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Abstract

In this paper we prove that the p-adic L-function that interpolates the Rankin-Selberg prod-
uct of a general weight two modular form which is unramified and non-ordinary at p, and
an ordinary CM form of higher weight contains the characteristic ideal of the corresponding
Selmer group. This is one divisibility of the Iwasawa-Greenberg main conjecture for the p-
adic L-function. This generalizes an earlier work of the author to the non-ordinary case. The
result of this paper plays a crucial role in the proof of Iwasawa main conjecture and refined
Birch-Swinnerton-Dyer formula for supersingular elliptic curves.

1 Introduction

Let p be an odd prime. Let K ⊂ C be an imaginary quadratic field such that p splits as v0v̄0. We
fix an embedding K ↪→ C and an isomorphism ι : Cp ' C and suppose v0 is determined by this
embedding. There is a unique Z2

p-extension K∞/K unramified outside p. Let ΓK := Gal(K∞/K).
Suppose f is a weight two, level N cuspidal eigenform new outside p with coefficient ring OL for
some finite extension L/Qp and OL its integer ring. Suppose ξ is a Hecke character of A×K/K×
whose infinite type is (−1

2 ,−
1
2). Suppose ordv0(cond(ξv0)) ≤ 1 and ordv̄0(cond(ξv̄0)) ≤ 1. Denote

ξ as the OL[[ΓK]]-adic family of Hecke characters containing ξ as some specialization (will make it
precise later). We are going to define a dual Selmer group Xf,K,ξ which is a module over the ring
OL[[ΓK]]. Let us point out that here the local Selmer condition at primes above p is: requiring
the class to be unramified at v̄0 and put no restriction at v0. On the other hand, there is a p-adic
L-function Lf,K,ξ ∈ FracOL[[ΓK]] constructed in the text interpolating the algebraic parts of the
special L-values LK(π̃, ξφ, 0), where ξφ’s are specializations of ξ of infinite type (−κφ− 1

2 ,−
1
2) with

κφ > 6. The Iwasawa main conjecture basically states that the characteristic ideal (to be defined
later) of Xf,K,ξ is generated by Lf,K,ξ.

This conjecture was formulated by Greenberg in [8]. When the automorphic representation for f
is unramified and ordinary at p, one divisibility of the conjecture has been proved by the author
in [38]. The proof uses Eisenstein congruences on the unitary group U(3, 1) and is influenced by
the earlier work of Skinner-Urban [36] which proved another kind of main conjecture using U(2, 2).
C.Skinner has been able to use the result in [38] to deduce a converse of a theorem of Gross-Zagier
and Kolyvagin ([34]). In fact no matter whether f is ordinary or not, the Selmer groups and
Greenberg’s main conjecture can be defined in the same manner. The reason is the Panchishikin
condition in [8] is satisfied in both cases. Our main goal of this paper is to study this conjecture
when f is non-ordinary at p.
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To formulate our main result we need one more definition: suppose g is a cuspidal eigenform on
GL2/Q which is nearly ordinary at p. We have a p-adic Galois representation ρg : GQ → GL2(OL)
for some L/Qp finite. We say g satisfies:
(irred) If the residual representation ρ̄g is absolutely irreducible.
Also it is known that ρg|Gp is isomorphic to an upper triangular one. We say it satisfies:
(dist) If the Galois characters of Gp giving the diagonal actions are distinct modular the maximal
ideal of OL.

We will see later that if the CM form gξφ associated to ξφ satisfies (irred) and (dist) then Lf,K,ξ ∈
OL[[ΓK]].

We prove one divisibility in this paper under certain conditions, following the strategy of [38]. More
precisely, we have:

Theorem 1.1. Let π be an irreducible cuspidal automorphic representation of GL2/Q of weight 2,
square free level N and trivial character. Let ρπ be the associated Galois representation. Assume πp
is good supersingular with distinct Satake paramters. Suppose also for some odd non-split q, q||N .

Let ξ be a Hecke character of K×\A×K with infinite type (−1
2 ,−

1
2). Suppose (ξ|.|

1
2 )|A×Q = ω ◦Nm (ω

is the Techimuller character).
(1) Suppose the CM form gξ associated to the character ξ satisfies (dist) and (irred) defined above
and that for each inert or ramified prime v we have the conductor of ξv is not ($v) where $v is a
uniformizer for Kv and that:

ε(πv, ξv,
1

2
) = χK/Q,v(−1).

Then we have Lf,ξ,K ∈ OL[[ΓK]] and (Lf,K,ξ) ⊇ charOL[[ΓK]](Xf,K,ξ)) as ideals of OL[[ΓK]]. Here
char means the characteristic ideal to be defined later.
(2) If we drop the conditions (irred) and (dist) and the conditions on the local signs in (1), but

assume that the p-adic avatar of ξ|.|
1
2 (ω−1 ◦Nm) factors through ΓK, then

(Lf,K,ξ) ⊇ charOL[[ΓK]]⊗OLL
(Xf,K,ξ)

is true as fractional ideals of OL[[ΓK]]⊗OL L.

This result generalizes the main conjecture proved in [38] to the non-ordinary case. Let us make
a comparison between the situation here (and [38]) and the situation in [36]. The argument of
[36] using the group U(2, 2) is technically less complicated but there are essential difficulties to
prove the corresponding main conjecture when f is non-ordinary along that line. In contrast, in
our situation the ordinary and non-ordinary cases can be treated in a similar manner. One reason
is the local Selmer conditions are defined in an uniform way. The other reason is that the theory
for “partially ordinary” families of forms on U(3, 1) we will develop later, when restricting to a
two-dimensional subspace of the weight space is essentially a “Hida theory”, enabling us to prove
everything in almost the same way as ordinary case. The control theorems for such forms are first
proved by Hida in [13]. That is why we can prove a main conjecture over the Iwasawa algebra.
Another important new input for the proof here is the construction in the joint work with E.Eischen
[6] which constructs families of vector-valued Klingen Eisenstein series using differential operators.
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As in [38] our definition of Selmer groups is different from the Selmer group for π since the ordinary
CM forms gξφ has weight higher than π. But it can be used to study the Selmer group for π by
comparing Selmer groups in different contexts. Important applications along this line includes: a
proof of the ±-main conjecture and rank 0 refined Birch-Swinnerton-Dyer formula for supersingular
elliptic curves by the author [41]; a proof of the rank 1 refined Birch-Swinnerton-Dyer formula in
a joint work with Dimitar Jetchev and Christopher Skinner ([21]); a proof of the (anticyclotomic)
±-main conjecture for Heegner points in a joint work with Francesc Castella [3].

In this paper we restrict to the case when π has weight two and trivial character. The higher
weight case requires some local Fourier-Jacobi computations at Archimedean places which we do
not touch at the moment. The proof goes along the same line as [38] and much of the important
calculations are already carried out in [38], [6]. This paper is organized as follows: in Section 2
we recall some backgrounds for automorphic forms and p-adic automorphic forms. In Section 3 we
develop the theory of partially ordinary forms and families, following ideas of [37] and arguments
in [15, Section 4]. In Section 4 we construct the families of Klingen Eisenstein series using the
calculations in [6] with some modifications. In Section 5 we develop a technique to interpolate the
Fourier-Jacobi expansion, making use of the calculations in [38], and then deduce the main result.
Notations
Let GQ and GK be the absolute Galois groups of Q and K. Let Σ be a finite set of primes containing
all the primes at which K/Q or π or ξ is ramified, the primes dividing s, and the primes such that
U(2)(Qv) is compact. Let Σ1 and Σ2, respectively be the set of non-split primes in Σ such that
U(2)(Qv) is non-compact, and compact. Let Γ±K be the subgroups of ΓK such that the complex
conjugation acts by ±1. We also let Γv0 (Γv̄0) be one dimensional Zp-subspaces of ΓK such that
their fixed fields are maximal sub-extensions such that v0 (v̄0) is unramified. We take topological

generators γ± so that rec−1(γ+) = ((1 + p)
1
2 , (1 + p)

1
2 ) and rec−1(γ−) = ((1 + p)

1
2 , (1 + p)−

1
2 )

where rec : A×K → Gab
K is the reciprocity map normalized by the geometric Frobenius. Let

Ψ = ΨK be the composition GK � ΓK ↪→ Zp[[ΓK]]× and Ψ± : GK � Γ±K ↪→ Zp[[Γ±K]]×. We
also let Q∞ be the cyclotomic Zp extension of Q and let ΓQ = Gal(Q∞/Q). Define ΨQ to
be the composition GQ � ΓQ ↪→ Zp[[ΓQ]]×. We also define εK and εQ to be the compositions

K×\A×K
rec→ GabK → Zp[[ΓK]]× and Q×\A×Q

rec→ GabQ → Zp[[ΓQ]]× where the second arrows are the ΨK
and ΨQ defined above. Let ω and ε be the Techimuller character and the cyclotomic character. We
will usually take a finite extension L/Qp and write OL for its integer ring and $L for a uniformizer.
Let ΛK,OL = OL[[ΓK]] and similarly for Λ±K. If D is a quaternion algebra, we will sometimes write
[D×] for D×(Q)\D×(AQ). We similarly write [U(2)], [GU(2, 0)], etc. We also define Sn(R) to be
the set of n × n Hermitian matrices with entries in OK ⊗Z R. Finally we define Gn = GU(n, n)

for the unitary similitude group for the skew-Hermitian matrix

(
1n

−1n

)
and U(n, n) for the

corresponding unitary groups. We write eA =
∏
v ev where for each place v of Q and ev is the usual

exponential map at v. We refer to [15] for the discussion of the CM period Ω∞ and the p-adic
period Ωp. For two automorphic forms f1, f2 on U(2) we write 〈f1, f2〉 =

∫
[U(2)] f1(g)f2(g)dg (we

use Shimura’s convention for the Harr measures).

Acknowledgement We would like to thank Christopher Skinner, Eric Urban, Wei Zhang, Richard
Taylor and Toby Gee for helpful communications.
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2 Backgrounds

2.1 Groups

We denote G = GU(3, 1) as the unitary similitude group associated to the metric

 1
ζ

−1


where ζ =

(
sδ

δ

)
for δ ∈ K a purely imaginary element such that i−1δ > 0 and 0 6= s ∈ Z+. Let

GU(2, 0) be the unitary similitude group with the metric ζ. We denote µ the similitude character
in both cases. Let U(3, 1) ⊂ G and U(2, 0) ⊂ GU(2, 0) the corresponding unitary groups. Let W be
the Hermitian space for U(2, 0) and V = W ⊕XK ⊕ YK be that for U(3, 1) such that the metric is

given by the above form (XK⊕YK) is a skew Hermitian space with the metric

(
1

−1

)
). Let P be

the stablizer of the flag {0} ⊂ XK ⊂ V in G. It consists of matrices of the form


× × × ×
× × ×
× × ×

×

.

Let NP be the unipotent radical of P and let

MP := GL(XK)×GU(W ) ↪→ GU(V ), (a, g1) 7→ diag(a, g1, µ(g1)ā−1)

be the levi subgroup and Let GP := GU(W ) ↪→ diag(1, g1, µ(g)). Let δP be the modulus character
for P . We usually use a more convenient character δ such that δ3 = δP .

The group GU(2, 0) is closely related to a division algebra. Put

D = {g ∈M2(K)|gg∗ = det(g)},

then D is a definite quaternion algebra over Q with local invariants invv(D) = (−s,−DK/Q)v. For
each finite place v we write D1

v for the set of elements gv ∈ D×v such that |Nm(gv)|v = 1 where Nm
is the reduced norm.
Since p splits as v0v̄0 in K, U(3, 1)(Zp) ' GL4(Zp) using the projection onto the factor of Ov0 ' Zp.
Let B and N be the upper triangular Borel and the unipotent radical of B. Let Kp = GU(3, 1)(Zp)
and Kn

0 be the subgroups of K consisting of matrices whose projection onto the Ov0 factor is upper
triangular modulo pn. Let Kn

1 ⊂ Kn
0 consist of matrices whose diagonal elements are 1 modulo pn.

2.2 Hermitian Spaces and Automorphic Forms

Suppose (r, s) = (3, 3) or (3, 1) or (2, 0), then the unbounded Hermitian symmetric domain for
GU(r, s) is

X+ = Xr,s = {τ =

(
x
y

)
|x ∈Ms(C), y ∈M(r−s)×s(C), i(x∗ − x) > iy∗ζ−1y}.

We use x0 to denote the Hermitian symmetric domain for GU(2), which is just a point. We have
the following embedding of Hermitian symmetric domains:

ι : X3,1 ×X2,0 ↪→ X3,3
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(τ, x0) ↪→ Zτ ,

where Zτ =

(
x 0

y ζ
2

)
for τ =

(
x
y

)
.

Let G = GU(r, s) and H = GLr × GLs. If s 6= 0 we define a cocycle: J : RF/QG(R)+ × X+ →

GLr(C)×GLs(C) := H(C) by J(α, τ) = (κ(α, τ), µ(α, τ)) where for τ =

(
x
y

)
and α =

a b c
g e f
h l d

,

κ(α, τ) =

(
h̄tx+ d̄ h̄ty + lζ̄

−ζ̄−1(ḡtx+ f̄) −ζ̄−1ḡty + ζ̄−1ēζ̄

)
, µ(α, τ) = hx+ ly + d

in the GU(3, 1) case and
κ(α, τ) = h̄tx+ d̄, µ(α, τ) = hx+ d

in the GU(3, 3) case. Let i be the point

(
i1s
0

)
on the Hermitian symmetric domain for GU(r, s)

(here 0 means the (r−s)×s 0-matrix). Let GU(r, s)(R)+ be the subgroup of elements of GU(r, s)(R)
whose similitude factors are positive. Let K+

∞ be the compact subgroup of U(r, s)(R) stabilizing i
and let K∞ be the groups generated by K+

∞ and diag(1r+s,−1s). Then J : K+
∞ → H(C), k∞ 7→

J(k∞, i) defines an algebraic representation of K+
∞.

Definition 2.1. A weight k is defined by a set {k} where each

k = (a1, · · · , ar; b1, · · · , bs)

with a1 ≥ · · · ≥ ar ≥ −b1 + r + s ≥ · · · ≥ −bs + r + s for the ai, bi’s in Z

As in [15], we define some rational representations of GLr. Let R be an Z algebra. For a weight
k, we define the representation with minimal weight −k by

Lk(R) = {f ∈ OGLr |f(tn+g) = k−1(t)f(g), t ∈ Tr × Ts, n+ ∈ Nr × tNs}.

We define the functional lk on Lk by evaluating at the identity. We define a model Lk(C) of the
representation H(C) with the highest weight k as follows. The underlying space of Lk(C) is Lk(C)
and the group action is defined by

ρk(h) = ρk(
th−1), h ∈ H(C).

For a weight k, define ‖k‖ = {‖k‖} by:

‖k‖ := a1 + · · ·+ ar + b1 + · · ·+ bs

and |k| by:
|k| = (b1 + · · ·+ bs) · σ + (a1 + · · ·+ ar) · σc.

Here σ is the Archimedean place of K determined by our fixed embedding K ↪→ C. Let χ be a
Hecke character of K with infinite type |k|, i.e. the Archimedean part of χ is given by:

χ(z∞) = (z(b1+···+bs) · z̄(a1+···+ar)).
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Definition 2.2. Let U be an open compact subgroup in G(AF,f ). We denote by Mk(U,C) the space
of holomorphic Lk(C)-valued functions f on X+ ×G(AF,f ) such that for τ ∈ X+, α ∈ G(F )+ and
u ∈ U we have:

f(ατ, αgu) = µ(α)−‖k‖ρk(J(α, τ))f(τ, g).

If r = s = 1 then there is also a moderate growth condition.

Now we consider automorphic forms on unitary groups in the adelic language. The space of
automorphic forms of weight k and level U with central character χ consists of smooth and slowly
increasing functions F : G(AF )→ Lk(C) such that for every (α, k∞, u, z) ∈ G(F )×K+

∞×U×Z(AF ),

F (zαgk∞u) = ρk(J(k∞, i)
−1)F (g)χ−1(z).

2.3 Galois representations Associated to Cuspidal Representations

In this section we follow [35] to state the result of associating Galois representations to cuspidal
automorphic representations on GU(r, s)(AF ). Let n = r + s. First of all let us fix the notations.
Let K̄ be the algebraic closure of K and let GK := Gal(K̄/K). For each finite place v of K let K̄v be
an algebraic closure of Kv and fix an embedding K̄ ↪→ K̄v. The latter identifies GKv := Gal(K̄v/Kv)
with a decomposition group for v in GK and hence the Weil group WKv ⊂ GKv with a subgroup
of GK. Let π be a holomorphic cuspidal irreducible representation of GU(r, s)(AF ) with weight
k = (a1, · · · , ar; b1, · · · , bs) and central character χπ. Let Σ(π) be a finite set of primes of F
containing all the primes at which π is unramified and all the primes dividing p. Then for some L
finite over Qp, there is a Galois representation (by [33], [28] and [35]):

Rp(π) : GK → GLn(L)

such that:
(a)Rp(π)c ' Rp(π)∨ ⊗ ρp,χ1+c

π
ε1−n where χπ is the central character of π, ρp,χ1+c

π
denotes the

associated Galois character by class field theory and ε is the cyclotomic character.
(b)Rp(π) is unramified at all finite places not above primes in Σ(π)∪ { primes dividing p), and for
such a place w:

det(1−Rp(π)(frobwq
−s
w )) = L(BC(π)w ⊗ χcπ,w, s+

1− n
2

)−1

Here the frobw is the geometric Frobenius and BC means the base change from U(r, s) to GLr+s.
We write V for the representation space and it is possible to take a Galois stable OL lattice which
we denote as T .

2.4 The Main Conjecture

Before formulating the main conjecture we first define the characteristic ideals and the Fitting
ideals. We let A be a Noetherian ring. We write FittA(X) for the Fitting ideal in A of a finitely
generated A-module X. This is the ideal generated by the determinant of the r × r minors of the
matrix giving the first arrow in a given presentation of X:

As → Ar → X → 0.
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If X is not a torsion A-module then Fitt(X) = 0.

Fitting ideals behave well with respect to base change. For I ⊂ A an ideal, then:

FittA/I(X/IX) = FittA(X) mod I

Now suppose A is a Krull domain (a domain which is Noetherian and normal), then the charac-
teristic ideal is defined by:

charA(X) := {x ∈ A : ordQ(x) ≥ lengthQ(X) for any Q a height one prime of A},

Again if X is not torsion then we define charA(X) = 0.

We consider the Galois representation:

Vf,K,ξ := ρfσξ̄cε
4−κ

2 ⊗ ΛK(Ψ−cK ).

Define the Selmer group to be:

Self,K,ξ := ker{H1(K, Tf,K,ξ⊗OL[[ΓK]]∗)→ H1(Iv̄0 , Tf,K,ξ⊗OL[[ΓK]]∗)×
∏
v-p

H1(Iv, Tf,K,ξ⊗OL[[ΓK]]∗)}

where ∗ means Pontryagin dual HomZp(−,Qp/Zp) and the Σ-primitive Selmer groups:

SelΣf,K,ξ := ker{H1(K, Tf,K,ξ⊗OL[[ΓK]]∗)→ H1(Iv̄0 , Tf,K,ξ⊗OL[[ΓK]]∗)×
∏
v 6∈Σ

H1(Iv, Tf,K,ξ⊗OL[[ΓK]]∗)}

and
XΣ
f,K,ξ := (SelΣf,K,ξ)

∗.

We are going to define the p-adic L-functions Lf,K,ξ and LΣ
f,K,ξ in section 6. The two-variable

Iwasawa main conjecture and its Σ-imprimitive version state that (see [8]):

charOL[[ΓK]]Xf,K,ξ = (Lf,K,ξ),

charOL[[ΓK]]X
Σ
f,K,ξ = (LΣ

f,K,ξ).

3 Hida Theory for Partially-Ordinary Forms

3.1 Shimura varieties and Igusa varieties

For Unitary Similitude Groups
We will be brief in the following and refer the details to [15, Section 2, 3] (see also [6, Section
2]). We consider the group GU(3, 1). For any level group K =

∏
vKv of GU(3, 1)(Af ) whose

p-component is GU(3, 1)(Zp), we refer to [15] for the definitions and arithmetic models of Shimura
varieties which we denote as SG(K) over a ring Ov0 which is the localization of the integer ring of
the reflex field at the ideal v0. It parameterizes quadruples A = (A, λ̄, ι, η̄p) where A is an abelian

7



scheme with CM by OK given by ι, λ̄ is an orbit of prime to p polarizations, η̄p is an orbit of prime
to p level structure. Let Om := Ov0/p

mOv0 . We define the set of cusp labels by:

C(K) := (GL(XK)×GP (Af ))NP (Af )\G(Af )/K.

This is a finite set. We denote [g] for the class represented by g ∈ G(Af ). For each such g whose
p-component is 1 we define Kg

P = GP (Af ) ∩ gKg−1 and denote S[g] := SGP (Kg
P ) the correspond-

ing Shimura variety for the group GP with level group Kg
P . By the strong approximation we can

choose a set C(K) of representatives of C(K) consisting of elements g = pk0 for p ∈ P (A(pN0)
f )

and k0 ∈ K0 for K0 the maximal compact defined in [15, Section 2]. There is also a theory of
compactifications of SG(K) developed in [26]. We denote S̄G(K) the toroidal compactification and
S∗G(K) the minimal compactification. We omit the details.

Now we recall briefly the notion of Igusa varieties in [15] section 2. Let M be a standard lattice
of V and Mp = M ⊗Z Zp. Let Polp = {N−1, N0} be a polarization of Mp. Recall that this is a
polarization if N−1 and N0 are maximal isotropic submodules in Mp and they are dual to each
other with respect to the Hermitian metric on V and also that:

rankN−1
v0

= rankN0
v̄o = 3, rankN−1

v̄0
= rankN0

v0
= 1.

The Igusa variety of level pn is the scheme representing the usual quadruple for Shimura variety
together with a

j : µpn ⊗Z N
0 ↪→ A[pn]

where A is the abelian variety in the quadruple we use to define the arithmetic model of the Shimura
variety. Note that the existence of j implies that if p is nilpotent in the base ring then A must be
ordinary. There is also a definition for Igusa varieties over S̄G(K) (see [15, 2.7.6]). Let Kn, Kn

0 and
Kn

1 be the subset of H consisting of matrices which are in {Id}, B3 × tB1 or N3 × tN1 modulo pn.
(These notations are already used for level groups of automorphic forms. The reason for using same
notation is p-adic automorphic forms with level group Kn

• correspond to automorphic forms of level
group Kn

• ). We denote IG(Kn), IG(Kn
1 ) and IG(Kn

0 ) the Igusa varieties with the corresponding
level groups over S̄G(K). We can define the Igusa varieties for GP as well. There also defined
Z[g] a group scheme over S[g] and Z◦[g] the connected component of Z[g] (over S[g]). For any β in a

sub-lattice of Q (depending on K) there is a line bundle L(β) on Z◦[g]. Let H := GL3(Zp)×GL1(Zp)
be the Galois group of the Igusa tower over the ordinary locus of the Shimura variety.

Definition 3.1. We define the p-adic cusps to be the set of pairs ([g], h) for [g] being a cusp label
and h ∈ H. They can be thought of as cusps on the Igusa tower.

For • = 0, 1 we let Kg,n
P,• := gKn

• g
−1 ∩GP (Af ) and let I[g](K

n
• ) := IGP (Kg,n

P,•) be the corresponding
Igusa variety over S[g]. We denote An[g] the coordinate ring of I[g](K

n
1 ). Let A∞[g] = lim−→n

An[g] and let

Â∞[g] be the p-adic completion of A∞[g]. This is the space of p-adic automorphic forms for the group

GU(2, 0).

For Unitary Groups
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Assume the tame level group K is neat. For any c an element in Q+\A×Q,f/µ(K). We refer to [15,

2.5] for the notion of c-Igusa Schemes I0
U(2)(K, c) for the unitary groups U(2, 0) (not the simili-

tude group). It parameterizes quintuples (A, λ, ι, η̄(p), j)/S similar to the Igusa Schemes for unitary
similitude groups but requiring λ to be a prime to p c-polarization (see loc.cit) of A such that
(A, λ̄, ι, η̄(p), j) is a quintuple in the definition for Shimura varieties for GU(2). For gc in the class
of c and let cK = gcKg

−1
c ∩ U(2)(AQ,f ). Then the space of forms on I0

U(2)(K, c) is isomorphic to

the space of forms on I0
U(2)(

cK, 1).

Pullbacks
In order to use the pullback formula algebraically we need a map of Igusa schemes given by:

i([(A1, λ1, ι1, η
p
1K1, j1)], [(A2, λ2, ι2, η

p
2K2, j2)]) = [(A1 ×A2, λ1 × λ2, ι1, ι2, (η

p
1 × η

p
2)K3, j1 × j2)].

We define an element Υ ∈ U(3, 3)(Qp) such that Υv0 = S−1 and Υ′v0
= S

′−1 where S and S′ will
be defined in section 4.3. Similar to [15], we know that taking the change of polarization into
consideration the above map is given by

i([τ, g], [x0, h]) = [Zτ , (g, h)Υ].

Fourier-Jacobi Expansions

Define N1
H := {

(
1 0
∗ 12

)
} × {1} ⊂ H. For an automorphic form or p-adic automorphic form F on

GU(3, 1) we refer to [6, Section 2.8] for the notion of analytic Fourier-Jacobi expansions

FJP (g, f) = a0(g, f) +
∑
β

aβ(y, g, f)qβ

at g ∈ GU(3, 1)(AQ) for aβ(−, g, f) : C2 → Lk(C) being theta functions with complex multiplica-
tion, and algebraic Fourier-Jacobi expansion

FJh[g](f)N1
H

=
∑
β

ah[g](β, f)qβ,

at a p-adic cusp ([g], h), and ah[g](β, f) ∈ Lk(A
∞
[g])N1

H
⊗A[g]

H0(Z◦[g],L(β)). We define the Siegel
operator to be taking the 0-th Fourier-Jacobi coefficient as in loc.cit. Over C the analytic Fourier-
Jacobi expansion for a holomorphic automorphic form f is given by:

FJβ(f, g) =

∫
Q\A

f(

1 n
12

1

 g)eA(−βn)dn.

3.2 p-adic modular forms

As in [15] let H̄p−1 be the Hasse invariant H0(SG(K)/F̄,det(ω)p−1). Over the minimal compactifica-
tion some power (say the tth) of the Hasse invariant can be lifted to Ov0 , which we denote as E. By
the Koecher principle we can regard it as in H0(S̄G(K),det(ωt(p−1)). Set T0,m := S̄G(K)[1/E]/Om .
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For any positive integer n define Tn,m := IG(Kn)/Om and T∞,m = lim←−n Tn,m. Then T∞,m is a Ga-
lois cover over T0,m with Galois group H ' GL3(Zp) ×GL1(Zp) and N ⊂ H the upper triangular
unipotent radical. Define:

Vn,m = H0(Tn,m,OTn,m),

Let V∞,m = lim−→n
Vn,m and V∞,∞ = lim←−m V∞,m. We also define Wn,m = V N

n,m, W∞,m = V N
∞,m and

W = lim−→n
lim−→m

Wn,m. We define V 0
n,m, etc, to be the cuspidal part of the corresponding spaces.

We can do similar thing for the definite unitary similitude groupsGP as well and define Vn,m,P ,V∞,m,P ,
V∞,∞,P , V N

n,m,P , WP , etc.

3.3 Partially Ordinary Forms

3.3.1 Definitions

In this subsection we develop a theory for families of “partially ordinary” forms over a two di-
mensional weight space (the whole weight space for U(3, 1) is three dimensional). The idea goes
back to the work of Hida [13] (also [37]) where they defined the concept of being ordinary with
respect to different parabolic subgroups (the usual definition of ordinary is with respect to the Borel
subgroup), except that we are working with coherent cohomology while Hida and Tilouine-Urban
used group cohomology. The crucial point is, our families are over the two dimensional Iwasawa
algebra, which is similar to Hida theory for ordinary forms (instead of Coleman-Mazur theory for
finite slope forms). Our argument here will mostly be an adaption of the argument in the ordinary
case in [15] and we will sometimes be brief and refer to loc.cit for some computations so as not to
introduce too many notations.

We always use the identification U(3, 1)(Qv) ' GL4(Qp). We define αi = diag(14−i, p · 1i). We

let α =


1

1
p

p2

 and refer to [15, 3.7, 3.8] for the notion of Hida’s Uα and Uαi operators

associated to α or αi. We define eα = limn→∞ U
n!
α . We are going to study forms and families

invariant under eα and call them “partially ordinary” forms. Suppose π is an irreducible automor-
phic representation on U(3, 1) with weight k and suppose that πp is an unramified principal series
representation. If we write κ1 = b1 and κi = −a5−i + 5− i for 2 ≤ i ≤ 4, then there is a partially
ordinary vector in π if and only if we can re-order the Satake parameters as λ1, λ2, λ3, λ4 such that

valp(λ3) = κ3 −
3

2
, valp(λ4) = κ4 −

3

2
.

Galois Representations
The Galois representations associated to cuspidal automorphic representation π in subsection 2.3
which is unramified and partially ordinary at p for eα has the following description when restricting
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to Gv0 :

Rp(π)|Gv0 '


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ξ2,vε
−κ2 ∗

ξ1,vε
−κ1

 (1)

where ξ1,v and ξ2,v are unramified characters and also

Rp(π)|Gv̄0 '


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

 .

This can be proved by noting that the Newton Polygon and the Hodge Polygon have four out of
five vertices coincide (see [37, Proposition7.1]).

3.3.2 Control Theorems

We define K0(p, pn) to be the level group with the same components at primes outside p as K

outside p and, at p, consists of matrices which are of the form


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

 modulo p and are

of the form


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗

 modulo pn. We are going to prove some control theorems for the level

group K0(p, pn). These will be enough to show that the Eisenstein series constructed in [6] do give
families in the sense here. (See Section 4.) We refer the definition of the automorphic sheaves ωk
and the subsheaf to [15, section 3.2]. There also defined a ω[k in Section 4.1 of loc.cit as follows.

Let D = S̄G(K)− SG(K) be the boundary of the toroidal compactification and ω the pullback to
identity of the relative differential of the Raynaud extension of the universal Abelian variety. Let
k′′ = (a1−a3, a2−a3). Let B be the abelian part of the Mumford family of the boundary. Its relative
differential is identified with a subsheaf of ω|D. The ω[k ⊂ ωk is defined to be {s ∈ ωk|s|D ∈ FD}
for FD := det(ω|D)a3 ⊗ ωk

′′

B , where the last term means the automorphic sheaf of weight k′′ for
GU(2, 0).
Weight Space
Let H = GL3 × GL1 and T be the diagonal torus. Then H = H(Zp). We let Λ3,1 = Λ be the
completed group algebra Zp[[T (1 + Zp)]]. This is a formal power series ring with four variables.
There is an action of T (Zp) given by the action on the j : µpn ⊗Z N

0 ↪→ A[pn]. (see [15, 3.4])
This gives the space of p-adic modular forms a structure of Λ-algebra. A Q̄p-point φ of SpecΛ
is call arithmetic if it is determined by a character [k].[ζ] of T (1 + pZp) where k is a weight and
ζ = (ζ1, ζ2, ζ3; ζ4) for ζi ∈ µp∞ . Here [k] is the character by regarding k as a character of T (1+Zp) by

[k](t1, t2, t3, t4) = (ta1
1 t

a2
2 t

a3
3 t
−b1
4 ) and [ζ] is the finite order character given by mapping (1+pZp) to ζi

at the corresponding entry ti of T (Zp). We often write this point kζ . We also define ω[k] a character

of the torsion part of T (Zp) (isomorphic to (F×p )4) given by ω[k](t1, t2, t3, t4) = ω(ta1
1 t

a2
2 t

a3
3 t
−b1
4 ).
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Definition 3.2. We fix k′ = (a1, a2) and ρ = Lk′. Let Xρ be the set of arithmetic points φ ∈
SpecΛ3,1 corresponding to weight (a1, a2, a3; b1) such that a2 ≥ a3 ≥ −b1 + 4. (The ζ-part being
trivial). Let SpecΛ̃ = SpecΛ̃(a1,a2) be the Zariski closure of Xρ.

We define for q = 0, [

V q
k (K0(p, pn),Om) := {f ∈ H0(Tn,m, ω

q
k), g · f = [k]ω[k]}.

(Note the “ω”-part of the nebentypus).
As in [15, 3.3] we have a canonical isomorphism given by taking the “p-adic avartar”

H0(Tn,m, ωk) ' Vn,m ⊗ Lk, f 7→ f̂

and βk : Vk(K
n
1 ,Om)→ V N

n,m by f 7→ βk(f) := lk(f̂). The following lemma is [15, lemma 4.2].

Lemma 3.3. Let q ∈ {0, [} and let V q
k (K0(p, pn),Om) := H0(Tn,m, ω

q
k)
K0(p,pn). Then we have

H0(IS , ω
q
k)⊗Om = V q

k (K0(p, pn),Om).

We record a contraction property for the operator Uα.

Lemma 3.4. If n > 1, then we have

Uα · Vk(K0(p, pn),Om) ⊂ Vk(K0(p, pn−1),Om).

The proof is the same as [15, Proposition 4.4]. The following proposition follows from the
contraction property for eα:

Proposition 3.5.
eαV

q
k (K0(p, pn),Om) = eαVk(K0(p),Om).

The following lemma tells us that to study partially ordinary forms one only needs to look at
the sheaf ω[k.

Lemma 3.6. Let n ≥ m > 0, then

eα.V
[
k (K0(p, pn),Om) = eα · V q

k (K0(p, pn),Om).

Proof. Same as [15, lemma 4.10].

Similar to the βk we define a more general βk,ρ as follows: Let ρ be the algebraic representation Lρ =
Lk′ of GL2 with weight k′ = (a1, a2). We identify Lk with the algebraically induced representation

IndGL3×GL1
GL2×GL1×GL1

ρ ⊗ χa3 ⊗ χb1 (χa means the algebraic character defined by taking the (−a)-th
power). We define the functional lk,ρ taking values in Lk′ by evaluating at identity (similar to the
definition of lk). We define βk,ρ similar to βk but replacing lk by lk,ρ.

Proposition 3.7. If n ≥ m > 0, then the morphism

βk,ρ : Vk(K0(p, pn),Om)→ (Vn,m ⊗ Lρ)K0(p,pn)

is Uα-equivariant, and there is a Hecke-equivariant homomorphism sk,ρ : (Vn,m ⊗ Lρ)
K0(p,pn) →

Vk(K0(p, pn),Om) such that βk,ρ ◦ sk,ρ = Umα and sk,ρ ◦ βk,ρ = Umα . So the kernel and the cokernel
of βk,ρ are annihilated by Umα .
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Proof. Similar to [15, proposition 4.7]. Our sk,ρ is defined by for (A, j̄) over a Om-algebra R,

sk,ρ(α)(A, j̄) :=
∑

vχ′∈ρ⊗χa3⊗χb1

∑
u

1

χr,1(α)
· TrRα0 /R(f(Aαu.jαu))ρk(u)vχ′ .

Here the character χr,1 is defined by

χr,1(diag(a1, a2, a3; d)) := (a1a2a3)−1d.

The vχ′ ’s form a basis of the representation ρ ⊗ χa3 ⊗ χb1 which are eigenvectors for the diag-
onal action with eigenvalues χ′’s (apparently the eigenvalues appear with multiplicity so we use
the subscript χ′ to denote the corresponding vector). The u runs over a set of representatives
of α−1NH(Zp)α ∩ NH(Zp)\NH(Zp). The (Aαu, jαu) is a certain pair with Aαu an abelian variety
admitting an isogeny to A of type α (see [15, 3.7.1] for details) and Rαu0 /R being the coordi-
nate ring for (Aαu, jαu) (see 3.8.1 of loc.cit). Note that the twisted action of [15, Remark 3.1]
ρ̃k(α

−1)vχ′ = 1 for all the χ′ above. Write χ for χa3 � χb1 . Note also that for any eigenvector

vχ′ ∈ IndGL3×GL1
GL2×GL1×GL1

ρ ⊗ χ for the torus action such that vχ′ 6∈ ρ ⊗ χ, if we write α = µ(p) for
µ ∈ X∗(T ) (the co-character group), then we have 〈µ, k+χ′〉 < 0. So the argument of loc.cit works
through.

The following proposition follows from the above one as [15, Proposition 4.9]. Let k and ρ be
as before.

Proposition 3.8. If n ≥ m > 0, then

βk,ρ : eα · Vk(K0(p, pn),Om) ' eα(Vn,m ⊗ Lρ)K0(p,pn)[k].

We are going to prove some control theorems and fundamental exact sequence for partially-
ordinary forms along this smaller two-dimensional weight space SpecΛ̃. The following proposition
follows from Lemma 3.3 and Proposition 3.5 in the same way as [15, Lemma 4.10, Proposition
4.11], noting that by the contraction property the level group is actually in K0(p).

Proposition 3.9. Let eα.Vk(K0(p, pn)) := lim−→m
eα · Vk(K0(p, pn),Om). Then eα.V(K0(p, pn)) is

p-divisible and

eα · Vk(K0(p, pn))[pm] = e · Vk(K0(p, pn),Om) = eα ·H0(IS , ωk)⊗Om.

The following proposition is crucial to prove control theorems for partially ordinary forms along
the weight space SpecΛ̃.

Proposition 3.10. The dimension of eαMk(K0(p, pn),C)’s are uniformly bounded for all k ∈ Xρ.

Proof. The uniform bound for group cohomology is proved in [13, Theorem 5.1] and the bound for
coherent cohomology follows by the Eichler-Shimura isomorphism. See [15, Theorem 4.18].

The following theorem says that all partially-ordinary forms of sufficiently regular weights are
classical, and can be proved in the same way as [15, Theorem 4.19] using Proposition 3.10.
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Theorem 3.11. For each weight k = (a1, a2, a3; b1) ∈ Xρ, there is a positive integer A(a) depending
on a = (a1, a2, a3) such that if b1 > A(a, n) then the natural restriction map

eαMk(K0(p),O)⊗Qp/Zp ' eα · Vk(K0(p))

is an isomorphism.

For q = 0, φ define
V q
po := Hom(eα.Wq,Qp/Zp)⊗Λ3,1 Λ̃

Mq
po(K, Λ̃) := HomΛ̃(V q

po, Λ̃).

Thus from the finiteness results and the p-divisibility of the space of semi-ordinary p-adic mod-
ular forms, we get the Hida’s control theorem

Theorem 3.12. Let q = 0 or φ. Then

(1) V q
po is a free Λ̃-module of finite rank.

(2) For any k ∈ Xρ we have Mq
po(K, Λ̃)⊗ Λ̃/Pk ' eα ·M q

k (K,O).

The proof is same as [15, Theorem 4.21] using Proposition 3.5, 3.8, Theorem 3.11 and Propo-
sition 3.9.

Descent to Prime to p-Level

Proposition 3.13. Suppose k is such that a1 = a2 = 0, a3 ≡ b1 ≡ 0(mod p − 1), a2 − a3 >>
0, a3 + b1 >> 0, . Suppose F ∈ eαM0

k (K0(p),C) is an eigenform with trivial nebentypus at p whose
mod p Galois representation (semi-simple) is the same as our Klingen Eisenstein series constructed
in section 4. Let πF be the associated automorphic representation. Then πF,p is unramified principal
series representation.

Proof. Similar to [15, proposition 4.17]. Let f be the GL2 cusp form having good supersingular
reduction at p in the introduction. Note that πF,p has a fixed vector for K0(p) and ρ̄πf |GQp is
irreducible by [4]. By the classification of admissible representations with K0(p)-fixed vector we
know πF,p has to be a subquotient of IndGL4

B χ for χ an unramified character of Tn(Qp). If this
induced representation is irreducible then we are done. Otherwise recall that ρ̄ssF ' ρ̄f ⊕χ1⊕χ2 for
χ1 and χ2 two characters. By considering the Galois representation in equation (1), if a2 − a3 >>

0, a3 + b1 >> 0, we have the upper left

(
× ×
× ×

)
has to be reducible modulo p by the local-global

compatibility at p (in the sense of Weil-Deligne representation given by Dpst, see e.g. [1] for details,
which implies F is actually ordinary). This contradicts that ρπf |GQp is irreducible. Thus πF,p must
by unramified.

A Definition Using Fourier-Jacobi Expansion

We can define a Λ̃-adic Fourier-Jacobi expansion map for families of partially ordinary families as
in [15, 4.6.1] by taking the Λ̃-dual of the Pontryagin dual of the usual Fourier-Jacobi expansion
map (replacing the e’s in loc.cit by eα’s). We also define the Siegel operators Φh

[g]’s by taking the
0-th Fourier-Jacobi coefficient.
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Definition 3.14. Let A be a finite torsion free Λ-algebra. Let Npo(K,A) be the set of formal
Fourier-Jacobi expansions:

F = {
∑
β∈S[g]

a(β, F )qβ, a(β, F ) ∈ A⊗̂Â∞[g] ⊗H
0(Z◦[g],L(β))}g∈X(K)

such that for a Zariski dense set XF ⊆ Xρ of points φ ∈ SpecA such that the induced point in
SpecΛ is some arithmetic weight kζ , the specialization Fφ of F is the highest weight vector of the

Fourier-Jacobi expansion of a partially ordinary modular form with tame level K(p), weight k and
nebentype at p given by [k][ζ]ω−[k] as a character of K0(p).

Then we have the following

Theorem 3.15.
Mpo(K,A) = Npo(K,A).

The proof is the same as [15, Theorem 4.25]. This theorem is used to show that the construction
in [6] recalled later does give a partially ordinary family in the sense of this section.

Fundamental Exact Sequence

Now we prove a fundamental exact sequence for partially-ordinary forms. Let w′3 =


1

1
1

1

.

Lemma 3.16. Let k ∈ Xρ and F ∈ eαMk(K0(p, pn), R) and R ⊂ C. Let W2 =


1

1
1

1

∪ Id

be the Weyl group for GP (Qp). There is a constant A such that for any k ∈ Xρ such that a2−a3 >

A, a3 + b1 > A, for each g ∈ G(A(p)
f ), ΦP,wg(F ) = 0 for any w 6∈W2w

′
3.

The lemma can be proved using the computations in the proof of [15, lemma 4.14]. Note that
by partial-ordinarity and the contraction property the level group for F is actually K0(p).

The following is a partially ordinary version of [15, Theorem 4.16]. The proof is also similar (even
easier since the level is in fact in K0(p) by the contraction property).

Theorem 3.17. , noting that eα induces identity after the Siegel operator Φ̂w′3. For k ∈ Xρ, we
have

0→ eαM0
k(K,A)→ eαMk(K,A)

Φ̂w
′
3=⊕Φ̂

w′3
[g]−−−−−−−→ ⊕g∈C(K)Mk′(K

g
P,0(p), A)

is exact.

The family version of the fundamental exact sequence can be deduced from Theorem 3.11, 3.12,
3.17, as well as the affine-ness of S∗G(K)(1/E) (See [15, Theorem 4.16]).

Theorem 3.18.

0→ eαM0(K,A)→ eαM(K,A)
Φ̂w
′
3=⊕Φ̂

w′3
[g]−−−−−−−→ ⊕g∈C(K)M(Kg

P,0(p), A)→ 0.
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4 Eisenstein Series and Families

4.1 Klingen Einstein Series

Archimedean Places
Let (π∞, V∞) be a finite dimensional representation of D×∞. Let ψ∞ and τ∞ be characters of C×
such that ψ∞|R× is the central character of π∞. Then there is a unique representation πψ of
GU(2)(R) determined by π∞ and ψ∞ such that the central character is ψ∞. These determine a
representation πψ× τ of MP (R) ' GU(2)(R)×C×. We extend this to a representation ρ∞ of P (R)

by requiring NP (R) acts trivially. Let I(V∞) = Ind
G(R)
P (R)ρ∞ (smooth induction) and I(ρ∞) ⊂ I(V∞)

be the subspace of K∞ -finite vectors. Note that elements of I(V∞) can be realized as functions on
K∞. For any f ∈ I(V ) and z ∈ C× we define a function fz on G(R) by

fz(g) := δ(m)
3
2

+zρ(m)f(k), g = mnk ∈ P (R)K∞.

There is an action σ(ρ, z) on I(V∞) by

(σ(ρ, z)(g))(k) = fz(kg).

Non-Archimedean Places
Let (π`, V`) be an irreducible admissible representation of D×(Q`) and π` is unitary and tempered if
D is split at `. Let ψ and τ be characters of K×` such that ψ|Q×` is the central character of π`. Then

there is a unique irreducible admissible representation πψ of GU(2)(Q`) determined by π` and ψ`.
As before we have a representation πψ× τ of MP (Q`) and extend it to a representation ρ` of P (Q`)

by requiring NP (Q`) acts trivially. Let I(ρ`) = Ind
G(Q`)
P (Q`)

ρ` be the admissible induction. We similarly

define fz for f ∈ I(ρ`) and ρ∨` , I(ρ∨` ), A(ρ`, z, f), etc. For v 6∈ Σ we have D×(Q`) ' GL2(Q`).
Global Picture
Let (π = ⊗vπv, V ) be an irreducible unitary cuspidal automorphic representation of D×(AQ) we
define I(ρ) to be the restricted tensor product of ⊗vI(ρv) with respect to the unramified vectors
f0
ϕ`

for some ϕ = ⊗vφv ∈ π. We can define fz, I(ρ∨) and A(ρ, z, f) similar to the local case. fz
takes values in V which can be realized as automorphic forms on D×(AQ). We also write fz for
the scalar-valued functions fz(g) := fz(g)(1) and define the Klingen Eisenstein series:

E(f, z, g) :=
∑

γ∈P (Q)\G(Q)

fz(γg).

This is absolutely convergent if Rez >> 0 and has meromorphic continuation to all z ∈ C.

4.2 Siegel Eisenstein Series

Local Picture:
Our discussion in this section follows [36, 11.1-11.3] closely. Let Q = Qn be the Siegel parabolic

subgroup of GUn consisting of matrices

(
Aq Bq
0 Dq

)
. It consists of matrices whose lower-left n× n

block is zero. For a place v of Q and a character τ of K×v we let In(τv) be the space of smooth
Kn,v-finite functions (here Kn,v means the maximal compact subgroup Gn(Zv)) f : Kn,v → C
such that f(qk) = τv(detDq)f(k) for all q ∈ Qn(Qv) ∩ Kn,v (we write q as block matrix q =
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(
Aq Bq
0 Dq

)
). For z ∈ C and f ∈ I(τ) we also define a function f(z,−) : Gn(Qv) → C by

f(z, qk) := χ(detDq))|detAqD
−1
q |

z+n/2
v f(k), q ∈ Qn(Qv) and k ∈ Kn,v.

For f ∈ In(τv), z ∈ C, and k ∈ Kn,v, the intertwining integral is defined by:

M(z, f)(k) := τ̄nv (µn(k))

∫
NQn (Fv)

f(z, wnrk)dr.

For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uniformly, with
the convergence being uniform in k. In this case it is easy to see that M(z, f) ∈ In(τ̄ cv ). A standard
fact from the theory of Eisenstein series says that this has a continuation to a meromorphic section
on all of C.
Let U ⊆ C be an open set. By a meromorphic section of In(τv) on U we mean a function
ϕ : U 7→ In(τv) taking values in a finite dimensional subspace V ⊂ In(τv) and such that ϕ : U → V
is meromorphic.

Global Picture
For an idele class character τ = ⊗τv of A×K we define a space In(τ) to be the restricted tensor product

defined using the spherical vectors fsphv ∈ In(τv) (invariant under Kn,v) such that fsphv (Kn,v) = 1,
at the finite places v where τv is unramified.

For f ∈ In(τ) we consider the Eisenstein series

E(f ; z, g) :=
∑

γ∈Qn(Q)\Gn(Q)

f(z, γg).

This series converges absolutely and uniformly for (z, g) in compact subsets of {Re(z) > n/2} ×
Gn(AQ). The defined automorphic form is called Siegel Eisenstein series.

The Eisenstein series E(f ; z, g) has a meromorphic continuation in z to all of C in the following
sense. If ϕ : U → In(τ) is a meromorphic section, then we put E(ϕ; z, g) = E(ϕ(z); z, g). This is
defined at least on the region of absolute convergence and it is well known that it can be meromor-
phically continued to all z ∈ C.

4.3 Pullback Formula

We define some embeddings of a subgroup of GU(3, 1)×GU(0, 2) into GU(3, 3). This will be used
in the doubling method. First we define G(3, 3)′ to be the unitary similitude group associated to:

1
ζ

−1
−ζ


and G(2, 2)′ to be associated to (

ζ
−ζ

)
.
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We define an embedding

α : {g1 × g2 ∈ GU(3, 1)×GU(0, 2), µ(g1) = µ(g2)} → GU(3, 3)′

and
α′ : {g1 × g2 ∈ GU(2, 0)×GU(0, 2), µ(g1) = µ(g2)} → GU(2, 2)′

as α(g1, g2) =

(
g1

g2

)
and α′(g1, g2) =

(
g1

g2

)
. We also define isomorphisms:

β : GU(3, 3)′
∼−→ GU(3, 3), (β′ : GU(2, 2)′

∼−→ GU(2, 2))

by:
g 7→ S−1gS, (g 7→ S′−1gS′)

where

S =


1

1 − ζ
2

1

−1 − ζ
2

 , S′ =

(
1 − ζ

2

−1 − ζ
2

)
.

We define
i(g1, g2) = S−1α(g1, g2)S, i′(g1, g2) = S′

−1
α(g1, g2)S′.

We recall the pullback formula of Shimura (see [38] for details). Let τ be a unitary idele class
character of A×K. Given a cuspform ϕ on GU(2) we consider

Fϕ(f ; z, g) :=

∫
U(2)(AQ)

f(z, S−1α(g, g1h)S)τ̄(det g1g)ϕ(g1h)dg1,

f ∈ I3(τ), g ∈ GU(3, 1)(AQ), h ∈ GU(2)(AQ), µ(g) = µ(h)

or

F ′ϕ(f ′; z, g) =

∫
U(2)(AQ)

f ′(z, S
′−1α′(g, g1h)S′)τ̄(det g1g)ϕ(g1h)dg1

f ′ ∈ I2(τ), g ∈ GU(2)(AQ), h ∈ GU(2)(AQ), µ(g) = µ(h)

This is independent of h. The pullback formulas are the identities in the following proposition.

Proposition 4.1. Let τ be a unitary idele class character of A×K.
(i) If f ′ ∈ I2(τ), then F ′ϕ(f ′; z, g) converges absolutely and uniformly for (z, g) in compact sets of
{Re(z) > 1} ×GU(2, 0)(AQ), and for any h ∈ GU(2)(AQ) such that µ(h) = µ(g)∫

U(2)(Q)\U(2)(AQ)
E(f ′; z, S′−1α′(g, g1h)S′)τ̄(det g1h)φ(g1h)dg1 = F ′φ(f ′; z, g).

(ii) If f ∈ I3(τ), then Fϕ(f ; z, g) converges absolutely and uniformly for (z, g) in compact sets of
{Re(z) > 3/2} ×GU(3, 1)(AQ) such that µ(h) = µ(g)∫

U(2)(Q)\U(2)(AQ)
E(f ; z, S−1α(g, g1h)S)τ̄(det g1h)ϕ(g1h)dg1

=
∑

γ∈P (Q)\GU(3,1)(Q)

Fϕ(f ; z, γg),

with the series converging absolutely and uniformly for (z, g) in compact subsets of {Re(z) > 3/2}×
GU(3, 1)(AQ).
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4.4 p-adic Interpolation

We recall our notations in [6, Section 5.1] and correct some errors in the formulas for parameteri-
zation in loc.cit. We define an “Eisenstein datum” D to be a pair (ϕ, ξ0) consisting of a cuspidal
eigenform ϕ of prime to p level, trivial character and weight k = (a1, a2), a1 ≥ a2 ≥ 0 on GU(r, 0)

and a Hecke character ξ0 of K×\A×K such that ξ0| · |
1
2 is a finite order character. Let σ be the

reciprocity map of class field theory K×\A×K → GabK normalized by the geometric Frobenius. Note
ΓK = Γ+ ⊕ Γv̄0 . Let Ψ1 : GK � ΓK → Γ+ ↪→ Zp[[Γ+

K]]× and Ψ2 : GK � ΓK → Γv̄0 ↪→ Zp[[Γv̄0 ]]×

where the middle arrows are projections with respect to the above direct sum. Then ΨK = Ψ1 ·Ψ2.
We define

τ0 := (ξ0| · |
1
2 )
c

,

ξ := ξ0 · (Ψ ◦ σ),

τ := τ0 · (Ψ−c1 ◦ σ),

ψK := Ψ2.

We define X pb to be the set of Q̄p-points φ ∈ SpecΛK,OL such that φ ◦ τ ((1 + p, 1)) = τ0((1 + p, 1)),

φ ◦ τ ((1, 1 + p)) = (1 + p)κφτ0((1, 1 + p))

for some integer κφ > 6, κφ ≡ 0(mod(p − 2)) and such that the weight (a1, a2, 0;κφ) is in the
absolutely convergent range for P in the sense of Harris [11], and such that

φ ◦ ψK(γ−) = (1 + p)
mφ
2

for some non-negative integer mφ, and such that the τφ (to be defined in a moment) is such that,
under the identification τφ = (τ1, τ2) for K×p ' Q×p × Q×p , we have τ1, τ2, τ1τ2 all have conductor
(p).

We denote by X the set of Q̄p-points φ in SpecΛK,OL such that

φ ◦ τ ((1, 1 + p)) = (1 + p)κφζ1τ0((1, 1 + p)), φ ◦ τ ((p+ 1, 1)) = τ0((p+ 1, 1))

and φ ◦ψK(γ−) = ζ2 with ζ1 and ζ2 being p-power roots of unity. Let X gen be the subset of points
such that the ζ1 and ζ2 above are all primitive pt roots of unity for some t ≥ 2.

Remark 4.2. We will use the points in X pb for p-adic interpolation of special L-values and Klingen
Eisenstein series, and we will use the points in X to construct a Siegel Eisenstein measure.

For each φ ∈ X pb, we define Hecke characters ψφ and τφ of K×\A×K by

τ̄ cφ(x) := x̄
κφ
∞ (φ ◦ τ )(x)x

−κφ
v̄ · | · |−

κφ
2 ,

ψφ(x) := x
mφ
2∞ x̄
−
mφ
2∞ (φ ◦ ψK ◦ σ)x

−
mφ
2

v x
mφ
2
v̄ .

Let

ξφ = | · |
κφ−1

2 τ̄ cφψφ,

ϕφ = ϕ⊗ ψ−1
φ .

The weight kφ for ϕφ at the arithmetic point φ is (a1 +mφ, a2 +mφ).
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4.5 Explicit Sections

Now we make explicit sections for the Siegel and Klingen Eisenstein series. Recall that we defined
g1, g3 ∈ GU(2)(AQ), g′2, g

′
4 ∈ U(2)(AQ) in [38, subsection 7.4]. Moreover their p-component are 1.

We use a slight modification of the sections constructed in [6]. For the Siegel section we use the
construction fsieg =

∏
v fv in [6, Section 5.1]. Recall that the f∞ is a vector valued section. In

loc.cit we pullback this section under the embedding γ−1 and take the corresponding component
for the representation L(kφ,0) �L(κ) � (L(kφ)⊗detκ) (notations as in loc.cit Section 4). Recall that
in [38, section 7] we constructed a character ϑ of A×Q and elements g1 ∈ GL2(AQ). Recall we start
with a eigenform f ∈ π new outside p and is an eigenvector for the Up-operator with eigenvalue α1.
We extend it to a form on GU(2)(AQ) using the central character ψ and as in [38, 5.10] define

fΣ = (
∏

v∈Σ,v-N

π(

(
1

$v

)
)− χ1,v($v)q

1
2
v )f,

fϑ(g) =
∏

v split ∈Σ,v-p

∑
{av∈ $vZ×v

$
1+sv
v Zv

}v

ϑ(
−av
$v

)fΣ(g
∏
v

(
1
a 1

)
v

(
$−svv

1

)
v

)

where $sv
v is the conductor of ϑ at v, πf,v = π(χ1,v, χ2,v) (choose any order) and define our ϕ to be

π(g1)fϑ. When we are varying our datum in p-adic families we write Esieg for the Siegel Eisenstein
measure on ΓK obtained.

4.6 Construction of A Measure

We first recall the notion of p-adic L-functions for Dirichlet characters which is needed in the
proposition below. There is an element Lτ̄ ′ in ΛK,OL such that at each arithmetic point φ ∈ X pb,
φ(Lτ̄ ′) = L(τ̄ ′φ, κφ − 2).τ ′φ(p−1)pκφ−2g(τ̄ ′φ)−1. For more details see [36, 3.4.3].

Constructing Families
The following theorem is proved in [6]. The construction in loc.cit is for unitary groups but one
can easily obtain the construction for unitary similitude groups using the central characters ψφ · τφ.
In the statement we use f (extension of the GL2 form f to GU(2) by the trivial central character).
in the place of the vector ϕ to keep consistent with the notations in the introduction.

Proposition 4.3. Let π be an irreducible cuspidal automorphic representation of GU(2, 0) of weight
k = (a1, a2), a1 ≥ a2 ≥ 0 such that πp is unramified and is an irreducible induced representation
π(χ1, χ2) from the Borel subgroup such that χ1 6= χ2. Let f ∈ πK0(p) be an eigenvector for the Up
operators at p. Let π̃ be the dual representation of π.

(i) There is a constant Cπ,p and an element LΣ
f,K,ξ0 ∈ ΛK,OL such that for a Zariski dense set of

arithmetic points φ ∈ SpecΛK,OL (to be specified in the text) we have

φ(LΣ
f,K,ξ0) = Cϕ,p.

LΣ(π̃, ξφ, 0)

Ω
dφ+rκφ
∞

c′kφ,0,κφ .p
2κφ

2
−3g(τ−1

1,φ)r
2∏
i=1

(χi,φτ1,φ)(p)

2∏
i=1

(χ−1
i,φτ2,φ)(p)τ̄ cφ((p2, 1))

where dφ = 2(a1,φ + a2,φ), τφ,p = (τ1,φ, τ2,φ), ckφ,0,κφ is an algebraic constant coming from
an Archimedean integral and Cϕ,p is a product of local constant coming from the pullback
integrals.
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(ii) There is a set of formal q-expansions Ef,ξ0 := {
∑

β a
t
[g](β)qβ}([g],t) for

∑
β a

t
[g](β)qβ ∈ ΛK,OL⊗Zp

R[g],∞ where R[g],∞ is some ring to be defined later, ([g], t) are p-adic cusp labels, such that
for a Zariski dense set of arithmetic points φ ∈ SpecK,OL, φ(Ef,ξ0) is the Fourier-Jacobi ex-
pansion of the highest weight vector of the holomorphic Klingen Eisenstein series constructed
by pullback formula which is an eigenvector for Ut+ with non-zero eigenvalue. The weight for
φ(Ef,ξ0) is (mφ + a1,mφ + a2, 0;κφ).

(iii) The at[g](0)’s are divisible by LΣ
f,K,ξ0 .L

Σ
τ̄ ′ where LΣ

τ̄ ′ is the p-adic L-function of a Dirichlet
character above.

We will write EKling later on for this Klingen Eisenstein measure. Here at φ the weight of the Klin-
gen Eisenstein series constructed is (a1 +mφ, a2 +mφ, 0;κ). To adapt to the situation of section 3,
we multiply the family constructed in (ii) above by ψ(det−) (so that we fix the weight a1, a2 and
allow a3, b1 to vary). According to the control theorems proved in section 3 and Theorem 3.15 the
family constructed thereby comes from a partially ordinary family defined there. By an appropriate
weight map Λ̃→ OL[[ΓK]] (we omit the precise formula) this gives a OL[[ΓK]]-coefficients family in
the sense of section 3.

The interpolation formula for the p-adic L-function considered above is not satisfying since it
involves non-explicit Archimedean constants. But in fact it also has the following interpolation
property. If a1 = a2 = 0 then for a Zariski dense set of arithmetic points φ ∈ SpecΛK such that
φ ◦ ξ is the p-adic avatar of a Hecke character ξφ of K×\A×K of infinite type (−κ− 1

2 ,−
1
2) for some

κ ≥ 6, of conductor (pt, pt) (t > 0) at p, then:

φ(LΣ
f,K) =

p(κ−3)tξ2
1,p(p

−t)g(ξ1,pχ
−1
1,p)g(ξ1,pχ

−1
2,p)L

Σ(π̃, ξφ, 0)(κ− 1)!(κ− 2)!

(2πi)2κ−1Ω2κ
∞

. (2)

Here g is the Gauss sum and χ1,p, χ2,p are characters such that π(χ1,p, χ2,p) ' πf,p. This can be
seen as follows. The Siegel Eisenstein measure considered in [6] is just the specialization of the
measure considered in [40] to our two-dimensional weight space. We can employ the computations
in [40] to get equation 2. (Note that the Archimedean weights in equation (2) are nothing but the
weights considered in [40]. Also the restrictions in [40] on conductors of π and ξ are put to prove the
pullback formulas for Klingen Eisenstein series and has nothing to do with computation for p-adic
L-functions. This computation is also done in the forthcoming work [5].) We also remark that
in our situation it is possible to determine the constants c′kφ,0,κφ

by taking an auxiliary eigenform

ordinary at p and comparing our construction with Hida’s (although we do not need it in this paper).

We can also construct the complete p-adic L-function Lf,K,ξ by putting back all the local Euler
factors at primes in Σ. By doing this we only get elements in FracOL[[ΓK]]. In some cases we
can study the integrality of it by comparing with other constructions. There is another way of
constructing this p-adic L-function using Rankin-Selberg method by adapting the construction in
[12]. We refer to [38, Section 6.4] for the discussion. Note that although Hida’s construction
assumes both forms are nearly ordinary, however, it works out in the same way in our situation
since in the Rankin-Selberg product the form with higher weight is the CM form which is ordinary
by our assumption that p splits in K. The p-adic L-functions of Hida are not integral since he
used Petersson inner product as the period. Under assumption (1) of the main theorem in the
introduction, we know the local Hecke algebra corresponding to the CM form g is Gorenstein. The
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work of Hida-Tilouine [18] shows that the congruence module for g is generated by the corresponding
Katz p-adic L-function (where the CM period Ω∞ is used). If we multiply Hida’s p-adic L-function
by this Katz p-adic L-function then we recover our p-adic L-function in Proposition 4.3. So under
assumption (1) of Theorem 1.1 the Lf,K,ξ is in OL[[ΓK]]. By our discussion in [38, Section 6.4] we
know that under the assumption of part (1) of the main theorem Lf,K,ξ is co-prime to any height
one prime of OL[[ΓK]] which is not a pullback of a height one prime of OL[[Γ+]]. Under assumption
(2) of Theorem 1.1 we only know Lf,K,ξ is in FracOL[[ΓK]] and we call the fractional ideal generated
by Lf,K,ξ to be OL[[ΓK]] · Lf,K,ξ ⊂ FracOL[[ΓK]].

4.7 Galois Representations for Klingen Eisenstein Series

We can also associate a reducible Galois representation to the holomorphic Klingen Eisenstein series
constructed with the same recipe as in subsection 2.3. The resulting Galois representation is:

στ ′σψcε
−κ ⊕ σψcε−3 ⊕ ρf .στcε−

κ+2
2 .

5 Proof of Main Results

In this section we assume the π we start with has weight two so that the Jacquet-Langlands
correspondence is trivial representation at ∞. This is because we can not study the Fourier-Jacobi
coefficients in the higher weight case at the moment. The Klingen Eisenstein measure we construct
is interpolating forms of weight (0, 0, a3; b1).

5.1 p-adic Properties of Fourier-Jacobi Coefficients

Our discussion on Fourier-Jacobi coefficients here will refer a lot to the argument in [38, Section 7].
Interpolating Petersson Inner Products
Recall that in [38, section 6] we made an additional construction for interpolating Petersson inner
products of forms on definite unitary groups: For a compact open subgroup K =

∏
vKv of U(2)(AQ)

which is U(2)(Zp) at p we take {g4i }i a set of representatives for U(2)(Q)\U(2)(AQ)/K0(p) where
we write K0(p) also for the level group

∏
v-pKv×K0(p). Suppose K is sufficiently small so that for

all i we have U(2)(Q) ∩ g4i Kg
4−1
i = 1. For an ordinary Hida family f∨ of eigenforms with some

coefficient ring I (whose p-part of level group is the lower diagonal Borel congruent to powers of
p) we construct a set of bounded I-valued measure µi on N−(pZp) as follows. We only need to
specify the measure for sets of the form t−N−(Zp)(t−)−1n where n ∈ N−(Zp) and t− a matrix of

the form

(
pt1

pt2

)
with t2 > t1. We assign f∨(gint

−)λ(t−)−1 as its measure where λ(t−) is the

Hecke eigenvalue of f∨ for Ut− . This measure is well defined by the expression for Hecke operators

Ut− . Let χ be the central character of f we write f∨ for the family π(

(
1

1

)
p

)f ⊗ χ−1(det−).

The above set {µi}i can be viewed as a measure on U(2)(Q)\U(2)(AQ)/K(p) by requiring it to be
invariant under B(Zp), which we denote as µf∨ .

Recall that in [38] we constructed measures of Siegel-Eisenstein series on the three-variable Zp-
space ΓK × Zp. (The Zp here actually gives the variable for the Hida family in loc.cit on GL2 by
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OL[[W ]] ' OL[[Zp]],W 7→ [1]− 1 where W is a variable and [1] means the group-like element.) We
still denote it as Esieg and the Esieg we construct in this paper is the specialization of the three-
variable one by W → 1. (The maps the weight spaces differ by a linear isomorphism of ΓK, which
will not affect our later argument). Let Λ3 := OL[[ΓK × Zp]]. We first make a construction which
will be useful later on. Let h and θ be two Λ3-valued Hida families (the p-part of level group for
h is with respect to the upper-triangular Borel while θ is lower triangular Borel) of forms on U(2)
and µθ the measure associated to it as above (we are a little vague by not specifying the map to

the weight space of U(2)). Let {g4j } be a set of representatives of U(2)(Q)\U(2)(AQ)/K0(p) such

that the p-component of g4j is 1. We are going to define a continuous Λ3-valued function tr(h)dµθ
on U(2)(Q)\U(2)(AQ) as follows (recall that we equip the latter set the topology induced from the
p-adic Lie group U(2)(Qp)). For any k = 0, 1, ..., p − 1 and g ∈ U(2)(Q)\U(2)(AQ)/K(p), we let

g

(
1
k 1

)
p

= g4j g0 for g0 ∈ Γ0(p) ⊂ U(2)(Zp) (in an unique way). Suppose g0 =

(
a b

d

)(
1
c 1

)
for a, d ∈ Z×p , c ∈ pZp, b ∈ Zp. We first calculate that(

a b
d

)(
1
c 1

)(
1
m 1

)
=

(
a+ b(c+m) b
d(c+m) d

)
=

(
1

d(c+m)
a+b(c+m) 1

)(
a+ b(c+m) b

0 ad
a+b(c+m)

)
.

We define

(trhdµθ)(g) =
∑

0≤k≤p−1

∫
m∈pZp

χθ,1χh,1(a+b(c+m))χθ,2χh,2(
ad

a+ b(c+m)
)(π(g′2)h)(g4j

(
1

d(c+m)
a+b(c+m) 1

)
p

)dµj,θ,g

(3)
where µj,θ,g is the measure on pZp obtained by composing dµj,θ with the map

m 7→ d(c+m)

a+ b(c+m)

and χθ,1, χθ,2 is such that it gives the right action of

(
Z×p

Z×p

)
on θ is given by

(
χθ,1

χθ,2

)
and similarly for χh,1, χh,2.(This notation is different from [38]). Maybe a bit more explanation
will help the reader understand this construction. Taking a point on the weight space such that for
some t, pt is the conductor of the specializations h and θ of h, θ (in our applications such points
form a Zariski dense subset of the parameter space). One can apply certain operator in Qp[U(Qp)]
to θ and obtain a θss which is invariant under Γ1(pt) ⊂ U(Zp) and

∑
0≤k≤p−1

π(

(
1
k 1

)
p

)θss = θ.

Then trhdµθ(g) specializes to ∑
0≤k≤p−1

hθss(g

(
1
k 1

)
p

).

(This construction implies the above expression interpolates p-adic analytically.)
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Recall that we defined an element g′2 ∈ U(2)(AQ) in [38, end of Section 7.4]. We refer to [38] for the
definition of the theta function θ1 and a functional lθ1 on the space of p-adic automorphic forms on
U(3, 1) defined by taking Fourier-Jacobi coefficients (viewed as a a form on P (AQ)) and pair with
the theta function θ1.

In [38, Section 7.3] we constructed families of CM forms h and θ on U(2) associated two Λ3-
valued CM characters χh and χθ and we write their two-variable specializations still using the
same symbols. Recall that our Esieg is realized as the specialization of a three-variable Esieg to
a two-variable one by taking W 7→ 1. We want to study

∫
lθ1(EKling)dµ(π(g′2)h). Since EKling is

realized as 〈
∫
i−1(Esieg), ϕ〉low (i : U(3, 1)×U(0, 2) ↪→ U(3, 3) and 〈, 〉low means taking inner product

with respect to the U(0, 2)-factor), we need first to study

A2 :=

∫
lupθ1 i
−1(Esieg)dupµ(π(g′2)h)

regarded as a family of p-adic automorphic forms on U(2). Here i−1(Esieg) is a measure of forms
on U(3, 1) × U(2) and the lupθ1 , d

up means the functional and integration on the U(3, 1) factor in
U(3, 1)×U(0, 2). Let A′2 be defined in a similar way to A2 but using the three-variable family. Let
KA′2

⊆ U(Af ) be a level group under whose components outside p is A′2 invariant and is the maximal
compact subgroup at p. Let KU(1) be U(1)(AQ)∩KA′2

(U(1) is regarded as the central elements of
U(2)). Take a representative {ui}i of U(1)(Q)\U(1)(AQ)/KU(1). Define A1(g) :=

∑
i π(ui)A2 and

A := 〈A1, ϕ〉. Let A′1 be defined similar to A1 but using the three-variable family. We remark that
A1 is invariant under tK0(p) by using the expression for A2 and noting that χh,1·χθ,1 = χh,2·χθ,2 = 1
by construction.

The Fourier-Jacobi coefficients calculations in [38], in particular Proposition 5.28 and Corollary
5.29 there shows that A′1 is tr(π(g′2)h)dµθ . So A is

LΣ
5 LΣ

6 · < tr(π(g′2)h)dµθ , ϕ >

times some element in Q̄×p . Here LΣ
5 and LΣ

6 are defined in [38, subsection 7.5] which are Σ-primitive
p-adic L-functions for certain CM characters. They come from the pullback integral for h under
U(2) × U(2) ↪→ U(2, 2). By our choices of characters they are some Q̄×p multiples of a unit in

OL[[ΓK]]. In [38] we also constructed three-variable families h̃, θ̃ in the dual representations for
h and θ. We still use h̃ and θ̃ for their specializations to our two-variable families. Let f̃ϑ̃ ∈ π̃
be chosen the same as as in [38, Section 7.5] at primes outside p. But at p we take it as the
stabilization with Up-eigenvalue α−1

1 (recall α1 is the eigenvalue for the Up action on fϑ). We
consider the expression at arithmetic point φ

Ãφ := pt
∫

[U(2)]
π(g′4)h̃φ(g)θ̃φ(g)π(g3)f̃ϑ̃(g)dg.

From our discussions before (in particular the construction of trhdµθ) they are interpolated by an
element OL[[ΓK]]⊗Zp Qp. We are going to calculate AÃ using Ichino’s triple product formula. We
do this by calculating it at arithmetic points in X gen. This is enough since these points are Zariski
dense. We refer to [38, subsection 7.4] for a summary of the backgrounds of Ichino’s formula.
The local calculations are the same as loc.cit except at the p-adic places where we have different
assumptions for ramification. We give a lemma for our situation.
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Lemma 5.1. Let χh,1, χh,2, χθ,1, χθ,2, χf,1, χf,2 be character of Q×p whose product is the trivial
character and such that χh,1, χθ,1, χf,1, χf,2 are unramifed and χh,2 · χθ,2 is unramified. Let fp ∈
π(χf,2, χf,1) and by using the induced representation model f is the characteristic function of
K1wK1. Similarly we define f̃p ∈ π(χ−1

f,2, χ
−1
f,1). So f is a Hecke eigenvector for Tp with eigen-

value χf,1(p). Let hpπ(χh,1, χh,2), θp ∈ π(χθ,1, χθ,2), h̃p ∈ π(χ−1
h,1, χ

−1
h,2), θ̃p(χ

−1
θ,1, χ

−1
θ,2) be the fχh, fχθ ,

f̃χ̃h, f̃χ̃θ defined in [38, lemma 7.4]. Then the local triple product integral (defined at the beginning
of [38, subsection 7.4])

Ip(hp ⊗ θp ⊗ fp, h̃p ⊗ θ̃p ⊗ f̃p)
〈hp, h̃p〉〈θp, θ̃p〉〈fp, f̃p〉

is
p−t(1− p)

1 + p
· 1

1− χh,1(p)χθ,1(p)χf,1(p)p−
1
2

· 1

1− χh,1(p)χθ,2(p)χf,1(p)p−
1
2

.

Proof. This is an easy consequence of [38, lemma 7.4] and [44, Proposition 3.2].

Now as in [38, Section 7.5] by computing at arithmetic points φ ∈ X gen and applying Ichino’s
formula, the local integrals at finite primes are non-zero constants in Q̄p (fixed throughout the fam-
ily). We conclude that up to multiplying by an element in Q̄×p the A · Ã equals LΣ

5 LΣ
6 L1L2 where

L1 is the p-adic L-function interpolating the algebraic part of L(λ2(χθχh)φ,
1
2) (λ is the splitting

character of K×\A×K we use to define theta functions, see [38, Section 3]) which we can choose the
Hecke characters properly so that it is a unit in OL[[ΓK]]. (Note that since the CM character λ2

has weight higher than f the result cited in [38, subsection 7.2] of M. Hsieh does not assume that
f is ordinary). The L2 is the algebraic part of L(f, χcθχh,

1
2) ∈ Q̄p (fixed throughout the family)

which we can choose to be non-zero. (See the calculations in [38, subsection 7.5].)

To sum up we get the following proposition in the same way as in loc.cit.

Proposition 5.2. Any height one prime of OL[[ΓK]] containing
∫
lθ1(Ekling)dµπ(g′2)h must be (p).

We also remark that the assumption made in [38] that 2 splits can be removed. It was used
there because the Howe duality in characteristic two was unknown, which is needed when studying
the Fourier-Jacobi coefficients at non-split primes. But this is recently proved by Gan-Takeda ([9]).

5.2 Proof of Main Theorem

Now we prove our main theorem in the introduction, following [38, Section 8]. We refer to [38,
section 8.1] for the definitions for Hecke operators for U(3, 1) at unramified primes. Let KD be
an open compact subgroup of U(3, 1)(AQ) maximal at p and all primes outside Σ such that the
Klingen Eisenstein series we construct is invariant under KD. We let TD be the reduced Hecke
algebra generated by the Hecke operators at unramified primes space of the two variable family of
partially ordinary cusp forms with level group KD, the Ui operator at p, and then take the reduced
quotient. Let the Eisenstein ideal ID of TD to be generated by {t−λ(t)}t for t in the abstract Hecke
algebra and λ(t) is the Hecke eigenvalue of t acting on EKling and let ED be the inverse image of
ID in OL[[ΓK]] ⊂ TD.

Now the main theorem can be proven in almost the same way as [38, Section 8], using Proposi-
tion 5.2 and Theorem 4.3. One uses the fundamental exact sequence Theorem 3.18 to show that
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(LΣ) ⊇ ED as in Lemma 8.4 of loc.cit. Then use the lattice construction (Proposition 8.2 there,
due to E. Urban) to show that ED contains the characteristic ideal of the dual Selmer group. Note
also that to prove part (2) of the main theorem we need to use Lemma 8.3 of loc.cit. The only
difference is to check the condition (9) in Section 8.3 of loc.cit : We suppose our pseudo-character
R = R1 + R2 + R3 where R1 and R2 are 1-dimensional and R3 is 2-dimensional. Then by resid-
ual irreducibility we can associate a 2-dimensional TD-coefficient Galois representation. Take an
arithmetic point x in the absolute convergence region for Eisenstein series such that a2 − a3 >> 0
and a3 + b1 >> 0 and consider the specialization of the Galois representation to x. First of all as
in [36, Theorem 7.3.1] a twist of this descends to a Galois representation of GQ which we denote
as R3,x. By our description for the local Galois representations for partially ordinary forms at p
we know that R3,x has Hodge-Tate weight 0, 1 and is crystalline (by the corresponding property
for Rx = R1 + R2 + R3, note that Rx corresponds to a Galois representation for a classical form
unramified at p by Theorem 3.11, 3.12 and Proposition 3.13). By [22] it must be modular unless

the residual representation were induced from a Galois character for Q(

√
(−1)

p−1
2 p). But if it is

such an induced representation then it must be reducible restricting to the decomposition group
for p since this quadratic field is ramified in p. But as we noted before ρ̄f |Gp is irreducible by [4],
a contradiction. These implies Rx is CAP, contradicting the result of [11, Theorem 2.5.6].

Once we get one divisibility for LΣ
f,K,ξ, up to height one primes which are pullbacks of height one

primes of OL[[Γ+
K]] (coming from local Euler factors at non-split primes in Σ, by our discussion

in [38, Section 6.4] on µ-invariants), the corresponding result for Lf,K,ξ also follows by using [10,
Proposition 2.4] as in [38, End of 8.3] (note that K∞ contains the cyclotomic Zp-extension).
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