easily proved by observing that if (1, (o are p’-roots of unity and ¢ is a generic
arithmetic point with conductors being pt/ such that ¢’ > ¢, then the composition ¢’ of ¢ with the
ring automorphism ¢¢, ¢, : I[[Cx]] — I[[Tx]] given by identity on I and v+ — y1¢1, v~ — 7 ( is
still a generic arithmetic point. Let I’ be the element considered in the lemma. Then F'— Fov¢, ¢,
is 0 at a Zariski dense set of points, and is thus identically zero. The arbitrariness of (1, (2 implies
the lemma. In the proof of the above proposition we apply this lemma to Bs - Lo times over
@, where Bs interpolates p'(f, ]Elow> (which are indeed interpolated by an Iwasawa algebra element
by our previous discussion). O

9 Proof of the Theorems

9.1 Hecke Operators

Let K" = K’E\{p}KE C G(A%) be an open compact subgroup with K* = G(Z%) and such that
K := K'K] is neat. For each v outside ¥ we have GU(3,1)(Q,) ~ GU(2,2)(Q,) with the iso-
morphism given by conjugation by some elements in GL4(Ok ). So we only need to study the
unramified Hecke operators for GU(2,2) with respect to GU(2,2)(Z,). We follow closely to [45],

9.5,9.6].

Unramified Inert Case

Let v be a prime of Q inert in K. Recall that as in [45, 9.5.2] that Z, ¢ is the Hecke operator
associated to the matrix z¢ := diag(wy, wy, @y, @y) by the double coset KzyK where K is the
maximal compact subgroup of G(Z,). Let to := diag(w,, @y, 1,1), t; := diag(1,w,,1,w, ') and
ty = diag(wy, 1, @, 1, 1). As in [45, 9.5.2] we define

Ry = Z[ Xy, ¢"/2, V7

where X, is T(Q,)/T(Z,) and write [t] for the image of ¢ in X,. Let Hx be the abstract Hecke
ring with respect to the level group K. There is a Satake map: Sk : Hx — R, given by

Sk(KgK) =Y o> (t:)[t]
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if KgK = Utin; K for t; € T(Qy),n; € Np(Q,) and extend linearly. We define the Hecke operators
T; for i = 1,2,3,4 by requiring that

4 3 3
14+ 58Xt = [0 - a2 [11X)(1 — g2 [t X)
=1

i=1
is an equality of polynomials of the variable X. We also define:

4

Qu(X) =1+ Ti(ZX)'.

i=1
Unramified Split Case

Suppose v is a prime of F' split in /C. In this case we define z(gl) and z(()Q) to be (diag(w,, wy, @y, @y), 1)

and (1, diag(cy, wy, wy, @y)) and define the Hecke operators Z(()l) and Zé2) as above but replacing
20 by 2§ and 2. Let V) := diag(1, (w,, 1), 1, (1,; 1)), £ := diag((@y, 1), 1, (1,5 1), 1). De-
fine t( ) = {1) and t; = t(l) ( ) for i = 1,2. We define R, and Sk in the same way as the inert case.
Then we deﬁne Hecke operators TZ-(] ) for i = 1,2,3,4 and j = 1,2 by requiring that the following
4 . . 2 3 . 3 -/
1+ Sk(r)x =T - a2 [1X) (1 0 117 X)

=1

to be equalities of polynomials of the variable X. Here ;' = 3 — j and [tz(j )]’s are defined similarly
to the inert case. Now let v = ww for w a place of K. Define i,, = 1 and i = 2. Then we define:

_1+ZTZU, BZwX)’

4
Qu(X):=1+ Z Ti(m)(Z(()Sfm)X)i‘
i=1

9.2 Eisenstein Ideals

Let Kp be an open compact subgroup of GU(3,1)(Ag) maximal at p and all primes outside X
such that the Klingen Eisenstein series we construct is invariant under Kp. We consider the ring
Tp of reduced Hecke algebras acting on the space of A%T—adic nearly ordinary cuspidal forms with
level group Kp. It is generated by the Hecke operators Z, o, Zq%, T v, Tl-(z)) defined above and
then taking the maximal reduced quotient. It is well known that one can i7nterp01ate the Galois
representations attached to nearly ordinary cusp forms to get a pseudo-character Rp of Gx with
values in Tp. We define the ideal Ip of Tp to be generated by {t — A(t)}; for ¢’s in the abstract
Hecke algebra and A(t) is the Hecke eigenvalue of ¢t on Ep iing. Then it is easy to see that the
structure map A%” — Tp/Ip is surjective. Suppose the inverse image of Ip in A%T is Ep. We call
it the Eisenstein ideal. It measures the congruences between the Hecke eigenvalues of cusp forms
and Klingen Eisenstein series. We have:

Rp(modlp) = trpEy 4., (ModEp).

Now we prove the following lemma:
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Lemma 9.1. Let P be a height 1 prime of ﬁ"r[[FK]] which 1s not the pullback of a height 1 prime
of I¥". Then
ordp(ﬁgg’K) < ordp(&p).

Proof. Suppose t := ordp(Lf 6) > 0. By the fundamental exact sequence Theorem there is an
H = Ep kiing — EEE F for some Ap-adic form F' such that H is a cuspidal family. We write ¢ for

the functional ((G) = [l (G)dpin(g,yn constructed in subsection 8.5/on the space of Ap-adic forms.
By our assumption on P we have proved that ¢(H) # 0(modP). Consider the Ap-linear map:

w:Tp— App/P"App
given by: p(t) = £(t.H)/¢(H) for ¢ in the Hecke algebra. Then:
((t.H) = L(tEp) = Mt)((Ep) = \(t){(H)(mod P")
so Ip is contained in the kernel of y. Thus it induces: Ap p/EpAp p — Ap _p/P'Ap p which proves
the lemma. O

9.3 Galois Theoretic Argument

In this section, for ease of reference we repeat the set-up and certain results from [45, Chapter 4]
with some modifications, which are used to construct elements in the Selmer group.

Let G be a group and C' a ring. r :— Autc(V) a representation of G with V' ~ C™. This can be
extended to r : C[G] — End¢(V). For any = € C[G], define: Ch(r,z,T') := det(id—r(z)T) € C[T].

Let (Vi,01) and (Va2,02) be two C representations of G. Assume both are defined over a local
henselian subring B C C, we say o1 and o9 are residually disjoint modulo the maximal ideal mp
if there exists x € B[G] such that Ch(oy,2,7T") mod mp and Ch(og,z,,T) mod mpg are relatively
prime in kp[T], where kg := B/mp.

Let H be a group with a decomposition H = G x {1,c¢} with ¢ € H an element of order two
normalizing G. For any C representations (V,r) of G we write r¢ for the representation defined by
r°(g) = r(cge) for all g € G.

Polarizations:
Let 0 : G — GLL(V) be a representation of G on a vector space V over field L and let ¢ : H — L*
be a character. We assume that 0 satisfies the 1-polarization condition:

6~ ®6".
By a 1-polarization of # we mean an L-bilinear pairing ®y : V' x V — L such that
®y(0(9)v,0") = 9(9)Po (v, 6°(g) V).

Let ®)(v,v’) := ®g(v,v), which is another )-polarization. We say that 1 is compatible with the
polarization ®y if



Suppose that:

(1) Ap is a pro-finite Z, algebra and a Krull domain;

(2) P C Ap is a height one prime and A = flo, p is the completion of the localization of Ay at P.
This is a discrete valuation ring.

(3) Ry is local reduced finite Agp-algebra;

(4) Q C Ry is prime such that @ N Ag = P and R = RO,Q;

(5) there exist ideals Jy C Ag and Iy C Ry such that In N Ay = Jo, Ao/Jo = Ro/Io,J = JoA, I =
IgyR,Jo = JN Ay and Iy = I N Ry;

(6) G and H are pro-finite groups; we have subgroups D; C G fori =1,--- ,d.

Set Up:

suppose we have the following data:

(1) a continuous character v : H — A[;

(2) a continuous character § : G — A such that y # vy~ ¢ Let X' :==vx™%

(3) a representation p : G — Aut4(V),V ~ A", which is a base change from a representation over
Ap, such that:

a.p~p’ @ v,
p is absolutely irreducible ,

p is residually disjoint from x and y/;

(4) a representation o : G — Autpg ,r(M), M ~ (R®4 F)™ with m = n+ 2, which is defined over
the image of Ry in R, such that:

a.c¢~c' @v,
b. tro(g) € Rforall g € G,
c. for any v € M,o0(R[G])v is a finitely-generated R-module

(5) a proper ideal I C R such that J := AN # 0, the natural map A/J — R/I is an isomorphism,
and

tro(g) = x'(9) + trp(g) + x(g) mod I
for all g € G.

(6) p is irreducible and v is compatible with p.

(7) (local conditions for o) For p = v there is a Gp-stable sub-R ® 4 F-module M;" C M such that
M and M := M/M, are free R ®4 F modules.

(8) (compatibility with the congruence condition) For p = vo Assume that for all z € R[G],
we have congruence relation:

Ch(MF,z,T) = (1 —Tx(z)) mod I
(then we automatically have:

Ch(M; ,z,T) = Ch(Vg,z,T)(1 — Tx'(z)) mod I)
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(9) For each F-algebra homomorphism A : R ®4 F — K, K a finite field extension of F, the
representation o) : G — GL;,(M ®pggr K) obtained from o via A is either absolutely irre-
ducible or contains an absolutely irreducible two-dimensional sub K-representation ¢} such that

tral (9) = x(9) + x'(g) mod I.

One defines the Selmer groups Xy (x'/x) = ker{HY(G, A§(x'/x)) — HYD,A;(x'x))}*. and
Xa(po @ x71) = ker{H'(G,Vh @4, Aj(x")) = H'(D,Vy ®a, A5(x™1))}*. Let Chp(x/x) and
Chg(po ® x~1) be their characteristic ideals as Ag-modules.

Proposition 9.2. Under the above assumptions, if ordp(Chy(x'/x)) = 0 then
ordp(Chg(po @ x™ 1)) > ordp(J).

Proof. This can be proved in the same way as [45, Corollary 4.16]. The only difference is the
Selmer condition at p where we use the description of Section to take care of. Note that the
part corresponding to pg corresponds to the upper-left two by two block here while in [45] the p;
contains the highest and the lowest Hodge-Tate weights. O

Before proving the main theorem we first prove a useful lemma, which appears in an earlier version
of [45] .

Lemma 9.3. Let Q C I[[I'x]] be a height one prime such that OrdQ(ﬁfEJC,g) > 1 andordg(L, &) =0,
then ordg (Eig—,) =0.

Proof. Let 0 = x,&. If ordQ(Eig—,) > 1. Then for some ¢ € X\{p},
—1/.-1 ep2—k
[I a-0Gtasmyes e
tex\{p}

where e € Z, be such that ¢ = w=1(¢)(1 + p)°.

0(0) = 77 w(0)" (1 +p)*® ™ (modQ).
Thus there is some integer f such that:

L= (74 (L+ W) (1 +p)" %) ¢(modQ)

which implies that for some p-power root of unity ¢, @ is contained in the kernel of any ¢’ such
that ¢'(v4(1 + W)~!) = ¢, (1 + p)?~*. This implies, by the work of [I1] for the interpolation
formula, that at the central critical point Lic(fe,01,1) = 0 where 6; is some fixed CM character of
infinite type (5, —%5) and ¢ any arithmetic point. But then we can specialize f to some point ¢ of
weight 4 (this is not an arithmetic point in our definition, but is an interpolation point, by loc.cit).

By temperedness the specialization is not 0. This is a contradiction. ]
Now we apply the above result to prove the theorem.
e I :=Gqgy, G=Ggyx, cis complex conjugation.

L] AO = A%T,A = AD,p.
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Jo == Ep, J = EpA.

Ry :=Tp, Iy := Ip.

Q@ C Ry is the inverse image of P modulo £p under Tp — Tp/Ip = Ap/Ep.

K43

R :=1T; @1 Ap, po := pfO'(,(p/g)cﬁ_ 2.

V=W®a A, p=po®a, A.
o X =0ye, X = Opea(yeye " v =xX"
M := (R®a Fa)*, Fy is the fraction field of A.

o is the representation on M obtained as the pseudo-representation associated to Tp, as in
[45, Proposition 7.2.1].

Now we are ready to prove the main theorem in the introduction.

Proof. We first remark that we need only to prove the corresponding inclusion for the :-primitive
Selmer groups and L-functions since locally the size of the unramified extensions at primes outside
p are controlled by the local Euler factors of the p-adic L-functions since Qs C Ko. (See [
Proposition 2.4]).

Recall that we have enlarged our I at the end of Subsection which we denote as J in this proof.
We first prove the main theorem with %" replaced by Jur. Under the assumption of Theorem (1.1
as in [45] we know that by the discussion for the anticyclotomic p-invariant, L¢ k¢ is not contained
in any height 1 prime which is the pullback of a prime in ]AI”T[[F,%']], and so is EE k¢~ Thus by lemma

for any such height one prime P of I*"[[Tk]],
ordp(/le,,C{) = ordp(ﬁ?y,cyg) < ordp(Ep).

Applying proposition we prove the first part of the theorem for J" in place of L.

We replace J* by 1*". We write £ for ﬁfEJQf. Thus Fitt(X ®gur Jur) = Fitt(X) Pfur Jur. We
claim that for any = € Fitt(X ),xAﬁfl e I"[[[k]]. In fact from what we proved for Ju we have
Fitt(V ®;.. J*7) C (L) as ideals of J*"[[[x]]. Note zL~! € J*[[I'k]] N Ffur ) Where Fyuop, ) is the
fraction field of I“"[[['k]]. Since I*" is normal and J*" is finite over I“". We have z£~! € I [[[']].
Thus Fitt(X) C (£), this in turn implies that char(X) C (£). This proves Theorem

Now assume we are under the assumption of Theorem Note that in this case £,z = 1. Thus
by the last lemma [,?,C ¢ is coprime to Li—,. Suppose P4, ..., P, are the height 1 primes of £fE,C ¢

that are pullbacks of height 1 primes in [“. Note that none of the primes passes through ¢g
since the 2 variable p-adic L-function is not identically 0. We consider the ring Iy p, [[['c]]
where the subscripts denote localizations. Then the argument as in (1) proves that (£f2’,c7§) 2

Fitt:

fur ([llp.py.....p, (XpZ,PL---,Pt) as ideals of 1% [[Tx]],.p,...r,- Specialize with respect to ¢} we find:

(ﬁjzco,lcﬁ) 2 FlttéL[[FKH(@L (XfO)
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Thus

Fltt@%r[[rlc”®@p (sz ®Zp (@p/(kerd)é)))(fZ ®Zp Qp) g (E?OJC»&).

Thus

Char@zr[[r,d]@@p (X¢ Oz, @p/(ker¢6)XfZ ®z, Qp) C (E?O,Ic,g)-

By Proposition (which is also true if we replace the ring I*[[x]] by ]AIUT[[F]CH},’PLN_,P]S),

Char@g’”[[l‘;c]]t@(@p (XF ®z, Qp/ (kergp) X¢ ®z, Qp) = char@%,.“FK]@Qp (X;é ®z, Qp)

and we conclude Theorem [1.2 O
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