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Abstract

In this thesis we generalize earlier work of Skinner and Urban to construct (p-adic families of)

nearly ordinary Klingen Eisensten series for the unitary groups U(r, s) ↪→ U(r + 1, s + 1) and do

some preliminary computations of their Fourier Jacobi coefficients. As an application, using the

case of the embedding U(1, 1) ↪→ U(2, 2) over totally real fields in which the odd prime p splits

completely, we prove that for a Hilbert modular form f of parallel weight 2, trivial character, and

good ordinary reduction at all places dividing p, if the central critical L-value of f is 0 then the

associated Bloch Kato Selmer group has infinite order. We also state a consequence for the Tate

module of elliptic curves over totally real fields that are known to be modular.
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Chapter 1

Introduction

1.1 Conjectures for Motives

1.1.1 Characteristic 0 conjectures

Let M be a motive over a number field F . Suppose p is an odd prime that splits completely in F .

(We are mainly interested in the p-adic realization Hp(M) of M , i.e. a Galois representation of F

with coefficients a finite extension L of Qp and which is unramified outside a finite set of primes

and potentially semi-stable at all places dividing p.) Let V be Hp(M). Suppose that for each v|p

we have defined a subspace V +
v ⊂ V which is invariant under the local Galois group GF,v. Then the

Selmer group H1
f (K, V ) of V relative to the V +

v ’s is defined to be the kernel of the restriction map

H1(F, V )→
∏
v-p

H1(Iv, V )×
∏
v|p

H1(Iv, V/V
+
v ),

where Iv ⊂ GF,v is the inertial group.

Greenberg gave a recipe for choosing such V +
v ’s under certain standard conditions. For each v a

prime of F dividing p, suppose Hp(M) is Hodge-Tate at v with Hp(M)⊗Qp Cp ≃ ⊗iCp(i)hi where

the hi are integers and Cp(i) is the ith Tate twist of Cp. If d = dimQp(Hp(M)) and d± is the

dimension of the subspace of Hp(M) on which complex conjugation acts by ±1, then d+ + d− = d.

We assume that
∑
i≥1 hi = d+ and that:

Panchishkin Condition:

1



Hp(M) contains a subspace F+Hp(M) invariant under GF,v with the property that

F+Hp(M)⊗Qp Cp ≃ ⊕i≤1Cp(i)hi .

Then V +
v := F+Hp(M). Examples of motives for which these conditions hold include:

• all Dirichlet characters and their Tate twists;

• elliptic curves with multiplicative or good ordinary reductions at all places dividing p;

• nearly ordinary modular forms.

One can also define the L-function L(M, s) for M which, conjecturally is absolutely convergent for

Re(s) is sufficiently large and has a meromorphically continuation to the whole complex plane. A

general philosophy is that the size of the Selmer group for M is controlled by the special value

L(M∗(1), 0) (up to certain periods and normalization factors), where ∗ means dual and (1) is the

Tate twist. More precisely, the characteristic 0 Bloch-Kato conjecture is:

Conjecture 1.1.1. Suppose V is an irreducible Galois representation of F , then

ords=0L(M
∗(1), s) = rankLH

1
f (F,M)

1.1.2 Iwasawa Main Conjectures

We can choose the coefficient to be the integer ring OL instead of L and defined the corresponding

‘integral version’ Selmer groups as well. We can also deform everything in p-adic families. More

precisely, on the arithmetic side consider the integral Selmer group SelM for M but over some Zdp

extension F∞ of F . This Selmer group has an action of the Iwasawa algebra Zp[[Gal(F∞/F )]] and

can be viewed as interpolating Selmer groups of Hp(M) twisted by characters of Gal(F∞/F ). On

the analytic side there is a conjectural p-adic L-function LM ∈ A[[Gal(F∞/F )]] which interpolates

special values of L-functions for M twisted by Hecke characters. (here A is some finite extension of

OL.) The Iwasawa main conjecture essentially states that:

Conjecture 1.1.2. SelM is a torsion module over Zp[[GalF∞/F ]] and

Char(SelM ) = (LM )

as ideals of the Iwasawa algebra. Here Char means the characteristic ideal to be defined later (see

section 2.8).

2



Note that in the special case when F is totally real and M is 1-dimensional, this is the classical

Iwasawa main conjecture which was proved by Mazur-Wiles [MW] and Wiles [Wiles90].

A strategy to proving such results is introduced in the papers [MW] and [Wiles], which proved

the Iwasawa main conjecture for Hecke characters over totally real fields. There they studied the

congruences between GL2 Eisenstein Series, whose associated Galois representations are reducible,

and cusp forms, whose Galois representations are irreducible. Recently, this has been generalized

successfully by C.Skinner and E.Urban ([SU], [SU1],[SU2],[SU3]), proving many cases of the rank 1

and 2 characteristic 0 Bloch-Kato conjectures and the Iwasawa main conjectures for GL2 modular

forms as well as some other groups. The method of Skinner and Urban is to study the congruences

between cusp forms and Eisenstein series on an even larger group (GU(2, 2)) to construct the Selmer

classes.

1.2 Main Results

This thesis is devoted to generalizing some of the work in [SU] to other unitary groups. More

precisely, starting from a cusp form on U(r, s) we hope to: (1) construct a (p-adic family) of nearly

ordinary Klingen Eisenstein series on U(r+1, s+1) with the constant terms divisible by the p-adic

L-functions we hope to study; (2) study the p-adic properties of the Fourier-Jacobi coefficients of the

Klingen Eisenstein families and deduce some congruences between this family and cuspidal families;

(3) pass to the Galois side to deduce one divisibility of the Iwasawa main conjecture. The first step

is done in the first part of the paper. The second step is the most difficult one and we are only able

to achieve this for U(1, 1) ↪→ U(2, 2) and U(2, 0)→ U(3, 1). In general we lack general results about

non-vanishing modulo p of special L-values. The last step is essentially an argument appearing in

[SU]. As a result we are able to prove one divisibility of the Iwasawa main conjecture for two kinds of

Rankin-Selberg L-functions. In the thesis we have only explained the proof of the following theorem

due to limited time and leaving the write up of the other results to the future:

Theorem 1.2.1. Let F be a totally real number field. Let p be an odd rational prime that splits

completely in F . Let f be a Hilbert modular form over F of parallel weight 2 and trivial character.

Let ρf be the p-adic Galois representation associated to f such that L(ρf , s) = L(f, s). Suppose:

(i) f is good ordinary at all primes dividing p;

(ii) (irred) and (dist) hold for ρf .

If the central critical value L(f, 1) = 0, then the Selmer group H1
f (F, ρ

∗
f ) is infinite.

3



Here (irred) means the residual Galois representation ρ̄f of F is irreducible and (dist) means that

for V = ρf and each prime v|p, the O×
L -valued characters giving the actions of GF,v on V +

v and

V/V +
v are distinct modulo the maximal ideal of OL.

Corollary 1.2.1. Let E be an elliptic curve over F with the p-adic Tate module ρE. Suppose E has

good ordinary reduction at all primes dividing p. Suppose also that the residual Galois representation

ρ̄E is modular and satisfies (dist) above are satisfied. If the central critical value L(E, 1) = 0, then

the Selmer group H1
f (F, ρE) is infinite.

The corollary follows from the theorem immediately by the modularity lifting results of [SW2]. We

assume that ρ̄E is modular since we do not know the Serre conjecture in the totally real case.

In the special case that F = Q theorem 1.2.1 is essentially proved in [SU], though our result is slightly

more general (in particular we do not need to assume that f is special or even square integrable at

any finite place).

In the case when the root number is −1 the theorem 1.2.1 is a result of Zhang and Nekovar. We

prove it when the root number is +1. In fact, our theorem, combined with the parity result of

Nekovar, implies that when the order of vanishing is even and at least 2, then the rank of the Selmer

group is also at least 2. Also note that the method of [SU2] does not seem to generalize to the

totally real field case.

In order to prove theorem 1.2.1 we need to choose a CM extension K of F and make use of the

unitary group U(1, 1)/F which is closely related to GL2. We embed f into a Hida family f and use

some CM character ψ to construct a family of forms on U(1, 1). Then our proof consists of four

steps: (1) from this family on U(1, 1) we construct a p-adic family of Klingen Eisenstein series on

U(2, 2) such that the constant term is the divisible by the p-adic L-function of f over K; (2) prove

(the Fourier expansion of) the Klingen Eisenstein family is co-prime to the p-adic L-function by a

computation using the doubling methods; (3) use the results about the constant terms in step 1 to

construct a cuspidal family which is congruent to the Klingen Eisenstein family modulo the p-adic

L-function; (4) pass to the Galois side, using the congruence between the Galois representations for

the Klingen Eisenstein family and the cuspidal family to prove the theorem.

We first prove the above theorem assuming that d is even and use a base change trick to remove
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that condition. A large part of the arguments are straightforward generalizations of [SU]. However

we do all the computations in the adelic language instead of the mixture of classical and adelic

language of [SU]. This simplifies the computations somewhat since we no longer need to compare

the classical and adelic pictures. The required non-vanishing modulo p results of some special L-

values are known thanks to the recent work of of Ming-lun Hsieh [Hsi11] and Jeanine Van-Order

[VAN]. Also we use Hida’s work on the anticyclotomic main conjecture to compare the CM periods

and canonical periods. To construct the cuspidal family in step (3) we explicitly write it down

instead of using the geometric argument in [SU] Chapter 6. This is a much easier way since we

only need to do Hida theory for cuspidal forms (which is already available) if we are only interested

in proving the characteristic 0 result. In the future we will generalize the geometric argument in

[SU] 6.3 to prove the one divisibility of the Iwasawa-Greenberg main conjecture. (In the case when

F ̸= Q we need to restrict to a certain subfamily of the whole weight space to have freeness of the

nearly ordinary forms over the (sub) weight space and surjectivity to the boundary).

1.3 Summary of the Thesis

This thesis consists of two parts: part one is the first 5 chapters, which are computations for general

unitary groups, and part two consists of chapters 6-14, which specializes to U(1, 1) ↪→ U(2, 2) and

proves the main theorem.

Part one is devoted to constructing the nearly ordinary Klingen Eisenstein series for unitary groups.

The motivation for computations in this generality is for possible future generalization of part two

to general unitary groups, by studying the congruences between such Eisenstein Series and cusp

forms. In chapter 2 we recall various backgrounds and formulate our main conjectures for unitary

groups and Hilbert modular forms. In chapter 3 we recall the notion of Klingen and Siegel Eisenstein

series, the pull-back formulas relating them and their Fourier-Jacobi coefficients. In chapter 4 and

5 we construct the nearly ordinary Klingen Eisenstein series by the pullbacks of a Siegel Eisenstein

series from a larger group. We manage to take the Siegel sections so that when we are moving our

Eisentein datum p-adically, these Siegel Eisenstein series also move p-adic analytically. The hard

part is to choose the sections at p-adic places. For the ℓ-adic cases we just pick one section and

might change this choice whenever doing arithmetic applications. At the Archimedean places we

restrict ourselves to the parallel scalar weight case which is enough for doing Hida theory. We plan

to generalize this to more general weights in the future, which might enable us to do some finite
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slope arithmetic applications. Also in the first part of this thesis we content ourselves with only

computing a single form (instead of a family) and leave the p-adic interpolation for future work. We

also do some preliminary computations for Fourier-Jacobi coefficients for the Siegel Eisenstein series

on the big unitary group. The Fourier Jacobi coefficients for Klingen Eisenstein series are realized

as the Petersson inner-product of that for Siegel Eisenstein series with the cusp form we start with.

The main use for this computation is to prove that the Klingen Eisenstein series is co-prime to the

p-adic L-function and thus giving the congruence relations needed for arithmetic applications.

In part two we apply our computations in part one to the case of U(1, 1) ↪→ U(2, 2) over totally

real fields and deduce our main theorem. For convenience we keep the argument parallel to the

[SU] paper. In chapter 6 we recall the notion of Hilbert modular forms and record some results

on the Iwasawa theory for their Selmer groups. In chapter 7 we recall some results about p-adic

automorphic forms and Hida theory for the group U(2, 2). We prove our main theorem in chapter

8 (corresponding to step (4)) assuming some constructions and results in later chapters. Chapters

9-13 (corresponding to step (1) and (2)) are parallel to chapters 9-13 of [SU] and we do the local

calculations and deduce the required p-adic properties needed in chapter 8. Chapter 14 is to con-

struct a cuspidal family from the nearly ordinary Klingen Eisenstein family (step (3)). This is also

needed in chapter 8.

We remark that the materials in part one (chapters 2-5) for general unitary groups, especially the

p-adic computations are new. Part two (chapters 6-14) differs from the paper [SU] only in certain

technicalities (the adelic computation, a slightly different choice of the Fourier-Jacobi coefficient,

the construction in chapter 14 and the use of different results on non-vanishing modulo p of special

L-values and comparing periods).
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Chapter 2

Background

In this section we recall notations for holomorphic automorphic forms on unitary groups, Eisenstein

series and Fourier Jacobi expansions.

2.1 Notations

Suppose F is a totally real field such that [F : Q] = d and K is a totally imaginary quadratic

extension of F . For a finite place v of F or K we usually write ϖv for a uniformizer and qv for |ϖv|.

Let c be the non trivial element of Gal(K/F ). Let r, s be two integers with r ≥ s ≥ 0. We fix an odd

prime p that splits completely in K/Q. We fix i∞ : Q̄ ↪→ C and ι : C ≃ Cp and write ip for ι ◦ i∞.

Denote Σ∞ to be the set of Archimedean places of F . We take a CM type Σ ⊂ HomC−alg(K,C) of

K (thus Σ ⊔ Σc are all embeddings K → C where Σc = {τ ◦ c, τ ∈ Σ}). There is a associated CM

period Ω∞ = (Ω∞,σ)σ∈Σ ∈ CΣ (we refer to [Hida07] for the definition). Define: ΩΣ
∞ =

∏
σ∈Σ Ω∞,σ.

We often write Sm to denote the m by m Hermitian matrices either over F or some localization Fv.

We use ϵ to denote the cyclotomic character and ω the Techimuller character. We will often adopt

the following notation: for an idele class character χ = ⊗vχv we write χp(x) =
∏
v|p χv(xv). For a

character ψ or τ of Kv or A×
K we often write ψ′ for the restriction to F×

v or A×
F . For a local or adelic

character τ we define τ c by τ c(x) = τ(xc) where c standards for the non-trivial element in Gal(K/F ).

(Gauss sums) If v is a prime of F over ℓ and dvOF,v = (dv) is the different of F/Q at v and if ψv is
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a character of F×
v and (cψ,v) ⊂ OF,v is the conductor then we define the local Gauss sums:

g(ψv, cψ,vdv) :=
∑

a∈(OF,v/cψ,v)×
ψv(a)e(TrFv/Qℓ(

a

cψ,vdv
)).

If ⊗ψv is an idele class character of A×
F then we set the global Gauss sum:

g(⊗ψv) :=
∏
v

ψ−1
v (cψ,vdv)g(ψ, cψ,vdv).

This is independent of all the choices. Also if Fv ≃ Qp and (pt) is the conductor for ψv, then we

write g(ψv) := g(ψv, p
t). We define the Gauss sums for K similarly.

Let K∞ be the maximal abelian Zp extension of K. Write ΓK := Gal(K∞/K. We define: ΛK :=

Zp[[ΓK]]. For any A a finite extension of Zp define ΛK,A := A[[ΓK]]. Let εK : GK → ΓK ↪→ Λ×
K be

the canonical character. We define ΨK to be the composition of εK by the reciprocity map. We

make the corresponding definitions for F as well.

2.2 Unitary Groups

We define:

θr,s =


1s

θ

−1s


where θ = ζ1r−s with some totally imaginary element ζ ∈ K. Let V = V (r, s) be the hermitian space

over K with respect to this metric, i.e. Kr+s equipped with the metric given by < u, v >:= uθr,s
tv̄.

We define algebraic groups GU(r, s) and U(r, s)as follows: for any F -algebra R, the R points are:

G(R) = GU(r, s)(R) := {g ∈ GLr+s(K ⊗F R)|gθr,sg∗ = µ(g)θr,s, µ(g) ∈ R×}.

(µ : GU(r, s)→ Gm is called the similitude character.) and

U(r, s)(R) := {g ∈ GU(r, s)(R)|µ(g) = 1}.

Some times we write GUn and Un for GU(n, n) and U(n, n).
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We have the following embedding:

GU(r, s)× ResOK/OFGm → G(r + 1, s+ 1)

g × x =


a b c

d e f

h l k

× x 7→



a b c

µ(g)x̄−1

d e f

h l k

x


We write m(g, x) for the right hand side. The image of the above map is the Levi subgroup of

the Klingen parabolic subgroup P of GU(r, s), which we denote by MP . We also write NP for the

unipotent radical of P .

We write −V for the hermitian space whose metric is −θ(r, s). We define some embeddings of

GU(r+1, s+1)×GU(−V (r, s)) into some larger groups. This will be used in the doubling method.

First we define G(r + s+ 1, r + s+ 1)′ to be the unitary similitude group associated to:



1b

1

θ

−1b

−1b

−1

−θ

1b


We define an embedding α : {g1 × g2 ∈ GU(r + 1, s + 1) × GU(−V (r, s)), µ(g1) = µ(g2)} →

GU(r+s+1, r+s+1)′ as follows: we consider g1 as a block matrix with respect to s+1+(r−s)+s+1

and g2 as a block matrix with respect to s+(r−s)+s, then we define α by requiring the 1, 2, 3, 4, 5th

(block wise) rows and columns of GU(r+1, s+1) embeds to the 1, 2, 3, 5, 6th (block wise) rows and

columns of GU(r+ s+1, r+ s+1)′ and the 1, 2, 3th (block wise) rows and columns of GU(−V (r, s)

embeds to the 8, 7, 4th rows and columns (block-wise) of GU(r + s + 1, r + s + 1)′. We also define

an isomorphism:

β : GU(r + s+ 1, r + s+ 1)′
∼−→ GU(r + s+ 1, r + s+ 1)
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by:

g 7→ S−1gS

where

S =



1 − 1
2

1

1 − ζ2
−1 1

2

1 1
2

1

−1 − ζ2
−1 − 1

2


Remark 2.2.1. (About Unitary Groups) In order to have Shimura varieties for doing p-adic modular

forms and Galois representations, we need to use a unitary group defined over Q. More precisely

consider V as a Hermitian space over Q and still denote θr,s to be the metric on it then the correct

unitary similitude group should be:

GU(A) := {g ∈ GL(V ⊗Q A)|g is K − linear, gθr,sg
∗ = µ(g)θr,s, µ(g) ∈ A}

This group is smaller than the one we defined before. However this group is not convenient with

computations. So what we will do (implicitly) is to construct forms on the larger unitary similitude

group defined before and then restrict to the smaller one.

2.3 Hermitian Symmetric Domain

Suppose r ≥ s > 0 then we put the Hermitian symmetric domain for GU(r, s):

Xr,s = {τ =

x
y

 |x ∈Ms(CΣ), y ∈M(r−s)×s(CΣ), i(x∗ − x) > −iy∗θ−1y}

For α ∈ G(F∞)) we write:

α =


a b c

d e f

h l d


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according to the standard basis of V together with the block decomposition with respect to s +

(r − s) + s. There is an action of α ∈ G(F∞)+ (here the superscript + means the component with

positive determinant at all Archimedean places) on Xr,s is defined by:

α

x
y

 =

ax+ by + c

gx+ ey + f

 (hx+ ly + d)−1

If rs = 0, Xr,s consists of a single point written x0 with the trivial action of G. For an open compact

subgroup U of G(F,f ) put

MG(X
+, U) := G(F )+\X+ ×G(AF,f )/U

where U is an open compact subgroup of G(AF,f ).

2.3.1 Automorphic forms

We will mainly follow [Hsieh CM] to define the space of automorphic forms with slight modifications.

We define the cocycle: J : RF/QG(R)+ × X+ → GLr(CΣ) × GLs(CΣ) := H(C) by: J(α, τ) =

(κ(α, τ), µ(α, τ)) where for τ =

x
y

 and

α =


a b c

d e f

h l d


,

κ(α, τ) =

 h̄tx+ d̄ h̄ty + lθ̄

−θ̄−1(ḡtx+ f̄) −θ̄−1ḡty + θ̄−1ēθ̄

 , µ(α, τ) = hx+ ly + d.

Fix a point i ∈ X+ and let K0
∞ be the stablizer of i in RF/QG(R). Then J : K0

∞ → H(C), k∞ 7→

J(k∞, i) defines an algebraic representation of K0
∞.

Definition 2.3.1. A weight k is defined by a set {kσ}σ∈Σ∞ where each kσ = (cr+s,σ, ..., cs+1,σ; c1,σ, ..., cs,σ)

with c1,σ > ... > cr+s,σ.

Remark 2.3.1. Our convention is different from the literature. For example in [Hsieh CM] the

ar+1−i there for ≤ i ≤ r is our cs+i and bs+1−j there for 1 ≤ j ≤ s is our cj. Also our ci is the

−cr+s+1−i in [SU2].
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We refer to [Hsieh] for the definition of the definition of the algebraic representation Lk(C) (note

the different index for weight) and define a model Lk(C) of the representation H(C) with the highest

weight k as follows. The underlying space of Lk(C) is Lk(C) and the group action is defined by

ρk(h) = ρk(
th−1), h ∈ H(C).

For a weight k, define ∥k∥ by:

∥k∥ := −cs+1 − ...− cs+r + c1 + ...+ cs ∈ Z[Σ]

and |k| ∈ ZΣ⊔Σc by:

|k| =
∑
σ∈Σ

(c1,σ + ...+ cs,σ).σ − (cs+1,σ + ...+ cs+r,σ).σc.

Let χ be a Hecke character of K with infinite type |k|, i.e. the Archimedean part of χ is given by:

χ(z∞) = (
∏
σ

z(c1,σ+...+cs,σ)σ .z
−(cs+1,σ+...+cs+r,σ)
σc ).

Definition 2.3.2. Let U be an open compact subgroup in G(AF,f ). We denote by Mk(U,C) the

space of holomorphic Lk(C)-valued functions f on X+×G(AF,f ) such that for τ ∈ X+, α ∈ G(F )+

and u ∈ U we have:

f(ατ, αgu) = µ(α)−∥k∥ρk(J(α, τ))f(τ, g).

Now we consider automorphic forms on unitary groups in the adelic language. Let Ak(G,U, χ)

be the space of automorphic forms of weight k and level U with central character χ, i.e. smooth and

slowly increasing functions F : G(AF ) → Lk(C) such that for every (α, k∞, u, z) ∈ G(F ) ×K0
∞ ×

U × Z(AF ),

F (zαgk∞u) = ρk(J(k∞, i)
−1)F (g)χ−1(z).

We can associate a Lk(C)-valued function AM(F ) on X+ ×G(AF,f ) to F ∈ Ak(G,U, χ) by

AM(F )(τ, g) := χf (ν(g))ρ
k(J(g∞, i))F ((g∞, g)),
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where g∞ ∈ RF/QG(R)+ such that g∞i = τ . We put:

AHolk (G,U, χ) = {F ∈ Ak(G,U, χ)|AM(F ) is holomorphic on X+ }.

2.4 Galois representations Associated to Cuspidal Represen-

tations

In this section we follow [Sk10] to state the result of associating Galois representations to cuspidal

automorphic representations on GU(r, s)(AF ). First of all let us fix the notations. Let K̄ be the

algebraic closure of K and let GK := Gal(K̄/K). For each finite place v of K let K̄v be an algebraic

closure of Kv and fix an embedding K̄ ↪→ K̄v. The latter identifies GKv := Gal(K̄v/Kv) with

a decomposition group for v in GK and hence the Weil group WKv ⊂ GKv with a subgroup of

GK. Let π be a holomorphic cuspidal irreducible representation of U(r, s)(AF ) with weight k =

(cr+s,σ, ..., cs+1,σ; c1,σ, ..., cs,σ)σ∈Σ and central character χπ; Then for some L finite over Qp, there

is a Galois representation (by [Shin], [Morel] and [Sk10]):

Rp(π) : GK → GLn(L)

such that:

(a)Rp(π)
c ≃ Rp(π)

∨ ⊗ ρp,χ1+c
π
ϵ1−n where χπ is the central character of π, ρp,χ1+c

π
denotes the

associated Galois character by class field theory and ϵ is the cyclotomic character.

(b)Rp(π) is unramified at all finite places not above primes in Σ(π) ∪ { primes dividing p), and for

such a place w:

det(1−Rp(π)(frobwq−sw ) = L(BC(π)w ⊗ χcπ,w, s+
1− n
2

)−1

Here the frobw is the geometric Frobenius. We write V for the representation space and it is possible

to take a Galois stable OL lattice which we denote as T . Suppose πv is nearly ordinary at all primes v

dividing p with respect to k (to be defined later). Suppose v|p correspond to σ ∈ Σ under ι : C ≃ Cp,

then if we write κi,σ = s − i+ ci,σ for ≤ i ≤ s and κiσ = ci,σ + s + r + s − i for s + 1 ≤ i ≤ r + s,
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then:

Rp(π)|GK,v ≃



ξr+s,vϵ
−κr+s,σ ∗

ξr+s−1,vϵ
κr+s−1,σ

∗ ∗

∗

0
... ∗

ξ1,vϵ
−κ1,σ


where ξi,v are unramified characters. Using the fact (a) above we know that Rp(π)v̄ is equivalent to

an upper triangular representation as well.

2.5 Selmer groups

We recall the notion of Σ-primitive Selmer groups, following [SU]3.1 with some modifications. In

this section F is a subfield of Q̄. For T a free module over a profinite Zp-algebra A and assume that

T is equipped with a continuous action of the absolute Galois group GF of F . Assume that for each

place v|p of F we are given a Gv-stable free A-direct summand Tv ⊂ T . For any finite set of primes

Σ we denote by SelΣF (T, (Tv)v|p) the kernel of the restriction map:

H1(F, T ⊗A A∗)→
∏

v ̸∈Σ,v-p

H1(Iv, T ⊗A A∗)×
∏
v|p

H1(Iv, T/Tv ⊗A A∗),

We also define:

XΣ
F (T, (Tv)v|p) := HomA(Sel

Σ
F (T, (Tv)v|p), A

∗).

Now let us take T to be the Galois representation stated above. Then for each v ∈ Σp suppose

Rp(π)v is of the above form with respect to the basis vr+s,v, ..., v1,v then we define Tv to be the OL

span if vr+s, ..., vs+1,v. Also, if Rp(π)v̄ is upper triangular with respect to the basis v1,v̄, ..., vr+s,v̄

then we define Tv̄ to be the OL span of v1,v̄, ...vs,v̄.

Remark 2.5.1. The Selmer group defined here is not quite correct. In fact T does not always

satisfy Greenberg’s Panchishkin condition. But it is correct in the ”Iwasawa theoretic sense”. We

will explain this in a moment (remark 2.6.1).

2.6 Iwasawa Theory

Let K∞ be the maximal abelian Zp extension of K. Write ΓK := Gal(K∞/K. We define: ΛK :=

Zp[[ΓK]]. For any A a finite extension of Zp define ΛK,A := A[[ΓK]]. Let εK : GK → ΓK ↪→ Λ×
K be
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the canonical character. Then by Shapiro’s lemma we have:

SelΣK∞
(T ) ≡ SelΣK(T ⊗A ΛK,A(ε

−1
K ))

So we have a ΛK,A module structure for XΣ
K∞

(T ). One can define the Selmer groups for intermediate

fields between K and K∞ as well.

Remark 2.6.1. Later on we will see some control theorems for Selmer groups relating the big Selmer

groups for K∞ to those of its subfields. However SelΣK(T ) itself is not a Selmer group since T does

not satisfy Greenberg’s Panchinshkin conditions. But by twisting T by some Galois character we

can make T satisfy this condition. Also the Tv’s we put at v|p are indeed Selmer conditions for

such twists in the sense of Greenberg. Therefore our Iwasawa module is indeed interpolating Selmer

groups for T twisted by some characters.

2.7 p-adic L-functions

In a recent work of [EEHLS] they constructed the p-adic L-function LΣ
π,K,ψ ∈ A[[ΓK]] (where ψ is

some fixed Hecke character for K) interpolating the special values of LΣ(π, ψ ⊗ χϕ, s) up to some

periods and normalization factors. Here ϕ ∈ SpecΛK,A and χϕ corresponds to ϕ ◦ εK under the

reciprocity map.

2.8 Characteristic Ideals and Fitting Ideals

In this subsection we let A be a noetherian ring. We write FittA(X) for the Fitting ideal in A of a

finitely generated A-module X. This is the ideal generated by the determinant of the r × r monors

of the matrix giving the first arrow in a given presentation of X:

As → Ar → X → 0

If X is not a torsion A-module then Fitt(X) = 0.

Fitting ideals behave well with respect to base change. For I ⊂ A an ideal, then:

FittA/I(X/IX) = FittA(X)modI
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Now suppose A is a Krull domain (a domain which is Noetherian and normal), then the characteristic

ideal is defined by:

CharA(X) := {x ∈ A : ordQ(x) ≥ ℓQ(X) for any Q a height one prime },

here ℓQ(X) is the length of X at Q.

2.9 Main Conjectures

Now we are in a position for formulate the Iwasawa-Greenberg main conjecture, we write CharΣπ,K,ψ

for the characteristic ideal for XΣ
π,K,ψ, then:

Conjecture 2.9.1. CharΣπ,K,ψ is principal and generated by LΣ
π,K,ψ.

While trying to prove the main conjecture above we need to embed some nearly ordinary f ∈ π

into a Hida family f of nearly ordinary forms with some coefficient ring I (taken to be a normal

domain). We have a Galois representation Rp(f) on some T a free module over I of finite rank.

It satisfies local conditions at v|p similar to that for f and we define the corresponding Selmer

conditions and thus SelΣf,K,ψ and XΣ
f,K,ψ which is a module over I[ΓK]]. Then we have the main

conjecture for Hida families as well:

Conjecture 2.9.2.

CharΣf,K,ψ = (LΣ
f,K,ψ)

as ideals of I[[ΓK]].

2.10 Hilbert modular forms

As mentioned in the introduction we can use unitary groups to study the Iwasawa theory for Hilbert

modular forms. Let f (f) be a nearly ordinary Hilbert modular form (or Hida family). Then the

associated galois representations satisfy similar local conditions at v|p, namely isomorphic to upper

triangular representations and one can define Selmer groups SelΣf,K,χ, XΣ
f,K,χ. (see part two for

details). Also the p-adic L-functions LΣ
f,K,χ, L̃Σ

f,K,χ (see chapter 12) are essentially those for U(1, 1)

with some modifications for interpolation formulas (since now we are using GL2 L-functions of f

instead of that for base change of unitary group automorphic forms). We can formulate the following

main conjecture as well.
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Conjecture 2.10.1. As ideals of I[[ΓK]],

(LΣ
f,K,χ) = CharΣf,K,χ.

We can construct the non-integral p-adic L-function L̃Σ
f ,K,χ in great generality. This is enough for

proving the characteristic 0 results (theorem 1.2.1) . However we use certain Gorenstein properties

of some Hecke algebras to construct the integral p-adic L-function tha appears in the conjecture

above. Let us briefly discuss this issue. Let f be a Hida family of nearly ordinary Hilbert modular

eigenforms with tame level M . Let I be some finite extension of ΛW , let mf be the maximal ideal of

the Hecke algebra T(M, I) with I coefficients corresponds to f . Let T(M,A)mf
be the localization.

Then we say that it is Gorenstein if HomI(Tmf
, I) is free of rank 1 over Tmf

. This is used to guarantee

the existence of a generator of the congruence module. In the case when F = Q Wiles [Wiles95]

proved that this is true whenever the (irred) and (dist) in [SU] (see theorem 1.2.1.) are satisfied. In

general the situation is complicated. We record here a theorem of Fujiwara which gives sufficient

conditions for Tmf
to be Gorenstein:

Theorem 2.10.1. (Fujiwara) Let ρ̄ be the modulo p Galois representation associated to f . Suppose

• p ≥ 3 and ρ̄|F (ζp) is absolutely irreducible. When p = 5 the following case is excluded: the

projective image Ḡ of ρ̄ is isomorphic to PGL2(Fp) and the modp cyclotomic character χ̄cycle

factors through GF → Ḡab ≃ Z/2;

• There is a minimal modular lifting of ρ̄.

• The case 0E defined in [8] section 3.1 does not occur for any finite place v.

• In the case when d := [F : Q] is odd the Ihara’s lemma is true for Shimura curves.

Then the ring Tmf is Gorenstein.

This is [Fuji] theorem 11.2. The third condition is put to ensure that the quaternion algebra

considered by Fujiwara is not ramified at any finite places so that the Hecke algebra is the same as

the GL2 Hecke algebra. Recall that 0E in called “exceptional” by Fujiwara and means that ρ̄IF,v is

absolutely irreducible and qv ≡ −1 mod p.
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Chapter 3

Eisenstein Series and

Fourier-Jacobi Coefficients

The materials of this chapter are straightforward generalizations of parts of [SU] chapter 9 and 11

and I use the same notations as loc.cit ; So everything in this chapter should eventually be the same

as [SU] when specializing to the group GU(2, 2)/Q.

3.1 Klingen Eisenstein Series

Recall that in chapter we denote GU to be GU(r, s) defined there. Let gu be the Lie algebra of

GU(r, s)(R).

3.1.1 Archimedean Picture

Let v be an infinite place of F so that Fv ≃ R. Let i′ and i be the points on the Hermitian

symmetric domain for GU(r, s) and GU(r + 1, s + 1) which are

i1s
0

 and

i1s+1

0

 respectively

(here 0 means the (r − s) × s or (r − s) × (s + 1) matrix 0). Let GU(r, s)(R)+ be the subgroup

of GU(r, s)(R) whose similitude factor is positive. Let K+
∞ and K+,′

∞ be the compact subgroups of

U(r+1, s+1)(R) and U(r, s)(R) stabilizing i or i′ and let K∞ (K ′
∞) be the groups generated by K+

∞

(K+,′

∞ ) and diag(1r+s+1,−1s+1) (diag(1r+s,−1s)). Let (π, V ) be an irreducible (gu(R),K ′
∞)-module

and suppose that π is unitary ,tempered representation. There is an irreducible, unitary Hilbert

representation (π,H) of GU(R), unique up to isomorphism such that (π, V ) can be identified with
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the (gu(R),K ′
∞)-module of it. Let χ be the central character of π. Let ψ and τ be unitary characters

of C× such that ψ|R× = χ. Now we define a representation ρ of P (R): for g = mn,n ∈ NP (R),m =

m(g, a) ∈MP (R) with a ∈ C×, g ∈ GU(R), put

ρ(g)v := τ(a)π(g)v, v ∈ H.

For any function f ∈ C∞(K∞,H∞) such that f(k′k) = ρ(k′)f(k) for any k′ ∈ P (R) ∩K∞, where

H∞ is the space of smooth vector of H, and each z ∈ C we define a function

fz(g) := δ(m)(a+2b+1)/2+zρ(m)f(k), g = mk ∈ P (R)K∞,

where δ is such that δa+2b+1 = δP and δP is the modulus character for the Klingen parabolic P .

and we define an action σ(ρ, z) of GU(r + 1, s+ 1)(R) on I(H∞):

(σ(ρ, z)(g)f)(k) := fz(kg).

Let I(ρ) be the subspace of K∞-finite vectors of I(H∞) which has a structure of gu(R),K∞ module

structure.

Let (π∨, V ) be the irreducible (gu(R),K ′
∞)-module given by π∨(x) = π(η−1xη) for η =


1b

1a

−1b

.

x in gu(R) or K ′
∞, and denote ρ∨, I(ρ∨), I∨(H∞) and σ(ρ∨, z), I(ρ∨)) the representations and spaces

defined as above but with π, ψ, τ replaced by π∨ ⊗ (τ ◦ det), ψττ c, τ̄ c. We are going to define an

intertwining operator. Let w =


1b+1

1a

−1b+1

, for any z ∈ C, f ∈ I(H∞) and k ∈ K∞

consider the integral:

A(ρ, z, f)(k) :=

∫
NP (R)

fz(wnk)dn. (3.1)

This is absolutely convergent when Re(z) > a+2b+1
2 and A(ρ, z,−) ∈ HomC(I(H∞), I∨(H∞)) in-

tertwines the actions of σ(ρ, z) and σ(ρ∨,−z).

Now Suppose π is the holomorphic discrete series representation associated to the (scalar) weight

(0, ..., 0;κ, ..., κ), then it is well known that there is a unique (up to scalar) vector v ∈ π such

that k.v = detµ(k, i)−κ (here µ means the second component of the automorphic factor J instead
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of the similitude character) for any k ∈ K+,′

∞ v (notation as in section 3.1). Then by Frobenius

reciprocity law there is a unique (up to scalar) vector ṽ ∈ I(ρ) such that k.ṽ = detµ(k, i)−κṽ for

any k ∈ K+
∞. We fix v and scale ṽ such that ṽ(1) = v. In π∨, π(w)v (w is defined in section 3.1)

has the action of K+
∞ given by multiplying by detµ(k, i)−κ. We define w′ ∈ U(a + b + 1, b + 1) by

w′ =



1b

1

1a

1b

−1


. Then there is a unique vector ṽ∨ ∈ I(ρ∨) such that the action of K+

∞

is given by detµ(k, i)−κ and ṽ∨(w′) = π(w)v. Then by uniqueness there is a constant c(ρ, z) such

that A(ρ, z, ṽ) = c(ρ, z)ṽ∨.

Definition 3.1.1. We define Fκ ∈ I(ρ) to be the ṽ as above.

3.1.2 ℓ-adic picture

Our discussion here follows from [SU] 9.1.2. Let (π, V ) be an irreducible, admissible representation

of GU(Fv) and suppose that π is unitary and tempered. Denote by χ the central character of π.

Let ψ and τ be unitary characters of K×
v such that ψ|F×

v
= χ. We extend π to a representation ρ of

P (Fv) on V as follows. For g = mn,n ∈ NP (Fv), m = m(g, a) ∈MP (Fv), a ∈ K×
v , g ∈ GU(Fv), put

ρ(g)v := τ(a)ψ(b)π(s)v, v ∈ V.

Let I(ρ) be the space of functions f : Kv → V such that (i) there exists an open subgroup U ⊆ Kv

such that f(gu) = f(g) for all u ∈ U and (ii) f(k′k) = ρ(k′)f(k) for k′ ∈ P (OF,v). For each f ∈ I(ρ)

and each z ∈ C we define a function fz on GU(Fv) by

fv(g) := δP (m)3/2+zρ(m)f(k), g = mk ∈ P (Fv)Kv

We define a representation σ(ρ, z) of GU(r + 1, s+ 1)(Fv) on I(ρ) by

(σ(ρ, z)(g)f)(k) := fz(kg).

Let (π∨, V ) be given by π∨(g) = π(η−1gη). This representation is also tempered and unitary. We

denote by ρ∨, I(ρ
∨), and (σ(ρ∨, z), I(ρ

∨)) the representations and spaces defined as above but with

π, ψ and τ replaced by π∨ ⊗ (τ ◦ det), ψττ c, and τ̄ c, respectively.
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For f ∈ I(ρ), k ∈ Kv, and z ∈ C consider the integral

A(ρ, z, v)(k) :=

∫
NP (Fv)

fz(wnk)dn. (3.2)

As a consequence of our hypotheses on π this integral converges absolutely and uniformly for z and

k in compact subsets of z : Re(z) > (a+ 2b+ 1)/2 ×Kv. Moreover, for such z, A(ρ, z, f) ∈ I(ρ∨)

and the operator A(ρ, z,−) ∈ HomC(I(ρ), I(ρ
∨)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).

For any open subgroup U ⊆ Kv Let I(ρ)U ⊆ I(ρ) be the finite-dimensional subspace consisting of

functions satisfying f(ku) = f(k) for all u ∈ U . Then the function z ∈ C : Re(z) > (a+ 2b+ 1)/2→

HomC(I(ρ)
U , I(ρ∨)U ), z 7→ A(ρ, z,−), is holomorphic. This map has a meromorphic continuation

to all of C.

3.1.3 global picture

We follow [SU]9.1.4 for this part. Let (π, V ) be an irreducible cuspidal tempered automorphic rep-

resentation of GU(AF ). It is an admissible (gu(R),K ′
∞)v|∞×GU(Af )-module which is a restricted

tensor product of local irreducible admissible representations. Let τ : A×
K → C× be a Hecke charac-

ter and let τ = ⊗τw and ψ = ⊗ψw be their local decompositions, w over places of F . We associate

with (π, τ) a representation of (P (F∞) ∩K∞)× P (AF,f ) and v = ⊗vw ∈ V put

ρ(m)v := ⊗(ρw(mw)wm),

Let Kf :=
∏
w ̸|∞Kw and KAF := KF∞ × Kf . Let I(ρ) be the space of functions f : KAF → V

such that f(k′k) = ρ(k′)f(k) for k′ ∈ P (AF ) ∩KA, and f factors through KF∞ ×Kf/K
′ for some

open subgroup K ′ ⊆ Kf and f is KF∞ -finite and smooth as a function on KF,∞ × Kf/K
′. This

can be identified with the restricted product ⊗I(ρw) with respect to the Fρw ’s at those w at which

τw, ψw, πw are unramified.

For each z ∈ C and f ∈ I(ρ) we define a function fz on G(A) as

fz(g) := ⊗fw,z(gw)

where fw,z are defined as before. Also we define an action σ(ρ, z) of g,KF∞)⊗GU(r+1, s+1)(Af ) on

I(ρ) by σ(ρ, z) := ⊗σ(ρw, z). Similarly we define ρ∨, I(ρ∨), and σ(ρ∨, z) but with the corresponding
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things replaced by their ∨’s. For each z ∈ C there are maps

I(ρ), I(ρ∨) ↪→ A(MP (F )NP (F )\P (AF )),

given by

f 7→ (g 7→ fz(g)(1)).

In the following we often write fz for the automorphic form given by this recipe.

Definition 3.1.2. Let Σ be a finite set of primes of F containing all the infinite places, primes

dividing p and places when π or τ is ramified then we call the triple D = (π, τ,Σ) is an Eisenstein

Datum.

I am sorry to use the same notation as the CM type in section 2.1. The meaning should be clear

in the context.

3.1.4 Klingen-type Eisenstein series on G

We follow [SU]9.1.5. Let π, ψ, and τ be as above. For f ∈ I(ρ), z ∈ C, and g ∈ GU(r + 1, s+ 1)(A)

the series

E(f, z, g) :=
∑

γ∈P (F )\G(F )

fz(γg) (3.3)

is known to converge absolutely and uniformly for (z, g) in compact subsets of {z ∈ C : Re(z) >

a+2b+1
2 } ×G(A) and to define an automorphic form on G. The may f 7→ E(f, z,−) intertwines the

action of σ(ρ, z) and the usual action of (g,K∞)×GU(r + 1, s+ 1)(Af ) on A(GU(r + 1, s+ 1)).

The following lemma is well-known (see [SU] lemma 9.1.6)

Lemma 3.1.1. Let R be a standard F -parabolic of GU(r+1, s+1) (i.e, R ⊇ B). Suppose Re(z) >

a+2b+1
2 .

(i) If R ̸= P then E(f, z, g)R = 0;

(ii) E(f, z,−)P = fz +A(ρ, f, z)−z.
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3.2 Siegel Eisenstein series on Gn

Our discussion in this section follows from [SU] 11.1-11.3. Let Q = Qn be the Siegel parabolic

subgroup of GUn consisting of matrices

AQ Bq

0 Dq

. It consists of matrices whose lower-left n× n

block is zero. For a place v of F and a character χ of K×
v we let In(χ) be the space of smooth

Kn,v-finite functions f : Kn,v → C such that f(qk) = χ(detDq)f(k) for all q ∈ Qn(Fv) ∩ Kn,v

(we write q as block matrix q =

AQ Bq

0 Dq

). Given z ∈ C and f ∈ I(χ) we define a function

f(z,−) : Gn(Fv)→ C by f(z, qk) := χ(detDq))|detAqD−1
q |

z+n/2
v f(k), q ∈ Qn(Fv) and k ∈ Kn,v.

For an idele class character χ = ⊗χv of A×
K we similarly define a space In(χ) of smooth Kn,A

functions on Kn,A. We also similarly define f(z,−) given f ∈ In(χ) and z ∈ C. There is an identifi-

cation ⊗In(χv) = In(χ), the former being the restricted tensor product defined using the spherical

vectors fsphv ∈ In(χv), fsphv (Kn,v) = 1, at the finite places v where χv is unramified:⊗fv is identified

with k 7→
∏
v fv(kv). Let U ⊆ C be an open set. By a meromorphic section of In(χ) on U we mean

a function φ : U 7→ In(χ) taking values in a finite dimensional subspace V ⊂ In(χ) and such that

φ : U → V is meromorphic.

Let χ = ⊗χv be a unitary idele class character of A×
K. For f ∈ In(χ) we consider the Eisenstein

series

E(f ; z, g) :=
∑

γ∈Qn(F )\Gn(F )

f(z, γg).

This series converges absolutely and uniformly for (z, g) in compact subsets of {Re(z) > n/2} ×

Gn(AF ) and defines an automorphic form on Gn and a holomorphic function on {Re(z) > n/2}.

The Eisenstein series E(f ; z, g) has a meromorphic continuation in z to all of C. If φ : U → In(χ)

is a meromorphic section, then we put E(φ; z, g) = E(φ(z); z, g). This is clearly a meromorphic

function of z ∈ U and an automorphic form on Gn for those z where it is holomorphic.

3.2.1 Intertwining operators and functional equations

Let χ be a unitary character of K×
v , v a place of F . For f ∈ In(χ), z ∈ C, and k ∈ Kn,v, we consider

the integral

M(z, f)(k) := χ̄n(µn(k))

∫
NQn (Fv)

f(z, wnrk)dr.
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For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uniformly, with the

convergence being uniform in k. M(z, f) ∈ In(χ̄c). It thus defines a holomorphic section z 7→M(z, f)

on {Re(z) > 3/2}. This has a continuation to a meromorphic section on all of C.

Let χ = ⊗χv be a unitary idele class character. For f ∈ In(χ), z ∈ C, and k ∈ Kn,AF we con-

sider the integral M(z, f)(k) as above but with the integration being over NQn(AF ). This again

converges absolutely and uniformly for z i compact subsets of {Re(z) > n/2}, with the convergence

being uniform in k. Thus z 7→M(z, f) defines a holomorphic section {Re(z) > n/2} → In(χ̄
c). This

has a continuation to a meromorphic section on C. For Re(z) > n/2 at least, we have

M(z, f) = ⊗vM(z, fv), f = ⊗fv.

3.2.2 The pull-back formulas

Let χ be a unitary idele class character of A×
K. Given a cuspform ϕ on G(r, s) we consider

Fϕ(f ; z, g) :=

∫
U(r,s)(AF )

f(z, S−1α(g, g1h)S)χ̄(det g1g)ϕ(g1h)dg1,

f ∈ Ir+s+1(χ), g ∈ G(r + 1, s+ 1)(AF ), h ∈ G(r, s)(AF ), µ(g) = µ(h)

This is independent of h. The pull-back formulas are the identities in the following proposition.

Proposition 3.2.1. Let χ be a unitary idele class character of A×
K.

(i) if f ∈ Ir+s(χ), then Fϕ(f ; z, g) converges absolutely and uniformly for (z, g) in compact sets of

{Re(z) > r + s} ×G(r, s)(AF ), and for any h ∈ G(r, s)(AF ) such that µ(h) = µ(g)

∫
U(r,s)(F )\U(r,s)(AF )

E(f ; z, S′−1α(g, g1h)S)χ̄(det g1h)ϕ(g1h)dg1 = Fϕ(f ; z, g). (3.4)

(ii) If f ∈ Ir+s+1(χ), then Fϕ(f ; z, g) converges absolutely and uniformly for (z, g) in compact sets

of {Re(z) > r + s+ 1/2} ×G(r + 1, s+ 1)(AF ) such that µ(h) = µ(g)

∫
U(r,s)(F )\U(r,s)(AF )

E(f ; z, S−1α(g, g′h)S)χ̄(det g1h)ϕ(g1h)dg1

=
∑

γ∈P (F )\G(r+1,s+1)(F )

Fϕ(f ; z, γg),
(3.5)

with the series converging absolutely and uniformly for (z, g) in compact subsets of {Re(z) > r+ s+
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1/2} ×G(r + 1, s+ 1)(AF ).

Proof. (i) is proved by Piatetski-Shapiro and Rallis and (ii) is a straight-forward generalization by

[Shi97]. See also [SU] Proposition 11.2.3.

3.3 Fourier-Jacobi Expansion

We will usually use the notation eA(x) = eAQ(TrAF /AQx) for x ∈ AF . For any automorphic form φ on

GU(r, s)(AF ), β ∈ Sm(F ) for m ≤ s. We define the Fourier-Jacobi coefficient at g ∈ GU(r, s)(AF ):

φβ(g) =

∫
Sm(F )\Sm(AF )

φ(


1s 0

S 0

0 0

0 1r−s 0

0 0 1s


g)eA(−Tr(βS))dS.

In fact we are mainly interested in two cases: m = s or r = s and arbitary m ≤ s. In particular,

G = Gn = U(n, n), 0 ≤ m ≤ n are integers, β ∈ Sm(F ). Let φ be a function on G(F )\G(A). The

β-th Fourier-Jacobi coefficient φβ of φ at g is defined by

φβ(g) :=

∫
φ(


1n

S 0

0 0

1n

 g)eA(−TrβS)dS.

Now we prove a useful formula on the Fourier Jacobi coefficients for Siegel Eisenstein series.

Definition 3.3.1. let:

Z := {


1n

z 0

0 0

0n 1n

 |z ∈ Herm(K)}

V := {



1m x

1n−m

z y

y∗ 0

0n
1m

−x∗ 1n−m


|x, y ∈Mm(n−m)(K), z − xy∗ ∈ Herm(K)}
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X := {



1m x

1n−m

0n

0n
1m

−x∗ 1n−m


|x ∈Mm(n−m)(K)}

Y := {


1n

z y

y∗ 0

0n 1n

 |y ∈Mm(n−m)(K)}

Proposition 3.3.1. Suppose f ∈ In(τ) and β ∈ Sm(F ), β is totally positive. If E(f ; z, g) is the

Siegel Eisenstein Series on G defined by f for some Re(z) sufficiently large then the β-th Fourier-

Jacobi coefficient Eβ(f ; z, g) satisfies:

Eβ(f ; z, g) =
∑

γ∈Qn−m(F )\Gn−m(F )

∑
y∈Y

∫
Sm(A)

f(wn


1n

S y

tȳ 0

1n

αn−m(1, γ)g)eA(−TrβS)dS

.

Proof. We follow [IKE] section 3. Let H be the normalizer of V in G. Then

Gn(F ) = ⊔mi=1Qn(F )ξiH(F )

for ξi :=



0m−i 0

0 1n−m+i

−1m−i 0

0 0

1m−i 0

0 0n−m+i

0m−i 0

0 1n−m+i


. then unfold the Eisenstein series we get:

Eβ(f ; z, g) =

∑
i>0

∑
γ∈Qn(F )\Qn(F )ξiH(F )

∫
f(γ


1n

S 0

0 0

1n

 g)eA(−Tr(βS))dS

+
∑
γ∈Qn(F )\Qn(F )ξ0H(F )

∫
f(γ


1n

S 0

0 0

1n

 g)eA(−Tr(βS))dS
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by lemma (3.1) in [IKE] (see loc.cit P628), the first term vanishes. Also, we have (loc.cit)

Qn(F )\Qn(F )ξ0H(F )

= ξ0Z(F )X(F )Qn−m(F )\Gn−m(F )

= ξ0X(F ).Qn−m(F )\Gn−m(F ).Z(F )

= wnY (F )Sm(F )wn−mQn−m(F )\Gn−m(F )

(note that Sm commutes with X and Gn−m). So

Eβ(f ; z, g) =
∑

γ∈Qn−m(F )\Gn−m(F )

y
∑

y∈Y (F )

∫
Sm(A)

f(wn


1n

S y

tȳ 0

1n

αn−m(1, γ)g)eA(−Tr(βS))

Note that the final object is a local one.

Now we record some useful formulas:

Definition 3.3.2. If gv ∈ Un−m(Fv), x ∈ GLm(Kv), then define:

FJβ(fv; z, y, g, x) =

∫
Sm(Fv)

f(wn


1n

S y

tȳ 0

1n

α(diag(x, tx̄−1), g))eFv (−TrβS)dS

where if g1 =

A B

C D

 , g2 =

A′ B′

C ′ D′

 then:

α(g1, g2) =



A B

D′ C ′

C D

B′ A′


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Since


1n

S X

tX̄

1n





1m

Ā−1

BĀ−1

1m

A


=



1m XBĀ−1

Ā−1

BĀ−1

1m

A




1n

S −XBtX̄ XA

ĀtX̄

1n


.

it follows that:

FJβ(f ; z,X,

A BĀ−1

Ā−1

 g, Y ) =

τ cv (detA)
−1|detAĀ|z+n/2v ev(−tr(tX̄βXB))FJβ(f ; z,XA, g, Y )

Also we have:

FJβ(f ; z, y, g, x) = τv(detx)|detxx̄|
−(z+n

2 −m)

A FJtx̄βx(f ; z, x
−1y, g, 1)

3.3.1 Weil Representations

Now we briefly recall some formulas for the Weil representations which will be useful for computing

Fourier Jacobi coefficients. Let V be the two-dimensional K-space of column vectors.

The local set-up. Let v be a place of F . Let h ∈ Sm(Fv),deth ̸= 0. Let Uh be the unitary group of

this matric and denote Vv to be the corresponding Hermitian space. Let V1 := K(n−m)⊕K(n−m) :=

Xv ⊕ Yv be the Hermitian space associated to U(n − m,n − m). Let W := Vv ⊗Kv V1,v, where

V1,v := V1 ⊗ Fv. Then (−,−) := TrKv/Fv (< −,− >h ⊗Kv < −,− >1) is a Fv linear pairing on W

that makes W into an 4m(n −m)-dimensional symplectic space over Fv. The canonical embeding

of Uh × U1 into Sp(W ) realizes the pair (Uh, U1) as a dual pair in Sp(W ). Let λv be a character

of K×
v such that λv|F×

v
= χmK/F,v. In [Ku94], a splitting pair Uh(Fv)× U1(Fv) ↪→Mp(W,Fv) of the

metaplectic cover Mp(W,Fv)→ Sp(W,Fv) is associated with the character λv; we use this splitting

to identify Uh(Fv)× U1(Fv) with a subgroup of Mp(W,Fv).

We let ωh,v be the corresponding Weil representation of Uh(Fv) × U1(Fv) (associated with λv and

ev) on the Schwartz space S(Vv ⊗Kv Xv): the action of (u, g) on Φ ∈ S(Vv ⊗Kv Xv) is written

ωh,v(u, g)Φ. If u = 1 we often omit u, writing ωh,v(g) to mean ωh,v(1, g). Then ωh,v satisfies: for
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X ∈Mm×(n−m)(Kv):

• ωh,v(u, g)Φ(X) = ωh,v(1, g)Φ(u
−1X)

• ωh,v(diag(A, tĀ−1))Φ(X) = λ(detA)|detA|KΦ(XA),

• ωh,v(r(S))Φ(x) = Φ(x)ev(tr < X,X >h S),

• ωh,v(η)Φ(x) = |deth|v
∫
Φ(Y )ev(TrKv/Qv (tr < Y,X >h))dY.
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Chapter 4

Local Computations

In this chapter we do the local computations for Klingen Eisenstein sections realized as the pullbacks

of Siegel Eisenstein sections. We will mainly compute the Fourier and Fourier-Jacobi coefficients for

the Siegel sections and the pullback Klingen Eisenstein section.

4.1 Archimedean Computations

Let v be an Archimedean place of F .

4.1.1 Fourier Coefficients

Now we recall a lemma from [SU] 11.4.2.

Lemma 4.1.1. If we define fκ,n(z, g) = Jn(g, i1n)
−κ|Jn(g, i1n)|κ−2z−n,suppose β ∈ Sn(R). Then

the function z → fκ,β(z, g) has a meromorphic continuation to all of C. Furthermor, if κ ≥ n then

fκ,n,β(z, g) is holomorphic at zκ := (κ − n)/2 and for y ∈ GLn(C), fκ,n,β(zκ,diag(y, tȳ−1)) = 0 if

detβ ≤ 0 and if detβ > 0 then

fκ,n,β(zκ,diag(y,
tȳ−1)) =

(−2)−n(2πi)nκ(2/π)n(n−1)/2∏n−1
j=0 (κ− j − 1)!

e(iTr(βytȳ)) det(β)κ−n det ȳκ.

Later on our fκ,n will be defined differently, but it is just the one defined above translated by

matrices of the form diag(y, tȳ−1). So the Fourier coefficient can be deduced from the above lemma.
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4.1.2 Pullback Sections

Now we assume that our π is the holomorphic discrete series representation associated to the (scalar)

weight (0, ..., 0;κ, ..., κ) and let ϕ be the unique (up to scalar) vector such that the action of K+,′

∞

(see section 3.1) is given by detµ(k, i)−κ. Recall also that in section 3.1 we have defined the Klingen

section Fκ(z, g) there. Recall that:

S =



1 − 1
2

1

1 − ζ2
−1 1

2

1 1
2

1

−1 − ζ2
−1 − 1

2


and

S′ =



1 − 1
2

1 − ζ2
−1 1

2

1 1
2

−1 − ζ2
−1 − 1

2


.

Let i :=


i
21b

i

ζ
21a

 be a point in the symmetric domain for GU(n, n) or GU(n+ 1, n+ 1) for

n = a+ 2b, where the block matrices i are of size b× b or (b+ 1)× (b+ 1). We define archimedean

section to be:

fκ(g) = Jn+1(g, i)
−κ|Jn+1(g, i)|κ−2z−n−1

and

f ′κ(g) = Jn(g, i)
−κ|Jn(g, i)|κ−2z−n
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and the pull back sections on GU(a+ b+ 1, b+ 1) and GU(a+ b, a) to be

Fκ(z, g) :=

∫
Ua+b,b(R)

fκ(z, S
−1α(g, g1)S)τ̄(det g1)π(g1)ϕdg1

and

F ′
κ(z, g) :=

∫
Ua+b,b(R)

f ′κ(z, S
′−1α(g, g1)S

′)τ̄(det g1)π(g1)ϕdg1

Lemma 4.1.2. The integrals are absolutely convergent for Re(z) sufficiently large and for such z,

we have:

(i)

Fκ(z, g) = cκ(z)Fκ,z(g);

(ii)

F ′
κ(z, g) = c′κ(z)π(g)ϕ;

where

c′κ(z, g) = 2ν |det θ|bv

 π(av+bv)bvΓbv (z +
n+κ
2 − av − bv)Γbv (z +

n+k
2 )−1, b > 0

1, otherwise.

and cκ(z, g) = c′κ(z +
1
2 , g). Here Γm := π

m(m+1)
2

∏m−1
k=0 Γ(s − k) and ν := (a + 2b)db (recall that

d = [F : Q]).

Proof. See [Shi97] 22.2 and A2.9. Note that the action of (β, γ) ∈ U(r, s) × U(r, s) are given by

(β′, γ′) defined there. Taking this into consideration, our conjugation matrix S are Shimura’s S

times Σ−1, which is defined in (22.1.2) in [Shi97]. Also our result differ from [SU1] 11.4.4 by some

powers of 2 since we are using a different S here.

4.1.3 Fourier-Jacobi Coefficients

Lemma 4.1.3. Let zκ = κ−n
2 , β ∈ Sm(R), m < n, detβ > 0. then:

(i)FJβ,κ(zκ, x, η, 1) = fκ,m,β(zκ +
n−m

2 , 1)e(iT r(tX̄βX));

(ii)if g ∈ Un−m(R), then

FJβ,κ(zκ, X, g, 1) = e(iT rβ)cm(β, κ)fκ−m,n−m(zκ, g
′)wβ(g

′)Φβ,∞(x).
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where g′ =

1n

−1n

 g

 1n

1n

 and ct(β, κ) =
(−2)−t(2πi)tκ(2/π)t(t−1)/2∏t−1

j=0(κ−j−1)
detβκ−t.

Proof. For (i) we first assume thatm ≤ n/2, then there is a matrix U ∈ Un−m such thatXU = (0, A)

for A a (m ×m) positive semi-definite Hermitian matrix . It then follows that FJβ,κ(z,X, η, 1) =

FJβ(z, (0, A), η, 1) and e(iT r(tX̄βX)) = e(iT r(U−1tX̄βXU)), so we are reduced to the case when

X = (0, A).

Let C be a (m ×m) positive definite Hermitian matrix defined by C =
√
A2 + 1. (Since A is

positive semi-definite Hermitian, this C exists by linear algebra.)


1n

A

A

1n


=



C

1

C

AC−1

AC−1

C−1

1

C−1





C−1

1

C−1

C−1A

C−1A

−C−1A

−C−1A

C−1

1

C−1


write k(a) for the second matrix in the right of above which belongs to K+

n,∞, then as in [SU] lemma

11.4.3,

wn


1n

S X

tX̄

1n

 =



C−1

1

× × C−1

× × ×

× × ×

× × ×

C

1

× × C


wn


1n

U−1SU−1

1n


k(a)

thus

FJβ,κ(zκ, (0, A), η, 1) = (detC)2m−2κFJβ′,κ(zκ, 0, η, 1), β′ = CβC

= (detC)2m−2κfκ,m,β′(zκ +
n−m

2 , 1)

= fκ,m,β(z +
n−m

2 , 1)e(iT r(CβC − β))
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but

e(iT r(CβC − β)) = e(iT r(C2β − β)) = e(iT r((C2 − 1)β)) = e(iT r(A2β)) = e(iT r(AβA))

this proves part (i).

Part (ii) is proved completely the same as in lemma 11.4.3 of [SU].

In the case when m > n
2 we proceed similarly as lemma 11.4.3 of [SU], replacing a and u there

by corresponding block matrices just as above. we omit the details.

4.2 ℓ-adic computations, unramified case

4.2.1 Fourier-Jacobi Coefficients

Let v be a prime of F not dividing p and τ be a character of K×
v , for f ∈ In(τ) and β ∈ Sm(Fv), 0 ≤

m ≤ n, we have defined the local Fourier-Jacobi coefficient to be

fβ(z; g) :=

∫
Sm(A)

f(z, wn


1n

S 0

0 0

1n

 g)ev(−TrβS)dS

We first record a generalization of lemma 11.4.6 in [SU] to any fields (Proposition 18.14 and 19.2

of [Shi97])

Lemma 4.2.1. Let β ∈ Sn(Fv) and let r := rank(β). Then for y ∈ GLn(Kv),

fsphv,β (z, diag(y,
tȳ−1)) = τ(dety)|detyȳ|−z+n/2v D

−n(n−1)/4
v

×
∏n−1
i=r L(2z+i−n+1,τ̄ ′χiK∏n−1
i=0 L(2z+n−i,τ̄χiK)

hv,tȳβy(τ̄
′(ϖ)q−2z−n

v ).

where hv,tȳβy ∈ Z[X] is a monic polynomial depending on v and tȳβy but not on τ . If β ∈ Sn(OF,v)

and detβ ∈ O×
F,v, then we say that β is v-primitive and in this case hv,β = 1.

Lemma 4.2.2. Suppose v is unramified in K. Let β ∈ Sm(Fv) such that detβ ̸= 0. Let y ∈

GLn−m(Kv) such that tȳβy ∈ Sm(OFv ), let λ be an unramified character of K×
v such that λ|Fv× = 1.
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(i) If β, y ∈ GLm(Ov) then for u ∈ Uβ(Fv):

FJβ(f
sph
n ; z, x, g, uy) = τ(detu)|detuū|−z+1/2

v

fsphn−m(z, g)ωβ(u, g)Φ0,y(x)∏m−1
i=0 L(2z + n− i, τ̄ ′χiK)

.

(ii) If tȳβy ∈ GLm(Ov), then for u ∈ Uβ(Fv),

FJβ(f
sph
n ; z, x, g, uy) = τ(detuy)|detuyū|−z+1/2

K
fsphn−m(z, g)ωβ(u, g)Φ0,y(x)∏m−1
i=0 L(2z + n− i, τ̄ ′χiK)

.

4.2.2 Pull-back integrals

Lemma 4.2.3. Suppose π, ψ and τ are unramified and ϕ is a newvector. If Re(z) > (a+ b)/2 then

the pull back integral converges and

Fϕ(f
sph
v ; z, g) =

L(π̃, τ̄ c, z + 1)∏a+2b−1
i=0 L(2z + a+ 2b+ 1− i, τ̄ ′χiK)

Fρ,z(g)

where Fρ is the spherical section.

4.3 ℓ-adic computations, ramified case

4.3.1 Pull Back integrals

Again let v be a prime of F not dividing p. The choices in this section is not quite important. In

fact in applications we are going to change it according to the needs. The purpose for this section

is only to convince the reader that such kinds of section do exist. We define f† to be the Siegel

section supported on the cell Q(Fv)wa+2b+1NQ(OF,v) where wa+2b+1 =

 1a+2b+1

−1a+2b+1

 and

the value at NQ(OF,v) equals 1. We fix some x and y in K which are divisible by some high power

of ϖv. (When we are moving things p-adically the x and y are not going to change).

Definition 4.3.1.

fv,sieg(g) := f(

1a+2b+1

1
21a+2b+1

 g

1a+2b+1

21a+2b+1

 γ̃v)
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where γ̃v is defined to be: 

1 1
x

1

1 1
yȳ

1 1
x̄

1

1

1

1



Lemma 4.3.1. Let K
(2)
v be the subgroup of G(Fv) of the form



1 d

a 1 f b c

1 g

1 e

1


where e = −tā,

b = td̄, g = −θtf̄ , c = c̄, a ∈ (x), e ∈ (x̄), f ∈ (yȳ), g ∈ (2ζyȳ). Then Fϕ(z; g, f) is supported in

PwK
(2)
v and is invariant under the action of K

(2)
v .

Proof. Let Sx,y consists of matrices: S :=



S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


in the space of Hermitian (a +

2b+1)× (a+2b+1) matrices (the blocks are with respect to the partition b+1+a+ b such that the

entries of S13, S23 are divisible by y, the entries of S14, S24 are divisible by x, the entries of S31, S32

are divisible by ȳ, the entries of S41, S42 are divisible by x̄, the entries of S33 are divisible by yȳ, the

entries of S34 are divisible by xȳ, the entries of S43 are divisible by x̄y, and the entries of S44 are

divisible by xx̄. Let Qx,y := Q(Fv).

 1

Sx,y 1

.
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For g =



a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4


, we have:

γ(g, 1) ∈ suppfv,sieg

⇔ γ(g, 1)wa+2b+1dx,yγ̃
−1 ∈ Qx,y

⇔ γ(gw, ηdiag(x̄−1, 1, x))w′dy δ̃
−1 ∈ Qx,y

Here dx,y = diag(1, 1, y, x, 1, 1, ȳ−1, x̄−1) and dy = diag(1, 1, y, 1, 1, 1, ȳ−1, 1). where x and y here

stand for the corresponding block matrices of the corresponding size. Recall that γ((m(g1, 1), g1) ∈

Q, by multiplying this to the left for g1 = diagx̄, 1, x−1)η−1, we are reduced to proving that if

γ(g, 1)w′dyγ̃
−1 ∈ Qx,y, then g ∈ PwK(2)

v w−1. A computation tells us that: γ(g, 1)w′dyγ̃
−1 equals:



a1 a2 ζa3y −b1 b1 b2 a3ȳ
−1

a4 a5 ζa6y − a6ȳ−1 −b3 b3 b4 a6ȳ
−1

a7/2 a8/2
ζy(a9−1)

2 − (a9+1)ȳ−1

2 − b52
b5
2

b6
2

(a9+1)ȳ−1

2

1

c1 c2 ζc3y − c3ȳ−1 1− d1 d1 d2 c3ȳ
−1

c4 c5 ζc6y − c6ȳ−1 −d3 d3 d4 c6ȳ
−1

− ζ
−1

2 a7 − ζ
−1

2 a8 − (a9+1)
2 y + ζ−1

2 (a9 − 1)ȳ−1 ζ−1

2 b5 − ζ
−1

2 b5 − ζ
−1

2 b6
ζ−1

2 (1− a9)ȳ−1

a1 − 1 a2 ζa3y − a3ȳ−1 −b1 b1 b2 a3ȳ
−1 1


One first proves that d4 ̸= 0 by looking at the second row of the lower left of the above matrix, so

by left multiplying g by some matrix in NP , we may assume that d2 = b2 = b4 = b6 = 0, then the

result follows by an argument similarly as lemma 4.4.11 later on.

Now recall that g =


a5 a6 a4

a8 a9 a7

a2 a3 a1

, let Y be the set of g’s so that the entries of a2 are integers, the

entries of a3 are divisible by yȳ, the entries of a1−1 are divisible by x̄, the entries of 1−a5 are divisible

by x, the entries of a6 are divisible by x̄y, the entries of a4 are divisible by xx̄, 1−a9
2 = yȳζ(1+yȳN)

for some N with integral entries, the entries of a8 are divisible by ȳyζ, and the entries of a7 are
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divisible by ȳyxζ.

Lemma 4.3.2. Let ϕx = π(diag(x̄, 1, x−1)η−1)ϕ where ϕ is invariant under the action of Y defined

above, then Fϕx(z, w) = τ(yȳx)|(yȳ)2xx̄|−z−
a+2b+1

2
v Vol(Y).ϕ.

Proof.



1

1

1
2

1
2

1

1 1

1

− ζ
−1

2 − ζ
−1

2

1 1





1

1

1

a1 a3 a2

1

1

a7 a9 a6

a4 a6 a5





1

1

1 −ζ

1

1

1

−1 −ζ

1



×



1

1

1

1

1

1

−1

1





1

1

y

1

1

1

ȳ−1

1





1

1

1

1

−1 1

1

−1 1

−1 1



=



1

1

a8
2

ζy
2 (1− a9)− ȳ−1

2 (1 + a9) −a72
ȳ−1

2 (1 + a9) −a82
−a2 a3ζy + a3ȳ

−1 a1 −a3ȳ−1 a2

−a2 a3ζy + a3ȳ
−1 a1 − 1 1 −a3ȳ−1 a2

1

ζ−1

2 a8 −y2 (1 + a9) +
ζ−1ȳ−1

2 (1− a9) − ζ
−1

2 a7 − ζ
−1ȳ−1

2 (1− a9) − ζ
−1

2 a8

1− a5 a6ζy + a6ȳ
−1 a4 −a6ȳ−1 a5


One checks the above matrix belongs to Qx,y if and only if the ai’s satisfy the conditions required

by the definition of Y. The lemma follows by a similar argument as in lemma 4.4.12.
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Definition 4.3.2. We fix a constant Cv such that CvVol(Y) is a p-adic integer.

When we are moving things in p-adic families, this constant is not going to change.

4.3.2 Fourier-Jacobi Coefficient

Here we record a lemma on the Fourier-Jacobi coefficient for f†v ∈ In(τv) and β ∈ Sm(Fv).

Lemma 4.3.3. If β ̸∈ Sm(OFv )∗ then FJβ(f
†; z, u, g, hy) = 0. If β ∈ Sn(OFv )∗ then

FJβ(f
†; z, u, g, 1) = f†(z, g′η)ωβ(h, g

′η−1)Φ0,y(u).Vol(Sm(OFv )),

where g′ =

1n−m

−1n−m

 g

1n−m

−1n−m

.

The proof is similar to [SU]11.4.16.

4.4 p-adic computations

In this section we first prove that under some ‘generic conditions’ the unique up to scalar nearly

ordinary vector in I(ρ) is just the unique up to scalar vector with certain prescribed level action.

Then we construct a section F † in I(ρ∨) which is the pull back of a Siegel section f† supported in

the big cell. We can understand the level action of this section. Then we define F 0 to be the image

of F † under the intertwining operator. By checking the level action of F 0 we can prove that it is

just the nearly ordinary vector.

4.4.1 Nearly Ordinary Sections

Let λ1, ..., λn be n characters of Q×
p , π = IndGLnB (λ1, ..., λn).

Definition 4.4.1. Let n = r + s and k = (cr+s, ..., cs+1; c1, ..., cs) is a weight. We say (λ1, ...λn) is

nearly ordinary with respect to k if the set:

{valpλ1(p), ..., valpλn(p)}

= {c1 + s− 1− n
2 + 1

2 , c2 + s− 2− n
2 + 1

2 , ..., cs −
n
2 + 1

2 , cs+1 + r + s− 1− n
2 + 1

2 , ..., cr+s + s− n
2 + 1

2}

We denote the above as {κ1, ..., κr+s}, thus κ1 > ... > κr+s.
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Let Ap := Zp[t1, t2, ..., tn, t−1
n ] be the Atkin-Lehner ring of G(Qp), where ti is defined by ti =

N(Zp)αiN(Zp), αi =

1n−i

p1i

, ti acts on π
N(Zp) by

v|ti =
∑

x∈N |α−1
i Nαi

xiα
−1
i v.

We also define a normalized action with respect to the weight k ([Hida04]):

v∥ti := δ(αi)
−1/2pκ1+...+κiv|ti

Definition 4.4.2. A vector v ∈ π is called nearly ordinary if it is an eigenvector for all ||ti’s with

eigenvalues that are p-adic units.

We identify π as the set of functions on GLn(Qp):

π = {f : GLn(Qp)→ C, f(bx) = λ(b)δ(b)1/2f(x)}.

Let wℓ be the longest Weyl element



1

1

...

1


, f ℓ be the element in π such that f ℓ is supported

in BwℓN(Zp) and invariant under N(Zp); this is unique up to scalar. We have:

Lemma 4.4.1. f ℓ is an eigenvector for all ti’s.

Proof. Note that for any i, tif
ℓ is invariant under N(Zp). By looking at the defining v|ti under the

above model for π it is not hard to see that the section is supported in B(Qp)wℓB(Zp). So f ℓ||ti

must be a multiple of f ℓ.

Lemma 4.4.2. Suppose that (λ1, ..., λn) is nearly ordinary with respect to k and suppose

νp(λ1(p)) > νp(λ2(p)) > ... > νp(λn(p))

then the eigenvalues of ∥ti acting on f ℓ are p-adic units. In other words f ℓ is an ordinary vector.

Proof. A straightforward computation gives that

f ℓ||ti = λ1...λi(p
−1)pκ1+...+κif ℓ

40



which is clearly a p-adic unit by the definition of (λ1, ..., λn) to be nearly ordinary with respect to

k.

Lemma 4.4.3. Let λ1, ..., λa+2b be a set characters of Q×
p such that cond(λa+2b) > ..., > cond(λb+1) >

cond(λ1) > ... > cond(λb). In this case we say λ := (λ1, ..., λa+2b) is generic and we defined a sub-

group: Kλ is defined to be the subgroup of GLa+2b(Zp) whose below diagonal entries of the ith column

are divisible by cond(λa+2b+1−i) for 1 ≤ i ≤ a+ b, and the left to diagonal entries of the jth row are

divisble by cond(λa+2b+1−j)for a+ b+ 2 ≤ j ≤ a+ 2b and λop a character defined by:

λa+2b(g11)λa+2b−1(g22)...λ1(ga+2b a+2b)

then f ℓ is the unique (up to scalar) vector in π such that the action of Kλ is given by multiplying λ.

Proof. This can be proven in the same way as [SU]9.2.6.

We let w1 :=



1

...

1

1

...

1


Now let B̃ = Bw1 and K̃λ = Kw1

λ .

Corollary 4.4.1. Denote ai := νp(λi(p)). Suppose λ1, ..., λa+2b are such that cond(λ1) > ... >

cond(λa+2b) and a1 < ... < aa+b < aa+2b < ... < aa+b+1, then the unique (up to scalar) ordinary

section with respect to B̃ is

f(x)ord =

 λ1(g11)...λa+2b(ga+2b,a+2b), g ∈ K̃λ.

0 otherwise .

Proof. We only need to prove that π(w1)f
ord(x) is ordinary with respect to B̃w1 . Let λ′1 =

λa+b+1, ..., λ
′
b = λa+2b, λ

′
b+1 = λa+b, ..., λ

′
a+2b = λ1, then λ′ satisfies lemma 4.4.2 and thus the

ordinary section for B (up to scalar) is f ℓλ′ . λ′ also satisfies the assumptions of lemma 4.4.3 so f ℓλ′ is

the unique section such that the action of Kλ is given by λ′a+2b(g11)...λ
′
1(ga+2b,a+2b). But λ is clearly

regular, so Ind
GLa+2b

B (λ) ≃ Ind
GLa+2b

B (λ′). So the ordinary section of Ind
GLa+2b

B (λ) for B also has

the action of Kλ given by this character. It is easy to check that π(w1)f
ord has this property and

the uniqueness (up to scalar) gives the result.
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4.4.2 Pull Back Sections

In this section we construct a Siegel section on U(a+2b+1, a+2b+1) which pulls back to the nearly

ordinary Klingen sections on U(a+ b+1, b+1). We need to re-index the rows and columns since we

are going to study large block matrices and the new index will greatly simplify the explanation. One

can check that the Klingen Eisenstein series we construct in this section, when going back to our

previous index, is nearly ordinary with respect to the Borel :



∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗

∗ ∗


, where the diagonal

blocks are upper, upper, upper, lower, lower triangular, while the one we need is nearly ordinary

with respect to the Borel



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

∗ ∗


(it is for this one we can use the Λ-adic Fourier-Jacobi

expansions). (here the blocks are with respect to the partition: b+1+a+b+1.) However we will see

that the nearly ordinary sections with respect to different Borels only differ by right translation by

some Weyl element depending on a and b. We will specify this Weyl element when doing arithmetic

applications.

Now we explain the new index. Let Vs,b be the hermitian space with metric


ζ1a

1b

−1b

,

Va,b+1 be the hermitian space with metric


ζ1a

1b+1

−1b+1

. The matrix S for the embedding:
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U(Va,b)× U(Va,b+1) ↪→ U(Va+2b+1) becomes:



1 − ζ2
1 1

2

1

−1 1
2

−1 − ζ2
1 1

2

1

−1 −1
2


Siegel-Weil section at p

τ : character of K×
℘ = K×

v ×K×
v̄ = Q×

p ×Q×
p

τ = (τ1, τ
−1
2 ), psi being the conductor of τi, i = 1, 2.

Let χ1, ...χa, χa+1, ...χa+2b be characters of Q×
p whose conductors are pt1 , ..., pta+2b . Suppose we are

in the:

Generic case:

t1 > t2 > ... > ta+b > s1 > ta+b+1 > ... > ta+2b > s2

Also, let ξi = χiτ
−1
1 for 1 ≤ i ≤ a+ b

ξj = χ−1
j τ2 for a+ b+ 2 ≤ j ≤ a+ 2b+ 1. ξa+2b+1 = 1.

Let Φ1 be the following Schwartz functions: let Γ be the subgroup of GLa+2b+1(Zp) consists of ma-

trices γ = (γij) such that ptk divides the below diagonal entries of the kth column for 1 ≤ k ≤ a+ b

and ps1 divides γij when a+ b+ 2 ≤ j ≤ a+ 2b+ 1, i ≤ a+ b+ 1 or i > j.

Let ξ′i = χiτ
−1
2 1 ≤ i ≤ a+ b

ξj = χ−1
j τ1, a+ b+ 2 ≤ j ≤ a+ 2b+ 1

ξ′a+b+1 = τ1τ
−1
2 . (thus ξ′k = ξkτ1τ

−1
2 for any k).

Definition 4.4.3.

Φ1(x) =

 0 x ̸∈ Γ∏a+b+1
k=1 ξ′k(xkk) x ∈ Γ
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Now we define another Schwartz function Φ2.

Let X be the following set: if X ∋ x =



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


is in the block form with respect

to the partition: a+ 2b+ 1 = a+ b+ 1 + b, then:

- x has entries in Zp;

-

A11 A14

A21 A24

 has all the ℓ-upper-left minors Aℓ so that (detAℓ) ∈ Z×
p for ℓ = 1, 2, ..., a+ b;

- and A42 has all the ℓ-upper-left minors Bℓ so that (detBℓ) ∈ Z×
p for ℓ = 1, 2, ..., b.

We define:

Φξ(x) =


0 x ̸∈ X

ξ1/ξ2(detA1)...ξa+b−1/ξa+b(detAa+b)

×ξa+b+2/ξa+b+3(detB1)...ξa+2b/ξa+2b+1(detBb−1)ξa+2b+1(detBb). x ∈ X

Let Φ2(x) := Φ̂ξ(x) =
∫
Ma+2b+1

(Qp)Φξ(y)ep(−tryxt)dy.

Let Φ be a Schwartz function on

Ma+2b+1,2(a+2b+1)(Qp) by:

Φ(X,Y ) := Φ1(X)Φ2(Y ).

and define a Siegel-(Weil) section by:

fΦ(g) = τ2(detg)|detg|
−s+ a+2b+1

2
p ×

∫
GLa+2b+1(Qp

Φ((0, X)g)τ−1
1 τ2(detX)|detX|−2s+a+2b+1

p d×X.

Lemma 4.4.4. If γ ∈ Γ, then:

Φξ(
tγX) =

a+2b+1∏
k+1

(ξk(γkk))Φξ(X)

Proof. Straightforward.

Fourier Coefficients (at p)
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If β ∈ Herma+2b+1(K) the Fourier coefficient is defined by:

fΦβ (1, s) =

∫
Ma+2b+1

(Qp)f
Φ(

 1a+2b+1

−1a+2b+1


1 N

1

)ep(−trβN)dN

=

∫
Ma+2b+1(Qp)

∫
GLa+2b+1(Qp)

Φ((0, X)

 1a+2b+1

−1a+2b+1 −N

)τ−1
1 τ2(detX)

× |detX|−2s+a+2b+1
p ep(−trβN)dNd×X

=

∫
GLa+2b+1(Qp)

Φ1(−X)Φξ(−tX−1tβ)τ−1
1 τ2(detX)|detX|−2s

p d×X

= τ−1
1 τ2(−1)vol(Γ)Φξ(tβ).

Definition 4.4.4. Let f̃† = f̃†a+2b+1 be the Siegel section supported on Q(Qp)wa+2b+1

1 Ma+2b+1(Zp)

1


and f̃†(w

1 X

1

) = 1 for X ∈Ma+2b+1(Zp).

Lemma 4.4.5.

f̃†β(1) =

 1 β ∈Ma+2b+1(Zp)

0 β ̸∈Ma+2b+1(Zp)

(here we used the projection of β into its first component in Kv = Fv×Fv) where the first component

correspond to the element inside our CM-type Σ under ι := C ≃ Cp (see section 2.1).

Definition 4.4.5.

f† :=
fΦ

τ−1
1 τ2(−1)Vol(Γ)

Thus f†β = Φξ(
tβ).

Remark 4.4.1. This ensures that when we are moving our Eisenstein datum p-adically, the Siegel

Eisenstein series also move p-adic analytically.

Now we recall a lemma from [SU]11.4.12. which will be useful later.

Lemma 4.4.6. Suppose v|p and β ∈ Sn(Qv),detβ ̸= 0.

(i) If β ̸∈ Sn(Zv) then M(z, f̃†n)β(−z, 1) = 0;

(ii) Suppose β ∈ Sn(Zv). Let c := ordv(cond(τ
′)). Then:

M(z, f̃†n)β(−z, 1) = τ ′(detβ)|detβ|−2z
v g(τ̄ ′)ncn(τ

′, z).
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where

cn(τ
′, z) :=

 τ ′(pnc)p2ncz−cn(n+1)/2 c > 0

p2nz−n(n+1)/2 c = 0.

Note that our f̃† is the f† in [SU] and our τ is their χ.

Now we want to write down our Siegel-Weil section fΦ in terms of f̃†. First we prove the

following:

Lemma 4.4.7. Suppose Φξ is the function on Mn(Qp) defined as follows: if cond(ξi) = (pti) for

i = 1, 2, ..., n, then

X̃ξ := N(Zp)


p−t1Z×

p

...

p−tnZ×
p

Nopp(Zp).

then the Fourier transform Φ̃ξ is the following function:

Φ̃ξ(x)∏n
i=1G(ξi)

=



0 x ̸∈ X̃ξ

∏n
i=1 ξ̄i(xip

ti) X̃ξ ∋ x =


1

... ...

... ... 1



x1

...

xn



1 ... ...

... ...

1


Proof. First suppose x is supported in the ”big cell”: N(Qp)T (Qp)Nopp(Qp) where the superscript

’opp’ means the opposite parabolic. It is easily seen that we can write x in terms of block matrices:

x =

1n−1 u

1


z

w


1n−1

v 1


where z ∈Mn−1(Qp) w ∈ Qp.

A first observation is that Φ̃ξ is invariant under right multiplication by Nopp(Zp) and left multipli-
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cation by N(Zp). We show that v ∈M1×(n−1)(Zp) if Φ̃ξ(x) ̸= 0. By definition:

Φ̃ξ(x) =

∫
Mn(Qp)

Φξ(y)ep(try
tx)dy

(y =

1n−1

ℓ 1


an−1

b


an−1 m

1


 an−1 an−1m

ℓan−1 ℓan−1m+ b

)

=

∫
a∈Xξ,n−1,m∈M(Zp),ℓ∈M(Zp),b∈Z×

p

Φξ(

1

ℓ 1


a

b


1 m

1

)

× ep(tr

 1

tm 1


ta

b


1 tℓ

1


1 u

1


z

w


1

v 1

)dy

=

∫
Φξ(

a
b

)ep(tr

 1

tm+ v 1


ta

b


1 tℓ+ u

1


z

w

)dy

=

∫
Φξ(

a
b

)ep(tr

 a a(ℓ+ u)

(m+ v)a (m+ v)a(ℓ+ u) + b


z

w

)dy

=

∫
Φξ(

a
b

)ep(az + ((m+ v)a(ℓ+ u) + b)w)dy

(Note that Φξ is invariant under transpose.)

If Φ̃ξ(x) ̸= 0, then it follows from the last expression that: w ∈ p−tnZ×
p and suppose v ̸∈

M1×(n−1)(Zp), then m + v ̸∈ M1×(n−1)(Zp). We let a,m, b to be fixed and let ℓ to vary in

M1×(n−1)(Zp), we find that this integral must be 0. (Notice that a ∈ Xξ,n−1 and w ∈ p−tnZ×
p ,

thus (m + v)aw ̸∈ M1×n−1(Zp)) Thus a contradiction. Therefore, v ∈ M1×n−1(Zp), similarly

u ∈ Mn−1,1(Zp). Thus by the observation at the beginning of the proof we may assume u = 0 and

v = 0 without lose of generality.

Thus if we write ϕξ,n−1 as the restriction of Φξ to the up-left (n− 1)× (n− 1) minor,

Φ̃ξ(x) =

∫
Φξ(

a
b

)ep(az + (maℓ+ b)w)dy

= p−ntng(ξn)ξ̄n(wp
tn)

∫
a∈Xξ,n−1

Φξ,n−1(a)ep(az)dy

47



by an induction procedure one gets:

Φ̃ξ(x) =

 0 x ̸∈ X̃ξ,n

p−
∑n
i=1 ici

∏n
i=1 g(ξi)

∏n
i=1 ξ̄i(xip

ti) x ∈ X̃ξ.

Since X̃ξ,n is compact, now that we have proved that Φ̃ξ,n when restricting to the ”big cell” has

support in X̃ξ,n, therefore Φ̃ξ,n itself must be supported in X̃ξ,n.

Lemma 4.4.8. Let X̃ξ be the support of Φ2 = Φ̂ξ, then a complete representative of X̃ξmodMa+2b+1(Zp)

is given by: 

A B

C D

E



where the blocks are with respect to the partition a+b+1+b where

A B

C D

 runs over the following

set: 

1 m12 ... m1,a+b

... ... ...

... ma+b−1,a+b

1





x1

...

...

xa+b





1

n21 ...

... ... ...

na+b,1 ... na+b,a+b−1 1


where xi runs over p−tiZ×

p mod Zp, mij runs over Zp modptj and nij runs over Zp mod pti , and

E runs over the following set:



1 k12 ... k1,b

... ... ...

... kb−1,b

1





y1

...

...

yb





1

ℓ21 ...

... ... ...

ℓb,1 ... ℓb,b−1 1


where yi runs over p−ti+a+bZp modZp; kij runs over Zp modpta+b+j ; ℓij runs over Zp modpta+b+i .

Proof. This is elementary and we omit it here.

Now we define several sets: Let B′ be the set of (a + b) × (a + b) upper triangular matrices of
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the form 

1 m12 ... m1,a+b

... ... ...

... ma+b−1,a+b

1





x1

...

...

xa+b


where xi runs over p

−tiZ×
p mod Zp, mij runs over Zp modptj .

Let C′ be the set of b× b lower triangular matrices of the form



1

n21 ...

... ... ...

na+b,1 ... na+b,a+b−1 1


where nij runs over Zp modpti

Let E′ be the set of b× b upper triangular matrices of the form



1 k12 ... k1,b

... ... ...

... kb−1,b

1


where kij runs over Zp modpta+b+j .

Let D′ be the set of (a+ b)× (a+ b) lower triangular matrices of the form



y1

...

...

yb





1

ℓ21 ...

... ... ...

ℓb,1 ... ℓb,b−1 1


where yi runs over p−ti+a+bZp modZp; ℓij runs over Zp modpta+b+i . Also we define for g ∈

GLa+2b(Qp), gι =


1a×a

1b×b

1b×b

 g


1b×b

1a×a

1b×b

.
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Corollary 4.4.2.

f†(z, g) = p−
∑a+b
i=1 iti−

∑b
i=1 ita+b+1+i

a+b∏
i=1

g(ξi)ξi(−1)
b∏
i=1

g(ξa+b+1+i)ξa+b+1+i(−1)

×
∑

A,B,C,D,E

a∏
i=1

ξ̄i(Aii)

b∏
i=1

ξ̄a+i,a+i(Dii)×
b∏
i=1

ξ̄a+b+1+i(Eii)f̃
†(z, g


1a+2b+1

A B

C D

E

1a+2b+1


)

Proof. using the lemma above, we see that both hand sides have the same β’th fourier coefficients

for all β ∈ Sa+2b+1(Qp) thus they must be the same.

thus if B′, C ′, D′, E′ runs over the set B′,C′,D′,E′, then

f†(z, g) = p−
∑a+b
i=1 iti−

∑b
i=1 ita+b+1+i

a+b∏
i=1

g(ξi)ξi(−1)
b∏
i=1

g(ξa+b+1+i)ξa+b+1+i(−1)

×
∑

B′,C′,D′,E′

a+b∏
i=1

ξ̄i(B
′
ii)

b∏
i=1

ξa+b+i(D
′
ii)

× f̃†(z, gα(



B′

1

C ′

1


,

E′

D′


ι

)

1 A′

1

α(



B′

1

C ′

1


,

E′

D′


ι

)−1)

= p−
∑a+b
i=1 iti−

∑b
i=1 ita+b+1+i

a+b∏
i=1

g(ξi)ξi(−1)
b∏
i=1

g(ξa+b+1+i)ξa+b+1+i(−1)

×
∑

B′,C′,D′,E′

a+b∏
i=1

ξ̄i(B
′
ii)

b∏
i=1

ξa+b+i(D
′
ii)

B∏
i=1

τ̄1(B
′
ii)

b∏
i=1

τ̄2(D
′
ii)

× f̃†(z, gα(



B′

1

C ′

1


,

E′

D′


ι

)

1 A′

1

)
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where A′ =



p−t1

...

p−t2

p−ta+1

...

p−ta+b

p−ta+b+1

...

p−ta+2b


Definition 4.4.6. (pull back section) If f is a Siegel section and ϕ ∈ πp, then

Fϕ(z, f, g) :=

∫
GLa+2b(Qp)

f(z, γα(g, g1)γ
−1)τ̄(det g1)ρ(g1)ϕdg1

Now we define a subset K of GLa+2b+2(Zp) to be so that k ∈ K if and only if:

pti divides the below diagonal entries of the ith column for 1 ≤ i ≤ a + b, ps1 divides the below

diagonal entries of the (a+ b+ 1)th column, and pta+b+j divides the right to diagonal entries of the

(a+ b+ 1 + j) th ROW for 1 ≤ j ≤ b− 1.

We also define ν, a character of K by:

ν(k) = τ1(ka+b+1,a+b+1)τ2(ka+2b+2,a+2b+2)
a+b∏
i=1

χi(kii)
b∏
i=1

χa+b+i(ka+b+i+1,a+b+i+1)

for any k ∈ K, we also define ν̃ a character of K̃ by:

ν̃(k) =
b∏
i=1

χa+i(ki,i)
a∏
i=1

χi(kb+i,b+i)
b∏
i=1

χa+b+i(ka+b+i,a+b+i)

Lemma 4.4.9. Let K ′ ⊂ K be the compact subset defined by:

K ′ ∋ k =



a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4


(here the blocks are with respect to a+ b+ 1 + b+ 1) if and only

if: pta+b+i+tj divides the (i, j)th entry of c1 for 1 ≤ i ≤ b, 1 ≤ j ≤ a and pta+b+i+ta+j divides the
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(i, j)th entry of c2 for 1 ≤ i ≤ b, 1 ≤ j ≤ b.

(it is not hard to check that this is a group).

then: Fϕ(z, f
†, gk) = ν(k)Fϕ(a, f

†, g) for any ϕ ∈ π and k ∈ K ′

Proof. this follows directly from the action of K ′ on the Siegel Weil section f†.

We define K ′′ to be the subset of K consists of matrices



1

1

1

c1 c2 1

1


such that ptj divides the (i, j)th entry of c1 for 1 ≤ i ≤ b, 1 ≤ j ≤ a and pta+j divides the (i, j)th

entry of c2 for 1 ≤ i ≤ b, 1 ≤ j ≤ b.

Definition 4.4.7. K̃ ⊂ GLa+2b(Zp):


a1 a3 a2

a7 a9 a8

a4 a6 a5

 (blocks are with respect to (b + a + b)). the

column’s of a3, a6 are divisible by pt1 , ..., pta , the column’s of a4 are divisible by pta+1 , ..., pta+b , pta+j

divides the below diagonal entries of the i’th column of a1, (1 ≤ i ≤ b), ptj divides the below diagonal

entries of the j’s column of a9 (1 ≤ j ≤ a), pta+b+kdivides the above diagonal entries of the k’th

ROW of a5.

K̃ ′ ⊂ K̃ is the set of pta+b+i+ta+j divides the (i, j)th entry of a4 for 1 ≤ i ≤ b, 1 ≤ j ≤ b and

pta+b+i+tj divides the (i, j)th entry of a6 for 1 ≤ i ≤ b, 1 ≤ j ≤ a. We also define K̃ ′′ to be the

subset of K̃ consists of matrices: 
1

1

a4 a6 1


such that pta+j divides the (i, j)th entry of a4 for 1 ≤ i ≤ b, 1 ≤ j ≤ b and ptj divides the (i, j)th

entry of a6 for 1 ≤ i ≤ b, 1 ≤ j ≤ a.

The following lemma would be useful in identifying our pull back section:

Lemma 4.4.10. Suppose Fϕ(z, f
†, g) as a function of g is supported in PwK and Fϕ(z, f

†, gk) =

ν(k)Fϕ(z, f
†, g) for k ∈ K ′, and Fϕ(z, f

†, w) is invariant under the action of (K̃ ′′)ι. then Fϕ(a, f
†, g)

is the unique section (up to scalar) whose action by k ∈ K is given by multiplying ν(k).
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Proof. This is easy from the fact that K = K ′K ′′ = K ′′K ′. The uniqueness follows from lemma

4.4.3.

We define a matrix w to be


1a

1b+1

−1b+1

. We also define Υ to be the element in

U(n, n)(Fv)(= U(n, n)(Qp)) such that the projection to the first component of Kv = Fv ×Fv equals

that of γ. (note that γ ̸∈ U(n, n)).

Lemma 4.4.11. If γα(g, 1)γ−1 ∈ suppρ(Υ)f† then g ∈ PwK.

Proof. since f† is of the form
∑
A∈X f̃

†(−

1 A

1

), where X is some set, we only have to check

the lemma for each term.

First recall we defined: A′ =



−p−t1

...

p−ta

−pta+1

...

−pta+b

−p−ta+b+1

...

−p−ta+2b


where the blocks are with respect to a + b + 1 + b. Let ζv and γv be the projection of ζ and γv to

the first component of Kv ≡ Fv × Fv, then:

γv =



ζ−1
v

1

1

1

−ζ−1
v

1
2

1

1

1
2

1

1

1



=



2ζ−1
v

1

1

1

−ζ−1
v

1
2

1

1

1





1

1

1

1

1

1

1

1

1

1

1


we denote the last term γ̃v. Some times we omit the subscript v if no confusions arise.
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Using the expression for f† involving the B′, C ′, D′, E′’s as above and the fact that γ(m(g, 1), g) ∈ Q

and that K is invariant under the right multiplication of B’s and C’s, we only need to check that if

γ̃vα(g, 1)γ̃
−1
v ∈ suppρ(Υ)ρ(

1 A

1

 f̃†, then g ∈ PwK. if gw =



a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4


then this

is equivalent to



1

1

1

1

1

1

1

1

1

1

1





a1 a2 a3

a4 a5 a6

a7 a8 a9

1

b1 b2

b3 b4

b5 b6

c1 c2 c3

c4 c5 c6

1

d1 d2

d3 d4

1



wa+2b+1 ×
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

pt1

...

pta

1

1

pta+1

...

pta+b

1

1

1

p−ta+b+1

...

p−ta+2b



×



1

1

1

1

−1 1

−1 1

1

−1 1



×



p−t1

...

p−ta

1

1

p−ta+1

...

p−ta+b

1

1

1

pta+b+1

...

pta+2b



w−1
a+2b+1
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is in suppf̃†. which is equivalent to

γ̃α(g,


1b

1a

−1b





pta+b+1

...

p−t1

...

p−ta+1

...


)wa+2b+1γ̃

−1

belongs, and thus also, γ̃α(g, 1)wa+2b+1γ̃
−1 belongs to:

suppρ(



p−t1

...

p−ta

1

1

p−ta+1

...

p−ta+b

1

1

1

pta+b+1

...

pta+2b



wa+2b+1)f̃
†.

the right hand side is contained in: Qt := Q.{

1

S 1

 : S ∈ St =



S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


} where

the blocks for St is with respect to a+ b+ 1 + b and it consists of matrices such that Sij ∈M(Zp),

pti divides the ith column for 1 ≤ i ≤ a, pta+i divides the (a + b + 1 + i)th column for 1 ≤ i ≤ b,

pta+b+i divides the (a + b + 1 + i)th row for 1 ≤ i ≤ b, and the (i, j)-th entry of S41 and S44 are

divisible by pta+b+i+tj and pta+b+i+ta+j respectively. Observe that we have only to show that if
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γ̃α(gw, 1)



1

1

1

1

1

1

1

1



γ̃−1 ∈ Qt then g ∈ PwK, i.e. gw ∈ PKw for Kw := wKw.

γ̃α(g, 1)wγ̃−1 =



−a1 a2 a3 −b1 a1 b1 b2

−a4 a5 a6 −b3 a4 b3 b4

−a7 a8 a9 −b5 a7 b5 b6

1

1− a1 a2 a3 −b1 a1 b1 b2

−c1 c2 c3 −d1 c1 d1 d2

−c4 c5 c6 −d3 c4 d3 d4

−a4 a5 − 1 a6 −b3 a4 b3 b4 1



:= H

thus if H ∈ Qt, then ∃S ∈ St such that:



1− a1 a2 a3 −b1

−c1 c2 c3 1− d1

−c4 c5 c6 −d3

−a4 a5 − 1 a6 −b3


=



a1 b1 b2

c! d1 d2

c4 d3 d4

a4 b3 b4 1


S

By looking at the 3rd row (block-wise), one finds d4 ̸= 0, by multiplying g by a matrix

1 ×

1 ×

1 × ×

1 ×

d−1
4


(which does not change the assumption and conclusion) we may assume that
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d4 = 1 and d2 = 0, b2 = 0, b4 = 0, b6 = 0, b5 = 0. So we assume that gw is of the form:



a1 a2 a3 b1

a4 a5 a6 b3

a7 a8 a9

c1 c2 c3 d1

c4 c5 c6 d3 1


Next by looking at the 2nd row (block-wise) and note that d2 = 0 we find that d1 is of the form



Z×
p Zp ... ... Zp

pta+1Zp Z×
p ... ... Zp

... pta+2Zp Z×
p ... ...

... ... ... ... ...

pta+1Zp ... ... ... Z×
p


and by looking at the 3rd row again we see c4 = (pt1Zp, ..., ptaZp), d3 ∈ (pta+1 , ..., pta+b)., c1 ∈

Mb×1(p
t1Zp),Mb×1(p

t2Zp), ...,Mb×1(p
taZp)), c2 ∈Mb×b(Zp), c3 ∈Mb×1(Zp).

By looking at the 1st row and note that b2 = 0 we know a1 ∈



Z×
p Zp ... ... Zp

pt1Zp Z×
p ... ... Zp

... pt2Zp Z×
p ... ...

... ... ... ... ...

pt1Zp ... ... ... Z×
p


,

b1 ∈ (Ma×1(p
ta+1Zp),Ma×1(p

ta+2Zp), ...,Ma×1(p
ta+bZp)). Finally look at the 4th row (block-wise),

note that b4 = 0, similarly, a4 ∈ (Mb×1(p
t1Zp),Mb×1(p

t2Zp), ...,Mb×1(p
taZp)),

b3 ∈ (Mb×1(p
ta+1Zp),Mb×1(p

ta+2Zp), ...,Mb×1(p
ta+bZp)).

a5 − 1 ∈



M1×b(p
ta+b+1Zp)

M1×b(p
ta+b+2Zp)

...

M1×b(p
ta+2bZp)


,a6 ∈



pta+b+1Zp

pta+b+2Zp

...

pta+2bZp


, a2 ∈Ma×b(Zp), a3 ∈Ma×1(Zp).

Now we prove that gw ∈ PKw using the properties proven above. First we multiply gw by
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

1

1

1

−d−1
1 c1 −d−1

1 c2 −d−1
1 c3 d−1

1

−c4 −c5 −c6 −d3 1


∈ Kw, which does not change the above properties and

what needs to be proven, so without loss of generality we assume that c4 = 0, c5 = 0, c6 =

0, d3 = 0, c1 = 0, c2 = 0, c3 = 0, d1 = 0. Moreover we set

a1 a2

a4 a5

−1

a3
a6

 := T , then



1 T1

1 T2

1

1

1


∈ Kw, now it is clear that gw ∈ PKw.

Now suppose that π is nearly ordinary with respect to k. We denote ϕ to be the unique (up

to scalar) nearly ordinary vector in π. Let ϕw = π(w)ϕ, ϕaux =
∑
x∈J π


1

1

x

ϕw where x

runs through the representatives of



1 x12 ... x1b

... ... ...

... ...

1


so that xij runs through representatives of

[Zp : pta+b+i−ta+b+jZp]. ϕaux apparently depends on the choices of the representatives.

Now write

ϕ′ = ρ(



p−ta+b+1

...

pt1

...

pta+1

...



ι


−1b

1a

1b


ι

)ϕaux
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we want to compute the value Fϕ′(z, f†, w). In fact it is equal to:

∑
B,C,D,E

∫
GLa+2b(Qp)

f̃†(γ̃α(w



B

1

C

1


w, (g1

E
D





p−ta+b+1

...

pt1

...

pta+1

...



×


1b

1a

−1b

)ι)w′γ̃−1



p−t1

...

p−ta

1

1

p−ta+1

...

p−ta+b

1

1

1

pta+b+1

...

pta+2b


×w−1

a+2b+1)τ̄(det g1)ρ(g
ι
1)ϕ

′dg1

where w′ =



1

1

1

1

−1

1

1

1



and the sum is over B ∈ B, C ∈ C, D ∈ D, E ∈ E. A
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direct computation gives: γ̃α(1,


a1 a3 a2

a7 a9 a8

a4 a6 a5


ι

)w′γ̃−1 equals



−1 1

1

1

−a3 −a2 a1 a2

−a9 − 1 −a8 a7 1 a8

−a3 −a2 a1 − 1 1 a2

1

−a6 1− a5 a4 a5



Now we define Y to be the subset of GLa+2b(Zp) to be the set of block matrices


a1 a3 a2

a7 a9 a8

a4 a6 a5



such that γ̃α(1,


a1 a3 a2

a7 a9 a8

a4 a6 a5


ι

)w′γ̃−1 is in the Qt defined in the proof of the above lemma. It is

not hard to prove that it can be described as: the i-th column of a9 − 1, a3 are divisible by pti for

1 ≤ i ≤ a, the i-th column of a7, a1 − 1 are divisible by pta+i , the (i, j)-th entry of a6 is divisible by

pta+b+i+tj , the (i, j)-th entry of a4 is divisible by pta+b+i+ta+j , the i-th row of 1 − a5 is divisible by
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pta+b+i . The entries in a2 and a8 are in Zp. then the pull back section is equal to

∑
B,C,D,E

∫
f̃†(γ̃α(1, g1)w

′γ̃−1



p−t1

...

p−ta

1

1

p−ta+1

...

p−ta+b

1

1

1

pta+b+1

...

pta+2b


×w−1

a+2b+1)τ̄(det g1)ρ(g
ι
1)ϕdg1

where the integration is over the set:

g1 ∈

B
C

Y

E
D


conj


1b

1a

−1b





pta+b+1

...

p−t1

...

p−ta+b

...


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for:


1b

1a

−1b





pta+b+1

...

p−t1

...

p−ta+1

...



E
D



×



p−ta+b+1

...

pt1

...

pta+1

...




−1b

1a

1b

 :=

E
D


conj

and the value of f̃† when g1 =


1b

1a

−1b





pta+b+1

...

p−t1

...

p−ta+b

...


is

τ((pta+b+1+...+ta+2b , pt1+...+ta+b))|pt1+...+ta+2b |−z−
a+2b+1

2

thus straightforward computation tells us the following:

Lemma 4.4.12. If ϕ and ϕ′ be defined right after the proof of lemma 4.4.11 then:

Fϕ′(z, f†, w) = τ((pt1+...+ta+b , pta+b+1+...+ta+2b))|pt1+...+ta+2b |−z− a+2b+1
2 Vol(K̃ ′)

×p−
∑a+b
i=1 iti−

∑b
i=1 ita+b+1+i

∏a+b
i=1 g(ξi)ξi(−1)

∏b
i=1 g(ξa+b+1+i)ξa+b+1+i(−1)ϕw

Combining the 3 lemmas above, we get the following:

Proposition 4.4.1. Assumptions are as in the above lemma. Fϕ′(z, f†, g) is the unique section

supported in PwK such that the right action of K is given by multiplying the character ν and its
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value at w is:

Fϕ′(z, f†, w) = τ((pt1+...+ta+b , pta+b+1+...+ta+2b))|pt1+...+ta+2b |−z− a+2b+1
2 Vol(K̃ ′)

×p−
∑a+b
i=1 iti−

∑b
i=1 ita+b+1+i

∏a+b
i=1 g(ξi)ξi(−1)

∏b
i=1 g(ξa+b+1+i)ξa+b+1+i(−1)ϕw

Proof. ϕw is clearly invariant under (K̃ ′′)ι.

This Fϕ′(z, f†, g) we constructed is not going to be the nearly ordinary vector unless we apply

the intertwining operator to it. So now we start with a ρ = (π, τ), we require that ρ∨ = (π∨, τ̄ c)

satisfies the conditions at the beginning of this section about the conductors. We define our Siegel

section f0 ∈ Ia+2b+1(τ) to be:

f0(z; g) :=M(−z, f†)z(g)

where f† ∈ Ia+2b+1(τ̄
c). We recall the following proposition from [SU] (in a generalized form)

Proposition 4.4.2. There is a meromorphic function γ(2) such that

Fϕ∨(M(z, f);−z, g) = γ(2)(ρ, z)A(ρ, z, Fϕ(f ; z,−))−z(g)

moreover if πv ≃ π(χ1, ..., χa+2b) then if we write γ(1)(ρ, z) = γ(2)(ρ, z − 1
2 ) then

γ(1)(ρ, z) = ψ(−1)cϵ(π̃, τ̄ c, z + 1

2
)
L(π, τ c, 1/2− z)
L(π̃, τ̄ c, z + 1/2)

where c is the constant appearing in lemma 4.4.6

Proof. The same as [SU]11.4.13.

Remark 4.4.2. Note that here we are using the L-factors for the base change from the unitary

groups while [SU] uses the GL2 L-factor for π so our formula is slightly different.

Now we are going to show that:

F 0
v (z; g) := Fϕ′(f0, z; g)

is a constant multiple of the nearly ordinary vector if our ρ comes from the local component of the

global Eisenstein data (see section 3.1). Return to the situation of our Eisenstein Data. Suppose

that at the archimedean places our representation is a holomorphic discrete series associated to

the (scalar) weight: k = (0, ...0;κ, ...κ) with r 0’s and s κ’s. Here r = a + b, s = b. Suppose

π ≃ Ind(χ1, ..., χa+2b) is nearly ordinary with respect to the weight k. We suppose νp(χ1(p)) =
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s− n
2 +

1
2 , ..., νp(χr(p)) = r+s−1− n

2 +
1
2 , νp(χr+1(p)) = κ− n

2 +
1
2 , ..., νp(χr+s(p)) = κ+s−1− n

2 +
1
2 ,

and νp(τ1(p)) =
κ
2 , νp(τ2(p)) =

κ
2 , so

νp(χ1(p)) < ... < νp(χa+b(p)) < νp(τ1(p)p
−zκ) < νp(τ2(p)p

zκ) < νp(χa+v+1(p)) < ... < νp(χa+2b(p))

where zκ = κ−r−s−1
2 . It is easy to see that I(ρv, zκ) ≡ Ind(χ1, ...χr+s, τ1|.|zκ , τ2|.|−zκ). By defini-

tion I(ρv, zκ) is nearly ordinary with respect to the weight (0, ..., 0;κ, ..., κ) with (r+1) 0’s and s κ’s.

First of all from the form of Fϕ′(z, f†; g) and the above proposition we have a description for F 0
v (z, g):

it is supported in P (Qp)Kv,

F 0
v (z, 1) = γ(2)(ρ,−z)τ̄ c((pt1+...+ta+b , pta+b+1+...+ta+2b))|pt1+...+ta+2b |z− a+2b+1

2 Vol(K̃ ′)

×p−
∑a+b
i=1 (i+1)ti−

∑b
i=1(i+1)ta+b+1+i

∏a+b
i=1 g(ξi)ξi(−1)

∏b
i=1 g(ξa+b+1+i)ξa+b+1+i(−1)ϕ

and the right action of Kv is given by the character

χ1(g11)...χa+b(ga+b a+b)τ1(ga+b+1 a+b+1)χa+b+1(ga+b+2 a+b+2)...χa+2b(ga+2b+1 a+2b+1)τ2(ga+2b+2 a+2b+2).

(It is easy to compute A(ρ, z, Fϕ′(f ; z,−))−z(1) and we use the uniqueness of the vector with the

required Kv action. Here on the second row of the above formula the power for p is slightly different

from that for the section F (z, f†, w). This comes from the computations for the intertwining oper-

ators for Klingen Eisenstein sections.)

Thus Corollary 4.4.1 tells us that F 0
v (z, g) is a nearly ordinary vector in I(ρ).

Now we describe f0:

Definition 4.4.8. Suppose (pt) = cond(τ ′) for t ≥ 1 then define ft to be the section supported in

Q(Qp)KQ(p
t) and ft(k) = τ(dk) on KQ(p

t).

Lemma 4.4.13.

f0x :=M(−z, f̃†)z = ft,z.

Proof. This is just [SU] 11.4.10.
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4.4.3 Fourier Coefficients for f 0

We record a formula here for the Fourier Coefficients for f0 which will be used in p-adic interpolation.

Lemma 4.4.14. Suppose |detβ| ̸= 0 then:

(i) If β ̸∈ Sa+2b+1(Zp) then f0β(z, 1) = 0;

(ii) Let t := ordp(cond(τ
′). If β ∈ Sa+2b+1(Zp), then:

f0β(z, 1) = τ̄ ′(detβ)|detβ|2zp g(τ ′)a+2b+1ca+2b+1(τ̄
′, z)Φξ(

tβ).

where ca+2b+1 is defined in lemma 4.4.6 and Φξ is defined at the beginning of this section.

Proof. This follows from [SU]11.4.12. and the argument of corollary 4.4.2 where we deduce the form

of f† from the section f̃†.

4.4.4 Fourier-Jacobi Coefficients

Now let m = b + 1. For β ∈ Sm(Fv) ∩ GLm(Ov) we are going to compute the Fourier Jacobi

coefficient for ft at β

Lemma 4.4.15. Let x :=

 1

D 1

 (this is a block matrix with respect to (a+ b) + (a+ b)).

(a) FJβ(ft;−z, v, xη−1, 1) = 0 if D ∈ ptMa+b(Zp);

(b) if D ∈ ptMn(Zp) then FJβ(ft;−z, v, xη−1, 1) = c(β, τ, z)Φ0(v); where

c(β, τ, z) := τ̄(−detβ)|detβ|2z+n−mv g(τ ′)mcm(τ ′,−z − n−m
2

)

where cm is defined in lemma 4.4.6

Proof. We only give the detailed proof for the case when a = 0. The case when a > 0 is even easier

to treat.

Assume a = 0, we temporarily write n for b and save the letter b for other use, we have:

w2n+1


12n+1

S v

tv̄ D

12n+1

α(1, η−1) =



1n+1

−1n

−1n+1 v −S

D −tv̄ −1n


.
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This belongs to Q2n+1(Qp)KQ2n+1
(pt) if and only if S is invertible, S−1 ∈ ptMn+1(O℘), S−1v ∈

ptM(n+1)×n(O℘) and tv̄S−1v −D ∈ ptMn(Zp).

Since v = γt(b, 0) for some γ ∈ SLn+1(O℘) and b ∈ Mn(K℘) we are reduced to the case v = t(b, 0).

Writing b = (b1, b2) with bi ∈ Mn(Qp) and S = (T, tT ) with T ∈ Mn+1(Qp) and T−1 =

a1 a2

a3 a4


where a1 ∈ Mn(Qp), a2 ∈ Mn×1(Qp),a3 ∈ M1×n(Qp), a4 ∈ M1(Qp), the conditions on S and v can

be rewritten as:

(*) detT ̸= 0, ai ∈ ptMn(Zp), a1b1 ∈ ptMn(Zp), a3b1 ∈ ptM1×n(Zp), ta1b2 ∈ ptMn(Zp), ta2b2 ∈ ptZp,
tb2a1b1 −D ∈ ptMn(Zp)

Now we prove that: if the integral for FJβ i non zero then b1, b2 ∈Mn(Zp).

Suppose otherwise, then without lose of generality we assume b1 has an entry which has the maximal

p-adic absolute value among all entries of b1 and b2, Suppose it is pw for w > 0 (throughout the

paper w means this only inside this lemma). Also, for any matrix A of given size we say A ∈ tb∨2 if

and only tb2A has all entries in Zp (of course we assume the sizes of the matrices are correct so that

the product makes sense).

Now,let

Γ :=


γ

h j

k l

 ∈ GLn+1(Zp) : h ∈ GLn+1(Zp), l ∈ Z×
P ,

h− 1 ∈ tb∨2 ∩ ptMn(Zp), j ∈ Znp ∩ tb∨2 , k ∈ ptM1×n(Zp)


Suppose that our b1, b2, D are such that there exist ai’s satisfying (*), then one can check that Γ is

a subgroup, and if T satisfies (*), so does Tγ for any γ ∈ Γ. Let T denote the set of T ∈Mn+1(Qp)

satisfying (*). then FJβ(ft; z, v,

 1

D 1

 η−1, 1) equals

∑
T∈T /Γ

|detT |3n+2−2z
p

∫
Γ

τ ′(−detTγ)ep(−trβTγ)dγ.

Let T ′ := βT =

c1 c2

c3 c4

 (blocks with respect to n + 1), then the above integral is zero unless

c1 ∈ p−tMn(Zp) + [tb2]n×n, c4 ∈ p−tZ,c2 ∈ p−tMn+1(Zp), c3 ∈ [tb2]1×n +M1×n(Zp), here [tb2]i×n

means the set of i× n matrices such that each row is a Zp-linear combination of the rows of tb2.

But then

β

b1
0

 = T ′T−1

b1
0

 =

c1a1b1 + c2a2b1

c3a1b1 + c4a3b1


67



since β ∈ GLn+1(Zp), the left must contain some entry with p-adic absolute value pw. But it is

not hard to see that all entries on the right hand side have p-adic values strictly less than pw, a

contradiction, thus we conclude that b1 ∈Mn(Zp) and b2 ∈Mn(Zp)

By (*): b2
ta1b1 −D ∈ ptMn(Zp), a1 ∈ ptMn(Zp) so D ∈ ptMn(Zp).

The value claimed in part (ii) can be deduced similarly as in [SU]11.4.22.
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Chapter 5

Global Computations

5.1 Klingen Eisenstein Series

Now we are going to construct the nearly ordinary Klingen Eisenstein series (and will p-adically

interpolate in families). First of all, recall that for a Hecke character τ which is of infinite type

(κ2 ,−
κ
2 ) at all infinite places (here the convention is that the first infinite place of K is inside our

CM type) we construct a Siegel Eisenstein series E associated to the Siegel section:

f =
∏
v|∞

fκ
∏
v|p

ρ(Υ)f0v
∏

v∈Σ,v-p

fv,sieg
∏
v

fsphv ∈ Ia+2b+1(τ, z).

Recall that we write D := {π, τ,Σ} for the Eisenstein datum where Σ is a finite set containing

all the infinite places, primes dividing p and the places where π or τ is ramified.then define the

normalization factor:

BD : = 1
Ω2κΣ

∞
( (−2)−d(a+2b+1)(2πi)d(a+2b+1)κ(2/π)d(a+2b+1)(a+2b)/2∏a+2b

j=0 (κ−j−1)d
)−1

∏(a+2b)
i=0 LΣ(2zκ + a+ 2b+ 1− i, τ̄ ′χiK)∏

v|p(g(τ̄
′
v)
a+2b+1ca+2b+1(τ

′
v, zκ))

−1
∏
v-p,v∈Σ τ

−1(yv ȳvxv)|(yv ȳv)2xvx̄v|
zκ+

a+2b+1
2

v Cv

Here Ω∞ is the CM period in section 2.1. First note that since π is nearly ordinary with respect to

the scalar weight κ. Then its contragradient is also nearly ordinary. (But the nearly ordinary vector

is not the one whose neben-type is the inverse of ϕord). We denote this representation as πc. We

choose a nearly ordinary vector of this representation which we choose to be “p-adically primitive”,

i.e. integral but not divisible by p in terms of Fourier Jacobi expansion. In general we will need

some Gorenstein properties of certain Hecke algebras to make primitive forms in Hida families. But
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we do not touch this at the moment. We consider E(γ(g,−)) as an automorphic form on U(a+ b, b).

For each v ̸ |p there is a level group K̃v,s ⊂ U(a+ b, b)v such that

∏
v-p

ρ(γ(1, ηdiag(x̄−1
v , 1, xv)))(E(γ(g,−))⊗ τ̄(det−))

is invariant under its action. Suppose ϕc,ord is a ”new form” with level group K̃v so that πK̃vv is

1-dimensional for each v. (In fact it is better to use K-types. But here we content ourselves with

new forms for simplicity.) Assume also that there is a Hecke action 1πc with respect to the level

group
∏
v K̃v which takes any nearly ordinary automorphic form for this level to its πc component

(which is a multiple of ϕc,ord).

Remark 5.1.1. In a future work we will see that when deforming everything in families, the (Fourier

coefficients of the) Siegel Eisenstein series BDE moves p-adic analytically. This enables us to

construct the p-adic analytic family EKling. This is the reason for introducing BD.

We define EKling by:

BD1
low
πc e

low
∏
v-p

trK̃v/K̃v,sρ(γ(1, ηdiag(x̄
−1
v , 1, xv)))(E(γ(g,−))τ̄(det−)) = EKling(g)� ϕc,ord

Here we used the superscript low to mean that under U(a+ b+1, b+1)×U(a+ b, b) ↪→ U(a+2b+

1, a+ 2b+ 1) the action is for the group U(a+ b, b).

Definition 5.1.1. Let ϕ be an automorphic form on GU(AF ) or U(AF ) we define:

ϕc(g) := ϕ(

1a+b

−1b

 g

1a+b

−1b

).

Here the overline means complex conjugation.

Recall that we have defined ϕaux =
∑
x∈J π


1

1

x

ϕw where x runs through



1 x12 ... x1b

... ... ...

... ...

1


with xij running through representatives of [Zp : pta+b+i−ta+b+jZp]. ϕaux apparently depends on the
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choices of the representatives.

<
∏
v-p

trK̃v/K̃v,sρ(γ(1, ηdiag(x̄
−1
v , 1, xv)))(E(γ(g,−))τ̄(det−)),

ρ(



p−ta+b+1

...

pt1

...

pta+1

...



ι


−1b

1a

1b


ι

)ϕaux >

= < ρlow(



pta+b+1

...

pta+2b

1a

1b



ι

)
∏
v-p

trK̃v/K̃v,sρ(γ(1, ηdiag(x̄
−1
v , 1, xv)))(E(γ(g,−))τ̄(det−),

ρ(



1b

pt1

...

pta+1

...



ι
−1b

1a

1b


ι

)ϕaux >

Since E(γ(g,−)) satisfies the property that if K̃ ′′′ is the subgroup of K̃ (defined in the last chapter)

consisting of matrices


a1 a3 a2

a7 a9 a8

a4 a6 a5


ι

such that the (i, j)-th entry of a7 is divisible by pti+ta+b+j

and the (i, j)-th entry of a4 is divisible by pta+i+ta+b+j , the i-th row of a8 and the right to di-

agonal entries of a9 are divisible by pti for i = 1, ..., a, the i-th column of the below diagonal

entries of a1 are divisible by pta+b+i , the i-th row of the up to diagonal entries of a5 are divis-

ible by pta+i . Then the right action of K̃ ′′′ on E(γ(g,−)) is given by the character λ(gι) =

χ̄a+b+1(g11)...χ̄a+2b(gbb)χ̄1(gb+1,b+1)..χ̄(ga+b,a+b)χ̄a+1(ga+b+1,a+b+1)...χ̄a+b(ga+2b,a+2b) so the above

expression equals:
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1∏t
i=1 p

ta+b+i(a+b)
<

∑
y ρ

low(g)ρlow(



pa+b+1

...

1a

1b



ι

∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))

(E(γ(g,−))τ̄(det−)), ρ(



1b

pt1

...

pta+1

...



ι
−1b

1a

1b


ι

)ϕw >

Let β =



pta+b+1

...

1a

1b


and define T lowβ to be the Hecke action corresponding to β just in

terms of double cosets. (no normalization factors involved). By checking the level actions we can

see that the πc component of the left part when viewed as an automorphic form on U(a+ b, a) is a

multiple of ϕc,ord defined right before remark 5.1.1. (Note that this is not the same as ϕc). Suppose

its eigenvalue for the Hecke operator T lowβ is λcβ ,

Proposition 5.1.1. With these notations we have:

EKling(g) = BD

∏t
i=0 p

ta+b+i(a+b)

λcβ
.
<

∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))E(γ(g,−)), ϕ′ >

< ϕc,ord, ϕ′′ >

Proof. The πc-component of the left part of the inner product above is:

T lowβ .πc − component of
∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))(E(γ(g,−))τ̄(det−))

= elow.T
low
β .πc − component of

∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))(E(γ(g,−))τ̄(det−))

= T lowβ .elow.πc − component of
∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))(E(γ(g,−))τ̄(det−))

= T lowβ .πc − component of elow
∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))(E(γ(g,−))τ̄(det−))

= λcβ .π
c − component of elow

∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))(E(γ(g,−))τ̄(det−))
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Thus

πc − component of elow
∏
v-p trK̃v/K̃v,sρ(γ(1, ηdiag(x̄

−1
v , 1, xv)))(E(γ(g,−))τ̄(det−))

=
<
∏
v-p trK̃v/K̃v,sρ(γ(1,ηdiag(x̄

−1
v ,1,xv)))(E(γ(g,−))τ̄(det−)),ϕ′′>

<ϕc,ord,ϕ′′>
ϕc,ord

=
∏t
i=0 p

ta+b+i(a+b)

λcβ
.
<
∏
v-p trK̃v/K̃v,sρ(γ(1,ηdiag(x̄

−1
v ,1,xv)))(E(γ(g,−))τ̄(det−)),ϕ′>

<ϕc,ord,ϕ′′>
ϕc,ord

where

ϕ′ =
∏
v ̸∈Σ

ϕsph
∏

v∈Σ,v-p

ϕv
∏
v|p

ρ(



p−ta+b+1

...

pt1

...

pta+1

...



ι


−1b

1a

1b


ι

)ϕaux

and

ϕ′′ =
∏
v ̸∈Σ

ϕsph
∏

v∈Σ,v-p

ϕv
∏
v|p

ρ(



p−ta+b+1

...

pt1

...

pta+1

...



ι


−1b

1a

1b


ι

)ϕw

Thus we get the proposition.

5.2 Constant Terms

5.2.1 Archimedean Computation

Suppose π is associated to the weight (0, ..., 0;κ, ..., κ), then it is well known that there is a unique

(up to scalar) vector v ∈ π such that k.v = detµ(k, i)−κ for any k ∈ K+,′

∞ v (notation as in section

3.1). Then by Frobenius reciprocity law there is a unique (up to scalar) vector ṽ ∈ I(ρ) such that

k.ṽ = detµ(k, i)−κṽ for any k ∈ K+
∞. We fix v and scale ṽ such that ṽ(1) = v. In π∨, π(w)v (w

is defined in section 3.1) has the action of K+
∞ given by multiplying by detµ(k, i)−κ. We define

73



w′ ∈ U(a+ b+ 1, b+ 1) by w′ =



1b

1

1a

1b

−1


. Then there is a unique vector ṽ∨ ∈ I(ρ∨)

such that the action of K+
∞ is given by detµ(k, i)−κ and ṽ∨(w′) = π(w)v. Then by uniqueness there

is a constant c(ρ, z) such that A(ρ, z, ṽ) = c(ρ, z)ṽ∨.

Lemma 5.2.1. Assumptions are as above, then:

c(ρ, z) = πa+2b+1
∏b−1
i=0 (

1
z+κ

2 −
1
2−i−a

)( 1
z−κ

2 +
1
2−i

)
∏a−1
i=0 (

1
−1+i−2z+2b )

× Γ(2z+a)2−1−2z+2b

Γ( a+1
2 +z+κ

2 )Γ(
a+1
2 +z−κ

2 )
det(iθ/2)−2.

Proof. It follows the same way as [SU]9.2.2.

Corollary 5.2.1. In case when κ > 3
2a+ 2b or κ ≥ 2b and a = 0, we have c(ρ, z) = 0 at the point

z = κ−a−2b−1
2 .

Let F be the Klingen section which is the tensor product of the local Klingen sections defined

in the last Chapter by pulling back of the corresponding Siegel sections. In the case when κ is

sufficiently large the intertwining operator:

A(ρ, zκ, F ) = A(ρ∞, zκ, Fκ)⊗A(ρf , zκ, Ff )

and all terms are absolutely convergent. Thus as a consequence of the above corollary we have

A(ρ, zκ, F ) = 0. Therefore the constant term of EKling is just BDFzκ . It is essentially

LΣ(π̃, τ̄ c, zκ + 1)
∏
v|p γ

(2)(ρv, zκ)

Ω2κΣ
∞

∏
v|p ca+2b(τ ′v,−zκ − 1

2 )
.
LΣ(2zκ + 1, τ̄ ′χa+2b

K )
∏
v|p ca+2b(τ

′
v,−zκ − 1

2 )∏
v|p ca+2b+1(τ ′v,−zκ)

ϕ.

up to normalization factors at ∞ and each term in the above coefficient can be interpolated p-adic

analytically. Here the cm are defined in lemma 4.4.6.
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Chapter 6

Hilbert modular forms and Selmer

groups

From now on we are in part two where we specialize to U(1, 1) ↪→ U(2, 2)/F and prove our main

theorem.

6.1 More Notations

We define µp∞ as the set of roots of unity with order powers of p. Let δK, d = dF , DK, DF be

the different and discriminant of K and F . We denote N to be the level of f and M the prime

to p part of it. Here N,M, δK, d, DK, DF are all elements in the ideles of F,K or Q supported

at the finite primes (also the MD defined later)! This is much more convenient when working in

the adelic language. For each v|p we suppose pr
v∥Nv (we save the notation rv for other use). We

assume that K is split over all primes dividing the dF . This assumption makes the computation

for Fourier-Jacobi coefficients easier. Let h = hF be the narrow ideal class number of F , we divide

the ideal classes Cl(K) into I1 ⊔ ... ⊔ Ih corresponding to the image of the norm map to Cln(F )

and suppose I1 are those mapping to the trivial class. (Here n stands for narrow). We assume

that K is disjoint from the narrow Hilbert class field of F and thus it is easy to see that the norm

map above is surjective. Also we write <,> (integration over U(1, 1)(F )\U(1, 1)(AF )) to be the

inner product on the unitary group. For f and g Hilbert modular forms such that the product of

the central characters of f and ḡ are trivial then we denote <,>GL2 to be the inner product on

GL2 (integration over GL2(F )AF \GL2(AF ), note that we need to modulo the center here). We also
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write, for example <,>UD , <,>GL2,Γ0(N) the inner product with respect to the indicated level group.

For v a finite prime of F , as in [SU] chapter 8 we define the level group Kr,t ⊂ GU(Fv) for r, t > 0

as follows: for Q and P being the Siegel and Klingen parabolic, Kr,t = KQ,v(ϖ
r
v) ∩ w′

2KP (ϖ
t
v)w

′
2

where ϖv is a uniformizer for v, KQ,v(ϖ
r
v) means the matrices which are in Q(OF,v) modulo ϖr

v

and KP,v(ϖ
t
v) means matrices which are in P (OF,v) modulo ϖt

v and w′
2 =



1

1

1

1


.

6.2 Hilbert modular forms

6.2.1 Hilbert modular forms

We set up the basic notions of Hilbert modular forms, following [Hida91] with minor modifications.

Let I be the set of all field embedding of F into Q̄. We may regard I as the set of infinite places

of F via ι∞ and the weight of modular forms is a pair of elements (κ,w) in the free module Z[I]

generated by embeddings in I. We identify F∞ = F ⊗Q R with RI and embed F into RI via

the diagonal map a 7→ (aσ)σ∈I . Then the identity component G+
∞ of GL2(F∞) naturally acts on

L = H I for the Poincare half plane H . We write C+
∞ for the stabilizer in G+

∞ of the center point

z0 = (
√
−1,
√
−1, · · · ,

√
−1) in L . Then for each open compact subgroup U of GL2(FAf ), we denote

by Mκ,w(U ;C) the space of holomorphic modular forms of weight (κ,w) with respect to S. Namely

Mκ,w(U ;C) is the space of functions f : GL2(AF → C) satisfying the automorphic condition:

f(αxu) = f(x)jκ,w(u∞, z0)
−1 for α ∈ GL2(F ) and u ∈ UC∞+,

where jκ,w(

a b

c d

 , z) = (ad − bc)−w(cz + d)κ for

a b

c d

 ∈ GL2(F∞) and z ∈ L and such

that for any gf ∈ GL2(Af ) the associated classical form defined by fcl(z, gf ) := f(g).jκ,w(g∞, z0)

g such that g∞.z0 = z and finite type gf is holomorphic on the symmetric domain together with

all cusps. We write Sκ,w(U ;C) for the subspace of Mκ,w(U ;C) consisting of cusp forms. Here we

used the convention that cs =
∏
σ∈I c

sσ
σ , the correspondence is given by: for c = (cσ)σ∈I ∈ CI and

s =
∑
σ∈I sσσ ∈ C[I]. Setting t =

∑
σ σ, we sometimes use another pair (n, v) to denote the weight,

for n = κ− 2t and v = t− w. Each automorphic representation π spanned by forms in Sκ,w(U ;C)
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has the central character | · |−mA up to finite order characters for the adelic absolute value | · |A. The

twist πu = π ⊗ | · |m/2A is called the unitarization of π.

Let h be the narrow class number of F and decompose

A×
F = ⊔hi=1F

×ai(ÔF )×F×
∞+ with ai ∈ A×

F,f .

Then by strong approximation

G(AF ) = ∪hi=1GL2(F )tiU0(N)G∞+ for ti =

a−1
i 0

0 1

 ,

For any ideal N of OF let U0(N) be the open compact subgroup of GL2(ÔF ) whose image

modulo N is inside B(ÔF ). Any automorphic form in the space Mκ,w(U0(Mpα), ε;A) is determined

by its restriction to the connected component of ti in GL2(F ) \ GL2(AF )/U0(Mpα)G∞+. So we

identify the above space with the space of h-tuples: {fi} where fi are forms in Mκ,w(Γi, A) for

Γi := tiU0(Mpα)t−1
i with fi(g∞) := f(g∞ti). Each fi has a q-expansion:

fi(z) = a(0, fi) +
∑

0<<ξ∈F×

a(ξ, fi)eF (ξz).

Denote A×
F+ be the set of ideles whose Archimedean parts are totally positive, we have the

following theorem in [Hida91] about the q-expansion for Hilbert modular forms:

Theorem 6.2.1. Each f ∈Mκ,w(U ;C) has the Fourier expansion of the following type:

f(

y x

0 1

) = |y|A{a0(yd, f)|y|−[v]
A

∑
0<<ξ∈F×

a(ξyd, f){(ξyd)v}(ξy∞)−veF (iξy∞)eF (ξx)},

where A×
F+ ∋ y 7→ a0(y, f) is a function invariant under F×

+UF (N)F×
∞+ and vanishes identically

unless w ∈ Z · t, and A×
F+ ∋ y 7→ a(y, f) is a function vanishing outside ÔFF×

∞+ and depending only

on the coset of yfUF (N).

This adelic q-expansion is deduced from the usual q-expansions. We omit the details and refer

to [Hida91].
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6.2.2 Hida families

First of all let us define the weight space for Hilbert modular Hida families. For A some finite

extension of Qp let Λ′
W := A[[{W1,v,W2,v}v|p]]. A point ϕ ∈ Spec(Λ′

W ) is called arithmetic if

(1 +W1,v) → ζ1,,v,ϕ ∈ µp∞) and (1 +W2,v) → (1 + p)κϕ,v−2ζ2,v,ϕ where ζ2,v,ϕ ∈ µp∞ and κϕ ≥ 2

is some integer. We also require that κϕ,v to be the same for all v. (this means we only consider

Hilbert modular forms of parallel weight, which is already enough for constructing the whole Hida

family.)

Define ΛW such that SpecΛW is the closed subspace of SpecΛ′
W defined as the Zariski closure of

the arithmetic points satisfying: ϕ((1+W1,v)(1+W2,v)) to be equal for all v|p. for any a ∈ O×
F . It is

naturally a power series ring with d+1 variables. We only consider this weight space for simplicity.

In fact if the Leopoldt conjecture is true, then this is the whole weight space for the Hida families

of Hilbert modular forms.

Now we define the neben-typus associated to ϕ:

ε′1,ϕ,v(1 + p) = ζ1,ϕv , ε
′
2,ϕ,v(1 + p) = ζ2,ϕ,v

we extend these to be characters on O×
v as follows: for a such that a ≡ 1modp it is obvious how to

extend and then we require them to be trivial on the torsion part of O×
v . Define:

εϕ,v(

a
b

) = ε′1,v,ϕ(a)ε
′
2,v,ϕ(b)ω

κϕ−2(b)

for a, b ∈ O×
v (Recall that ω is the Techimuller character).

Remark 6.2.1. Suppose f is a nearly ordinary eigenform with neben typus εϕ and whose v com-

ponent at v|p is π(µ1,v, µ2,v) where valµ1,v(0) = p−
κϕ−1

2 , valpµ2,v(p) = p
κϕ−1

2 . Then µ1,v, µ2,v have

the same restriction to O×
F,v with ε′1,ϕ,v and ε′2,ϕ,vω

κϕ−2.

Let I be a finite integral extension of ΛW .

Definition 6.2.1. By an I-adic ordinary cusp form f of level V1(N) is a set of elements of I given

by the data:

{ci(ξ, I) for ξ ∈ F×, ci(0, I) for i = 1, · · · , h}

with the property that for a Zariski densely populated set of primes ϕ of I which maps to an arithmetic

point in Spec(ΛW ), the specialization of fϕ is the q-expansion of some form in Sord
κϕ,

κϕ
2

(U0(Np
α), εϕ, ψ;A)
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where A is some finite extension of Qp.

6.2.3 Galois representations of Hilbert modular forms

Let A be a finite extension of Qp. For f ∈ Sκ,w(U0(Np
α), ε, χ;A), κ ≥ 2 be a normalized eigenform,

we fix L ⊂ Q̄p a finite extension of Qp containing Q(f). Let OL be the integer ring of L and F its

residue field. Then we have a continuous semi-simple Galois representation (ρf , Vf ): ρf : GQ →

GLL(Vf ), characterized by being unramified at primes v - p such that πv is unramified and satisfying:

trρf (frobv) = a(v, f)

where a(v, f) is the Hecke eigenvalue of f under the Hecke operator Tv (Recall that this is associated

to

ϖv

1

 where ϖv is a uniformizer at v). Further more, if f is nearly ordinary at all primes

dividing p, then we have the following description of ρf restricting to the decomposition groups for

all primes v dividing p:

ρ|GFv =

σµ1,v ∗

σµ2,v

 .

Here σ is the local reciprocity map and πv ≃ π(µ1,v, µ2,v) where µ1,v(p) has smaller p-valuation than

µ2,v(p).

Therefore for each v|p we have a one-dimensional subspace V +
f ⊂ Vf such that the action of Gv on

V +
f is given by the character σµ1,v

and Gv acts on the quotient V −
f := Vf/V

+
f by σµ2,v

. Recall that

as in [SU] we have distinguished the following situation:

(dist): ψ+
v and ψ−

v are distinct modulo the maximal ideal of OL for each v|p.

6.3 Selmer groups

We recall the notion of Σ-primitive Selmer groups, following [SU]3.1 with some modifications. F is

a subfield of Q̄. For T a free module of finie rank over a profinite Zp-algebra A and assume that T

is equipped with a continuous action of GF . Denote also A∗ as the Pontryagin dual of A. Assume

further more that for each place v|p of F we are given a Gv-stable free A-direct summand Tv ⊂ T .

For any finite set of primes Σ we denote by SelΣF (T, (Tv)v|p) the kernel of the restriction map:

H1(F , T ⊗A A∗)→
∏

v ̸∈Σ,v ̸|p

H1(Iv, T ⊗A A∗)×
∏
v|p

H1(Iv, T/Tv ⊗A A∗),
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We denote

Lv(T ∗) := ker{H1(Gv, T ⊗A A∗)→ H1(Iv, T ⊗A A∗)}

Lv(V ) := ker{H1(Gv, V )→ H1(Iv, V )}.

Using the inflation-restriction sequence these can be identified with H1(Gv/Iv, (T ⊗A A∗)Iv ) and

H1(Gv/Iv, V
Iv ), respectively. A useful fact is that under Tate local duality:

H1(Fv, V )×H1(Fv, V
∗(1))→ L

the orthogonal complement Lv(V )⊥ is precisely Lv(V ∗(1)).

We always assume that Σ contains all primes at which T is ramified. We put

XΣ
F (T, (Tv)v|p) := HomA(Sel

Σ
F (T, (Tv)v|p), A

∗).

If E/F is an extension, we put SelΣE(T ) := SelΣEE (T, (Tw)w|p) and XΣ
E(T ) := XΣE

E (T, (Tw)w|p),

where ΣE is the set of places of E over those in Σ and if w|v|p then Tw = gwTv for gw ∈ GF

such that g−1
w GE,wgw ⊆ GF.v. If E/F is infinite we set: SelΣE(T ) = lim−→E⊆F ′⊆E Sel

Σ
F ′(T ) and

XΣ
E(T ) = lim←−F⊆F ′⊆EXΣ

F ′(T ), where F ′ suns over the finite extensions of F contained in E.

Suppose F/F+ is a CM number field over its maximal totally real subfield, c being the nontrivial

element of GF+/GF . Then we have an action of c on the Selmer groups of F . We have the following

lemma as in [SU]3.1.5. (Recall that we have assumed p ̸= 2.)

Lemma 6.3.1. There is a decomposition

SelΣF (T ) = SelΣF (T )
+ ⊕ SelΣF (T )−,

according to the ±1 eigenspaces of the action by c. Also, restriction induces isomorphisms

SelΣ
+

F+(T )→ SelΣF (T )
+ SelΣ

+

F+(T ⊗ χF )→ SelΣF (T )
−.

6.4 Iwasawa theory of Selmer groups

We let F∞ be the cyclotomic Zp extension of F . The Galois group, which we denote as ΓF , is

isomorphic to Zp. Let K−
∞ be the maximal anticyclotomic (the complex conjugation acting by −1

on the Galois group) unramified outside p abelian Zp extension of K with Galois group denoted
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as Γ−
K. This is isomorphic to Zdp. Write K+

∞ for F∞K with Γ+
K to be the Galois group (identified

with ΓF ). Let K∞ := K−
∞F∞. This is a galois extension with Galois group Zd+1

p . Conjecturally

(Leopoldt) this is the maximal unramified outside p abelian Zp extension of K. Recall that in chapter

2 we have defined the Iwasawa algebras ΛK and ΛK,A. We define more Iwasawa algebras Λ−
K, Λ

+
K,

Λ−
K,A, Λ

+
K,A in an obvious way.

We fix topological generators for each group above: γ := recF (
∏
v|p(1+p)v), γ

+ := recK(
∏
v|p(1+

p, 1 + p)
1
2
v ) and γ−v := recK((1 + p, (1 + p)−1)

1
2
v ). Here rec means the reciprocity map of class field

theory.

6.4.1 control of Selmer groups

We recall some results in [SU] 3.2. with minor modifications to the totally real situation. These

would be useful in deducing various main conjectures from our main theorem. In this subsection

(only in this subsection) we denote A as any profinite Zp algebra and a an ideal of it. Let T be a

free A module equipped with a GF action and T ∗ := T ⊗Zp Z∗
p. It is noted in [SU] 3.2.7 that there

is a canonical map:

SelΣF (T/aT )→ SelΣF (T )[a].

Here [a] on the right hand side means the a torsion part.

Proposition 6.4.1. Suppose there is no nontrivial A-subquotient of T ∗ on which GK+
∞

acts trivially.

Suppose also that for any prime p|p of F the action of Ip on T/Tp factors through the image of Ip in

ΓF and that Σ ∪ {p} contains all primes at which T is ramified. Let F̃ = F∞,K+
∞. Then the above

map induces isomorphisms:

SelΣ
F̃
(T/aT ) ≃ SelΣ

F̃
(T )[a]

and

XΣ
F̃
(T ) ≃ XΣ

F̃
(T )/aXΣ

F̃
(T ).

Descent from K∞ to K+
∞. We have the following corollary of the above proposition:

Corollary 6.4.1. Under the hypotheses of the above proposition. If F̃ is F∞,K+
∞ then: FtΣ

F̃ ,A/a
(T/aT ) =

FtΣ
F̃ ,A

(T )moda;

This will be used in proving the main theorem in chapter 8.

Corollary 6.4.2. Let I− be the kernel of the natural map ΛK → Λ+
K. Then under the hypotheses

81



of the above proposition, we have an isomorphism:

XΣ
K∞

(T )/I−XΣ
K∞

(T )→ XΣ
K+

∞
(T )

of Λ+
K,A-modules.

specializing the cyclotomic variable.

Let (T, T+
v (v|p)) be as above. Let ϕ be a algebra homomorphism ΛF → Cp and Iϕ be its kernel.

Proposition 6.4.2. Let (T ′, T ′
p) be (T, Tp) twisted by εϕ. Suppose there is no nontrivial A-subquotient

of T
′∗ on which GF acts trivially. Assume:

(i) Σ ∪ { primes above p} contains all primes at which T is ramified;

(ii)for any v|p, (H0(Iv, T/Tv ⊗A Λ∗
F,A(ε

−1))⊗ΛF ΛF /Iϕ)
Dv = 0.

Then restriction yields isomorphisms:

SelΣF (T
′)→ SelΣF∞

(T )[Iϕ] and SelΣK(T
′)→ SelΣK∞+

(T )[Iϕ]

This is only a slight generalization of [SU] Proposition 3.2.13 and the proofs are identical.
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Chapter 7

Hida Theory for Unitary Hilbert

modular forms

In this chapter we recall basic results about ordinary Hida families for Unitary groups over totally

real fields. We also recall generalizations of certain results in [SU] chapter 6 which are mostly due

to Hida. Some results are only stated for cuspidal forms since this is enough for our use. However

as a trade off we make the ad hoc construction in chapter 14 in which we explicitly write down a

cuspidal family given the Klingen Eisenstein family.

7.1 Iwasawa Algebras

We let IK := I[[ΓK]] and ΛD := I[[Γ−
K × ΓK]] = IK[[Γ−

K]]. Here we used the notation D which stands

for the Eisenstein datum to be defined in the beginning of chapter 12. Let

α : A[[ΓK]]→ I−K, α(γ
+) = (1 +W1,v)

1
2 (1 +W2,v)

1
2 (1 + p)1, γ−v → γ−v (1 + p)

κ
2

β : Zp[[ΓK]]→ Zp[[ΓK]], β(γ
+) = γ+, β(γ−v ) = γ−v

for each v. We also let Λ := ΛW [[Γ−
K,ΓK]]. Thus ΛD is finite over Λ.

Definition 7.1.1. A Q̄p point ϕ ∈ SpecI[[ΓK]] is called arithmetic if ϕ|I is arithmetic and ϕ(γ+) =

(1 + p)
κ
2 ζ+ for ζ+ ∈ µp∞ and ϕ(γ−v ) = ζ−v for ζ−v ∈ µp∞ . Here κ = κϕ|I.

We write X aIK for the set of arithmetic points. Next let W2 :=
∏
v|p(1 + pZ×

p )
4
v and Λ2 be the

83



completed group algebra of it. We give a Λ2-algebra structure for ΛD by: for each v|p,

(t1, t2, t3, t4)→ (α⊗ β)(recKv (t3t4, t−1
1 t−1

2 )× recKv (t
−1
4 , t2)(1 +W1,v)

log1+p(t1t
−1
3 ).

This way Λ becomes a quotient of Λ2.

Remark 7.1.1. When F = Q then Λ2 = Λ. In general Λ is of lower dimension. In other words we

are only considering a subfamily of the whole weight space.

7.2 Igusa tower and p-adic automorphic forms

We refer the definition of Shimura varieties S(K) for the unitary similitude group and open compact

K and the automorphic sheaves ωk to [Lan], [Hida04] and [Hsieh CM] respectively. Recall that a

weight k = {kσ}σ∈Σ where kσ = (cs+1,σ, ..., cr+s,σ; c1,σ, ..., cs,σ). We write Mk(K,R) for the space

of automorphic forms with weight k, level K and coefficient R. We write Mk(K,R) for the cuspidal

part.

For any v|p, U(2, 2) ≃ GL4(Zp) under projection to the first factor of Kv = Fv × Fv. (Recall that

our convention is the first factor correspond to the Archimedean place inside the CM type under

ι : C ≃ Cp.) Define B to be the standard Borel



× × × ×

× × ×

×

× ×


and Bu the unipotent radical.

Let I0,s (I1,s) consists of elements in U(n, n)(Zp) which are in B(Zp/psZp) (Bu(Zp/ps)) modulo ps.

(see [SU]5.3.6.)

Let L be a finite extension of Qp. Recall that as in [SU]6.1, if K is neat and maximal at p,

we have S = SK a fixed toroidal compactification of SG(K) over OL. Let IS be the ideal of the

boundary of S. There is a section H of det(ω), called the Hasse invariant. Since det(ω) is ample on

the minimal compactification S∗, one finds E, a lifting of Hm over OL for sufficiently large m. Then

S∗[1/E] is affine. For any positive integer m, set Sm := S[1/E] ×OL /p
m. Let H = GL2 × GL2.

For any integers s ≥ m, we have the Igusa variety Ts,m which is an etale Galois covering of Sm with

Galois group canonically isomorphic to
∏
v|pGL2(OF,v/ps)+ ×GL2(OF,v/ps)− = H(

∏
v|pOF,v/ps).

We put Vs,m := Γ(Ts,m,OTs,m ⊗OS IS). For j = 0, 1 let IHj,s := Ij,s ∩H(
∏
v|pOv/ps), define

Ws,m := H0(IH1,s, Vs,m)
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and

W := lim−→
m

(lim←−
s

Ws,m).

We also write V 0
s,m, W 0

s,m, W0 to be the cuspidal part of the corresponding spaces.

For q = 0 or ϕ we also defines the space of p-adic automorphic forms on G of weight k and level

K = K0
pK

p with p divisible coefficients:

V qk (K,L/OL) := lim−→
m

Γ(Sm, ωk ⊗OS IS).

and similarly, if A is an OL-algebra the the space of p-adic automorphic forms with coefficients in

A are defined as the inverse limits:

Vk(K,A) := lim←−
m

Γ(Sm, (ωk ⊗OS IS)⊗OL A).

Finally for any a = {av}v|p where each av ∈ (F×
p )

4 we define the modules: V qa,k(K,L/OL), etc, in

the same way as [SU] 6.2.

7.3 Ordinary automorphic forms

Hida defined an idempotent eord on the space of p-adic automorphic forms (see [SU] chapter 6) and

we define Word, Word Vk,ord(K,A) to be the image of eord acting on the corresponding spaces. Now

we recall the following important theorem of Hida (see [SU]6.2.10):

Theorem 7.3.1. For any sufficiently regular weight k there is a constant C(k) > 0 depending on k

such that for any integer l > C(k), the canonical map:

eordM
0
k+l(p−1)t(K,L/OL) ↪→ V 0

k+l(p−1)t,ord(K,L/OL)

with t = (0, 0; 1, 1) at all infinite places σ.

From this theorem we know that there are enough classical forms in our family and thus can

construct families of (pseudo)-Galois representations from the classical ones. This is also used in the

proof of theorem 8.2.1 where we used Harris’ result that there are no (CAP) form with sufficiently

regular weight.
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Lemma 7.3.1. For any weight k, we have canonical isomorphisms;

V qk,ord(K,Qp/Zp) ≃ W
q
ord[k] := {w ∈ W

q :: t.w = tkw∀t ∈ TH(Zp)}

and

V qk,ord(K
pIs, ψ,Qp/Zp) ≃ (Wq ⊗Z A)[ψk] := {w ∈ Wq ⊗Z A : t.w = ψk(t)w∀t ∈ TH(Zp)}

for any Zp(ψ)-algebra A.

Proof. the same as [SU] 6.2.3

Proposition 7.3.1. For q = 0 we have for any sufficiently regular weight k ≥ 0, the canonical

base-change morphism

eord.Γ(S∗[1/E], π∗(ωk ⊗OS π
∗Iq)⊗ Z/pmZ)→ eord.Γ(S∗[1/E], π∗(ωk ⊗OS π

∗Iq ⊗ Z/pmZ))

is an isomorphism.

This proposition fails for q ̸= 0, thus we can’t get a good control theorem for non-cuspidal Hida

families.

The following corollary is immediate from the above proposition.

Corollary 7.3.1. For q = 0 and any sufficiently regular weight k the module V qk,ord(K,Qp/Zp) is

divisible.

7.4 Λ-adic ordinary automorphic forms

Recall that we have defined the Iwasawa algebra Λn. There is an action of it on the space of p-adic

automorphic forms given by neben characters. (see [SU]) We define Vord (V
0
ord) to be the Pontrjagin

dual of Word (W0
ord). As in [SU] we have the following theorem by the above corollary:

Theorem 7.4.1. V ord is finite over Λn and V 0
ord is free of finite rank over Λ2.

Proof. This is proved by Hida. See [SU] theorem 6.3.3. Note that the freeness is no longer true if

the base field is not Q.
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Now we define the space of ordinary cuspidal Λn-adic forms to be

M0
ord(K

p,Λ2) = HomΛn(V
0
ord,Λ2).

Recall that in 7.1 we have defined a quotient Λ of Λ2. Then V 0
ord ⊗Λ2 Λ is also free over Λ. So we

define the space of Λ-adic forms to be:

M0
ord(K

p,Λ) = HomΛ(V
0
ord ⊗Λ2 Λ,Λn).

This is a closed subfamily of Λ2-adic forms.

7.5 q-expansions

The q-expansion principle will be crucial for our later argument. Similar as in [SU], for x running

through a (finite) set of representatives of G(F )\G(AF,f )/K with xp ∈ Q(OF,p), we have that the

Λn-adic q-expansion map

M0
ord(K

p,Λ) ↪→ ⊕xΛ[[qS
+
x ]]

is injective. Here S+
x is the set of Hermitian matrices h in M2(K) such that TrF/QTrhh

′ ∈ Z for

all Hermitian matrices h′ such that

1 h′

1

 ∈ NQ(F ) ∩ xKx−1 and K is the open compact of

G(ÔF ) maximal at primes dividing p which we fix from the very beginning. This follows from the

irreducibility of the Igusa Tower. Let A be a finite torsion-free Λ-free algebra finite over Λ and

let Σ be a Zariski dense subset of primes of A such that Q ∩ Λ = Pψk for some pair (k, ψ) (we

refer the definitions to [SU] chapter 6). Let N 0
Σ,ord(A) be the set of elements (Fx)x ∈ ⊕xA[[qS

+
x ]]

such that for each Q ∈ Σ above Pψk the reduction of (Fx)x is the q-expansion of some element

f ∈ V 0
k,ord(K

pIs, ψ,A/Q). Then we have:

Lemma 7.5.1. the inclusion:

M0
a,ord(K

p, A) ↪→ N 0
a,Σ,ord(A)

is an equality.

Proof. See [SU] 6.3.7.

We will use this lemma to see that the family constructed in the last chapter by formal q-
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expansions comes from some Λ-adic form.
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Chapter 8

Proof of the Main results

We prove the main results in this chapter, assuming certain constructions and results of later chap-

ters. In this chapter we will use f and f to define a nearly ordinary Hilbert modular form or Hida

family with some coefficient ring I. Let ψ, τ be Hecke characters of A×
K and ψ, τ be p-adic families

of Hecke characters of A×
K. We require that the restrictions of ψ and ψ to A×

F to be the same as the

central character of the f or f . Let ξ and ξ be ψ
τ and ψ

τ . These are part of the Eisenstein datum D

which we are going to define at the beginning of in chapter 12. (We are going to use this notation

in this chapter though.)

8.1 The Eisenstein ideal

8.1.1 Hecke operators

Let K ′ = K ′
ΣK

Σ ⊂ G(Apf ) be an open compact subgroup with KΣ = G(ÔΣ
F ) and such that

K := K ′K0
p is neat. The Hecke operators we are going to consider are at the unramified places and

at primes dividing p. We follow closely to [SU]9.5 and 9.6.

Unramified Inert Case

Let v be a prime of F inert in K. Recall that as in [SU] 9.5.2 that Zv,0 is the Hecke operator

associated to the matrix z0 := diag(ϖv, ϖv, ϖv, ϖv by the double coset Kz0K where K is the

maximal compact subgroup of G(OF,v). Let t0 := diag(ϖv, ϖv, 1, 1), t1 := diag(1, ϖv, 1, ϖ
−1
v ) and
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t2 := diag(ϖv, 1, ϖ
−1
v , 1). We define the Hecke operators Ti for i = 1, 2, 3, 4 by requiring that

1 +
4∑
i=1

TiX
i =

2∏
i=1

(1− q
3
2
v [ti]X)(1− q

3
2
v [ti]

−1X)

is an equality of polynomials of the variable X. Here [ti] means the Hecke operator defined by the

double coset KtiK. We also define:

Qv(X) := 1 +

4∑
i=1

Ti(Z0X)i.

Unramified Split Case

Suppose v is a prime of F split inK. In this case we define z
(1)
0 and z

(2)
0 to be (diag(ϖv, ϖv, ϖv, ϖv), 1)

and (1,diag(ϖv, ϖv, ϖv, ϖv) and define the Hecke operators Z
(1)
0 and Z

(2)
0 as above but replacing z0

by z
(1)
0 and z

(2)
0 . Let t

(1)
1 := diag(1, (ϖv, 1), 1, (1, ϖ

−1
v )), t

(1)
2 := diag((ϖv, 1), 1, (1, ϖ

−1
v ), 1). Define

t
(2)
i := t̄

(1)
i and ti = t

(1)
i t

(2)
i for i = 1, 2. Then we define Hecke operators T

(j)
i for i = 1, 2, 3, 4 and

j = 1, 2 by requiring that the following

1 +

4∑
i=1

T
(j)
i )Xi =

2∏
i=1

(1− q
3
2
v [t

(j)
i ]X)(1− q

3
2
v [t

(j′)
i ]−1X)

to be equalities of polynomials of the variable X. Here j′ = 3 − j and [t
(j)
i ]’s are defined similarly

to the inert case. Now let v = ww̄ for w a place of K. Define iw = 1 or 2 depending on whether the

valuation associated to 2 comes from the projection onto the first or second factor of Kv = Fv ×Fv.

Then we define:

Qw(X) := 1 +

4∑
i=1

T
(iw)
i (Z

(3−iw)
0 X)i.

p-adic Case

Let t = diag(pa1 , pa2 , pa4 , pa3), ut is the Hida’s normalized ut operator defined in [SU] (6.2.2.a).

Let hD = hD(K
′) be the reduced quotient of the universal ordinary cuspidal Hecke algebra which

is defined by the ring of elements in EndΛD (S
ord(K ′,ΛD)) generated by the Hecke operators Zv,0,

Z
(i)
v,0, Ti,v, T

(j)
i,v ,ut,v defined above. This is a finite reduced ΛD-algebra. Now we define for each prime

w of K a polynomial Qw,D(X) to be det(1 − ρD(frobw)X) where D is the Eisenstein datum men-

tioned at the beginning of this chapter and ρD is the Galois representation defined in subsection 8.2.2.

We define the Eisenstein ideal (which is actually the kernel of homomorphism from the abstract
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hecke algebra to ΛD determined by the Eisenstein family we will construct later) generated by:

• the coefficients of Qw(X)−Qw,D(X) for all finite places v of K and not dividing a prime in Σ.

• Zv,0 − σψσ−1
ξ (frobv) for v a finite place outside Σ.

• Z(i)
v,0 − σψσ

−1
ξ (frobwi) for all v outside Σ such that v = w1w2 being the factorization of

Kv = Fv × Fv.

• For all v|p, ut,v − λED(ut,v) with a1 ≤ · · · ≤ a4

Here σ is the reciprocity map of class field theory, λED is the Hecke eigenvalue for uv,t acting on

ED. It follows from the computations in part one that these are elements in I[[ΓK]]. We omit the

precise formulas.

aaaaaa

The structure map ΛD → hD/ID is surjective and we denote ED ⊂ ΛD to be kernel of this map so

that:

ΛD/ED → hD/ID.

We define ϕ0 to be the point on the weight space corresponding to the special L-value L(f2, 1) where

f2 is the nearly ordinary form in our Hida family of parallel weight 2 and trivial neben typus at p.

(In fact this notion is a little bit ambiguous since we might have several f2’s inside the Hida family

and what we are going to prove is true for any of such point ϕ0). We have the following theorem

which is [SU] 6.5.4 in our situation:

Theorem 8.1.1. Assumptions are as above. Then there is a finite normal extension J of I such

that if P ⊂ ΛD is a height one prime of ΛD,J passing through ϕ0 such that ED is non-zero modulo

P (i.e. if the ideal generated by the Fourier coefficient of ED is not contained in P ), and that P is

not a pull back of a height one prime from J[[Γ+
K]] then:

ordP (ED) ≥ ordP (LD).

Proof. The proof is completely the same as [SU]6.5.4. except that we use the construction of Chapter

8, which explains why we need to take the extension J.
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8.2 Galois Representations

8.2.1 Galois theoretic argument

In this section we summarize the main results in [SU] chapter 4, which would be used to construct

elements in the Selmer group.

Let G be a group and C a ring. r :→ AutC(V ) a representation of G with V ≃ Cn. This can be

extended to r : C[G]→ EndC(V ). For any x ∈ C[G], define: Ch(r, x, T ) := det(id− Tr(x)) ∈ C[T ].

Let (V1, σ1) and (V2, σ2) be two C representations of G. Assume both are defined over a local

henselian subring B ⊆ C, we say σ1 and σ2 are residually disjoint modulo the maximal ideal mB

if there exists x ∈ B[G] such that Ch(σ1, x, T ) mod MB and Ch(σ2, x, , T ) mod mB are relatively

prime in κB [T ], where κB := B/mB .

Let H be a group with a decomposition H = G o {1, c} with c ∈ H an element of order two

normalizing G. For any C representations (V, r) of G we write rc for the representation defined by

rc(g) = r(cgc) for all g ∈ G.

Polarizations:

Let θ : G→ GLL(V ) be a representation of G on a vector space V over field L and let ψ : H → L×

be a character. We assume that θ satisfies the ψ-polarization condition:

θc ≃ ψ ⊗ θ∨.

By a ψ-polarization of θ we mean an L-bilinear pairing Φθ : V × V → L such that

Φθ(θ(g)v, v
′) = ψ(g)Φθ(v, θ

c(g)−1v′).

Let Φtθ(v, v
′) := Φθ(v

′, v), which is another ψ-polarization. We say that ψ is compatible with the

polarization Φθ if

Φtθ = −ψ(c)Φθ.

Suppose that:
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(1)A0 is a pro-finite Zp algebra and a Krull domain;

(2)P ⊂ A0 is a height one prime and A = ˆA0,P is the completion of the localization of A0 at P .

This is a DVR.

(3) R0 is local reduced finite A0-algebra;

(4) Q ⊂ R0 is prime such that Q ∩A0 = P and R = ˆR0,Q;

(5) there exist ideals J0 ⊂ A0 and I0 ⊂ R0 such that I0 ∩ A0 = J0, A0/J0 = R0/I0, J = J0A, I =

I0R, J0 = J ∩A0 and I0 = I ∩R0;

(6) G and H are pro-finite groups; we have subgroups Di ⊂ G for i = 1, · · · , d.

the set up: suppose we have the following data:

(1) a continuous character ν : H → A×
0 ;

(2) a continuous character ξ : G→ A×
0 such that χ̄ ̸= ν̄χ̄−c; Let χ′ := νχ−c;

(3) a representation ρ : G → AutA(V ), V ≃ An, which is a base change from a representation

over A0, such that:

a.ρc ≃ ρ∨ ⊗ ν,

ρ̄ is absolutely irreducible ,

ρ is residually disjoint from χ and χ′;

(4) a representation σ : G→ AutR⊗AF (M),M ≃ (R⊗A F )m with m = n+ 2, which is defined over

the image of R0 in R, such that:

a.σc ≃ σ∨ ⊗ ν,

b.trσ(g) ∈ R for all g ∈ G ,

c. for any v ∈M ,σ(R[G])v is a finitely-generated R-module

(5) a proper ideal I ⊂ R such that J := A∩ I ̸= 0, the natural map A/J → R/I is an isomorphism,

and

trσ(g) ≡ χ′(g) + trρ(g) + χ(g) mod I

for all g ∈ G.

(6) ρ is irreducible and ν is compatible with ρ.
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(7) (local conditions for ρ) For each i = 1, · · · , d there is a Di stable sub A0 module V +
0,i ⊂ V0

such that V +
0,i and V

−
0,i := V0,i/V

+
0,i are free A0 modules.

(8) (local conditions for σ). For each i = 1, · · · , d there is a Di-stable sub-R⊗A F -module M+
i ⊆M

such that M+
i and M−

i :=M/M+
i are free R⊗A F modules.

(9) (compatibility with the congruence condition) Assume that for all x ∈ R[Di], we have con-

gruence relation:

Ch(M+
i , x, T ) ≡ Ch(V

+
i , x, T )(1− Tχ(x)) mod I

(then we automatically have:

Ch(M−
i , x, T ) ≡ Ch(V

−
i , x, T )(1− Tχ

′(x)) mod I

(10) For each F -algebra homomorphism λ : R ⊗A F → K, K a finite field extension of F , the

representation σλ : G → GLm(M ⊗R⊗F K) obtained from σ via λ is either absolutely irre-

ducible or contains an absolutely irreducible two-dimensional sub K-representation σ′
λ such that

trσ′
λ(g) ≡ χ(g) + χ′(g)modI.

One defines the Selmer groups XH(χ′/χ) := ker{H1(G,A∗
0(χ

′/χ)) → H1(D,A∗
0(χ

′χ))}∗. and

XG(ρ0 ⊗ χ−1) := ker{H1(G,V0 ⊗A0 A
∗
0(χ

−1))→ H1(D,V −
0 ⊗A0 A

∗
0(χ

−1))}∗

Our result is:

Proposition 8.2.1. under the above assumptions, if ordP (ChH(χ′/χ)) = 0 then ordP (ChG(ρ0 ⊗

χ−1) ≥ ordP (J).

We record here an easy lemma about Fitting ideals and characteristic ideals which will be used

later.

Lemma 8.2.1. Let A be a Krull domain and T is a A-module. Suppose f ∈ A is such that for any

height one primes P of A, ordP (FittAT ) ≥ ordP (f) then charA(T ) ≤ (f).

Proof. for any g ∈ charA(T ) the assumption and the definition for characteristic ideals ensures that

for any height 1 prime P , ordP (
g
f ) ≥ 0. Since A is normal this implies g

f ∈ A. Thus g ∈ (f).
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8.2.2 Galois representations

We define a semi-simple representation

ρD := σcψϵ
−3 ⊕ (ρf ⊗ ξ−cψcϵ−2)⊕ ϵ−1detρfσ

−1
ξ′ σ

c
ψ.

Recall that here σ means the reciprocity map. We will see that this is the Galois representation

associated to the Eisenstein family constructed in the next chapter.

Let ED ⊆ ΛD be the Eisenstein ideal associated with D. For any prime v|p of F we let T+
f ,v ⊆ Tf

be the rank one I-summand of Tf that is Gv-stable. Given a height one prime P of ΛD containing

ED let:

• H := GF,Σ, G := GK,Σ, c = the usual complex conjugation;

• A0 := ΛD, A := Λ̂D,P ;

• J0 := E , J := EDA;

• R0 : TD, I0 := ID;

• Q ⊂ R0 is the inverse image of PmodED under TD → TD/ID = ΛD/ED ;

• R := T̂D,Q, I := IDR;

• V0; = Tf ⊗I ΛD, ρ := ρf ⊗ σ−c
ξ σ

c
ψϵ

−2;

• V +
0 := T+

f ⊗I A0, V
−
0 := Tf/T

+
f )⊗A0 A;

• V = V0 ⊗A0 A, ρ = ρ0 ⊗A0 A, V
± := V ±

0 ⊗A0 A;

• χ := ϵ−1detρfσ
−1
ξ′ σ

c
ψ, ν := σψ′σ−1

ξ′ ϵ
−4;

• χ′ := σcψϵ
−3 so χ′ = νχ−c;

• M := (R⊗A FA)4, FA is the field of fractions of A and the Galois action is given by the Galois

representation associated to the cuspidal Hida families on U(2, 2)(AF );

• σ is the representation on M obtained from RD .

Let T := (Tf ⊗I I[[ΓK]])(εK) (see section 2.1) and T + := (T+
f ⊗I I[[ΓK]])(εK). Let ChΣK(ρf ) ⊂

I[[ΓK]] be the characteristic ideal of the dual Selmer group XΣ
K(T , T +).
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Theorem 8.2.1. Suppose I is an integrally closed domain. Let P0 ⊂ I[[ΓK]] be a height one prime

and let P = P0ΛD that is not a pullback of one of I[[Γ+
K]] be the height one prime of ΛD it generates.

Suppose also that:

V + ⊕A(χ) and V − ⊕A(χ′) modulo P do not have common irreducible pieces . (8.1)

Then

ordP0(Ch
Σ
K(ρf ⊗ εK)) ≥ ordP (ED).

Proof. One just apply proposition 8.2.1. The condition (10) there is guaranteed by an argument

similar to [SU] theorem 7.3.1. We use the modularity lifting results in [SW] for ordinary Galois

representations satisfying (irred) and (dist) and Harris’s result that there is no (CAP) forms when

the weight k is sufficiently regular. We also use the main conjecture for totally real field F proven in

[Wiles90] to conclude that ordP (ChH(χ′/χ)) = 0 since it is non zero by [Wiles90] and only involves

the cyclotomic variable.

We are going to define two conditions (NV1) and (NV2) in Chapter 12 and give sufficient con-

ditions for them.

Now for f a Hilbert modular form with trivial characters and neben typus, then we write Self

briefly for the Selmer group for the motive ρf ⊗ det ρ−1
f . Then:

Theorem 8.2.2. Let p be a rational odd prime that splits completely in F . Let f be a Hilbert

modular form over F of parallel weight 2 and trivial character. Suppose:

(i) f is ordinary at all primes of F dividing p;

(ii) (irred) and (dist) in [SU1] hold for ρf .

If the central critical value L(f, 1) = 0, then the Selmer group H1
f (F, ρf ) is infinite.

Proof. We only need to prove the theorem in the case when the root number for f is +1 since

otherwise it is a well known result of Nekovar [Nek]. First suppose that d = [F : Q] is even then

we choose an imaginary quadratic extension K of F so that K/F is split at all primes at which f

is ramified and L(f, χK/F , 1) ̸= 0 where χK/F is the quadratic character of A×
F associated to K/F .

This is possible by Waldspurger. Then the S(1) defined in [Vatsal07] p123 consists of exactly all the

infinite places and since d is even we are in the definite case there.

We put f in a Hida family f. Now we do not have the Gorenstein properties. We have to replace

ℓf by 1f everywhere. Our p-adic L-function is not integral. (in FI ⊗I I[[ΓK]] actually). Suppose
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L̃ = h
g , it follows from the definition for 1f in chapter 12 and the congruence number for f2 is finite

that we may choose g ∈ J so that g(ϕ0) ̸= 0. Suppose L(f, 1) = 0. Start with the 1-dimensional

family of cylotomic twists of f . Since L(f, 1) = 0 then there is a height 1 prime of the 1-dimensional

weight space passing through ϕ0 and containing the image of h. Here we must notice that by our

construction we did not include ϕ0 as an interpolation point. But by the interpolation property

we know that our L̃Σ is the same as Hida’s ([Hida91]) up to Euler factors at Σ at a sub family

containing the above 1-dimensional family.

Now we consider the specialization step by step. At each step the Iwasawa algebra is a Krull domain.

Suppose SpecΛ1 ↪→ SpecΛ2 where Λ2 has one more variable than Λ1, i.e. Λ1 = Λ2/xΛ2 for some

variable x. If P1 is a height 1 prime of Λ1 passing through ϕ0 and containing the image of h in Λ1

then we can find P2 a height one prime of Λ2 also passing through ϕ0 and contains the image of

h in Λ2 such that SuppP1 ⊂ SuppP2 under SpecΛ1 ↪→ SpecΛ2. Finally we found some P a height

one prime of the full dimensional Iwasawa algebra passing through ϕ0 and containing h. Note also

that P does not contain g since g(ϕ0) ̸= 0. In chapter 12 we will see that (NV1) is satisfied in

our situation and thus h is not contained in any height one prime of I[[Γ+
K]] passing through ϕ0. In

the construction of chapter 14 after replacing ℓf by 1f the cuspidal family we construct still have

P -adically integral coefficients and has some coefficient prime to P . (although things there are in

FJ ⊗J ΛD,J, however as above we can make sure that things showing up in the denominator are non

zero at ϕ0 thus outside P ). The argument of theorem 8.1.1 still gives:

1 ≤ ordP L̃ ≤ ordP (ED,J)

theorem 8.2.1 and proposition 13.3.2 (should be the Ẽ version which we did not state there) gives

that:

ordPFt
Σ
f,K,1 ≥ 1.

Then we need to specialize the variables back step by step to prove the theorem. Using the control

theorem for the Selmer groups we have at each step: we get ordPiFt
Σ
K ≥ 1 here the Pi and the

Selmer modules are interpreted in the context of each step. Finally we specialize to the point ϕ0 to

get that the Σ-primitive Selmer group over K is infinity. But this implies that Self is itself infinity

since LΣ is non zero. However this Selmer group is the product of Selmer groups for f and f ⊗ χK.

By [YZZ] and our choice of K, we know that the Selmer group for f ⊗χK is finite. So our theorem is
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true. Next we assume d is odd. Then again by Waldspurger we can find a real quadratic character

χF,/F such that F ′ is split at all primes at which f is ramified and L(f, χF ′/F , 1) ̸= 0. We consider

fF ′ the base change of f to F ′. Then [F ′ : Q] is even and we deduce that at least one of Self and

Self⊗χF ′/F is infinite. But by [YZZ] we know that Self⊗χK is finite. So Self must be infinite.
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Chapter 9

Klingen Eisenstein Series

Now we recall some notions for Klingen Eisenstein Series in this setting. We need to use a character

ψ to pass form the GL2 picture to the unitary group U(1, 1) similar to [SU] chapter 9. Then the

p-adic constructions are just as in part one. Note that this is slightly different from [SU] since there

the ordinary vector is the new vector. However in the Hilbert modular case we do not assume this

in order to get the whole Hida family. For the ℓ-adic construction the one used by [SU] is much

better than the one used in part one so we just follow [SU].

9.1 Induced representations

9.1.1 archimedean picture

Let (π, V ) be an irreducible (gl2,K
′
∞)-module and suppose that π is unitary ,tempered represen-

tation. There is an irreducible, unitary Hilbert representation (π1,H) of GL2(R), unique up to

isomorphism such that π, V can be identified with the g, l,K ′
∞)-module of it. Let χ be the central

character of π1. Let ψ and τ be unitary characters of C× such that ψ|R× = χ. Now we define a rep-

resentation ρ of P (R): for g = mn,n ∈ NP (R),m = m(bx, a) ∈MP (R) with a, b ∈ C×, x ∈ GL2(R),

put

ρ(g)v := τ(a)ψ(b)π(x)v, v ∈ H.

For any function f ∈ C∞(K∞,H∞) such that f(k′k) = ρ(k′)f(k) for any k′ ∈ P (R) ∩K∞, where

H∞ is the space of smooth vector of H, any each z ∈ C we define a function

fz(g) := δP (m)3/2+zρ(m)f(k), g = mk ∈ P (R)K∞,
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and we define an action σ(ρ, z) of G(R) on I(H∞):

(σ(ρ, z)(g)f) := fz(kg).

Let (π∨, V ) be the irreducible (gl2,K
′
∞)-module given by π∨(x) = π(η−1xη) for x in gl2 or K ′

∞,

denote ρ∨, I(ρ∨), I∨(H∞) and σ(ρ∨, z), I(ρ∨)) the representations and spaces defined as above but

with π, ψ, τ replaced by π∨⊗ (τ ◦ det), ψττ c, τ̄ c. Let π̃ := π∨⊗χ−1. Also, for any z ∈ C, f ∈ I(H∞)

and k ∈ K∞ consider the integral:

A(ρ, z, f)(k) :=

∫
NP (R)

fz(wnk)dn. (9.1)

A(ρ, z,−) ∈ HomC(I(H∞), I∨(H∞)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).

9.1.2 ℓ-adic picture

Let v be a prime of F and (π, V ) be an irreducible, admissible representation of GL2(Fv) and suppose

that π is unitary and tempered. Denote by χ the central character of π. Let ψ and τ be unitary

characters of K×
v such that ψ|F×

V
= χ. We extend π to a representation ρ of P (Fv) on V as follows.

For g = mn,n ∈ NP (Fv), m = m(bx, a) ∈MP (Fv), a, b ∈ K×
v , x ∈ GL2(Fv), put

ρ(g)v := τ(a)ψ(b)π(s)v, v ∈ V.

Let I(ρ) be the space of functions f : Kv → V such that (i) there exists an open subgroup U ⊆ Kv

such that f(gu) = f(g) for all u ∈ U and (ii) f(k′k) = ρ(k′)f(k) for k′ ∈ P (OF,v). For each f ∈ I(ρ)

and each z ∈ C we define a function fz on G(Fv) by

fv(g) := δP (m)3/2+zρ(m)f(k), g = mk ∈ P (Fv)Kv

We define a representation σ(rho, z) of G(Fv) on I(ρ) by

(σ(ρ, z)(g)f)(k) := fz(kg).

If π, ψ, τ are unramified the

dimCI(ρ)
Kv = 1.
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In particular if ϕ ∈ V is a newvector for π and Fρ is defined by Fρ(mk)ρ(m)ϕ,mk ∈ P (OF,v)Kv,

I(ρ)Kv is spanned by Fρ.

Let (π∨, V ) be given by π∨(g) = π(η−1gη). This representation is also tempered and unitary. We

denote by ρ∨, I(ρ∨), and (σ(ρ∨, z), I(ρ
∨)) the representations and spaces defined as above but with

π, ψ and τ replaced by π∨ ⊗ (τ ◦ det), ψττ c, and τ̄ c, respectively. Let π̃ := π∨ ⊗ χ−1.

For f ∈ I(ρ), k ∈ Kv, and z ∈ C consider the integral

A(ρ, z, v)(k) :=

∫
NP (Fv)

fz(wnk)dn. (9.2)

As a consequence of our hypotheses on π this integral converges absolutely and uniformly for z and

k in compact subsets of z : Re(z) > 3/2 × Kv. Moreover, for such z, A(ρ, z, f) ∈ I(ρ∨) and the

operator A(ρ, z,−) ∈ HomC(I(ρ), I(ρ
∨)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).

As in [SU]9.1.3, this has a meromorphic continuation (in the sense defined there) to C and the

poles can only occur when Rez = 0,±1
2 .

9.1.3 p-adic picture

Now assume v|p. We need to study the relations between the GL2 picture and the computations in

part one for U(1, 1). Suppose πv ≡ π(µ1, µ2) where valp(µ1(p) = −1
2 and val(µ2(p) =

1
2 . From now

on we write ξ = ψ
τ and ξ = (ξ1, ξ2) with respect to Kv ≡ Fv × Fv. Similarly for τ1, τ2, ψ1, ψ2. Note

that our ξ here is different from part one. In fact the ξ1ξ2, χ1χ2 there are µ1ξ̄2, µ1ξ̄1, µ1ψ
−1
2 , µ2ψ

−1
2 .

Note that ψ1ψ2 = µ1µ2.

Generic Case The generic case mentioned in part one correspond to:cond(χ1) > cond(τ2) > cond(τ1) >

cond(χ2). (note that the τ in ρ∨ is τ̄ c. We assume cond(ψ2) > cond(τ2) > cond(τ1) > cond(ψ1) >

cond(µ1). Then the datum is generic in the sense of part one.

9.1.4 global picture

Let (π, V ) be an automorphic representation of GL2/F . It is an admissible (gld2,K
′
∞) × GL2(Af )-

module which is a restricted tensor product of local irreducible admissible representations. Let

τ, ψ : A×
K → C× be Hecke characters such that ψ|A×

F
= χπ and he let τ⊗τw and ψ = ⊗ψw be

their local decompositions, w over places of F . We associat with triple (τ, ψ, τ) a representation of
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(P (F∞) ∩K∞)× P (AF,f ) and v = ⊗vw ∈ V put

ρ(m)v := ⊗(ρw(mw)wm),

Let Kf :=
∏
w ̸|∞Kw and KAF := KF∞ × Kf . Let I(ρ) be the space of functions f : KAF → V

such that f(k′k) = ρ(k′)f(k) for k′ ∈ P (AF ) ∩KA, and f factors through KF∞ ×Kf/K
′ for some

open subgroup K ′ ⊆ Kf and f is KF∞ -finite and smooth as a function on KF,∞ × Kf/K
′. This

can be identified with the restricted product ⊗I(ρw) with respect to the Fρw ’s at those w at which

τw, ψw, πw are unramified.

For each z ∈ C and f ∈ I(ρ) we define a function fz on G(AF ) as

fz(g) := ⊗fw,z(gw)

where fw,z are defined as before. Also we define an action σ(ρ, z0 of g,KF∞) ⊗ G(Af ) on I(ρ) by

σ(ρ, z) := ⊗σ(ρw, z). Similarly we define ρ∨, I(ρ∨), and σ(ρ∨, z) but with the corresponding things

replaced by their ∨’s. For each z ∈ C there are maps

I(ρ), I(ρ∨) ↪→ A(MP (F )NP (F )\P (AF )),

given by

f 7→ (g 7→ fz(g)(1)).

In the following we often write fz for the automorphic form given by this recipe.

9.1.5 Klingen-type Eisenstein series on G

Let π, ψ, and τ be as above. For f ∈ I(ρ), z ∈ C, and g ∈ G(A the series

E(f, z, g) :=
∑

γ∈P (F )\G(F )

fz(γg) (9.3)

is known to converge absolutely and uniformly for (z, g) in compact subsets of {z ∈ C : Re(z) >

3/2}×G(A) and to define an automorphic form on G.The may f 7→ E(f, z,−) intertwines the action

of σ(ρ, z) and the usual action of (g,K∞)×G(Af ) on A(G).

We state a well known lemma of [SU] here for the field F .

Lemma 9.1.1. Let R be a standard F -parabolic of G (i.e, R ⊇ B). Suppose Re(z) > 3
2 .
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(i) If R ̸= P then E(f, z, g)R = 0;

(ii) E(f, z,−)P = fz +A(ρ, f, z)−z.

9.2 Induced representations:good sections

9.2.1 Archimedean sections

The choices made here are completely the same as [SU] chapter 9 for all infinite places (see also part

one). So we omit here and denote the Klingen section as Fκ.

9.2.2 ℓ-adic sections

Let v be a prime of F not dividing p. The sections chosen here are the same as in [SU] chapter 9.

We define a character ν′ of Krψ′ ,s′ by

ν′(


a b

c d

 ∗

∗ ∗

) := ψ′(ad− bc)ξ̄′(d).

For K ⊆ Kr′ψ,s
′ let

I(ρ′,K) := {f ∈ I(ρ′) : ρ′(k)f = ν′(k)f, k ∈ K}.

Let ϕ ∈ V be any vector having a conductor with respect to π∨ and let (λtϕ) := condπ̃(ϕ). For any

Kr,t with r ≥ max(rψ, rϕ) and t > s we define fϕ,r,t ∈ I(ρ,Kr,t) by

Fϕ,r,t(g) :=


ν(k)ρ(p)ϕ g = pmk ∈ P (OF,vwKr,t

0 otherwise.

Since P (OF,v)wKQ(λ) = P (OF,v)wQ(OF,v), if r, r′ ≥ {rϕ, 1} then Fϕ,r,t = Fϕ,r′,t..

9.2.3 p-adic sections

We define our p-adic section to be the F 0
v defined in part one. This is nearly ordinary as proved

there.
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9.3 Good Eisenstein series

9.3.1 Eisenstein data

(π, V ) is an irreducible (gl2,K
′
∞)d×GL2(AF,f )-sub representation of A0(GL2/F ) and let V = ⊗Vπ

and π = ⊗πw. By an Eisenstein datum for π we will mean a 4-tuple D = {Σ, φ, ψ, τ} consisting of a

finite set of primes Σ, a cuspform φ ∈ V that is completely reducible, and unitary Hecke characters

ψ = ⊗ψw and τ = ⊗τw of A×
K/K×, all satisfying:

• Σ contains all primes dividing p, primes ramified in K/Q, and all primes v such that πv, ψv

or τv is ramified

• for all k ∈ K ′
+, π∞(k)ϕ∞ = j(k, i)−κϕ∞;

• if v ̸∈ Σ then ϕv is the newvector;

• if v ∈ Σ,v - p, then ϕv has a conductor with respect to π∨
v

• if v|p, then ϕv is the one choosen in part one.

• ψ|A×
F
= χ;

• τ∞(x) = (x/|x|)−κ = ψ∞(x)for any infinit place ∞ of F.

Let ξ = ⊗ξw = ψ/τ and define Ff :=
∏
v ̸∈Σ F

sph
∏
v∈Σ,v-p Fϕ,r,t

∏
v|p F

0
v . Then as in [SU] 9.3.1 we

define

Lemma 9.3.1. Suppose κ > 6 and let zκ := (κ− 3)/2. Let F = Fκ ⊗ Ff ∈ I(ρ) = I(ρ∞)⊗ I(ρf ).

(1)A(ρ, zκ, F ) = 0.

(2)E(F, zκ, g)P = Fzκ(g).

Thus AD(zκ, g) = 0 and ED(zκ,−)P = φD(zκ).

For κ > 6, then for any F = Fκ ⊗ Ff ∈ I(ρ) we define a function of (Z, x) ∈ H⊗G(AF,f ):

E(Z, x;F ) := J(g, i)κµ(g)κE(F, zκ, gx), g ∈ G+(R), g(i) = Z.

we write ED(Z, x) for E(Z, x;φD(zκ)). The following proposition is essentially [SU]9.3.3.

Proposition 9.3.1. Suppose κ > 6 and F = Fκ ⊗ Ff . Then E(Z, x;F ) is a hermitian modular
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form of weight κ. In particular, ED ∈Mκ(KD, νD).

9.4 Hecke operators

We refer to [SU]9.5 for the definitions of the Hecke operators at unramified primes. The local

situations are the same when the base field is F instead ofQ. We only record the following proposition

([SU]9.6.1):

Proposition 9.4.1. Suppose κ > 6. Then the prime to Σ part of the L-function LΣ(ED, s) is given

by:

LΣ
K(f, ξ̄

cψc, s− 2)LΣ(ψc, s− 3)LΣ(χξ̄′ψc, s− κ).

This explains the reason why the Galois representation associated to the Klingen Eisenstein series

is the one given in the last chapter.
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Chapter 10

Hermitian Theta Functions

As in [SU] chapter 10, we recall the Weil representations and theta functions associated with certain

definite hermitian matrices in and define some specific Schwartz functions and inter into our later

expressions for fourier coefficients of the Eisenstein series ED.

10.1 Generalities.

Let V be the two-dimensional K-space of column vectors.

The local set-up

Let v be a place of F . Let h ∈ S2(Fv), deth ̸= 0. Then < x, y >h:= x̄thy defines a non-degenerate

hermitian pairing on Vv := V ⊗ Fv. Let Uh be the unitary group of this pairing and let GUh be its

similitude group with similitude character µh : GUh → Gm. Let V1 := K2 and < −,− >1 be the

pairing on V1 defined by < x, y >1= xw1ȳ
t. Let W := Vv ⊗Kv V1,v, where V1,v := V1 ⊗ FV . Then

(−,−) := TrKv/Fv (< −,− >h ⊗Kv < −,− >1) is a Fv linear pairing on W that makes W into an

8-dimensional symplectic space over Fv. The canonical embeding of Uh×U1 into Sp(W ) realizes the

pair (Uh, U1) as a dual pair in Sp(W ). Let λv be a character of K×
v such that λv|F×

v
= 1. In [Ku94],

a splitting pair Uh(Fv)×U1(Fv) ↪→Mp(W,Fv) of the metaplectic cover Mp(W,Fv)→ Sp(W,Fv) is

associated with the character λv; we use this splitting to identify Uh(Fv)×U1(Fv) with a subgroup

of Mp(W,Fv).

We let ωh,v be the corresponding Weil representation of Uh(Fv) × U1(Fv) on the Schwartz space

S(Vv): the action of (u, g) on Φ ∈ S(Vv) is written ωh,v(u, g)Φ. If u = 1 we often omit u, writing
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ωh,v(g) to mean ωh,v(1, g). Then ωh,v satisfies:

• ωh,v(u, g)Φ(x) = ωh,v(1, g)Φ(u
−1x)

• ωh,v(diag(a, āt))Φ(x) = λ(a)|a|KΦ(xa), a ∈ K×.

• ωh,v(r(S))Φ(x) = Φ(x)ev(< x, x >h S), S ∈ Fv;

• ωh,v(η)Φ(x) = |deth|v
∫
Vv

Φ(y)ev(TrK/Q < y, x >h)dy.

The global set-up

Let h ∈ S2(F ), h > 0. We can define global versions of Uh, GUh,W , and (−,−), analogously to the

above. Fixing an idele class character λ = ⊗λv of A×
K/K× such that λ|F× = 1, the associated local

splitting described above then determine a global splitting Uh(AF ) × U1(AF ) ↪→ Mp(W,AF ) and

hence an action ωh := ⊗ωh,v of Uh(AF )× U1(AF ) on the Schwartz space S(V ⊗ AF ).

10.1.1 Theta Functions

Given Φ ∈ S(V ⊗ AF ) we let

Θh(u, g; Φ) :=
∑
x∈V

ωh(u, g)Φ(x).

This is an automorphic form on Uh(AF )× U1(AF ).

10.2 Some useful Schwartz functions.

We now define various Schwartz function that show up in later formulas.

10.2.1 Archimedean Schwartz functions

Let Φh,∞ ∈ S(V ⊗ R) be

Φh,∞(x) = e−2π<x,x>h .

Henceforth we assume that

λ∞(z) = (z/|z|)−2.

Lemma 10.2.1. Given z ∈ h, let Φh,z(x) := e(< x, x >h z) (so Φh,i = Φh,∞). For any g ∈ U1(R),

ωh(g)Φh,z = J1(g, z)
−2Φh,g(z).

In particular, if k ∈ K+
∞,1 then ω(k)Φh,∞ = J1(k, i)

−2Φh,∞.
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Proof. this is just [SU]10.2.2.

10.2.2 ℓ-adic Schwartz functions.

For a finite place v of F dividing a rational prime ℓ, let Φ0 ∈ S(Vv) be the characteristic function of

the set of column vectors with entries in OK,v. For y ∈ GL2(Kv) we let Φ0,y(x) := Φ0(y
−1x).

Lemma 10.2.2. Let h ∈ S2(Fv), det h ̸= 0. Let y ∈ GL2(Kv). Suppose ȳthy ∈ S2(OF,v)×.

(i) if λ is unramified, v is unramified in K, and h, y ∈ GL2(OF,v). Then

ωh(U1(OF,v))Φ0,y = Φ0,y

(ii) if Dvdetȳ
thy|ϖr

v, r > 0. Then

ωh(k)Φ0,y = λ(ak)Φ0,y, k ∈ {k ∈ U1(OF,v) : ϖr
v|ck}.

.

Proof. See [SU]10.2.4.

Let θ be a character of K×
v and let 0 ̸= x ∈ cond(θ). Let

Φθ,x(u) :=
∑

a∈(OK,v/x)×

θ(a)Φ0((u1 + a/x, u2)
t), u = (u1, u2)

t.

For y ∈ GL2(Kv) we let Φθ,x,y(u) := Φθ,x(y
−1u). We let Φh,θ,x := ωh(η

−1)Φθ,x and Φh,θ,x,y :=

ωh(η
−1)Φθ,x,y.

Lemma 10.2.3. Let h ∈ S2(Fv), det h ̸= 0. Let y ∈ GL2(Kv). Suppose ȳthy ∈ S2(OF,v)×. Let θ

be a character of K×
v and Let 0 ̸= x ∈ cond(θ) be such that ϖv|x. Let (c) := cond(θ) ∩ (ϖ̃v) where

ϖ̃v = ϖv if v splits in K and otherwise a uniformizer of Kv at v.

(i) if cDvdetȳ
thy∥x and y−1hy ∈ GL2(OF,v) and Dv = 1 or y−1h−1y−1t =

∗ ∗

∗ d

 with d ∈ OF,v,

then

ωh(k)Φθ,x,y = λθ(ak)Φθ,x,y, k ∈ U1(OF,v), d−1Dv|ck, xx̄|bk
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(ii) if h = diag(α, β), then Φh,θ,x,y is supported on the lattice h−1y−1tL∗
θ,x where if v is non split in

K then

L∗
θ,x = {(u1, u2)t : u2 ∈ δK−1OK,v, ū1 ∈

x

cδK


OK,v, cond(θ) = OK,v,

O×
K,v, cond(θ) ̸= OK,v.

} (10.1)

and if v splits in K, then

L∗
θ,x := {(u1, u2)t : u2 ∈ δ−1

K OK,v, ū1,i ∈
xi
ciδK


OF,v, cond(θ) = OF,v,

O×
F,v, cond(θ) ̸= OF,v.

} (10.2)

with ū1 = (ū1,1, ū1,2), x = (x1, x2), c = (c1, c2) ∈ Kv = Fv × Fv and θ = (θ1, θ2). Further more for

v = h−1y−1tu with u ∈ L∗
θ,x.

Φh,θ,x,y(v) = |det hyȳ|vD−1
v λ(−1)

∑
a∈(OK,v/x)×

θ(s)eℓ(TrK/Qaū1/x)

.

Proof. See [SU]10.2.5.

Lemma 10.2.4. suppose v|p splits completely in K. Let (c) := cond(θ) and suppose c = (pr, ps)

with r, s > 0. Let γ = (η, 1) ∈ SL2(OK,v) = SL2(OF,v) × SL2(OF,v). Suppose h = diag(α, β) with

α, β ∈ F×
v . Then

(i)Φh,θ,c,γ is supported on

L′ := {u = (a, b)t : a ∈ O×
F,v ×OF,v, b ∈ OF,v ×O

×
F,v}

and for u ∈ L′

Φh,θ,c,γ(u) = θ̄1(βb2)g(θ1)θ̄2(αa1)g(θ2)

where a = (a1, a2), b = (b!, b2) ∈ OF,v ×OF,v, and θ = (θ1, θ2).

(ii)ωh(u, k)Φh,θ,c = θ−1(dg)θ2(det g)λθ(dk)Φh,θ,c for u = (g, g′) ∈ Uh(Zp) with pmax(r,s)|cg and for

k ∈ U1(Zp) such that pmax(r,s)|ck.

Proof. See [SU]10.2.6.
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Chapter 11

Siegel Eisenstein Series and Their

Pull-backs

11.1 Siegel Eisenstein series on Gn; the general set up

For a place v of F and a character χ of K×
v we let In(χ) be the space of smooth Kn,v-finite functions

f : Kn,v → C such that f(qk) = χ(detDq)f(k) for all q ∈ Qn(Fv)∩Kn,v. Given z ∈ C and f ∈ I(χ)

we define a function f(z,−) : Gn(Fv) → C by f(z, qk) := χ(detDq))|detAqD−1
q |

z+n/2
v f(k), q ∈

Qn(Fv) and k ∈ Kn,v.

For an idele class character χ = ⊗χv of A×
K we similarly define a space In(χ) of smooth Kn,A

functions on Kn,A. We also similarly define f(z,−) given f ∈ In(χ) and z ∈ C. There is an identifi-

cation ⊗In(χv) = In(χ), the former being the restricted tensor product defined using the spherical

vectors fsphv ∈ In(χv), fsphv (Kn,v) = 1, at the finite places v where χv is unramified:⊗fv is identified

with k 7→
∏
v fv(kv).. Let U ⊆ C be an open set. By a meromorphic section of In(χ) on U we mean

a function φ : U 7→ In(χ) taking values in a finite dimensional subspace V ⊂ I(χ) and such that

φ : U → V is meromorphic.

Let χ = ⊗χv be a unitary idele class character of A×
K. for f ∈ In(χ) we consider the Eisenstein

series

E(f ; z, g) :=
∑

γ∈Qn(F )\Gn(F )

f(z, γg).
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This series converges absolutely and uniformly for (z, g) in compact subsets of {Re(z) > n/2} ×

Gn(AF ) and defines an automorphic form on Gn and a holomorphic function on {Re(z) > n/2}.

The Eisenstein series E(f ; z, g) has a meromorphic continuation in z to all of C. If φ : U → In(χ)

is a meromorphic section, then we put E(φ; z, g) = E(φ(z); z, g). This is clearly a meromorphic

function of z ∈ U and an automorphic form on Gn for those z where it is holomorphic.

11.1.1 Intertwining operators and functional equations

Let χ be a unitary character of K×
v , v a place of F . For f ∈ In(χ), z ∈ C, and k ∈ Kn,v, we consider

the integral

M(z, f)(k) := χ̄n(µn(k))

∫
NQn (Fv)

f(z, wnrk)dr.

For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uniformly, with the

convergence being uniform in k. M(z, f) ∈ In(χ̄c). It thus defines a holomorphic section z 7→M(z, f)

on {Re(z) > 3/2}. This has a continuation to a meromorphic section on all of C.

Let χ = ⊗χv be a unitary idele class character. For f ∈ In(χ), z ∈ C, and k ∈ Kn,AF we con-

sider the integral M(z, f)(k) as above but with the integration being over NQn(AF ). This again

converges absolutely and uniformly for z is compact subsets of {Re(z) > n/2}, with the convergence

being uniform in k. Thus z 7→M(z, f) defines a holomorphic section {Re(z) > n/2} → In(χ̄
c). This

has a continuation to a meromorphic section on C. For Re(z) > n/2 at least, we have

M(z, f) = ⊗vM(z, fv), f = ⊗fv.

11.2 Pull-backs of Siegel Eisenstein series.

As in [SU]11.2,we recall the pull-back formulas of Garrett and Shimura which expresses Klingen-type

Eisenstein series in terms of restrictions (pull-backs) of Siegel Eisenstein series to subgroups. But

first we define various maps between groups that intervene in the statement of the general formula

as well as in the particular instance used in subsequent sections.

11.2.1 Some isomorphisms and embeddings.

Let Vn := K2n. Then wn defines a skew-hermitian pairing < −,− >n on Vn :< x, y >n:= xwnȳ
t.

The group Gn/F is the unitary similitude group GU(Vn) of the hermitian space (Vn, < −,− >n).
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Let Wn := Vn+1 ⊕ Vn and W ′
n : Vn ⊕ Vn. The matrices wn+1 ⊕ −wn and wn ⊕ wn define define

hermitian pairings on Wn and W ′
n, respectively.

One can define isomorphisms:, αn : GU(Wn) ≃ G2n+1, α
′
n : GU(W ′

n) ≃ G2n, γ : GU(Wn) ≃ G2n+1

and γ′ : GU(W ′
n) ≃ G2n we omit the details and referring to [SU] 11.2.1. Also as in [SU] we use S

and S′ to denote the matrix 

1

1

1

−1 1

1

−1 1


and 

1

1

−1 1

−1 1


This is different from the convention of part one of this thesis.

11.2.2 The pull-back formulas

Let χ be a unitary idele class character of A×
K. Given a cuspform ϕ on Gn we consider

Fϕ(f ; z, g) :=

∫
Un(AF )

f(z, γ(g, g1h))χ̄(det g1g)ϕ(g1h)dg1,

f ∈ Im+n(χ), g ∈ Gm(AF ), h ∈ Gn(AF ), µm(g) = µn(h),m = n+ 1 or n,

with γ = γn or γ′ depending on whether m = n + 1 or m = n. This is independent of h. The

pull-back formulas are the identities in the following proposition.

Proposition 11.2.1. Let χ be a unitary idele class character of A×
K.

(i) if f ∈ I2n(χ), then Fϕ(f ; z, g) converges absolutely and uniformly for (z, g) in compact sets of

{Re(z) > n} ×Gn(AF ), and for any h ∈ Gn(AF ) such that µn(h) = µ(g)

∫
Un(F )\Un(AF )

E(f ; z, γ′n(g, g1h))χ̄(detg1h)ϕ(g1h)dg1 = Fϕ(f ; z, g). (11.1)
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(ii) If f ∈ I2n+1(χ), then Fϕ(f ; z, g) converges absolutely and uniformly for (z, g) in compact sets of

{Re(z) > n+ 1/2} ×Gn+1(AF ) such that µn(h) = µn+1(g)

∫
Un(F )\Un(AF )

E(f ; z, γn(g, g
′h))χ̄(det g1h)ϕ(g1h)dg1

=
∑

γ∈Pn+1(F )\Gn+1(F )

Fϕ(f ; z, γg),
(11.2)

with the series converging absolutely and uniformly for (z, g) in compact subsets of {Re(z) > n +

1/2} ×Gn+1(AF ).

Proof. See [SU] 11.2.3.

11.3 fourier-jacobi expansions: generalities.

Let 0 < r < n be an integer. Each Eisenstein series E(f ; z, g) has a fourier-jacobi expansion

E(f ; z, g) =
∑

β∈Sn−r(F )

Eβ(f ; z, g). (11.3)

where

Eβ(f ; z, g) :=

∫
Sn−r(F )\Sn−r(AF )

E(f ; z,


1n

S 0

0 0


1n

 g)eA(−TrK/Q(βS))dS. (11.4)

Lemma 11.3.1. Let f = ⊗vfv ∈ In(χ) be such that for some prime v the support of fv is in

Qn(Fv)wnQn(Fv). Let β ∈ Sn(F ) and q ∈ Qn(AF ). If Re(z) > n/2 then

Eβ(f ; z, g) =
∏
v

∫
Sn(Fv)

fv(z, wnr(Sv)qv)ev(−TrβSv)dSv. (11.5)

In particular, the integrals on the right-hand side converge absolutely for Re(z) > n/2.

Proof. see [SU] 11.3.1.

Lemma 11.3.2. Suppose f ∈ I3(χ) and β ∈ S2(F ), β > 0. Let V be the two-dimensional K-vector

space of column vectors. If Re(z) > 3/2 then
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Eβ(f ; z, g) =
∑

γ∈Q1(F )\G1(F ),γ∈U1(F )

∑
x∈V

∫
S2(AF )

f(w3


13

S x

x̄t 0


13

α1(1, γ)g)

× eA(−TrK/QβS)dS.

Proof. See [SU] 11.3.2.

We also recall a few identities which would be useful later on. Letting:

FJβ(f ; z, x, g, y) :=

∫
S2(Fv)

f(z, w3


1n

S x

x̄t 0


1n

α1(diag(y, y
t−1

), g))ev(−TrβS)dS.

Then:

FJβ(f ; z, x,

a ā−1b

ā−1

 g, y) = χcv(a)
−1|aā|z+3/2

v ev(x̄
tβxb)FJβ(f ; z, xa, g, y). (11.6)

For u ∈ Uβ(AF ), Uβ being the unitary group associated to β.

FJβ(f ; z, x, g, uy) = χ(detu)|detuū|−z+1/2
AF FJ − β(f ; z, u−1x, g, y). (11.7)

If as a function of x, FJβ(f ; z, x, g, y) ∈ S(V ⊗ Fv) then:

FJβ(f ; z, x,

a ā−1b

ā−1

 g, y)

= (λv/χ
c
v)(a)|aā|z+1/2

v ωβ(

a ā−1b

ā−1

)FJβ(f : z, x, g, y).

(11.8)
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11.4 Some good Siegel sections

11.4.1 Archimedean Siegel sections

We summarize the results of [SU] 11.4.1. Let k ≥ 0 be an integer. Then χ(x) = (x/|x|)−k is a

character of C×.

The sections. We let fκ,n ∈ In(χ) be defined by fκ,n(k) := Jn(k, i)
−κ. Then

fκ,n(z, qk) = Jn(k, i)
−κχ(detDq)|detAqD−1

q |z+1/2, q ∈ Qn(R), k ∈ Kn,∞. (11.9)

If g ∈ Un(R) then fκ,n(z, g) = Jn(g, i)
−κ|Jn(g, i)|κ−2z−n.

Fourier-jacobi coefficients. Given a matrix β ∈ S2(R) we consider the local fourier coefficient:

fκ,n,β(z, g) :=

∫
Sn(R)

fκ(z, wn

1n S

1n

 g)e∞(−TrβS)dS.

This converges absolutely and uniformly for z in compact sets of {Re(z) > n/2}.

Lemma 11.4.1. Suppose β ∈ Sn(R). The function z 7→ fκ,β(z, g) has a meromorphic continuation

to all of C. Furthermore, if κ ≥ n, then fκ,n,β(z, g) is holomorphic at zκ := (κ − n)/2 and for

y ∈ GLn(C), fκ,n,β(zκ, diag(y, ȳt
−1

)) = 0 if detβ ≤ 0, and if detβ > 0 then

fκ,n,β(zκ, diag(y, ȳt
−1

)) =
(−2)−n(2πi)nκ(2/π)n(n−1)/2∏n−1

j=0 (κ− j − 1)!
e(iT r(βyȳt))(detβ)κ−ndetȳκ.

Proof. See [SU]11.4.2.

Suppose now that n = 3. For β ∈ S2(R) let FJβ,κ(z, x, g, y) := FJβ(fκ; z, x, g, y).

Lemma 11.4.2. Let zκ := (κ− 3)/2. Let β ∈ S2(R), detβ > 0.

(i)FJβ,κ(zκ, x, η, 1) = fκ,2,β(zκ + 1/2, 1)e(i < x, x >β). (ii) For g ∈ U1(R)

FJβ,κ(zκ, x, g, y) = e(iTrβyȳt) det ȳκc(β, k)fκ−2,1(zκ, g
′)ωβ(g

′)Φβ,∞(x),
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where g′ =

1

−1

 g

 1

1

 and

c(β, κ) =
(2πi)2κ(2/π)

4(k − 1)!(k − 2)!
detβκ−2

and the Weil representation ωβ is defined using the character λ∞(z) = (z/|z|)−2.

Pull-back integrals

The Archimedean situation is completely the same as the [SU] situation. Let fκ ∈ I3(τ) be as before

and let

Fκ(z, g) :=

∫
U1(R)

fκ(z, S
−1α1(g, g1h))τ̄(detg1h)π1(g1h)ϕdg1,

g ∈ G2(R), h ∈ G1(R), µ1(h) = µ2(g).

(11.10)

Similarly, for fκ ∈ I2(τ) and g ∈ G1(R) we let

Fκ(z, g) :=

∫
U1(R)

fκ(z, S
−1α′

1(g, g1h))τ̄(det g1h)π1(g1h)ϕdg1,

g, h ∈ G1(R), µ1(h) = µ1(g).

(11.11)

Lemma 11.4.3. ([SU]11.4.4.) The integrals converge if Re(z) ≥ (κ − m − 1)/2 and Re(z) >

(m− 1− κ)/2, m = 2 and 1, respectively, and for such z we have:

(i)Fκ(z, g) = π2−2z−1 Γ(z+(1+κ)/2)
Γ(z+(3+κ)/2)Fκ,z(g);

(ii)F ′
κ(z, g) = π2−2z Γ(z+κ/2)

Γ(z+1+κ/2)πψ(g)ϕ.

11.4.2 ℓ-adic Siegel sections: the unramified case

Lemma 11.4.4. Let β ∈ Sn(Fv) and let r := rank(β). Then for y ∈ GLn(Kv).

fsphv,β (z, diag(y, y
t−1

)) = χ(det y)|det yȳ|−z+n/2v V ol(Sn(OF,v))

×
∏n−1
i=r L(2z + i− n+ 1, χ̄′χiK)∏n−1
i=0 L(2z + n− i, χ̄′χiK)

hv,ȳtβy(χ̄
′(ϖv)q

−2z−n
v )

where hv,ȳtβy is a monic polynomial depending on v and ȳtβy but not on χ.

116



Proof. See [SU]11.4.6.

Lemma 11.4.5. Suppose v is unramified in K, let β ∈ S2(Fv) such that det β ̸= 0. Let y ∈ GL2(Kv)

such that ȳtβy ∈ S2(OF,v). Let λ be an unramified character of K×
v such that λ|F×

v
= 1.

(i) if β, y ∈ GL2(OK,v) then for u ∈ Uβ(Fv).

FJβ(f
sph
3 ; z, x, g, uy) = χ(det u)|det uū|−z+1/2

v

fsph1 (z, g)ωβ(u, g)Φ0,y(x)∏1
i=o L(2z + 3− i, χ̄′χiK)

(ii)if ȳtβy ∈ GL2(OK,v). Then for u ∈ Uβ(Fv).

FJβ(f
sph
3 ; z, x, g, uy) = χ(det uy)|det uy|−z+1/2

K
fsph1 (z, g)ωβ(u, g)Φ0,y(s)∏1
i=0 L(2z + 3− i, χ̄′χiK)

.

Proof. (i) is the same as [SU]11.4.7. Note that in (ii) we have removed the assumption in loc.cit

that g is of the form

1

n 1

. In fact since

FJβ(f
sph
3 ; z, x, g, uy) = χ(detuy)|detuy|−z−

1
2

K FJtȳβy(f
sph
3 ; z, y−1u−1x, g, 1)

by (i) we have only to prove that

ωtȳβy(1, g)Φ0(y
−1u−1x) = ωβ(u, g)Φ0,y(x) = (ωβ(1, g)Φ0,y)(u

−1x)

i.e.

(ωtȳβy(1, g)Φ0),y(x) = (ωβ(1, g)Φ0,y)(x)

Here we write Φ,y to be the function defined by: Φ,y(x) = Φ(y−1x). By definition one checks that

for any ϕ

ωβ(g)Φ,y = (ωtȳβy(1, g)Φ),y(x)

for g ∈

a
ā−1

 ,

1 s

1

 , η, thus for all g ∈ U1(Fv). In particular, for Φ = Φ0

Pull-back integrals We let (π, V ), ψ, τ, ρ, ξ := ψ/τ be as before. Then the pair (π, ψ) determines

a representation of G1(Fv) on V , which we denote as πψ. Let ϕ ∈ V . Let m = 1 or 2. Given

f ∈ Im+1(τ) we consider the integral:
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Fϕ(f ; z, g) :=

∫
U1(Fv)

f(z, γ(g, g1h))τ̄(detg1h)πψ(g1h)ϕdg1, (11.12)

where γ = γ1 or γ′1 depending on whether m = 2 or m = 1. (similar to [SU] 11.4.)

Lemma 11.4.6. Suppose π, ψ and τ are unramified and ϕ is a newvector. If Re(z) > (m + 1)/2

then the above integral converges and

Fϕ(f
sph
v ; z, g) =


L(π̃,ξ,z+1/2)∏1

i=0 L(2z+2−i,τ̄ ′χiK)
πψ(g)ϕ m = 1

L(π̃,ξ,z+1)∏1
i=0 L(2z+3−i,τ̄ ′χiK)

Fρ,z(g) m = 2.

Here, Fρ is the spherical section as defined in [SU] 9.1.2.

Proof. See [SU]11.4.8.

11.4.3 ℓ-adic Siegel sections: ramified cases

The sections. We let f†n ∈ In(χ) be the function supported onQn(OF,v)wnNQn(OF,v)(= Qn(OF,v)wnKQn(λ
t)

for any t > 0) such that f†n(wnr) = 1, r ∈ NQn(OF,v). Given (λu) ⊆ OK,v contained in the con-

ductor of χ, we let fu,n ∈ In(χ) be the function such that fu,n(k) = χ(detDk) if k ∈ KQn(λ
u) and

fu,n(k) = 0 otherwise.

Lemma 11.4.7. Suppose v is not ramified in K and suppose χ is such that OK,v ̸= cond(χ) ⊇

cond(χχc). Let (λu) := cond(χ). Then

M(z, f†n) = fu,n · V ol(Sn(OF,v)) ∈ In(χ̄c)

for all z ∈ C.

Proof. See [SU]11.4.10.

Lemma 11.4.8. Let A ∈ GLn(Kv). If det β ̸= 0, then

f†n,β(z, diag(A, Ā
t−1

)) =


χ(det A)|det A|−z+n/2v V ol(Sn(OF,v)) ĀtβA ∈ Sn(OF,v)∗

0, otherwise.

(11.13)

Proof. See [SU]11.4.11.
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Lemma 11.4.9. Suppose β ∈ Sn(Fv), det β ̸= 0, char(v) = ℓ and ℓ splits completely in K.

(i) if β ̸∈ Sn(OF,v), then M(z, f†n)β(−z, 1) = 0.

(ii) Suppose β ∈ Sn(OF,v). Let c := ordv(cond(χ
′)). If c > 0, then

M(z, f†n)β(−z, 1) = χ′(det β)|det β|−2z
v g(χ̄′)ncn(χ

′, z).

where

cn(χ
′, z) =


χ′(ℓnc)ℓ2ncz−cn(n+1)/2 c > 0

ℓ2nz−n(n+1)/2 c = 0

(11.14)

Proof. See [SU]11.4.12.

Now We use the convention for m = 1 or 2 as in the last subsection.

Proposition 11.4.1. Let m = 1 or 2. There exists a meromorphic function γ(m)(ρ, z) on C such

that:

(i) If m = 1. Then Fϕ∨(M(z, f);−z.g) = γ(1)(ρ, z)τ(µ1(g))Fϕ(f ; z, ηg)

Moreover, if π ≃ π(χ1, χ2) and v splits in K. Then

γ(1)(ρ, z) = Ψ(−1)g(τ̄ ′, ϖe
v)

2 · τ ′(ϖnc
v )|ϖv|−2ncz+n(n+1)c/2

v · ϵ(π̃ ⊗ ξc, z + 1/2)
L(π ⊗ ξ̄c, 1/2− z)
L(π̃ ⊗ ξc, z + 1/2)

.

(ii) If m = 2 and π,Ψ, τ are the v constituents of a global triple. Then

Fϕ∨(M(z, f);−z, g) = γ(2)(ρ, z)A(ρ, z, Fϕ(f ; z,−))−z(g)

each of these equalities is an identity of meromorphic functions of z.

(iii) Suppose moreover that Ov ̸= cond(τ) ⊃ cond(ττ c) then:

γ(2)(ρ, z) = γ(1)(ρ, z − 1

2
).

Proof. See [SU]11.4.13.
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11.4.4 ℓ-adic sections: ramified cases again

The sections. As in [SU]11.4.14, we define modified version of the sections f†.

Let m = 1 or 2. For x ∈ OK.v ∩ K×
v let

f†,(m)
x (z, g) = f†m+1(z, g



1 1/x

1m−1 0m−1

1 1/x̄

1m−1

1

1


).

Lemma 11.4.10. Let β = (bi,j) ∈ Sm+1(Fv). Then for all z ∈ C, f†,(m)
x,β (z, 1) = 0 if β ̸∈

Sm+1(OF,v)∗. If β ∈ Sm+1(OF,v)∗, then

f
†,(m)
x,β (z, 1) = V ol(Sm+1(OF,v))eℓ(TrKvQv (bm+1,1/x))

.

Proof. See [SU]11.4.15.

Lemma 11.4.11. Let β ∈ S2(Fv), det β ̸= 0. Let y ∈ GL2(Kv) and suppose ȳtβy ∈ S2(OF,v)∗.

Let λ, θ be characters of K×
v and suppose λ|F×

v
= 1. Let (c) := cond(λ)

∩
cond(θ)

∩
(ϖv). Let

x ∈ K×
v be such that Dv|x, cond(χc)|x, and cDv det ȳtβy|x, where Dv := NK/F (DK/Q). Suppose

y−1β−1ȳt
−1

=

∗ ∗

∗ d

 with d ∈ Fv. Denote D̃v := NK/F (DK/F ) then for h ∈ Uβ(Fv),

∑
a∈(Ov/x)×

θχ̄c(a)FJβ(f
†,(2)
x ; z, u, g

a−1

ā

 , hy)

= χ(det hy)|det hy|−z+1/2
K V olS2(OF,v) ·

∑
b∈(Ov/D̃vdOv)

f−b(z, g
′η)ωβ(h, g

′

 1

−b 1

)Φθ,x,y(u)
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. Where recall that g′ =

1

−1

 g

1

−1

 and

fb(g) =


χ
λ (dp), g = pη

1 m

1

 , p ∈ B1(OF,v),m− b ∈ D̃vdOF,v

0 otherwise .

Proof. See [SU]11.4.16.

Pull-back integrals

Let T denote a triple (ϕ, ψ, τ) with ϕ ∈ V having a conductor with respect to π̃. Let ϕx :=

πψ(ηdiag(x̄
−1, x))ψ and let

F
(m)
T ,x (z, g) :=

∫
U1(Fv)

f†,(m)
x (z, S−1α(g, g′h))τ̄(detg′h)πψ(g

′h)ϕxdg
′,

where α = α1 or α′
1 depending on whether m = 2 or 1, again using the convention of subsection

11.4.2. If f(z, g) = f
†,(m)
x (z, gS−1) then F − T , x(z, g) = Fϕx(f ; z, g).

Proposition 11.4.2. Suppose x = λt, t > 0 is contained in the conductors of τ and ψ and xx̄ ∈

(λrϕ) = condπ̃(ϕ). Then F
(m)
T ,x (z, g) converges for all z and g and

F
(1)
T ,x(z, η) = [U1(OF,v) : Kx]

−1τ(x)|xx̄|−z−1
v ϕ

and

F
(2)
T ,x = [U1(OF,v) : Kx]

−1τ(x)xx̄|−z−3/2
v Fϕ,r,t.

for any r ≥ max{rϕ, t}. Here Kx is the subgroup defined as:

Kx := {

a b

c d

 ∈ U1(OF,v) : a− 1 ∈ (x̄), b ∈ (xx̄), c ∈ Ov, d− 1 ∈ (x)}.

Proof. See [SU]11.4.17.

Proposition 11.4.3. For m = 1 or 2, Let γ(m)(ρ, z) be as above. Assuming char(v) = ℓ which is

unramified in K. If Ov ̸= cond(τ) ⊇ cond(ττ c) then γ(2)(ρ, z) = γ(1)(ρ, z − 1/2).

Proof. See [SU]11.4.18.
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11.4.5 p-adic sections

Since we have done a large part of this in part one we only record the formulas for Fourier-Jacobi

coefficients and pull-back sections below. These are only slightly different from [SU] 11.4.

Lemma 11.4.12. Suppose ψ and τ are as in the Generic case and let (pm) := cond(τ ′). Let

β ∈ S2(Fv),detβ ̸= 0, and suppose β ∈ GL2(Ov). Let y ∈ GL2(Ov). Let λ be an unramified

character of K×
v such that λ|F×

v
= 1. Then for h ∈ Uβ(F )v)

∑
a∈(Ov/x)×

µ−1
1,vξ

cτ(a)FJβ(f
0,(2)
z ;−z, u, gdiag(a−1, ā), hy)

ξ(−1)c(β, τ, z)τ(dethy)|dethh̄|−z+1/2
v fm,1(z, gη)ωβ(h, g)Φµ−1

1,vξ
c,x,y(u),

(11.15)

where ω is defined using λ,and

c(β, τ, z) := τ̄ ′(−detβ)|detβ|2z+1
v g(τ ′)2τ̄ ′(p2m)p−4mz−5m.

Proof. See [SU]11.4.22.

Now we use the convention for m = 1 or 2 as in subsection 11.4.2.

Proposition 11.4.4. Let ϕ ∈ V be an eigenvector for π such that v|condπ(ϕ). Let (x) := cond(ξ1) =

(ϖt
v) = (ϖt1

v , ϖ
t2
v ). Suppose t > 0 and that x is contained in cond(τ1) and cond(ψ1) and that

xx̄ ∈ condπ(ϕ). Let ϕ∨x := Ψv(−1)π(diag(x, x̄−1))ϕ. Then

Fϕ∨
x
(f̃

0,(m)
−z ; z, g) = γ(m)(ρ1,−z)[U1(OF,v) : Kx]

−1τ̄ c(x)|xx̄|z−
m+1

2
v


F 0
ϕ,z(g), m = 2

πψ(g)ϕ, m = 1.

(11.16)

where f̃
0,(m)
−z (z, g) = f0,m−z (z, gS−1).

Proof. See part one.

11.5 Good Siegel Eisenstein Series

From now on we assume that the characters ψ and τ are unramified outside p. Let (π, V ) =

(⊗πv,⊗Vv) be as before and let D = (
∑
, φ, ψ, τ) be an Eisenstein datam for ψ). We augment this
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datum with a choice of an integer MD satisfying

• MD is divisible only by primes in Σ \ {v|p};

• for v ∈ Σ \ {v|p},MD is contained in δK, cond(ξv), cond(ψv), cond(τv), and condπ̃v (ϕv).

All constructions to follow and subsequent formulas depend on this choice. In our applications we

are free to choose a suitable MD.

Let xv := ptv ∈ OK,v be such that (xv) = cond(ξcv). Let

UD :=
∏
v|p

Kxv,v

∏
v|Σ\{p}

KMD,v

∏
v-Σ

U1(OF,v),

with Kx,v as in the last section.

Remark 11.5.1. Later we will use UD to denote the corresponding groups with same level in GL2

as well.

For m = 1 or 2 we define a meromorphic section f
(m)
D : C → Im+1(τ) as follows: f

(m)
D (z) =

⊗f (m)
D,w(z) where

• f (m)
∞ (z) := fκ ∈ Im+1(τ∞) for any infinite place;

• v - Σ then f
(m)
D,v (z) := fsphv ∈ Im+1(τv).

• if v|Σ, v - p, then f (m)
D,v (z) := f

(m)
MD,v

∈ Im+1(τv);

• for v|p, f (m)
D,v (z) := f

0,(m)
−z ∈ Im+1(τv), where xv is used to define f

0,(m)
−z .

We let H
(m)
D (z, g) := E(f

(m)
D ; z, g).

Let

K
(m)
D := {k ∈ Gm+1(ÔF ) : 1− k ∈M2

D

∏
v|p

(xvx̄v)M2(m+1)(O)}.

Then it easily follows from the definition of the f
(m)
D,v (z)’s that

H
(m)
D (z, gk) = H

(m)
D (z, g), k ∈ K(m)

D , (11.17)
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and that if for any v|p, tv > 0, xv ∈ cond(ψ), and xvx̄v ∈ condπ(ϕv) then

H
(m)
D (z, gα(1, k)) = τ(akp)H

(m)
D (z, g), k ∈ UD.

For u ∈ GLm+1(AK,f ) let

L(m)
v := {β ∈ Sm+1(F ) : β ≥ 0, T rβγ ∈ ÔF , γ ∈ uSm+1(ÔF )tū}.

Lemma 11.5.1. (i) if k ≥ m+ 1, then H
(m)
D is holomorphic at zk := (k −m− 1)/2;

(ii) if k ≥ m+ 1 and if g ∈ Qm+1(AF ) then

Hm
D (zk, g) =

∑
β∈Sm+1(F ),β>0

H
(m)
D,β (zk, g)

.

Further more, if β > 0, g∞,i = r(Xi)diag(Yi,
tȲi

−1
) and gf = r(a)diag(u, tū−1) ∈ Gm+1(AF,f ), then

H
(m)
D,β (zk, g) = 0 if β ̸∈ L(m)

u and otherwise

H
(m)
D,β (zk, g) = e(trβa)

(−2)−(m+1)d(2πi)(m+1)dk(2/π)m(m+1)d/2
∏
j(detβ

k−(m+1)
j ,det Ȳ kj )

(
∏m
j=0(k − j − 1)!)d

∏m
j=0 L

S(k − j, τ̄ ′χjK)

×
d∏
j=1

e(Trβ(Xj + iYj Ȳ
t
j ))

∏
v ̸∈S

fD,βu,v(zk, 1)

×τ(detu)|detuū|m+1−k/2
F

∏
v ̸∈S

Hv,β(τ̄
′
v(ϖv)q

−2z−n
v ).

where βu = tūβu. βj = ιj(β), ιj is the embedding F ↪→ R for any finite set of places S ⊇ Σ such

that gv ∈ Km+1,v if v ̸∈ S.

Proof. See [SU]11.5.1.

If k ≥ m+ 1, define a function Hm
D (Z, x) on Hm+1 ×Gm+1(Af ) by

H
(m)
D (Z, x) :=

d∏
j=1

µm+1(g∞,j)
(m+1)k/2

d∏
j=1

Jm+1(g∞,j , i)
−kH

(m)
D ((k −m− 1)/2, g∞x)
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where g∞ ∈ G+
m+1(R), g∞(i) = Z.

Lemma 11.5.2. Suppose k ≥ m+ 1. Then H
(m)
D (Z, x) ∈Mk(K

(m)
D ).

Proof. See [SU]11.5.2.

Lemma 11.5.3. Suppose k ≥ m + 1 and that x = diag(u, ū−1, u ∈ GLm+1(AF,f with uv =

diag(1m, āv), av ∈ O×
v , if v ∈

∑
. If β ̸∈ L(m)

u or if detβ = 0 then ADβ(x) = 0, and for β = (βi,j) ∈

L
(m)
u with detβ > 0

A
(m)
D,β(x) = |δK|

m(m+1)/4
K |δF |(m+1)/2

F

(−2)−(m+1)d(2πi)(m+1)kd(2/π)m(m+1)d/2
∏
v|p(detβ|β|v)k−m−1∏m

j=0(k − j − 1)!d
∏m
j=0 L

∑
(k − j, τ̄ ′χjK)

×
∏
v|p

τ̄v(avdet(β))g(τ
′
v)
m+1c(τ̄ ′v,−(k −m− 1)/2)ev(TrKv/Qv

(avbm+1,1/xv)

×
∏

v∈
∑
,v-p

τ cv (av)ev(TrKv/Qv
(avbm+1,1/MD))

×
∏
v ̸∈

∑ τv(detuv)|uvūv|m+1−k/2
v hv,ūtvβuv (τ̄v(ϖv)q

−k
v ).

(11.18)

Proof. See [SU]11.5.3.

11.6 ED via pull-back

Let φ0 be defined by: φ0(g) = φψ(gy) for

yv =


1, v =∞, v ̸∈ Σ

η−1diag(M−1
D ,MD)η v ∈ Σ, v ̸ |p

diag(xv, x̄
−1
v ), v|p

Proposition 11.6.1. Let m = 1 or 2. Suppose that for any v|p (xv) = (ptv ) with tv > 0 and

that xv ∈ cond(ψ) and xvx̄v ∈ condπv (ϕv) where ϕv is defined by φ = ⊗φv. Let g ∈ Gm(AF ) and
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h ∈ G1(AF ) be such that µ1(h) = µm(g). If k ≥ m+ 1 then

∫
U1(F )/U1(AF )

H
(m)
D (z, α(g, g′h))τ̄(det g′h)φ0(g

′h)dg′

= [U1(ÔF ) : UD]
−1


c
(1)
D (z)ϕ(g) m = 1

c
(2)
D (z)ED(z, g) m = 2

(11.19)

where

cD(x) := πd2(−2z−m+1)d|MD|(2z+m+1)
F

∏
v|p

|xvx̄v|z−(m+1)/2
v τ̄ cv (xv)

∏
v-p

τv(MD)

× Γ(z + (m− 1 + k)/2)dL
∑
(π̃, ξ, z +m/2)

Γ(z + (m+ 1 + k)/2)d
∏1
i=0 L

∑
(τ̄ ′ϵiK, 2z +m+ 1− i)

∏
v|p

γ(m)(ρ1,v,−z)
(11.20)

Proposition 11.6.2. Let m = 1 or 2. Suppose that for any v|p (xv) = (ptp) with tp > 0 and that

xv ∈ cond(ψ) and xvx̄v ∈ condπv (ϕv). Let g ∈ Gm(AF ) and h ∈ G1(AF ) be such that µ1(h)µm(g).

Let β ∈ Sm(F ). If k ≥ m+ 1 then

∫
U1(F )/U1(AF )

H
(m)
D,β (z, α(g, g

′h))τ̄(det g′h)φ0(g
′h)dg′

= [U1(ÔF ) : UD]
−1


c
(1)
D (z)φβ(g) m = 1

c
(2)
D (z)µD(β, z, g) m = 2

(11.21)

where c
(m)
D (z) is as defined above.

Recall that a1, ..., ahK ∈ ÔK be representatives for the class group of K. We assume that each

ai = (ϖv, 1) ∈ OK,v for some prime v ̸∈ Σ that splits in K. Let

ΓD := U1(F ) ∩ UD,ΓD,i := U1(F ) ∩

a−1
i

āi

UD

ai
ā−1
i

 .

We often write ΓD for the GL2 open compact with the same level as well. Also, we write ΓD,0 ⊇ ΓD

by removing the congruence conditions required for diagonal entries. (Similar to Γ0(N) ⊃ Γ1(N) in

the classical case) For any v|p

(puv ) := (xv) ∩ OF,v, (prv )v := (xvx̄v).

It follows easily from the strong approximation that if we let Y ∈ Ô be any set of representatives
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for (ÔK/
∏
v|p x̄vMD)

×/(ÔF /pupMD)
×. Then

U1(AF ) = ⊔hK
i=1 ⊔a∈Y U1(F )U1(F∞)

a−1
i a−1

āiā

UD.

with each element appearing exactly hF times. Define:

H̃
(m)
D,β (z, g) :=

∑
a∈(ÔK/(

∏
v|p xvMD))×

(
∏
v|p

µ−1
1,v)ξ

cτ(a)H
(m)
D,β (z, gα(1, diag(a

−1, ā))),

Suppose h is a diagonal matrix, then the left hand side of 11.19 is

[O×
K : O×

F ]
−1h−1

F (#(OF /pupMD)
×)−1[U1(ÔF ) : UD]

−1

×
hK∑
i=1

τ̄ cτ(ai)

∫
ΓD,i\U1(F∞)

H̃
(m)
D,β (z, α(g, g

′diag(a−1
i , āi)h))

× τ̄(detg′h)ϕ0(g′diag(a−1
i , āi)h)dg

′.

(11.22)

11.7 Neben typus

In this section we discuss the relations between U(1, 1) automorphic forms and GL2 automorphic

forms. This will be useful later. In the [SU] case the situation is easier since they assumed the forms

are newforms, i.e. invariant under the action of matrices:

∗ ∗

1

. Now since we are going to work

with the full dimensional Hida family so we do not assume this anymore. A principle for this issue

is: we assume the neben characters at places not dividing p and the torsion part at p-adic places to

be similar to the new form and let the free part of the p-adic neben characters to vary arbitrarily.

Let ε′ = ⊗vε′v be a character of TU(1,1)(ÔF ). First look at the p-adic places. Note that Zp = ∆× Γ

for ∆ ≃ F×
p and Γ = 1 + pZp. TU(1,1)(Zp) = {

ā−1

a

 |a ∈ O×
K,v}, TGL2(Zp) ≃ Z×

p × Z×
p . For v|p

ε′v is a character of TU(1,1)(OF,v) can be written as ε′v,tor.ε
′
v,fr with respect to ∆ × Γ. Let ψ be a

Hecke character we can define ψv,tor and ψv,fr be characters of O×
K,v in the same way. Since ε′v,fr

and ψv,fr have order powers of p so there are unique square roots ε
′, 12
v,fr and ψ

1
2

v,fr of them. Now
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suppose for each v|p we have:

ε′v,tor(

ā−1

a

) = ψv,tor(a)

for all a ∈ O×
K,v and that for all v - p,

ε′v(

ā−1

a

) = ψv(a)

for all a ∈ O×
K,v. Then we define a neben character of TGL2(ÔF ) by: for v - p,

εv(

a
b

) = ψv(b)

for v|p

εv,tor(

a
b

) = ψv,tor(b)

and

εv,fr(

a
b

) = ε
′, 12
v,fr(

a
b

b
a

)ψ
1
2

v,fr(ab)

and

ε = ⊗vεv

. Now let ψ and ε′ be as above and I be an ideal contained in the conductor of ε′. Let φ be

an automorphic form on U(1, 1)(AF ) such that the action of k ∈ U0(I) is given by ε′(

ak
bk

).

Surippose moreover that it satisfies the condition that:

(*): for any totally positive global unit b ∈ O×
F we have:

φ(

b
1

 g

b−1

1

) = φ(g)ε′(

b−1

1

)

This condition is necessary for a SL2 Hilbert modular form to be able to extend to GL2 with given

neben typus)

Then we define a map αψ from φ′’s as above to automorphic forms on GL2(AF ).
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Definition 11.7.1.

αψ = αψ,ε,ε′(φ)(g) =
∑

j:aj āj∼g
φ(h∞

āj
a−1
j

)ε(k)ψ(z∞aj)

for g = γz∞h∞

āj āj
1

 k ∈ GL2(AF ) where γ ∈ GL2(F ), h∞ ∈ SL2(F∞), z∞ ∈ Z(F∞), k ∈

Γ0(I)GL2 .

Lemma 11.7.1. Assumptions are as above. Suppose φ1, φ3 are automorphic forms on GU(1, 1)(AF ),

φ2 is an automorphic form on U(1, 1). Let ψ1, ψ2, ψ3 be Hecke characters for K. Suppose ψ1ψ2ψ̄3 = 1

and the central characters of φ1, φ3 are ψ1, ψ3. Suppose also that ε′1, ε
′
2, ε

′
3 are neben typus of

α1|U(1,1), α2, α3|U(1,1). Assume that ε′1ε
′
2ε̄

′
3 = 1 and the ε′i’s and ψi’s satisfy the assumptions above,

then

2uF [O×
K : O×

F ] < φ1φ2, φ3 >U(1,1)=< φ1αψ2(φ2), φ3 >GL2

where uF is some number depending only on F . This factor comes out when considering GL2 modulo

the center.

The proof is straightforward.

11.8 Formulas

Definition 11.8.1.

fc(g) := s(

1

−1

 g

1

−1


f̃c := fc ⊗ ψ(det)

Definition 11.8.2.

g̃
(m)
D,β(−, x) = (H̃

(m)
D,β (α(x,−))⊗ ξ(det−))

and

g
(m)
D,β = trΓ0(M)/Γ0(M2

D)π(

1

M2
D
M

)(g̃
(m)
D,β)

Proposition 11.8.1. Notations as above. Let β ∈ Sm(F ).
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(i) There exists a constant C
(m)
D depending only on D and m such that

< g̃
(m)
D,β(−, x), ρ(

 −1

1


f

M2
D
∏
v|p xvx̄v

1


f

)f̃c >ΓD,0= C
(m)
D


aD(β, x) m = 1

cD(β, x) m = 2.

(the reason for the twisting ξ showing up here is the different of ψ which we twisted on fc and τ in

the pull back formula.) (ii) if a(v, f) ̸= 0 for any v|p and if p|fχ and p|fχ−1ξ then

C
(1)
D = (−π22−ki−k)d

∏
v-p,v∈Σ ψ

c
vτv(MD)|MD|κF γ(1)(ρp,−zκ)

×
∏
v|p ξ

c
v(xv)p

rv+nv(κ−2)−κ
2 rv .

Γ(k−1)dLΣ
K(f,χ−1ξ,k−1)

Γ(k)d
∏1
j=0 L

Σ(χ−1ξ′χjK,k−j)

where

γ(1)(ρp, zκ) = ψ̄p(−1)
∏
v|p

c2(τ̄
′
0,v, 1−k/2)ξ̄cv(xv)g(τ ′0,v)2

∏
v|p

µ1,v(p)
rv−nvg(µ−1

1,vξ
c
v, xv).χv ξ̄v(yv)g(µ1,vχ̄vξ

c
v, yv)

(yv) := cond(χ̄vξ
c
v) and (pnv ) := (yv ȳv).

(iii) if Ov ̸= cond(ξvψ
−2
v ψcv) ⊇ cond(χ̄vξvξcv) for any v|p then C

(2)
D = C

(1)
D

∏
v|p p

rv .

Proof. One argues similarly [SU]11.7.1 and the end of [SU]11.6.

We also state here some formulas for Fourier coefficient which follow from section 11.5 in the

same way as in [SU] 11.5 and 11.7.

Proposition 11.8.2. Suppose y = diag(u, ūt
−1

), u ∈ GLm(AΣ
K,f ). For i = 1, 2, · · · , hK let vi :=

diag(u, āi). For β ∈ Sm(F ), β′ ≥ 0 and n ∈ F>>0 or 0, let:

L(m)
vj (β, n) := {T =

β c

c̄ n

 ∈ L(m)
vj , T > 0}.

This is a finite set

(i)

b̃
(m)
D,β(n, i, y) =

∑
j:ājaj∼āiai

∑
T∈L(m)

vj
(β,n)

∑
a∈(Ô/xpMD))×

(
∏
v|p

µ−1
1,v)ξ

cτ(a)A
(m)
D,T (yj,a),

where yj,a := diag(u, āj ā, ū
−1, a−1

j a−1).
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(ii) Let (xv) := cond(ξcv). Suppose xv = ptv with tv > 0 for any v|p. If T ∈ L
(m)
vj (β, n) then

AD,T (yj,a) = 0 unless for any v|p, T ∗
v := Tm+1,1 ∈ O×

K,v and T ∗
v := Tm+1,1xvδK/MD ∈ OK,v for all

v|Σ \ {p}, in which case;

∑
a∈(Ô/(xpMD))×

(
∏
v|p

µ−1
1,v)ξ

cτ(a)AD,T (yj,a)

= |δK|m(m+1)/4
K |δF |(m+1)/2

F

(−2)−(m+1)d(2πi)(m+1)kd(2/π)m(m+1)d/2∏m
j=0(k − j − 1)!d

∏m
j=0 L

∑
(k − j, τ̄ ′χjK)

×
∏
v|p

(detT |T |v)k−m−1
∏
v|p

τ̄v(det(β))g(τ
′
v)
m+1c(τ̄ ′v,−(k −m− 1)/2)

× µ1,v ξ̄
c
v(T

∗
v )

∏
v|p

g(µ−1
1,vξ

c
v, xv)

× |MD|2F
∏

v∈Σ,v-p

|xv|K


ξ̄cv(T

∗
v )g(ξ

c
v, xvδK) (xv) ̸= OK,v, T

∗
v ∈ O×

K,v

0 (xv) ̸= OK,v, T
∗
v ̸∈ O×

K,v

1 (xv) = OK,v

×
∏
v ̸∈Σ

τv(detuvāj)|ājuvūv|m+1−k/2
v hv,ūtvβuv (τ̄v(ϖv)q

−k
v ).

Proposition 11.8.3. Suppose y = diag(u, ū−1), u ∈ GLm(AΣ
K,f ). let vi = diag(u, āi). Suppose

xv = ptv with tv > 0 for any v|p. Then for n ∈ F>>0 or 0.

ρ
(m)
D,β(n, y) = (−i2m(m+1)−1)d|δK|m(m+1)/4

K |δF |(m+1)/2
F

∑
j:ājaj∼āiai

∑
T∈L(m)

vj
(β,n)

R
(m)
D,T .
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Where RD,T = 0 unless T ∗
p ∈ O×

K,p and T ∗
v ∈ OK,p for all v|Σ \ {p} in which case

R
(m)
D,T = (|(detT )|F∞ |detT |p)κ−m−1ξ̄cp(T

∗
p )

∏
v-p

ψξ̄v(detT )

× ψp(−1)χpξ̄cp(MD)

×
∏

v∈Σ,v-p

(xv)K


ξ̄cv(T

∗
v )g(ξ

c
v, xvδK) (xv) ̸= OK,v, T

∗
v ∈ O×

K,v

0 (xv) ̸= OK,v, T
∗
v ̸∈ O×

K,v

1 (xv) = OK,v

×
∏

v∈Σ,v-p

χv ξ̄
c
v(yvδK)|yvδK|2−κK g(χ̄v, ξ

c
v, yv, δmathcalK)

× ψξ̄(amj detu)|detu|
−κ/2
K

∏
v ̸∈Σ

hv,ūtvβuv (τ̄v(ϖv)q
−k
v )

×


∏
v|
∑
/{p} χv ξ̄

′
v(ϖ

ev
v )q

ev(k−2)
v g(χv ξ̄

′
v)

−1 m = 2

1 m = 1

We define a normalization constant:

B
(m)
D :=

|MD|
κ
2

K
∏m
j=0(k − j − 1)!d

∏m
j=0 L

∑
(k − j, χξ′ϵjK)

∏
v∈Σ,v-p χv ξ̄

c
v(yvδK)g(χ̄vξ

c
v, yvδK)|yvδK|2−kK,v∏

v-p,v∈Σ ψ
c
vτv(MD)ψ̄p(−1)

∏
v|p cm+1(τ̄ ′0,v,−(k −m− 1)/2)g(τ ′0,v)

m+1g(ξcv, xv)

× id(−1)md2m(m+2)d(2πi)−(m+1)dk(π/2)m(m+2)d/2

×


∏
v∈Σ,v-p χv ξ̄

′
v(ϖ

ev
v )q

ev(k−2)
v g(χv ξ̄

′
v)

−1 m = 2

1 m = 1

(11.23)

Now for m = 1 or 2 we define:

L
(m)
D =

2−3d(2i)d(κ+1)∏
v|p p

rv(1−κ/2)
B

(m)
D C

(m)
D .

and

S(f) :=
∏
v|p

µ1,v(p)
−rvpr

v(κ/2−1)W ′(f)

where W ′(f) is the prime to p part of the root number of f with |W ′(f)|p = 1 (See [SU]11.7.3.) and

recall in the section for notations we defined rv is such that pr
v∥Nv for v|p.

Proposition 11.8.4. Assumptions are as before. Suppose κ ≥ 2 if m = 1 and κ > 6 if m =
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2. Suppose x = diag(u, tū
−1

) with GLm(AK,f ). Suppose p|fχ̄ξ and pr|Nm(fξ). Suppose also

cond(ψp)|fcξOK,p..

(i)

< (f
(m)
D,β,x ⊗ ξ), ρ(

 −1

prpM


f

)f̃c >ΓD,0

< f, ρ(

 −1

prpM


f

)f̃c >GL2,ΓD,0

=
L
(m)
D

2−3d(2i)d(κ+1)S(f) < f, ρ(

 −1

N


f

)f̃c >GL2,Γ0(N)

×W ′(f)−1


aD(T, x) m = 1

cD(T, x) m = 2.

(ii)

L
(1)
D =

∏
v|p

a(v, f)−ordv(Nm(fχ̄ξ))(
(κ− 2)!

(−2πi)κ−1
)2dg(χ̄ξ)Nm(fχ̄ξδK)

κ−2LΣ
K(f, χ̄ξ, κ− 1).

(iii) Under the hypotheses of Proposition 11.4.1 (iii)

L
(2)
D =

∏
v

prv × L(3− κ, χξ̄′)
∏

v∈Sigma

(1− χ̄ξ′(ϖv)q
2−κ
v )L

(1)
D .

Corollary 11.8.1. Under the hypotheses above

< (f
(1)
D,1,xM ⊗ ξ), ρ(

 −1

prpM


f

)f̃c >ΓD,0

< f, ρ(

 −1

prpM


f

)f̃c >GL2,ΓD,0

=
L
(1)
D

(2−3(2i)κ+1)dS(f) < f, ρ(

 −1

N


f

)f̃c >GL2,U0(N)

.

For any x ∈ G(AF,f ) let

GD(Z, x) :=W ′(f)−1L
(2)
D |µ(x)|

−κ
F ED(Z, x). (11.24)
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Corollary 11.8.2. Under the hypotheses as above,

< (f
(2)
D,β,x ⊗ ξ), ρ(

 −1

prpM


f

)f̃c >ΓD,0

< f, ρ(

 −1

prpM


f

)f̃c >GL2,ΓD,0

=
CD(β, x)

(2−3(2i)κ+1)dS(f) < f, ρ(

 −1

N


f

)f̃c >GL2,Γ0(N)

.

11.9 A formula for Fourier Coefficients

Now we express certain fourier coefficients of GD(Z, x) as essentially Rankin-Selberg convolutions

of f and sums of theta functions. This is used later to prove various p-adic properties of these

coefficients.

11.9.1 The formula

Let D = (f, ψ, ξ,
∑

) be an Eisenstein datum. We assume:

for any v|p, πv, , ϕv, ψv, τvare in the Generic Case . (11.25)

Let λ be an idele class character of A×
K such that

• λ|A×
F
= 1;

• λ∞(x) = (x/|x|)−2;

• λv is unramified if v - Σ \ {v|p}.

Let a1, .., ahK ∈ A×
K be representatives of the class group of K as in the previous sections; so

ai = (ϖvi , 1) for some place vi of F splitting in K. Also for i ∈ I1, then aiāi is trivial in the narrow

class group, we assume ϖv = qi for some totally positive qi ∈ F . Let Q = {vi}i∈I1 .
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Let β ∈ S2(F ), β > 0, and u ∈ GL2(AK,f ) be such that

• uv ∈ GL2(OK,v)for v ̸∈ Q;

• t̄uβu ∈ S2(OF,v)∗for all primes v;

• t̄uβu is v-primitive for all v ̸∈ Σ \ {v|p};

• if u−1β−1 t̄u
−1

=

∗ ∗

d

 then dv ∈ OF for all v ∈ Σ \ {v|p}.

Let MD be as before and also satisfying:

cond(λ)|MD and DK det tūβu|MD. (11.26)

All Weil representations that show up are defined using the splitting determined by the character

λ. By our choice of K, there is an idele d1 of AK so that d1d̄1 = d

Later we are going to choose u and β such that they do not belong to GL2(Ov) only when v = vi

for some vi above. Recall that we have proved:

for v = vi

FJβ,v(f ; zk, x, gv, y)

=
τ(det rvyv)|det rvyv|

−z+ 1
2

K∏1
j=0 L(2z + 3− j, τ̄ ′0,vχ

j
K,v)

fsph1 (gv)ωβ(rv, gv)Φ0,yv (x)

For v|Σ\{v|p}, then (notice that we have restricted ourselves to the case when the local characters

ψv, τv are trivial):

∑
a∈(OK,v/MD)×

Fβ,v(z;x, gv

a−1

ā

 , rvuv)

=
∑

b∈OF,v/D̃vd

fb(z, gvη)ωβ(rv, gv

1

b 1

)Φ1,MD,uv (x)

135



for v|p, then

∑
a∈(OK,v/xv)×

ξcV τ(a)µ
−1
1,vFβ,v(−z;x, gv

a−1

ā

 , rvuv)

= ψv(−1)τ̄ ′v(deth)g(τ ′v)2τ̄ ′v(p2uv )p−4uvz−5uvτ(det rvyv)|det rv|−z+1/2
K |deth|2z+1

v

× fuv,1(z, gvη)ωβ(rv, gv)Φξcµ−1
1,v,xv,uv(x)

(x),

(sorry for the bad notation uv, the last one is of different meaning.)

Now for v|Σ \ {v|p}, we have

f−b,v(

1

n 1

 g′η) =
τv
λv

(−1)f−b,v(

 1

−n 1

 gvη)

=
τ

λ
(δ̃Kd̄1)

−1|δKd̄1|
κ
2 f†v (

 1

−n 1

 gvη

1 b

1


δ̃Kd̄1

¯̃
δ−1
K d̄−1

1

)

For h ∈ Uβ(AF ), u ∈ GL2(AK), we define

Φ̃D,β,u = ⊗Φβ,∞
∏
v|p

Φβ,ξcvµ
−1
1,v,xv,uv

∏
v-p

Φβ,1,MD,uv

∏
v ̸∈Σ

Φ0,uv

and ΦD,β,u = λ(d1δ
−1
K )−1|d1δ−1

K |
−1
K ω((

d1δ
−1
K

d̄−1
1 δ̄K

 η−1)Φ̃D,β,u and define ΘD,β(h, g;u) :=

Θβ(h, g; ΦD,β,u)

ωβd−1,v(−η

1 n

1

 gηv

1 b

1

 η)Φ̃(vd1)

= ωβ,v(−

δ1
δ̄−1
1


d−1

1

 η

1 n

1

 gηv

1 b

1

 η−1

d

1

)Φ̃(v)

= λ(d1δ
−1
K )|d1δ−1

K |Kωβ,v(−

δ̄−1
1

δ̄−1
1

 η

1 n

1

 gηv

1 b

1


1

d


δKd−1

1

δ̄−1
K d̄1

)Φ(v)

= λ(d1δ
−1
K )|d1δ−1

K |Kωβ,v(−η

1 n

1

 gηv

1 b

1


δ̃K

¯̃
δ−1
K

 )Φ(v)

136



To see this, observe that

Φ̃ = ωβ(η

δKd−1
1

δ̄−1
K d̄1

)Φ

and

ωβd−1(g) = ωβ(

d−1

1

 g

d

1

)

Definition 11.9.1.

⊗fv = f :=
∏
v|∞

fκ
∏
v|p

fuv
∏

v∈Σ,v-p

f†v
∏
v ̸∈Σ

fsphv

and define ED to be the corresponding Eisenstein series on U(1, 1)(AF ).

Let gη = η−1gη and g′ =

1

−1

 g

1

−1

, if x =

hu
t(h̄u)−1

 for u ∈ GL2(AK), h ∈

Uβ(AF ) satisfying the assumptions at the beginning of this section then:

H̃D,β (zk, α(x, g
′)diag(d−1

1 d−1
1 , 1, d̄1, d̄1, 1))

=
∑

a∈(Ô/xpMD)×

ξcτ(a)HD,β(α(x, g
′

a−1

ā

)diag(d−1
1 d−1

1 , 1, d̄1, d̄1, 1))

= CD(β, r, u)
∑
n

∑
v

∑
b

∏
v

f−b,v(

 1

−n 1

 gvη)ωβd−1,v(h,

1

n 1


′

gv

 1

−b 1

)Φ̃D,β,u(vd1)

= |δ̃Kd̄1|
κ
2 −1

K τ(δ̃Kd̄1)
−1CD(β, r, u)

∑
n

∑
v

∑
b

∏
v

fv(

 1

−n 1

 gvη

1 b

1


δ̃K

¯̃
δ−1
K


d̄1

d−1
1

)

×ωβ,v(η

1 n

1

 gηv

1 b

1


δ̃K

¯̃
δ−1
K

)ΦD,β,u(v)

= |δ̃Kd̄1|
κ
2 −1

K τ(δ̃Kd̄1)
−1CD(β, r, u)

∑
b

ρ(η

1 b

1


δ̃K

¯̃
δ−1
K

)ΘD,β(h, g;u)

×ρ(η

1 b

1


δ̃K

¯̃
δ−1
K


d̄1

d−1
1

)ED(g)

The last step is because Θβ is an automorphic form.

Now let x =

hud−1
1

t ¯hud−1
1

−1

, then:
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< g̃
(m)
D,β(−, x), ρ(

 1

−1


f

1

M2
D
∏
v|p(p

rv )v


 −1

1


f

)f̃c >ΓD

= |δ̃Kd̄1|
κ
2 −1

K τ(δ̃Kd̄1)
−1 <

∑
b

ρ(η

1 b

1


δ̃K

¯̃
δ−1
K

)(ΘD,β ⊗ ξ)(h,−, u)·

ρ(η

1 b

1


δ̃Kd̄1

¯̃
δ−1
K d1

−1

)ED, ρ(

 1

−1


f

1

M2
D
∏
v|p(p

rv )v


 −1

1


f

)f̃c >

= |δ̃Kd̄1|
κ
2 −1

K τ(δ̃Kd̄1)
−1 <

∑
b

ρ(

1 b

1


δ̃K

¯̃
δ−1
K

)(ΘD,β ⊗ ξ)(h,−;u)·

ρ(

1 b

1


δ̃Kd̄1

¯̃
δ−1
K d1

−1

)ED, ρ(

1

M2
D
∏
v|p(p

rv )v


 −1

1


f

)f̃c >

= |δ̃Kd̄1|
κ
2 −1

K τ(δ̃Kd̄1)
−1 <

∑
b

ρ(

1 b

1


δ̃K

¯̃
δ−1
K

)(ΘD,β ⊗ ξ)(h,−;u)·

ρ(

1 b

1


δ̃Kd̄1

¯̃
δ−1
K d1

−1

)ED, ρ(

1

M2
D
∏
v|p(p

rv )v


 −1

1


f

)f̃c >

= |δ̃Kd̄1|
κ
2 −1

K τ(δ̃Kd̄1)
−1 < A′

β(h,−;u) · ED,

ρ(

1

D̃Kd


1

M2
D
∏
v|p(p

rv )v


 −1

1


f

)f̃c >Γ0(M2
DD̃K

∏
v|p p

rv )

= |δ̃Kd̄1|
κ
2 −1

K ξ(δ̃Kd̄1) < A′
β(h,−;u) · ED,

ρ(

1

D̃Kd


1

M2
D
∏
v|p(p

rv )v


 −1

1


f

)f̃c >Γ0(M2
DD̃K

∏
v|p p

rv )

where A′
β = (ρ(

d−1
1

d̄1

)(ΘD,β ⊗ ξ)(h,−;u)). Now for those vi for i ∈ I1, by definition we have

viv̄i is an ideal of F generated by a totally positive global element. Let us take such a generator qi.

Also we take a representative {bj}j of the coset:

{b : totally positive units in O×
F }/{cc̄ for c a unit in O×

K}
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Then we for

A′ :=
∑
i,j,k

ΘD,βijk ⊗ ξ(h,−, u)

where βijk =

bj
qibk

.

Remark 11.9.1. The reason for introducing such bj is to make sure that the A′ satisfy (∗) in

the section for neben typus (see also [Hida91] on top of page 324 for the q-expansion) and can be

identified later with some theta functions on GL2.

Definition 11.9.2. Let αξλ be the operator defined in the section for neben-typus, we define

A := αξλA
′.

Then we are in a position to state our formula for the Fourier coefficients for Klingen Eisenstein

series. Before this let us do some normalizations:

CD(β, r, u) =
(2πi)2kd(2/π)d|δK|−1/2

K |δF |−1
F χξ̄(det ru)|det ru|−

k
2+2

K
∏
vi|∞(detβk−2

vi )d

(
∏1
j=0(k − 1− j)!)dLΣ(k − j, χ̄ξ′χjK)

×Ψp(−1)χ̄pξ′p(detβ)|detβ|k−2
p

∏
v|p

g2(χv ξ̄
′
v, p)χ̄pξp(p

2up)pup(1−2k)

(11.27)

BD,1 =
(k − 3)!dLΣ(k − 2, χ̄ξ′)

(−2)d(2πi)(k−2)d
∏
v|p(g(χv ξ̄

′
v, p))χ̄vξ

′
v(p

up)p(2−k)up

BD,2 :=
|M2

D|
κ
2

K2
3di−2d|δK|−1/2

K |δF |−1
F

∏
v|Σ/{v|p} χv ξ̄

c
v(yvδK)g(χ̄vξ

c
v, yvδK)|yvδK|2−kK,v

χ̄pξcp(MD)g(ξcp, xp)

BD(β, r, u) :=
ψξ(det ru)|det ru|

κ
2 +2

K χ̄pξ
′
p(detβ)|detβ|kp detβk−2∏

v|Σ/{v|p} χ̄vξ
′
v(ϖ

ev
v )q

ev(2−k)
v g(χv ξ̄′v)

.

thus

B
(2)
D CD(β, r, u) = BD(β, r, u)BD,1BD,2.

Proposition 11.9.1. With the assumptions at the beginning of this section. Let β ∈ S2(F ), β > 0,

139



u, h, x as before, then:

CD(β, x)

2−3d(2i)(κ−1)dS(f) < f, ρ(

 −1

N

)f̃c >GL2,Γ0(N)

= |δ̃Kd̄1|
κ
2 −1

K ξ(δ̃Kd̄1)2
uF [O×

K : O×
F ]

−1BD(β, h, u)

×

< BD,1ED(−)BD,2Aβ(h,−;u), ρ(

 −1

M2
DD̃Kd


 −1∏

v|p p
rv

)f̃c >GL2,Γ0(
∏
v|p p

rvM2
DD̃K)

< f, ρ(

 −1∏
v|p p

rv


 −1

M

)f̃c >GL2,ΓD

Now let us make some choices for the u and β and record some formulas for the Theta kernel

functions:

Let γ0 ∈ GL2(AK,f ) be such that γ0,v = (η, 1) for v|p and γ0,v = 1 otherwise. For 1 ≤ i ≤ h1, we

let βi :=

1

qi

, and ui = γ0

1

a−1
i

. Then βi, ui satisfy the assumptions at the beginning of

the section.

for v|p

Φβijk,ξcvµ
−1
1,v,xv,γ0,p

(x) =


ξ̄v,2µ

−1
1,v(bkqix

′′
2)g(ξv,2)ξ̄v,1µ

−1
1,v(x

′
1bj)g(ξv,1) x1 = (x′1, x

′′
2) ∈ Z×

p × Zp

x2 = (x′2, x
′′
2) ∈ Z×

p × Zp

0 otherwise

(11.28)

for s = 1, . . . , d

ωβijk(g∞s)Φβijk,∞s(x) = e(Nm(x1)bjw)e(Nm(x2)bkqiw)j(g∞s , i)
−2

also if v - p,

Φβijk,1,MD,1(x) = |Dv|−1λv(−1)|M2
D|−1
v


1− 1

q′v
, x1 ∈ MDOv

d1
, x2 ∈ Ov

d1

− 1
q′v
, x2 ∈ Ov

d1
, x1 ∈ MD

ϖvd1
O×
v

0, otherwise.

(11.29)

for v non split
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Φβijk,1,MD,1(x) = |Dv|−1λv(−1)|MD|−1
v



(1− 1
qv
)2, x1 ∈MDOv, x2 ∈ Ov.

− 1
qv
(1− 1

qv
), x2 ∈ Ov, x1 ∈ (MD

ϖv′
O×
Fv
×O×

Fv
)

or(O×
Fv
× MD

ϖv′
O×
Fv
)

1
q2v
, x2 ∈ Ov, x1 ∈ MD

ϖv
O×
v × MD

ϖv
O×
v

0 otherwise.

(11.30)

for v split

if v = vi:

Φ0,ui,v(x) =


1 x1 ∈ OK,v, x2 ∈ a−1

i OK,v

0 otherwise.

(11.31)

11.10 Identify with Rankin Serberg Convolutions

From now on we assume that all characters are unramified outside p.

Let α ∈ GL2(AF,f ) be defined by av =

 −1

M2
DD̃K

 of v|
∑
\ {p} and av = 1 otherwise. For

m ≥ 0 let bm ∈ GL2(AF,f ) be defined by bm,v =

 −1

pm

 and bm,v = 1 if v ̸ |p Then

ρ(α)ED = E(F ′
D, zκ; γ∞).

where F(z, g) := FD(z, gα
−1
f ) ∈ I1(τ/λ). It follows that F ′

D(z, g) is supported on

B1(AF )ηK+
1,∞NB1(ÔF )α = B1(AF )K+

1,∞K1(p
upM2

DD̃K)

and that for g = bk∞kf in the support we have :

F ′
D(z, g) = (M2

DD̃K)
d(κ/2−1)τ λ̄(dbdkf )|ab/db|

z+1/2
AF J1(k∞, i)

2−κ.

Now we recall the notion of Rankin Selberg convolution for Hilbert modular forms, following

[Hida91]. Given two Hilbert automorphic forms f and g (as functions on GL2(AF )). For simplicity,
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we assume that both f and g have unitary central characters χ and ξ, having parallel weight k and

κ such that k > κ. Letting τ = χ/ξ, as in [Hida91] p341(4.5), consider the following integral:

Z(s, fc, g, τ) =

∫
F×

A+
/F+

∫
FA/F

Φ(fc, g)(

y x

0 1

)dxτ(y)|y|sAd×y

where Φ(fc, g)(x) = fu(x)gu(x)|j(x∞, z0)−k−κ|, fu(x) = D−1f(x)j(x∞, z0)
k and gu(x) = D−1g(x)j(x∞, z0)

κ,

D is the discriminant of F/Q. Note that there are miner differences between the notations here and

there, and the m and µ there are 0 in our case. Then:

Z(s, f c, g, τ) = D(1+2s)/2τ(d)−1(4π)−d(s+(k+κ)/2)Γ(s+ k/2 + κ/2)dD(s, f c, g, τ)

By (4.7) in loc.cit,

Z(s, f, g, τ) =D−2

∫
X0

f̄g(x)

× E (x; s+ 1)j(x∞, z0)
κ−k|j(x∞, z0)k−κ|dx,

where

E (x; s) =
∑
γ

τ(γx)η(γx)s|j(γ, x∞(z0))
k−κ|j(γ, x∞(z0))|κ−k.

Suppose h ∈ S2(p
rpM2

DD̃K) such that the neben typus of ED.h is the same as f (this satisfies

[Hida91]4.5), then:
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BD,1 < ED · ρ(

 1

−1


v-,∞

D̃Kd
∏

v-p,∞
xvx̄v

1


f

)h, ρ(

 1

−1


f

D̃Kd
∏
v ̸|∞

xvx̄v

1


f

f̃c >

= BD,1 < ρ(

D̃Kd
∏

v-p,∞
xvx̄v

1


−1

f

 1

−1


−1

v-p,∞

ED · h, ρ(

D̃Kd
∏

v-p,∞
xvx̄v

1


−1

f

 1

−1


−1

v-p,∞

×

 1

−1


f

D̃Kd
∏
v-∞

xvx̄v

1


f

)f̃c >

= BD,1 < ρ(

D̃Kd
∏

v-p,∞
xvx̄v

1


f

 1

−1


v-p,∞

)ED · h, ρ(

 −1

prp


p

)f̃c >

= BD,1 < ρ(

D̃Kd
∏

v-p,∞
xvx̄v

1


f

)ED · h, (χp(p)ap(f̃cp))rp−upρ(

 −1

pup


p

)f̃c >

= |M2
DD̃K|

κ
2 −1

F (χ̄p(p)a(fp))
rp−upBD,1(4π)

(1−k)dΓ(k − 1)dD(ρ(

 −1

pup


p

)f̃c, h; k − 1)

= |M2
DD̃K|

κ
2 −1

F (χ̄p(p)ap(fp))
rp−upBD,1 ¯c(f)(ξp(p)ap(hp))

up−r(4π)(1−k)dΓ(k − 1)d

× LΣ(k − 2, χ̄ξ′)−1L(fc1 × h, k − 1)

(11.32)

Lemma 11.10.1. Assumptions are as above. Suppose h ∈ S2(p
rpM2

DD̃K) is a normalized eigen

form on GL2(AF ) then

< BD,1ED · ρ(

 1

−1


v-p,∞

D̃Kd
∏

v-p,∞
xvx̄v

1


f

)h, ρ(

 1

−1


f

D̃Kd
∏
v-∞

xvx̄v

1


f

f̃c >

= BD,3L(f
c
1 × h, k − 1)

where:

BD,3 = |M2
DD̃K|

κ
2 −1

F (χ̄p(p)ap(fp))
rp−upBD,1

¯c(f)(ξp(p)ap(hp))
up−r(4π)(1−k)dΓ(k−1)d×LΣ(k−2, χ̄ξ′)−1
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Chapter 12

p-adic Interpolations

12.1 p-adic Eisenstein datum

As in [SU] Chapter 12 we define the p-adic Eisenstein datum to be D = (A, I, f , ψ,Σ) consists of:

• The integer ring A of a finite extension of Qp.

• I a finite integral domain over ΛW,A.

• A nearly ordinary I-adic form f which is new at all v ̸ |p and has the tame part of the character

≡ 1.

• A finite order Hecke character ψ of A×
K/K× and condψ|p and ψ|A×

F
≡ 1.

• A finite set Σ of primes containing all primes dividing NδK

Remark 12.1.1. For simplicity we have assumed ψ is unramified outside p and that the χf and ξ

in [SU]12.1 are trivial.

Recall also that we have defined in section 7.1 the maps α and β. Let ψ := α ◦ ωψΨ−1
K and

ξ := β ◦ΨK. For ϕ ∈ X a we define:

ψϕ(x) :=
∏

σ∈ΣF,∞

x
−κϕ
∞ x

κϕ
vσ (ϕ ◦ψ(x)|.|

−κϕ
F .

Here vσ is the p-adic place corresponding to σ under ι : C ≃ Cp. We also define:

ξϕ := ϕ ◦ ξ.
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We always assume (irred) and (dist) holds for our Hilbert modular form f or Hida family f.

12.2 Interpolation

12.2.1 congruence module and the canonical period

We denote Tord
κ (Mpr, χ;R) (T0,ord

κ (Mpr, χ;R))be the R-sub-algebra of EndR(M
ord
κ (Mpr, χ;R))

(respectively, EndR(S
ord
κ (Mpr, χ;R))) generated by the Hecke operators Tv. For any f ∈ Sordκ (Mpr, χ;R)

is a p-stabilized eigenform and F the fractional field of R. Then we have 1f ∈ T0,ord
κ (Mpr, χ;R)⊗RF

the idempotent associated to f .

Suppose f ∈Mord(M,χ; I) is an ordinary I-adic cuspidal newform. Then as above Tord,0(M,χ; I)⊗

FI ≃ T′ ⊗ FI, FI beign the fraction field of I where projection onto the second factor gives the

eigenvalues for the actions on f . 1f be the idempotent corresponding to the second factor. Then for

an g ∈ Sord(M,χ; I)⊗I FI, 1fg = cf for some c ∈ FI

Suppose (irred)f and (dist)f hold for f and that the localization of the Hecke algebra atmf satis-

fies the Gorenstein property, then T ord,0(M,χf ; I)mf is a Gorenstein R-algebra, So T ord,0(M,χf ; I)∩

(0⊗ FI) is a rank one I-module. We let ℓf be a generator; so ℓf = ηf1f for some ηf ∈ R.

Definition 12.2.1. For a classical point fϕ of f the canonical period of fϕ is defined by

Ωcan :=< fϕ, f
c
ϕ >Γ0(N) /ηfϕ .

Remark 12.2.1. This canonical period is not quite canonical since it depends on the generator ℓf.

Now we define MX (B,ΛD) to be the space of formal q expansions which when specializing to

ϕ ∈ X is a classical modular form with the neben typus determined by ϕ. Lemma 12.2.4 in [SU] is

true as well for the Hilbert modular forms: (the character θ there is assumed to be trivial in our

situation.)

Lemma 12.2.1. There exists an idempotent e ∈ EndΛD
(MX (B; ΛD)) such that for any g ∈

MX (B; ΛD), (eg)ϕ = egϕ ∈Mord
κϕ

(Bptϕ, ω
κϕ−2χϕ;ϕ(ΛD)) for all ϕ ∈ X

Lemma 12.2.2. Let f ∈ Sord(M,χf ; I) be an ordinary newform. Let R be any integral extension of

I. Let g ∈Mord(M,χ; I)⊗I R. Suppose also (irred)f and (dist)f hold, then there exists an element

Ng ∈ R such that for any sufficiently regular arithmetic weight ϕ.

Proof. The lemma follows in the same way as lemma 12.2.7 of [SU].
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12.3 p-adic L-functions

Theorem 12.3.1. Let A, I, f , ξ, and Σ as above. Suppose that there exists a finite A-valued idele

class character ψ of A×
K such that ψ|A×

F
= χf and ψ is unramified outside Σ.

(i)There exists L̃Σ
f ,K,ξ ∈ FI ⊗I IK such that for any ϕ ∈ XIK,A(f , ψ, ξ),(so kϕ is a parallel weight)

L̃Σ
f ,K,ξ ∈ FI ⊗I IK is finite at ϕ and

ϕ(L̃Σ
f ,K,ξ)

=
∏
v|p µ1,v,ϕ(p)

−ordv(Nm(fχ̄fϕ
ξϕ

)) ((kϕ−2)!)2dg(χ̄fϕ
ξϕ)Nm(fχ̄fϕ

ξϕ
δK)kϕ−2LΣ

K(fϕ,χ̄fϕ
ξϕ,kϕ−1)

(−2πi)2d(kϕ−1)2−3d(2i)d(kϕ+1)S(fϕ)<fϕ,fcϕ>
.

(ii) Suppose that the localization of the Hecke algebra at mf is Gorenstein. Then There exists

L̃Σ
f ,K,ξ ∈ FI ⊗I IK such that for any ϕ ∈ XIK,A(f , ψ, ξ),(so kϕ is a parallel weight) LΣ

f ,K,ξ ∈ FI ⊗I IK

is finite at ϕ and

ϕ(LΣ
f ,K,ξ)

=
∏
v|p µ1,v,ϕ(p)

−ordv(Nm(fχ̄fϕ
ξϕ

)) ((kϕ−2)!)2dg(χ̄fϕ
ξϕ)Nm(fχ̄fϕ

ξϕ
δK)kϕ−2LΣ

K(fϕ,χ̄fϕ
ξϕ,kϕ−1)

(−2πi)2d(kϕ−1)Ωcan
.

Recall that the µ1,v are defined by πv ≃ π(µ1,v, µ2,v) and µ1,v(p) has lower p-adic valuation than

µ2,v(p).

Proof. See [SU]12.3.1. The point is the Fourier coefficients of the normalized Siegel Eisenstein series

constructed in the last chapter are elements in ΛD and thus the fourier jacobi coefficients (the

g
(2)
D,β(−, x))’s there) are elements inMX (B,ΛD). A difference is that: the Fourier Jacobi coefficients

are only forms on U(1, 1), which we do not know how to compare the unitary group inner product

with the GL2 unless it satisfies (∗) as defined in the section for neben typus. So we use

∑
j

g
(2)
D,β(

b−1
j

1

 g

bj
1

)ε′(

bj
1

)

instead, where bj ’s are defined in the last chapter and ε′ is some neben character. Then one can

apply the constructions in the last section.

Remark 12.3.1 (Hida91). also constructed a full dimensional p-adic L-functions for Hilbert modu-

lar Hida families. In fact his p-adic L-function corresponds to our L̃ except for local Euler factors at

Σ. Our interpolation points are not quite the same as his. In fact he used the differential operators to
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get the whole family while we instead allowed more general neben typus at p. (Recall that he used the

Rankin-Selberg method and required the difference of the p-parts of the neben typus of f and g comes

from a global character.) Hida is able to interpolate more general critical values. In particular, the

points ϕ0 corresponding to the special value L(f2, 1) where f2 is the element in f with parallel weight

2 and trivial neben typus is an interpolation point. Our L̃Σ
f,K,1 coincides with his along a subfamily

containing the cyclotomic 1-dimensional family containing ϕ0. This is very useful in proving some

characteristic 0 results for Selmer groups.

We also have the Σ primitive p-adic L-functions L̃Σ
f,K,ξ and LΣ

f,K,ξ for a single f by specializing

the one for f to f . (See [SU]12.3.2)

12.3.1 connections with anticyclotomic p-adic L-functions

Let β : ΛK,A → Λ−
K,A be the homomorphism induced by the canonical projection ΓK → Γ−

K. For A

reduced, β extends to FA ⊗A ΛK,A → FA ⊗A Λ−
K,A, FA the ring of fractions of A.

Now for any A and f ∈ Sord2 (Mpt, χ;A) such that (irred) and (dist) are satisfied, we define the

anticyclotomic p-adic L-function:

LΣ,−
f,K,ξ := β(LΣ

f,K,ξ) ∈ Λ−
K,A

and

L̃Σ,−
f,K,ξ := β(L̃Σ

f,K,ξ) ∈ Λ−
K,A ⊗A FA

For v|p we can further specialize γv′ = 1 for all v′ ̸= v to get LΣ,−
f,K,ξ,v.

We define two notions concerning the anticyclotomic p-adic L-function which would be useful.

Definition 12.3.1. For some v|p, writing L̃Σ,−
f,K,ξ,v = ã0 + ã1(γ−,v − 1) + · · · , ãi ∈ FA (the fraction

field), and LΣ,−
f,K,ξ = a0 + a1(γ−,v − 1) + · · · , ai ∈ A, then we say f satisfies

(NV1) if at least one of the ãi is non-zero.

(NV2) if at least one of the ai is a p-adic unit.

We denote f2 to be the ordinary form in the family f of parallel weight 2 and trivial neben typus

and characters. Also let ϕ0 be the arithmetic points corresponding to the special L-value L(f2, 1).

Theorem 12.3.2. Let A, I,f , ξ, and Σ be as before and assume the hypotheses there and (irred)

and (dist) holds for f . For simplicity we assume that ξ = 1.
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(i) If f2 satisfies (NV1), then L̃Σ
f ,K,ξ is not contained in any prime of FI ⊗ IIK passing the point ϕ0

and of the form QFI ⊗ IIK for some height one prime Q ⊂ FI[[Γ
+
K]].

(ii) Assume that the localization of the Hecke algebra at the maximal ideal of f is Gorenstein. If one

member of the family f satisfies (NV2), thenLΣ
f ,K,ξ is not contained in any prime of IK of the form

QIK for some height one prime Q ⊂ I[[Γ+
K]].

Proof. Same as [SU]12.3.2.

Now we state two theorems giving sufficient condition for that (NV1) and (NV2) to be satisfied.

Theorem 12.3.3. ([Vastal04] f is a Hilbert modular form of parallel weight 2 and trivial Neben

typus and character. If the conductor of χK/F and f are disjoint and the S(1) defined in [Vatsal07]

p123 has even number of primes, then picking any v|p we have (NV1) is satisfied for f .

Also Jeanine Van-Order constructed an anti-cyclotomic p-adic L-function Lf,K,1. We state the

following theorem of [VAN]:

Theorem 12.3.4. (Jeanine Van-Order) Suppose the level of f2 is M = M+M− where M+ and

M− are products of split and inert primes respectively. Suppose:

(1) M− is square free with the number of prime factors ≡ d(mod2);

(2)ρ̄f is ramified at all v|M−.

then for any v|p the anti-cyclotomic µ invariant at v defined by her is 0.

In fact in her paper the result is not stated this way. First of all her formula is stated in an

implicit say since she is using [YZZ]. However she informed the author that in our situation it is not

hard to get the above theorem using the special value formula in [Zh04] instead. Note also that her

period is not our canonical period. However the difference of the periods is a p-adic unit under the

second hypothesis above. So we can relate our Σ-primitive anticylotomic L-function to hers similar

to [SU]12.3.5. Thus by the argument in loc.cit the µ invariant of our p-adic L-function is also 0.

Thus (NV2) is OK for f2.

12.4 p-adic Eisenstein series

We state some theorems which are straight generalizations of the section 12.4 of [SU].

Theorem 12.4.1. Assumptions as in theorem 12.3.1 (ii). Let D = (A, I,f , ψ, ξ,Σ) be a p-adic

Eisenstein datum. Suppose that (irred) and (dist) hold. Then for each x = diag(u, tū
−1

) ∈ G(AΣ
F,f )
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there exists a formal q-expansion

ED(x) :=
∑

β∈S(F ),β≥0

cD(β, x)q
β

cD(β, z) ∈ ΛD, with the property that for each ϕ ∈ X genD :

ED,ϕ(x) :=
∑

β∈S(F ),β≥0

ϕ(cD(β, x))e(TrβZ)

is the q expansion at x for
GDϕ
Ωcan

with GDϕ being as in the last chapter.

Remark 12.4.1. There is also a Ẽ version of the above theorem under the hypothesis of theorem

12.3.1 (i). We omit it here.
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Chapter 13

p-adic Properties of Fourier

coefficients of ED

In this chapter, following [SU]chapter 13, using the theta correspondence between different unitary

groups, we prove that certain Fourier coefficients of ED is not divisible by certain hight one prime

P .

13.1 Automorphic forms on some definite unitary groups

13.1.1 generalities

Let β ∈ S2(F ), β > 0. Let Hβ be the unitary group of the pairing determined by β. We write H

for Hβ sometimes for simplicity.

For an open compact subgroup U ⊆ H(AF,f ) and any Z-algebra R we let:

A(U,R) := {f : H(AF )→ R : f(γhku) = f(h), γ ∈ H(F ), k ∈ H(F∞), u ∈ U}.

This is identified with the set of functions f : H(AF,f ) → R such that f(γhu) = f(h) for all

γ ∈ H(F ) and u ∈ U . For any subgroup K ⊆ (AF,f ) let

AH(K;R) := lim−→
U⊇K

AH(U ;R),
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13.1.2 Hecke operators.

Let U,U ′ ⊂ H(AF,f ) be open compact subgroups and let h ∈ H(AF,f ). We define a hecke operator

[UhU ′] : A(U,R)→ AH(U ′;R) by

[U ′hU ]f(x) =
∑

f(xhi), U
′hU = ⊔ihiU.

We will be interested in two cases:

Case 1. The unramified case. Suppose v splits in K. The identification GL2(Kv) = GL2(Fv) ×

GL2(Fv) yields an identification of H(Fv) with GL2(Fv) via projection ont the first factor: H(Fv) =

{(A, β−1tA−1β) ∈ GL2(Kv)}. We let Hv ⊂ H(Fv) be the subgroup identified with GL2(ÔF,v).

For U = HvU
′, U ′ ⊂ H(AvF,f ), we write THv for the Hecke operator [UhvU ], hv :=

ϖv

1

 ∈
GL2(Fv) = H(Fv), where ϖv is a uniformizer at v. (in the unramified case this does not depend on

the choice of ϖv)

Case 2. Hecke operators at p. If v|p, for a positive integer n we let In,v ⊂ Hv be the sub-

group identified with the set of g ∈ GL2(Zp) such that g modulo pn belongs to NB′(Z/pnZp).

For U = InU
′, U ′ ⊂ H(A{v}

F,f ), we write UHv for the Hecke operator [UhpU ]. This operator respects

variation in n and U ′ and commutes with the THv ’s for v - p. Let Up :=
∏
v|p Uv.

13.1.3 The nearly ordinary projector.

Let R be either a p-adic ring or of the form R = R0 ⊗Zp Qp with R0 a p-adic ring. Then for

U =
∏
v|p In,vU

′, U ′ ⊂ H(A{p}
F,f ),

eH := lim−→
m

UH,m!
p ∈ EndR(AH(U ;R))

exists and is an idempotent. By identifying Cp ≃ C, eH is defined on A′
H := limn→∞AH(

∏
v|p In,v).
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13.2 Applications to fourier coefficients

13.2.1 Forms on H × U1

If v splits in K then we view representations of H(Fv) via the respective identifications of these

groups with GL2(Fv) (projection onto the first factor of GL2(Kv) = GL2(Fv) × GL2(Fv)). Let λ

be a character of A×
K/K× such that λ∞(z) = (z/|z|)−2 and λ|A×

F
= 1. Let (π,V),V ⊆ AH , be an

irreducible representation of H(AF,f ) and let (σ,W),W ⊆ A(U1), be an irreducible representation

of U1(AF,f ). Let χπ and χσ be their respective central characters. We assume that:

• χσ = λχπ;

• if v splits in K then σv ≃ πv ⊗ λv,1 as representations of GL2(Fv).

(13.1)

We also assume that we are given:

• a finite set S of primes outside of which λ is unramified

• a finite order character θ of A×
K/K× extending χπ and unramified outside S

(13.2)

Let φ ∈ V ⊗W. We assume that

• if v ̸∈ S then φ(hu, g) = φ(h, g)for u ∈ Hv

• there is a character ε of TU(1,1)(ÔF ) and an ideal N divisible only by primes in S such that

φ(h, gk) = ε(k)φ(h, g)for all k ∈ U1(ÔF ) satisfying N |ck. (k =

ak bk

ck dk

)

(13.3)

Now suppose there is a ε′ on TGL2(ÔF ) which coincides with ε on TSL1(ÔF ) then it makes sense to

define αλθ,ε,ε′φ.

Lemma 13.2.1. Suppose above assumptions are valid, then for any v ̸∈ S that splits in K.

αλθ(θv,1T
H
v φ)(h, u) = Tvαλθ(φ)(h, u),

where θv = (θv,1, θv,2) as a character of K×
v = F×

v × F×
v .

Proof. Same as [SU] lemma 13.2.2.
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Now we consider the p-adic ordinary idempotents eH and e. Suppose additionally that

• cond(θv,1) = (pr).cond(θv,2 = (ps), r > s for any v|p

• pr||N ;

• ϕ((hk, g) = θ−1
p,1θp,2(ak2)θp,1(detk2)φ(h, g) for k = (k1, k2) ∈ Hp, p

r|ck1 .

(13.4)

Lemma 13.2.2. Assumptions all above assumptions. Then

αλθ(eHφ)(h, u) = eαλθ(φ)(h, u).

Her, e is the usual ordinary idempotent action on φ(h,−) ∈M2(N, θ
′).

Proof. Completely the same as [SU]13.2.3.

13.2.2 consequences for fourier coefficients

We return to the notation and setup of chapter 11. In particular D = (φ,ψ, τ,Σ)is a Eisenstein

datum. Letting Θi(h, g) := Θβijk(h, g; ΦD,βijk,ui). From the definition of ΦD,βijk,ui :

• if v - Σ ∪Q, then Θijk(hu, gk) = Θi(h, g) for u ∈ Hijk,v and k ∈ U1(ÔF );

• if v|Σ ∪Q, v - p then Θijk(h, gk) = λ(dk)Θijk(h, g) for k ∈ K1,v(M
2
DdD̃K

∏
q∈Q q);

• if v|p,Θijk(hu, gk) = ξ−1
1 ξ−1

2 (au2)ξ1(detu2)λξ
c(dk)Θi(h, g).

for u = (u1, u2) ∈ Hijk,v with puv |cu2 and k ∈ U1(OF,v) with puv |ck.

(13.5)

Now we decompose each Θijk(h, g) with respect to irreducible automorphic representations πH of

Hijk(AF,f ):

Θijk(h, g) =
∑
πH

φ(ijk)
πH (h, g).

Then, as in [SU] p202, using general consequences of theta correspondences in the split case we may

decompose:

Θijk(h, g) =
∑

(πH ,σ)

φ
(ijk)
(πH ,σ)

(h, g), φ
(ijk)
(πH ,σ)

∈ πH ⊗ σ,

σv ≃ πH,v ⊗ λv,1 as representations of GL2(Fv) for all v splits in K,

and such φ
(ijk)
(πH ,σ)

(h, g) satisfies the assumptions of the last subsection.
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For i ∈ I1, let

CD,ijk(h) := τ̄(deth)CD(βijk, diag(ui,
tūi

−1);h) ∈ AHijk ,

Recall that we have defined A := αξλ
∑
ijk A

′
βijk

.

Proposition 13.2.1. Let L = {v1, v2, · · · , vm} be a set of primes that split in K and do not belong

to
∑
∪ Q. Let P ∈ C[X1, ..., Xm]. Let PHi := P (ξv1,1(ϖv1)T

Hi
v1 , · · · , ξvm,1(ϖvm)T

Hi
vm ) and P1 :=

P (Tv1 , · · · , Tvm). Then:

∑
ijk eHiPHijkCD,ijk(h)BD(βi, h, ui)

−1.2uF [O×
K : O×

F ]

2−3d(2i)d(k+1)S(f) < f, ρ(

 N

−1

)fc >

= τ̄(deth)

< ED · ρ(

1

d

)eP1, ρ(

 −1

M2
DD̃Kd

∏
v|p

 −1

prv

)fc >GL2

< f, ρ(

 −1

M

∏
v|p

 −1

prv


f

)fc >GL2

Proof. Same as [SU]13.2.4. and 13.2.5. Observe that ρ(

1

d

) commutes with eP1.

13.3 p-adic properties of fourier coefficients

In this section we put the operations above in p-adic families. Let D = (A, I,f , ψ, ξ,
∑

) be a p-adic

Eisenstein datum as in the last chapter. Let ED ∈ Ma,ord(K
′
D,ΛD) be as there. For x ∈ G(AF,f )

with x ∈ Q(OF,p) we let cD(β, x) ∈ ΛD be the β-fourier coefficient of ED at x. So for ϕ ∈ X aD,

cD,ϕ(β, x);= ϕ(cD(β, x)) is the β-fourier expansion at x of a holomorphic hermitian modular form

ED,ϕ(Z, x) Define

φD,β,x,ϕ(h) := χfψ
−1
ϕ ξϕ(deth)cD,ϕ(β,

h
t̄h−1

x)
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This belongs to AHβ (ϕ(ΛD)) when restricted to Hβ(AF,f ). As in [SU]13.3.1, recall that βijk =bj
qibk

 and ui = γ0

1

a−1
i

. For h ∈ GL2(AK,f ) with hp ∈ GL2(OK,p) let

φD,ijk := 2uF [O×
K : O×

F ]χfψ
−1ξ−1(deth)cD(βijk,

huid−1
1

t̄h−1tūid̄1

)BD(βijk, h, ui)
−1 ∈ ΛD.

(Note that by our choices BD(βijk, h, ui)
−1 moves as a unit in ΛD.)

and for ϕ ∈ X aD and h ∈ GL2(AK,f ) let

φD,ijk,ϕ(h) := φD,βijk,diag(uid−1
1 ,ūti

−1
d̄1),ϕ

(h).

If hp ∈ GL2(OK,p), then ϕ(φD,ijk,ϕ(h) = φD,ijk,ϕ(h). Now we have the following lemma interpolating

the Hecke operators, completely as in [SU]13.3.2.

Lemma 13.3.1. Let L := {v1, · · · , vm} be a finite set of prime that split in K and do not belong to

Σ ∪Q. Let P ∈ ΛD[X1, · · · , Xm]. For h ∈ Hi(AF,f ) with hp ∈ Hi,p, there exists φD,i(L, P ;h) ∈ ΛD

such that:

(a) for all ϕ ∈ X aD,

ϕ(φD,ijk(L, P ;h)) = Pϕ(ξϕ,v1,1(φv1)T
Hijk
v1 , · · · , ξϕ,vm,1(φvm)T

Hijk
vm )eHijkφD,ijk,ϕ(h),

where Pϕ is the polynomial obtained by applying ϕ to the coefficients of P .

(b) if M ⊆ ΛD is a closed ΛD-submodule and φD,ijk(h) ∈ M for all h with hp ∈ Hi,p, then

φD,ijk(L, P ;h) ∈M .

Observe that the neben typus of αξλ(A) at v|p are given by:

ε′(

av
dv

)→ µ1,v(av)µ2,v(dv)τ
−1
1,v τ

−1
2,v (dv).

for any av, dv ∈ O×
Fv
. From the definition of the theta functions (q-expansion) we know that αξλ(A)

is a ΛD adic form. Also for each arithmetic weight ϕwe consider the resulting form at ϕ is a form of

parallel weight 2 and neben-typus at v|p only depend on ϕ|R+.

Now let g ∈Mord(M2
DD̃K, 1; ΛW,A) be a Hida family of forms which are new at primes not dividing
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p and such that g ⊗ χK = g. Suppose also that the localization of the Hecke algebra at the

maximal ideal corresponding the g is Gorenstein so that ℓg makes sense. Now following the remark

of [SU] before 13.3.4, one can change the weight homomorphism and view g as an element of

Mord(M2
DD̃K, 1;R

+) such that at any ϕ we consider it is a normalized nearly ordinary form of

parallel weight 2 and neben-typus at v|p the same as αξλ(A). Also as in loc.cit one can find a

polynomial of the Hecke actions Pg := P (Tv1 , ..., Tvm) ∈ Tord(M2
DD̃K, 1;R

+) such that Pg = agℓg

with 0 ̸= ag ∈ R+.

With these preparations we can prove the following proposition in the same way as [SU]13.3.4.

Proposition 13.3.1. Under the above hypotheses,

∑
i,j,k

φD,ijk(L, Pg; 1) = AD,gBD,g.

with AD,g ∈ I[[Γ+
K]] and BD,g ∈ I[[ΓK]] such that for all ϕ ∈ X ′

D:

ϕ(AD,g) = |δ̃Kd̄1|
κ
2 −1

K ξ(δ̃Kd̄1)ϕ(ag)ηfϕ

<BD,1EDϕρ(

1
d

)gϕ,ρ(

 −1

M2
DD̃K

∏
v|p

 −1

prv,ϕ

)fcϕ>GL2

<fϕ,ρ(

 −1

M

∏
v|p

 −1

prv,ϕ

)fcϕ>GL2

and for ϕ ∈ X a,

ϕ(BD,g) = ηgϕ

< BD,2αξλ(
∑
ijk ΘD,βijk ⊗ ξ)ϕ, ρ(

 −1

M2
DD̃K

∏
v|p

 −1

prv,ϕ

)gcϕ >GL2

< gϕ, ρ(

 −1

M2
DD̃K

∏
v|p

 −1

prv,ϕ

)gcϕ >GL2

.

Furthermore, AD,g ̸= 0.

Definition 13.3.1. Suppose we have a Hida family f of ordinary Hilbert modular forms and K is

a CM extension of F as before. Let f2 be the element in f of parallel weight 2 and trivial character.

We also denote ϕ0 to be the point on the weight space corresponding to the special L-value L(f2, 1).

Now we prove the following key proposition:
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Proposition 13.3.2. Let A be the integer ring of a finite extension of Qp, I a domain and a fi-

nite ΛW,A-algebra, and f ∈ Mord(M,1; I) an I-adic newform such that (irred) and (dist) hold.

There is a Σ and a p-adic Eisenstein datum D such that contains an odd prime not dividing p

that splits completely in K/Q. There exists an integer MD as before and divisible by all primes

dividing Σ such that the following hold for the associated ΛD-adic Eisenstein series ED and the set

CD = {cD(βi, x); i ∈ I0, x ∈ G(AF,f ) ∩Q(Fp)} of fourier coefficients of ED.

(i) If R ⊆ ΛD is any height-one prime containing CD, then R = PΛD for some height-one prime

P ⊂ I[[Γ+
K]].

(ii) if f satisfies (NV2) then there are no height-one primes of ΛD containing LΣ
f ,K,1 and CD. If f

satisfies (NV1), then there are no height-one primes passing through ϕ0 containing LΣ
f,K,1 and CD.

Proof. we give a brief summary of the proof following [SU]13.4.1 closely.

As in loc.cit, we only need to find an MD so that there is an g with BD,g is a p-adic unit.

First we find an idele class character θ of A×
K such that:

• θ∞(z) =
∏
v∈Σ

z−1
v ;

• θ|A×
F
= | · |FχK/F ;

• Nm(fθ) =M2
θ for some Mθ ∈ F× prime to p and such that DKM |Mθ

and v|Mθ for all v ∈ Σ \ {p};

• for some v|D̃K, the anticyclotomic part of θ|×OK,q
has order divisible by qv.

• Ω−Σ
∞ L(1, θ) is a p-adic unit, where Ω∞ is the CM period defined in [HAnti];

• θv,2(p)− 1 is a p-adic unit for any v|p.

• ψ has order prime to p.

• the local character ψ is nontrivial over K×
P for all P ∈ Σp

• the restriction of ψ to Gal(F̄ /K[
√
p∗]) is nontrivial.

Here ψ is the ”torsion part” (as defined in [Hida05]) of the anticyclotomic part of θa := θc/θ, p∗ is

(−1)(p−1)/2p.

The existence is proven in a similar way as in [SU] 13.4.1, using the main theorem of [Hsieh11]

instead of [Fi06]. (The result in [Hsieh11] is not stated in the generality we need since he put a
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condition (C) there requiring that the non split part of the CM character is square free. But M-L

Hsieh informed the author that, as mentioned in that paper, this condition is removed later.) Now

using the main result of [Hida 06] and [Hida09], (we thank Hida for informing us his results in

loc.cit). under the last three conditions above, we have

ηgθ |
(gθ, gθ)

Ω2Σ
∞

Thus

L(1, θ)2/Ωcan|L(1, θ)2/Ω2Σ
∞ (13.6)

where Ωcan is the canonical period associated to gθ.

If gθ is the CM newform associated with θ. It has parallel weight 2, level M2
θ D̃K, and trivial

neben character. Similarly as in [SU] p210, we see that it satisfies (irred) and (dist). Let g ∈

Mord(M2
θ D̃K,1;R

+) be the ordinary CM newform associated with θ. (this is constructed in [Hida-

Tilouine]p133-134. one need to first construct the automorphic representation generated by some

theta series and then pick up the nearly ordinary vector inside that representation space.) The

Gorenstein properties are also true as remarked by [Hida06]. Recall that we have defined A :=

αξλ(
∑
i,j,kΘβijk ⊗ ξ). Now we evaluate BD,g at the ϕ which restricts trivially to Wi,v’s and ΓK. In

this case the argument in [SU] 11.9.3 gives that:

αξλ(A)ϕ = (BD,4)ϕE
′(χK)ρ(

 −1

MD

)E′(χK)

where (BD,4)ϕ = |M2
D|

−1
F |δK|K23di−2d|δK|

1
2

K which is a p-adic unit. Here E′ =
∏
v|p(1−p

1
2 (ρ(

1

p


v

))E(χK)

for E(χK) being the weight 1 Eisenstein series whose L-function is L(F, s).L(F, χK, s). We write

h = E′(χK)ρ(

 −1

MD

)E′(χK)

Then the argument in [SU]13.4.1 tells us that:

< h, ρ(
∏
v|p

 −1

p


v

 −1

MDD̃K

)gc >=
±|D̃K|F

∏
v|p θv,2(p)

−2

id(−2πi)2dg(χK)
L(1, θ)2

∏
v|p

(1− θv,2(p))3
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Thus

ϕ(BD,g) =
±|D̃K|F

∏
v|p θv,2(p)

−2

id(−2πi)2dg(χK)Ωcan
L(1, θ)2

∏
v|p

(1− θv,2(p))3.

By definition ϕ(BD,g) is p-integral. But as noted before, L(1,θ)2

Ωcan
divides a p-adic unit, thus itself

must also be a p-adic unit. Therefore, BD,g is a unit. This proves (i). (ii) is just an easy consequence

of (i).
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Chapter 14

Construction of the cuspidal family

In this chapter we construct a ΛD-adic cusp form which is prime to the p-adic L-function by explicitly

writing down some ΛD-adic forms with the same boundary restriction as the Klingen Eisenstein

family constructed before.

14.1 Certain Eisenstein series on GU(2,2)

14.1.1 Siegel Eisenstein Series

In this chapter we use P instead of P to denote the Klingen parabolic and save the letter P for

the height one prime. Consider the p-adic family of CM characters of K×\A×
K. In the component

containing the trivial character, there is one element τκ0 which is unramified everywhere and has

infinite types (κ0

2 ,−
κ0

2 ) at all infinite places for some κ > 6 divisible by (p − 1). Define a Siegel

Eisenstein series Eκ0 on GU(2, 2) by choosing the local sections as follows: Let f†v be the section

supported on Qw2KQ(ϖv) and equals 1 on KQ(ϖv). (Here KQ(ϖv) means matrices with v-integral

entries that belong to Q(OF,v) modulo ϖv.) If v|p Let

f ′v(g) =

 τ0(detD1)|AqD−1
q |s if g = qw13k ∈ Qw13KQ(ϖv)

0 otherwise
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where w13 =



1

1

−1

1


.

We define fv = fκ0 for v|∞, fv = f†v for v ∈ Σ, v - p, and fv = f ′v for v|p. Now we want to compute

the constant terms of Eκ0 along P at g as an automorphic form on MP = {m(a, x)}.

Now we compute the constant term of Eκ0 along the Klingen parabolic subgroup P. First note

that

G(F ) = Q(F )P(F ) ⊔Q(F )w2P(F ).

thus

Eκ0(g) =
∑

γ∈Q(F )\G(F )

f(γg)

=
∑

γ∈Q(F )\Q(F )P(F )

f(γg) +
∑

γ∈Q(F )\(F )w2P(F )

f(γg)

Suppose the above summation is in the absolute convergent region.

Eκ0,P(z, g) =

∫
NP(F )\NP(Af )

Eκ0(ng)dn

=

∫
NP(F )\NP(AF )

∑
γ∈Q(F )\Q(F )P(F )

fz(γng)dn

+

∫
NP(F )\NP(AF )

∑
γ∈Q(F )\Q(F )w2P(F )

fz(γng)dn

= I1 + I2

we claim that I2(g) = 0. By [MW] we have

I2(g) =
∑

m′∈MP(F )∩w−1Q(F )w−1\MP(F )

∫
NP(F )\NP(AF )

∑
n′∈NP(F )∩m′−1w−1Q(F )wm′

fz(wm
′n′ng)dn

=
∑
m′

∫
NP(F )∩w−1Q(F )w\NP(AF )

fz(wnm
′g)dn

=
∑
m′

∫
N1(F )\(AF )

∫
N1(AF )\NP(A)

fz(wnm
′g)dn

=
∑
m′

∫
N2(AF )

fz(wnm
′g)dn
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For any g0 such that g0,∞ is of the form

y
ȳt

, I2(gg0) as a function of g is an automorphic

form on MP, in order to prove this is zero, we show that all the Fourier coefficients of I2 along the

unipotent group



1 ×

1

1

1


are zero. But this is nothing but

∫
NQ(AF )

fz(w

1 S

1

 g0)e(−trβS)dS

for β =

n 0

0 0

, which we have proven to be 0 at z = zκ = κ−2
2 for all g0 with the required ∞

part.

Next we consider I1. We define a Siegel Eisenstein series E1
κ0

on GU(1, 1) by chossing the local

sections by fv = f†v for v finite and fv = fκ0 for v|∞. Then it is easy to see that if g is such that:

gv ∈


Kv if v|p

w2Kv if v - p,∞

1 if v|∞

(Here Kv are the level groups for some Klingen Eisenstein series we constructed before at some

weight ϕ.) One can check that I is

E1
κ0
(a

∏
v-p,∞

 1

−1


v

)

14.2 Hecke operators

In this section we study the relations between the GU(2, 2) and GU(1, 1) Hecke operators via the

restriction to the boundary. For any automorphic form F on G(AF ) and some g0 ∈ G(AF ) we

consider FP as an automorphic form on GU(1, 1): the value at g′ ∈ GU(1, 1)(AF ) is given by

FP(m(g′, 1)g0).
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14.2.1 unramified cases

Suppose v is a place unramified in K/F .

split case

if v splits in K/F , then U(OFv ) ≃ GL4(OFv ). We write τv = (τ1, τ2) and τ0,v = (τ◦1 , τ
◦
2 ) with respect

to Kv = Fv × Fv. Recall in this cse we have defined

dv := diag((ϖv, 1), 1, (1, ϖ
−1
v ), 1).

via projection onto the first component, t
(1)
2 =



ϖv

1

1

1


and B(Fv) is identified with the

matrices



× × ×

× × × ×

× ×

×


. Let K be identified with G(OFv )

Kt
(1)
2 K = ⊔n1id1K ⊔ n2jd2K ⊔ n3kd3K ⊔ d4K

where n1i goes through



1 × ×

1

1

1


, n2j goes through



1

× 1 × ×

1

1


n3k goes through



1

1

1 ×

1


, and d1, d2, d3, d4 are



ϖv

1

1

1


,



1

ϖv

1

1


,



1

1

ϖv

1


,



1

1

1

ϖv


respectively. If g = m(g′, 1) for some g′ ∈ U(1, 1), then

Eϕ,P(gn2jd2) =Eϕ,P(gd2)

=Eϕ,P(g)τ
−1
2 (ϖv).
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Eϕ,P(gd4) = Eϕ,P(g)τ1(ϖv)

Eκ0,P(gn2jd2) = Eκ0,P(g, d2) = (τ◦2 )
−1(ϖv)

Eκ0,P(gd4) = τ◦1 (ϖv)Eκ0,P(g).

thus one sees:

Lemma 14.2.1. For g such that gv = m(g1,v, 1) for some g1,v ∈ U(1, 1)(Fv) we have:

(Tv(t
(1)
2 )(Eϕ · Eκ0))P(g)

= (q3v(τ
−1
2 (ϖv) · (τ◦2 )−1(ϖv)) + τ1τ

◦
1 (ϖv))(Eϕ · Eκ0)P(g)

+ qvTv(

ϖv

1

)((Eϕ · Eκ0
)P)(g)

where Tv(

ϖv

1

) is as a Hecke action on GU(1, 1) and we consider (Eϕ ·Eκ0)P as an automor-

phic form on U(1, 1) using g0 by the remark at the beginning of this section.

unramified inertial case

Suppose v is inertial in K/F and take K to be G(OFv ), define: dv =



ϖv

ϖv

1

1


. Then:

KdvK = ⊔in1id1K ⊔ n2jd2K ⊔k n3kd3K ⊔ {d4}K

where

d1 =



ϖv

ϖv

1

1


, d2 =



1

ϖv

ϖv

1


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d3 =



ϖv

1

1

ϖv


, d4 =



1

1

ϖv

ϖv



where n1i runs over matrices of the form



1 × ×

1 × ×

1

1


, n2j over



1

× 1 ×

1 ×

1


, n3k over



1 ×

1

1

1


. As in the split case (actually even simpler), we see that

Lemma 14.2.2. For g such that gv = m(g1,v, 1) for some g1,v ∈ U(1, 1)(Fv):

(Tdv · (Eϕ · Ek0))P(g) = (q3v + 1)Tϖv

1


((Eϕ · Ek0)P)(g)

where Tv(

ϖv

1

) is the Hecke action on GU(1, 1).

p− case: v|p.

Suppose d = dv = (



p3

p2

1

p


, 1) we study (Tdv (Eϕ · Eκ0))P(g). Using the decomposition

KdK = ⊔nidK where ni running over



1 x

1

1

−x̄ 1





1 α β

1 β̄ γ

1

1


where x, α, β, γ runs over congruence classes modulo: Ov/(p, p), Zv/p3,Ov/(p2, p2),Zv/p respec-

tively.

165



First notice that if x ̸= 0, Eϕ,P(gnid) = 0, so we may ignore such terms while summing up,so

(Tdv (Eϕ · Eκ0))P(g)

=
∑
α,β,γ

Eϕ,P(gnid)Eκ0,P(gnid)

Observe that for all choices of β, γ, the above expression does not change. Therefore the sum-

mation is essentially only over α’s.

If g = m(g1, 1) for some g1 ∈ U(1, 1) then an easy computation taking into account Hida’s

normalization factors for U(2, 2) and U(1, 1) gives:

(Udv (Eϕ.Eκ0))P(g) = p−
3
2 (κϕ+κ0)τϕ,v((p, p

−2))τκ0,v((p, p
−2))Up3((Eϕ.Eκ0)P)(g).

Here Up3 is the U(1, 1) normalized Hecke operator associated to (

p3
1

 , 1).

Recall if we define U
(2,2)
p :=

∏
v|p Udv , then e

ord
U(2,2) = limn U

n!
p .

The above calculation told us that

Lemma 14.2.3. For g such that gv = m(g1,v, 1) for some g1,v ∈ U(1, 1)(Fv), then:

(eord(2,2)(Ẽϕ · Eκ0))P(g) = eord(1,1)((Ẽϕ · Eκ0)P)(g)

14.2.2 construction of the family

Now we define an automorphism γ : ΛW → ΛW such that for any arithmetic weight ϕ , γ ◦ ϕ is

an arithmetic weight with the same neben typus at p but κγ◦ϕ = κϕ + κ0. The formula is given

by: (γ(1 +W1,v) = (1 +W1,v), γ(1 +W2,v) = (1 +W2,v)(1 + p)κ0 . Then we consider I ⊗γ I. We

choose a reduced irreducible component J′ whose spectrum maps surjectively onto SpecΛW . Then

it is easy to see that both I’s inject to J′. We define J to be the normalization of J′. (Intuitively J

is parameterizing pairs of forms with weight κϕ and κγ◦ϕ). We write j1 : I → J and j2 : I → J for

the two embeddings. We have j2 ◦ γ = j1. We also define an automorphism ΛD → ΛD which we

again denote as γ such that the Eisenstein date we get by ϕ and ϕ ◦ γ have the same ”finite order

part” and κϕ◦γ = κϕ−κ0. If we denote ΛD,J then both j1(ED) and j2(ED.Eκ0) are ΛD,J-adic forms.

Considering f as a J-adic Hida family.

Let Pf := Pf (Tv1 , · · · , Tvm) be a polynomial in J(X1, · · · , Xm) such that Pf = afℓf for some
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0 ̸= af ∈ J. We define a ΛD-coefficient formal q-expansion:

E◦ := (Pf (T̃v1,dv1 , · · · , T̃vm,dvm )eordU(2,2)(E · j2(Eκ0)))

where

T̃v(dv) :=


( 1
qv
(Tv(dv)− q3v(¯̃τ2)(ϖv) · τ̄◦2 (ϖv))− τ̃1τ◦1 (ϖv))Ψ2,v(ϖv) if v splits in K/F

1
q3v+1Tv(dv) if v is inertial in K/F

Here dv’s are defined as before and Ψ2,v is to take care of the difference between Hecke eigenvalues

between U(1, 1) and GL2. We should justify the operator eordU(2,2) acting on ΛD,J-adic forms. This

could be done in the same way as [SU]12.2.4 (i).

We have already computed that if g is such that gv = 1 for v|p and gv = w for v - p, v ∈ Σ and

gv = 1 for v|∞ then the constant term j1(ED)P at g is given by j1(LΣ
χξ̄′
LΣ
D)(π(

∏
v-p,∞

 1

−1


v

f).

Therefore the constant terms j2(ED.Eκ0
)P at g is given by:

j2(LΣ
χξ̄′L

Σ
D)(π(

∏
v-p,∞

 1

−1


v

f)E1
κ0
(a

∏
v-p,∞

 1

−1


v

).

Now we consider a 1-dimensional subspace of ΛD defined by the closure of the arithmetic ϕ’s such

that ξϕ is trivial and fϕ has trivial neben typus at p. Observe that j1(LΣ
D) is not identically 0 along

this family by the interpolation properties and the temperedness of fϕ. (recall also that we do not

know a priory that these points are interpolations points. But by comparing with Hida we know

that his and our constructions coincide along a subfamily containing the 1-dimensional family above

and we can use Hida’s interpolation formula.) So we can choose κ0 properly so that j2(LΣ
D) does

not pass through ϕ0. (only need to avoid a finite number of points). (Note that j2(LΣ
D) does not

interpolate any classical L-values since the weight is 2−κ0.) Let P be any height one prime of ΛD,J

passing through ϕ0 then P is prime to j2(LΣ
D).
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Sum up, for
∏
v gv = g, if:

gv ∈



P(Fv)Kv. v|p

P(Fv)wKv, v ∈ Σ \ {v|p}.

Q(Fv), v|∞

1, otherwise

then there is an a ∈ J satisfying:

(j1(LΣ
DLΣ

χξ̄′
E◦))ϕ,P = (a · af)ϕ(j2(LΣ

DLΣ
χξ̄′

E))ϕ,P(g)

and aϕ = ηfϕ

<fϕ◦γ−1 ·E1
κ0
,ρ(

 −1

M

∏
v|p

 −1

prϕ

)fcϕ>

<fϕ◦γ−1 ,ρ(

 −1

M

∏
v|p

 −1

prϕ

)fcϕ>

In the case when κϕ >> κ0 our previous

computations on Rankin-Selberg convolutions told us that aϕ ̸= 0 by the temperedness of fϕ◦γ−1

and ρ(

 −1

M

∏
v|p

 −1

prϕ

)fϕ.

Theorem 14.2.1. There is a ΛD,J-coefficients formal q expansion F, such that:

(i) for a Zarisi dense set of arithmetic points ϕ, Fϕ is an ordinary cusp form on GU(2, 2)(AF ).

(ii) F ≡ aafj2(LΣ
DLΣ

χξ̄′
)ED(modj1(LΣ

DLΣ
χξ̄′

)) for some 0 ̸= aaf ∈ J(Γ+).

(iii) for any height 1 prime P of ΛD containing j1(LΣ
D) passing through ϕ0 which is not a pull back

of a height 1 primes prime of J[[Γ+
K]], there is a coefficient of F outside P .

Proof. Taking F := j1(LΣ
DLΣ

χξ̄′
)E◦ − aafj2(LΣ

DLΣ
χξ̄′

)ED.
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