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Abstract

In this paper we prove an anticyclotomic Iwasawa main conjecture proposed by Perrin-
Riou for Heegner points when the global sign is −1, using a recent work of the author on one
divisibility of Iwasawa-Greenberg main conjecture for Rankin-Selberg p-adic L-functions. As a
byproduct we also prove the equality for the above mentioned main conjecture under some local
conditions, and an improvement of C.Skinner’s result on a converse of Gross-Zagier-Kolyvagin
theorem.

1 Introduction

Let p ≥ 5 be an odd prime. Let E be an elliptic curve over Q with square free conductor N . Let
T be the p-adic Tate-module of E and V = T ⊗Zp Qp. Suppose E has good ordinary reduction at
p. Let K be a quadratic imaginary field where p and 2 are split (that 2 being split is put in [20]
due to lack of knowledge of Howe duality in characteristic 2. Seems recent preprint of Wee Teck
Gan solved this issue). Let GK and GQ be the absolute Galois group of K and Q. Suppose that the
representation T |GK contains GL2(Zp) (This is needed for the Euler system argument). Consider
either of the following assumptions:

(1) there is at least one prime q|N non-split in K and that the global root number of E over K is
−1;

(2) for each q|N either q is split in K, or q is ramified and E has non-split multiplicative reduction
at q, and suppose we have at least one such ramified prime. This implies that the root number
of E over K is −1.

We fix ιp : C ' Cp and let v be the prime of K above p determined by ιp. Let v̄ be its conjugation.
It is well known that there is a Galois stable 1-dimensional subspace V + ⊂ V such that the Galois
action of Gp on V + is given by the cyclotomic character twisted by an unramified character. Let
V − = V/V +, T+ = V + ∩ T , T− = T/T+. By Taniyama-Shimura conjecture [23] we know that E
is associated to a weight 2 cuspidal eigenform with the automorphic representation π = πf .

Let K∞ be the unique Z2
p-extension of K unramified outside p. The complex conjugation c acts

on Γ := Gal(K∞/K). We let Γ± be the 1-dimensional Zp-space on which c-acts as ±1. Let K±∞
be the Zp-extension of K such that Gal(K±∞/K) = Γ±. Take topological generators γ± of Γ±.
We let Kk be the unique subextension of K−∞ with Gal(Kk/K) ' Z/pkZ. Define ΛK := Zp[[ΓK]],
Λ = Λ− = Zp[[Γ−K]]. This Λ ' Zp[[W ]] by the Zp-map sending γ− to W + 1. Let ΨK be the
composition GK � ΓK ↪→ Λ×K and Ψ : GK � Γ−K ↪→ Λ×. Let ε : K×\A×K → Λ×K be the composition
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of ΨK with the reciprocity map of class field theory (normalized by the geometric Frobenius). Let
T be the Λ-adic Galois representation T ⊗Zp Λ(Ψ). Here Λ(Ψ) means the Λ-adic character with
Galois action given by Ψ. We define an involution ι : Λ ' Λ to be the Zp-morphism sending
(1 + W ) to (1 + W )−1. We define Λ∗K = HomZp(ΛK,Qp/Zp) and Λ∗ = HomZp(Λ,Qp/Zp). Define
A := T ⊗Zp Qp/Zp and A := T ⊗ Λ(−Ψ)⊗Λ Λ∗ (convention is slightly different from Howard’s).

Selmer Conditions:
We define some Selmer conditions (F ,Fv,Fv̄, v, v̄, str) for various Galois representations T , T, A,
etc (we write T for example in the following). Let:

(F)w =

{
ker{H1(Kw, T )→ H1(Iw, T )}, w - p
ker{H1(Kw, T )→ H1(Kw, T

−)} w|p

(Fv)w =

{
Fw, w 6= v̄
0 w = v̄

(Fv̄)w =

{
Fw, w 6= v
0 w = v

(v)w =


Fw, w - p
0 w = v̄
H1(Kw,−) w = v

(v̄)w =


Fw, w - p
0 w = v
H1(Kw,−) w = v̄

(str)w =

{
Fw, w - p
0 w|p

We define the local Selmer condition F ′ by replacing the w|p local conditions for F by ker{H1(Kw, T )→
H1(Iw, T

−)}. We also define the local Selmer condition v′ by replacing the local condition at v̄ by
ker{H1(Kv̄, T )→ H1(Iv̄, T

−)}. We define v̄′ similarly.
We define the corresponding Selmer groups H1

F (K,−) to be the inverse image in H1(K,−) of∏
w Fw under the localization map and X := H1

F (K,A)∗. We also define Selmer groups for other
Selmer conditions in a similar way.

1.1 Perrin-Riou’s Conjecture

Let Φ : X0(N) → E be a modular parameterization given by [23]. Let K[n] be the ring class field
of K of conductor n. In [10] he constructed a Kolyvagin system {κHgn }n with n running over a set
of square-free products of degree two primes in K and κHg1 ∈ H1(K,T). We also adopt Howard’s
notation that κ1 being the image of κHg1 in H1(K, T ). These depend on the choice of Φ. We refer
to [10] for the definition of a Kolyvagin system. He proved the following theorem:

Theorem 1.1. H1
F (K,T) is a torsion-free rank one Λ-module. Write char for characteristic ideal.

Then there is a torsion Λ-module M such that char(M) = char(M)ι and a pseudo-isomorphism:

X ∼ Λ⊕M ⊕M.

Also, under assumption (1) we have char(M) ⊇ char(H1
F (K,T)/ΛκHg1 ).
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Howard proved it under the assumption that all primes of N are split in K. However we will see
in the next section that it is true under our assumptions as well. The first main result of our paper
is the following.

Theorem 1.2. If assumption (2) is true then

charΛ(M) = charΛ(H1
F (K,T)/ΛκHg1 ).

If assumption (1) is true then the above equality holds as ideals of Λ⊗Zp Qp.

The Theorem is proved by comparing different Selmer groups using Poitou-Tate exact sequences.
The key ingredient is the two-variable main conjecture for v-Selmer groups recently proved by the
author [20]. We mention that we can not resort to the two-variable main conjecture in [19] since the
global sign is assumed to the +1 there. In fact our theorem can be interpreted as a Gross-Zagier
theoretic Iwasawa main conjecture: [11] proved a formula relating the right hand side with the
quotient of the derivative of a two variable p-adic L-function and some Λ-adic regulator R. Thus
our theorem simply states that the torsion part of the Selmer group is given by the derivatives of
the p-adic L-function over R. We also mention that this result can be proven under a different
assumption (basically assuming some local Galois representations being ramified) by using the idea
of W.Zhang [24] combined with results of Howard [12].

Remark 1.3. In general there should be a Manin constant showing up in the above identity. However
by our assumption of square-free conductor and assumption (2) such Manin constant is prime to
p. There should also be a product of local Tamagawa numbers which is again a p-adic unit under
assumption (2). In general the Kolyvagin system argument does not give the sharp upper bound.
We will treat these gaps in a future joint work with D. Jetchev and C.Skinner.

The idea in this paper is actually the first case of a much more general strategy for Iwasawa
theory that we will carry out: one uses special cycles (as Heegner points in this paper) to build a
link among different kinds of main conjectures and thus reduce some more difficult conjectures to a
relatively accessible one. We have already seen such strategy to work in other cases: in [21] we again
use Heegner points but in the supersingular case to prove that the torsion part of the ±-Selmer
group is the square of divisibility of the ±-Heegner points. In [22] we use Beilinson-Flach elements
as special cycles to prove Kobayashi’s cyclotomic main conjecture for supersingular elliptic curves.
Such results were previously out of reach by known techniques.

1.2 Iwasawa Main Conjecture

We also prove a theorem about full equality in the 2-variable Iwasawa main conjecture as a byprod-
uct. First we recall here the main result of [20]. As in loc.cit there is a p-adic L-function
Lf,K ∈ FracΛK, such that for a Zariski dense set of arithmetic points φ ∈ SpecΛK such that
φ ◦ ε is the p-adic avatar of a Hecke character ξφ of K×\A×K of infinite type (κ2 ,−

κ
2 ) for some κ ≥ 6,

of conductor (pt, pt) (t > 0) at p, then:

φ(Lf,K) =
p(κ−3)tξ2

1,pχ
−1
1,pχ

−1
2,p(p

−t)g(ξ1,pχ
−1
1,p)g(ξ1,pχ

−1
2,p)L(K, f, ξφ, κ2 )(κ− 1)!(κ− 2)!

(2πi)2κ−1Ω2κ
∞

.

Here g is the Gauss sum and χ1,p, χ2,p are characters such that π(χ1,p, χ2,p) ' πf,p. This p-adic
L-function is obtained by putting back the Euler factors to a Σ-primitive p-adic L-function in Λ.
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So a priory we do not know if this p-adic L-function is in ΛK. However we will prove it is the case
under the assumptions (2). (This should be true in general by the forthcoming work of Eischen-
Harris-Li-Skinner which made careful choices at all ramified primes. However we do not need this).

On the arithmetic side the local Selmer condition in [20] is the v′-one defined here. We make some
remarks about the slight difference between the Selmer condition v and v′ above, We have the
Hochschild-Serre spectral sequence:

0→ H1(Gv̄/Iv̄,A
Iv̄)→ H1(Kv̄,A)→ H1(Iv̄,A)Gv̄

we have 0→ H1
v̄ (Kv̄,A)→ H1

v̄′(Kv̄,A)→ H1(Gv̄/Iv̄,A
Iv̄) where the last term is of finite cardinal-

ity. This implies that ordP (H1
v̄ (K,A)∗) = ordP (H1

v̄ (K,A, v̄′)∗) for all height one primes P of Λ.

The two variable main conjecture states that:

charΛK(Xf,K,v) = (Lf,K)

Where Xf,K,v := H1
v (K, T ⊗ ΛK(ΨK)⊗ΛK Λ∗K)∗. The following is the part (ii) of the main theorem

of [20].

Theorem 1.4. Under assumption (1) we have one containment

charΛK⊗Qp(Xf,K,v) ⊆ (Lf,K)

as fractional ideals of ΛK.

Remark 1.5. In loc.cit there is a CM character ξ of K×\A×K showing up. In fact the assumption
on ξ in that part (ii) there exactly means some specialization of the p-adic L-functions gives the
“special value L(K, f, 1)” but this is not an interpolation point since here the CM form is a weight
one Eisenstein series which has weight less than f .

Our second main theorem is the following

Theorem 1.6. Then under assumption (2) we have Lf,K ∈ ΛK. Moreover: Xf,K is ΛK-torsion and

charΛK(Xf,K) = (Lf,K).

1.3 Converse of Gross-Zagier-Kolyvagin Theorem

Finally we prove the following result which is a stronger form of the result of C.Skinner in [18],
which has been used as an important ingredient to prove that a majority of elliptic curves satisfy
the BSD conjecture.

Theorem 1.7. Let E/Q be an elliptic curve with square-free conductor N and good ordinary re-
duction at p. Let K be an imaginary quadratic field such that p splits and E[p]|GK is irreducible.
Suppose the assumption (1) is true. If the Selmer group H1

F (K, E[p∞]) has corank one. Then the
Heegner point κ1 is not torsion and thus the vanishing order of LK(f, 1) is exactly one.

Remark 1.8. Here by arguing Iwasawa theoretically we can remove the assumption put in [18] that
certain localization map at p is injective. In fact such injectivity has been replaced by a Λ-adic one,
which is automatically true by the non-triviality of the family of Heegner points.

One may also deduce some results over Q by choosing the K properly as in [18]. We omit the
details.

4



2 Known Results

2.1 Ben Howard’s Result

In [10] Howard constructed a Kolyvagin system κHg1 ∈ H1(K,T), and proved the following theorem
under a different assumption.

Theorem 2.1. H1
F (K,T) is a torsion free rank one Λ-module. There is a torsion Λ-module M

such that char(M) = char(M)ι and a pseudo-isomorphism:

X ∼ Λ⊕M ⊕M.

Also, char(M)|char(H1
F (K,T)/ΛκHg1 ).

Proof. This is essentially [10, theorem 2.2.10] except that we did not assume that all primes dividing
N are split in K. However our local condition is enough to construct the Heegner points. We refer
to [5] for the construction of the Heegner points κHg1 in the more general case. In [10] Howard used
a result of Cornut [4] that the image of certain Heegner point under the trace map of the Galois
group G0 := Gal(K[p∞]/H∞) on the elliptic curve E is non-torsion (here K[p∞] is the ring class
field of K with conductor p∞ and H∞ is the unique anti-cyclotomic Zp-extension of K). Cornut
assumed that all prime factors of N splits in K. The general case is treated in [5] (see Theorem 1.5
of loc.cit and the discussion right after it).

Now Howard’s proof works throughout. The only difference is in lemma 2.3.4 of loc.cit case (ii) we
need to take care of non-split primes v|N . But then any prime of K[n] above v splits completely in
Kk[n], which is the composition of Kk and K[n] where K[n] is the ring class field of conductor n for
n a square-free product of inert primes. So the fact that κHg1 is in the unramified class follows from
that the inertial group of v is the same as that for any prime of K∞[n] above v.

2.2 Castella’s Formula

Now we recall the result of [2] which generalizes a formula of [1]. There is a big logarithm map logωE :
H1
F (Kv,T) ↪→ Λ with finite cokernel ([2], note that by the construction there the image is in Λ and

contains the maximal ideal of Λ). Moreover there is a quasi-isomorphism H1(Kv,T)/H1
F (Kv,T)→

Λ with finite kernel and cokernel. We write LBDPf,K for the p-adic L-function of Bertolini-Darmon-
Prasanna [1], which is the specialization of Lf,K to γ+ → 1 by comparing their interpolation
formulas.

Definition 2.2. Let P be a height one prime of Λ. We consider the map: H1
F (K,T)P → H1

Fv(Kv,T)P
and H1

F (K,T)P → H1
Fv̄(Kv̄,T)P . These are maps of free ΛP -modules of rank 1. Moreover we are

going to know that these maps are non-zero. We define the numbers fv,P and fv̄,P to be the orders
of P of the cokernels of the corresponding maps above.

The following proposition is proved in [2].

Proposition 2.3. Under assumption (2) we have

LBDPf,K = log2
ωE

(κHg1 ).

Under assumption (1) the above is true up to multiplying by some powers of p.
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In fact in [2] the result is not stated in such generality since he only uses Heegner points on
modular curves (see assumption (iii) of his Theorem A). However if we use Heegner points on general
indefinite Shimura curves the proof goes in the completely same way. Some additional assumptions
are put in loc.cit due to the fact that they are working with Hida families. They are not necessary
if we are only interested in a single weight two form with trivial character ([3]). There should also
be a modular degree factor showing up. Under assumption (2) this degree is co-prime to p by the
square-free conductor assumption and that the Heegner points come from the modular curve. But
under assumption (1) the formula is only true up to a scalar.

Corollary 2.4. For any height one prime P of Λ, we have under assumption (2)

ordP (LBDPp,f,K) = 2fv,P + 2ordP (H1
F (K,T)/κHg1 ).

Under assumption (1) the above is true for all P 6= (p).

Proof. We consider the map:

0→ H1
F (K,T)P → H1

F (Kv,T)P → ΛP

of ΛP -modules. Here the last is the logωE map. The corollary is clear.

3 Proof of the Main Results

3.1 Tate Local Duality

Let K be a finite extension of Qp. Let V ∗ := HomQp(V,Qp(1)). The pairing V × V ∗ → Qp(1) gives
a perfect pairing (see [17, 1.4]):

H1(K,V )⊗H1(K,V ∗)→ H2(K,Qp(1)) ' Qp.

We also have a perfect pairing:

H1(K,T )×H1(K,T ∗ ⊗Zp Qp/Zp)→ H2(K,Qp/Zp(1)) ' Qp/Zp.

We usually write F∗ for the dual Selmer conditions by requiring F∗w is the orthogonal complement
of Fw under the local Tate pairing.

3.2 Control of Selmer Groups

We first recall some notion of Greenberg [7] about control theorems for Selmer groups. Let F be an
extension of K (K or K−∞ in application) and F∞ is an extension of F such that the Galois group is
isomorphic to Γ = Zdp for some d. We have the following diagram:

0 −−−−→ H1
v (F,E[p∞]) −−−−→ H1(F,E[p∞]) −−−−→ GE(F ) −−−−→ 0

s

y h

y g

y
0 −−−−→ H1

v (F∞, E[p∞])Γ −−−−→ H1(F∞, E[p∞])Γ −−−−→ GE(F∞)Γ

Where
GE(M) = Im(H1(M,E[p∞])→ PE(M))
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and

PE(M) =
∏
η-p

H1(Mη, E[p∞])/H1
F (Mη, E[p∞])

∏
η|p

H1
v (Gη, E[p∞]).

For any prime w of F let rw be the map

H1(Fw, E[p∞])/H1
v (Fw, E[p∞])→ H1(F∞,w, E[p∞])/H1

v (F∞,w, E[p∞]).

By the snake lemma we have

0→ kers→ kerh→ kerg → cokers→ cokerh.

We relate the 2-variable and 1-variable Selmer groups of f with local condition “v” by specializing
the cyclotomic variable. We let I be the prime ideal of OL[[ΓK]] generated by (γ+ − 1). Let
Xanti
f,K,v := H1

v (K, T ⊗ Λ(Ψ)⊗Λ Λ∗)∗.

Proposition 3.1. Under assumption (1) there is an isomorphism Xf,K,v/I ⊗ L ' Xanti
f,K,v ⊗ L of

OL[[Γ−K]]⊗ L-modules. Under assumption (2) the above equality is true as Λ-modules.

Proof. We consider the above discussion with F = K−∞ and F∞ = K∞. We need to study the kernel
and cokernel of s. First note that kerh = 0 and cokerh = 0 (see [7, lemma 3.2]). So kers = 0. We
need to study ker(g). For any prime w of K split in K/Q (allowed to divide p) and primes w− of
K−∞ and w∞ of K∞ above it, we have K−∞,w− = K∞,w∞ , so the kerrw− = 0.

At non-split primes w and w− and w∞ as above, we know w is completely split in K−∞ and so
K−∞,v− = Kv. Since Q∞ ⊂ K∞, so by the [7, page 74], ker(rv−) ∼ c(p)

v where c(p)
v is the p-part of the

Tamagawa number of E at v. Under (2) by our assumption about non-split multiplicative reduction
this is a p-adic unit. Under (1) such kernel is killed when tensoring with Qp. These altogether shows
that the two-variable main conjecture implies the one variable anticyclotomic main conjecture.

Corollary 3.2. We have under assumption (2)

(LBDPf,K ) ⊇ charΛ(Xanti
f,K,v).

Under assumption (1) the above is true as ideals of Λ⊗Zp Qp.

Proof. We already have the result after inverting p by combining the above proposition with the
main theorem of [20]. The powers of p can be taken care of by note that by [13] LBDPf,K has µ-invariant
0 under assumption (2).

3.3 Galois Cohomology Computations

We say a Λ-module M is of rank n if M ⊗Λ FΛ is dimension n over FΛ (FΛ is the fraction field of
Λ). Let Σ be a finite set of primes containing all primes such that E or K is ramified. As in [14] we
define a set of height one primes of Λ

ΣΛ := {P : ]H2(KΣ/K,T)[P ] =∞}∪{P : ]H2(Kv,T)[P ] =∞}∪{P : ]H2(Kv̄,T)[P ] =∞}∪{(p)}.

This is a finite set by [14, lemma 5.3.4].
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Proposition 3.3. (Poitou-Tate exact sequence) Let F ⊆ G be two Selmer conditions. We have the
following long exact sequence:

0→ H1
F (K,T)→ H1

G(K,T)→ H1
G(Kv,T)/H1

F (Kv,T)→ H1
F∗(K,A)∗ → H1

G∗(K,A)∗ → 0.

Proof. It follows from [17, Theorem 1.7.3] in a similar way as corollary 1.7.5 in loc.cit.

Lemma 3.4.
H1
str(K,T) = 0.

Proof. We have

0→ H1
str(K,T)→ H1

F (K,T)→ ⊕wH1
F (Kw,T)/H1

str(Kw,T).

We tensor it with FΛ. By proposition 2.3, the image of κHg1 ∈ H1
F (Kv,T) in H1

F (Kv,T) is the p-adic
L-function of Bertolini-Darmon-Prasanna. This is non-zero under assumption (2) by the result of
[13]. More generally under assumption (1) recall that in the proof of Theorem 2.1 we have by [5]
for some character χ of Γ−, the specialization of κHg1 to χ is non-torsion. On the other hand note
that the map E(Kn) → E(Kn,v) is injective. So the image of κHg1 in H1

F (Kv,T) is still non-zero.
Since H1

F (K,T) is rank one, H1
str(K,T) must be of rank 0. We know that H1(K,T) is torsion free

as remarked in [10, lemma 2.2.9]. So H1
str(K,T) is 0.

It is in this lemma that we used a Λ-adic version injectivity of the localization map at p which
replaced similar assumption in [18]. The advantage of our argument is that such injectivity is
automatic.

Lemma 3.5. H1(K,T) and H1(K,A)∗ have the same Λ-rank.

Proof. We need only to prove that for a generic set of height one prime P , H1(K,T)/P and
H1(K,A)∗/P ι have the same Zp-rank. For any height one prime P we define SP to be the in-
tegral closure of Λ/P and TP to be the Galois representation obtained by T/PT base changed to
SP. Let ΦP be the fraction field of SP and AP the base change of TP to ΦP/SP. Suppose P 6∈ ΣΛ

and gP be a generator of P . From:

0→ T→ T→ T/P → 0

where the second arrow is given by multiplication by gP . We have:

H1(K,T)/P ↪→ H1(K,T/P )→ H2(K,T)[P ].

From
0→ A[P ι]→ A→ A→ 0

we have
H0(K,A)→ H1(K,A[P ι]) � H1(K,A)[P ι].

Note that H0(K,A) has finite cardinality. On the other hand we have:

H1(K,T/P )→ H1(K,TP )

H1(K,AP ι)→ H1(K,A[P ι])

both have finite kernel and cokernel since P ∈ ΣΛ, by [10, Lemma 2.2.7]. Also H1(K,TP ) is the mP -
adic Tate module of H1(K,AP ι). So the Zp-rank of H1(K,T)/P is the Zp-corank of H1(K,A[P ι])
and we are done.
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Corollary 3.6. The H1(K,T) has rank 2 and H1
str(K,A)∗ is Λ-torsion.

Proof. This follows from the above lemma and the Poitou-Tate long exact sequence taking F = str
and G to have empty restriction at primes above p and same as F elsewhere, by noting that
H1
str(K,A)∗ is a quotient of H1

F (K,A)∗ and thus has rank not greater than one.

Lemma 3.7. We have exact sequence:

0→ H1
F (K,T)→ H1

F∗v (K,T)→ coker→ 0

where coker has finite cardinality.

Proof. We first claim that H1
F∗v (K,T) is a rank 1 Λ-module. This follows from a Λ-adic analogue of

the argument [18, lemma 2.3.2]. The rank is obviously at least one. By the above lemme H1(K,T)
has rank 2. We consider the image of H1(K,T)/H1

F (K,T) ↪→ ⊕vH1(Kv,T)/H1
F (Kv,T). It is of

rank 1 over Λ, and is invariant under ι ◦ c (c is the complex conjugation). If H1
F∗v (K,T) is rank 2

then we get that the above image is rank 2, a contradiction.
Recall we have H1(Kv,T)/H1

F (Kv,T) ↪→ H1(Kv,T′′) which maps to Λ with finite kernel
and cokernel. By the Poitou-Tate exact sequence, the coker is injected to the torsion part of
H1(Kv,T)/H1

F (Kv,T), which is finite.

Lemma 3.8. H1
v̄ (K,T) is 0.

Proof. Since H1(K,T) is torsion free we only need to show H1
v̄ (K,T) is torsion. Again this follows

from a Λ-adic analogue of [18, lemma 2.3.2] in a completely same way as the above lemma.

The following Proposition is the key of the whole argument.

Proposition 3.9. Consider the map H1(Kv,T)/H1
Fv(Kv,T)→ H1

F∗(K,A)∗ which is the Pontrya-
gin dual of the natural map

H1
F∗(K,A)→ H1

Fv(Kv,A).

Then for any height one prime P of Λ as above. We localize the above map at P and compose it
with projection to the free-ΛP part of H1

F∗(K,A)∗P . We write this ΛP -module map as jP,v. Then:

ordP (cokerjP ι,v) = fv,P .

We can define jP,v̄ similarly and have ordP (cokerjP ι,v̄) = fv̄,P .

The proposition follows from the following lemma:

Lemma 3.10. Let v be a prime of K above p. Then

ordP coker{H1
F (K,T)P → H1

F (Kv,T)P } = ordP ιcoker{H1
F (Kv,A)∗P ι → XP ι → ΛP ι}

where the last arrow is defined as follows. Recall Howard proved the quasi-isomorphism: X →
Λ ⊕M ⊕M with finite kernel and cokernel. That arrow is induced from composing this map with
projection to Λ.

9



Proof. We claim that lengthZpH
0(Kv,A) is bounded by a constant depending only on T. Take

γ ∈ Iv such that ε(γ) 6≡ 1(modm) take a basis v1, v2 of T such that the action of γ is diagonal(
aγ

dγ

)
. Suppose dγ 6≡ 1(modm). Then if v ∈ H0(Kv,A), then v = a1v1 for some a1 ∈ Λ∗.

Moreover by considering the action of Iv we get: Wa1 = 0. Also (ap − 1)a1 = 0 by considering the
action of an element in H which induces the Frobenius modulo Iv. The claim is clear.

We follow the idea of [10, Theorem 2.2.10]. For any height one prime P, if P is not (p) we take
a generator g of it. Let f = g+ pm and D be the ideal generated by f . Suppose D is not in ΣΛ and
outside the support ofM . Then if m is large then we have Λ/P ' Λ/D as rings (not as Λ-modules).
Thus D is a height one prime as well. In the following we use ≈ to mean the difference is a contant
not depending on D and m. We write LHS and RHS for the left hand side and right hand side of
the equality in the proposition. Then for p = vv̄

LHS ×md
≈ lengthZpcoker{H1

F (K,T)/D→ H1
F (Kv,T)/D}

≈ lengthZpcoker{H1
F (K,TD)→ H1

F (Kv,TD)}

Here we used [10, lemma 2.2.7,lemma 2.2.8]. We also used that H1(Kv,T)/D ↪→ H1(Kv,T/D) →
H2(Kv,T)[D], and the last term is finite whose size is independent of D and m by the claim above
and Tate duality.

RHS ×md
≈ lengthZpcoker{H1

F (Kv,A)∗/Dι → X/Dι → Λ/Dι}
≈ lengthZpker{Λ∗[Dι]→ H1

F (K,A)[Dι]→ H1
F (Kv,A)[Dι]}

≈ lengthZpker{H1
F (K,A)[Dι]div → HF (Kv,A)[Dι]}

≈ lengthZpker{H1
F (K,ADι)div → H1

F (Kv,ADι)}

Here the subscript div means the divisible part and again we used [10, lemma 2.2.7, lemma 2.2.8].
Moreover we need that the kernel of the map H1

F (Kv,A[Dι])→ H1
F (Kv,A)[Dι] is bounded by some

constant depending only on T.
Note that TD is the m-adic Tate module of ADι . We have H1

F (K,TD) = lim←−iH
1
F (K,TD/m

i)

and H1
F (K,ADι) = lim−→i

H1
F (K,m−iTD/TD) (by [10, lemma 1.3.3]). The similar identities are true

for the local cohomology groups. So the lemma follows by taking m tends to infinity.
If P is (p), we take the height one prime D = (p + Tm) and argue similarly. Although we do

not have the isomorphism Λ/P ' Λ/D, we do have SD = Λ/D. See [10, Theorem 2.2.10].

Proposition 3.11. For a height one prime P of Λ, we have: H1
Fv(K,A)∗ is Λ-torsion module and:

2ordPM + fv̄,P ι = ordP (H1
Fv(K,A)∗).

Proof. In the poitou-Tate exact sequence we take G∗ = Fv and F∗ to be our F . The proposition
follows from lemma 3.7 and proposition 3.9.

Proposition 3.12. For a height one prime P as above we have: H1
v (K,A)∗ is Λ-torsion and:

2ordP (M) + fv̄,P ι + fv,P = ordP (H1
v (K,A)∗).

10



Proof. In the Poitou-Tate exact sequence we take F∗ to be v and G∗ = Fv. The proposition follows
from the last proposition, lemma 3.7 and lemma 3.8.

Note that we have fv̄,P ι = fv,P by considering the complex conjugation of the Galois represen-
tation. Thus we in fact proved:

2ordP (M) + 2fv,P = ordP (H1
v (K,A)∗) (1)

Before proving the main theorem, let us prove the following corollary:

Corollary 3.13. The 2-variable Selmer module Xf,K defined in [20] is Λ-torsion.

Proof. Suppose it is not. Then by the control theorem for Selmer groups the anti-cyclotomic Selmer
module with “v” Selmer condition at p is not torsion, which contradicts the above proposition.

Theorem 3.14. Theorem 1.2 is true, i.e. under assumption (2) we have

charΛ(M) = charΛ(H1
F (K,T)/ΛκHg1 ).

Under assumption (1) this is true as ideals of Λ⊗Zp Qp.

Proof. Fix a height one prime P . By (1), corollary 2.4 and corollary 3.2 we have:

2ordPM + 2fv,P ≥ 2ordP (H1
F (K,T)/κHg1 ) + 2fv,P .

The theorem follows.

Now let us prove the two variable main conjecture.

Theorem 3.15. Suppose assumption (2) is true. Then Lf,K ∈ ΛK. Moreover:

charΛK(Xf,K) = (Lf,K).

Remark 3.16. After I finished the first draft B. Howard informed me that Francesc Castella ob-
tained similar results in [2] via a seemingly different proof.

Proof. Let L̃f,K be the Lf,K multiplied by its denominator (note that ΛK is uniquely factorable
ring) and then remove all p-power divisors (so L̃f,K ∈ ΛK). By the main theorem of [20] we have
the two variable

(L̃f,K) ⊇ charΛK(Xf,K) (2)

(note that ordp(L̃f,K) = 0).
Write L̃antif,K for L̃f,K evaluated at γ+ = 1. By [13] LBDPf,K has µ-invariant 0. So it is not hard to

see from the construction that LBDPf,K |L̃antif,K . Then by Theorem 2.1, corollary 2.4, and (1) we already
have:

charΛ(Xanti
f,K ) ⊇ (LBDPf,K ) ⊇ (L̃antif,K ) (3)

as ideals of Λ. So we deduce that

(L̃f,K) = charΛK(Xf,K)

from (2), (3) in the same way as [19, Theorem 3.6.5] and all above “⊇” are =. In particular
(LBDPf,K ) = (L̃antif,K ). Now we do some study on the possible denominator of Lf,K. There is another

11



construction of a similar p-adic L-function LHidaf,K ∈ ΛK⊗Λ FracΛ in [9] using Rankin-Selberg method
for f and the Hida family g of normalized CM eigenforms associated to characters of ΓK, and such
that the weight of f is lower than the specializations of g at interpolation points. The interpolation
formula is almost the same as Lf,K except that the period is given by the Petersson inner product
of specializations of g instead of the CM period Ω∞. The ratio of the two periods is given by a
Katz p-adic L-function which is an element in Λ\{0}. Comparing these two p-adic L-functions we
see that the denominator for Lf,K must be generated by an element E in Λ\{0} (in other word it
involves the anticyclotomic variable only). Recall that L̃f,K =

Lf,K·E
pm for some m ≥ 0 and note

Lf,K|γ+=1 = LBDPf,K , then (LBDPf,K ) = (L̃antif,K ) implies E = pm up to a unit in Λ. So (L̃f,K) = (Lf,K).
This proves the theorem.

Finally we prove the following strengthening of the result of [18].

Theorem 3.17. Let E/Q be an elliptic curve with square-free conductor N and good ordinary
reduction at p. Let K be an imaginary quadratic field such that p and 2 are split and such that
E[p]|GK is irreducible. Suppose moreover assumption (1) is true. If the Selmer group H1

F (K, E[p∞])
has corank one. Then the Heegner point κ1 is not torsion and thus the vanishing order of LK(f, 1)
is exactly one.

Proof. We consider the behavior of specialization of the Selmer group H1
F from K−∞ to K. By our

discussion on Greenberg’s method in subsection 3.2 we know that the surjection

Xf,K/IXf,K � H1
F (K, E[p∞])∗

has finite kernel. By theorem 1.1 and theorem 1.2 we haveM⊗Λ/I and thus H1
F (K,T)

ΛκHg1

⊗ Λ
I is torsion.

Thus H1
F (K,T)

IH1
F (K,T)+ΛκHg1

is torsion. One can easily check that there is an injection

H1
F (K,T⊗Zp Qp)/IH

1
F (K,T⊗Zp Qp) ↪→ H1

F (K, T ⊗Zp Qp).

In sum the image κ1 of κHg1 is not torsion in H1
F (K, T ⊗Zp Qp). So κ1 is not torsion.
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