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Abstract

In this thesis we generalize earlier work of Skinner and Urban to construct (p-adic families of)
nearly ordinary Klingen Eisensten series for the unitary groups U(r,s) < U(r + 1,s 4+ 1) and do
some preliminary computations of their Fourier Jacobi coefficients. As an application, using the
case of the embedding U(1,1) < U(2,2) over totally real fields in which the odd prime p splits
completely, we prove that for a Hilbert modular form f of parallel weight 2, trivial character, and
good ordinary reduction at all places dividing p, if the central critical L-value of f is 0 then the
associated Bloch Kato Selmer group has infinite order. We also state a consequence for the Tate

module of elliptic curves over totally real fields that are known to be modular.

iii



Acknowledgements

First of all I would like to deeply thank my advisor Professor Christopher Skinner, for introducing
me to the subject, patiently answering my questions and providing many useful ideas to overcome
the difficulties. The important paper [SU] of him and E. Urban is the starting point of this thesis.
Also T would like to thank H. Hida, M. Hsieh, K. Lan, E. Urban, J. Van-Order, V. Vatsal, X.
Yuan, B. Zhang, S. Zhang, W. Zhang for useful communications. Finally I would like to thank the
Department of Mathematics of Princeton University for providing a perfect environment of learning

and doing mathematics during my 5 years Ph.D study.

iv



To my wife.



Contents

Abstract . . . . e

Acknowledgements . . . . . ...

1 Introduction

1.1 Conjectures for Motives . . . . . . . . . .. L
1.1.1 Characteristic 0 conjectures . . . . . . . . . ... L oL
1.1.2  Iwasawa Main Conjectures . . . . . . . . ... . ... . L.

1.2 Main Results . . . . . . . L

1.3 Summary of the Thesis. . . . . . . . .. ...

2 Background

2.1 Notations . . . . . . . . . e e
2.2 Unitary Groups . . . . . .« . o o o e e
2.3 Hermitian Symmetric Domain . . . . . . .. ... o

2.3.1 Automorphic forms. . . . . ... oL
2.4 Galois representations Associated to Cuspidal Representations . . . . .. .. .. ..
2.5 Selmer groups . . . . . ... e e
2.6 Iwasawa Theory . . . . . . . . . . . e
2.7 p-adic L-functions . . . . . . ..
2.8 Characteristic Ideals and Fitting Ideals . . . . . . .. ... ... ... ... ... ...
2.9 Main Conjectures . . . . . . . . .. L e e
2.10 Hilbert modular forms . . . . . . . . . ...

3 Eisenstein Series and Fourier-Jacobi Coefficients
3.1 Klingen Eisenstein Series . . . . . . . . . . .o

3.1.1 Archimedean Picture . . . . . . . . . . . . ...

vi

10
11
13
14
14
15
15
16
16



3.1.2 f-adic picture . . . . . ..

3.1.3 global picture . . . . . . ...
3.1.4 Klingen-type Eisenstein serieson G . . . . . . ... ... ... ...
3.2 Siegel Eisenstein series on Gy, .« - . . . ..o oo
3.2.1 Intertwining operators and functional equations . . . . . . . . . ... ... ..
3.2.2 The pull-back formulas . . . . . ... ... o
3.3 Fourier-Jacobi Expansion . . . . . . . .. L Lo
3.3.1 Weil Representations . . . . . . . . . . . . ...

Local Computations

4.1 Archimedean Computations . . . . . . . . . .. .. ... ..
4.1.1 Fourier Coefficients . . . . . . . . . .. . L
4.1.2 Pullback Sections . . . . . . . . ..
4.1.3 Fourier-Jacobi Coefficients . . . . . . . . .. .. ...

4.2 [(-adic computations, unramified case . . . . . ... ..o
4.2.1 Fourier-Jacobi Coefficients . . . . . . . . .. .. ...
4.2.2 Pull-back integrals . . . . . . ... Lo

4.3 (-adic computations, ramified case . . . . . ... ... e
4.3.1 Pull Backintegrals . . . . . . . ... L
4.3.2 Fourier-Jacobi Coefficient . . . . . . . . ... ... ... ..

4.4 p-adic computations . . . . . ... Lo e
4.4.1 Nearly Ordinary Sections . . . . . . . .. . . i
4.4.2 Pull Back Sections . . . . . . . . ...
4.4.3 Fourier Coefficients for fO . . . . . . ... ... ... L
4.4.4 Fourier-Jacobi Coefficients . . . . . . . . ... ... L o

Global Computations

5.1 Klingen Eisenstein Series . . . . . . . . . . Lo
5.2 Constant Terms . . . . . . . . . . L
5.2.1 Archimedean Computation . . . . . . . ... ... ... ... ... .

Hilbert modular forms and Selmer groups
6.1 More Notations . . . . . . . . . . . o e

6.2 Hilbert modular forms . . . . . . . . . e

vii

30
30
30
31
32
34
34
35
35
35
39
39
39
42
66
66

69
69
73
73



6.2.1 Hilbert modular forms . . . . . . . . . . ..o 76

6.2.2 Hida families . . . . . . . . . .. 78
6.2.3 Galois representations of Hilbert modular forms. . . . . . . . ... ... ... 79
6.3 Selmer groups . . . . . ... e 79
6.4 Iwasawa theory of Selmer groups . . . . . . . . . . .. ... ... ... 80
6.4.1 control of Selmer groups . . . . . . . ... 81
Hida Theory for Unitary Hilbert modular forms 83
7.1 TIwasawa Algebras . . . . . . . . . . e 83
7.2 Igusa tower and p-adic automorphic forms . . . . . . ... ..o oL 84
7.3 Ordinary automorphic forms . . . . .. ... ... L oL oo 85
7.4  A-adic ordinary automorphic forms . . . . ... ... 0oL 86
7.5 @-eXPanSIONS . . .« v v vt e e e e e e e e e e e e 87
Proof of the Main results 89
8.1 The Eisenstein ideal . . . . . . . . .. Lo 89
8.1.1 Heckeoperators. . . . . . . . . .. L e 89
8.2 Galois Representations . . . . . . . .. L oL 92
8.2.1 Galois theoretic argument . . . . . . . ... Lo oL 92
8.2.2 Galois representations . . . . . .. ..o 95
Klingen Eisenstein Series 99
9.1 Induced representations . . . . . . . . . . . ... e 99
9.1.1 archimedean picture . . . . . . . . .. . .. L L o 99
9.1.2 f-adic picture . . . . . . . ... 100
9.1.3 p-adic picture . . . . . . L 101
9.1.4 global picture . . . . . . . .. 101
9.1.5 Klingen-type Eisenstein serieson G . . . . . . . . . ... L. 102
9.2 Induced representations:good sections . . . . . .. .. ..o 103
9.2.1 Archimedean sections . . . . . . . . .. ... 103
9.2.2  f-adic sections . . . ... 103
9.2.3 p-adicsections . . . . .. Lo 103
9.3 Good Eisenstein series . . . . . . . .. Lo e 104
9.3.1 Eisensteindata . . . . . . ... L 104

viii



9.4 Hecke operators . . . . . . . ..

10 Hermitian Theta Functions
10.1 Generalities. . . . . . . . L e
10.1.1 Theta Functions . . . . . . . . . .. L
10.2 Some useful Schwartz functions. . . . . . . . . . ... oL oL o
10.2.1 Archimedean Schwartz functions . . . . . . .. .. ... ... ... ... ..

10.2.2 f-adic Schwartz functions. . . . . . . . . .. ... ...

11 Siegel Eisenstein Series and Their Pull-backs
11.1 Siegel Eisenstein series on G ; the general set up . . . . . . .. ... ... ... ..
11.1.1 Intertwining operators and functional equations . . . . . . .. .. ... .. ..
11.2 Pull-backs of Siegel Eisenstein series. . . . . . . . . . . . ... .. ... ... ...
11.2.1 Some isomorphisms and embeddings. . . . . . . . . ... ... ... ... ..
11.2.2 The pull-back formulas . . . . . . . . . . ... ... ... ...
11.3 fourier-jacobi expansions: generalities. . . . . . . . . . . ... .. oL
11.4 Some good Siegel sections . . . . . . . ... L
11.4.1 Archimedean Siegel sections . . . . . . . . . .. ... oL
11.4.2 /-adic Siegel sections: the unramified case . . . . . .. . ... ... ... ...
11.4.3 f-adic Siegel sections: ramified cases . . . . . . .. .. ... oL
11.4.4 {-adic sections: ramified cases again . . . . . . . . ... ... ... .. ...
11.4.5 p-adicsections . . . . . . . . .. L
11.5 Good Siegel Eisenstein Series . . . . . . .. .. .. L oL oo
11.6 Ep viapull-back . . . . . . . .
11.7 Neben typus . . . . . . . o o o o o
11.8 Formulas . . . . . . . . e
11.9 A formula for Fourier Coefficients . . . . . . . . . ... ... ... .. ... ... .
11.9.1 The formula . . . . . . . . .. .

11.10Identify with Rankin Serberg Convolutions . . . . . .. ... ... ... ... ....

12 p-adic Interpolations
12.1 p-adic Eisenstein datum . . . . . . . . . .. L
12.2 Interpolation . . . . . . . . . . e e e

12.2.1 congruence module and the canonical period . . . . ... ... ... .....

ix

106
106
107
107
107
108

110
110
111
111
111
112
113
115
115
116
118
120
122
122
125
127
129
134
134
141



12.3 p-adic L-functions . . . . . . . . .. 146

12.3.1 connections with anticyclotomic p-adic L-functions . . . . . . . ... ... .. 147

12.4 p-adic Eisenstein series . . . . . . . . . ... 148

13 p-adic Properties of Fourier coefficients of Fp 150
13.1 Automorphic forms on some definite unitary groups . . . . .. ... ... ... ... 150
13.1.1 generalities . . . . . . . .. 150

13.1.2 Hecke operators. . . . . . . . . . .. 151

13.1.3 The nearly ordinary projector. . . . . . . .. .. ... ... 151

13.2 Applications to fourier coefficients . . . . . . . ... oL L 152
13.2.1 Formson H xU; . . . . . . . . . . . . . 152

13.2.2 consequences for fourier coefficients . . . . . . ... 153

13.3 p-adic properties of fourier coefficients . . . . . . . . . ... ... oL 154

14 Construction of the cuspidal family 160
14.1 Certain Eisenstein series on GU(2,2) . . . . . .. .. ... .. ... L. 160
14.1.1 Siegel Eisenstein Series. . . . . . . . . . .. . o 160

14.2 Hecke operators . . . . . . . . . . L e 162
14.2.1 unramified cases . . . . . . ... 163

14.2.2 construction of the family . . . . . . ... ... oL oo 166

169



Chapter 1

Introduction

1.1 Conjectures for Motives

1.1.1 Characteristic 0 conjectures

Let M be a motive over a number field F'. Suppose p is an odd prime that splits completely in F.
(We are mainly interested in the p-adic realization H,(M) of M, i.e. a Galois representation of F'
with coefficients a finite extension L of Q, and which is unramified outside a finite set of primes
and potentially semi-stable at all places dividing p.) Let V be H,(M). Suppose that for each v|p
we have defined a subspace V,© C V which is invariant under the local Galois group G,. Then the

Selmer group H} (K, V) of V relative to the Vs is defined to be the kernel of the restriction map

H'(F,V) = [[H (L. V) x [[H (1., V/V,}),

vip vlp

where I, C GF,, is the inertial group.

Greenberg gave a recipe for choosing such V,'’s under certain standard conditions. For each v a
prime of F dividing p, suppose H,(M) is Hodge-Tate at v with H,(M) ®q, C, ~ ®;Cp(i)" where
the h; are integers and C,(i) is the ith Tate twist of C,. If d = dimg,(H,(M)) and d* is the
dimension of the subspace of H,(M) on which complex conjugation acts by +1, then d* +d~ = d.
We assume that »-,-, h; = d* and that:

Panchishkin Condition:




H,(M) contains a subspace F™H,(M) invariant under G, with the property that
F+HP(M) X, C, ~ @iglcp(i)hi.

Then V' := FTH,(M). Examples of motives for which these conditions hold include:

e all Dirichlet characters and their Tate twists;
e elliptic curves with multiplicative or good ordinary reductions at all places dividing p;

e nearly ordinary modular forms.

One can also define the L-function L(M, s) for M which, conjecturally is absolutely convergent for
Re(s) is sufficiently large and has a meromorphically continuation to the whole complex plane. A
general philosophy is that the size of the Selmer group for M is controlled by the special value
L(M*(1),0) (up to certain periods and normalization factors), where x means dual and (1) is the

Tate twist. More precisely, the characteristic 0 Bloch-Kato conjecture is:

Conjecture 1.1.1. Suppose V is an irreducible Galois representation of F', then
ords—oL(M*(1),s) = rank, H}(F, M)

1.1.2 Iwasawa Main Conjectures

We can choose the coefficient to be the integer ring Oy, instead of L and defined the corresponding
‘integral version’ Selmer groups as well. We can also deform everything in p-adic families. More
precisely, on the arithmetic side consider the integral Selmer group Sely; for M but over some Zg
extension F, of F. This Selmer group has an action of the Iwasawa algebra Z,[[Gal(F/F)]] and
can be viewed as interpolating Selmer groups of H,(M) twisted by characters of Gal(Fuo/F). On
the analytic side there is a conjectural p-adic L-function Ly € A[[Gal(F./F')]] which interpolates
special values of L-functions for M twisted by Hecke characters. (here A is some finite extension of

Or.) The Iwasawa main conjecture essentially states that:

Conjecture 1.1.2. Sely; is a torsion module over Z,[[Galp_,p]] and
Char(Sely) = (L)

as ideals of the Iwasawa algebra. Here Char means the characteristic ideal to be defined later (see

section 2.8).



Note that in the special case when F is totally real and M is 1-dimensional, this is the classical

Iwasawa main conjecture which was proved by Mazur-Wiles [MW] and Wiles [Wiles90].

A strategy to proving such results is introduced in the papers [MW] and [Wiles], which proved
the Iwasawa main conjecture for Hecke characters over totally real fields. There they studied the
congruences between G Lo Eisenstein Series, whose associated Galois representations are reducible,
and cusp forms, whose Galois representations are irreducible. Recently, this has been generalized
successfully by C.Skinner and E.Urban ([SU], [SU1],[SU2],[SU3]), proving many cases of the rank 1
and 2 characteristic 0 Bloch-Kato conjectures and the Iwasawa main conjectures for GG L, modular
forms as well as some other groups. The method of Skinner and Urban is to study the congruences
between cusp forms and Eisenstein series on an even larger group (GU(2,2)) to construct the Selmer

classes.

1.2 Main Results

This thesis is devoted to generalizing some of the work in [SU] to other unitary groups. More
precisely, starting from a cusp form on U(r, s) we hope to: (1) construct a (p-adic family) of nearly
ordinary Klingen Eisenstein series on U(r + 1, s+ 1) with the constant terms divisible by the p-adic
L-functions we hope to study; (2) study the p-adic properties of the Fourier-Jacobi coefficients of the
Klingen Eisenstein families and deduce some congruences between this family and cuspidal families;
(3) pass to the Galois side to deduce one divisibility of the Iwasawa main conjecture. The first step
is done in the first part of the paper. The second step is the most difficult one and we are only able
to achieve this for U(1,1) < U(2,2) and U(2,0) — U(3,1). In general we lack general results about
non-vanishing modulo p of special L-values. The last step is essentially an argument appearing in
[SUJ. As a result we are able to prove one divisibility of the Iwasawa main conjecture for two kinds of
Rankin-Selberg L-functions. In the thesis we have only explained the proof of the following theorem

due to limited time and leaving the write up of the other results to the future:

Theorem 1.2.1. Let F' be a totally real number field. Let p be an odd rational prime that splits
completely in F. Let [ be a Hilbert modular form over F of parallel weight 2 and trivial character.
Let py be the p-adic Galois representation associated to f such that L(ps,s) = L(f,s). Suppose:
(i) f is good ordinary at all primes dividing p;

(i1) (trred) and (dist) hold for py.

If the central critical value L(f,1) = 0, then the Selmer group H%(F, p}) is infinite.



Here (érred) means the residual Galois representation gy of F' is irreducible and (dist) means that
for V.= ps and each prime v|p, the Of -valued characters giving the actions of G, on V" and

V/V,F are distinct modulo the maximal ideal of Oy,.

Corollary 1.2.1. Let E be an elliptic curve over F with the p-adic Tate module pg. Suppose E has
good ordinary reduction at all primes dividing p. Suppose also that the residual Galois representation
pE is modular and satisfies (dist) above are satisfied. If the central critical value L(E,1) =0, then

the Selmer group Hjlc (F,pg) is infinite.

The corollary follows from the theorem immediately by the modularity lifting results of [SW2]. We

assume that pg is modular since we do not know the Serre conjecture in the totally real case.

In the special case that F' = Q theorem 1.2.1 is essentially proved in [SU], though our result is slightly
more general (in particular we do not need to assume that f is special or even square integrable at

any finite place).

In the case when the root number is —1 the theorem 1.2.1 is a result of Zhang and Nekovar. We
prove it when the root number is +1. In fact, our theorem, combined with the parity result of
Nekovar, implies that when the order of vanishing is even and at least 2, then the rank of the Selmer
group is also at least 2. Also note that the method of [SU2] does not seem to generalize to the

totally real field case.

In order to prove theorem 1.2.1 we need to choose a CM extension K of F and make use of the
unitary group U(1,1),r which is closely related to GLs. We embed f into a Hida family f and use
some C'M character ¢ to construct a family of forms on U(1,1). Then our proof consists of four
steps: (1) from this family on U(1,1) we construct a p-adic family of Klingen Eisenstein series on
U(2,2) such that the constant term is the divisible by the p-adic L-function of f over K; (2) prove
(the Fourier expansion of) the Klingen Eisenstein family is co-prime to the p-adic L-function by a
computation using the doubling methods; (3) use the results about the constant terms in step 1 to
construct a cuspidal family which is congruent to the Klingen Eisenstein family modulo the p-adic
L-function; (4) pass to the Galois side, using the congruence between the Galois representations for

the Klingen Eisenstein family and the cuspidal family to prove the theorem.

We first prove the above theorem assuming that d is even and use a base change trick to remove



that condition. A large part of the arguments are straightforward generalizations of [SU]. However
we do all the computations in the adelic language instead of the mixture of classical and adelic
language of [SUJ. This simplifies the computations somewhat since we no longer need to compare
the classical and adelic pictures. The required non-vanishing modulo p results of some special L-
values are known thanks to the recent work of of Ming-lun Hsieh [Hsill] and Jeanine Van-Order
[VAN]. Also we use Hida’s work on the anticyclotomic main conjecture to compare the CM periods
and canonical periods. To construct the cuspidal family in step (3) we explicitly write it down
instead of using the geometric argument in [SU] Chapter 6. This is a much easier way since we
only need to do Hida theory for cuspidal forms (which is already available) if we are only interested
in proving the characteristic 0 result. In the future we will generalize the geometric argument in
[SU] 6.3 to prove the one divisibility of the Iwasawa-Greenberg main conjecture. (In the case when
F £ Q we need to restrict to a certain subfamily of the whole weight space to have freeness of the

nearly ordinary forms over the (sub) weight space and surjectivity to the boundary).

1.3 Summary of the Thesis

This thesis consists of two parts: part one is the first 5 chapters, which are computations for general
unitary groups, and part two consists of chapters 6-14, which specializes to U(1,1) — U(2,2) and

proves the main theorem.

Part one is devoted to constructing the nearly ordinary Klingen Eisenstein series for unitary groups.
The motivation for computations in this generality is for possible future generalization of part two
to general unitary groups, by studying the congruences between such FEisenstein Series and cusp
forms. In chapter 2 we recall various backgrounds and formulate our main conjectures for unitary
groups and Hilbert modular forms. In chapter 3 we recall the notion of Klingen and Siegel Eisenstein
series, the pull-back formulas relating them and their Fourier-Jacobi coefficients. In chapter 4 and
5 we construct the nearly ordinary Klingen Eisenstein series by the pullbacks of a Siegel Eisenstein
series from a larger group. We manage to take the Siegel sections so that when we are moving our
Eisentein datum p-adically, these Siegel Eisenstein series also move p-adic analytically. The hard
part is to choose the sections at p-adic places. For the f-adic cases we just pick one section and
might change this choice whenever doing arithmetic applications. At the Archimedean places we
restrict ourselves to the parallel scalar weight case which is enough for doing Hida theory. We plan

to generalize this to more general weights in the future, which might enable us to do some finite



slope arithmetic applications. Also in the first part of this thesis we content ourselves with only
computing a single form (instead of a family) and leave the p-adic interpolation for future work. We
also do some preliminary computations for Fourier-Jacobi coefficients for the Siegel Eisenstein series
on the big unitary group. The Fourier Jacobi coefficients for Klingen Eisenstein series are realized

as the Petersson inner-product of that for Siegel Eisenstein series with the cusp form we start with.

The main use for this computation is to prove that the Klingen Eisenstein series is co-prime to the

p-adic L-function and thus giving the congruence relations needed for arithmetic applications.

In part two we apply our computations in part one to the case of U(1,1) < U(2,2) over totally
real fields and deduce our main theorem. For convenience we keep the argument parallel to the
[SU] paper. In chapter 6 we recall the notion of Hilbert modular forms and record some results
on the Iwasawa theory for their Selmer groups. In chapter 7 we recall some results about p-adic
automorphic forms and Hida theory for the group U(2,2). We prove our main theorem in chapter
8 (corresponding to step (4)) assuming some constructions and results in later chapters. Chapters
9-13 (corresponding to step (1) and (2)) are parallel to chapters 9-13 of [SU] and we do the local
calculations and deduce the required p-adic properties needed in chapter 8. Chapter 14 is to con-
struct a cuspidal family from the nearly ordinary Klingen Eisenstein family (step (3)). This is also

needed in chapter 8.

We remark that the materials in part one (chapters 2-5) for general unitary groups, especially the
p-adic computations are new. Part two (chapters 6-14) differs from the paper [SU] only in certain
technicalities (the adelic computation, a slightly different choice of the Fourier-Jacobi coefficient,
the construction in chapter 14 and the use of different results on non-vanishing modulo p of special

L-values and comparing periods).



Chapter 2

Background

In this section we recall notations for holomorphic automorphic forms on unitary groups, Eisenstein

series and Fourier Jacobi expansions.

2.1 Notations

Suppose F is a totally real field such that [F : Q] = d and K is a totally imaginary quadratic
extension of F'. For a finite place v of F' or K we usually write w, for a uniformizer and ¢, for |w,|.
Let ¢ be the non trivial element of Gal(XC/F'). Let r, s be two integers with r > s > 0. We fix an odd
prime p that splits completely in K/Q. We fix i, : Q < C and ¢ : C ~ C, and write i), for ¢ o i.
Denote ¥ to be the set of Archimedean places of F'. We take a CM type ¥ C Homc_q;4(K, C) of
K (thus ¥ U X¢ are all embeddings K — C where £¢ = {Tr o ¢,7 € £}). There is a associated CM
period Qo = (o0 )oex € C¥ (we refer to [Hida07] for the definition). Define: Q% = T, cx; Qoc,o-

We often write S, to denote the m by m Hermitian matrices either over F' or some localization F,.

We use € to denote the cyclotomic character and w the Techimuller character. We will often adopt
the following notation: for an idele class character x = ®,x. we write xp(2) = ][, |, Xv(zv). For a
character ¢ or 7 of KC,, or AZ we often write ¢’ for the restriction to F* or Aj. For a local or adelic

character 7 we define 7¢ by 7¢(x) = 7(x¢) where ¢ standards for the non-trivial element in Gal(K/F).

(Gauss sums) If v is a prime of F over ¢ and 9,Op,, = (d,) is the different of F//Q at v and if ¢, is



a character of F and (¢y ) C Op, is the conductor then we define the local Gauss sums:

00 epads) = Y u(a)e(Trr, o, (——)).

C
aE(OF,v/Cw,U)X Yot

If ®1), is an idele class character of A} then we set the global Gauss sum:

®¢U : H¢ Cwu U ?ﬁ,va v)

This is independent of all the choices. Also if F,, ~ Q, and (p') is the conductor for v, then we

write g(1y) := g(1y, p’). We define the Gauss sums for K similarly.

Let Ko be the maximal abelian Z, extension of . Write I'c := Gal(Koo /K. We define: Ay :=
Zy|[T'k]]. For any A a finite extension of Z, define A 4 := A[['x]]. Let ex : Gx — ' — Ag be
the canonical character. We define W to be the composition of ex by the reciprocity map. We

make the corresponding definitions for F' as well.

2.2  Unitary Groups

We define:

where 6 = (1, with some totally imaginary element ¢ € K. Let V = V(r, s) be the hermitian space
over K with respect to this metric, i.e. K" equipped with the metric given by < u,v >:= uf, ,'0.

We define algebraic groups GU(r, s) and U (r, s)as follows: for any F-algebra R, the R points are:
G(R) = GU(r,s)(R) :=={g € GLr4s(K ®F R)|90,,s9" = 11(g)br,s, u(g) € R*}.
(1 : GU(r,s) = G,y is called the similitude character.) and
U(r,s)(R) :={g € GU(r,s)(R)|u(g) = 1}.

Some times we write GU,, and U,, for GU(n,n) and U(n,n).



We have the following embedding:

GU(r,5) x Reso /0, Gm — G(r+1,541)

a b ¢
a b ¢ p(g)z~"
gxzx=1d e f|xz—]d e f
h 1 k h Ik
x

We write m(g,z) for the right hand side. The image of the above map is the Levi subgroup of
the Klingen parabolic subgroup P of GU(r, s), which we denote by Mp. We also write Np for the
unipotent radical of P.

We write —V for the hermitian space whose metric is —60(r, s). We define some embeddings of
GU(r+1,s+1)x GU(—=V(r, s)) into some larger groups. This will be used in the doubling method.

First we define G(r + s+ 1,7+ s+ 1)’ to be the unitary similitude group associated to:

1y

—1,
—1,

1,

We define an embedding « : {g1 X g2 € GU(r + 1,8 + 1) x GU(=V(r,s)),u(g1) = p(g2)} —
GU(r+s+1,r+s+1)" as follows: we consider g; as a block matrix with respect to s+1+(r—s)+s+1
and go as a block matrix with respect to s+ (r—s)+s, then we define « by requiring the 1,2, 3, 4, 5th
(block wise) rows and columns of GU(r + 1, s+ 1) embeds to the 1,2,3, 5, 6th (block wise) rows and
columns of GU(r + s+ 1,7+ s+1)" and the 1,2, 3th (block wise) rows and columns of GU(—V (r, s)
embeds to the 8,7,4th rows and columns (block-wise) of GU(r + s+ 1,7 + s+ 1)’. We also define
an isomorphism:

B:GU(r+s+1,r+s+1) =SGU(r+s+1,r+s+1)



g SilgS
where
1
1 —3
1
¢
1 3
1
S = 2
1
L3
1
¢
1 ~4
1
1 -1

Remark 2.2.1. (About Unitary Groups) In order to have Shimura varieties for doing p-adic modular
forms and Galois representations, we need to use a unitary group defined over Q. More precisely
consider V' as a Hermitian space over Q and still denote 0, 5 to be the metric on it then the correct

unitary similitude group should be:
GU(A) :={g € GL(V ®q A)l|g is K — linear, g0, sg" = 1(9)0, s, 1(g) € A}

This group is smaller than the one we defined before. However this group is not convenient with
computations. So what we will do (implicitly) is to construct forms on the larger unitary similitude

group defined before and then restrict to the smaller one.

2.3 Hermitian Symmetric Domain

Suppose r > s > 0 then we put the Hermitian symmetric domain for GU(r, s):
z by 2y : 1
Xrs={r= |z € M(C*),y € M _g)xs(C%),i(z" —x) > —iy"0~ "y}

For a € G(Fw)) we write:

a b c
a=1d e
h 1

10



according to the standard basis of V' together with the block decomposition with respect to s +
(r — s) + s. There is an action of & € G(F4)T (here the superscript + means the component with

positive determinant at all Archimedean places) on X, ; is defined by:

x axr + by + ¢ L
a = (hx +ly+d)”

y gr +ey+ f

If rs = 0, X, s consists of a single point written &y with the trivial action of G. For an open compact

subgroup U of G(r s) put

Mg(X*H,U) = G(F)'\X" x G(Ap)/U

where U is an open compact subgroup of G(Ar ).

2.3.1 Automorphic forms

We will mainly follow [Hsieh CM] to define the space of automorphic forms with slight modifications.
We define the cocycle: J : Rp/gG(R)" x XT — GL.(C¥) x GLy(C*) := H(C) by: J(a,7) =

T
(k(a, 1), u(e, 7)) where for 7 = and
Y
a b ¢
a=1|d e f
h 1 d
W +d hy + 10
/i(Oé,T): ,M(aaT)th—Hy—kd.

—07' g+ f) —07'gly+07"ed
Fix a point ¢ € X and let KO be the stablizer of 4 in RpgG(R). Then J : K, — H(C), koo —
J(koo, ) defines an algebraic representation of K2, .

Definition 2.3.1. A weight k is defined by a set {k, }oex., where eachk, = (Cris.0y-, Cs+1,05C1,01 -+ Cs,5)

with C1,6 > ... > Crys,0-

Remark 2.3.1. Our convention is different from the literature. For example in [Hsieh CM] the
arq1—i there for < i < 1 is our cepy and bey1—j there for 1 < j < s is our c;. Also our c; is the

—Cri4s+1—i m /SUQ/

11



We refer to [Hsieh] for the definition of the definition of the algebraic representation Ly (C) (note
the different index for weight) and define a model LX(C) of the representation H(C) with the highest

weight k as follows. The underlying space of LE(C) is L(C) and the group action is defined by
pE(h) = p(h™1), h € H(C).
For a weight k, define ||k|| by:
|E| := —cs41 — . — Coqr + €1 + ... + ¢5 € Z[X]
and |k| € Z=Y>° by:

|k| = Z(cl’g + ..+ Cs0).0 = (Cst1,0 + oo F Cspr0).OC.
gEX

Let x be a Hecke character of I with infinite type |k|, i.e. the Archimedean part of y is given by:
X(Zoo) — (H Z§C116+...+CS,5).Z;C(C3+1,U+~~'+C3+'r',(7)).
o

Definition 2.3.2. Let U be an open compact subgroup in G(Ap ). We denote by My(U,C) the
space of holomorphic Li(C)-valued functions f on X+ x G(Ap,f) such that fort € XT, a € G(F)*

and v € U we have:

flar, agu) = p(e) & E(T (0, 7)) (7, g).

Now we consider automorphic forms on unitary groups in the adelic language. Let Ay (G, U, x)
be the space of automorphic forms of weight k and level U with central character x, i.e. smooth and
slowly increasing functions F : G(Ap) — Lj(C) such that for every (o, koo, u, 2) € G(F) x K2 x
U x Z(Ap),

F(zagkecu) = p*(J (koo i) ") F(g)x ' (2).

We can associate a L (C)-valued function AM(F) on X x G(Aps) to F € Ax(G,U, x) by

AM(F)(1,9) == x5 (1(9)P*(J (95¢, ) F ((95¢, 9))

12



where goo € Rp/gG(R)" such that goi = 7. We put:

.AfOl(G, U,x) = {F € Ax(G,U, x)|AM(F) is holomorphic on X }.

2.4 Galois representations Associated to Cuspidal Represen-
tations

In this section we follow [Sk10] to state the result of associating Galois representations to cuspidal
automorphic representations on GU(r,s)(Ar). First of all let us fix the notations. Let K be the
algebraic closure of K and let Gx := Gal(K/K). For each finite place v of K let K, be an algebraic
closure of K, and fix an embedding K < K,. The latter identifies G, = Gal(K,/K,) with
a decomposition group for v in Gk and hence the Weil group Wi, C Gi, with a subgroup of
Gk. Let m be a holomorphic cuspidal irreducible representation of U(r,s)(Ar) with weight k =
(Crts,00 s Cs+1,0; Cl,0» s Cs,0 )oey, and central character x,; Then for some L finite over Qp, there

is a Galois representation (by [Shin], [Morel] and [Sk10]):
R,(m) : Gx — GL,(L)

such that:

(a)Rp(m)¢ ~ Ry(m)¥ ® pp)X}r+c61_” where X is the central character of 7, p, 1+c denotes the
associated Galois character by class field theory and € is the cyclotomic character.

(b)Rp(m) is unramified at all finite places not above primes in 3(7) U { primes dividing p), and for

such a place w:

1
det(1 — Rp(m)(frobuq,,”) = L(BC(m)w @ X7 4 S + )7
Here the frob,, is the geometric Frobenius. We write V for the representation space and it is possible
to take a Galois stable Oy, lattice which we denote as T'. Suppose 7, is nearly ordinary at all primes v
dividing p with respect to k (to be defined later). Suppose v|p correspond to o € ¥ under ¢ : C ~ C,,

then if we write Ko =5 — i+ ¢ o for <i <sand kKjp =Cjo +5+r+s—ifors+1<i<r+s,

13



then:

€r+s,v€_HT+S’U * * *
£r+sfl,v€m‘+sil’g *
Ry (m)|Greo ~
*
0
fl,ve_ml’a

where &; ,, are unramified characters. Using the fact (a) above we know that R, ()5 is equivalent to

an upper triangular representation as well.

2.5 Selmer groups

We recall the notion of X-primitive Selmer groups, following [SU]3.1 with some modifications. In
this section F is a subfield of Q. For T' a free module over a profinite Z,-algebra A and assume that
T is equipped with a continuous action of the absolute Galois group G of F'. Assume that for each
place v|p of F' we are given a GG,-stable free A-direct summand 7T, C T'. For any finite set of primes

3. we denote by Sel% (T, (T, v)u|p) the kernel of the restriction map:

HYF,TesA") = [[ H'(L.TosA)x [[H(L,.T/T, ©4 A"),
Vg3, vtp vlp
We also define:
XE(T, (Ty)ypp) = Homa(SelZ(T, (T)ypp)s A%).

Now let us take T' to be the Galois representation stated above. Then for each v € X, suppose
R, (m), is of the above form with respect to the basis vy 4, ..., v1,, then we define T, to be the O,
span if vy4s, ..., U110 Also, if Ry(m)5 is upper triangular with respect to the basis v1 5, ..., Vr45.5

then we define T5 to be the Oy, span of vy 3, ...vs 5.

Remark 2.5.1. The Selmer group defined here is not quite correct. In fact T does not always
satisfy Greenberg’s Panchishkin condition. But it is correct in the ”Iwasawa theoretic sense”. We

will explain this in a moment (remark 2.6.1).

2.6 Iwasawa Theory

Let Ko be the maximal abelian Z, extension of K. Write I'c := Gal(Koo /K. We define: Ag :=

Zy|[Tk]]. For any A a finite extension of Z, define A 4 := A[['x]]. Let ex : Gk — ' — Ag be

14



the canonical character. Then by Shapiro’s lemma we have:
Selg_(T) = Seld(T @4 Axc.alex’))

So we have a Ax, 4 module structure for XZ (7). One can define the Selmer groups for intermediate

fields between K and K., as well.

Remark 2.6.1. Later on we will see some control theorems for Selmer groups relating the big Selmer
groups for K to those of its subfields. However Sel,ZC(T) itself is not a Selmer group since T does
not satisfy Greenberg’s Panchinshkin conditions. But by twisting T by some Galois character we
can make T satisfy this condition. Also the T,’s we put at v|p are indeed Selmer conditions for
such twists in the sense of Greenberg. Therefore our Iwasawa module is indeed interpolating Selmer

groups for T twisted by some characters.

2.7 p-adic L-functions

In a recent work of [EEHLS] they constructed the p-adic L-function AC?KW € A[[l'k]] (where v is
some fixed Hecke character for ) interpolating the special values of L¥(7, v ® X4,$) Up to some
periods and normalization factors. Here ¢ € SpecAx 4 and x4 corresponds to ¢ o ex under the

reciprocity map.

2.8 Characteristic Ideals and Fitting Ideals

In this subsection we let A be a noetherian ring. We write Fitt4(X) for the Fitting ideal in A of a
finitely generated A-module X. This is the ideal generated by the determinant of the r x r monors

of the matrix giving the first arrow in a given presentation of X:
A 5 A" X —>0

If X is not a torsion A-module then Fitt(X) = 0.

Fitting ideals behave well with respect to base change. For I C A an ideal, then:

Fitt 4/ (X/1X) = Fitt 4(X)modI

15



Now suppose A is a Krull domain (a domain which is Noetherian and normal), then the characteristic

ideal is defined by:
Chary(X) :={z € A:ordg(z) > £o(X) for any Q a height one prime },

here £ (X) is the length of X at Q.

2.9 Main Conjectures

Now we are in a position for formulate the Iwasawa-Greenberg main conjecture, we write Char,zr K

for the characteristic ideal for XE, K, then:
Conjecture 2.9.1. Char?,cﬂb is principal and generated by L?,Cw.

While trying to prove the main conjecture above we need to embed some nearly ordinary f € 7
into a Hida family f of nearly ordinary forms with some coefficient ring I (taken to be a normal
domain). We have a Galois representation R,(f) on some T a free module over I of finite rank.
It satisfies local conditions at v|p similar to that for f and we define the corresponding Selmer
conditions and thus Selfzﬁ,cﬁw and X7, which is a module over I[Tx]]. Then we have the main

conjecture for Hida families as well:

Conjecture 2.9.2.

Char‘%]c7,¢, = (;C%)va)

as ideals of I[[Tk]].

2.10 Hilbert modular forms

As mentioned in the introduction we can use unitary groups to study the Iwasawa theory for Hilbert
modular forms. Let f (f) be a nearly ordinary Hilbert modular form (or Hida family). Then the
associated galois representations satisfy similar local conditions at v|p, namely isomorphic to upper
triangular representations and one can define Selmer groups Sel?,lﬁx’ XJZCJC’X. (see part two for
details). Also the p-adic L-functions E?’K’X, E?’K’X (see chapter 12) are essentially those for U(1,1)
with some modifications for interpolation formulas (since now we are using GLo L-functions of f
instead of that for base change of unitary group automorphic forms). We can formulate the following

main conjecture as well.

16



Conjecture 2.10.1. As ideals of I[[T'k]],
('C?JC,X) = Char?,()x.

We can construct the non-integral p-adic L-function Zﬁ? i,y I great generality. This is enough for
proving the characteristic 0 results (theorem 1.2.1) . However we use certain Gorenstein properties
of some Hecke algebras to construct the integral p-adic L-function tha appears in the conjecture
above. Let us briefly discuss this issue. Let f be a Hida family of nearly ordinary Hilbert modular
eigenforms with tame level M. Let I be some finite extension of Ay, let mg be the maximal ideal of
the Hecke algebra T(M,I) with I coefficients corresponds to f. Let T(M, A)n, be the localization.
Then we say that it is Gorenstein if Homy(T,, I) is free of rank 1 over Ty,,. This is used to guarantee
the existence of a generator of the congruence module. In the case when F' = Q Wiles [Wiles95]
proved that this is true whenever the (irred) and (dist) in [SU] (see theorem 1.2.1.) are satisfied. In
general the situation is complicated. We record here a theorem of Fujiwara which gives sufficient

conditions for Ty, to be Gorenstein:
Theorem 2.10.1. (Fujiwara) Let p be the modulo p Galois representation associated to f. Suppose

e p > 3 and p|F((p) is absolutely irreducible. When p = 5 the following case is excluded: the
projective image G of p is isomorphic to PG Lo (F,) and the modp cyclotomic character Xcyeie

factors through Gr — G ~ 7./2;
e There is a minimal modular lifting of p.
o The case O defined in [8] section 3.1 does not occur for any finite place v.
e In the case when d := [F : Q) is odd the IThara’s lemma is true for Shimura curves.
Then the ring Ty, is Gorenstein.

This is [Fuji] theorem 11.2. The third condition is put to ensure that the quaternion algebra
considered by Fujiwara is not ramified at any finite places so that the Hecke algebra is the same as
the GLo Hecke algebra. Recall that O in called “exceptional” by Fujiwara and means that py,., is

absolutely irreducible and ¢, = —1 mod p.
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Chapter 3

Eisenstein Series and

Fourier-Jacobi Coefficients

The materials of this chapter are straightforward generalizations of parts of [SU] chapter 9 and 11
and I use the same notations as loc.cit; So everything in this chapter should eventually be the same

as [SU] when specializing to the group GU(2,2) /q.

3.1 Klingen Eisenstein Series

Recall that in chapter we denote GU to be GU(r,s) defined there. Let gu be the Lie algebra of
GU(r, s)(R).

3.1.1 Archimedean Picture

Let v be an infinite place of F so that F, ~ R. Let ¢’ and 4 be the points on the Hermitian

il 11l
symmetric domain for GU(r,s) and GU(r + 1,s + 1) which are and i respectively

0 0
(here 0 means the (r —s) x s or (r —s) X (s + 1) matrix 0). Let GU(r,s)(R)" be the subgroup

of GU(r, s)(R) whose similitude factor is positive. Let K+ and KI' be the compact subgroups of
U(r+1,s+1)(R) and U(r, s)(R) stabilizing i or i’ and let K., (K’_) be the groups generated by K1
(K%' and diag(1,4 11, —1s11) (diag(1y4s, —15)). Let (7, V) be an irreducible (gu(R), K’ )-module
and suppose that 7 is unitary tempered representation. There is an irreducible, unitary Hilbert

representation (7, H) of GU(R), unique up to isomorphism such that (7, V') can be identified with
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the (gu(R), K. )-module of it. Let x be the central character of w. Let 1) and 7 be unitary characters
of C* such that ¢|gx = x. Now we define a representation p of P(R): for ¢ = mn,n € Np(R),m =

m(g,a) € Mp(R) with a € C*, g € GU(R), put

p(g)v :=7(a)m(g)v,v € H.

For any function f € C*(Ky, Hoo) such that f(k'k) = p(K')f(k) for any k' € P(R) N Ko, where

H, is the space of smooth vector of H, and each z € C we define a function

F2(g) = 8(m) @ FHHEVEE p(m) f(k), g = mk € P(R) K,

where 4 is such that 62122+ = §5 and §p is the modulus character for the Klingen parabolic P.

and we define an action o(p,z) of GU(r + 1,5+ 1)(R) on I(H):

(a(p,2)(9) ) (k) := f.(kg).

Let I(p) be the subspace of Ko-finite vectors of I(H ) which has a structure of gu(R), Ko, module

structure.

1p
Let (7, V) be the irreducible (gu(R), K )-module given by 7V (z) = n(n~tan) forn = 1,

1,
z in gu(R) or K/, and denote pV,I(p"),IV(Hs) and o(p", 2), I(p")) the representations and spaces

defined as above but with 7,1, 7 replaced by 7V ® (7 o det),y)77¢, 7¢. We are going to define an

To41
intertwining operator. Let w = 1, ,forany z € C, f € I(Hy) and k € Ko
—Lp41
consider the integral:
Alp, z, f)(k) ::/ f=(wnk)dn. (3.1)
Np(R)

This is absolutely convergent when Re(z) > 2+ and A(p, 2, —) € Homc(I(Hw), IV (Hs)) in-
tertwines the actions of o(p, z) and a(p¥, —2).

Now Suppose 7 is the holomorphic discrete series representation associated to the (scalar) weight
(0,...,0; K, ...,k), then it is well known that there is a unique (up to scalar) vector v € 7 such

that k.v = det u(k, )~ (here u means the second component of the automorphic factor J instead
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of the similitude character) for any k € K+ v (notation as in section 3.1). Then by Frobenius
reciprocity law there is a unique (up to scalar) vector © € I(p) such that k.0 = det u(k, i)~ "v for
any k € KX . We fix v and scale ¥ such that o(1) = v. In 7V, 7(w)v (w is defined in section 3.1)

has the action of KT given by multiplying by det u(k,7)~"*. We define w’ € U(a + b+ 1,b+ 1) by
1y

w' = 1, . Then there is a unique vector 9" € I(p") such that the action of K1

1y

-1

is given by det u(k,7)™" and vV (w’) = w(w)v. Then by uniqueness there is a constant c(p, z) such

that A(p, z,0) = c(p, 2)v".

Definition 3.1.1. We define F,, € I(p) to be the ¥ as above.

3.1.2 /(-adic picture

Our discussion here follows from [SU] 9.1.2. Let (w, V) be an irreducible, admissible representation
of GU(F,) and suppose that 7 is unitary and tempered. Denote by x the central character of .
Let ¢ and 7 be unitary characters of ICf such that | rx = X- We extend 7 to a representation p of

P(F,) onV as follows. For g = mn,n € Np(F,), m =m(g,a) € Mp(F,),a € K\,g € GU(F,), put

)

plg)v = 7(a)p(b)m(s)v,v € V.

Let I(p) be the space of functions f : K, — V such that (i) there exists an open subgroup U C K,
such that f(gu) = f(g) for all w € U and (ii) f(k'k) = p(K) f(k) for k' € P(Op,,). For each f € I(p)

and each z € C we define a function f, on GU(F,) by

folg) = 6p(m)*/* 2 p(m) f(k), g = mk € P(F,)K,

We define a representation o(p,z) of GU(r + 1,s + 1)(F,) on I(p) by

(o(p,2)(9))(k) := f=(kg)-

Let (7V,V) be given by 7V (g) = m(n~'gn). This representation is also tempered and unitary. We
denote by py, I(pY), and (c(py, 2),I(p¥)) the representations and spaces defined as above but with

m, 1 and T replaced by 7V ® (7 o det), 77¢, and 7€, respectively.
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For f € I(p),k € K,, and z € C consider the integral

A(p,z,v)(k) := /N o fz(wnk)dn. (3.2)

As a consequence of our hypotheses on 7 this integral converges absolutely and uniformly for z and
k in compact subsets of z : Re(z) > (a +2b+1)/2 x K,. Moreover, for such z, A(p,z, f) € I(p")

and the operator A(p, z,—) € Homc(I(p),I(p¥)) intertwines the actions of o(p, z) and o(p", —z).

For any open subgroup U C K, Let I(p)V C I(p) be the finite-dimensional subspace consisting of
functions satisfying f(ku) = f(k) for all w € U. Then the function z € C: Re(z) > (a+2b+1)/2 —
Home(I(p)Y, I(pV)Y), z — A(p, z,—), is holomorphic. This map has a meromorphic continuation

to all of C.

3.1.3 global picture

We follow [SU]9.1.4 for this part. Let (m, V') be an irreducible cuspidal tempered automorphic rep-
resentation of GU(Ap). It is an admissible (gu(R), K., )yoo X GU(A f)-module which is a restricted
tensor product of local irreducible admissible representations. Let 7 : A¢ — C* be a Hecke charac-
ter and let 7 = ®7, and ¥ = ®,, be their local decompositions, w over places of F'. We associate

with (7, 7) a representation of (P(Fx) N Koo) X P(Ap ) and v = ®v,, € V put

p(m)v = @(pu (M) wm),

Let Ky := [], s Kw and Ky, := Kp_ x Ky. Let I(p) be the space of functions f : Ky, — V
such that f(k'k) = p(k')f(k) for k' € P(Ap) N Ka, and f factors through Kr_ x K;/K' for some
open subgroup K’ C Ky and f is Kp_-finite and smooth as a function on Kp o x K¢/K'. This
can be identified with the restricted product ®I(p,,) with respect to the F, ’s at those w at which
Taws W, Ty are unramified.

For each z € C and f € I(p) we define a function f, on G(A) as

fz(g) = ®fw,z(gw)

where f,, . are defined as before. Also we define an action o(p, z) of g, Kp_ )®@GU (r+1,s+1)(Ay) on

I(p) by a(p, z) := @0 (py, z). Similarly we define p¥, I(p"), and o(p", z) but with the corresponding
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things replaced by their V’s. For each z € C there are maps
I(p), I(p") = A(Mp(F)Np(F)\P(AF)),

given by
fre (g f(9)(1)).

In the following we often write f, for the automorphic form given by this recipe.

Definition 3.1.2. Let X be a finite set of primes of F containing all the infinite places, primes
dividing p and places when w or T is ramified then we call the triple D = (7, 7,%) is an Eisenstein

Datum.

I am sorry to use the same notation as the CM type in section 2.1. The meaning should be clear

in the context.

3.1.4 Klingen-type Eisenstein series on G

We follow [SUJ9.1.5. Let ,4, and 7 be as above. For f € I(p),z € C, and g € GU(r + 1,5+ 1)(A)

the series

E(f,z9):= Y,  f(v9) (3.3)

YEP(F)\G(F)
is known to converge absolutely and uniformly for (z,g) in compact subsets of {z € C : Re(z) >
at2b+1} % G(A) and to define an automorphic form on G. The may f — E(f,z,—) intertwines the
action of o(p, z) and the usual action of (g, Koo) X GU(r + 1,5+ 1)(Ay) on A(GU(r + 1,5+ 1)).

The following lemma is well-known (see [SU] lemma 9.1.6)

Lemma 3.1.1. Let R be a standard F-parabolic of GU(r+1,s+1) (i.e, R 2O B). Suppose Re(z) >

a+2b+41
5 .

(i) I R # P then E(f, 2 6)n = 0;
(“) E(f,Z,*)p = fz JFA(PvaZ)—z-
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3.2 Siegel Eisenstein series on G,

Our discussion in this section follows from [SU] 11.1-11.3. Let @ = @, be the Siegel parabolic

Ao B
subgroup of GU,, consisting of matrices ? “1. Tt consists of matrices whose lower-left n x n
0 D,

block is zero. For a place v of F' and a character x of K we let I,,(x) be the space of smooth

K, ,-finite functions f : K, , — C such that f(¢gk) = x(detDy)f(k) for all ¢ € Qn(Fy) N Ky
Aq By

(we write g as block matrix ¢ = ). Given z € C and f € I(x) we define a function
0 D,

F(z,=): Gu(F,) = C by f(z,qk) = x(detDy))|det A, D 32 £(K), g € Qu(F,) and k € Ko .

For an idele class character x = ®x, of Ag we similarly define a space I,(x) of smooth K, s
functions on K, 5. We also similarly define f(z,—) given f € I,,(x) and z € C. There is an identifi-
cation ®I,(xv») = In(x), the former being the restricted tensor product defined using the spherical
vectors f3Ph € I, (xo), [3P"(Kn) = 1, at the finite places v where Y, is unramified:® f, is identified
with k — [], fu(ky). Let U € C be an open set. By a meromorphic section of I,,(x) on U we mean
a function ¢ : U — I,(x) taking values in a finite dimensional subspace V' C I,(x) and such that

@ :U — V is meromorphic.

Let x = ®x, be a unitary idele class character of Ag. For f € I,(x) we consider the Eisenstein

series

E(f;2,9) = > f(z,79).

YEQn (F)\Gn (F)
This series converges absolutely and uniformly for (z,g) in compact subsets of {Re(z) > n/2} x
Gn(Af) and defines an automorphic form on G, and a holomorphic function on {Re(z) > n/2}.
The Eisenstein series E(f; z,g) has a meromorphic continuation in z to all of C. If ¢ : U — I,,(x)
is a meromorphic section, then we put E(p;z,g9) = E(p(2);2,9). This is clearly a meromorphic

function of z € U and an automorphic form on G,, for those z where it is holomorphic.

3.2.1 Intertwining operators and functional equations

Let x be a unitary character of £, v a place of F. For f € I,,(x),z € C, and k € K, ,,, we consider

the integral
M(z, )(k) i= X" (n (k) / (o wark)dr-

N, (Fv)
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For z in compact subsets of { Re(z) > n/2} this integral converges absolutely and uniformly, with the
convergence being uniform in k. M(z, f) € I,,(x¢). It thus defines a holomorphic section z — M (z, f)

on {Re(z) > 3/2}. This has a continuation to a meromorphic section on all of C.

Let x = ®x, be a unitary idele class character. For f € I,(x),z € C, and k € K,, 4, we con-
sider the integral M (z, f)(k) as above but with the integration being over Ng, (Ar). This again
converges absolutely and uniformly for z i compact subsets of {Re(z) > n/2}, with the convergence
being uniform in k. Thus z — M(z, f) defines a holomorphic section {Re(z) > n/2} — I,(x¢). This

has a continuation to a meromorphic section on C. For Re(z) > n/2 at least, we have
M(z, f) = @,M(z, fo), f = @ f0.

3.2.2 The pull-back formulas

Let x be a unitary idele class character of Ag. Given a cuspform ¢ on G(r,s) we consider

Fy(fizg) = /U o T8 0l ) e 019)0(g1 )

felsni(x),g € Gr+ 1,5+ 1)(Ap),h € G(r,s)(Ar), u(g) = p(h)

This is independent of h. The pull-back formulas are the identities in the following proposition.

Proposition 3.2.1. Let x be a unitary idele class character of Ag.
(i) if f € Lys(X), then Fy(f; 2, g) converges absolutely and uniformly for (z,g) in compact sets of
{Re(z) > r+ s} x G(r,s)(Ar), and for any h € G(r,s)(Ar) such that u(h) = u(g)

/ E(f;2,5 "a(g, g1h)S)x(det g1h)d(g1h)dgy = Fy(f; 2, 9). (3.4)
U (r,s)(F)\U(r,)(Ar)

(i) If f € Liyst1(X), then Fy(f; 2, g) converges absolutely and uniformly for (z,g) in compact sets
of {Re(z) >r+s+1/2} x G(r+ 1,8+ 1)(Ar) such that u(h) = p(g)

/ E(f;2,5 " a(g,g'h)S)x(det g1h)p(g1h)dgs
U(r,s)(F)\U(r,s)(Ar) (3 5)

= > Fy(f;2,79),

YEP(F)\G(r+1,s+1)(F)

with the series converging absolutely and uniformly for (z,g) in compact subsets of {Re(z) > r+s+
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1/2} x G(r+1,s + 1)(Ap).

Proof. (i) is proved by Piatetski-Shapiro and Rallis and (ii) is a straight-forward generalization by

[Shi97]. See also [SU] Proposition 11.2.3. O

3.3 Fourier-Jacobi Expansion

We will usually use the notation ey (x) = ep, (Tra,/a,7) for z € Ap. For any automorphic form ¢ on

GU(r,s)(Ap), B € Sy (F) for m < s. We define the Fourier-Jacobi coefficient at g € GU(r, s)(Ap):

vp(g) = / o(
S (F)\ S (A ) 0 1,_. 0

In fact we are mainly interested in two cases: m = s or r = s and arbitary m < s. In particular,
G =G, =U(n,n), 0 <m < n are integers, 5 € S (F). Let ¢ be a function on G(F)\G(A). The

B-th Fourier-Jacobi coefficient ¢g of ¢ at g is defined by

. S 0
ps(g) = / o( 0 0]9ea(=Tr3S)dS.
1n

Now we prove a useful formula on the Fourier Jacobi coeflicients for Siegel Eisenstein series.

Definition 3.3.1. let:

) z 0

Zz={| " 0o o||r€Hern()}
0, 1,

1 T zZ 0y
lon—m y* 0 *
V.=A{ |2,y € Myy(n—m)(K), 2z — zy" € Her,,,(K)}
L
On
—x* 1p_m
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O
L—m
Im
On,
—x* 1,_m
z
1, Y
Y= { y* 0 |y € Mm(nfM)(K:)}
0, 1,

Proposition 3.3.1. Suppose f € I,(7) and 8 € S,,,(F), B is totally positive. If E(f;z,g) is the
Siegel Eisenstein Series on G defined by f for some Re(z) sufficiently large then the B-th Fourier-
Jacobi coefficient Eg(f;z,g) satisfies:

Sy
1,
Es(fi2.9) = 3 >/ L o fanngenTrsis

VEQn-—m(F)\Gn—m(F)yeY 1

Proof. We follow [IKE] section 3. Let H be the normalizer of V' in G. Then

Gn(F) = I—lngn(F)ﬁzH(F)

for & = . then unfold the Eisenstein series we get:

Es(fiz,9) =
. S 0
22550 2o €Qu (FN\Qn (F)& H(F) Sy 0 0[9ea(=Tr(BS))dS
L,
. S 0
+ 2 eqnmnan e S FO 0 0]9ea(=Tr(BS))dS
In
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by lemma (3.1) in [IKE] (see loc.cit P628), the first term vanishes. Also, we have (loc.cit)

Qn(FN\Qn(F)SH (F)
= EOZ(F)X(F)Qn—m(F)\Gn—m(F)
S0 X (F).Qum(F)\Gnm(F).Z(F)

(note that S,, commutes with X and G,,_,). So

In
" S (wn 0| an-m(l,7)g)ea(=Tr(5S))

Eg(f;2,9) = > vy, /

YEQn-m(F)N\Gn—m(F) yeY(F)""m

Note that the final object is a local one.
Now we record some useful formulas:

Definition 3.3.2. If g, € Uy—(Fy),z € GL,,(K,), then define:

S
Fralfuzga) = [ gl | " g o | afdiaste, 5. g)en (<Tr58)ds
S (Fy)
1,
A B A B
where if g1 = 192 = then:
C D ¢ D
A B
D’ C’
01(91,92):
C D
B/ A/
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Since

1., 1, XBA™! S—XBX XA
S X 1n
In A1 A1 AtX
tX =
L Im
1, ~ ~ 1n
BA-! A BA-! A

it follows that:

A BA!
FJﬁ(f;Z,X, g,Y):

A—l

7¢(det A)~Y|det AA|TT e, (—tr(XX BX B))FJs(f;2, XA, g,Y)

Also we have:

z+%—m)

FJs(f;2,y,9,x) = 7p(det )| det m\g( Flupe(fiz,27y,9,1)

3.3.1 'Weil Representations

Now we briefly recall some formulas for the Weil representations which will be useful for computing

Fourier Jacobi coefficients. Let V' be the two-dimensional K-space of column vectors.

The local set-up. Let v be a place of F. Let h € S,,,(F,),det h # 0. Let U, be the unitary group of
this matric and denote V,, to be the corresponding Hermitian space. Let Vi := K= g K£(—m) .=
X, @Y, be the Hermitian space associated to U(n — m,n —m). Let W =V, ®x, Vi, where
Viw:=V1®F,. Then (-, —):=Trg,/r (< — — >n ®k, < —,— >1) is a F, linear pairing on W
that makes W into an 4m(n — m)-dimensional symplectic space over F,. The canonical embeding
of Uy, x Uy into Sp(W) realizes the pair (Up,U;p) as a dual pair in Sp(W). Let A, be a character
of K such that Ay|px = Xi¢/p,- In [Ku94], a splitting pair Uy (F,) x Ur(Fy) <= Mp(W, F,) of the
metaplectic cover Mp(W, F,)) — Sp(W, F,) is associated with the character A,; we use this splitting
to identify Up(F,) x Uy (F,) with a subgroup of Mp(W, F,,).

We let wy,, be the corresponding Weil representation of Uy, (F,) x Uy (Fy) (associated with A, and
e,) on the Schwartz space S(V, ®x, X,): the action of (u,g) on & € S(V, ®x, X,) is written

whw(u,g)®@. If u =1 we often omit u, writing wy, ,(g) to mean wp (1, g). Then wy,, satisfies: for
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X € Mysc(nm)(Ko):
* who(u, 9)2(X) = wnu(l,9)P(u"'X)
o Wy, (diag(A, ' A7) ®(X) = A(det A)| det Alx®(X A),
o wWno(r(9)®(z) = B(x)e,(tr < X, X > 5),

o Who(n)®(x) = |dethl, [ (Y )ey(Tric, jq, (tr <Y, X >4))dY.
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Chapter 4

Local Computations

In this chapter we do the local computations for Klingen Eisenstein sections realized as the pullbacks
of Siegel Eisenstein sections. We will mainly compute the Fourier and Fourier-Jacobi coefficients for

the Siegel sections and the pullback Klingen Eisenstein section.

4.1 Archimedean Computations

Let v be an Archimedean place of F.

4.1.1 Fourier Coefficients

Now we recall a lemma from [SU] 11.4.2.

Lemma 4.1.1. If we define frn(z,9) = Jn(g,iln) " Jn(g,il,)|[* 257" suppose B € S,(R). Then
the function z — fy g(z,g) has a meromorphic continuation to all of C. Furthermor, if K > n then
Jun.p(2,9) is holomorphic at z, := (k —n)/2 and for y € GL,(C), fun,p(2x, diag(y,y=1)) = 0 if
det 5 <0 and if det B > 0 then

(_2)771(27.”)71/{ (2/71.)71(7171)/2

fﬁ,n,ﬂ(zﬁ7diag(y7tgil)) = Hn_l(/{ ] 1)' e(ZTI'(Bytg)) det(ﬁ)ﬁin det g’{.
j=o =7 =1

Later on our f, , will be defined differently, but it is just the one defined above translated by

matrices of the form diag(y, 4~!). So the Fourier coefficient can be deduced from the above lemma.
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4.1.2 Pullback Sections

Now we assume that our 7 is the holomorphic discrete series representation associated to the (scalar)
weight (0, ...,0; K, ...,x) and let ¢ be the unique (up to scalar) vector such that the action of K;‘o’/
(see section 3.1) is given by det u(k,4) . Recall also that in section 3.1 we have defined the Klingen

section F(z,g) there. Recall that:

1
! —3
1
<
1 —3
1
S = R
1
L3
1
¢
1 —4
1
-1 -
and
1
1 3
<
1 —3
1
S = o
1
L3
<
-1 —§
1
-1 -
51
Let i:= i be a point in the symmetric domain for GU(n,n) or GU(n+ 1,n+ 1) for

$1
2-a
n = a + 2b, where the block matrices ¢ are of size b x b or (b+ 1) x (b+ 1). We define archimedean

section to be:

fﬂ(g) = Jn-‘rl(gv i)i’{|']7l+1(g7 i)|K72Z7n71

and

1(9) = Jnlg. )~ (g D2
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and the pull back sections on GU(a +b+ 1,b+ 1) and GU(a + b, a) to be

Fo(,g) = /U o o5l 1))t g m(on) oy

and

F(2,9) 2:/ - fr(z,58 alg, 91)8")7(det g1)7(g1) pdga
Uatb,p

Lemma 4.1.2. The integrals are absolutely convergent for Re(z) sufficiently large and for such z,

we have:
(i)

Fi(z,9) = CH(Z)FmZ(g);
(i)

Fi(z,9) = . (2)m(9)¢;
where

(@v+by)bu ( ntr — b T ntky-1
m by (2 + a ) by (Z + ) s >0
c(2,9) = 2"| det 6} S ’

1 otherwise.

)

m(m+1)

and ¢(z,9) = ch(z+ 1,9). Here Dy :=m 2 7::701 I'(s — k) and v := (a + 2b)db (recall that
d=1[F:Q)]).

Proof. See [Shi97] 22.2 and A2.9. Note that the action of (8,v) € U(r,s) x U(r,s) are given by
(8',7") defined there. Taking this into consideration, our conjugation matrix S are Shimura’s S
times X1, which is defined in (22.1.2) in [Shi97]. Also our result differ from [SU1] 11.4.4 by some

powers of 2 since we are using a different S here. O

4.1.3 Fourier-Jacobi Coefficients

Lemma 4.1.3. Let z, = “5%, B € S5 (R), m <n, det B > 0. then:

())F T (2, 2, 1,1) = fom p(2s + 257, De(iTr('X BX));

(i)if g € Up—m(R), then

FJﬂ,n(mevga 1) = e(iTrﬁ)cm(B, K')fm—m,n—m(zmg/>w,3<g/)¢)ﬂ700(x)'
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].'n, ].n —t i)t L
where g = g and ¢ (B, k) = = ﬁfﬁg(n(—%ﬁ)l)( -

-1, 1,

det g1,

Proof. For (i) we first assume that m < n/2, then there is a matrix U € U,,_,, such that XU = (0, A)
for A a (m x m) positive semi-definite Hermitian matrix . It then follows that F.Jg (2, X,n,1) =
FJs(z,(0,A4),n,1) and e(iTr(!XB3X)) = e(iTr(U1XBXU)), so we are reduced to the case when
X =(0,4).

Let C be a (m x m) positive definite Hermitian matrix defined by C' = v/A%2 + 1. (Since A is

positive semi-definite Hermitian, this C' exists by linear algebra.)

C c-! Cc'A

A AC—t Ct —-ctA Cc!

ACt c! —-Cc71A c!

write k(a) for the second matrix in the right of above which belongs to K, ., then as in [SU| lemma

n,00
11.4.3,
Cc1 X X X
1 X X X U-tsu—1
S X
1, x  x COC71 x x x 1,
Wy, tyY = Wy, k(a)
C
1,
1 1,
x x C
thus
FJg (24, (0, 4),1m,1) = (detC)*™ 2% F Jg: ,o(2,0,1m, 1), B =CBC

— (detc)2m—2nfﬁ’m’ﬁl (zl{ + n—m 1)

2 )

= frm,p(z + 257, 1D)e(iTr(CBC — )
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but
e(iTr(CAC — B)) = eliTr(C2A — B)) = e(iTr((C2 —1)B)) = e(Tr(AB)) = e(iTr(ABA))

this proves part (i).
Part (ii) is proved completely the same as in lemma 11.4.3 of [SU]J.
In the case when m > % we proceed similarly as lemma 11.4.3 of [SU], replacing a and u there

by corresponding block matrices just as above. we omit the details.

4.2 /-adic computations, unramified case

4.2.1 Fourier-Jacobi Coefficients

Let v be a prime of F not dividing p and 7 be a character of KX, for f € I,,(7) and 8 € S,,,(F},),0 <

m < n, we have defined the local Fourier-Jacobi coefficient to be

S 0
1,
folzig) = /S S| 0 o] gel-Trasys
1,

We first record a generalization of lemma 11.4.6 in [SU] to any fields (Proposition 18.14 and 19.2
of [Shi97])

Lemma 4.2.1. Let 8 € S,,(F,) and let r := rank(B). Then for y € GL,(K,),
1375 (2. diag(y. '§™)) = r(dety)|detygly "2 Dy "D

15! L2zti—nt1,7 xk _, Coen
li[’.”’:o1 L(2z+n—i,7xL) b,y (T (@) 4, )-

X

where h, w4, € Z|X] is a monic polynomial depending on v and 'yBy but not on 7. If 8 € S (OFw)

and detp € O;’v, then we say that B is v-primitive and in this case h, g = 1.

Lemma 4.2.2. Suppose v is unramified in K. Let 8 € S,,(F,) such that detf # 0. Lety €
GLy_m(Ky) such that By € Sy (OF,), let X be an unramified character of KX such that

F,x = L.
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(i) If B,y € GL,,(O,) then for w € Ug(F,):

sph
—241/2 folim (2, g)ws (u, 9)Po,y (2)
Y H?:Ol L(2z+n—1i,7'x%)

FJ fsph; 2, T,0,uy) =T detu)|detut
B\In

(ii) If By € GLp(Oy), then for u € Ug(F,),

z+1/2 fvSLp—h;n(Za g)ws(u, 9)Po,y(z)
H;’;Bl L(2z+n—i,7xi)

FJs(fiP": 2, 2,9, uy) = 7(detuy)|detuyal ¢

4.2.2 Pull-back integrals

Lemma 4.2.3. Suppose 7,9 and T are unramified and ¢ is a newvector. If Re(z) > (a + b)/2 then

the pull back integral converges and

L(7,7% 2+ 1)
sph. _ ) B
F¢(fvp 7279) - a+2b—1 I

—F),.(9)
2 L2+ a+20+1—i,7'x)

where F), is the spherical section.

4.3 (-adic computations, ramified case

4.3.1 Pull Back integrals

Again let v be a prime of F' not dividing p. The choices in this section is not quite important. In
fact in applications we are going to change it according to the needs. The purpose for this section
is only to convince the reader that such kinds of section do exist. We define f! to be the Siegel
) lotopt1
section supported on the cell Q(F,)wat2o+1Ng(Op,w) where wqyopr1 = and
—Llotob+1
the value at Ng(Op,,) equals 1. We fix some z and y in JC which are divisible by some high power

of w,. (When we are moving things p-adically the x and y are not going to change).

Definition 4.3.1.

lgyop41 loyopt1 ~
fu,sieg(g) == f( g Fo)

1
5lat2br1 21ay2p41
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where 7, is defined to be:

1 1
1
1 L
vy
1 1
1
1
1
1
1 d
a 1 f b ¢
Lemma 4.3.1. Let K2 be the subgroup of G(Fy) of the form 1 g | where e = —Ta,
1 e
1

b=, g=-0f, c=2¢ ac (z),ec (), feyy),ge (2¢yy). Then Fy(z;g, f) is supported in

PwKI(,Q) and is invariant under the action of Kz(,2).

St Si2 Siz Sia
. . Sa1 Saa Saz Saa | .
Proof. Let S, consists of matrices: S := in the space of Hermitian (a +
S31 Sz Ssz Sa

Sy Sa2 Siz Sua
2b+1) x (a+2b+ 1) matrices (the blocks are with respect to the partition b+ 1+ a+ b such that the

entries of Si3, 523 are divisible by y, the entries of S14, 524 are divisible by z, the entries of S31, S32
are divisible by 7, the entries of S41, S42 are divisible by Z, the entries of S33 are divisible by yy, the

entries of S34 are divisible by xy, the entries of Sy3 are divisible by Ty, and the entries of Sy are

1
divisible by zz. Let Q4 , = Q(F%).
Szy 1
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ar ay az by b
ag as ag by by
Forg=|a; as a9 bs bg |, we have:
cp ¢y c3 di do
cy c5 cg d3 dy
Y(9,1) € supp fu,sieq
< Y(g, Dwatopr1de 371 € Quy

& y(gw,ndiag(z !, 1, 2))w'dyd " € Quy

Here d, , = diag(1,1,y,z,1,1,5~ ',z 1) and d, = diag(1,1,y,1,1,1,5~ %, 1). where 2 and y here
8 Yy

stand for the corresponding block matrices of the corresponding size. Recall that v((m(g1,1),91) €

1

Q, by multiplying this to the left for g; = diagz, 1,27 !)n~!, we are reduced to proving that if

(g, )w'dy7™! € Qy,y, then g € Ple(,Q)w_l. A computation tells us that: (g, 1)w'd,7 ™! equals:

ay as Casy —by by b2 azy~"
ay as Casy — agy " —bs bs by agy !
ar/2 as/2 Cy(a29*1) _ (a9+;)z7’1 b by b M
1
c1 Ca Cesy —esyt 1—d; dy ds T
C4 cs Ceoy — ey —ds ds dy 6y "
—%CW —%as —%y + %(ag -yt Cg;lb5 —%55 —%bs %(1 —ag)y~!
a; —1 as Casy —azy ! —b by by T 1

One first proves that dy # 0 by looking at the second row of the lower left of the above matrix, so
by left multiplying g by some matrix in Np, we may assume that dy = by = by = bg = 0, then the

result follows by an argument similarly as lemma 4.4.11 later on. O

as ag Qa4

Now recall that g = | a5 a9 a7 |,let 2 be the set of g’s so that the entries of a, are integers, the

az az ai
entries of a3 are divisible by yy, the entries of a; —1 are divisible by Z, the entries of 1 —as are divisible

152 — yy¢(1+yyN)

for some N with integral entries, the entries of ag are divisible by yy(, and the entries of a; are

by x, the entries of ag are divisible by Zy, the entries of a4 are divisible by zZ,
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divisible by yyz(.

Lemma 4.3.2. Let ¢, = m(diag(z, 1,2~ )n~1)¢ where ¢ is invariant under the action of %) defined

above, then Fy_ (z,w) = T(ygjx)|(yy)2a:i;|gz_

Proof.
1
1
1
2
1
1
471
T2
1
1
1
1
X
-1
1
ag
2
—as
—as
C—l
"3 a8
1-— as

a+2b41

asCy + agy !

2 Vol(D).¢.
1
1
1
5 1
ay
1
1 1
—1
~< ar
1 a4
1
1
1 Yy
1
1 1
1 1
g—l
1
<y g ! ar
5 (1 —ag) — 5 (1 +ao) -5
azCy + azy~" a1
azCy + azy~" a; —1
—1-—1 -1
—4(1+ag) + ~F—(1—ag) —*5az

as

ag

ae

1
1
1
as
ag -1
as
1
1
1
1
-1
-1
-1
%(1 + ag)
—azy "
—azy~!
_¢ygtt (1 - ag)
—agy "

One checks the above matrix belongs to @, if and only if the a;’s satisfy the conditions required

by the definition of ). The lemma follows by a similar argument as in lemma 4.4.12.
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Definition 4.3.2. We fix a constant C,, such that C,Vol(2)) is a p-adic integer.

When we are moving things in p-adic families, this constant is not going to change.

4.3.2 Fourier-Jacobi Coefficient

Here we record a lemma on the Fourier-Jacobi coefficient for f) € I,,(,) and 8 € S,,(F,).

Lemma 4.3.3. If 8 & S,,(OF,)* then FJs(f%;2,u,g,hy) =0. If B € S,,(OF,)* then

FJﬁ(fT; 2,u,9, 1) = fT(Z»glﬁ)wﬁ(h»glﬂ_l)q’o,y(u)'VOI(Sm(OFu))a

1 1n—
whe,re gl _ n—m g n—m

_1n—m _ln—’m

The proof is similar to [SU]11.4.16.

4.4 p-adic computations

In this section we first prove that under some ‘generic conditions’ the unique up to scalar nearly
ordinary vector in I(p) is just the unique up to scalar vector with certain prescribed level action.
Then we construct a section F'T in I(p") which is the pull back of a Siegel section fT supported in
the big cell. We can understand the level action of this section. Then we define F° to be the image
of FT under the intertwining operator. By checking the level action of FO we can prove that it is

just the nearly ordinary vector.

4.4.1 Nearly Ordinary Sections

Let A1, ..., \n be n characters of Q,, m = IndgL"()\l, ey An)-

Definition 4.4.1. Let n =1+ and k = (Cr4s, e, Cs4+1; Cl, -, Cs) 18 a weight. We say (A1,...\,) is

nearly ordinary with respect to k if the set:

{val,A\1(p), ..., val, A\ (p) }

1 1 1 1 1
= {a+s-1-F+5c+ts—2—-5+5,.,cs—5+5,cpp+r+s—1-—5+5, ., cyst+s—5+5}

We denote the above as {K1, ..., Kr4s}, thus kK1 > ... > Kpys.
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Let A, := Zp[t1,ta, ..., tn, ¢, ] be the Atkin-Lehner ring of G(Q,), where ¢; is defined by t; =

1n7i

N(Zp)aiN(ZP)v Q= , t; acts on WN(ZP) by
pli

We also define a normalized action with respect to the weight k ([Hida04]):

vl|t; == 6(y) Y 2prat Ry,

Definition 4.4.2. A vector v € 7 is called nearly ordinary if it is an eigenvector for all ||t;’s with

eigenvalues that are p-adic units.

We identify 7 as the set of functions on GL,(Q,):

7= {f : GL.(Q,) - C, f(bx) = AB)S(®)/* ().

1
Let wy be the longest Weyl element , [ be the element in 7 such that f* is supported

1

in Bw;N(Z,) and invariant under N(Z,); this is unique up to scalar. We have:
Lemma 4.4.1. f¢ is an eigenvector for all t;’s.

Proof. Note that for any i, t; f* is invariant under N(Z,). By looking at the defining v|t; under the
above model for 7 it is not hard to see that the section is supported in B(Q,)w¢B(Z,). So f*||t;

must be a multiple of f*. O

Lemma 4.4.2. Suppose that (M1, ..., \,) is nearly ordinary with respect to k and suppose

vp(A1(p)) > vp(A2(p)) > ... > vp(An(p))

then the eigenvalues of ||t; acting on f* are p-adic units. In other words f* is an ordinary vector.

Proof. A straightforward computation gives that

f€||t’b = Al...)\i(p_l)pml+-<~+ﬁif€
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which is clearly a p-adic unit by the definition of (A1,..., A;,) to be nearly ordinary with respect to
k. O

Lemma 4.4.3. Let Ay, ..., Aay2p be a set characters of Q) such that cond(Xa12p) > ..., > cond(Apy1) >
cond(A1) > ... > cond(Ny). In this case we say X := (A1, ..., Aat2p) s generic and we defined a sub-
group: K is defined to be the subgroup of GLg1a1(Z,) whose below diagonal entries of the ith column
are divisible by cond(Aat2p+1—:) for 1 <i < a+b, and the left to diagonal entries of the jth row are

divisble by cond(Aat2v41—5)for a+b+2 < j < a+2b and AP o character defined by:

Aa+2b(911) Aat2p—1(922) - A1(Gat2b at+2v)

then f¢ is the unique (up to scalar) vector in  such that the action of Ky is given by multiplying .
Proof. This can be proven in the same way as [SU]9.2.6. O

1

We let wy :=

1

Now let B = B! and K, = K™,
Corollary 4.4.1. Denote a; = vp(A\i(p)). Suppose A1, ..., Agr2p are such that cond(A) > ... >
cond(Aagt2) and a1 < ... < Gaqp < Agyop < ... < Gatbi1, then the unique (up to scalar) ordinary

section with respect to B is

Fa)rd = At(911)--Aatab(Gatavatan), g € K.

0 otherwise .

Proof. We only need to prove that m(w;)f"%(z) is ordinary with respect to B®* . Let X\, =
Aatbily o Ay = Aat2b, Apy1 = Aatby - Agigy = A1, then )\ satisfies lemma 4.4.2 and thus the
ordinary section for B (up to scalar) is ff,. A" also satisfies the assumptions of lemma 4.4.3 so f5, is
the unique section such that the action of K is given by X, | 5, (911)---A] (ga+25,a+25). But X is clearly
regular, so IndgL”“b (\) =~ IndgL“+2b(A’). So the ordinary section of IndgL““b (M) for B also has

the action of K given by this character. It is easy to check that m(w;)f° ¢ has this property and

the uniqueness (up to scalar) gives the result. O
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4.4.2 Pull Back Sections

In this section we construct a Siegel section on U(a+2b+1, a+2b+ 1) which pulls back to the nearly
ordinary Klingen sections on U(a+b+1,b+1). We need to re-index the rows and columns since we
are going to study large block matrices and the new index will greatly simplify the explanation. One

can check that the Klingen Eisenstein series we construct in this section, when going back to our

x % x %
* x %
previous index, is nearly ordinary with respect to the Borel : * * x x|, where the diagonal
*
% %

blocks are upper, upper, upper, lower, lower triangular, while the one we need is nearly ordinary

*  x ok ok %

* ok ok ok

with respect to the Borel ¥ % x| (it is for this one we can use the A-adic Fourier-Jacobi
*
* %

expansions). (here the blocks are with respect to the partition: b+1+a+b+1.) However we will see
that the nearly ordinary sections with respect to different Borels only differ by right translation by

some Weyl element depending on a and b. We will specify this Weyl element when doing arithmetic

applications.
(la
Now we explain the new index. Let V; be the hermitian space with metric 1 |
—1p
(la
Va,p+1 be the hermitian space with metric Tpy1 |- The matrix S for the embedding;:

—Lp41
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U(Vap) X UVap+1) = U(Vat2+1) becomes:

¢
1 —3
1
1 3
1
1
-1 i
¢
-1 -4
1
1 3
1
1
-1 -1

Siegel-Weil section at p

7: character of K =K x KF = Q) x Q

7= (11,75 '), p¥ being the conductor of 7;,i = 1,2.

Let X1, .--Xas Xa+1, ---Xa+2b De characters of @ whose conductors are ptt, ..., plea+t2e. Suppose we are
in the:

Generic case:

t1 > ta > ... > taqp > S1 > tagbt1 > ..o > tayop > S2

Also, let &; :Xﬂfl for1<i<a-+bd

& :X;1T2 fora+b+2<j<a+2b+1. &iopr1 =1.

Let ®; be the following Schwartz functions: let I' be the subgroup of GLq42p+1(Zp) consists of ma-
trices v = (y;5) such that pt* divides the below diagonal entries of the k" column for 1 <k < a+b
and p°t divides v;; whena +b+2<j<a+2b+1,i<a+b+1ori>j.

Let{l{:XiTgl 1<i<a+b

&=x; m,a+b+2<j<a+2b+1

Soprl = 17y b (thus &, = &7y ! for any k).

Definition 4.4.3.

By (2) 0 x ¢l
1(z) =
Pt e () zeT
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Now we define another Schwartz function ®s.

A A Az A
. ) Ao Azp Asz Asu | | )
Let X be the following set: if X 5 z = is in the block form with respect
A1 Aszz Asz Am

Agr Agp Ay Aw
to the partition: a +2b+1=a+ b+ 1+ b, then:

- x has entries in Zp;

Ay A .
- has all the (-upper-left minors A, so that (detA,) € Z; for £ =1,2,...,a + b;

Agr Az
- and Ay has all the f-upper-left minors By so that (detBy) € Z,\ for £ =1,2,...,b.

We define:

0 rgX
De(x) = 4 & /& (detAr)...Earv—1/Eatn(detAqry)
X&aybr2/Eatvr3(detBy)..Eavan/Eavovrr(det By_1)Eat o1 (detBy). x € X

Let @3(2) i= de() = [y, (Qp)®e(y)ey(—tryz')dy.

Let ® be a Schwartz function on
Mt 9641,2(a+2641)(@p) by:

P(X,)Y) := 01(X)D2(Y).
and define a Siegel-(Weil) section by:

a42b41

2 (g) = maldetg)|detgl,” 2 x / ®((0, X)g)7; " 7a(det X)|det X |, >+ For0H <
GLat20+1(Qp

Lemma 4.4.4. If v €T, then:
a+2b+1
(v X) = [ (&lmr)@e(X)

k+1

Proof. Straightforward. O

Fourier Coefficients (at p)
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If 8 € Hermgq 0511 (K) the Fourier coefficient is defined by:

latob+1 1 N
f5s) = / (@) f*( Jep(—trBN)dN
May2p+1 _1a+2b+1 1
lagap11 .
= ((0,X) )1 To(det X)
Mat20+1(Qp) Y GLay2p+1(Qp) —Lg4op+1 —-N

x | det X | 2etot2Hle (—trBN)ANd* X

_ / B (— X)0e(— X V) r my(det X)) | det X > d* X
GLay2b4+1(Qp)

= ' n (- Deol(D)2e('B).

1 Ma+2b+1 (Zp)
1

Definition 4.4.4. Let fT = fl+2b+1 be the Siegel section supported on Q(Qp)wat2p+1

- 1 X
and f1(w ) =1 for X € Myyop+1(Zp).
1

Lemma 4.4.5.
ot 1 B € Muronii(Zy)
f,e(l) =
0 B¢ Matovt1(Zyp)
(here we used the projection of B8 into its first component in K, = F, x F,)) where the first component

correspond to the element inside our CM-type ¥ under v := C ~ C,, (see section 2.1).

Definition 4.4.5.
f<I>

T
Jh= 1 by (—1)Vol(T)

Thus f = ®¢(18).

Remark 4.4.1. This ensures that when we are moving our Eisenstein datum p-adically, the Siegel

FEisenstein series also move p-adic analytically.
Now we recall a lemma from [SU]11.4.12. which will be useful later.
Lemma 4.4.6. Suppose v|p and 8 € S,(Q,),det 8 # 0.
(i) If B & Sn(Zy) then M(z, f1)s(—2,1) = 0;
(ii) Suppose B € Sp(Zy). Let ¢ := ord,(cond(7")). Then:
M(z, f1)a(—2,1) = 7'(det B)| det B, **g(7')"cn (T, 2).
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where
T/(pnc)p2ncz—cn(n+1)/2 c>0

p2nz—n(n+1)/2 c=0.

Note that our fT is the fT in [SU] and our 7 is their x.

Now we want to write down our Siegel-Weil section f® in terms of fT. First we prove the

following:

Lemma 4.4.7. Suppose ®¢ is the function on M,(Q,) defined as follows: if cond(&;) = (p'') for
i1=1,2,...,n, then
pMLy
Xe = N(Zy) NoPP(Z,).

p~ "Ly

then the Fourier transform <i>§ 1s the following function:

0 Igig

1=, G(&) [, &(ziph) Xeoa=

1 Ty 1

Proof. First suppose z is supported in the "big cell”: N(Q,)T(Q,)N°PP(Q,) where the superscript

‘opp’ means the opposite parabolic. It is easily seen that we can write z in terms of block matrices:

171—1 U z 1n—1

8
|

1 w v 1

where z € M, _1(Q,) w € Q,.
A first observation is that @5 is invariant under right multiplication by N°PP(Z,) and left multipli-
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cation by N(Z,). We show that v € My (n—1)(Zp) if ®¢(x) # 0. By definition:

&)E(x) = /M o e (y)ep (try'z)dy
L1 an—1 Ap—1m
(y= )
J4 1 la,—1 Lap_1m—+b
/ 1 m )
B a€X¢ n1,MEM(Zp) LEM (Zy), beZX /1 1
1 fa
X ep(tr )dy
m 1 b 1
a 1 1 Y+u) [z
= [ea|" |reter )iy
b m+v 1 b 1 w
a a a(l + u) z
= [ea|" |reter )iy
b (m+v)a (m+v)al+u)+b w
a
= [o|" etaz+ (ont vjate+ )+ iy
b

(Note that ®, is invariant under transpose.)

If @g(x) # 0, then it follows from the last expression that: w € p‘“‘Zﬁ and suppose v &
My (n—1)(Zp), then m +v & Miyn—1)(Zp). We let a,m,b to be fixed and let ¢ to vary in
My (n—1)(Zp), we find that this integral must be 0. (Notice that a € X¢, 1 and w € p*t"Z;,
thus (m + v)aw € Mixn-1(Zp)) Thus a contradiction. Therefore, v € Mixn—1(Zy), similarly
w € My_1,1(Z,). Thus by the observation at the beginning of the proof we may assume u = 0 and

v = 0 without lose of generality.

Thus if we write ¢¢ ,—1 as the restriction of ®, to the up-left (n — 1) x (n — 1) minor,

HH
m
—

8
N

Il

G /<I>5( ¢ , )ep(az + (mal + b)w)dy

= )G ) [ Seaa(e(az)dy

a€Xe n_1

47



by an induction procedure one gets:

g(z) = R o ~
D i e Hi:l a(&) Hi:l & (xipti) x € X¢.

Since ig,n is compact, now that we have proved that ig’n when restricting to the ”big cell” has

support in :%g,m therefore i)é,n itself must be supported in if,n' O

Lemma 4.4.8. Let ig be the support of Py = <i>§, then a complete representative off%fmodMa+2b+1(Zp)

is given by:
A B
D
E
A
where the blocks are with respect to the partition a+b+1+b where runs over the following
1 mi2 ... mi,a+b Ty 1
na1
ma+b71,a+b
1 ZTatb) \Matbl - TNatbatb—1 1

where x; Tuns over p~"ZX mod Zy,, m; Tuns over Z, modp' and n;; runs over Z, mod p*, and

E runs over the following set:

1 ki . Eip Y1 1
loy
kp—1
1 Up b1 o lpp—1 1

—t; . tatbr - tatbii
where y; Tuns over p~titetZ, modZy; ki; runs over Z, modp'etiti; L;; Truns over Z, modp'etiti,
Proof. This is elementary and we omit it here. O

Now we define several sets: Let B’ be the set of (a +b) x (a + b) upper triangular matrices of
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the form

1 ms .. M1 atb T

Ma+b—1,a+b

1 La+b

where x; runs over p~“ZX mod Z,, m;; runs over Z, modp"i.

Let ¢ be the set of b x b lower triangular matrices of the form

Ng+b,1 -+ Na+batb—1 1

where n;; runs over Z, modp"

Let & be the set of b x b upper triangular matrices of the form

1 kip oo kg

kp—1.

1

where k;; runs over Z, modp'e+t+i.

Let ©' be the set of (a 4+ b) x (a + b) lower triangular matrices of the form

Y1 1
0o

Yo b . lyp—1 1

where y; runs over p~lite+tZ, modZy,; ¢;; runs over Z, modp'ett+i. Also we define for g €
1u,><a, 1b><b

GLa+2b(@p)7 gL = oy | 9| laxa

Lpxo Lpxo
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Corollary 4.4.2.

a+b b
_s~atb, b X
fizg) = p 2=t aia e TTg(6)6(—1) [ 0(€arvriri)€arprasi(=1)
i=1 i=1

lat2p+1

a b b
X Z ng( i1 H +z a+z u X H§a+b+1+z(Eu)fT(zvg
i=1

A,B,C,D,E i=1 i=1

E

latop+1

Proof. using the lemma above, we see that both hand sides have the same (’th fourier coefficients

for all 5 € Sy12p4+1(Qp) thus they must be the same.

thus if B/, C’, D', E' runs over the set B’, ¢’ D', ¢, then

a+b b
_satb s )
f(zg) = pr sttt e T g(6)&(—1) [ 0(6atsrrsi)€arpripi(=1)
i=1 i1
a+b
X Z H 51 H Satbti (D;z)
B’,C",D'",E" i=1 =1
B’ B’
t 1 £ 1 A 1
x [z, go ; ) of
o D’ 1 o
1 1

a+b b
_satb b .
= p it i ttenns [T g(6)&(—1) [ ] 0Carsriri)€aroriri(=1)

i=1 i=1
ath b B b
x Z Hgi(Bz/'i)Hga+b+l( H 71 ( H
B',C',D',E’ i=1 i=1 i=1 i=1
B/
st 1 £ 1 A
x f1(z, gl ; ) )
C’ D’ 1
1

50

O




—t1

—to

p*ta+1

where A’ =
pfta-kb

p*ta+b+1

p*ta+2b

Definition 4.4.6. (pull back section) If f is a Siegel section and ¢ € m,, then

Fy(z, f.g) = /G o e e ot o

Now we define a subset K of GL,12p4+2(Z;) to be so that k € K if and only if:
pti divides the below diagonal entries of the ith column for 1 < i < a + b, p*t divides the below
diagonal entries of the (a + b+ 1)th column, and ple+t+i divides the right to diagonal entries of the
(a+b+1+75)thROW for1 <j<b-—1.

We also define v, a character of K by:

a+b b
v(k) = 71 (katbsr.arvi1)T2(kaavs,arasa) [ [ xi(Kio) || Xasori(Fasbristiatvrivr)
i=1 i=1

for any k € K, we also define o a character of K by:

b a b
(k) = [ [ Xatikia) [ xiCeorinra) ]| Xavori(Baroriatsri)

i=1 i=1 i=1
Lemma 4.4.9. Let K' C K be the compact subset defined by:
ai ay az by by
a; as ag bz by
K'sk=|a; as a9 bs bg | (here the blocks are with respect to a +b+1+0b+ 1) if and only

C1 Co C3 d1 d2

C4 Cs Cg d3 d4
if: pte+v+itti divides the (i,j)th entry of ¢1 for 1 < i < b, 1 < j < a and pletv+itlati divides the
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(,4)th entry of co for 1 <i<b, 1 <j<b.
(it is not hard to check that this is a group).

then: Fy(z, f1,gk) = v(k)Fy(a, fT,g) for any ¢ € m and k € K’

Proof. this follows directly from the action of K’ on the Siegel Weil section f. O

We define K" to be the subset of K consists of matrices

C1 C2 1

such that p' divides the (4, j)th entry of ¢; for 1 <i < b, 1 < j < a and pte+i divides the (i,7)th
entry of co for 1 <i<b,1<5<0b.

ayp as a2
Definition 4.4.7. K C GLay2%(Zp): | ar ay ag | (blocks are with respect to (b+a +b)). the

aq G As

column’s of as, ag are divisible by p't, ..., pte, the column’s of as are divisible by ptett, ..., ptatt  plati
divides the below diagonal entries of the i 'th column of ay, (1 <i <b), pt divides the below diagonal
entries of the j’s column of ag (1 < j < a), ptett+t divides the above diagonal entries of the k’th
ROW of as.

K' C K is the set of petv+ittets divides the (i,j)th entry of ay for 1 < i < b, 1 < j < b and
pletv+itti divides the (i,j)th entry of ag for 1 < i <b, 1 < j < a. We also define K" to be the

subset of K consists of matrices:

1

a4 a61

such that pte+i divides the (i,j)th entry of ay for 1 <i <b, 1 < j < b and p'i divides the (i, j)th

entry of ag for 1 <i<b, 1 <j<a.
The following lemma would be useful in identifying our pull back section:

Lemma 4.4.10. Suppose Fy(z, f1,g) as a function of g is supported in PwK and Fy(z, fT, gk) =
v(k)Fy(z, f1,9) fork € K', and Fy(2, fT,w) is invariant under the action of (K")". then Fy(a, ft,g)

is the unique section (up to scalar) whose action by k € K is given by multiplying v(k).
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Proof. This is easy from the fact that K = K'K” = K"K’'. The uniqueness follows from lemma

4.4.3. O

We define a matrix w to be 1p41 |- We also define T to be the element in

—lpg1
U(n,n)(F,)(= U(n,n)(Qp)) such that the projection to the first component of K, = F,, x F, equals

that of . (note that v & U(n,n)).

Lemma 4.4.11. If ya(g, 1)yt € suppp(Y)fT then g € PwK.

N A
Proof. since fT is of the form Y- 4.y fT(— ), where X is some set, we only have to check
1

the lemma for each term.

_pta+1

First recall we defined: A’ =
_pta+b

,p*ta,+b+1

,p*ta+2b

where the blocks are with respect to a + b+ 1+ b. Let {, and ~, be the projection of ¢ and =, to

the first component of I, = F,, X F,,, then:

¢t ¢t 20" ¢t 1

Yo = =

N =
(SIS
N|=

we denote the last term 4,. Some times we omit the subscript v if no confusions arise.

53




Using the expression for f involving the B’, C’, D', E"’s as above and the fact that v(m(g,1),9) € Q

and that K is invariant under the right multiplication of B’s and C’s, we only need to check that if

a1
as
Fwalg, 1), " € suppp(T)p( f1, then g € PwK. if gw = | a7
1 .
Ca
is equivalent to
1 a; az as bi bo
1 as as ag by by
1 ar ag ag bs b
1 1
1 1 1
1 1 1 ¢ 3 dy do
1 c4 C5 Co dsz dy
1 1
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az

as

as

C2

Cs

az by by
ag bz by
ag by bg
c3 di do
cg d3 dy
Wa+2b+1 X

then this



pta+b

1
1
pfta+b
55

p—ta+b+1

p—ta+2b

pta+b+1

pta+2b

Wqt2b41



is in suppf. which is equivalent to

pta+b+1
1y
p" .
Fa(g, 1, JWat2p417~
1
p*ta+1
belongs, and thus also, Ya(g, 1)wai2p117 L belongs to:
p "
pte
1
1
p*ta+1
Suppp( wa+2b+1)fT-
pfta«#b
1
1
1
pta+b+1
ptu+2b

S Sz Siz Su

. o . . 1 S21 S22 Sz Su
the right hand side is contained in: @Q; := Q.{ :SeS = } where

S 1 S31 S3z2 Szz S

Sy Sz Saz Sua
the blocks for S; is with respect to a + b+ 1+ b and it consists of matrices such that S;; € M(Z,),

pli divides the ith column for 1 < i < a, pte+i divides the (@ + b + 1 + 4)th column for 1 < i < b,
pla+te+i divides the (a + b+ 1 + 4)th row for 1 < i < b, and the (4, 5)-th entry of Sy and Sy are

divisible by ptett+iTti and ple+tv+itteti respectively. Observe that we have only to show that if
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1
1
1
Fa(gw, 1) ! 4=l € Qq then g € PwK, ie. gw € PK" for KV := wKw.
1
1

1
1
—ay az  az —bi a1 b by
—ay as  ag —by as by s
—ar as a9 —bs ar bs bg

Falg, Dwi™! = : =H
1—a; as a3 —by a1 by by
—cy Co c3 —di ¢ di do
—cy Cs cg —dz c4 d3 dy
—a4s as—1 ag —bz a4 by by 1

thus if H € @y, then 35 € S; such that:

1— aq a9 as —bl aq b1 bg
—C1 C2 C3 1-— d1 Ct d1 dQ
= S
—Cq Cs Cg —dg Cyq d3 d4
—ay as — 1 Qg —bg a4 b3 b4 1

By looking at the 3rd row (block-wise), one finds dy # 0, by multiplying g by a matrix

1 X

1 x X (which does not change the assumption and conclusion) we may assume that
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dy=1and do =0,by =0,b4 =0,bg = 0,b5 = 0. So we assume that gw is of the form:

ar az az b
a4 a5 Qg bg
ar ag ag

C1 C2 C3 dl

C4 C5 Cg dg 1

Next by looking at the 2nd row (block-wise) and note that do = 0 we find that d; is of the form

Zx v/ A
Pz, LY .. .. D

plet2Zy, Z;

pletiZ, o LY

and by looking at the 3rd row again we see ¢y = (p"'Z,,...,p"*Z,), d3 € (p'e+,...,pla+?)., 1 €

bel(ptlzp)7Mb><1(pt2Zp)» ---7Mb><1(ptazp))a C2 € beb(Zp)> Cc3 € Mle(Zp>-

Ly Zy, o e Ly
P Z, Ly o e Ly

By looking at the 1st row and note that by = 0 we know a; € 7, Zx ,
piZ, .. oo e LY

b1 € (Mox1(p'atiZy), Max1(p'*t2Zy), ..., Myx1(p'e+*Z,)). Finally look at the 4th row (block-wise),
note that by = 0, similarly, ay € (Myx1(p"Zyp), Myx1(p"2Zy), ..., Myx1(p*Zy)),

by € (Myx1(p'tZyp), Myx1(p'*+2ZLp), ..., Mpx1 (p'+2 Zy)).

Mlxb(pt‘”b“zp) ptaJrHlZ;D
Mysp(ple+r+2Zy) pletv 2,

as — 1¢e ,ag € , Qg € Maxb(Zp)7 as € MaXl(Zp)'
My (pter>Zp) pler Ly

Now we prove that gw € PK™ using the properties proven above. First we multiply gw by
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1 € K", which does not change the above properties and

—1 —1 -1 —1
7d1 C1 7d1 C2 7d1 C3 dl

—Cy4 —Cs —Cg 7d3 1
what needs to be proven, so without loss of generality we assume that ¢4 = 0,¢5 = 0,¢c6 =
a; a2 as
0,d3 = 0,¢;1 = 0,c0 = 0,c3 = 0,d; = 0. Moreover we set -1 := T, then
a4 Qs Qg
1 Ty
1 T,
1 € K%, now it is clear that gw € PK™. O
1
1

Now suppose that 7 is nearly ordinary with respect to k. We denote ¢ to be the unique (up

1
to scalar) nearly ordinary vector in m. Let ¢ = T(w)9, Gaue = D ey ™ 1 ¢ where x
x
1 Xr12 T1p
runs through the representatives of 7 7| so that x;; runs through representatives of
1

(Z,, : platv+i=tatv+i 7, 1. ¢ 40, apparently depends on the choices of the representatives.

Now write
p—ta+b+1

—1,

t1

(bl = p( 1a )(baux

1p
Ptoyq
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we want to compute the value Fy (2, fT,w). In fact it is equal to:

p—ta+b+1
B
N 1 E pht
/ 7 Gaw w, (91
B,C,D,E " GLat20(Q@p) C D
1 pta+1
ph
p_ta
1
1
p—ta+1
1p
% 1a )L)wl;?fl
p—ta+b
—1p
1
1
1
pta+b+1
pta+2b
Xw;i2b+1)7_'(det 91)p(91)¢'dgr
1
1
1
1
where w' = and the sum is over B € B,C € ¢, D € D, F € €. A
-1
1
1
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ap a3z a2

direct computation gives: ya(1, | a; a9 ag | Jw'y ! equals
ay Qg Aas
-1 1
1
1
—as —as a1 az
—ag—1 —ag ar 1 as
—as —a9 a; — 1 1 a2
1
—Qg 1-— as ay as

a1 as a2
Now we define ) to be the subset of GL,25(Zp) to be the set of block matrices | a; a9 ag
ay ag as
a1 as az
such that yo(1, | a; a9 ag Jw'y~1 is in the Q¢ defined in the proof of the above lemma. It is

a4 Qg as

not hard to prove that it can be described as: the i-th column of ag — 1, as are divisible by p% for
1 < i < a, the i-th column of a7, a; — 1 are divisible by pte+i  the (4, j)-th entry of ag is divisible by

plate+itli the (i, j)-th entry of ay is divisible by ple+tt+ittati the i-th row of 1 — ag is divisible by
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plett+i. The entries in as and ag are in Z,. then the pull back section is equal to

ph
pte
1
1
p*ta+1
ZB,C,D.E / ST, g)w'y™?
’ p*ta-pb
1
1
1
pta,+h+1
pta+2b
xw, Ly, 1)7(det g1)p(gt)¢dgr
where the integration is over the set:
pta+b+1
1p
B E pt
91 € 2 I
C D
conj _lb
p7t0r+b
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for:

pta+b+1
1y
p E
P
D
_1b
p*ta+1
p—ta+b+1
—1p
ptl FE
X 1, =
D
lb conj
pta+1
pta,+b+1
1y .,
- p :
and the value of fT when ¢g; = 1, is
_]-b
p_ta+b
T((pta+b+l+-~~+ta+2b7pt1+-~~+ta+b))|pt1+~~~+ta,+2b *2*%1#1

thus straightforward computation tells us the following:

Lemma 4.4.12. If ¢ and ¢’ be defined right after the proof of lemma 4.4.11 then:

F¢, (27 T7 w) — T((pt1+~~+ta+b , pta+b+1+~-+ta+2b)) |pt1+~-+ta+2b |—Z— a+22b+1 VOI(RI)

—Soatbi, -5 i 1414 b Y b . .
Xp i=1 12 tatorit H?il 9(&)&i(—1) Hi:l 9(arbr14i)Satvriri(—1)dw

Combining the 3 lemmas above, we get the following:

Proposition 4.4.1. Assumptions are as in the above lemma. Fy (2, fT,g) is the unique section

supported in PwK such that the right action of K is given by multiplying the character v and its
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value at w is:

F¢, (z7 fT) ’LU) — T((pt1+--<+ta+b , pta+b+1+~~+ta+2b)) |pt1+---+ta+2b |—Z—7a+22b+1 V0]<]§'/)

at+b ., i . a
xp™ TiZ ity ttasoies [T g(6)€(—1) TToZ | 0(Easbri4i)asorivi(—1)bu

Proof. ¢y, is clearly invariant under (K")*. O

This Fy (%, fT,9) we constructed is not going to be the nearly ordinary vector unless we apply
the intertwining operator to it. So now we start with a p = (m, 7), we require that p¥ = (7V,7)
satisfies the conditions at the beginning of this section about the conductors. We define our Siegel
section fO € I, 9p11(7) to be:

fO(z:9) = M(~z f1).(9)
where fT € I, 9,11(7¢). We recall the following proposition from [SU] (in a generalized form)

Proposition 4.4.2. There is a meromorphic function v such that

Fov(M(2, f); =2,9) = 7P (p, 2)Alp, 2, Fs(f; 2,~))-(9)

moreover if T, =~ (X1, ..., Xat2s) then if we write v (p, 2) = v (p, 2z — %) then

W00 A il roe(m me o Ly LT 1/2 — 2)
~ 1 (p,2) =W(—1)ce(w, 7% 2 + 2)L(7~Tﬁc72+1/2)

where c is the constant appearing in lemma 4.4.6
Proof. The same as [SU]J11.4.13. O

Remark 4.4.2. Note that here we are using the L-factors for the base change from the unitary

groups while [SU] uses the GLy L-factor for m so our formula is slightly different.

Now we are going to show that:

F)(z19) = Fyp/(f°,2:9)

is a constant multiple of the nearly ordinary vector if our p comes from the local component of the
global Eisenstein data (see section 3.1). Return to the situation of our Eisenstein Data. Suppose
that at the archimedean places our representation is a holomorphic discrete series associated to
the (scalar) weight: & = (0,...0;k,...k) with r 0’s and s k’s. Here r = a + b,s = b. Suppose

m =~ Ind(x1, ..., Xat2b) is nearly ordinary with respect to the weight k. We suppose vp(x1(p)) =
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+%7 ceey Vp(X7’+s(p)) = K+S_1_%+%7

n[3

s—2+1, L p0e() =rts—1- 241 v (xes1(p) = -

and v,(11(p)) = 5, vp(12(p)) = 5, so
vp(x1(p)) < oo <vp(Xat6(P)) < vp(mi(P)p™ ™) < vp(12(P)p™) < Vp(Xatv+1(P)) < - < Vp(Xat26(p))

where z, = 2=755=1 Tt is easy to see that I(py, z:) = Ind(X1,...Xr4s, T1|-|7, 72| 7**). By defini-

tion I(py, 2k ) is nearly ordinary with respect to the weight (0, ...,0; &, ..., k) with (r4+1) 0’s and s &’s.

First of all from the form of Fy (z, fT; g) and the above proposition we have a description for F2(z, g):

it is supported in P(Q,)K,,

a+2b41

FJ(z,1) = Y (p, —2)Te((ph s plesorittlasa ) [phite oz == 55 Vol (K)

_sratbe LS ) a+b b
xp~ 2imr GHDE = (Dot TTP 0(€) & (—1) [T,y 8(€atbriti)atvriri(—1)0

and the right action of K, is given by the character

X1(911)~--Xa+b(ga+b a+b)7'1 (ga+b+1 a+b+1)Xa+b+1(9a+b+2 a+b+2)-~-Xa+2b(ga+2b+1 a+2b+1)7'2(9a+2b+2 a+2b+2)~

(It is easy to compute A(p,z, Fy (f;2,—))—~(1) and we use the uniqueness of the vector with the
required K, action. Here on the second row of the above formula the power for p is slightly different
from that for the section F(z, fT,w). This comes from the computations for the intertwining oper-

ators for Klingen Eisenstein sections.)

Thus Corollary 4.4.1 tells us that F?(z,g) is a nearly ordinary vector in I(p).

Now we describe f°:

Definition 4.4.8. Suppose (p) = cond(7’) for t > 1 then define f; to be the section supported in

Q(Qp)Kq(p') and fi(k) = 7(dy) on Kq(p').

Lemma 4.4.13.

fa? = M(_Z7f~T)z = ft,z-

Proof. This is just [SU] 11.4.10. O
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4.4.3 TFourier Coefficients for f°

We record a formula here for the Fourier Coefficients for f° which will be used in p-adic interpolation.

Lemma 4.4.14. Suppose |det 8| # 0 then:

(l) Ifg ¢ Sa+2b+1(Zp) then fg(z7 1) =0;
(ii) Let t := ord,(cond(r’). If B € Sayaps1(Zy), then:

f8(2,1) = 7'(det B)| det B[37a(7')* T earaps1 (T, 2)@e('B).

where cqqop41 15 defined in lemma 4.4.6 and ®¢ is defined at the beginning of this section.

Proof. This follows from [SU]11.4.12. and the argument of corollary 4.4.2 where we deduce the form

of f from the section fT. O

4.4.4 Fourier-Jacobi Coefficients

Now let m = b+ 1. For 8 € S,,(F,) N GL,,(O,) we are going to compute the Fourier Jacobi

coefficient for f; at

1
Lemma 4.4.15. Let x := (this is a block matriz with respect to (a +b) + (a +b)).
D 1

(CL) FJB(fta —z,, Inila 1) =0 ZfD S ptMtH-b(Zp);
(b) if D € p'M,,(Z,) then FJs(fr; —z,v,an" 1, 1) = c(B, 7, 2)Po(v); where

n—m

5 )

C(B,7,2) = 7(~ det f)] det B2 g (7' e (7, 2

where ¢, 1s defined in lemma 4.4.6

Proof. We only give the detailed proof for the case when a = 0. The case when a > 0 is even easier
to treat.

Assume a = 0, we temporarily write n for b and save the letter b for other use, we have:

1n-"—l
S v
12n+1 1 _1n
Won 41 w D|aol,n )=
—1n+1 v _S
lont1
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This belongs to Qy,41(Qp)Kq,, ., (p") if and only if S is invertible, S™! € p'M,11(0,,), S~1v €

P'Myi1yxn(Op) and S~ v — D € p* My, (Zy).

Since v = v(b, 0) for some v € SL,+1(0,,) and b € M, (K,,) we are reduced to the case v = (b,0).
a; ag

Writing b = (b1, be) with b; € M, (Q,) and S = (T,'T") with T € M,4+1(Q,) and T~ =
az Q4

where a1 € M, (Qy), as € Mpx1(Qp),a3 € M1xn(Qp), as € M1(Qy), the conditions on S and v can
be rewritten as:
(*) detT # 0, a; € p' M, (Zy), arby € p' My (Zy), asby € p'Mixn(Zy), farbe € p' M, (Zy,), fazbs € p'Z,,
boarby — D € p' M, (Z,)
Now we prove that: if the integral for F'Jg i non zero then b1, be € M, (Z,).
Suppose otherwise, then without lose of generality we assume b; has an entry which has the maximal
p-adic absolute value among all entries of b; and by, Suppose it is p* for w > 0 (throughout the
paper w means this only inside this lemma). Also, for any matrix A of given size we say A € %y if
and only by A has all entries in Z,, (of course we assume the sizes of the matrices are correct so that
the product makes sense).
Now,let
hj
v € GLyy1(Zy) : h € GLyy1(Zy),l € Ly,
I':= k1
h—1ey Np'M,(Zy), j€Zyny, kep Mixn(Zy)

Suppose that our by, b2, D are such that there exist a;’s satisfying (*), then one can check that I is

a subgroup, and if T" satisfies (*), so does Ty for any v € I'. Let 7 denote the set of T' € M, 41(Qp)
1

satisfying (*). then FJg(f; 2, v, n~1, 1) equals
D 1

Z |detT|i"+2*2z/7/(f det Ty)e,(—trBT)dy.
r

TeT/T
, €1 Co . . .
Let T" := BT = (blocks with respect to n + 1), then the above integral is zero unless
C3 C4

C1 € pitMn(Zp) + [%Q]nxnaal € PitZ,CZ S pitMnJrl(Zp)aCZS € [%2]1><n + Mlxn(Zp); here [%Q]ixn
means the set of ¢ x n matrices such that each row is a Z,-linear combination of the rows of bs.

But then

8 by _ i b1 _ cra1by + caa2by
0 0 cza1by + cqasby
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since 8 € GLy41(Zp), the left must contain some entry with p-adic absolute value p*. But it is
not hard to see that all entries on the right hand side have p-adic values strictly less than p*, a
contradiction, thus we conclude that b € M,,(Z,) and by € M, (Z,)

By (*): bo'arby — D € p'M,,(Zy), a1 € p*M,,(Z,) so D € p* M, (Zy).

The value claimed in part (ii) can be deduced similarly as in [SU]11.4.22. O
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Chapter 5

Global Computations

5.1 Klingen Eisenstein Series

Now we are going to construct the nearly ordinary Klingen Eisenstein series (and will p-adically
interpolate in families). First of all, recall that for a Hecke character 7 which is of infinite type
(5,—%) at all infinite places (here the convention is that the first infinite place of K is inside our

CM type) we construct a Siegel Eisenstein series E associated to the Siegel section:

f= anHp )] H fvsngfp € Loyop+1(7,2).

v|oco veEX,vip

Recall that we write D := {m,7,X} for the Eisenstein datum where ¥ is a finite set containing
all the infinite places, primes dividing p and the places where 7 or 7 is ramified.then define the

normalization factor:

_oy—d(a+2b+1) d(a+2b+1)k d(a+2b+1)(a+2b)/2 b) o
Bp: = Qiﬂz (( 2) (2Tri—)[a+2b('€ = (214;) )~ Hgatg L¥(2z, +a+2b+1—i,7x%)
_ _ _ _ _ _ KJ',M
Hvlp(g(Té)a+2b+lca+2b+1(T{Ja Zﬁ)) ! ]._.[’U‘fpﬂ)ez T 1(yvyvxv)‘(yvyv)Q'rvx’Uﬁ) 2y

Here Q. is the CM period in section 2.1. First note that since 7 is nearly ordinary with respect to
the scalar weight . Then its contragradient is also nearly ordinary. (But the nearly ordinary vector
is not the one whose neben-type is the inverse of ¢°"¢). We denote this representation as 7¢. We
choose a nearly ordinary vector of this representation which we choose to be “p-adically primitive”,
i.e. integral but not divisible by p in terms of Fourier Jacobi expansion. In general we will need

some Gorenstein properties of certain Hecke algebras to make primitive forms in Hida families. But
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we do not touch this at the moment. We consider E(v(g, —)) as an automorphic form on U(a+ b, b).

For each v fp there is a level group K, , C U(a + b, b), such that

[ (vt ndiag(z, ', 1, 2.))) (E(v(g, —)) @ 7(det —))
vip

is invariant under its action. Suppose ¢“°"? is a "new form” with level group K, so that 7Xv is

1-dimensional for each v. (In fact it is better to use K-types. But here we content ourselves with

new forms for simplicity.) Assume also that there is a Hecke action 1,c with respect to the level

group [], K, which takes any nearly ordinary automorphic form for this level to its 7° component

(which is a multiple of ¢¢°"?).

Remark 5.1.1. In a future work we will see that when deforming everything in families, the (Fourier

coefficients of the) Siegel Eisenstein series BpE moves p-adic analytically. This enables us to

construct the p-adic analytic family Exiing. This is the reason for introducing Bp.

We define Exjing by:

Bl [ tri, &, op(v(1,ndiag(@, ", 1,2,))) (E(y(g, —))7(det =) = Exing(9) K 677

vip

Here we used the superscript low to mean that under U(a+b+1,b+1) x U(a+b,b) — U(a+2b+

1,a + 2b+ 1) the action is for the group U(a + b, b).

Definition 5.1.1. Let ¢ be an automorphic form on GU(Ap) or U(Ar) we define:

1a+b 1a+b
g

Here the overline means complex conjugation.

1 T12

Recall that we have defined ¢pgue =), g 1 ¢ Where x runs through

xT

T1b

1

with x;; running through representatives of [Z,, : ptett+i~tatt+iZ, 1. ¢, apparently depends on the
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choices of the representatives.

<[[tr&, &, .p(v(1, ndiag(@, ", 1,2,)) (E(v(g, —))7(det —)),

vip
p—¢a+b+1
L
¢ —1b
p 1
Pl 1o )bauz >
L
Ptota
lﬁa+b+1
= <o platas V[ trz, &, p(0(1ndiag(z, ", 1, 2,))) (E(v(g, —))7(det —),
vtp
1,
1,
1
ph -1
Pl la )bauz >
pt,,,+1 ]-b

Since E(v(g, —)) satisfies the property that if K" is the subgroup of K (defined in the last chapter)
L
ay az a2
consisting of matrices | q; ag ag | such that the (i, j)-th entry of a7 is divisible by py, 1+

a+b+j

aq4 Qg Qa5
and the (i,7)-th entry of a4 is divisible by ple+tittatv+i the i-th row of ag and the right to di-

agonal entries of ag are divisible by p' for i = 1,...,a, the i-th column of the below diagonal
entries of a; are divisible by p?stt+i, the i-th row of the up to diagonal entries of as are divis-
ible by p'eti. Then the right action of K" on E(y(g,—)) is given by the character A(g.) =

Xa+b+1(911)--Xa+26(966) X1 (9b+1,641) - X (Ja+b,a4b) Xa+1(Jatb+1,a+b+1)---Xa+b(Jat26,a+26) SO the above

expression equals:

71



a-+b+1

p
W <30, P (9)pM( . [l tri, i, p(v(Lndiag(z, ', 1,2,)))
1y
1y
ph -1
(E(y(g, —))7(det —)), p( 1, )uw >
platt 1p
pta+b+1
Let 8 = and define Téow to be the Hecke action corresponding to S just in
1o
1,

terms of double cosets. (no normalization factors involved). By checking the level actions we can
see that the m¢ component of the left part when viewed as an automorphic form on U(a + b, a) is a
multiple of ¢>°"¢ defined right before remark 5.1.1. (Note that this is not the same as ¢¢). Suppose

its eigenvalue for the Hecke operator Té"“’ Is AG,

Proposition 5.1.1. With these notations we have:

?

EKling(g) = )\% : < ¢c,ord7 o >

o Megpe o < [y e, PO (L ding(5 0 L) (0. 2)). o >
D

Proof. The w¢-component of the left part of the inner product above is:

Téow.ﬂ'c — component of [, trg  z p(v(1,ndiag(z, L1, z,))(E(y(g, —))7(det —))
— el I 5 — component of [Ty, trc, . op(1(1, ndiag(z; 1, 1,2,))) (E(1(g, ) 7(det —))

= Téow.elow.wc — component of Hv)m trkv/kmsp('y(l,ndiag( 211, 20)) (E(y(g, —))7(det —))

Té"“’.ﬂc—component of etow Hv,[ptrf{v/f(msp( (1,ndiag(z,1,1,2,)))(E(y(g, —))7(det —))

= A7 — component of elow [y trz, &, sp(v(1, ndiag(z,; L1, 2,))(E(y(g, —))7(det —))
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Thus

7¢ — component of e!°% [, trz, &, (01, ndiag(z,1,1,2,)))(E(y(g,—))7(det —))

<TLoyy tricy /iy 0P(Y(Lndiag(@, 1 1,2,))) (E(y(g,~))7(det —)),¢" > geiord

- <¢c,on’¢//>

_ [Tl plotbti@t® <L, tre g, ,Or(Lndiag@, ' 1,2,)))(E(v(g,—))7(det —)),¢" > geord

= )\?3 . <pcord ¢
where

L
p_ta+b+1
L
—1,
ph
¢ =1L[¢"" ] ¢o]]e 1, )Paua
vg% vEX, utp v|p
1,
Ptat
and
L
p—ta+b+1
L
—1,
ph
¢ =1[¢™ [ ¢ [LnC 1o )b
VgD vEX,vip v|p
1
Ptata

Thus we get the proposition. O

5.2 Constant Terms

5.2.1 Archimedean Computation

Suppose 7 is associated to the weight (0, ...,0; s, ..., k), then it is well known that there is a unique
(up to scalar) vector v € 7 such that k.v = det u(k,i)~" for any k € KZ'v (notation as in section
3.1). Then by Frobenius reciprocity law there is a unique (up to scalar) vector © € I(p) such that
k.o = det u(k,i)~ "0 for any k € K. We fix v and scale ¥ such that 9(1) = v. In 7V, m(w)v (w

is defined in section 3.1) has the action of KX given by multiplying by det u(k,i)"". We define
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1

w eU(a+b+1,b+1) by w' = 1, . Then there is a unique vector @V € I(p")

1,

-1
such that the action of K1 is given by det u(k,7) ™" and 9" (w’) = m(w)v. Then by uniqueness there

is a constant c(p, z) such that A(p, z,0) = c(p, 2)0".

Lemma 5.2.1. Assumptions are as above, then:

b—1 —1
C(pa Z) = mot2b+l Hi:o (z+g—1%—i—a)(z—%},—%—i) Hlil:O (m)

[(224a)2~ 1~ 25420 ) L
X PR s R ) JH/2)

Proof. Tt follows the same way as [SU]9.2.2. O

Corollary 5.2.1. In case when Kk > %a +2b or k > 2b and a = 0, we have c(p,z) = 0 at the point

K—a—2b—1

z = 3

Let F' be the Klingen section which is the tensor product of the local Klingen sections defined
in the last Chapter by pulling back of the corresponding Siegel sections. In the case when x is

sufficiently large the intertwining operator:
A(p, 2k F) = A(poov Rk Fn) by A(pf’ 2y Ff)

and all terms are absolutely convergent. Thus as a consequence of the above corollary we have
A(p, 2, F) = 0. Therefore the constant term of Exying is just BpF; . It is essentially

L¥(7,7¢ 20 + 1) 1, Y@ (py, 20) L¥ (22, + 1,7 x%20) [L,1p Catav(Th =25 — 3)

Q%:;"E Hv|p Ca+2b(7'q/)7 —Zr — %) ) Hv‘p Ca+2b+1(7{n *Zn)

¢.

up to normalization factors at oo and each term in the above coefficient can be interpolated p-adic

analytically. Here the ¢, are defined in lemma 4.4.6.
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Chapter 6

Hilbert modular forms and Selmer

groups

From now on we are in part two where we specialize to U(1,1) < U(2,2),r and prove our main

theorem.

6.1 More Notations

We define p,~ as the set of roots of unity with order powers of p. Let dx,0 = dp, Dx, D be
the different and discriminant of K and F. We denote N to be the level of f and M the prime
to p part of it. Here N, M, dx,0, D, Dr are all elements in the ideles of F,)C or Q supported
at the finite primes (also the Mp defined later)! This is much more convenient when working in
the adelic language. For each v|p we suppose p" || N, (we save the notation r, for other use). We
assume that /C is split over all primes dividing the 0. This assumption makes the computation
for Fourier-Jacobi coefficients easier. Let h = hr be the narrow ideal class number of F, we divide
the ideal classes C1(K) into I) U ... U I}, corresponding to the image of the norm map to Cl,(F)
and suppose I; are those mapping to the trivial class. (Here n stands for narrow). We assume
that KC is disjoint from the narrow Hilbert class field of F' and thus it is easy to see that the norm
map above is surjective. Also we write <,> (integration over U(1,1)(F)\U(1,1)(AF)) to be the
inner product on the unitary group. For f and g Hilbert modular forms such that the product of
the central characters of f and g are trivial then we denote <,>ar, to be the inner product on

GL; (integration over GL2(F)Ap\GL2(AF), note that we need to modulo the center here). We also
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write, for example <, >y, <, >gr,ry(n) the inner product with respect to the indicated level group.

For v a finite prime of F, as in [SU] chapter 8 we define the level group K, , C GU(F,) for r,t > 0

as follows: for @ and P being the Siegel and Klingen parabolic, K, ; = K ., (w@}) N wh K p(w@!,)w)

where w, is a uniformizer for v, K ,(w})) means the matrices which are in Q(Op,,) modulo w;,
1

1
and Kp,(w!) means matrices which are in P(Op,) modulo @’ and w} =

6.2 Hilbert modular forms

6.2.1 Hilbert modular forms

We set up the basic notions of Hilbert modular forms, following [Hida91] with minor modifications.
Let I be the set of all field embedding of F into Q. We may regard I as the set of infinite places
of F via 1o and the weight of modular forms is a pair of elements (k,w) in the free module Z[I]
generated by embeddings in /. We identify Fi,y = F ®¢g R with R’ and embed F into R’ via
the diagonal map a + (a%)sec;. Then the identity component G, of GL3(F,,) naturally acts on
£ = A" for the Poincare half plane 2. We write C% for the stabilizer in G, of the center point
20 = (vV=1,v/=1,--- ,4/=1) in .Z. Then for each open compact subgroup U of G Lo (Fa,), we denote
by M, ., (U; C) the space of holomorphic modular forms of weight (x,w) with respect to S. Namely

M, .,(U; C) is the space of functions f : GL2(Ap — C) satisfying the automorphic condition:
flazu) = f(2)dnw(Uoo, 20) " for a € GLy(F) and u € UCq 4,

a b a b
where ji o ( ,2) = (ad — bc)~"(cz 4+ d)* for € GLy(Fyx) and z € .Z and such

c d c d
that for any gy € GL2(Af) the associated classical form defined by fu(z,95) == f(9)-Jr,w(goo, 20)
g such that g..20 = z and finite type gy is holomorphic on the symmetric domain together with
all cusps. We write Sy, ,,(U; C) for the subspace of M, ,,(U; C) consisting of cusp forms. Here we
used the convention that ¢® = []_.;c3v, the correspondence is given by: for ¢ = (¢o)ser € C! and

5= ,cr5:0 € C[I]. Setting t = ) _ o, we sometimes use another pair (n,v) to denote the weight,

for n = k — 2t and v = ¢t — w. Each automorphic representation 7 spanned by forms in S, ., (U;C)
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has the central character |- [, ™ up to finite order characters for the adelic absolute value |- |4. The
twist 74 =71 ® | - Xl/z is called the unitarization of .

Let h be the narrow class number of F' and decompose
AR = Ul F*a;(Op)*FX, with a; € A} .

Then by strong approximation
G(Ap) = Ul GLy(F)t;Uy(N)Gooy for t; = | ,

For any ideal N of Op let Uy(N) be the open compact subgroup of GLy(Op) whose image
modulo N is inside B(Op). Any automorphic form in the space M, (Uo(Mp®),e; A) is determined
by its restriction to the connected component of ¢; in GL2(F) \ GL2(AFr)/Ug(Mp*)Goot. So we
identify the above space with the space of h-tuples: {f;} where f; are forms in M, ., (I';, A) for

T;:= tiUO(Mpa)ﬁi_1 with fi(goo) := f(goot:). Each f; has a ¢g-expansion:

fiz) = a0, f)+ D alé fi)er(€2).

0<<geF™

Denote A; + be the set of ideles whose Archimedean parts are totally positive, we have the

following theorem in [Hida91] about the g-expansion for Hilbert modular forms:
Theorem 6.2.1. Each f € My, ,,(U;C) has the Fourier expansion of the following type:

7D = wledaold, N ST aleyd, NIy Heys) e (i€ys)er (€a)},

0 1 0<<EEFX

where Ay, 3y~ ao(y, f) is a function invariant under FUp(N)FX, and vanishes identically
unless w € Z-t, and A§+ >y aly, f) is a function vanishing outside OAFF;+ and depending only

on the coset of yyUp(N).

This adelic g-expansion is deduced from the usual g-expansions. We omit the details and refer

to [Hida91].
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6.2.2 Hida families

First of all let us define the weight space for Hilbert modular Hida families. For A some finite
extension of Q, let Ay, = A[[{Wi.,, Wa,}typll. A point ¢ € Spec(Ay,) is called arithmetic if
(1+Wiy) = Clve € pipe) and (1 + Wa ) — (1 + p)iev=2(a, 4 where (a4 € fpe and Ky > 2
is some integer. We also require that x4, to be the same for all v. (this means we only consider
Hilbert modular forms of parallel weight, which is already enough for constructing the whole Hida
family.)

Define Ay such that SpecAy is the closed subspace of SpecA;, defined as the Zariski closure of
the arithmetic points satisfying: ¢((1+ W1 ,)(1+Wa,,)) to be equal for all v|p. for any a € Of. It is
naturally a power series ring with d 4+ 1 variables. We only consider this weight space for simplicity.
In fact if the Leopoldt conjecture is true, then this is the whole weight space for the Hida families
of Hilbert modular forms.

Now we define the neben-typus associated to ¢:

ell,qb,v(]' +p) = <17¢u’€/2,¢,v(1 +p) - Cza¢ﬂ)

we extend these to be characters on O as follows: for a such that ¢ = 1modp it is obvious how to

extend and then we require them to be trivial on the torsion part of OF. Define:

a
E¢7v< b ) = Ell,v,d)(a)E/Q,v,¢(b)wR¢_2(b)

for a,b € O} (Recall that w is the Techimuller character).

Remark 6.2.1. Suppose f is a nearly ordinary eigenform with neben typus €4 and whose v com-

rp—1

Kgy—1
ponent at v|p is w(u1 v, Ha,w) where valug ,(0) = p~ % Jvalppo o (p) = p~2 . Then pi1,4, peo., have

the same restriction to Of,  with ) ,  and €} ; W2,
Let T be a finite integral extension of Ay .

Definition 6.2.1. By an I-adic ordinary cusp form f of level V1(N) is a set of elements of I given
by the data:
{ci(§7]1) fOT’§ € vaci(07ﬂ) fOTi = 17 7h}

with the property that for a Zariski densely populated set of primes ¢ of I which maps to an arithmetic

point in Spec(Aw ), the specialization of £4 is the q-expansion of some form in Szrdnd, (Uo(Np™),e4,19; A)
é»

2
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where A is some finite extension of Qp.

6.2.3 Galois representations of Hilbert modular forms

Let A be a finite extension of Q,. For f € Sy .,(Ug(Np®),¢e, x; A), £ > 2 be a normalized eigenform,
we fix L C Q, a finite extension of Q, containing Q(f). Let Of, be the integer ring of L and F its
residue field. Then we have a continuous semi-simple Galois representation (ps, Vy): pr : Go —

GL,(Vy), characterized by being unramified at primes v { p such that 7, is unramified and satisfying:

trps(frob,) = a(v, f)

where a(v, f) is the Hecke eigenvalue of f under the Hecke operator T, (Recall that this is associated
wv . . . . . . .
to where w, is a uniformizer at v). Further more, if f is nearly ordinary at all primes
1

dividing p, then we have the following description of py restricting to the decomposition groups for
all primes v dividing p:
Ultl,u *

p‘GFU =
Oz .

Here o is the local reciprocity map and m, ~ m(u1 4, ft2.») Where p1 ,(p) has smaller p-valuation than
H2,0(p).-

Therefore for each v|p we have a one-dimensional subspace VfJr C Vy such that the action of G, on
Vf+ is given by the character oy, , and G, acts on the quotient V™ :=Vy / Vf+ by o, ,. Recall that
as in [SU] we have distinguished the following situation:

(dist): ¢ and 1), are distinct modulo the maximal ideal of Of, for each v|p.

6.3 Selmer groups

We recall the notion of ¥-primitive Selmer groups, following [SU]3.1 with some modifications. F is
a subfield of Q. For T a free module of finie rank over a profinite Z,-algebra A and assume that T
is equipped with a continuous action of Gg. Denote also A* as the Pontryagin dual of A. Assume
further more that for each place v|p of F we are given a G,-stable free A-direct summand T;, C T.

For any finite set of primes ¥ we denote by Sel% (T, (T,),|,) the kernel of the restriction map:

HY(F ToaA") = [] H'(L.TosA) x [[H (L, T/T, ®4 A"),
vgEXv|p vlp
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We denote
L,(T*) := ker{H (G,, T ®4 A*) — H'(I,, T @4 A*)}

L,(V) = ker{H'(G,,V) — H(I,,V)}.

Using the inflation-restriction sequence these can be identified with H'(G,/I,, (T ®4 A*)*) and

HY(G,/I,,V1), respectively. A useful fact is that under Tate local duality:
HY(F,,V)x HYF,,V*(1)) = L

the orthogonal complement £, (V)= is precisely £,(V*(1)).

We always assume that 3 contains all primes at which 7" is ramified. We put

X%(T7 (Tv)v\p) = HomA(SelIz;‘(Tv (Tv) )a A*)

vlp

If E/F is an extension, we put Selx(T) := Sel2” (T, (Tw)wlp) and XE(T) = X2E (T, (Tw)wip)s

where X is the set of places of E over those in ¥ and if w|v|p then T, = ¢, T, for g, € Gp

such that g, 'GEwgw C Gr,. If E/F is infinite we set: Sel((T) = li_r)nEgF,gE Sel?,(T) and
XE(T) = @FQF’QE X%,/ (T), where F’ suns over the finite extensions of F' contained in E.

Suppose F//FT is a CM number field over its maximal totally real subfield, ¢ being the nontrivial
element of Gp+/Gp. Then we have an action of ¢ on the Selmer groups of F. We have the following

lemma as in [SUJ3.1.5. (Recall that we have assumed p # 2.)

Lemma 6.3.1. There is a decomposition
Sel7(T) = Selx(T)* & Sel3(T) ™,
according to the +1 eigenspaces of the action by c. Also, restriction induces isomorphisms

SelZi(T) — Sel®(T)+ Selzy (T ® xr) — Selp(T) "

6.4 Iwasawa theory of Selmer groups

We let F, be the cyclotomic Z, extension of F'. The Galois group, which we denote as I'p, is
isomorphic to Z,. Let K be the maximal anticyclotomic (the complex conjugation acting by —1

on the Galois group) unramified outside p abelian Z, extension of K with Galois group denoted
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as I'c. This is isomorphic to Zg. Write KX for Fio K with I')f to be the Galois group (identified
with I'p). Let Ko := K Fs. This is a galois extension with Galois group Zg“. Conjecturally
(Leopoldt) this is the maximal unramified outside p abelian Z,, extension of K. Recall that in chapter
2 we have defined the Iwasawa algebras Ax and Ax, 4. We define more Iwasawa algebras A, Af,
A,a A AE 4 in an obvious way.

We fix topological generators for each group above: v := recF(HU‘p(l +p)y), ¥ = recK(Hv‘p(l—i—
p, 1+ p)é) and v, :=rece((1+p, (1 + p)_l)é). Here rec means the reciprocity map of class field

theory.

6.4.1 control of Selmer groups

We recall some results in [SU] 3.2. with minor modifications to the totally real situation. These
would be useful in deducing various main conjectures from our main theorem. In this subsection
(only in this subsection) we denote A as any profinite Z, algebra and a an ideal of it. Let T be a
free A module equipped with a G action and T* := T' ®z, Z;. It is noted in [SU] 3.2.7 that there
is a canonical map:

Sel%(T/aT) — Sel%(T)[a].
Here [a] on the right hand side means the a torsion part.

Proposition 6.4.1. Suppose there is no nontrivial A-subquotient of T* on which G+ acts trivially.
Suppose also that for any prime p|p of F' the action of I, on T /T, factors through the image of I, in
T'r and that X U {p} contains all primes at which T is ramified. Let F = Fu,, K. Then the above
map nduces isomorphisms:

Sel(T/aT) ~ Sel’%(T)|a]

and
XZ(T) ~ XZ(T)/aX Z(T).

Descent from Ko, to K. We have the following corollary of the above proposition:

Corollary 6.4.1. Under the hypotheses of the above proposition. If F' is Foo, KL then: Ft% A/u(T/aT) =

b .
FtRA(T)moda,
This will be used in proving the main theorem in chapter 8.

Corollary 6.4.2. Let I~ be the kernel of the natural map A — A,*é. Then under the hypotheses
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of the above proposition, we have an isomorphism:
XE_(T)/I"XE_(T) — X, (T)

of Az’A-modules.

specializing the cyclotomic variable.

Let (T, T, (v|p)) be as above. Let ¢ be a algebra homomorphism Ap — C,, and I be its kernel.

Proposition 6.4.2. Let (1",T)) be (T, T,) twisted by e4. Suppose there is no nontrivial A-subquotient
of T'* on which Gp acts trivially. Assume:

(i) U { primes above p} contains all primes at which T is ramified;

(ii)for any vlp, (HO(L,, T/T, ®4 A a(€=1) ®ap Ar/I5)% = 0.

Then restriction yields isomorphisms:
Selp(T") — Selp_(T)[Iy] and Selg(T') — Selig ., (T)[1y]

This is only a slight generalization of [SU] Proposition 3.2.13 and the proofs are identical.

82



Chapter 7

Hida Theory for Unitary Hilbert

modular forms

In this chapter we recall basic results about ordinary Hida families for Unitary groups over totally
real fields. We also recall generalizations of certain results in [SU] chapter 6 which are mostly due
to Hida. Some results are only stated for cuspidal forms since this is enough for our use. However
as a trade off we make the ad hoc construction in chapter 14 in which we explicitly write down a

cuspidal family given the Klingen Eisenstein family.

7.1 Iwasawa Algebras

We let I :=1I[[I'k]] and Ap :=I[[I'c x T']] = Ix[[I'c]]. Here we used the notation D which stands

for the Eisenstein datum to be defined in the beginning of chapter 12. Let
oz ATk)] = I, a(v") = (L4 W) F (14 Waw) 2 (L4 p) 9y = (L+p)F

B+ Zy[[Ck]] = Zp[[Ticll, BOYT) = 7", B(v ) =70
for each v. We also let A := Aw [[I'c,I']]. Thus Ap is finite over A.

Definition 7.1.1. A Q, point ¢ € Specl[[['x]] is called arithmetic if ¢|; is arithmetic and ¢p(y+) =

(L+p)2¢T for ¢F € pp and ¢(7y, ) = for (€ pp. Here k = Ky

We write X for the set of arithmetic points. Next let Wy := [T, (1 + pZX); and Ay be the

v|p( v
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completed group algebra of it. We give a As-algebra structure for Ap by: for each v|p,
(t1.ta,ts,ta) = (@ ® B) (e, (fata, by 'ty ') x rec, (7 ' t2) (1 + Wi, ) Bree (15 ),

This way A becomes a quotient of As.

Remark 7.1.1. When F = Q then Ay = A. In general A is of lower dimension. In other words we

are only considering a subfamily of the whole weight space.

7.2 Igusa tower and p-adic automorphic forms

We refer the definition of Shimura varieties S(K) for the unitary similitude group and open compact
K and the automorphic sheaves wy, to [Lan|, [Hida04] and [Hsieh CM] respectively. Recall that a
weight k = {k,}oex where k, = (Cs+1,01 s Crts,0}Cl,os -1 Cs,0). We write My (K, R) for the space
of automorphic forms with weight k, level K and coefficient R. We write M, (K, R) for the cuspidal

part.

For any v|p, U(2,2) ~ GL4(Z,) under projection to the first factor of K, = F, x F,. (Recall that

our convention is the first factor correspond to the Archimedean place inside the CM type under

X X X X

X X X
t: C ~C,.) Define B to be the standard Borel and B" the unipotent radical.
X
X X

Let Iy (I1,s) consists of elements in U(n,n)(Z,) which are in B(Z,/p*Z,) (B*(Z,/p*)) modulo p®.
(see [SU]5.3.6.)

Let L be a finite extension of Q,. Recall that as in [SU]6.1, if K is neat and maximal at p,
we have § = Sk a fixed toroidal compactification of Sg(K) over Op. Let Zs be the ideal of the
boundary of S. There is a section H of det(w), called the Hasse invariant. Since det(w) is ample on
the minimal compactification §*, one finds F, a lifting of H™ over Oy, for sufficiently large m. Then
S*[1/E] is affine. For any positive integer m, set S, := S[1/E] xp, /p™. Let H = GLy x GLs.
For any integers s > m, we have the Igusa variety T ,,, which is an etale Galois covering of S,, with
Galois group canonically isomorphic to [, GL3(Op,/p*)t X GL2(OF,/p*)~ = H([L,, OFrv/p*).
We put Vi := (T, Or, ,, ®0s Ls). For j = 0,1 let Iﬁ; =1 N H(Hv‘p O,/p?), define

)

Wi o= HO (I, Vim)
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and

W= h%(l%l We.m)-

0
Ws,ma

We also write V2

s,m?

WY to be the cuspidal part of the corresponding spaces.
For ¢ = 0 or ¢ we also defines the space of p-adic automorphic forms on G of weight k and level

K= KSK P with p divisible coefficients:

Vi (K, L/Op) := Im (S, w R0 Ls)-

m

and similarly, if A is an Op-algebra the the space of p-adic automorphic forms with coefficients in

A are defined as the inverse limits:

VE(K, A) = @F(Sm, (WE KOs Is) Ko, A)

m

Finally for any a = {a,},|, where each a, € (F))* we define the modules: Vi (K, L/Op), etc, in

the same way as [SU] 6.2.

7.3 Ordinary automorphic forms

Hida defined an idempotent e,.q on the space of p-adic automorphic forms (see [SU] chapter 6) and
we define Wo,q, Wora Vi,ora(K, A) to be the image of e,-q acting on the corresponding spaces. Now

we recall the following important theorem of Hida (see [SU]6.2.10):
Theorem 7.3.1. For any sufficiently regular weight k there is a constant C(k) > 0 depending on k
such that for any integer | > C(k), the canonical map:

eOTdMngl(pfl);(K? L/OL) — VEO+l(pfl)Lord(K7 L/OL)

with t = (0,0;1,1) at all infinite places o.

From this theorem we know that there are enough classical forms in our family and thus can
construct families of (pseudo)-Galois representations from the classical ones. This is also used in the
proof of theorem 8.2.1 where we used Harris’ result that there are no (CAP) form with sufficiently

regular weight.
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Lemma 7.3.1. For any weight k, we have canonical isomorphisms;

Vﬁq.,ord(Kv Qp/Zp) ~ Wq

ord

(k] := {w € W taw = thwVt € Ty(Z,)}
and
Vi ora(KP L5, 0, Q[ Zp) = W @7 A)[r] := {w € WI @7 At tw = ¢y (t)wvt € Tu(Zy)}

for any Z,(v)-algebra A.

Proof. the same as [SU] 6.2.3 O
Proposition 7.3.1. For ¢ = 0 we have for any sufficiently reqular weight k > 0, the canonical
base-change morphism

eord-I'(S*[1/E], i (wr @0 m L) @ Z/p" L) — €ora. T(S*[1/E], i (wr @0 L1 @ Z/p™Z))

s an isomorphism.

This proposition fails for g # 0, thus we can’t get a good control theorem for non-cuspidal Hida

families.

The following corollary is immediate from the above proposition.

Corollary 7.3.1. For ¢ = 0 and any sufficiently regqular weight k the module Véord(K, Qp/Zy) is

divisible.

7.4 A-adic ordinary automorphic forms

Recall that we have defined the Iwasawa algebra A,,. There is an action of it on the space of p-adic
automorphic forms given by neben characters. (see [SU]) We define V.4 (V2 ;) to be the Pontrjagin

dual of W,qg W2 ;). As in [SU] we have the following theorem by the above corollary:

(e}

Theorem 7.4.1. V.4 is finite over A,, and Vgrd 1s free of finite rank over As.

Proof. This is proved by Hida. See [SU] theorem 6.3.3. Note that the freeness is no longer true if

the base field is not Q. O
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Now we define the space of ordinary cuspidal A,-adic forms to be

MO J(KP, Ay) = Homp, (VO 4, Ag).

ord ord»

Recall that in 7.1 we have defined a quotient A of Ay. Then V% , @4, A is also free over A. So we
define the space of A-adic forms to be:

MO (vaA) = HomA(Vgrd ®A2 A7An)

ord

This is a closed subfamily of As-adic forms.

7.5 g-expansions

The g-expansion principle will be crucial for our later argument. Similar as in [SU], for z running
through a (finite) set of representatives of G(F)\G(Ap r)/K with z, € Q(OF,), we have that the
A,-adic g-expansion map

MO, 4 (KP,A) < ©,A[[g5 ]

is injective. Here S is the set of Hermitian matrices h in M>(K) such that Trp/oTrhh' € Z for

1 !
all Hermitian matrices h’ such that € Ngo(F)NzKz~! and K is the open compact of
1

G(@F) maximal at primes dividing p which we fix from the very beginning. This follows from the
irreducibility of the Igusa Tower. Let A be a finite torsion-free A-free algebra finite over A and
let ¥ be a Zariski dense subset of primes of A such that @ N A = P, for some pair (k,1) (we

refer the definitions to [SU] chapter 6). Let Ng’ (A) be the set of elements (Fy), € ®,A[[¢%" ]|

ord

such that for each @ € X above Py, the reduction of (F}), is the g-expansion of some element

f eV oa(KPIs, 0, A/Q). Then we have:

Lemma 7.5.1. the inclusion:
Mg,ord(Kpa A) — Ng,E,ord(A)

is an equality.
Proof. See [SU] 6.3.7. O

We will use this lemma to see that the family constructed in the last chapter by formal ¢-
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expansions comes from some A-adic form.

88



Chapter 8

Proof of the Main results

We prove the main results in this chapter, assuming certain constructions and results of later chap-
ters. In this chapter we will use f and f to define a nearly ordinary Hilbert modular form or Hida
family with some coefficient ring I. Let ¢, 7 be Hecke characters of Ag and v, T be p-adic families
of Hecke characters of Ag. We require that the restrictions of 1) and 1 to A} to be the same as the
central character of the f or f. Let £ and &€ be % and % These are part of the Eisenstein datum D
which we are going to define at the beginning of in chapter 12. (We are going to use this notation

in this chapter though.)

8.1 The Eisenstein ideal

8.1.1 Hecke operators

Let K' = KLK® C G(A%) be an open compact subgroup with K> = G(O%) and such that
K : =K' KS is neat. The Hecke operators we are going to consider are at the unramified places and

at primes dividing p. We follow closely to [SUJ9.5 and 9.6.

Unramified Inert Case

Let v be a prime of F inert in K. Recall that as in [SU] 9.5.2 that Z, ¢ is the Hecke operator
associated to the matrix zg := diag(w,,@,, @y, @, by the double coset KzoK where K is the

maximal compact subgroup of G(Op,,). Let to := diag(w,, @y, 1,1), t1 := diag(1,w,, 1,w, ') and
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ty := diag(w,, 1,w, 1, 1). We define the Hecke operators T; for i = 1,2, 3,4 by requiring that
4 2 3 3
1+ TiX = [ — a2 [6]X)(1 - g [t.] ' X)
i=1

i=1

is an equality of polynomials of the variable X. Here [¢;] means the Hecke operator defined by the
double coset Kt; K. We also define:

Unramified Split Case

Suppose v is a prime of F'split in KC. In this case we define z(()l) and 2(82) to be (diag(w,, @y, @y, @y ), 1)
and (1, diag(ww,, w,, w,, @,) and define the Hecke operators Zél) and ZSQ) as above but replacing zg
by 23" and 287, Let £V := diag(1, (w,, 1), 1, (1,w; 1)), 1 := diag((ws, 1), 1, (1,;1),1). Define
tz(-Q) = f(il) and t; = tgl)tl@) for ¢ = 1,2. Then we define Hecke operators Ti(j) for i = 1,2,3,4 and

7 =1,2 by requiring that the following

4 2
. . 3 . 3 -/
14 > T)X =TT = a2 (19)X)(1 - g2 19771 X)
i=1 i=1
to be equalities of polynomials of the variable X. Here j/ = 3 — j and [tgj )}’s are defined similarly
to the inert case. Now let v = ww for w a place of K. Define i,, = 1 or 2 depending on whether the
valuation associated to 2 comes from the projection onto the first or second factor of IC,, = F,, x F,.
Then we define:
4

Qw(X) =1 + Z n(lw)(z(()?)fzw)X)’L

i=1
p-adic Case

Let t = diag(p®, p®2, p*,p®s), u; is the Hida’s normalized wu; operator defined in [SU] (6.2.2.a).

Let hp = hp(K') be the reduced quotient of the universal ordinary cuspidal Hecke algebra which
is defined by the ring of elements in Ends, (S°"¢(K’, Ap)) generated by the Hecke operators Z, o,
ZQ%, T 0, Ti%),utyv defined above. This is a finite reduced Ap-algebra. Now we define for each prime

w of K a polynomial @, p(X) to be det(1 — pp(frob,,)X) where D is the Eisenstein datum men-

tioned at the beginning of this chapter and pp, is the Galois representation defined in subsection 8.2.2.

We define the Eisenstein ideal (which is actually the kernel of homomorphism from the abstract
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hecke algebra to Ap determined by the Eisenstein family we will construct later) generated by:
e the coefficients of Q. (X) — Qu,p(X) for all finite places v of K and not dividing a prime in X.
® Zyo— awcrgl(frobﬂ) for v a finite place outside 3.

. Zl% - Uwogl(frobwi) for all v outside ¥ such that v = wjws being the factorization of

Ky, = F, x F,.
o For all v|p, usy — Agp (Urw) With ag < -+ < ay

Here o is the reciprocity map of class field theory, Ag, is the Hecke eigenvalue for u, : acting on
Ep. It follows from the computations in part one that these are elements in I[[I'x]]. We omit the

precise formulas.

aaaaaa
The structure map Ap — hp/Ip is surjective and we denote Ep C Ap to be kernel of this map so
that:

AD/5D—>hD/ID.

We define ¢g to be the point on the weight space corresponding to the special L-value L(f3, 1) where
f2 is the nearly ordinary form in our Hida family of parallel weight 2 and trivial neben typus at p.
(In fact this notion is a little bit ambiguous since we might have several fy’s inside the Hida family
and what we are going to prove is true for any of such point ¢g). We have the following theorem

which is [SU] 6.5.4 in our situation:

Theorem 8.1.1. Assumptions are as above. Then there is a finite normal extension J of I such
that if P C Ap is a height one prime of Apy passing through ¢¢ such that Ep is non-zero modulo
P (i.e. if the ideal generated by the Fourier coefficient of Ep is not contained in P), and that P is

not a pull back of a height one prime from J[[F;]] then:
Opo(ED) Z OT’dP(,CD).

Proof. The proof is completely the same as [SU]6.5.4. except that we use the construction of Chapter

8, which explains why we need to take the extension J. O
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8.2 Galois Representations

8.2.1 Galois theoretic argument

In this section we summarize the main results in [SU] chapter 4, which would be used to construct

elements in the Selmer group.

Let G be a group and C a ring. r :— Autc(V) a representation of G with V' ~ C™. This can be
extended to r : C[G] — Endc (V). For any x € C[G], define: Ch(r,z,T) := det(id — Tr(x)) € C[T].

Let (Vi,01) and (Va2,02) be two C representations of G. Assume both are defined over a local
henselian subring B C C', we say o7 and o9 are residually disjoint modulo the maximal ideal mp
if there exists « € B[G] such that Ch(o1,2,T) mod Mp and Ch(oz,z,,T) mod mp are relatively

prime in kg[T], where kg := B/mp.

Let H be a group with a decomposition H = G x {1,¢} with ¢ € H an element of order two
normalizing G. For any C' representations (V,r) of G we write r¢ for the representation defined by

r¢(g) = r(cgc) for all g € G.

Polarizations:
Let 8 : G — GLL(V) be a representation of G on a vector space V over field L and let ¢ : H — L*

be a character. We assume that 0 satisfies the v-polarization condition:
0~ 6.
By a t-polarization of # we mean an L-bilinear pairing ®p : V' x V — L such that
@4(0(g)v,v') = ¥(g) e (v, 0°(9)~"0").

Let @) (v,v") := Pp(v’,v), which is another 1-polarization. We say that 1 is compatible with the
polarization ®g if

<I>§ = —1(c)Py.

Suppose that:
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(1)Ap is a pro-finite Z, algebra and a Krull domain;

(2)P C A is a height one prime and A = A(; p is the completion of the localization of Ay at P.
This is a DVR.

(3) Ry is local reduced finite Ag-algebra;

(4) Q C Ry is prime such that @ N Ag = P and R = R(;)Q;

(5) there exist ideals Jy C Ag and Iy C Ry such that Io N Ay = Jo, Ao/Jo = Ro/Ilo,J = JoA, I =
IyR,Jy = JN Ay and Iy = I N Ry;

(6) G and H are pro-finite groups; we have subgroups D; C G for i =1,--- ,d.

the set up: suppose we have the following data:

(1) a continuous character v : H — A[;

(&

(2) a continuous character £ : G — A such that y # vy~ Let X' :=vx™

(3) a representation p : G — Autas(V),V ~ A" which is a base change from a representation
over Ag, such that:

a.p¢~p¥ @v,

p is absolutely irreducible ,

p is residually disjoint from x and x’;

(4) a representation 0 : G = Autpg,r(M),M ~ (R®4 F)™ with m = n + 2, which is defined over

the image of Ry in R, such that:

a.c®~c"’ Q@u,
biro(g) € Rforall g€ G,

c. for any v € M,o(R|G])v is a finitely-generated R-module

(5) a proper ideal I C R such that J := ANI # 0, the natural map A/J — R/I is an isomorphism,

and

tro(g) = X'(9) + trp(g) + x(g) mod I

for all g € G.

(6) p is irreducible and v is compatible with p.
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(7) (local conditions for p) For each ¢ = 1,--- ,d there is a D; stable sub Ay module VOJ’Q W

such that VO‘; and Vo= VO,i/VoJ,ri are free Ag modules.

(8) (local conditions for o). For each i = 1,--- ,d there is a D;-stable sub-R® 4 F-module M;" C M

such that M;" and M; := M/M;" are free R ®4 F modules.

(9) (compatibility with the congruence condition) Assume that for all x € R[D;], we have con-

gruence relation:

Ch(M;",2,T) = Ch(V;", 2, T)(1 — Tx(x)) mod I

(then we automatically have:

Ch(M; ,z,T)=Ch(V,",z,T)(1 = Tx (z)) mod I

(10) For each F-algebra homomorphism A : R ®4 F — K, K a finite field extension of F, the
representation o : G — GL,,(M ®grgr K) obtained from o via A is either absolutely irre-

ducible or contains an absolutely irreducible two-dimensional sub K-representation o such that

traf\(g9) = x(g) + X' (g)modI.

One defines the Selmer groups Xp(X'/x) = ker{HY(G,A;(x'/x)) — HY(D,Aj(x'x))}*. and
Xa(po® x™1) »=ker{H (G, Vo ®4, A5(x ")) = H'(D, Vg~ @4, A5(x~")}*

Our result is:

Proposition 8.2.1. under the above assumptions, if ordp(Chr(Xx'/x)) = 0 then ordp(Chg(po ®

x4 > ordp(J).

We record here an easy lemma about Fitting ideals and characteristic ideals which will be used

later.

Lemma 8.2.1. Let A be a Krull domain and T is a A-module. Suppose f € A is such that for any

height one primes P of A, ordp(FittoT) > ordp(f) then chars(T) < (f).

Proof. for any g € char4(T') the assumption and the definition for characteristic ideals ensures that

for any height 1 prime P, ordp(%) > 0. Since A is normal this implies ¢ € A. Thus g € (f). O

94



8.2.2 Galois representations

We define a semi-simple representation
. c —3 —c_j¢c_—2 —1 ~1 _¢
pp =0y "D (prRE P ) De detpgo e o7y

Recall that here o means the reciprocity map. We will see that this is the Galois representation
associated to the Eisenstein family constructed in the next chapter.

Let &p C Ap be the Eisenstein ideal associated with D. For any prime v|p of F' we let TJ: » CTf
be the rank one I-summand of Ty that is G-stable. Given a height one prime P of Ap containing

Ep let:
e H:=(Gpyx,G :=Ggyx,c= the usual complex conjugation;
o Ay:=Ap,A:= /A\D’p;
o Jy:=&,J :=EpA;
o Ry:Tp,ly:= Ip;
e () C Ry is the inverse image of PmodEp under Tp — Tp/Ip = Ap/Ep ;
e R:=Tpg,I:=IpR;
o Vo;=Ts @1 Ap,p:=ps @0, ‘aje?
o V;Fi= T;' ®r Ao, Vy = Tf/TJT) ®4a, 4;
o V=Vo®a, A p=po®@a, A,V := V" @4, A4
* = e’ldetpfa'g,lo'f/), V= a’w/ag,le*‘k;

e = a‘fpe*3 sox' =vx™5

o M :=(R®4 Fa)?*, Fy is the field of fractions of A and the Galois action is given by the Galois

representation associated to the cuspidal Hida families on U(2,2)(AFr);

e o is the representation on M obtained from Rp .

Let T := (T @1 I[[T'k]])(ex) (see section 2.1) and T+ := (T;‘ @1 I[[Tk]])(ex). Let Chi(pg) C

I[[Tc]] be the characteristic ideal of the dual Selmer group X (7, 7).
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Theorem 8.2.1. Suppose I is an integrally closed domain. Let Py C I[[I'x]] be a height one prime
and let P = PyAp that is not a pullback of one of I[[['5]] be the height one prime of Ap it generates.

Suppose also that:
VT @ Alx) and V- @ A(X') modulo P do not have common irreducible pieces . (8.1)

Then
ordp, (Chi(ps @ ex)) > ordp(Ep).

Proof. One just apply proposition 8.2.1. The condition (10) there is guaranteed by an argument
similar to [SU] theorem 7.3.1. We use the modularity lifting results in [SW] for ordinary Galois
representations satisfying (irred) and (dist) and Harris’s result that there is no (CAP) forms when
the weight k is sufficiently regular. We also use the main conjecture for totally real field F' proven in
[Wiles90] to conclude that ordp(Chp(x'/x)) = 0 since it is non zero by [Wiles90] and only involves

the cyclotomic variable. O

We are going to define two conditions (NV1) and (NV2) in Chapter 12 and give sufficient con-
ditions for them.
Now for f a Hilbert modular form with trivial characters and neben typus, then we write Sely

briefly for the Selmer group for the motive py ® det p}l. Then:

Theorem 8.2.2. Let p be a rational odd prime that splits completely in F. Let f be a Hilbert
modular form over F of parallel weight 2 and trivial character. Suppose:

(i) f is ordinary at all primes of F dividing p;

(i1) (irred) and (dist) in [SU1] hold for py.

If the central critical value L(f,1) =0, then the Selmer group H}(F, py) is infinite.

Proof. We only need to prove the theorem in the case when the root number for f is +1 since
otherwise it is a well known result of Nekovar [Nek]. First suppose that d = [F : Q] is even then
we choose an imaginary quadratic extension K of F so that K/F is split at all primes at which f
is ramified and L(f, xx/r, 1) # 0 where xx,p is the quadratic character of A} associated to K/F.
This is possible by Waldspurger. Then the S(1) defined in [Vatsal07] p123 consists of exactly all the
infinite places and since d is even we are in the definite case there.

We put f in a Hida family f. Now we do not have the Gorenstein properties. We have to replace

Ly by 1lf everywhere. Our p-adic L-function is not integral. (in Fi ®p I[[I'k]] actually). Suppose
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L= %, it follows from the definition for 1¢ in chapter 12 and the congruence number for f, is finite
that we may choose g € J so that g(¢g) # 0. Suppose L(f,1) = 0. Start with the 1-dimensional
family of cylotomic twists of f. Since L(f,1) = 0 then there is a height 1 prime of the 1-dimensional
weight space passing through ¢y and containing the image of h. Here we must notice that by our
construction we did not include ¢y as an interpolation point. But by the interpolation property
we know that our £* is the same as Hida’s ([Hida91]) up to Euler factors at ¥ at a sub family

containing the above 1-dimensional family.

Now we consider the specialization step by step. At each step the Iwasawa algebra is a Krull domain.
Suppose SpecA; — SpecAs where Ay has one more variable than Aj, i.e. Ay = Ay/xAy for some
variable x. If P; is a height 1 prime of A; passing through ¢y and containing the image of h in A;
then we can find P, a height one prime of A; also passing through ¢y and contains the image of
h in A5 such that SuppP; C SuppP» under SpecA; < SpecA,. Finally we found some P a height
one prime of the full dimensional Iwasawa algebra passing through ¢y and containing h. Note also
that P does not contain g since g(¢o) # 0. In chapter 12 we will see that (NV1) is satisfied in
our situation and thus h is not contained in any height one prime of I[[I'{]] passing through ¢o. In
the construction of chapter 14 after replacing ¢ by 1¢ the cuspidal family we construct still have
P-adically integral coefficients and has some coefficient prime to P. (although things there are in
F; ®5 Ap 1, however as above we can make sure that things showing up in the denominator are non

zero at ¢g thus outside P). The argument of theorem 8.1.1 still gives:
1< OI‘dpE~ < Ol"dp(g'DJ])

theorem 8.2.1 and proposition 13.3.2 (should be the E version which we did not state there) gives
that:

01"dthfE’K’1 > 1.

Then we need to specialize the variables back step by step to prove the theorem. Using the control
theorem for the Selmer groups we have at each step: we get ordp, Ftx > 1 here the P; and the
Selmer modules are interpreted in the context of each step. Finally we specialize to the point ¢ to
get that the ¥-primitive Selmer group over K is infinity. But this implies that Sel; is itself infinity
since Ly is non zero. However this Selmer group is the product of Selmer groups for f and f ® xx.

By [YZZ] and our choice of K, we know that the Selmer group for f ® xx is finite. So our theorem is
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true. Next we assume d is odd. Then again by Waldspurger we can find a real quadratic character
Xr,/r such that F is split at all primes at which f is ramified and L(f, x/r,1) # 0. We consider
frs the base change of f to F’. Then [F’ : Q] is even and we deduce that at least one of Sel; and

Self@y - is infinite. But by [YZZ] we know that Selfgy, is finite. So Sely must be infinite. [
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Chapter 9

Klingen Eisenstein Series

Now we recall some notions for Klingen Eisenstein Series in this setting. We need to use a character
1 to pass form the G Ly picture to the unitary group U(1,1) similar to [SU] chapter 9. Then the
p-adic constructions are just as in part one. Note that this is slightly different from [SU] since there
the ordinary vector is the new vector. However in the Hilbert modular case we do not assume this
in order to get the whole Hida family. For the f-adic construction the one used by [SU] is much

better than the one used in part one so we just follow [SU]J.

9.1 Induced representations

9.1.1 archimedean picture

Let (m,V) be an irreducible (gly, K/ )-module and suppose that 7 is unitary ,tempered represen-
tation. There is an irreducible, unitary Hilbert representation (w1, H) of GL2(R), unique up to
isomorphism such that 7,V can be identified with the g, [, K. )-module of it. Let x be the central
character of m1. Let ¢ and 7 be unitary characters of C* such that ¢|gx = x. Now we define a rep-
resentation p of P(R): for g = mn,n € Np(R),m = m(bx,a) € Mp(R) with a,b € C*,x € GLy(R),
put

p(g)v = 1(a)Y(b)r(z)v,v € H.

For any function f € C™(Ky, Hs) such that f(k'k) = p(K')f(k) for any k' € P(R) N Ko, where

H, is the space of smooth vector of H, any each z € C we define a function

f2(9) = dp(m)**™=p(m) f(k), g = mk € P(R) K,
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and we define an action o(p, z) of G(R) on I(H):

(a(p,2)(9)f) = f=(kg).

Let (7¥,V) be the irreducible (gl,, K. )-module given by 7V (z) = w(n~txn) for x in gl, or K.,
denote pV,I(p"Y),IV(Hs) and o(pV,2),1(p"Y)) the representations and spaces defined as above but
with 7,4, 7 replaced by 7V @ (7 odet), 77¢,7¢. Let 7@ := ¥ ®@x L. Also, for any 2 € C, f € I(Hx)

and k € K, consider the integral:

Alp, z, f)(k) ::/ f2(wnk)dn. (9.1)

Np(R)

A(p,z,—) € Homc(I(Hwo), IV (Hs)) intertwines the actions of o(p, z) and o(pV, —2).

9.1.2 /(-adic picture

Let v be a prime of F and (7, V') be an irreducible, admissible representation of G Lo (F,) and suppose
that 7 is unitary and tempered. Denote by x the central character of w. Let ¢ and 7 be unitary
characters of IC¥ such that | py = X- We extend 7 to a representation p of P(F,) on V as follows.

For g = mn,n € Np(F,), m = m(bx,a) € Mp(F,),a,b € K,z € GLy(F,), put

plg)v = 7(a)p(b)m(s)v,v € V.

Let I(p) be the space of functions f : K, — V such that (i) there exists an open subgroup U C K,
such that f(gu) = f(g) for all w € U and (ii) f(k'k) = p(K) f(k) for ¥’ € P(OF,,). For each f € I(p)

and each z € C we define a function f, on G(F,) by
folg) = 8p(m)***2p(m) f(k), g = mk € P(F,)K,
We define a representation o(rho, z) of G(F,) on I(p) by
(o(p, 2)(9) F)(F) = [(kg).

If w9, 7 are unramified the

dimcI(p)X» = 1.
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In particular if ¢ € V is a newvector for m and F), is defined by F,(mk)p(m)¢, mk € P(Op,)K,,

I(p)X+ is spanned by F),.

Let (7Y, V) be given by 7¥(g) = m(n~'gn). This representation is also tempered and unitary. We
denote by p¥,1(pY), and (c(py, 2),I(p")) the representations and spaces defined as above but with
7,7 and 7 replaced by 7V ® (7 o det), 77, and 7, respectively. Let 7 := 7V @ xy .

For f € I(p),k € K, and z € C consider the integral

A(p, z,v)(k) := /N " fz(wnk)dn. (9.2)

As a consequence of our hypotheses on 7 this integral converges absolutely and uniformly for z and
k in compact subsets of z : Re(z) > 3/2 x K,. Moreover, for such z, A(p,z,f) € I(p¥) and the

operator A(p,z,—) € Homc(I(p),I(p¥)) intertwines the actions of o(p, z) and o(p¥, —z).

As in [SUJ9.1.3, this has a meromorphic continuation (in the sense defined there) to C and the

poles can only occur when Rez = 0, :l:%.

9.1.3 p-adic picture

Now assume v|p. We need to study the relations between the GLy picture and the computations in
part one for U(1,1). Suppose m, = m(u1, pu2) where val,(u1(p) = —3 and val(po(p) = 3. From now
on we write £ = % and § = (&1,&2) with respect to K, = F, x F,. Similarly for 71, 79,1, ¥2. Note
that our ¢ here is different from part one. In fact the &;&5, x1x2 there are 162, p1 &1, ﬂlipgl, /igdgl.

Note that Y199 = ppe.

Generic Case The generic case mentioned in part one correspond to:cond(x1) > cond(7z) > cond(ry) >
cond(xz2). (note that the 7 in p¥ is 7¢. We assume cond(1)2) > cond(72) > cond(71) > cond(¢)1) >

cond(g1). Then the datum is generic in the sense of part one.

9.1.4 global picture

Let (7, V) be an automorphic representation of GLa/F. Tt is an admissible (glg, K..) x GLa(Af)-
module which is a restricted tensor product of local irreducible admissible representations. Let
7,9 + A — C* be Hecke characters such that 1/J|A; = xr and he let 7g7, and ¥ = ®,, be

their local decompositions, w over places of F. We associat with triple (7,4, 7) a representation of
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(P(Foo) N Koo) X P(Ap s) and v = ®u,, € V put

p(m)v := @(puw(mw)wm),

Let Ky := [[, s Kw and Ky, := Kp_ x Ky. Let I(p) be the space of functions f : K, — V
such that f(k'k) = p(k') f(k) for k' € P(Ap) N K4, and f factors through Kp_ x Ky/K' for some
open subgroup K’ C Ky and f is Kp_-finite and smooth as a function on Kp o X K¢/K’. This
can be identified with the restricted product ®I(p,,) with respect to the F, ’s at those w at which
Tuw, Yo, Ty are unramified.

For each z € C and f € I(p) we define a function f, on G(Afp) as

f=(g) == ®fw,2(gw)

where f,, , are defined as before. Also we define an action o(p, 20 of g, Kr._) ® G(As) on I(p) by
o(p,z) := ®0(py, z). Similarly we define p¥, I(p¥), and o(p",2) but with the corresponding things

replaced by their V’s. For each z € C there are maps
I(p), I(p") = A(Mp(F)Np(F)\P(AF)),
given by

f=(g— f(9)(1)).

In the following we often write f, for the automorphic form given by this recipe.

9.1.5 Klingen-type Eisenstein series on G

Let 7,1, and 7 be as above. For f € I(p),z € C, and g € G(A the series

E(f,z9):= Y,  f(19) (9.3)

YEP(FO\G(F)
is known to converge absolutely and uniformly for (z,g) in compact subsets of {z € C : Re(z) >
3/2} x G(A) and to define an automorphic form on G.The may f — E(f, z, —) intertwines the action
of o(p, z) and the usual action of (g, Ko) X G(Ay) on A(G).

We state a well known lemma of [SU] here for the field F.

Lemma 9.1.1. Let R be a standard F-parabolic of G (i.e, R D B). Suppose Re(z) > 3.
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(i) If R # P then E(f,z,9)r = 0;
(”) E(f,Z,—)P = fZ +A(p7 f7 Z)—z-

9.2 Induced representations:good sections

9.2.1 Archimedean sections

The choices made here are completely the same as [SU] chapter 9 for all infinite places (see also part

one). So we omit here and denote the Klingen section as F.

9.2.2 /-adic sections

Let v be a prime of F not dividing p. The sections chosen here are the same as in [SU] chapter 9.

We define a character v/ of K, s by

"(d).

78yl

Vil \e 4a ) := 1 (ad — be)

For K C KT{WS/ let
10, K) = {f € 1(p)) : /()] = V' (R) ],k € K},
Let ¢ € V be any vector having a conductor with respect to 7V and let (A'¢) := condz(¢). For any

K, with 7 > maxz(ry,re) and t > s we define fy,, € I(p, K, ;) by

v(k)p(p)o g =pmk € P(OpywK,,
Forit (g) =
0 otherwise.

Since P(OFJ,)U)KQ()\) = P(OFJ,)’LUQ(OFJ,), if r, r > {r¢, ].} then F(b,r,t = Fd),r’,tu

9.2.3 p-adic sections

We define our p-adic section to be the FY defined in part one. This is nearly ordinary as proved

there.
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9.3 Good Eisenstein series

9.3.1 Eisenstein data

(m, V) is an irreducible (gly, K. )% x GLa(AF ¢)-sub representation of A°(GLy/F) and let V = @V,
and m = ®m,,. By an Eisenstein datum for = we will mean a 4-tuple D = {X, ¢, 9, 7} consisting of a
finite set of primes X, a cuspform ¢ € V that is completely reducible, and unitary Hecke characters

Y = @y, and T = @7, of AL/K*, all satisfying:

e Y contains all primes dividing p, primes ramified in X/Q, and all primes v such that ,, 1,
or T, is ramified

o forall ke K mo(k)poo = j(k,i) " Poo;

e if v &% then ¢, is the newvector;

e ifve X vtp, then ¢, has a conductor with respect to m,’

e if v|p, then ¢, is the one choosen in part one.

L4 ¢|A; =X

o 7(x) = (x/|x])™" = oo (x)for any infinit place oo of F.

Let { = ®&w = ¢/7 and define Fy := [], s Fsph [Toes,orp Fort Loy FY. Then as in [SU] 9.3.1 we
define

Lemma 9.3.1. Suppose k > 6 and let z, :== (k —3)/2. Let F =F, Q Fy € I(p) = I(pso) @ I(py).

(1)A(p, zx, F) = 0.

(2)E(F, 2, 9)p = F2,(9)-

Thus Ap(z.,9) =0 and Ep(zx, —)p = ©p(24)-

For k > 6, then for any F' = F,; ® Fy € I(p) we define a function of (Z,2) e H® G(Ap,y):
E(Z,x;F) = J(g,3)"1(9)"E(F, 2¢,97),9 € GT(R),g(i) = Z.

we write Ep(Z,z) for E(Z,x; pp(2)). The following proposition is essentially [SU]9.3.3.

Proposition 9.3.1. Suppose k > 6 and F = F,, ® Fy. Then E(Z,z;F) is a hermitian modular
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form of weight k. In particular, Ep € M(Kp,vp).

9.4 Hecke operators

We refer to [SUJ9.5 for the definitions of the Hecke operators at unramified primes. The local
situations are the same when the base field is F' instead of Q. We only record the following proposition

([SUJ9.6.1):

Proposition 9.4.1. Suppose k > 6. Then the prime to ¥ part of the L-function L*(Ep, s) is given
by:
LIZC(fv gcwcv s — 2)LE(’I/167 s — 3)LE(Xg/wcv s = H)'

This explains the reason why the Galois representation associated to the Klingen Eisenstein series

is the one given in the last chapter.
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Chapter 10

Hermitian Theta Functions

As in [SU] chapter 10, we recall the Weil representations and theta functions associated with certain
definite hermitian matrices in and define some specific Schwartz functions and inter into our later

expressions for fourier coefficients of the Eisenstein series Ep.

10.1 Generalities.

Let V' be the two-dimensional KC-space of column vectors.

The local set-up

Let v be a place of F. Let h € So(F,),deth # 0. Then < x,y >p:= Z'hy defines a non-degenerate
hermitian pairing on V,, :=V ® F,,. Let U, be the unitary group of this pairing and let GU;, be its
similitude group with similitude character iy : GUp — G,,. Let Vi := K? and < —, — >; be the
pairing on V; defined by < z,y >1= zwi§". Let W :=V, ®x, V1, where Vi, := Vi ® Fyy. Then
(= =) =Trx,/p,(< =, — >p @, < —,— >1) is a F), linear pairing on W that makes W into an
8-dimensional symplectic space over F,. The canonical embeding of Uy, x Uy into Sp(W) realizes the
pair (Up, U1) as a dual pair in Sp(W). Let A, be a character of K such that Ay[px = 1. In [Ku94],
a splitting pair Uy (F,) x U1 (F,) — Mp(W, F,) of the metaplectic cover Mp(W, F,)) — Sp(W, F,) is
associated with the character \,; we use this splitting to identify Uy (F,) x U;(F,) with a subgroup
of Mp(W, F,).

We let wy,, be the corresponding Weil representation of Uy (F,) x Uy (F,) on the Schwartz space

S(Vy): the action of (u,g) on ® € S(V,,) is written wp, »(u, g)®@. If v = 1 we often omit u, writing
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Whv(g) to mean wy, (1, g). Then wy,, satisfies:
o who(,9)P(x) = wh (1, 9)P(u"2)
o wp (diag(a,a’))®(z) = AMa)|a|xc®(za),a € K*.
o wy o (r(9)0(z) = B(z)ey(< z,x >1 5),S € Fy;
o wio(n)®(x) = |dethly [, ®(y)en(Trisq < Y,z >n)dy.

The global set-up

Let h € S3(F),h > 0. We can define global versions of Uy, GUy, W, and (—, —), analogously to the
above. Fixing an idele class character A = ®\, of Ag/K* such that A\|px = 1, the associated local
splitting described above then determine a global splitting Uy, (Ar) X U1(Ap) — Mp(W,Ar) and
hence an action wy, 1= ®wp,, of Up(Ar) X U1(Ar) on the Schwartz space S(V ® Ap).

10.1.1 Theta Functions

Given ® € S(V ® Ap) we let
On(u, g; ®) := Z wp(u, 9)@(z).

zeV
This is an automorphic form on Uy (Ar) x Uy (AR).
10.2 Some useful Schwartz functions.
We now define various Schwartz function that show up in later formulas.

10.2.1 Archimedean Schwartz functions

Let .0 € S(V ®R) be

(Dh oo(x) _ 6727r<:1:,w>h,.

Henceforth we assume that

Moo (2) = (2/]2]) 72

Lemma 10.2.1. Given z € b, let Oy, .(x) :=e(< x,x >} 2) (so ®p; = Pp0). For any g € U1(R),

Wh(g)q)h,z = Jl (g? Z)_2(I>h,g(z)'

In particular, if k € K;l then w(k)®p 0o = J1 (ki) 2 Pp 00
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Proof. this is just [SU]10.2.2. O

10.2.2 /¢-adic Schwartz functions.

For a finite place v of F' dividing a rational prime ¢, let &y € S(V,,) be the characteristic function of

the set of column vectors with entries in Ok ,. For y € GL2(K,) we let ®¢ ,(z) := oy ).

Lemma 10.2.2. Let h € So(F,), det h # 0. Let y € GL2(K,). Suppose ythy € Sa(Op,)*.
(i) if X is unramified, v is unramified in K, and h,y € GL2(OF). Then

Wh<U1 (OFKU))(I)O;.U = Doy

(i) if Dydetythy|w?, r > 0. Then

v

wi(k)®o,y = Aak)Po,y, k€ {k € Ui(OF.) : w, ek}

Proof. See [SUJ10.2.4. O

Let 0 be a character of )¢ and let 0 # = € cond(0). Let

Poo(u)i= D O@)Po((ur +a/z,uz)")su = (ur,uz)",
a€(Ox,v/x)*
For y € GLy(K,) we let ®p 5, (u) = g . (y~1u). We let @p 9, = wp(n~!)Pp, and Choay =

wi (™) Po e,y

Lemma 10.2.3. Let h € So(F,),det h # 0. Let y € GLy(K,). Suppose gthy € So(Op.)™. Let 0
be a character of K and Let 0 # x € cond(0) be such that w,|z. Let (c) := cond(0) N (w,) where

Wy = Wy if v splits in K and otherwise a uniformizer of IC, at v.

* %
(i) if cDydety'hy||z and y~*hy € GLy(OF,) and D, =1 or y~1h 1yt = with d € Op,,
* d

then

wi (k)@ 2y = N0(ar)Pp .y k € Ur(OF), 0 Dylck, 27 by,
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(i) if h = diag(e, B), then @y, g 4., is supported on the lattice h_ly_lthvm where if v is non split in
KC then

* t —1 _ x Ok, cond(0) = Ox.v,
LG,a: = {(ulaUQ) tug € 6/C O)szul € — } (101)

0
K og,, cond(®) + O,
and if v splits in IC, then

Opy, cond(0) = 0Op,,
} (10.2)

Lz,x = {(u17u2)t tug € 5E10K,vaﬂ1,i € —
(9;7”, cond(8) # Op,y.

with 4y = (G1,1,U1,2), ¢ = (z1,22),¢ = (c1,¢2) € Ky = Fy X F,, and 0 = (61,02). Further more for

v = hflyfltu with u € Ly .

D 9.0y(v) = |det hygl, Dy ' A(—1) Z 0(s)ee(Tric qatir/x)
a€(Ox,v/x)*

Proof. See [SUJ10.2.5. 0

Lemma 10.2.4. suppose v|p splits completely in K. Let (¢) := cond(0) and suppose ¢ = (p", p*)
with r,s > 0. Let v = (n,1) € SLa(Ok ) = SL2(OF) X SLa(OFy). Suppose h = diag(a, 5) with
a,B € F). Then

(1)®h.0,c.~ is supported on

L':={u=(a,b)" :a € OF, x Opy,b€ Op, x OF ,}

and for u € L'

P ,c.y (1) = 01(Bb2)g(01)02(var)g(6)

where a = (a1, a2),b = (b,b2) € Op, X Op,, and 6 = (01, 62).
(i1 )wn (u, k) ®p 0. = 071 (dy)02(det g)AO(di)Pr o, for u = (g9,9") € Un(Zyp) with pm““’(’"’s)|cg and for

k € Uy(Z,) such that p™o=(%)|cy,.

Proof. See [SUJ10.2.6. O
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Chapter 11

Siegel Eisenstein Series and Their

Pull-backs

11.1 Siegel Eisenstein series on G,; the general set up

For a place v of F' and a character x of I we let I,,(x) be the space of smooth K, ,-finite functions
f i Kpny— Csuch that f(¢k) = x(detDy) f(k) for all ¢ € Qn(Fy) N Ky . Given z € C and f € I(x)
we define a function f(z,—) : Gn(F,) = C by f(z,¢k) = x(det Dy))| det AqD;1|i+n/2f(k),q €
Qn(Fy) and k € K, ,.

For an idele class character x = ®x, of Ag we similarly define a space I,(x) of smooth K,
functions on K, 5. We also similarly define f(z, —) given f € I,,(x) and z € C. There is an identifi-
cation ®I,(x») = In(x), the former being the restricted tensor product defined using the spherical
vectors fPh € I,,(xw), f3P"(K,.») = 1, at the finite places v where Y, is unramified:®f, is identified
with &+ [], fuo(ky).. Let Y C C be an open set. By a meromorphic section of I,,(x) on U we mean
a function ¢ : U + I,(x) taking values in a finite dimensional subspace V' C I(x) and such that

¢ : U — V is meromorphic.

Let x = ®xo be a unitary idele class character of A¢. for f € I,,(x) we consider the Eisenstein
series

E(f;2,9) = > f(z,79).

YEQn (FN\Gn (F)
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This series converges absolutely and uniformly for (z,g) in compact subsets of {Re(z) > n/2} x
G, (Ar) and defines an automorphic form on G,, and a holomorphic function on {Re(z) > n/2}.
The Eisenstein series E(f;z,g) has a meromorphic continuation in z to all of C. If ¢ : U — I,,(x)
is a meromorphic section, then we put E(p;z,9) = E(¢(z);2,g). This is clearly a meromorphic

function of z € U and an automorphic form on G,, for those z where it is holomorphic.

11.1.1 Intertwining operators and functional equations

Let x be a unitary character of X, v a place of F. For f € I,,(x),z € C, and k € K, ,,, we consider

the integral
Mz, £)(k) == X" (i (k) / F(z wark)dr.

N, (Fv)
For z in compact subsets of { Re(z) > n/2} this integral converges absolutely and uniformly, with the
convergence being uniform in k. M(z, f) € I,,(x¢). It thus defines a holomorphic section z — M (z, f)

on {Re(z) > 3/2}. This has a continuation to a meromorphic section on all of C.

Let x = ®x, be a unitary idele class character. For f € I,(x),z € C, and k € K, 5, we con-
sider the integral M (z, f)(k) as above but with the integration being over Ng, (Ar). This again
converges absolutely and uniformly for z is compact subsets of { Re(z) > n/2}, with the convergence
being uniform in k. Thus z — M (z, f) defines a holomorphic section {Re(z) > n/2} — I,,(x¢). This

has a continuation to a meromorphic section on C. For Re(z) > n/2 at least, we have

M(Z7f) = ®UM(Z7 fv)vf = ®fv-

11.2 Pull-backs of Siegel Eisenstein series.

As in [SU]11.2,we recall the pull-back formulas of Garrett and Shimura which expresses Klingen-type
Eisenstein series in terms of restrictions (pull-backs) of Siegel Eisenstein series to subgroups. But
first we define various maps between groups that intervene in the statement of the general formula

as well as in the particular instance used in subsequent sections.

11.2.1 Some isomorphisms and embeddings.

Let V,, := K?". Then w, defines a skew-hermitian pairing < —, — >, on V,, :< z,y >,:= zw,j’.

The group G,,/F is the unitary similitude group GU(V,,) of the hermitian space (V,,,< —,— >,).
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Let W, := V41 ® V,, and W), : V,, @ V,,. The matrices w,11 & —w, and w, ® w, define define

hermitian pairings on W,, and W}, respectively.

One can define isomorphisms:, a, : GU(W,,) ~ Gapy1, o, : GU(W)) ~ Gay,, v : GU(W,,) ~ Gapi1
and v : GU(W/) ~ G2, we omit the details and referring to [SU] 11.2.1. Also as in [SU] we use S

and S’ to denote the matrix

and

This is different from the convention of part one of this thesis.

11.2.2 The pull-back formulas

Let x be a unitary idele class character of AZ. Given a cuspform ¢ on G,, we consider

Fy(f;2,9) :=/U " )f(z,7(97glh))i(detglgw(glh)dgh

f € Im+n(x),g S Gm(AF)ah S Gn(AF)7um(g) = /’('n(h)am =n-+1or n,

with v = v, or 7/ depending on whether m = n + 1 or m = n. This is independent of h. The

pull-back formulas are the identities in the following proposition.

Proposition 11.2.1. Let x be a unitary idele class character of Ag.
(i) if f € Inn(x), then Fy(f;z,9) converges absolutely and uniformly for (z,g) in compact sets of
{Re(z) > n} x Gn(AF), and for any h € G,(Af) such that p,(h) = p(g)

/ E(f; 2,7 (9, 910) X (detgih)d(gih)dgs = Fa(f: 2, g). (11.1)
Un (F)\Un(AF)
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(i) If f € Innt1(X), then Fy(f;z,g) converges absolutely and uniformly for (z,g) in compact sets of
{Re(z) > n+1/2} X Gpi1(Ap) such that pn(h) = pn+1(g)

/ E(f:2z,7m(g,9'h))x(det g1h)p(g1h)dg
Un(F)\Un(AF)

(11.2)
= > Fo(f;2,79),

'YePn+l(F)\Gn+1(F)

with the series converging absolutely and uniformly for (z,g) in compact subsets of {Re(z) > n +

1/2} x Gt (Ap).

Proof. See [SU] 11.2.3. 0

11.3 fourier-jacobi expansions: generalities.

Let 0 < r < n be an integer. Each Eisenstein series E(f;z, g) has a fourier-jacobi expansion

E(fiz9)= Y. Es(f;z9). (11.3)
BESy—r(F)
where
X S 0
Bslfizg)i= [ E(f;2 0 0] | Dea(-Trejo(BS)ds.  (11.4)
Sn—r(F)\Sn—T(AF)

Ly

Lemma 11.3.1. Let f = Quf, € L.(x) be such that for some prime v the support of f, is in
Qn(Fp)wnQn(Fy,). Let § € S,(F) and q € Q,(Ar). If Re(z) > n/2 then

Es(f;2,9) = H/S - )fv(z,wnr(Sv)qv)ev(—TrﬁSv)dSU. (11.5)

In particular, the integrals on the right-hand side converge absolutely for Re(z) > n/2.
Proof. see [SU] 11.3.1. O

Lemma 11.3.2. Suppose f € I3(x) and 8 € So(F), 8 > 0. Let V be the two-dimensional K-vector

space of column vectors. If Re(z) > 3/2 then
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1
By (f; 2,9) = 3 >/ L s e o) |

YEQ1(F)\G1(F),yeU(F) z€V
13

X CA(—T’I”;C/QﬂS)dS.

Proof. See [SU] 11.3.2. O

We also recall a few identities which would be useful later on. Letting:

) S «x
FIs(fs2.9,) = / L s 2 0] | ai(diagly, s ), g))en(~TrBS)dS.
So (Fy
1,
Then:
a 671b 1 3/2 t
FIs(f: 2, o) = a0 M aalz e, @ ) F (20, ,1). (11.6)
~

For u € Us(AF), Ug being the unitary group associated to 5.
FJs(f;z,x,g9,uy) = X(detu)|detuﬂ|g§+l/2FJ —B(f;z,u 'z, g,y). (11.7)

If as a function of =, FJg(f; z,2,9,y) € S(V ® F,) then:

a
FJg(f;z,, 9,Y)

(11.8)

=1

= (/xa)@laal ([ © " T DFIs(f )
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11.4 Some good Siegel sections

11.4.1 Archimedean Siegel sections

We summarize the results of [SU] 11.4.1. Let k > 0 be an integer. Then x(z) = (z/|z|)7* is a

character of C*.

The sections. We let f.,, € I,(x) be defined by f. (k) := J,(k,7)~*. Then
fn,n(zvqk) = Jn(kai)_HX(deth)ldetAthz_l|Z+1/27q € Qn(R)a ke Kn,oo~ (119)

If g € U,(R) then f, ,.(z,9) = Jn(g,1) 75| Jn(g,3)["~ 257"

Fourier-jacobi coefficients. Given a matrix 8 € S2(R) we consider the local fourier coefficient:

1, S
fenp(2:9) = / fr(z,wn 9)eos(—=TrBS)dS.
Sn(R) ]-n

This converges absolutely and uniformly for z in compact sets of {Re(z) > n/2}.

Lemma 11.4.1. Suppose 5 € Sp(R). The function z — f.. 5(z,g) has a meromorphic continuation
to all of C. Furthermore, if & > n, then f.n g(%,g) is holomorphic at z, := (K —n)/2 and for
y € GL,(C), fﬁynyg(z,{,diag(y,y_t_l)) =0 ifdetB <0, and if det3 > 0 then

(=2)~"(2mi)"% (2/mr)(n—1)/2
T2 (s — 5 — 1)!

-1

) = e(iTr(Byy"))(det )" dety".

fn,n,ﬂ(zm diag(y, y_t

Proof. See [SU|11.4.2. O
Suppose now that n = 3. For § € S2(R) let F'Jg (2,2, 9,y) := FJsg(fx;2,2,9,y).

Lemma 11.4.2. Let z,, := (k — 3)/2. Let 8 € S2(R), det3 > 0.

())F 3.2k 2,1, 1) = fuop(zs +1/2,1)e(i < z,x >p). (it) For g € Ui (R)

FJB7n(zfi7 z,9, y) = e(iTrﬁygt) det gnc(ﬁ, k)fn—&l(zmg/)wﬁ(g/)q)ﬁ,oo(x)a
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where g = g and

(2mi)*<(2/7) 2
! det 8

Br) = = ik = 2)

and the Weil representation wg is defined using the character Aoo(2) = (2/|2]) 2.

Pull-back integrals

The Archimedean situation is completely the same as the [SU] situation. Let f, € I3(7) be as before

and let

Fu(z,g) = /U e ST g g (detgihm g1 s

(11.10)
g € G2(R),h € G1(R), 1 (h) = p2(g).
Similarly, for f., € Ir(7) and g € G1(R) we let
Fu(zg) = / fu(z, 8710 (g, g1h))7(det guh)m (g1h) s,
U1 (R) (11.11)

g,h € G1(R), p1(h) = p1(g)-

Lemma 11.4.3. ([SUJ11.4.4.) The integrals converge if Re(z) > (k —m — 1)/2 and Re(z) >
(m—1-=k)/2, m =2 and 1, respectively, and for such z we have:

. —92,—1T(z K
(i)F(z,g) = 2721 (YA E, L (g);

.. _ I'(z+~x
(it)F},(2,9) = 7272 1t (9) 6.

11.4.2 /-adic Siegel sections: the unramified case
Lemma 11.4.4. Let 8 € S, (F,) and let r := rank(B). Then for y € GL,(K,).
£ (=, diag(y,y' ")) = x(det y)|det ygl, "2V ol(S,(Op..))
I L2z +i—n+1,¥xk)

H;L:_Ol L(2z+n—i,X'X)

where hy gty is a monic polynomial depending on v and §'By but not on x.

ho gt ay (X (@0) g, 257")
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Proof. See [SU|11.4.6. O

Lemma 11.4.5. Suppose v is unramified in K, let 5 € Sao(F,) such that det 8 # 0. Lety € GLy(Ky)
such that §'By € Sa(Opy). Let X be an unramified character of KK such that | px = 1.
(i) if B,y € GL2(Ox ) then for u € Ug(Fy).

sph
z+1/2 i7" (2, g)ws (u, 9)Po,y(x)
[T, L(22 +3 —i,¥'xk)

FJs(f3"": 2,2, g,uy) = x(det u)|det ual;

(ii)if ' By € GL2(Ok ). Then for u € Ug(F,).

z+1/2 ffph(zv g)wﬂ (u’ g)(I)O,y (S)
[Ty L(22 + 3 — i, X'xk)

FJs(f5""; 2,2, g, uy) = x(det uy)|det uy|c

Proof. (i) is the same as [SU]11.4.7. Note that in (ii) we have removed the assumption in loc.cit

that g is of the form . In fact since

FJa(f5"": 2,2, 9,uy) = x(detuy)| det uy| .~ ? FJuyp, (f5"": 2,y 'u" 'z, g, 1)

by (i) we have only to prove that

1

weay (L, 9)Po(y " u™ ") = wp(u, 9)Poy(7) = (wp(1, 9)Po,y) (v 2)

i.e.

(wigpy (L, 9)Po) .y () = (W (L, 9)Poy) (@)

Here we write ® , to be the function defined by: ® ,(z) = ®(y~'x). By definition one checks that

for any ¢

ws(9)®,y = (Wigsy (L, 9)®),y (%)

a 1 s
for g € , , 1, thus for all g € U1(F,). In particular, for & = ®q O

a~t 1

Pull-back integrals We let (w,V),v,7,p,€ := ¥/7 be as before. Then the pair (w,v) determines

a representation of G1(F,) on V, which we denote as my. Let ¢ € V. Let m = 1 or 2. Given

f € Ln+1(7) we consider the integral:
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Fy(fizg) = /U o S g detg T (i (11.12)

where v =71 or 4] depending on whether m = 2 or m = 1. (similar to [SU] 11.4.)

Lemma 11.4.6. Suppose 7,v and T are unramified and ¢ is a newvector. If Re(z) > (m + 1)/2

then the above integral converges and

L(ﬁ7£72+1/2) .
H%:o L(22+2—i,‘7—’xk)ﬂ-¢(g)¢ m=1

Fy(f3"52,9) =
L(7,§2+1)

[ L(22+37i,77’X;'C)FP-,Z(g) m=2.

Here, F), is the spherical section as defined in [SU] 9.1.2.

Proof. See [SU]11.4.8. O

11.4.3 /(-adic Siegel sections: ramified cases

The sections. Welet f} € I,,(x) be the function supported on Q,,(Or)w,Ng,, (OF.) (= Qn(OF.,)w, Ko, (A)
for any ¢ > 0) such that fi(w,r) = 1,7 € Ng, (Op,). Given (A\*) C Ok, contained in the con-
ductor of x, we let fy , € I,(x) be the function such that f, (k) = x(detDy,) if k € Kg, (A\*) and

fun(k) =0 otherwise.

Lemma 11.4.7. Suppose v is not ramified in K and suppose x is such that Ok, # cond(x) 2
cond(xx®). Let (\*) := cond(x). Then

M(z, f1) = fun - Vol(Sn(OF.)) € Ln(X°)

for all z € C.
Proof. See [SU|11.4.10. O

Lemma 11.4.8. Let A € GL,(K,). If det 8 # 0, then

) , . x(det A)|det Aly "2V ol(S,(Op,)) ABA € Sp(Op.)*
fap(z, diag(A, AT 7)) = (11.13)

0, otherwise.

Proof. See [SU|J11.4.11. O
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Lemma 11.4.9. Suppose 8 € S, (F,), det 8 # 0, char(v) =€ and ¢ splits completely in K.
(i) if B & Sn(OFy), then M(z, f)s(—2,1) = 0.
(i1) Suppose 5 € S, (OF.). Let ¢ := ord,(cond(x’)). If ¢ > 0, then

M (z, fl)(=2.1) = X/ (det B)ldet BI;*g(X')"cn(X', 2)-

where

X/(énc)ancz—cn(n-&-l)/? c>0
!
en(X'y2) = (11.14)
anz—n(n-&-l)/Q c=0

Proof. See [SU|J11.4.12. O
Now We use the convention for m = 1 or 2 as in the last subsection.

Proposition 11.4.1. Let m = 1 or 2. There exists a meromorphic function 'y(’”)(p,z) on C such

that:

(i) If m = 1. Then Fyv(M(z, f); —2.9) = v (p, 2)7(111(9)) Fs(f; 2,19)

Moreover, if m ~ w(x1, x2) and v splits in KC. Then

(W@Ec,]_/Q—Z)
(T®&,24+1/2)

—= € nc —znczrn(n c jnd c L
YW (p, 2) = W(-D)g(7, @)* - 7 (@} ey [ 2=V (7 @ 6%, 2 +1/2) 7

(i) If m = 2 and 7, U, T are the v constituents of a global triple. Then

F¢v (M(Z7 f)v _Zag) = 7(2)(97 Z)A(p7 Zy F¢(f; 2, _))—Z(g)

each of these equalities is an identity of meromorphic functions of z.

(#i3) Suppose moreover that O, # cond(7) D cond(77°) then:

1

7(2) (P, Z) = 7(1)(p72 - 5)

Proof. See [SUJ11.4.13. O
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11.4.4 /-adic sections: ramified cases again

The sections. As in [SUJ11.4.14, we define modified version of the sections fT.

Let m =1 or 2. For z € Ok, N K let

1m—1 Om—l

1 1/z
f;7(77L)(zvg) = f;@+1(z7g )
1m—1

Lemma 11.4.10. Let f = (bi;) € Smi1(F,). Then for all z € C,fI'5"(2,1) = 0 if 8 ¢
Sm+1(OF,1))*- Ifﬂ S S7n+1(OF,1))*7 then

£ (2,1) = Vol(Sms1(Ore))ee(Trec, qu (b1 /7))

Proof. See [SU|11.4.15. O

Lemma 11.4.11. Let § € S3(F,), det B # 0. Let y € GLy(K,) and suppose §'By € So(Op.,)*.
Let X\,0 be characters of K and suppose A|px = 1. Let (c) := cond(X)()cond(0)(\(ww,). Let

x € KF be such that Dy|z, cond(x®)|x, and cD, det §'By|x, where Dy := Nx/r(Di/q). Suppose

_ * ok .
y 1Byt t o with d € F,. Denote D, := N /p(Dy/p) then for h € Ug(F,),
* d
a-1
> X (@FI(fF®; 20,9 ,hy)
a€(O,/x)* a
—241/2 / 1
= x(det hy)|det hy| " VolSy(Opy) - D fou(z g mwslh.g )P0,z (u)
be(0,/Dy00,) —b 1
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1 1
. Where recall that g’ = g and
-1 -1
1 m -
%(dp)a g=pn y D € Bl(OF,v)am -b € D’UDOF,'U
folg) = 1

0 otherwise .

Proof. See [SU|11.4.16. O

Pull-back integrals

Let T denote a triple (¢,¢,7) with ¢ € V having a conductor with respect to 7. Let ¢, =

7y (ndiag(z=1, z)) and let

F (z2,g) = / o POl g W) ety Wy .
Ui (Fy

where @ = a3 or ) depending on whether m = 2 or 1, again using the convention of subsection

11.4.2. If f(z,9) = £ (2,9S7") then F — T, 2(z.g) = Fy,(f:2.9).

Proposition 11.4.2. Suppose x = A\, t > 0 is contained in the conductors of T and ¢ and xT €

(A7) = condz(¢). Then F7(—m)(z,g) converges for all z and g and

s T

FY) (z,n) = [U1(Op,) K] 7' r(a)|az], 7 ¢

x

and

FP = [U1(Or,) : Ko 'r(@)s2], 2 Fy .

for any r > max{re,t}. Here K, is the subgroup defined as:

a b
K, :={ €U1(0Opy):a—1€(Z),be (23),c€ O,,d—1¢€ (x)}.
c d

Proof. See [SU|11.4.17. O

Proposition 11.4.3. For m =1 or 2, Let v (p, 2) be as above. Assuming char(v) = ¢ which is
unramified in K. If O, # cond(1) 2 cond(17¢) then v (p,z) = vV (p, z — 1/2).

Proof. See [SU|11.4.18. 0
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11.4.5 p-adic sections

Since we have done a large part of this in part one we only record the formulas for Fourier-Jacobi

coefficients and pull-back sections below. These are only slightly different from [SU] 11.4.

Lemma 11.4.12. Suppose ¢ and 7 are as in the Generic case and let (p™) := cond(7’). Let
B € Sy(F,),det 8 # 0, and suppose B € GLy(O,). Let y € GL2(0O,). Let A be an unramified
character of KS such that A|px = 1. Then for h € Ug(F)v)

Z uiigcT(a)FJg(fg’@); —z,u, gdiag(a_y,a), hy)
a€(Oy/x)>

§(=1)c(B, 7, z)7(dethy) |dethm;z+l/2fm,1 (z, gn)wp(h, g)q)m_,iﬁc,w,y (u),

(11.15)
where w is defined using A,and
c(B, 7, 2) = 7' (—detB)|det B|>* T g(7/)2F (p*m)ptm=—5m,
Proof. See [SU|11.4.22. O

Now we use the convention for m = 1 or 2 as in subsection 11.4.2.

Proposition 11.4.4. Let ¢ € V be an eigenvector for m such that v|cond,($). Let (x) := cond(&1) =

t1
vy

(@!) = (wl,w!?). Suppose t > 0 and that x is contained in cond(r1) and cond(y1) and that

xZ € cond.(¢). Let ¢) = U, (—1)w(diag(x,z71))p. Then

mH41l Fg,z(g)a m =2

Fay (FO™ 1 2,9) = 4" (p1, =2)[U1(OF,) « Ko7' 7e(a)|azls” 2 (11.16)
mp(9)p, m=1.
where [ (z,9) = £ (2,95 7).
Proof. See part one. O

11.5 Good Siegel Eisenstein Series

From now on we assume that the characters i) and 7 are unramified outside p. Let (w,V) =

(®m,, ®V,) be as before and let D = (>, p, 1, 7) be an Eisenstein datam for ¢). We augment this
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datum with a choice of an integer Mp satisfying
e Mp is divisible only by primes in ¥\ {v|p};
e for v € ¥\ {v|p}, Mp is contained in o, cond(&,), cond (¢, ), cond(r, ), and condz, (&s).

All constructions to follow and subsequent formulas depend on this choice. In our applications we
are free to choose a suitable Mp.

Let z, := p' € Ok, be such that (z,) = cond(&S). Let

UD ::HKIU,U H KMD,vHUl(OF,v)a

v|p v|Z\{p} vis
with K, , as in the last section.

Remark 11.5.1. Later we will use Up to denote the corresponding groups with same level in G Lo

as well.

For m = 1 or 2 we define a meromorphic section fO" : C — I,,1(7) as follows: fO(z) =

® fému)) () where

i (2) := fu € Lny1(7o0) for any infinite place;

e v{X then fg??(z) = fPh € Lia (1),
e if w3, vtp, then fz(,nz))(z) = 1(\/72,v € Imy1(0);
(m) . £0,(m) . 0,(m)
o forvlp, fp,(2) = 2.7 € Imt1(7y), where z, is used to define 7.
(m) - (m),
We let Hy ' (z,9) == E(fp ' 2,9)-
Let
K9 = {k € Gpuy1(OF) : 1 — k € M2 7,) M. o
D - { € m+1< F) : € Mp (xvxv) 2(m+1)( )}
vlp
Then it easily follows from the definition of the fgj:))(z)’s that
(m) _ gr(m) (m)
HyV(z,9k) =Hp ' (2,9),k € Ky, (11.17)
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and that if for any v|p, t, > 0,x, € cond(v), and z,Z, € cond,(d,) then
H(Dm)(z,goz(l,k;)) = T(akp)Hgn)(z,g),k € Up.
For w € GLyy1(Ax f) let
L™ .= {B € Spmy1(F): 8> 0,Trfy € Op,y € uSm41(Op)t}.

Lemma 11.5.1. (i) if k > m +1, then Hl()m) is holomorphic at z, :== (k —m —1)/2;
(i) if k >m+1 and if g € Qm+1(AF) then

Hp (25, 9) = > HYY (21, 9)
BESm+1(F),3>0

Further more, if B> 0, goo,; = T(Xi)diag(}/},tﬁfl) and gy = r(a)diag(u, @™') € Gpi1(Ary), then
ngg (zk,9) =0if B & L™ and otherwise
—(m41)d (9 (m+1)dk m(m+1)d/2 k—(m+1) vk
—2)~(mAD)d (97 (m+1)dk (9 /rym(m+1)d/ [1;(detp; ,det Y)°)

H(m)z,, = e(trfBa -
D7B( k:9) (tr3a) (H;.nzo(k—j—1)!)dHTZOLS(/€—jﬁ’X?<)

d
x [T e@rB(x; + ;Y1) I Ffo.punw(ze1)
j=1

vgS

x7(det w)| det uu|erl k/2 H H, (7, 2,
vgS

where B, = "upu. B; = 1;(B), t; is the embedding F — R for any finite set of places S O ¥ such
that g, € K10 if v € S.

Proof. See [SUJ11.5.1. O

If K > m+ 1, define a function H7'(Z,2) on Hy,p1 X Grp1(Af) by

d d
HYY(2,2) = [ s (950.) T2 T Jinr (905 8) “HG (k= m — 1)/2, goo)
1 o
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where Joo S G:;,_;'_l(R)ngO(Z) =Z.

Lemma 11.5.2. Suppose k > m + 1. Then Hgn)(Z,x) € Mk(Kgn)).
Proof. See [SU]11.5.2. O

Lemma 11.5.3. Suppose k > m + 1 and that * = diag(u,u™*, v € GLymi1(Ar s with u, =
diag(ly,,ay), ay, € OF, ifved .. If B & L™ or if detB = 0 then Apg(z) =0, and for 8 = (B;;) €
LEZ") with detf > 0

AT () = (51 [R5 /2 (=2)~ Ot Dd( @) (mt DR (@ /(DA T, (detB]B])*
= |0k F — ‘ — L
Do * r Hj:O(k I 1)!d Hj:o Lz(k_JaT/ch)

X H ﬂ,(avdet(ﬂ))g(Té)m+1c(?{), —(k—m — 1)/2)6v(T7"IC1,/Q1, (avberl,l/xv)
lp

X H Ty (ay)ey (TTICU/QU (avbm+17l/MD))

vedvtp
X H Tv(detuv)|uvﬂv|?+1_k/2hvyﬁwuu (To(@o)gy ™).
gy
(11.18)
Proof. See [SUJ11.5.3. 0

11.6 FEp via pull-back

Let ¢o be defined by: ¢o(g) = ¢y (gy) for

1, v=00,0 &%
Yo = ntdiag(Mp', Mp)n ve v fp
diag(z,, 7, 1), vlp

Proposition 11.6.1. Let m = 1 or 2. Suppose that for any vlp (z,) = (p**) with t, > 0 and

that z,, € cond(y)) and z,Z, € cond,, (¢,) where ¢, is defined by ¢ = Qp,. Let g € Gy (Ap) and
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h € G1(AF) be such that p1(h) = pm(g). If k > m+ 1 then

/ HY™ (2, (g, g'h))7(det g’ h)go(g'h)dg!
Ui (F)/UL(AF)

ey L CEUN S o
= W1VF) - Up

3 (2)Ep(z,g) m=2
where

ep(a) = w22 DN [ D T gy |02 7 () [ (M)
vlp vip
y T(z+ (m—1+k)/2)4LE(7, &, 2 +m/2) "
D(z+4 (m+1+k)/2)4]_g L (7,22 +m + 1 — i) v

(11.20)

vlp

Proposition 11.6.2. Let m =1 or 2. Suppose that for any v|p (x,) = (p'») with t, > 0 and that
xy € cond(v) and x,T, € condy, (). Let g € G (Ar) and h € G1(AFp) be such that py(h)pm(g).
Let B € Sy (F). If k> m+1 then

/ HE) (2, a(g, 6'h))7(det o' h)golg'h)dg’
Ui (F)/Ui(AF)

Dpslg)  m=1 112D

(2 up(B,2,9) m=2

= [Ul(@F) : UD]_l
where cgn)(z) is as defined above.

Recall that aq,...,an, € Ox be representatives for the class group of . We assume that each

a; = (wy, 1) € Ok, for some prime v ¢ ¥ that splits in £C. Let

<

F'D = Ul(F) mU’D7F'D,i = Ul(F) n

We often write I'p for the G'Ly open compact with the same level as well. Also, we write I'p g 2 I'p
by removing the congruence conditions required for diagonal entries. (Similar to T'o(N) D I'1 (V) in

the classical case) For any v|p

(puv) = (mv) N OFv, (prv)v = (xva).

It follows easily from the strong approximation that if we let ) € O be any set of representatives
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for (Ox/[1,, #vMp)* /(Op /p"» Mp)*. Then

-1 -1
a; a
Ur(Ap) = U, Usey UL(F)UL(Foo) Up.
a;a
with each element appearing exactly hr times. Define:
HY')(2.9) = > ([Trrneer(@Hp (=, ga(1, diag(a™, a))),

ae(@)c/(nu\p z,Mp))* vlp

Suppose h is a diagonal matrix, then the left hand side of 11.19 is
(0% : OF] ' hip (#(Op /p"» Mp)*) "' [U1(OF) : Up] ™!

hx
<3 7or(a) / AY)(z lg, o' diag(a; ™, a)h)
i=1 FD,i\Ul(Foo)

x 7(detg'h)po(g'diag(a;*,a;)h)dg'.

(11.22)

11.7 Neben typus

In this section we discuss the relations between U(1,1) automorphic forms and G Ly automorphic

forms. This will be useful later. In the [SU] case the situation is easier since they assumed the forms

ok
are newforms, i.e. invariant under the action of matrices: . Now since we are going to work

1

with the full dimensional Hida family so we do not assume this anymore. A principle for this issue
is: we assume the neben characters at places not dividing p and the torsion part at p-adic places to
be similar to the new form and let the free part of the p-adic neben characters to vary arbitrarily.

Let ¢’ = ®,¢), be a character of TU(M)((’A)F). First look at the p-adic places. Note that Z, = A x T’
Z—1
a
for A~TFX and I = 1+ pZy,. Ty(11)(Zy) ={ la € OF ,}s Tar, (Zy) ~ Z) x L. For v|p
a

€, is a character of Ty(1,1)(OF,») can be written as &, ;,,.€, ;. with respect to A x I'. Let ¢ be a

Hecke character we can define 1, o and v, r, be characters of (’),é,,u in the same way. Since 6;’ fr

71
. . : Y
and 1, ¢ have order powers of p so there are unique square roots Eybr and

1
5,fr of them. Now
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suppose for each v|p we have:

Ql

6;;,tor( ) = Yy, tor (a)

for all a € Og , and that for all v { p,

a
& ) = 1y(b)
b
for v|p
a
5v,tor( ) = wv,tor(b)
b
and
@ ol }
€7j,fr( b ) = Ev,fr( ) )'@/Jufr(ab)
and
€ = QuEy

Now let 1 and ¢’ be as above and I be an ideal contained in the conductor of ¢’. Let ¢ be

ak
an automorphic form on U(1,1)(AFr) such that the action of k € Uy(I) is given by &'( ).

b

Surippose moreover that it satisfies the condition that:

(*): for any totally positive global unit b € OF we have:

This condition is necessary for a SLs Hilbert modular form to be able to extend to GLo with given
neben typus)

Then we define a map «ay, from ¢’’s as above to automorphic forms on GLa(Ap).
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Definition 11.7.1.

a;
ay =y (9)(g) = Z P(hoo ) )e(k)(z00ay)
Jiajaz~g a;
a;a;
for g = v2eohe 7 k € GLy(Afp) where v € GLo(F),hoo € SLa(Fixo), 200 € Z(Foo), k €

1
To(Dar,-

Lemma 11.7.1. Assumptions are as above. Suppose @1, ps are automorphic forms on GU(1,1)(Ap),
o is an automorphic form on U (1,1). Let 11, 1)o,3 be Hecke characters for IKC. Suppose i1a1h3 = 1
and the central characters of ¢1,ps are Y¥1,1¢3. Suppose also that €),eh, €5 are neben typus of
a1lu(1,1), @2, azlua,1). Assume that €583 = 1 and the €] ’s and 1;’s satisfy the assumptions above,

then

21708 Op] < 012,03 >ua,1)=< P10y, (p2), 3 >aL,

where up is some number depending only on F'. This factor comes out when considering G Ly modulo

the center.

The proof is straightforward.

11.8 Formulas

Definition 11.8.1.

Definition 11.8.2.

and

95 = trryanyro(aaz) T

Proposition 11.8.1. Notations as above. Let § € Sy, (F).
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(i) There exists a constant an) depending only on ® and m such that

o 1\ (MBIL, w0 ao(B,r) m=1

< 39(—, ), pl )€ >rp o= CH

1 1 —
f I C@(B7x) m=2.

the reason for the twistin showing up here is the different o which we twisted on f€ and T in
( g g up

the pull back formula.) (ii) if a(v, f) # 0 for any v|p and if p|fy and p|fy-1¢ then

1 —k;— c K
Cy) = (—m22 R s 05 (M) Mp| 5™ (0, —2)

c rot+n, (k—2)— 21, D(k—D)*LE(fx""6,k—1)
Ly ozo)p C TR Ty LB (€ X k)

where

7(1)(/’;0’ Zg) = 1[);0(*1) H C2 (7_—6,1;7 1*]‘5/2)55(%1))9(7—6,@)2 H H1v (p)rvinvg(ﬂl_,zl;fzcn )Xoy (Y0)8(k1,0X0&0, Yo)

vlp vlp

C

(yo) 1= cond(x&5) and (p™) = (YuTo)-
(iii) if Oy # cond(£,020C) D cond(XwpES) for any v|p then C(@z) = Cg) H'U|p p.

Proof. One argues similarly [SU]11.7.1 and the end of [SUJ11.6. O

We also state here some formulas for Fourier coefficient which follow from section 11.5 in the

same way as in [SU] 11.5 and 11.7.

Proposition 11.8.2. Suppose y = diag(u, dfl),u € GLm(A,EQf). Fori=1,2,---  hx let v; :==
diag(u,a;). For B € Sp(F),8 >0 and n € Fs<q or 0, let:

c
L{™M(B,n) = {T = e L{™,T > 0}.
This is a finite set

(i)
Wiy = Y 3 Yo (e @AY g0,

Jiajaj~aiai rer (™ (6,n) a€(O/z, Mp))* vlp
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(ii) Let (z,) := cond(&). Suppose x, = p'v with t, > 0 for any v|p. If T € L,(]j”) (B,n) then
AD,T(yj,a) = 0 unless for any ’U|p, T; =1dmy11 € O;éﬂ, and T: = m+1,1mv61C/MD S OIC,U fOT all

v|X\ {p}, in which case;

> (J] w2 m(@)Ap 1 (y;.0)

ac(O/(xzpMp))* vlp

(mt1)/4; 5 ((ma1)y2 (—2) (M HDd () (mHLkd (9 /qym(m+1)d/2
= |6k |2 |07 |5

[0 (k — 5 = DY L2 (k = 4, 7/xk)
x [[(detT |7, )= T] 7o (det(8))g(r) ™ e(7y, —(k — m — 1) /2)

vlp vlp

X p1, vf Hg 251 'ugm'rv)

v|p
E(T)a(85, 2u0k) (o) # Ok, T € OF,
< |Mplh T] lrulc {0 () # O, Ty € OF,

vEX,utp

1 (JL'U) = O}cyv

< [T mo(detuna;) @t |y %2Ry o pu, (7o (@0)g, ).
V€S

Proposition 11.8.3. Suppose y = diag(u,u~'),u € GLm(A%’f). let v; = diag(u,a;). Suppose

x, = p'v with t, > 0 for any v|p. Then for n € F~~q or 0.

P (nyy) = (—i2mm D=1y |g DA (/2§ > RYY

Jiajaj~aiai re (™ (8,n)
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Where Rpr = 0 unless Ty € O, and Ty € Ok for all |\ {p} in which case

RE) = ((detT)| . |detT1,)~ "~ eo(T) [ ] wé, (detT)
vip

X p(=1)xp&s(Mp)
E(TNA(E, 2u0k)  (20) # Ok, Ty € OF,
< ] @xo (z0) # Ok, Ti € OF,
1 (€0) = Ok

X H va_ﬁ(yv5ic)|yv5ic|;2{”9(>2mfﬁayvﬁmathcalK)
vEX,vtp

x p€(adetu)|detul ™ TT ho,at pu, (Fo(@0)a, )
vgE

by e ey (k—2 1\ —
sy py oo (@e)ae P g00€l) ™t m =2

1 m=1

We define a normalization constant:

B(m) . |MD|% H;n:O (k - .7 - 1)'d H;‘n:o Lz(k - j7 X§/€g§) Hvezﬂ;{p ngzc; (yU(SIC)g(ngfn Z/v5ic)|yv5)c|;2&,k
° Hv)(pmez ¢7CJTU(MD)¢I)(_1) Hv|p C’fﬂ+1(f6,v’ _(k -—m — 1)/2)9(7-671})m+1g( 1c)a va)

% id(_l)md2m(m+2)d(27m-)7(m+1)dk (W/Q)m(m+2)d/2

& e ey (k—2 1\ —
Moes.op xo€o(@)as P a(xo&) ™ m =2

X
1 m=1
(11.23)
Now for m = 1 or 2 we define:
—3d (o \d(k+1)
(m) _ 27°%(240) (m) +(m)
R IR
and

S(f) = [T )™ 5™ /20w ()
lp

where W’(f) is the prime to p part of the root number of f with |W’(f)|, = 1 (See [SUJ11.7.3.) and

recall in the section for notations we defined v is such that p"" || N, for v|p.

Proposition 11.8.4. Assumptions are as before. Suppose Kk > 2 if m =1 and k > 6 if m =
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2. Suppose © = diag(u,t'a_l) with GL,,(Ax,5). Suppose plfze and p"|Nm(fe). Suppose also

cond(y)[§¢Oxc .-

(i)
(m) -1
< (fD,ﬁ,ac ® 6), p( )f >Tp,o
prM m
f _ Ly
—1 . . -1 -
< f,n( )¢ >ar, o0 273d(2¢) A=+ S(f) < f, p( )f¢ >ar,.ro(v)
p'r M N
f
ap(T,z) m=1
x W'(f)~
ep(T,x) m=2.
(i1)
(k—2)!

L%) _ Ha(v, f)*ordu(Nm(fxs))(

vlp

(=2mi)r—1

(iii) Under the hypotheses of Proposition 11.4.1 (iii)

LY =Tlp < LB-rx&) J[ (-x&(@)g™"

veSigma

Corollary 11.8.1. Under the hypotheses above

)Ly

)24 g(XE)Nm(Fxedic)" 2L (f,XE £ — 1).

M R
< (fD,l,zM ® f)»p( )f >Tp,o
v M 1

P ; ) L

-1 _ . -1 -
< fap( )fc >GL2,FD,0 (2_3(22)K+1)ds<f) < fap( )fc >GL2,U0(N)

prpM N
! !
For any x € G(Apy) let
Gp(Z,x) = W' ()" LY |u(x) 5" Ep(Z, z). (11.24)
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Corollary 11.8.2. Under the hypotheses as above,

@) el N
< (fD”@@ ®¢€), n( . ) >rp,
P oM f CD(ﬁvx)

~1 . -1 ~
< fin( )f€ >GLy o, (273(20)~+1)4S(f) < f, p( )f¢ >ar,.ro (V)

pr M N
f f

11.9 A formula for Fourier Coefficients

Now we express certain fourier coefficients of Gp(Z, x) as essentially Rankin-Selberg convolutions
of f and sums of theta functions. This is used later to prove various p-adic properties of these

coefficients.

11.9.1 The formula

Let D = (f,%,£,>.) be an Eisenstein datum. We assume:

for any v|p, 7y, , ¢y, Uy, Tpare in the Generic Case . (11.25)
Let A be an idele class character of A,é such that
[ ] >\|A; = 1,

o (@) = (a/lz)7%

e )\, is unramified if v { X\ {v|p}.

Let ai,..,an. € Ag be representatives of the class group of K as in the previous sections; so
a; = (wy,,1) for some place v; of F' splitting in . Also for ¢ € I, then a;a; is trivial in the narrow

class group, we assume w, = ¢; for some totally positive ¢; € F. Let Q = {v; }ier, -
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Let 5 € So(F), 5> 0, and u € GLy(Ax,r) be such that

o u, € GLy(Ok p)for v & Q;
o wpu € S5(Op,)*for all primes v;
e fuy is v-primitive for all v ¢ ¥\ {v|p};

1 x X

o ifulpgTie = then d, € Opfor all v € ¥\ {v|p}.

d

Let Mp be as before and also satisfying:
cond(\)|Mp and Dy det "ufu| Mp. (11.26)

All Weil representations that show up are defined using the splitting determined by the character
. By our choice of K, there is an idele d; of Ak so that 9,0, =0

Later we are going to choose u and S such that they do not belong to GL2(O,) only when v = v;
for some v; above. Recall that we have proved:

for v =1,

F‘]ﬁ,v(f;zkamagvay)

— +l
7(det 7pyy )| det royo| - 2 h
Ty SRR
j=0 — 1 TouXK,v

For v|X\{v|p}, then (notice that we have restricted ourselves to the case when the local characters

1y, Ty are trivial):

a
Z FB,v(Z;x7gv arvuv)
a€(Ox,v/Mp)* a
1
= Z fb(zagvn)wﬁ(rvagv )(I)I,IVID,U,, (l’)
bEOR,,/ Dyd b 1
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for v|p, then

a—l

Z §‘C/T(a)ui11}Fﬁyv(—z;x,gv arvuv>

ae(OK,u/xv)X a

= u(—1)7)(deth)g(r})?7) (p™" )p~ "~ r(det oy, )| det ry 2| det A25H!

v

X fu,u,l (27 gvn>w5 (Tvv gv)q)ér,“;i’mmuv (z) (37)7

(sorry for the bad notation wu,, the last one is of different meaning.)

Now for v|X \ {v|p}, we have

1 , - 1
f—bﬂ)( g 77) = r(*l)f—b,v( gv”])
n 1 v -n 1
. 1 1 b\ [dc0n
= 3 (0xd1) Hax |2 fI( 9o )
-n 1 1 e

For h € Us(Ap),u € GLy(Ax), we define

Pp sy = OPps o H D eeprt H Ds1,Mpu, H Do u,

v|p vip vgEX
-1
. 1 010, -
and ®p g, = A010c") o160 [ w(( | nH®psu and define Opg(h, g;u) =
0;15)(
@ﬁ(hvg;q)’D,B,u)
1 n 1 b -
wgo-1,5(—7 90 1) ®(v0y)
1 1
51 ! 1 n L by [0 -
= wal(- ) n 90 n )@(v)
6t 1 1 1 1
e ot 1 n 1 b) (1 507t
= A016x)[010 " |cws,o(— n 9z Do)
e 1 0 510
1 n 1 b\ (o
= A0 018k kws,o (=1 9l :
1 1 ot



To see this, observe that

and

Definition 11.9.1.

f—anHfuv 1T ATl e

v|oco vET,vtp  vEZ

and define Ep to be the corresponding Eisenstein series on U(1,1)(Ar).

1 1 hu
Let g" = n~'gn and ¢’ = g Jifo = - for u € GLa(Ax), h €
—1 -1 t(hu)—l

Ug(Ar) satisfying the assumptions at the beginning of this section then:

ﬁDﬂ (Zk7 ( 7g)d1ag(01 D1 7]- D1701a )
= Z g ( HDﬁ dlag(bl a1 7170170151))
ac(O/z, Mp)*
!
1 1 y
= CD(ﬁara u) ZZZHf b, v guT wﬂa—l,v(ha Gv )(I)D,ﬁ,u(val)
n v n 1 —b 1
e - 1 1 b\ [oc o
= 5icdulErGx0) O (B ) YOS S T £ gu1l _ )
n v b v —Nn 1 1 6,;1 0;1
1 n 1 b\ [dc
Xwﬁ,v(n 9. . )CI)D,ﬁ,u(v)
1 1 ot
e . 1 b\ [6c
= |50 £  (5cd1) T OB, w) Y pln _ )Onslh,g;u)
b 1 (5,21
1 b S}C 1
xp(n - )ép(9)
1 St ot

The last step is because ©g is an automorphic form.
hudy!
Now let z = b then:
thuoy !
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< 9p (=), p( ) ) >ro
_1 MD Hv|p(pTv)U ]' h;
e 1 b\ [oc
= 60l T(0x0) T < Dol st~ w)-
b 1 Or
1 b) [dc0r 1 1 -1 -
p(1 =, el ) )fe>
1 O 01 -1 ; M3 I, )w ) \1 ;
o w 1 b\ [
= 301 & T (3xdn) < D o _ Denseen -
b 1 ot
1 b\ [dc0n 1 -1\
p( _ )ED, p( )fe >
1 S0t METL, ™) ) \1 ;
~ — E_1 ~ _ 1 ]. b ~]C
= [0xcdulg T(0k) T <> pl _  |©ps@(h, = u)
b ot
1 b) [dc0r 1 -1 )
,0( = )gDﬂp( )f >
1 4 01_1 M% Hv\p(prv)’v 1 7
= [3xcdule " T(3xcd1) "t < A(h, —3u) - Ep,
(| ! i
p ~ c >F0(M2 E)c Hv ppm,)
Dyo M3, Hv\p(prv)v 1 f i |
= |5K61‘,§_1§(5K61) < A’ﬁ(h,—;u) . 5D7
(" ' e
p N © >ro(M2 e [T, p7)
Do M% Hv\p(prv)v 1 7 |
ot

where A% = (p( )(©p,s ®E&)(h,—;u)). Now for those v; for i € I, by definition we have

0

v;U; is an ideal of F' generated by a totally positive global element. Let us take such a generator ¢;.

Also we take a representative {b;}; of the coset:

{b: totally positive units in O} }/{c for ¢ a unit in O}
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Then we for

A/ = Z @D,,Bijk ® g(h” K U)

.3,k

b
where ﬁ”k =
qiby,
Remark 11.9.1. The reason for introducing such b;j is to make sure that the A" satisfy (x) in

the section for neben typus (see also [Hida91] on top of page 324 for the g-expansion) and can be

identified later with some theta functions on GLs.

Definition 11.9.2. Let aey be the operator defined in the section for neben-typus, we define
A= 015)\14/.

Then we are in a position to state our formula for the Fourier coefficients for Klingen Eisenstein

series. Before this let us do some normalizations:

(2mi)2F(2/7) |6k |;€1/2|§F|Elxg(det ru)| det ru|,2§+2 I1
C"D (ﬁ7 T, u) = I —— . -
(IT—o(k = 1= )HAL>(k — J, X€'xx)
X Wy (=)t (det B)| det 815 [T 8 (ol p)xp € (077 )p =2

v|p

(det B52)¢

v; |00

(11.27)

(k = 3)1L>(k — 2,x¢)
(=2)4(2mi) k=24, (g(xu€ls P))Xu &) (P )pl2 =)

Bpi=

£ . —-1/2 — = _ —_
B . IMBIE2 216512108 5! TLjss golpy Xo€s(Wo0i)8(XuES 100x) O ¥
D2 = v fc c
prp(MD)g(fpaxp)

Y€(det ru)| det ru|,§+2)2pfz’,(det B)| det ﬁ|’; det gF—2

By (B,r,u) = —= :
[/ (o X (@i)as" M g(xu8))

thus

B(QQ)CD(ﬂa r, ’U,) = B@ (55 T, U)BQJBQ,Q-

Proposition 11.9.1. With the assumptions at the beginning of this section. Let 8 € Sa(F),8 > 0,
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u, h,x as before, then:

Cp(ﬁ,l‘)

—-1] .
273d(24)(==DAS(f) < f, p( )f¢ >ara,r0(N)
N

= |61 |2 T E(5x01)24 [OF : OX] 7' Bp(B, h,u)

—1 -1\ .
< Bp1€p(—)Bp24s(h, —;u), p( )f€ > G, ro

~ ] prv M.QDDK)
M%DK:D Hv|pprv !

-1 —-11 .
< f;p( )fc >GLsy,T'p
Hu|pprv M

Now let us make some choices for the u and 8 and record some formulas for the Theta kernel
functions:

Let 79 € GLa (A, 5) be such that vy, = (n,1) for v|p and 7y, = 1 otherwise. For 1 <4 < hq, we
let B; := ! ,and u; = g ! . Then 3;, u; satisfy the assumptions at the beginning of

qi a;

the section.

for v|p

Eo.201 o (06 @it g(60 2)601 17 4 (@105)9(60n) @1 = (a4, 25) € Z) X 7y

¢67'jk7£5#;,1;7m1)%70m (I) - T2 = (x/27x/2/) € Z; X Zp

0 otherwise
(11.28)
fors=1,...,d
Wik (gOOs)(I)ﬁijk,OOs ({L‘) = e(Nm(ml)bjw)e(Nm(xQ)bkqiw)j(gOOs7i)_Q
also if v 1 p,
1-— é, xr1 € M;’lO”,xQ € %
(I)ﬁijk,LMD,l(x) = |Dv|71)‘v(*1)|M12)|;1 —qi,, T2 € %,xl S w]\/hgl O;f (1129)
0, otherwise.

for v non split
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(1—21)2, 21 € MpO,, x5 € O,.

—L1-21), 2€0,,2 € (ErOF x0F)

qv qv Tt
@ﬂ'ijk717MD71(x) = |D1)|71>\1)(71)‘MD|171 O’I”(O;;U X ‘f]‘ﬂ/[f O;v) (1130)
& 2y € Oy, 1 € ZROY x RO
0 otherwise.
for v split
if v =1y

1 x; € OIQU,J?Q S ai_lolC,'u
‘I)Oﬂu,v(x) _ (11.31)

0 otherwise.

11.10 Identify with Rankin Serberg Convolutions

From now on we assume that all characters are unramified outside p.

Let a € GLy2(Ap,f) be defined by a, = } of v} \ {p} and a, = 1 otherwise. For
M2 Dy

-1
m > 0 let b, € GL2(Ap s) be defined by by, ., = and by, , = 1 if v fp Then

P
p(a)€p = E(Fp, 2x; Yoo)-
where F(z,g) := fp(z,gaj?l) € I1(7/\). It follows that Fp(z, g) is supported on
Bi(Ap)nK{  Np, (Op)a = Bi(Ap)K{  K1(p"» M3 D)
and that for ¢ = bk k¢ in the support we have :
Fip(2,9) = (MBDx) ™2 DrX(dydy, aw /ol 52 Ty (koo 1),

Now we recall the notion of Rankin Selberg convolution for Hilbert modular forms, following

[Hida91]. Given two Hilbert automorphic forms f and g (as functions on GLy(Ap)). For simplicity,
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we assume that both f and g have unitary central characters y and £, having parallel weight k& and

k such that k > k. Letting 7 = x/¢, as in [Hida91] p341(4.5), consider the following integral:

y s
Z(s, f,g,7) = / / B(f°,g)( e (y)lylsd y
B ry R E 0 1

where (¢, g)(x) = [ (@)g" (2)]j (200, 20) 55, F4(2) = D71 f(@)j(wo0, 20)* and g"(2) = D~ g (@) (woe, 20)",
D is the discriminant of F'/Q. Note that there are miner differences between the notations here and

there, and the m and p there are 0 in our case. Then:
Z(s, [%,9,7) = D227 (0) 7! () "+ TR (s 4 k2 4 1/2) D (s, £, 9.7)
By (4.7) in loc.cit,

Z(s, f,9,7)=D"* [ fg(=x)
Xo

x & (55 4+ 1)j (oo, 20)*F|j (oo, 20) | da,

where

E(w;s) = Y T(y)n(v2)* (7, oo (20))* 1 (7, oo (20)) "

Suppose h € Sy (pTPM%D,c) such that the neben typus of Ep.h is the same as f (this satisfies
[Hida91]4.5), then:
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Bp1 <&p - p( vip,c0 )h, p( vibe fe>
-1 -1
. -1 -1 . -1 —1
Do H LyTy 1 Dyd H TyTy 1
= BD,I < P( vip,00 573 . h7p( vip,00
-1 -1
1 f vip,00 1 f vip,00

X vfoo V>
-1 1
f f
DICD H TyTy 1 -1 B
= Bp1 < p( vfp,o0 )Ep - h, p( )f€ >
1 -1 pr
f v{p,00 P
D;CO H TyTy 5 -1 .
= Bp,1 < p( vip,00 )Ep - hy (Xp(P)ap(fy)™" " p( >
1 pup
f P
27 |51/ "y (1—k)d d —1 Fe
= [MpDk|p  (Xp(p)a(fp))™ “» Bp,1(4m) I'(k = 1)*D(p( ) hik —1)

pUe
p
= |M%[)’C‘1?“71(Xp(p)ap(fp))rp_uPBD,lc(_f)(fp(p)ap(hp))%_r(47r)(1_k)dr(k - 1)d
x L¥(k —2,x&) T L(f§ x bk —1)

(11.32)

Lemma 11.10.1. Assumptions are as above. Suppose h € Sg(p’"PM%DK) is a mormalized eigen

form on GLa(AFR) then

1 f)]{b H TyXy 1 DICD H TyTy -
< BDJ(S‘D . p( vip,00 )h7p( vioo fe>
otpyo0 ; ; ;

= BD73L(flc X h7 k — 1)

where:

Bps = |M3Dxl 2 (% (p)ap(f)" ™" Bo 1e(F) (€ (p)ay(hy)) "~ (4m) =0 (k=1) % L% (k—2, x¢) ™!
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Chapter 12

p-adic Interpolations

12.1 p-adic Eisenstein datum

As in [SU] Chapter 12 we define the p-adic Eisenstein datum to be D = (4,1, f, 1), %) consists of:

e The integer ring A of a finite extension of Q.

I a finite integral domain over Ay, 4.

e A nearly ordinary I-adic form f which is new at all v fp and has the tame part of the character

1.

A finite order Hecke character ¢ of Ag/K* and condy|p and 9| ax =1

A finite set X of primes containing all primes dividing Ndx

Remark 12.1.1. For simplicity we have assumed ¢ is unramified outside p and that the x¢ and &
in [SUJ12.1 are trivial.

Recall also that we have defined in section 7.1 the maps a and B. Let ¥ := a o wdﬂI’,El and

& =P oVUk. For ¢ € X* we define:

Yolw) = [ =aab?(dop(@)] ™.

0EXF, 0

Here v, is the p-adic place corresponding to ¢ under ¢ : C ~ C,. We also define:
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We always assume (irred) and (dist) holds for our Hilbert modular form f or Hida family f.

12.2 Interpolation

12.2.1 congruence module and the canonical period

We denote T2"¢(Mp",x; R) (T%°4(Mp", x; R))be the R-sub-algebra of Endr(MS 4 (Mp",x; R))
(respectively, Endg(S°"¢(Mp", x; R))) generated by the Hecke operators T,. For any f € S"¢(Mp", x; R)
is a p-stabilized eigenform and F the fractional field of R. Then we have 1; € T%°"(Mp", x; R)®r F
the idempotent associated to f.
Suppose f € M°"4(M, x;1) is an ordinary I-adic cuspidal newform. Then as above T°"%0(M, y;I) ®
Fy ~ T ® Fy, F} beign the fraction field of T where projection onto the second factor gives the
eigenvalues for the actions on f. 1 be the idempotent corresponding to the second factor. Then for
an g € SY(M, x;1) ®; Iy, 1¢g = cf for some ¢ € Fj

Suppose (irred); and (dist) ; hold for f and that the localization of the Hecke algebra at mg satis-
fies the Gorenstein property, then T°"%9(M, [)m, is a Gorenstein R-algebra, So TorE0(M, x ;)N

(0 ® Fy) is a rank one I-module. We let ¢; be a generator; so ¢; = n;1; for some 7y € R.

Definition 12.2.1. For a classical point fs of £ the canonical period of fq is defined by

Qcan =< f¢achﬁ >F0(N) /nf¢

Remark 12.2.1. This canonical period is not quite canonical since it depends on the generator {s.

Now we define Mx (B, Ap) to be the space of formal g expansions which when specializing to
¢ € X is a classical modular form with the neben typus determined by ¢. Lemma 12.2.4 in [SU] is
true as well for the Hilbert modular forms: (the character 6 there is assumed to be trivial in our

situation.)

Lemma 12.2.1. There exists an idempotent e € Endp,(Mx(B;Ap)) such that for any g €
Mx(B;Ap), (eg)y = egy € M,g;d(Bpfb,w”¢’2X¢; ®(Ap)) forallp € X

Lemma 12.2.2. Let f € S°(M, x¢;1) be an ordinary newform. Let R be any integral extension of
I. Let g € MM, x;1) @1 R. Suppose also (irred)s and (dist)s hold, then there exists an element

Ng € R such that for any sufficiently regular arithmetic weight ¢.

Proof. The lemma follows in the same way as lemma 12.2.7 of [SUJ. O
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12.3 p-adic L-functions

Theorem 12.3.1. Let A, 1.f,£, and X as above. Suppose that there exists a finite A-valued idele
class character ¢ of Ag such that |, x = x¢ and v is unramified outside X.

F
(i) There exists EfZJC,E € Iy @1 I such that for any ¢ € X a(£,9.8),(so kg is a parallel weight)

ENEK{ € F1 ® Ik is finite at ¢ and

¢(£~f2,1<,5)

_ kg — —
= II ( )_O"dv(an(fm(,)sw)((k¢*Q)I)ng(X%%)Nm(f*%%J’C) O TLR (B Xy S ko= 1)
v|p P00 \P (—2mi)? o~ D —3d(25) T Fa TV 5 (£,) <£,.£5 >

(i1) Suppose that the localization of the Hecke algebra at my is Gorenstein. Then There exists
ENEK{ € Fy @1 Ik such that for any ¢ € X a(£,9,8),(so ky is a parallel weight) EfE}K’f c Fy @l

is finite at ¢ and

¢(£?,IC,§)

Lo pins ¢(p)—07'drU(N7n(f;<f¢§¢)) ((kd,72)!)“g(>’<f¢£¢)Nm(f?d¢i¢57;c)’“¢’2LE(f¢y>zf¢£¢vkrl).
olp P10, (—2mi)2@®e—Dq .,

Recall that the pq , are defined by m, ~ (1,0, f12,0) and p1,,(p) has lower p-adic valuation than

H2,v (p)-

Proof. See [SUJ12.3.1. The point is the Fourier coefficients of the normalized Siegel Eisenstein series
constructed in the last chapter are elements in Ap and thus the fourier jacobi coefficients (the
gg_’)ﬁ(—, x))’s there) are elements in Mx (B, Ap). A difference is that: the Fourier Jacobi coefficients

are only forms on U(1,1), which we do not know how to compare the unitary group inner product

with the GLo unless it satisfies (x) as defined in the section for neben typus. So we use

bt b ;
Soani(| g )e'( )
J

instead, where b;’s are defined in the last chapter and ¢’ is some neben character. Then one can

apply the constructions in the last section. O

Remark 12.3.1 (Hida91). also constructed a full dimensional p-adic L-functions for Hilbert modu-
lar Hida families. In fact his p-adic L-function corresponds to our L except for local Euler factors at

Y. Our interpolation points are not quite the same as his. In fact he used the differential operators to
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get the whole family while we instead allowed more general neben typus at p. (Recall that he used the
Rankin-Selberg method and required the difference of the p-parts of the neben typus of f and g comes
from a global character.) Hida is able to interpolate more general critical values. In particular, the
points ¢g corresponding to the special value L(fo,1) where fy is the element in £ with parallel weight
2 and trivial neben typus is an interpolation point. Our L:?’,CJ coincides with his along a subfamily
containing the cyclotomic 1-dimensional family containing ¢g. This is very useful in proving some

characteristic 0 results for Selmer groups.

We also have the ¥ primitive p-adic L-functions i?,cé and L?’ k¢ for a single f by specializing
the one for f to f. (See [SU]12.3.2)

12.3.1 connections with anticyclotomic p-adic L-functions

Let 8 : Ax,a — A 4 be the homomorphism induced by the canonical projection I'c — I'.. For A
reduced, 3 extends to Fly ®4 Aic.a = Fa ®a A,E,A, F4 the ring of fractions of A.
Now for any A and f € S§"¢(Mpt, x; A) such that (irred) and (dist) are satisfied, we define the

anticyclotomic p-adic L-function:
217 —— > -
Lixe=PLixe) € Aga
and
527_ P EE A— F
e = B(LYke) € Nga ©aFa

For v|p we can further specialize v, = 1 for all v/ # v to get E?’E@v.

We define two notions concerning the anticyclotomic p-adic L-function which would be useful.

Definition 12.3.1. For some v|p, writing [:?’,E,&U =ap+ai1(y-y—1)+--,a; € Fa (the fraction
eld), and Lo, = agt+ar(y—o — 1)+ -+ ,a; € A, then we sa satisfies
fKE 7= Yy
(NV1) if at least one of the a; is non-zero.

(NV2) if at least one of the a; is a p-adic unit.

We denote f; to be the ordinary form in the family f of parallel weight 2 and trivial neben typus

and characters. Also let ¢y be the arithmetic points corresponding to the special L-value L(f3,1).

Theorem 12.3.2. Let AL, f,&, and X be as before and assume the hypotheses there and (irred)

and (dist) holds for f. For simplicity we assume that & = 1.
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(i) If fo satisfies (NV1), then EN?,KVE is not contained in any prime of F1 @ Ik passing the point ¢
and of the form QF; @ Il for some height one prime Q C Fy[[L')]].

(i) Assume that the localization of the Hecke algebra at the mazimal ideal of fis Gorenstein. If one
member of the family f satisfies (NV2), thenﬁ?,c’g s not contained in any prime of I of the form

QI for some height one prime Q C I[[I'5]].
Proof. Same as [SUJ12.3.2. O
Now we state two theorems giving sufficient condition for that (NV1) and (NV2) to be satisfied.

Theorem 12.3.3. ([Vastal04] f is a Hilbert modular form of parallel weight 2 and trivial Neben
typus and character. If the conductor of xx/r and f are disjoint and the S(1) defined in [Vatsal07]

p123 has even number of primes, then picking any v|p we have (NV1) is satisfied for f.

Also Jeanine Van-Order constructed an anti-cyclotomic p-adic L-function L ;. We state the

following theorem of [VAN]:

Theorem 12.3.4. (Jeanine Van-Order) Suppose the level of fo is M = MYM™ where M and
M~ are products of split and inert primes respectively. Suppose:

(1) M~ is square free with the number of prime factors = d(mod?2);

(2)py is ramified at all v|M~.

then for any v|p the anti-cyclotomic p invariant at v defined by her is 0.

In fact in her paper the result is not stated this way. First of all her formula is stated in an
implicit say since she is using [YZZ]. However she informed the author that in our situation it is not
hard to get the above theorem using the special value formula in [Zh04] instead. Note also that her
period is not our canonical period. However the difference of the periods is a p-adic unit under the
second hypothesis above. So we can relate our X-primitive anticylotomic L-function to hers similar
to [SUJ12.3.5. Thus by the argument in loc.cit the p invariant of our p-adic L-function is also 0.
Thus (NV2) is OK for fs.

12.4 p-adic Eisenstein series

We state some theorems which are straight generalizations of the section 12.4 of [SUI.

Theorem 12.4.1. Assumptions as in theorem 12.3.1 (ii). Let D = (AL f,¢,£, %) be a p-adic

Eisenstein datum. Suppose that (irred) and (dist) hold. Then for each = = diag(u,'u ") € G(A%f)
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there exists a formal g-expansion

Ep(x) = ep(B,7)q”
BES(F),>0

cp(B,2) € Ap, with the property that for each ¢ € X5 :

Epg(x):= Y.  ¢lcp(B,x))e(TrB2)

BeS(F),f20

Gpd)

is the q expansion at x for g—*>
can

with Gp, being as in the last chapter.

Remark 12.4.1. There is also a E version of the above theorem under the hypothesis of theorem

12.3.1 (i). We omit it here.
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Chapter 13

p-adic Properties of Fourier

coefficients of F'p

In this chapter, following [SU]chapter 13, using the theta correspondence between different unitary
groups, we prove that certain Fourier coefficients of Ep is not divisible by certain hight one prime

P.

13.1 Automorphic forms on some definite unitary groups

13.1.1 generalities

Let 8 € So(F), B> 0. Let Hg be the unitary group of the pairing determined by 8. We write H

for Hg sometimes for simplicity.

For an open compact subgroup U C H(Ap ;) and any Z-algebra R we let:
A(U,R) :={f: H(Ar) = R: f(yhku) = f(h),y € H(F),k € H(F),u € U}.

This is identified with the set of functions f : H(Ap ) — R such that f(yhu) = f(h) for all

v € H(F) and v € U. For any subgroup K C (Ap ) let

Au (K3 R) := lim Ay (U; R),
UDK
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13.1.2 Hecke operators.

Let U,U’ C H(AF,s) be open compact subgroups and let h € H(Ap ). We define a hecke operator
[UnU’] : A(U,R) — Au(U’; R) by

[U'hUf(z) = f(zh:),U'hU = U;h;U.
We will be interested in two cases:

Case 1. The unramified case. Suppose v splits in K. The identification GL2(KC,) = GLo(F,) X
GLy(F,) yields an identification of H(F,) with GLy(F,) via projection ont the first factor: H(F,) =
{(4, B~ "A1B) € GLy(K,)}. We let H, C H(F,) be the subgroup identified with GLy(Op.,).

Wy
For U = H,U',U" C H(AY}, ), we write T,/ for the Hecke operator [Uh,U], h, := €
1

GLy(F,) = H(F,), where w, is a uniformizer at v. (in the unramified case this does not depend on

the choice of w,)

Case 2. Hecke operators at p. If v|p, for a positive integer n we let I, , C H, be the sub-
group identified with the set of g € GL2(Z,) such that g modulo p™ belongs to Np/(Z/p"Z),).
For U = LU, U' C H(A]{;})}L), we write U/ for the Hecke operator [Uh,U]. This operator respects

variation in n and U’ and commutes with the T’s for v { p. Let U, := [T, U

13.1.3 The nearly ordinary projector.

Let R be either a p-adic ring or of the form R = Ry ®z, Q, with Ry a p-adic ring. Then for
U =1y, InoU' U C HALD),

ey = @Uﬁml € Endr(Ag(U; R))

exists and is an idempotent. By identifying C, ~ C, ey is defined on A%y := lim,,_,oc Ag (Hv|p I,.).
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13.2 Applications to fourier coefficients

13.2.1 Forms on H x U;

If v splits in K then we view representations of H(F,) via the respective identifications of these
groups with GLy(F,) (projection onto the first factor of GLo(K,) = GL2(F,) x GLo(F,)). Let A
be a character of Ag/K* such that A (2) = (2/]2]) 72 and /\\A; = 1. Let (m, V),V C Apy, be an
irreducible representation of H(Ag ;) and let (o, W), W C A(Us), be an irreducible representation

of U1 (Ar,s). Let xr and x, be their respective central characters. We assume that:

®  Xo = AXx;
(13.1)
e if v splits in K then o, >~ m, ® A\, 1 as representations of GLy(Fy).
We also assume that we are given:
e a finite set S of primes outside of which A is unramified
(13.2)

e a finite order character 6 of AZ/K* extending x. and unramified outside S

Let ¢ € V ® W. We assume that

o if v &S then p(hu,g) = ¢(h,g)for u € H,

e there is a character ¢ of T; U(Ll)(@p) and an ideal N divisible only by primes in S such that

. ar b
o(h, gk) = e(k)p(h, g)for all k € Uy (O) satistying Nlex. (k= = " |)
Ck dk

(13.3)

Now suppose there is a &’ on Ty, (Or) which coincides with e on Tsz, (Or) then it makes sense to

define QNG ,e,e’ P-

Lemma 13.2.1. Suppose above assumptions are valid, then for any v & S that splits in K.
axg (0w Ty ) (h,u) = Tyaxg () (h, u),

where 0, = (0y,1,0,.2) as a character of KK = F) x EFf.

Proof. Same as [SU] lemma 13.2.2. O
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Now we consider the p-adic ordinary idempotents ey and e. Suppose additionally that

o cond(0,1) = (p").cond(0, 2 = (p*),r > s for any v|p
o PN (13.4)

b (b((hkvg) = 9;%9}772(@762)epyl(deth)(p(h‘vg) for k = (kl’ kQ) € HP’ prlckl'

Lemma 13.2.2. Assumptions all above assumptions. Then

axg(erp)(h,u) = earg(p)(h, ).

Her, e is the usual ordinary idempotent action on @(h,—) € Ma(N,6").

Proof. Completely the same as [SU]13.2.3. O

13.2.2 consequences for fourier coefficients

We return to the notation and setup of chapter 11. In particular D = (g, 1,7, X)is a Eisenstein

datum. Letting ©;(h, g) := Og,,, (h, g; ®p g,;4,u;)- From the definition of ®p g, u,;:

o ifv{XUQ, then O;;(hu, gk) = ©;(h, g) for u € H;ji, and k € U1(@F);

o ifv|SUQ,v1p then Ok(h, gk) = A(di)Oyji(h, g) for k € Ky o(MAODk [T e0 9); s
13.5

o ifvlp, Oy (hu, gk) = &6 (au, )& (det ug) AEC(dr)Oi(h, g).

for u = (u1,u2) € Hijin with p**|cy, and k € U1(Op,) with p"»|cy.

Now we decompose each ©;;i(h, g) with respect to irreducible automorphic representations g of
Hiji(Ar,y):
2]1{: h g Z (p(z]k)

Then, as in [SU] p202, using general consequences of theta correspondences in the split case we may

decompose:
ijk)
Oijk(h,g) = Z @EWJHU) h,g), @(WH)U)ETFHQ@O',
(mm,0)
Oy ™ TH., @ Ay as representations of GLy(F),) for all v splits in K,
(ijk)

and such Plrm )(h, g) satisfies the assumptions of the last subsection.
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For i € Iy, let
Cp,iji(h) := 7(det h)Cp(Byjk, diag(u;, 'u; " *); h) € Ap,,,,

Recall that we have defined A := aex -, Ap, -

ijk
Proposition 13.2.1. Let £L = {v1,vs, -+ ,um} be a set of primes that split in K and do not belong

0 Z . Q Let I € C[Xl’ ’Xm] Let PH7 = P(Evlyl(wvl)TgiV o ;gvm,l(wvm)Tlﬁj) and Pl =
P(ﬂ)l’ e 77_'1)711,)' Then:

> ik € P,y Cp iji () Bp (Bis by ui) ~H24P [OF - OF]

N
2-34(2i) 4RV S(f) < f, p( )fe>
-1
1 -1 -1
<&p - p( JePr, p( N L, ) >aL,
0 M%chb pT“
= 7(det h)
- ~1
< f7p( Hvlp )fc >GL2
M P
f
1
Proof. Same as [SU]13.2.4. and 13.2.5. Observe that p( ) commutes with eP;. O
0

13.3 p-adic properties of fourier coefficients

In this section we put the operations above in p-adic families. Let D = (A, 1, f,4,£,>") be a p-adic
Eisenstein datum as in the last chapter. Let Ep € Mg ora(Kp, Ap) be as there. For x € G(Ar 5)
with € Q(OF,) we let ep(8,x) € Ap be the S-fourier coefficient of Ep at x. So for ¢ € X§,
ep,o(B,x);= ¢(ep(B,x)) is the S-fourier expansion at = of a holomorphic hermitian modular form
Ep 4(Z,x) Define

h

¢ p.2.0(h) = XU, Eo(det B)ep (B, . )
-
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This belongs to Ap,(¢(Ap)) when restricted to Hz(Aps). As in [SUJ13.3.1, recall that Bix =
b; 1

and u; = o . For h € GLy(Ax, ) with hy, € GL2(Ox p) let

qibk a;

huibl_l

op.ijk = 2" [O;é : O;]Xfi/)iléil(det h’)CD(ﬁijkv )BD(,Bijk, h,ui)_l € Ap.

=110,

(Note that by our choices Bp(Bijk, h,u;) ™! moves as a unit in Ap.)

and for ¢ € X2 and h € GLy(Ak ) let

¢,k (h) = Pp 5 diag(uiort attor),0 ():
If hy, € GLa(Ok,p), then ¢(p.ijik,¢(h) = ¢ ijk,¢(h). Now we have the following lemma interpolating
the Hecke operators, completely as in [SU]13.3.2.

Lemma 13.3.1. Let £ :={v1, - ,v} be a finite set of prime that split in K and do not belong to
YUQ. Let P € Ap[Xy,--- ,Xpn|. For h € Hi(Aps) with h, € H; ,, there exists pp (L, P;h) € Ap
such that:

(a) for all p € X2,

o(¢p,ijk (L, P;h)) = Py(Eg00,1(00) Ton ™"+ 1 €pwm 1 (P )T Ve, 0D ijie .o (B),

where Py is the polynomial obtained by applying ¢ to the coefficients of P.
(b) if M C Ap is a closed Ap-submodule and ¢p;j(h) € M for all h with h, € H,,, then

(,O'Dﬂ‘jk-(ﬁ, P; h) c M.

Observe that the neben typus of agx(A) at v|p are given by:

e'( ) = 11,0 (00 iz (do) 71y 75 (do).
d,

for any a,,d, € OF . From the definition of the theta functions (g-expansion) we know that cex(A)
is a Ap adic form. Also for each arithmetic weight ¢we consider the resulting form at ¢ is a form of

parallel weight 2 and neben-typus at v|p only depend on ¢|R™.

Now let g € M"Td(M%D;g, 1; Aw,4) be a Hida family of forms which are new at primes not dividing
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p and such that g ® xyx = g. Suppose also that the localization of the Hecke algebra at the
maximal ideal corresponding the g is Gorenstein so that {5 makes sense. Now following the remark
of [SU] before 13.3.4, one can change the weight homomorphism and view g as an element of
M4 (M2 Dy, 1; R*) such that at any ¢ we consider it is a normalized nearly ordinary form of
parallel weight 2 and neben-typus at v|p the same as agx(A). Also as in loc.cit one can find a
polynomial of the Hecke actions P, := P(T,, ..., Ty, ) € T"*(M2 Dy, 1; Rt) such that P, = aglg
with 0 # ag € R™.

With these preparations we can prove the following proposition in the same way as [SU]13.3.4.

Proposition 13.3.1. Under the above hypotheses,

Y ep.ik(L, Pgi 1) = Ap gBp .
1,5,k

with Ap g € I[[T]] and Bp g € I[[Ux]] such that for all ¢ € Xjy:

~ _ A1 ~ _
?(Ap,g) = |0xc01[ &(dxc01)d(ag)ng,
1 -1 -1
<Bp,1€p,p( )9 4,0( ~ ILp VFo>aL,
0 M%D}C prv¢
-1 -1
<fo.p( H1,|p )f£>GL2
M prve

and for ¢ € X?,

1
< BD,QQEA(Zijk @Dﬁijk ® g)d?a p( - Hv|p )ggﬁ. >GLs
M%D)C prvé
¢(Bp.g) = Mg,

—1 —1
< g¢3p( - Hv|p )gé >GL2
M%D;C prve

Furthermore, Ap g # 0.

Definition 13.3.1. Suppose we have a Hida family f of ordinary Hilbert modular forms and KC is
a CM extension of F as before. Let fo be the element in f of parallel weight 2 and trivial character.

We also denote ¢g to be the point on the weight space corresponding to the special L-value L(f3,1).

Now we prove the following key proposition:
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Proposition 13.3.2. Let A be the integer ring of a finite extension of Qp, I a domain and a fi-
nite Aw, a-algebra, and f € M° (M, 1;1) an I-adic newform such that (irred) and (dist) hold.
There is a ¥ and a p-adic Fisenstein datum D such that contains an odd prime not dividing p
that splits completely in K/Q. There exists an integer Mp as before and divisible by all primes
dividing X3 such that the following hold for the associated Ap-adic Eisenstein series Ep and the set
Cp = {cp(Bi,x);i € Ip,x € G(Ar, ;) NQ(F,)} of fourier coefficients of Ep.

(i) If R C Ap is any height-one prime containing Cp, then R = PAp for some height-one prime
P CI[[T]).
(ii) if | satisfies (NV2) then there are no height-one primes of Ap containing E?,CJ and Cp. If f

satisfies (NV1), then there are no height-one primes passing through ¢o containing E?,Ql and Cp.

Proof. we give a brief summary of the proof following [SU]13.4.1 closely.
As in loc.cit, we only need to find an Mp so that there is an g with Bp 4 is a p-adic unit.

First we find an idele class character 8 of Afé such that:

o O(2)= H b

vEX
o Ol =1-lrxk/r;

e Nm(fy) = Mzfor some My € F* prime to p and such that Dy M|M,

and v|My for all v € ¥\ {p};
e for some UID;(;, the anticyclotomic part of G\émq has order divisible by g,,.
e Q- ”L(1,0) is a p-adic unit, where Q. is the CM period defined in [HAntil;
e 0,2(p) —1is a p-adic unit for any v|p.
e 1 has order prime to p.
e the local character 1 is nontrivial over IC5<3 for all P € ¥,

e the restriction of ¥ to Gal(F/K[y/p*]) is nontrivial.

Here 9 is the ”torsion part” (as defined in [Hida05]) of the anticyclotomic part of 6% := 0°/6, p* is
(—1)e=1/2p,
The existence is proven in a similar way as in [SU] 13.4.1, using the main theorem of [Hsiehl1]

instead of [Fi06]. (The result in [Hsichll] is not stated in the generality we need since he put a
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condition (C) there requiring that the non split part of the CM character is square free. But M-L
Hsieh informed the author that, as mentioned in that paper, this condition is removed later.) Now
using the main result of [Hida 06] and [Hida09], (we thank Hida for informing us his results in
loc.cit). under the last three conditions above, we have

n | (.997 g@)
ge Qgg

Thus
L(1,60)?/Qean|L(1,0)%/Q2Z (13.6)

where ., is the canonical period associated to gg.

If go is the CM newform associated with 6. It has parallel weight 2, level Mg[);c, and trivial
neben character. Similarly as in [SU] p210, we see that it satisfies (éirred) and (dist). Let g €
MO (M2 Dy, 1; R) be the ordinary CM newform associated with 6. (this is constructed in [Hida-
Tilouine]p133-134. one need to first construct the automorphic representation generated by some
theta series and then pick up the nearly ordinary vector inside that representation space.) The
Gorenstein properties are also true as remarked by [Hida06]. Recall that we have defined A :=
aex (D2 ik Opiyr ® E). Now we evaluate Bp g at the ¢ which restricts trivially to W ,’s and I'c. In

this case the argument in [SU] 11.9.3 gives that:

agx(A)g = (Bp.a)s B (xx)p( )E' (xx)
Mp

where (Bp 4)y = \M127|I;1|<‘5;g|;<23di_2d\(5;g|,%C which is a p-adic unit. Here £’ = Hv|p(l—p% (p( ) E(xx)

for E(xx) being the weight 1 Eisenstein series whose L-function is L(F,s).L(F, xx,s). We write

-1
h = E'(xx)p( )E' (xx)
Mp
Then the argument in [SU]13.4.1 tells us that:
-1 -1 +|Dic|r [T, Ov.2(p) 72
<hp(] ) )g° >= L(L,60)* [T(1 = 0u2(p))°
o \p Mp Dy i4(—2mi)**g(xk)

v|p
v
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Thus

+|Dk|r L, 0u2(p)~” L(1,6)? H(l —0u2(p))>.

¢(Bp.g) = i4(—2mi)?g(xic) Qecan vlp

2
By definition ¢(Bp.g) is p-integral. But as noted before, % divides a p-adic unit, thus itself
must also be a p-adic unit. Therefore, Bp 4 is a unit. This proves (i). (ii) is just an easy consequence

of (i). -
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Chapter 14

Construction of the cuspidal family

In this chapter we construct a A p-adic cusp form which is prime to the p-adic L-function by explicitly
writing down some Ap-adic forms with the same boundary restriction as the Klingen Eisenstein

family constructed before.

14.1 Certain Eisenstein series on GU(2,2)

14.1.1 Siegel Eisenstein Series

In this chapter we use P instead of P to denote the Klingen parabolic and save the letter P for
the height one prime. Consider the p-adic family of CM characters of K*\Ag. In the component
containing the trivial character, there is one element 7., which is unramified everywhere and has
infinite types (%, —%2) at all infinite places for some x > 6 divisible by (p — 1). Define a Siegel
Eisenstein series E,, on GU(2,2) by choosing the local sections as follows: Let f] be the section
supported on QuwsK¢(w,) and equals 1 on Kg(w,). (Here Kg(w,) means matrices with v-integral

entries that belong to Q(OF,,) modulo w,.) If v|p Let

To(det D1)|Aqu_1|5 if g = quisk € Qi3 Kg(wy)

0 otherwise
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where wq3 =
-1

1
We define f, = f., for v|oo, f, = fi for v € ¥, v {p, and f, = f! for v|p. Now we want to compute

the constant terms of E,, along P at g as an automorphic form on Mp = {m(a,x)}.
Now we compute the constant term of E,, along the Klingen parabolic subgroup P. First note
that
G(F) = QF)P(F) U Q(F)wP(F).

thus

Ewl9)= >,  f(v)

+EQ(F\G(F)
= > flvg) + > f(vg)
YEQIPN\Q(F)P(F) YEQUPN(F)uw2P(F)

Suppose the above summation is in the absolute convergent region.

EHO,P(ng) = / Eng(ng)dn
Np(F)\Np(Ay)

= /Np(F) Z f=(yng)dn

\Ne(AF) yeQ(P\Q(F)P(F)

+ / > f=(yng)dn
Ne(FNNe(AR) yeQ(P\Q(F)w:P(F)

=0 +1

we claim that Is(g) = 0. By [MW] we have

Ix(g) = Z

m’€Mp (F)Nw-1Q(F)w—1\Mp (F)

Z f=(wm/'n'ng)dn

/]Vp(F)\NP(AF) n’€Np (F)Nm/~tw=1Q(F)wm’

= / fz(wnm'g)dn
m / Ne(F)nw=tQ(F)w\Np(AF)

[
m' ¢ N1(F)\(AF) J N1 (Ar)\Np(A)

— Z/NQ(AF) J-(wnm’g)dn

m/’
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Y
For any go such that go o is of the form , I2(ggo) as a function of g is an automorphic

,gt

form on Mp, in order to prove this is zero, we show that all the Fourier coefficients of I, along the

1 X
1
unipotent group are zero. But this is nothing but
1
1
1 S
[ rw g0)e(~tr35)dS
Nq(Ar) 1
n
for g = , which we have proven to be 0 at z = z, = ”7_2 for all gy with the required oo

0 0
part.

Next we consider I;. We define a Siegel Eisenstein series E. on GU(1,1) by chossing the local

sections by f, = fI for v finite and f, = f., for v|oo. Then it is easy to see that if g is such that:

K, if v|p
9v €4 woK, ifvip, oo
1 if v]oo
(Here K, are the level groups for some Klingen Eisenstein series we constructed before at some

weight ¢.) One can check that I is

Ej(a I] )

vtp,oo \ —1

14.2 Hecke operators

In this section we study the relations between the GU(2,2) and GU(1,1) Hecke operators via the
restriction to the boundary. For any automorphic form F on G(Ap) and some gy € G(Ap) we

consider Fp as an automorphic form on GU(1,1): the value at ¢’ € GU(1,1)(AF) is given by

Fp(m(g',1)g0)-
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14.2.1 unramified cases

Suppose v is a place unramified in IC/F.

split case

if v splits in K/F, then U(OF,) ~ GL4(Op,). We write 7, = (11, 72) and 19, = (77, 75 ) with respect

to K, = F, x F,. Recall in this cse we have defined

dy = diag((w,, 1), 1, (1, @, "), 1).

Wo
. — (1) 1 .. . .
via projection onto the first component, ¢’ = and B(F,) is identified with the
1
1
X X X
X X X X
matrices . Let K be identified with G(Op,)

X X
X

Ktél)[{ = Unyidi K Ungjde K Unspds K U dy K

1 X X 1
1 x 1 x X
where ni; goes through , M2; goes through nsk goes through
1 1
1 1
1 @, 1 1 1
1 1 =, 1 1
7andd17d27d37d4 are ) ) )
1 x 1 1 Wy
1 1 1 1

respectively. If g = m(g’,1) for some ¢’ € U(1,1), then

Eyp(gnajdz) =E4 p(gda)

:E¢,P(g)72_1 ().
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Eyp(9ds) = Eg p(9)71(0)

By p(gnajds) = Exyp(g,d2) = (75) ! (wy)
Eyo,p(gds) = 11 (@) Exo,p(9)-
thus one sees:
Lemma 14.2.1. For g such that g, = m(g1,4,1) for some g1, € U(1,1)(F,) we have:

(To(t5")(Ey - Bxy))p(9)

= (@ (5 (@o) - (13) (@) + 1177 (@0)) (By - By )p(9)

+a (| 7" e Bedo)

@,
where T, ( ) is as a Hecke action on GU(1,1) and we consider (Eg - E.,)p as an automor-

1
phic form on U(1,1) using go by the remark at the beginning of this section.

unramified inertial case

Wy

Suppose v is inertial in C/F and take K to be G(Op,), define: d, = . Then:

KdUK = I_IinlidlK L ngjdgK |_|]€ ngkd3K (] {d4}K

where

Wy Wy
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1 1
dz = ydy =
1 Ty
Wy Wy
1 X X 1
1 x X x 1 X
where ni; runs over matrices of the form , Mgj over , M3k Over
1 1 x
1 1
1 X
1 . . .
. As in the split case (actually even simpler), we see that
1
1

Lemma 14.2.2. For g such that g, = m(g1,,,1) for some g1, € U(1,1)(F),):

(Ta, - (Eg - Ex,))p(9) = (¢0 + )T ((Es - Exo)p)(9)

Wy
where T,( ) is the Hecke action on GU(1,1).
1

p — case: v|p.

[\v]

Suppose d = d, = ( ,1) we study (Ty,(Ey - Ex,))p(g). Using the decomposition

p
KdK = Un;dK where n; running over

—
8
—
Q

=

—
—
—
— ™
2

where x,«, 3,7 Tuns over congruence classes modulo: O,/(p,p), Z,/p*, O,/ (0?,0?),Z,/p respec-
tively.
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First notice that if = # 0, Eg p(gn;d) = 0, so we may ignore such terms while summing up,so

(Ta,(Ey - Ex,))e(9)

=Y Eyp(gnid)Be, p(gnid)
a,B,y

Observe that for all choices of 3,, the above expression does not change. Therefore the sum-
mation is essentially only over a’s.
If ¢ = m(g1,1) for some g; € U(1,1) then an easy computation taking into account Hida’s

normalization factors for U(2,2) and U(1,1) gives:

(Ua, (E-Exo))p(g) = p~ 2050 (0,07 2)) To 0 (0,07 2))Ups (B By )p) (9)-

p
Here Ups is the U(1,1) normalized Hecke operator associated to ( ,1).
1

Recall if we define Ué2’2) = [1,), Ua,, then e"UT'(d2 5y = limy ur.

The above calculation told us that

Lemma 14.2.3. For g such that g, = m(g1,4,1) for some g1, € U(1,1)(F,), then:
(eG%)(Es - Exy))p(9) = efi) (Es - Exy)P)(9)

14.2.2 construction of the family

Now we define an automorphism v : Ay — Ay such that for any arithmetic weight ¢ , v o ¢ is
an arithmetic weight with the same neben typus at p but x,04 = K¢ + Ko. The formula is given
by: (Y1 4+ Wiy) = (1 4+ Wi,),v(1+ Way) = (1 + Wa,)(1 + p)*. Then we consider I ®, 1. We
choose a reduced irreducible component J' whose spectrum maps surjectively onto SpecAy . Then
it is easy to see that both I’s inject to J'. We define J to be the normalization of J'. (Intuitively J
is parameterizing pairs of forms with weight x4 and ko). We write j1 : I — J and jo : T — J for
the two embeddings. We have j, oy = j;. We also define an automorphism Ap — Ap which we
again denote as 7 such that the Eisenstein date we get by ¢ and ¢ o v have the same ”finite order
part” and Kgoy = kg — ko. If we denote Ap j then both ji (Ep) and jo(Ep.E,,) are Ap j-adic forms.
Considering f as a J-adic Hida family.

Let Py := Pe(Ty,, -, Ty, ) be a polynomial in J(Xi,---,X,,) such that Py = agls for some
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0 # ag € J. We define a A p-coefficient formal g-expansion:

E° = (Pf(thdvl T 7TUnnd'um )e?f(dQQ) (E - j2(Ex,)))
where

(2 (To(dy) = G2(F)(@0) - 75 (@) — 77§ (@) Wa o () if v splits in K/ F
T’U(dv) =

TLT’U (dy) if v is inertial in IC/F

Here d,’s are defined as before and W, ,, is to take care of the difference between Hecke eigenvalues
between U(1,1) and GLy. We should justify the operator 6(5;((12}2) acting on Ap j-adic forms. This
could be done in the same way as [SU]12.2.4 (i).

We have already computed that if ¢ is such that g, = 1 for v|p and g, = w for v { p,v € ¥ and

1
gv = 1 for v|oo then the constant term j; (Ep)p at g is given by j; (ﬁig—,ﬁ%)(w(]—[vmm f).
Therefore the constant terms jo(Ep.E,,)p at g is given by: °
L% % 1 1 1
(L2 c3)( ]] 0EL (@ [] )
vfp,00 -1 vp,00 -1

Now we consider a 1-dimensional subspace of Ap defined by the closure of the arithmetic ¢’s such
that &, is trivial and fy has trivial neben typus at p. Observe that j; (£%) is not identically 0 along
this family by the interpolation properties and the temperedness of fy. (recall also that we do not
know a priory that these points are interpolations points. But by comparing with Hida we know
that his and our constructions coincide along a subfamily containing the 1-dimensional family above
and we can use Hida’s interpolation formula.) So we can choose ko properly so that ja(£3%) does
not pass through ¢o. (only need to avoid a finite number of points). (Note that j2(£%) does not
interpolate any classical L-values since the weight is 2 — rg.) Let P be any height one prime of Ap 3

passing through ¢ then P is prime to ja(£3).
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Sum up, for [, g, = g, if:

P(F,)K,. v|p

P(Fy)wK,, veX\{v|p}.
Jo €
Q(El)v U|OO

1, otherwise

then there is an a € J satisfying:

(1 (LBLLeE))sp = (- ap)s(jo(LHL e E))op(9)

<fy,—1-EL p( [T, 5>
M pre
and a, = 1y, In the case when kg4 >> Ko our previous
-1 -1
S M, 15>
M pre

computations on Rankin-Selberg convolutions told us that a; # 0 by the temperedness of f;.,—1

-1 -1
and p( IL, s

M pre

Theorem 14.2.1. There is a Ap j-coefficients formal q expansion F, such that:

(i) for a Zarisi dense set of arithmetic points ¢, Fy is an ordinary cusp form on GU(2,2)(Ap).
(i1) F = aafjg(ﬁgﬁis—/)ED(modjl (E%Eié,)) for some 0 # aap € J(I'T).

(iii) for any height 1 prime P of Ap containing j1(L3) passing through ¢o which is not a pull back

of a height 1 primes prime of J[[T'{]], there is a coefficient of F outside P.

Proof. Taking F := j; (ﬁ%ﬁié,)Eo - aaij(L%ﬁié/)ED.
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