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1 Introduction

These notes are an introduction to the recent work of Christopher Skinner and Eric Urban [11] proving (one divisibility
of) the Iwasawa main conjecture for GL2/Q (see Theorem 1). We give the necessary background materials and explain
the proofs. We focus on the main ideas instead of the details and therefore will sometimes be brief and even imprecise.

These notes are organized as follows. In Section 2 we formulate various Iwasawa main conjectures for modular forms.
We also explain an old result of Ribet to illustrate the rough idea of the strategy behind the later proofs. In Sections 3
and 4 we introduce the notions of automorphic forms and Eisenstein series on the unitary group GU(2,2). Section 5
is devoted to explaining the Galois argument. Sections 6-9 give the tools used in the computation for the Fourier and
Fourier-Jacobi coefficients of various Eisenstein series, which is a crucial ingredient in the argument. In Section 10 we
give an example of a theorem of the author generalizing the Skinner-Urban work.

2 Main conjectures

We introduce the objects required to state the Iwasawa main conjectures for GL2.

2.1 Families of Characters

Let p be an odd prime. Choose ι : C ' Cp. Let GQ = Gal(Q̄/Q) and Q∞ ⊂ Q(µp∞) be the cyclotomic Zp-extension
of Q. Let ΓQ = Gal(Q∞/Q). Let ΛQ := Zp[[ΓQ]]. We also define ΛA = ΛQ,A = ΛQ⊗Zp A for A a Zp-algebra. Let
Ψ =ΨQ : GQ→ Λ

×
Q be the composition of GQ � ΓQ with ΓQ ↪→ Λ

×
Q . Let εQ be a character of Q×\A×Q which is the

composition of ΨQ with the reciprocity map of class field theory (normalized using geometric Frobenius elements).
Take γ ∈ Γ to be the topological generator such that ε(γ) = 1+ p where ε is the cyclotomic character giving the
canonical isomorphism Gal(Q(µp∞)/Q)'Z×p . For each ζ ∈ µp∞ and integer k we let ψk,ζ be the finite order character
of Q×\A×Q that is the composition of ΨQ with the map Λ

×
Q →C×p that maps γ to ζ (1+ p)k. We also write ψζ for ψ0,ζ .

We let ω be the Teichimuller character.

2.2 Characteristic Ideals and Fitting ideals

Let A be a Noetherian normal demain and X a finite A-module. The characteristic ideal charA(X)⊂ A is defined to be
zero if X is not torsion and

charA(X) = {x ∈ A|ordPx≥ lengthAP
(XP), for all height one primes P⊂ A}.

Now take any presentation
Ar→ As→ X → 0

of X . The Fitting ideal is defined by the ideal of A generated by all the determinants of the s× s minors of the matrix
representing the first arrow.

Remark 1. Fitting ideals respect any base change while characteristic ideals do not in general.



2.3 Selmer Groups for Modular Forms

Let f = ∑
∞
n=1 anqn ∈ Sk(N,ψ0), k≥ 2, be a cuspidal eigenform with character ψ0 of (Z/NZ)× and let L/Qp be a finite

extension containing all Fourier coefficients an of f . Let OL be the ring of integers of L. Assume that f is ordinary,
which means that ap is a unit in OL. Let ρ = ρ f : GQ→ AutLVf be the usual two dimensional Galois representation
associated to f . Then it is well known (by [14], for example) that there is a GQp -stable L-line V+

f ⊂Vf such that Vf /V+
f

is unramified. We fix a GQ-stable OL lattice Tf ⊂Vf and let T+
f = Tf ∩V+

f .

Definition 1. (Selmer Groups) Let Σ be a finite set of primes.

SelΣL (Tf ) := ker{H1(Q,Tf ⊗OL Λ
∗
OL
(Ψ−1))→ H1(Ip,(Tf /T+

f )⊗OL Λ
∗
OL
(Ψ−1))

× ∏
6̀=p, 6̀∈Σ

H1(I`,Tf ⊗Λ
∗
OL
(Ψ−1))}

where Λ ∗A = HomZp(ΛA,Qp/Zp) is the Pontryagin dual and Λ ∗OL
(Ψ−1) means that the Galois action is given by the

character Ψ−1. Let
XΣ

L (Tf ) := HomZp(SelΣL(Tf ),Qp/Zp)

and
charΣ

f ,Q( f ) = charΛQ,OL
(XΣ

L (Tf )).

2.4 p-adic L-functions

Let 0 < n < k−2 be an integer and ζ 6= 1 a pt−1th root of unity. Let Σ be a finite set of primes. We define the algebraic
part of a special L-value for f by:

LΣ
alg( f ,ψ−1

ζ
ω

n,n+1) := ap( f )−t
pt(n+1)n!LΣ ( f ,ψ−1

ζ
ωn,n+1)

(−2πi)nτ(ψ−1
ζ

ωn)Ω
sgn((−1)m)
f

where ap( f ) is the p-adic unit root of x2−apx+ pk−1ψ0 = 0, τ(ψ) is a Gauss sum for ψ and Ω
±
f are Hida’s canonical

periods of f . (There is also a formula for ζ = 1 which is more complicated which we omit here). The p-adic L-function
is a certain element L Σ

f ,Q ∈ ΛQ,OL characterized by the following interpolation property. Let φn,ζ : ΛOL → OL(ζ ) be
the OL homomorphism sending γ to ζ (1+ p)n. Then:

φn,ζ (L
Σ
f ,Q) = LΣ

alg( f ,ψ−1
ζ

ω
n,n+1),0≤ n≤ k−2.

This was constructed in [1], and also [6].

2.5 The Main Conjecture

The Iwasawa main conjecture for f is the following

Conjecture 1. The module XΣ
L (Tf ) is a finite torsion ΛQ,OL -module and charΣ

f ,Q is generated by L Σ
f ,Q.

The main result that we are going to prove in this lecture series is:

Theorem 1. (Kato, Skinner-Urban) Suppose f has trivial character, weight 2 and good ordinary reduction at p. Sup-
pose also that:

• The residual representation ρ̄ f is irreducible.
• For some p 6= `||N, ρ̄ f is ramified at `.

Then the Iwasawa main conjecture is true in ΛQ,OL ⊗Zp Qp. If, moreover, there exists an OL-basis of Tf with respect
to which the image of ρ f contains SL2(Zp), then the equality holds in ΛQ,OL .

The last condition is put by Kato [4] who proved “⊇”. It is satisfied, for example, by the p-adic Tate modules of
semistable elliptic curves if p≥ 11. We will focus on Skinner-Urban’s proof for “⊆”. The technical condition (ii) can
be removed by working with forms over totally real fields and a base change trick .
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2.6 Two and Three-Variable Main Conjectures

More p-adic characters: Let K /Q be an imaginary quadratic extension such that p splits as v0v̄0, where v0 is deter-
mined by our chosen isomorphism ι : C ' Cp. By class field theory there is a unique Z2

p-extension of K unramified
outside p, which we denote by K∞. Let GK := Gal( ¯K /K ) and ΓK := Gal(K∞/K ). There is an action of com-
plex conjugation c on ΓK . We write Γ

±
K for the subgroup on which c acts by ±1. For any Zp-algebra A ⊂ Q̄p we

define: ΛK ,A = A[[ΓK ]], Λ
±
K ,A = A[[Γ±K ]] and generators γ± of Γ

±
K by requiring recKp((1+ p)

1
2 ,(1+ p)±

1
2 ) = γ±.

Here recKp is the reciprocity map of class field theory. (Note that Kp ' Qp ×Qp.) Let ΨK be the composition
GK → ΓK ↪→Λ

×
K ,A. We define Ψ

±
K similarly. We also define characters εK ,ε±K of K ×\A×K by composing εK ,ε±K

with the reciprocity map.
Now let f be a cuspidal eigenform of weight k ≥ 2. We define the set of arithmetic points by:

X a
f ,K := {φ : OL homomorphism ΛK ,OL → Q̄p : φ(γ+) = ζ

+(1+ p)k−2,φ(γ−) = ζ
−,ζ± ∈ µp∞}.

For φ ∈ X a
f ,K , let θφ := ω2−kχ

−1
f ξφ with ξφ := (φ ◦ΨK )(ε2−kεk−2.χ f ) and let fθφ

be the conductor of θφ . In
particular we show that for any finite set Σ of primes containing all the bad primes (all the primes where f or K is
ramified), we have the two variable p-adic L-function L Σ

f ,K ∈ΛK ,OL such that:

φ(L Σ
f ,K ) = u f ap( f )

ordp(Nm(fθφ
))
.
((k−2)!)2g(θφ )Nm(fθφ

d)k−2LΣ
K ( f ,θφ ,k−1)

(2πi)2k−2Ω
+
f Ω

−
f

for any sufficiently ramified φ ∈X a
f ,K , where d is the different of K and u f is a p-adic unit depending on f . We

remark that if ζ− = 1 then our special L-value is just the product of the special L-values for f and f ⊗χK twisted by
some ψ such that ψ ◦Nm = θφ . Here χK is the quadratic character for K /Q.
We can also define Selmer groups SelΣ

f ,K and XΣ
f ,K , charΣ

f ,K in the exact same way as in the one-variable case. We
have the two-variable main conjecture:

Conjecture 2. XΣ
f ,K is a finite torsion ΛK ,OL -module. Furthermore charΣ

K , f is principal and generated by L Σ
f ,K .

Additionally f can be embedded in a Hida family of ordinary cuspidal eigenforms f (we discuss these in the next sec-
tion in more detail). We can form a three-variable p-adic L-function L Σ

f,K and formulate a 3 variable main conjecture.

2.7 Comment on the Proof

The cyclotomic main conjecture for modular forms (conjecture 1) is deduced from a partial inclusion in three-variable
main conjecture. Roughly speaking the inclusion charf,K ⊆ (L Σ

f,K ) in the three-variable main conjecture, when spe-
cialized to the cyclotomic Zp-extension of K , implies that the inclusion char f ,Q.char f⊗χK ,Q ⊆ (L f ,Q.L f⊗χK ,Q) in
the cyclotomic main conjecture for f and f ⊗ χK . By Kato’s work, this in turn implies that char f ,Q = (L f ,Q) and
char f⊗χK ,Q = (L f⊗χK ,Q).
We will focus on proving the inclusion charΣ

f,K ⊆ (L Σ
f,K ) in the three variable main conjecture in the rest of the paper.

The general strategy for proving this inclusion is: the product of L Σ
K and the Σ -imprimitive Kubota-Leopodlt p-adic

L-function L Σ
1,Q attached to the trivial character gives the congruences between Eisenstein series and cusp forms on the

unitary similitude group GU(2,2)⇒ the same congruences between reducible and irreducible Galois representations
⇒ required extension class in H1(K ,−). The first arrow is by the Langlands correspondence and the second is a
Galois theoretic argument, the so-called “lattice construction”.

2.8 A Theorem of Ribet

In this section we review Ribet’s proof of the converse to Herbrand’s theorem [8]. This illustrates the main ideas in the
strategy. In this section we set OL = Zp, λ the maximal ideal of OL, κ = OL/λ .

Theorem 2. Suppose j ∈ [2, p−3] is an even number. If p|ζ (1− j) then H1
ur(GQ,F(ω1− j)) 6= 0 (the group of every-

where unramified classes is non-zero).
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Proof. For j 6= 2, we make use of the level 1 weight j Eisenstein series:

E j(q) =
ζ (1− j)

2
+ ∑

n≥1
σ j−1(n)qn

where σ j−1(n) = ∑d|n d j−1. If p|ζ (1− j), then E j “looks” like a cusp form modulo p. We divide the proof into three
steps:

Step1: Construct a cusp form f ′ ∈ S j(SL2(Z),Zp) such that f ′ ≡ E j(mod p) (in terms of q-expansion). This is a case
by case study using the fact that the ring of modular forms of level 1 is C[E4,E6].

Step 2: Prove that f ′ can be replaced by an eigenform f ∈ S j(SL2(Zp),OL) whose Hecke eigenvalues are the same as
those of E j modulo p. This can be proven by easy commutative algebra (essentially a lemma of Deligne and Serre).

Step 3: The lattice construction: construct the class by comparing the Galois representations of E j and f . Note that the
Galois representation for E j is ε j−1⊕1. It is easy to see that there is a σ0 ∈ Ip such that ε j−1(σ0) 6≡ 1(mod p). Since

ap( f ) ≡ σ j−1(p) ≡ 1(mod p), f is ordinary. As we have noted before, ρ f |GQp
=

(
αε j−1 ∗

α

)
for some unramified

character α . Take a basis {v1,v2} such that

ρ f (σ0) =

(
ε j−1(σ0)

1

)
.

Write ρ = ρ f and ρ(σ) =

(
aσ bσ

cσ dσ

)
for σ ∈ O[GQ].

Claim:

(a) aσ ,dσ ,bσ cτ ∈ O for σ ,τ ∈ OL[GQ] and aσ ≡ ω j−1(σ),dσ ≡ 1,bσ cτ ≡ 0(mod p);
(b) C := {cσ : σ ∈ OL[GQ]} is a non-zero fractional ideal.
(c) cσ = 0 if σ ∈ I` for all `.

Proof of the claim:

Let ε1 := 1
ε j−1(σ0)−1 (σ0− 1),ε2 := 1

1−ε j−1(σ0)
(σ0− ε j−1(σ0)); one can check: ρ(ε1) =

(
1 0
0 0

)
and ρ(ε2) =

(
0 0
0 1

)
.

Thus aσ = traceρ(ε1σ) ∈ OL and traceρ(ε1σ) ≡ trace(ε j−1 + 1)(ε1σ) = ε j−1(σ). The claim for dσ is proven simi-
larly. Also since ρ(σ)ρ(τ) = ρ(στ), bσ cτ = aστ −aσ aτ ≡ 0(mod p).

(b) follows from the irreducibility of ρ and (c) can be seen from the description for ρ|GQp
above and the triviality of

ρ|I` for ` 6= p.

Let M1 = OLv1, M2 = C v2, M = M1⊕M2 (which is easily seen to be the OL[GQ]-submodule generated by v1).

• M̄2 := M2/λM2 ' κ (note that C is non-zero by (b)) is a GQ stable submodule of M̄ := M/λM. This is because
for any m2 = cv2 ∈M2, ρ(σ)m2 = bσ cv1 +dσ cv2 ∈ λv1 +C v2 by (a);

• by (a), GQ acts by ω j−1 and 1 on M̄1 = M̄/M̄2 and M̄2 respectively;
• the extension: 0→ M̄2→ M̄→ M̄1→ 0 is non split since M is generated by v1 over OL[GQ].

Thus M̄ gives a nontrivial extension class and it actually in H1
ur(Q,κ(ω1− j)) by claim (c).

If j = 2 the Eisenstein series E2 is not holomorphic and we use Ep+1 in the place of E2.
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3 Hermitian Modular Forms on GU(n,n)

3.1 Hermitian Half Space and Automorphic Forms

Let K /Q be an imaginary quadratic extension and let O be the ring of integers of K . Let GU(n,n) be the unitary

similitude group associated to the pairing
(

1n
−1n

)
= ωn on K 2n:

G := GU(n,n)(A) = {g ∈ GL2n(O⊗A) : gωn
tḡ = λgωn,λg ∈ A×}.

Here µ(g) := λg is the similitude character, and we write U :=U(n,n)⊂ G for the kernel of µ . We define Q = Qn to

be the Siegel parabolic subgroup of G consisting of block matrices of the form
(

A B
C D

)
such that C = 0. Let

Hn := {Z ∈Mn(C) :−i(Z− tZ̄)> 0}.

(Note that H1 is the usual upper half plane).

Let Z ∈Hn. For α =

(
A B
C D

)
∈G(R) with A,B,C,D n×n block matrices. Let µα(Z) :=CZ+D,κα(Z) = C̄tZ+ D̄.

We define the automorphy factor:
J(α,Z) := (µα(Z),κα(Z)).

Let G(R)+ = {g ∈ G(R),µ(g)> 0} then G(R)+ acts on Hn by

g(Z) := (AgZ +Bg)(CgZ +Dg)
−1, g =

(
Ag Bg
Cg Dg

)
.

Let K+
∞ = {g ∈U(R) : g(i) = i} (we write i for the matrix i1n ∈ Hn) and Z∞ be the center of G(R). We define

C∞ := Z∞K+
∞ . Then k∞ 7→ J(k∞, i) defines a homomorphism from C∞ to GLn(C)×GLn(C).

Definition 2. A weight k is a set of integers (kn+1, ...,k2n;kn, ...,k1) such that k1 ≥ k2 ≥ ...≥ k2n and kn ≥ kn+1 +2n.

A weight k defines an algebraic representation of GLn(C)×GLn(C) by

ρk(g+,g−) := ρ(kn,...,k1)(g+)⊗ρ(−kn+1,...,−k2n)(g−)

where ρ(a1,...,an) is the dual of the usual irreducible algebraic representation of GLn with highest weight (a1, ...,an).
Let Vk(C) be the representation of C∞ given by

k∞→ ρk ◦ J(k∞, i).

Fix K an open compact of G(A f ). We let

ShK(G) = G(Q)+\Hn×G(A f )/KC∞.

The automorphic sheaf ωk is the sheaf of holomorphic sections of

G(Q)+\Hn×G(A f )×Vk(C)/KC∞→ G(Q)+\H+
n ×G(A f )/KC∞.

One can also define these Shimura varieties and automorphic sheaves in terms of moduli of abelian varieties. We omit
these here.

The global sections of ωk is the space of modular forms consisting of holomorphic functions:

f : Hn×G(A f )→Vk(C)

which are invariant by some open compact K of the second variable, and satisfy:

µ(γ)
k1+...+k2n

2 ρk(J(γ,Z))−1 f (γ(Z),g) = f (Z,g)

for all γ ∈ gKg−1∩G+(Q). Also, when n = 1 we require a moderate growth condition.

Remark 2. We will be mainly interested in the scalar-valued forms. In this case Vk(C) is 1-dimensional of weight
k = (0, ...,0;κ, ...,κ) for some integer κ ≥ 2.
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3.2 Hida Theory

Hida Theory GL2/Q
We choose a quick way to present Hida theory. Let M be prime to p and χ a character of (Z/pMZ)×. The weight
space is SpecΛ for Λ := Zp[[T ]]. Let I be a domain finite over Λ . A point φ ∈ SpecI is called arithmetic if the
image of φ in SpecΛ is given by the Zp-homomorphism sending (1+ T ) 7→ ζ (1+ p)κ−2 for some κ ≥ 2 and ζ a
p-power root of unity. We usually write κφ for this κ , called the weight of φ . We also define χφ to be the character of
Z×p ' (Z/pZ)×× (1+ pZp) that is trivial on the first factor and is given by (1+ p) 7→ ζ on the second factor.

Definition 3. An I-family of forms of tame level M and character χ is a formal q-expansion f = ∑
∞
n=0 anqn,an ∈ I,

such that for a Zariski dense set of arithmetic points φ the specialization fφ = ∑
∞
n=0 φ(an)qn of f at φ is the q-expansion

of a modular form of weight κφ , character χχφ ω
2−κφ where ω is the Techimuller character, and level M times some

power of p.

Definition 4. The Up operator is defined on both the spaces of modular forms and families. It is given by:

Up(
∞

∑
n=0

anqn) =
∞

∑
n=0

apnqn.

Hida’s ordinary idempotent ep is defined by ep := limn→∞ Un!
p . A form f or family f is called ordinary if ep f = f or

epf = f.

FACT The space of ordinary families is finite and free over the ring I.

Remark 3. For Hilbert modular forms the analogues space is still finite but not free in general. The subspace of
ordinary cuspidal families is both finite and free.

Hida Theory for GU(2,2)
For simplicity let us restrict to the case when the prime to p part of the nebentypus is trivial. Fix some prime to p level
group K of G(Ẑ). Let T be the diagonal torus of U =U(2,2). Let χ be a character of T (Z/pZ). The weight space is
SpecΛ2 where Λ2 is defined to be the completed group algebra of T (1+ pZ) = (1+ pZ)4. Let A be any domain finite
over Λ2.

Definition 5. A weight k = (k1,k2;k3,k4) is a set of integers ki such that k1 ≥ k2 +2≥ k3 +4≥ k4 +4.

Definition 6. A point φ ∈ SpecA is called arithmetic if its image in SpecΛ2 is given by the character [k]χφ .χ where k
is a weight and [k] is given by:

diag(t1, t2, t3, t4) 7→ tk3
1 tk4

2 tk2
3 tk1

4

(We identify U(Zp) ' GL4(Zp) by the first projection of Kp ' Kv0 ×Kv̄0 ) and χφ is a finite order character of
T (1+ pZ).

We are going to define Hida families by a finite number of q-expansions: Let K ⊂ G(A f ) be a level group X(K) be a
finite set of representatives x of G(Q)\G(A f )/K with xp ∈ Q(Zp). For any g ∈ GU(2,2)(AQ) let S+

[g] comprise those
positive semi-definite Hermitian matrices h in Mn(K ) such that Trhh′ ∈ Z for all Hermitian matrices h′ such that(

1 h′

1

)
∈ NQ(Q)∩gKg−1.

Definition 7. For any ring A finite over Λ2 we define space of A-adic forms with tame level K ⊂G(A f ) and coefficient
ring A to be the elements:

F := {Fx}x∈X(K) ∈ ⊕x∈X(K)A[[q
S+
[x] ]]

such that for a Zariski dense set of arithmetic points φ ∈ A the specialization Fφ of F at φ is the q-expansion of
the matrix coefficient of the highest weight vector of holomorphic modular forms of weight kφ and nebentypus

χχφ ω(t−k3
1 t−k4

2 t−k2
3 t−k1

4 ).
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(In the Skinner-Urban case the interpolated points φ are of scalar weights and thus do not need to take the highest
weight vector.)

Definition 8. Some Up operators: for t+ = diag(t1, t2, t3, t4) ∈ T (Qp) such that t2/t1, t3/t2, t3/t4 ∈ pZp. We define an
operator Ut+ on the space of Hermitian modular forms by: Ut+ . f = |[k∗](t)|−1

p f |kut+ where [k∗] = [k+(2,2;−2,−2)]
and f |kut+ is the usual Hecke operator defined by double coset decomposition (with no normalization factors).

Hida proved that this ut+ preserves integrality of modular forms and defined an idempotent:

eord := lim
n→∞

un!
t+ .

A form or family F is called nearly ordinary if eordF = F . Again, we have that the space of nearly ordinary Hida
families with coefficient ring A is finite and free over A. This is called the Hida’s control theorem for ordinary forms.

Remark 4. In order to prove the finiteness and freeness (both in the GL2 and unitary group case) we need to go back
to the notion of p-adic modular forms using the Igusa tower, which we omit here.

Another important input of Hida theory is the fundamental exact sequence proved [11, Chapter 6]. We let C1(K) be the
set of cusp labels of genus 2 and label K ([11, 5.4.3]). Write Λ1 for the weight ring of U(1,1)/Q. Then Skinner-Urban
proved the following

Theorem 3. For any Λ2-algebra A there is a short exact sequence

0→M 0
ord(K

p,A)→M 1
ord(K

p,A)→⊕[g]∈C1(K)M
0
ord(K

p
1,g,Λ1)⊗Λ1 A→ 0.

Here M 0
ord(K

p,A) is the space of A-valued families of ordinary cusp forms on GU(2,2), M 1
ord(K

p,A) is the space of
ordinary forms taking 0 at all genus 0 cusps ([11, 5.4]). The M 0

ord(K
p
1,g,Λ1) is the space of ordinary cusp forms on

U(1,1) with tame level group K p
1,g for K p

1,g = GU(1,1)(A f )∩gKg−1 and GU(1,1) is embedded as the levi subgroup of
the Klingen Parabolic subgroup of GU(2,2). The Φ is the “Siegel operator” giving the restricting to boundary map.
The Λ1-algebra structure for Λ2 is given by the embedding T1 ↪→ T2 : (t1, t2)→ (t1,1, t2,1).

The proof is a careful study of the geometry of the boundary of the Igusa varieties ([11, 6.2,6.3]). This theorem is used
to construct a cuspidal Hida family on GU(2,2) that is congruent to the Klingen Eisenstein series modulo the p-adic
L-function.

One more important property of ordinary families is that the specialization of a nearly ordinary family to a very regular
weight is classical. This will be used to ensure that the ΛD -adic Hecke algebra of ordinary ΛD -adic form can not have
CAP components.

4 Eisenstein Series on GU(2,2)

4.1 Klingen Eisenstein Series

Let P be the Klingen Parabolic subgroup of GU(2,2) consisting of matrices of the form
× 0 × ×
× × × ×
× 0 × ×
0 0 0 ×

 .

Let MP be the levi subgroup of P defined by

MP ' GU(1,1)×ResOK /ZGm,(g,x) 7→


Ag Bg

µ(g)x̄−1

Cg Dg
x

 .
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Let NP be the unipotent radical of P.

Observe that if π is an automorphic representation of GL2 and ψ is a Hecke character of A×K which restricts to the
central character χπ of π on A×Q, then these uniquely determine an automorphic representation πψ of GU(1,1) with
central character ψ . Now suppose we have a triple (π,ψ,τ) where π is an irreducible cuspidal automorphic rep-
resentation of GL2 and ψ and τ are Hecke characters of A×K such that ψ|A×Q = χπ . Then πψ � τ is an automorphic
representation of MP. We extend this to a representation of P by requiring that NP act trivially. Then Klingen Eisenstein
series are forms on GU(2,2) which are induced the above representation of P. In fact we need to first work locally for
each place v (say, finite) of Q. Let (πv,ψv,τv) be the local triple then (πψ)v � τv is a representation of MP(Qv). We
extend it to a representation ρv of P(Qv) by requiring that NP(Qv) acts trivially. Then we form the induced represen-
tation I(ρv) = IndG(Qv)

P(Qv)
ρv. When everything is unramified and φv is a spherical vector of πv, there is a unique vector

f 0
φv
∈ I(ρv) which is invariant under G(Zv) and f 0

φv
(1) = φv. The Archimedean picture is slightly different (see [11,

section 9.1]).

Let φ =⊗vφv ∈ π and let I(ρ) be the restricted product of the I(ρv)’s with respect to the unramified vectors above. If
f ∈ I(ρ) we let fz(g) = δ (m)

3
2+zρ(m) f (k) for g=mnk∈MPNPK. Here we let K be G(Ẑ). Note that the fz takes values

in the representation space V of π . However π can be embedded to the space of automorphic forms on GL2(AQ). We
also write fz(g) for the function on GU(2,2)(AQ) given by fz(g)(1).

The Klingen Eisenstein Series is defined by:

E( f ;z,g) := ∑
γ∈P(Q)\G(Q)

fz(γg).

This is absolutely convergent for Rez >> 0 and can be meromorphically continued to all z ∈ C.

4.2 p-adic Families

Let I be a normal domain finite over Zp[[W ]]. (W is a variable) and f is a normalized ordinary eigenform with coeffi-
cient ring I. In section 8 we are going to define the “Eisenstein Datum” D which contains the information of f,I,K ,
etc. Define ΛD := I[[ΓK ]][[Γ−K ]]. We are going to define the set of arithmetic points φ ∈ SpecΛD and this ΛD p-adically
parameterizes triples ( fφ ,ψφ ,τφ ) to which we associate the Klingen Eisenstein series. Later we will also give ΛD the
structure of a finite Λ2-algebra and construct a ΛD -adic nearly ordinary Klingen Eisenstein family, which we denote
by ED .

Now we consider ΛD -adic cusp forms on GU(2,2). Let hD := hΣ ,0
ord (K,ΛD ) be the Hecke algebra for the space of

ΛD -coefficient nearly ordinary cuspidal forms with respect to some level group K. It is generated by Hecke operators
at primes outside Σ and the prime p.

Definition 9. Let ID be the ideal of hD generated by {T − λED
(T )}’s for T elements in the abstract algebra. Here

λED
(T ) is the Hecke eigenvalue of T on ED . The structure map ΛD → hD/ID is easily seen to be surjective. Thus

there is an ideal ED of ΛD such that ΛD/ED ' hD/ID . This ED is called the Klingen Eisenstein ideal.

The motivation to define this ideal will be more clear after we have discussed the Galois representations.

5 Galois Representations and Lattice construction

5.1 Galois Representations

We first recall the following theorem (due to Harris-Taylor, S.W Shin, S. Morel, C.Skinner et al.) attaching Galois
representations to automorphic representations on GU(n,n).
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Theorem 4. Let π be an irreducible cuspidal representation of GU(n,n)(AQ) and let χπ be its central character. Let
Σ(π) be the finite set of primes ` such that either π` or K is ramified. Suppose π∞ is the regular holomorphic discrete
series of weight k := (kn+1, ...,k2n;k1, ...,kn) such that

k1 ≥ ...≥ kn,kn ≥ kn+1 +2n,kn+1 ≥ ...≥ k2n.

Then there is a continuous semisimple representation:

Rp(π) : GK → GLn(Q̄p)

such that:

(i) Rp(π)
∨(1−2n)⊗σ1+c

χπ
' Rp(π)

c.
(ii) Rp(π) is unramified outside primes above those in Σ(π)∪{p} and for such primes w we have

det(1−Rp(π)(frobw)q−s
w ) = L(BC(π)w⊗ψw,s+

1
2
−n)−1.

(iii) If π is nearly ordinary at p, then:

Rp(π)GKv0
'

ξ2n,v0ε−κ2n ∗ ∗
0 ... ∗
0 0 ξ1,v0 ε−κ1


and

Rp(π)|GK ,v̄0
'

ξ1,v̄0εκ1+1−2n−|k| ∗ ∗
0 ... ∗
0 0 ξ2n,v̄0εκ2n+1−2n−|k|

 .

Here ξi,v0 and ξi,v̄0 are unramified characters and ε is the cyclotomic character, |k|= k1 + ...+ k2n, κi = ki +n− i for
1≤ i≤ n and κi = ki +3n− i for n+1≤ i≤ 2n.

Returning to the GU(2,2) case, it is formal to patch the Galois representations attached to cuspidal nearly ordinary
forms to a Galois pseudo-character RD of GK with values in hD . (Pseudo characters are firstly introduced by Wiles
[14]. They are function on GK satisfying the relations that should be satisfied by the trace of a representation. However
it does not necessarily come from a representation. We omit the definitions.) We can associate a Galois representation
ρED

to the Klingen Eisenstein family ED with coefficient ring ΛD by a similar recipe. It is essentially the direct sum
of the Galois representation ρf associated to the Hida family f with two ΛD -adic characters.

The motivation for the Klingen Eisenstein ideal is:

RD (modID ) = trρED
(modED ).

(Recall that hD/ID 'ΛD/ED .) This relation follows from the congruences for the corresponding Hecke eigenvalues.
Also, RD is generically “more irreducible” than ρED

in the sense that it can be written as the sum of at most two
“generically irreducible” pseudo-characters while ρED

has three pieces. (This is proven in [11, 7.3.1] using a result of
M.Harris on non-existence of CAP forms of very regular weights.)

The next thing to do is use the “lattice construction” to get the Galois cohomology classes from the congruences be-
tween irreducible and reducible Galois representations.

Recall in the last section we have:
ΛD/ED

∼−→ hD/ID
traceρED

(modED ) = RD (modID ).

Our goal is to prove:
(L Σ

1,QL Σ
f,K )⊃ ED ⊃ charΣ

f,K .

Now we are going to prove the second inclusion using the lattice construction. The first one will be proved at the end
of section 9.
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5.2 Galois Argument: Lattice Construction

The lattice construction in [11] involves 3 irreducible pieces and is complicated. Instead we are going to give the
lattice construction which involves only 2 pieces (the case in [15]) and briefly mention the difference at the end. We
partly follow the treatment of C.Skinner’s CMI lecture notes [10]. Let us axiomize the situation: let Λ be the weight
algebra and I a reduced ring which is a finite Λ -algebra. Let ρ be a Galois representation of GQ on I2. Let J and I be
nonzero ideals of Λ and I such that the structure map induces Λ/J ' I/I. Let P be a height one prime of Λ such that
ordP(J) = t > 0. Then there is a unique height one prime P′ of I containing (I,P). Since I is reduced we can talk about
its total fraction ring K = ∏i FJi where the Ji’s are domains finite over I and the FJi ’s are the fraction fields of the Ji’s.

Suppose:

1 Each representation ρJi on F2
Ji

induced from ρ via projection to FJi is irreducible.
2 There are Λ×-valued characters χ1 and χ2 of GQ such that:

trρ(σ)≡ χ1(σ)+χ2(σ)(modI)

for each σ ∈ GQ.
3 There are I×-valued characters χ ′1 and χ ′2 of GQp such that

ρ|GQp
'
(

χ ′1 ∗
χ ′2

)
and there is a σ0 ∈ GQp such that χ ′1(σ0) 6≡ χ ′2(σ0)(modP′).

4 χ1(σ)≡ χ ′1(σ)(mod I), χ2(σ)≡ χ ′2(σ)(mod I) for each σ ∈ I[GQp ].
5 ρ is unramified outisde p.

We define the dual Selmer group X := H1
ur(Q,Λ ∗(χ−1

1 χ2))
∗. Here “ur” means extensions unramified everywhere and

∗ means Pontryagin dual.

Definition 10. Let charΛ (X) be the characteristic ideal of X as a Λ module.

We are going to prove:

Proposition 1. Under the assumptions above, ordP(charΛ (X))≥ ordP(J).

Proof. Suppose t = ordP(J) > 0. We take the σ0 in assumption (3) and a basis (v1,v2) so that ρ(σ0) has the form(
χ1(σ0)

χ2(σ0)

)
. We write ρ(σ) =

(
aσ bσ

cσ dσ

)
∈M2(K) for each σ ∈K[GQ] with respect to this basis. Then we claim

the following. Let r := χ1(σ0)−χ2(σ0), (so r 6∈ P)

a raσ ,rdσ ,r2bσ cτ ∈ I for all σ ,τ ∈ I[GQ] and raσ ≡ rχ1(σ)(modI), rdσ ≡ rχ2(σ)(modI), r2bσ cτ ≡ 0(modI).
b C := {cσ : σ ∈ I[GQ]} is a finite faithful A-module;
c cσ = 0 for σ ∈ Ip.

(c) is by (3) and (b) follows easily from assumption (1) and GQ being compact. (a) is by calculation: e.g. set δ1 :=
σ0−χ2(σ0) then raσ = traceρ(δ1σ)≡ rχ1(σ)(modI) by assumption (2).

Now we deduce the proposition using these claims. We write ΛP, IP, etc for the localizations at P and define
M := IP[GQ]v1 ⊂ V . Then it is easy to check that M = IPv1⊕CPv2. Define M2 := CPv2. Then (a) implies M̄2 :=
M2/IM2 ⊂ M̄ := M /IM is a direct summand that is GQ stable. Define M1 = IPv1 and M̄1 = M1/IM1 then we
have

0→ M̄2→ M̄ → M̄1→ 0.

Now we return to the lattice construction without localization at P. We will find a finite Λ -module m2 ⊆ M̄2 such that

i m2,P = M̄2;
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ii there exists a Λ -map X →m2 that is a surjection after localizing at P.

Then ordP(charΛ (X)) = ordP(charΛP(XP)) = ordP(FittΛP(ΛP/charΛP(XP))) ≥ ordP(FittΛPm2,P) = ordP(FittΛPM̄2).
But FittΛPM̄2(mod J) = FittΛP/JΛPM̄2 = FittIP/IIPM̄2 = FittIPM̄2(modI) = FittIPM2(modI) = 0, the last equality
follows from the fact that M2 is a faithful submodule of FracI in view of the generic irreducibility of the Galois rep-
resentation ρ . So FittΛPM̄2 ⊆ J and ordP(charΛ (X))≥ ordPJ.

Now let m ⊂M be the I[GQ]-module generated by v̄1, m2 := m∩ M̄2, m1 := m/m2 ⊂ M̄1. Note that m2,P = M̄2.
Then we have:

0→m2→m→m1→ 0. (*)

• By assumption (5) and (c) above this extension is everywhere unramified.
• M̄1 'Λ/PtΛ as Λ -module by definition. So it is easy to see m1 'Λ/PtΛ as well.
• By (a) the GQ-action on m2 and m1 are given by χ2 and χ1 respectively.

We expect the (∗) in the matrix to give the desired extension. More precisely let [m] ∈ H1(Q,m2(χ
−1
1 χ2)) be the

class defined by (∗). Then we get a canonical map θ : HomΛ (m1,Λ
∗)→ H1(Q,Λ ∗(χ−1

1 χ2)). Taking the Pontryagin
dual θ ∗ : H1(Q,Λ ∗(χ−1

1 χ2))
∗→m2. We claim that θ ∗ becomes surjective after taking localization at P. (As in Section

2 this is basically because m is generated by v̄1 over I[GQ].)

Proof of the claim
Let R= ker(θ) and let S⊂R be any finite subset, mS := ∩φ∈Skerφ . Then we have:

0→m2/mS→∏
φ∈S

Λ
∗→∏

φ

Λ
∗/(m2/mS)→ 0. (**)

Equip each module with the GQ action χ
−1
1 χ2 and take the cohomology long exact sequence. By the definition of R the

image of [m] in H1(Q,m2/mS(χ
−1
1 χ2)) is in the kernel of the map H1(Q,m2/mS(χ

−1
1 χ2))→H1(Q,∏φ∈S Λ ∗(χ−1

1 χ2))

which is a quotient of ∏φ∈S Λ ∗(χ−1
1 χ2)

GQ which is killed by r = χ1(σ0)−χ2(σ0) 6∈ P. Thus the exact sequence

0→ (m2/mS)P→ (m/mS)P→m1,P→ 0

is split. If (m2/mS)P 6= 0 then this contradicts the fact that m is generated by v̄1 over I[GQ]. Thus m2,P =mS,P. By the
arbitrariness of S we get RP = 0. This proves the claim.

Now we compare with the [11] case. There we have 3 irreducible pieces and the matrix is like

χ1
∗ ρ f
∗ χ2

. We expect

the upper ∗ in the matrix to give the required extension. However we are not able to distinguish the contribution of (∗) to
H1

f (K ,χ−1
1 ρ f ) and H1

f (K ,χ−1
1 χ2)

c=1 = H1
f (Q,τ) where τ is the composition of the transfer map V : Gab

Q →Gab
K and

χ
−1
1 χ2. But by the Iwasawa main conjecture for Hecke characters proved in [15], this H1

f (K ,χ−1χ2)
c=1 is controlled

by the p-adic L-function for the trivial character, which is a unit.

6 Doubling Methods

6.1 Siegel Eisenstein Series on GU(n,n)

Let Qn be the Siegel parabolic consists of block matrices
(
× ×
×

)
. Let v be a finite prime of Q, write Kn,v for

GU(n,n)(Zv). Fix χ a character of K ×
v . Let In(χ) be the space of smooth and Kn-finite functions f : Kn,v → C

such that f (qk) = χ(detDq) f (k) for q =

(
Aq Bq

Dq

)
∈ Qn from such f we define
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f (z,−) : Gn(Qv)→ C

by
f (z,qk) := χ(detDq)|detAqD−1

q |
z+ n

2
v f (k).

Suppose Kv is unramified over Qv and χ is unramified, then there is a unique vector f 0 ∈ I(χ) which is invariant
under Kn,v and f 0(1) = 1. There is an Archimedean picture as well (See [11, 11.4.1]).

Now let χ =⊗vχv be a Hecke character of A×K /K ×. Then we define I(χ) as a restricted product of local I(χv)’s as
above with respect to the above unramified vectors. For any f ∈ I(χ) we define the Siegel Eisenstein series

E( f ;z,g) := ∑
γ∈Qn(Q)\Gn(Q)

f (z,γg).

This is absolutely convergent if Rez >> 0 and has a meromorphic continuation to all z ∈ C.

6.2 Some Embedding

The Klingen Eisenstein series are difficult to compute, while Siegel Eisenstein series are much easier. The point of
doubling method is to reduce the computation of the former to the latter. We are going to introduce some important
embeddings that are used in the Pullback formulas. Let (V1,ω1) be the Hermitian space for U(1,1) and (V−1 ) another
Hermitian space whose metric is (−ω1). Elements of V1 and V−1 are denoted (v1,v2) and (u1,u2) for vi,ui ∈K . Let
V2 = V1⊕X ⊕Y be the Hermitian space for U(2,2) where X ⊕Y is a 2-dimensional Hermitian space for the metric(

1
−1

)
and elements are written as (x,y) for x,y ∈K with respect to this basis. Let W =V2⊕V−1 be the Hermitian

space for U(3,3). Let R =


1

1
1

1
1

1

 and S =


1

1
1
−1 1

1
−1 1

 These give maps:

(v1,x,v2,y,u1,u2) 7→ (v1,x,u2,v2,y,u1)

(v1,x,u2,v2,y,u1) 7→ (v1−u1,x,u2− v2,v2,y,u1).

Now we define the embedding:

γ3 : G2,1 := {(g,g′) ∈ GU(2,2,)×GU(1,1),µ(g) = µ(g′)} ↪→ GU(3,3)

by (
g

g′

)
7→ S−1R−1

(
g

g′

)
RS.

Let V d be the image of V1 in V1⊕V−1 by the diagonal embedding. Let τ1 be any element of U(3,3)(Q) which maps the
maximal isotrophic subspace V d⊕X to K v1⊕K u1⊕X , then one can check that: τ

−1
1 Q3τ1∩γ3(U(2,2)×U(1,1)) =

γ3(Q2×B1). An important property of such embedding is:

{(m(g,x)n,g) : g ∈ GU(1,1),x ∈ ResK /QGm,n ∈ NP} ⊂ Q3.

12



6.3 Pullback Formula

Let χ be a unitary Hecke character as before and f ∈ I(χ). Given a cusp form ϕ on G1, define the pullback section by:

Fϕ( f ,z,g) :=
∫

U(1,1)(A)
f (z,γ3(g,g1h))χ̄(detg1h)ϕ(g1h)dg1

where h ∈ GU(1,1)(A) is any element such that µ(h) = µ(g). This is absolutely convergent if Rez >> 0. It is easy to
see that Fφ does not depend on the choice of h. Note that this is a Klingen Eisenstein section. Then

Proposition 2. For z in the region of absolute convergence and h as above, we have:∫
U(1,1)(Q)\U(1,1)(A)

E( f ;z,γ3(g,g1h))χ̄(detg1h)ϕ(g1,h)dg1 = ∑
P(Q)\GU(2,2)(Q)

Fϕ( f ;z,γg).

Remark 5. The right hand side is nothing but the expression of the Klingen Eisenstein series.

Proof. This is proven by Shimura [9]. There Shimura proved the following double coset decomposision in (2.4) and
(2.7) in loc.cit:

U(3,3) = Q3γ3(U(2,2)×U(1,1))∪Q3τ1γ3(U(2,2)×U(1,1))

and
Q3γ3(U(2,2)×U(1,1)) = ∪β∈U(2,2),ξ∈U(1,1)Q3γ3((β ,ξ )),

Q3τ1γ3(U(2,2)×U(1,1)) = ∪β∈Q2\U(2,2),γ∈B1\U(1,1)Q3τ1γ3((β ,γ)).

Thus by unfolding the Siegel Eisenstein series we write the integration into two parts. We claim that the integration
for the part involving terms with τ1 is 0. We first fix β and sum over the γ’s, this equals∫

B1(Q)\U(1,1)(A)
f (z;τ1γ3((βg,g1h)))ϕ(g1h)dg1.

Recall we have noted that τ1γ3(1,B1)τ
−1
1 ⊆ Q3. Since ϕ is cuspidal,

∫
B1(Q)\B1(AQ)

φ(bg1h)db = 0 for all g1. Thus the
integration is 0. This proves the claim. The proposition then follows from our description for Q3γ3(U(2,2)×U(1,1)).

7 Constant Terms

Suppose φ is of weight κ and let zκ = κ−3
2 . Let P be the Klingen parabolic and R any standard Q parabolic of GU(2,2).

We are going to compute the constant terms E( f ,z,g)R of the Klingen Eisenstein series E( f ,z,g) along R. We write
NR for the unipotent radical of P. The constant term along R is given by:

E( f ,z,g)R =
∫

NR(Q)\NR(A)
E( f ,z,ng)dn.

A famous computation of Langlands tells us that: if R 6= P then E( f ,z,g)R = 0. For R = P we first define the inter-
twining operator:

A(ρ,z, f )(g) :=
∫

NP(A)
fz(wng)dn.

This is absolutely convergent for Rez >> 0 and is defined for all z∈C by meromorphic continuation. It is a product of
local integrals. This intertwins the representations I(ρ) and some I(ρ1) where ρ1 is defined similar to ρ but replacing
(π,ψ,τ) by (π×(τ ◦det),ψττc, τ̄c). Then E( f ,z,g)P = fz(g)+A(ρ,z, f )(g). It turns out that under our choices z = zκ

and κ > 6, A(ρ,z, f ) is absolutely convergent and the Archimedean component is 0. Thus A(ρ,zκ , f ) equals 0. Thus

E( f ,zκ ,g)P = fzκ
(g).

Let us explain how the special L-values that we are interested in show up in the constant term of the Klingen Eisenstein
series. The Klingen section f is realized as the pullback section of some Siegel Eisenstein series on GU(3,3). At the
unramified places a computation of Lapid and Rallis [5] tells us that if the Siegel section is f 0

v then the pullback section
is f 0

φv
L(π̃,ψ/τ,z+1)L(χ̄π(ψ/τ)′,2z+1) Here the first L-factor is the local Euler factor for the base change of the dual

π̃ twisted by ψ/τ and the second is a Dirichlet L-factor. Taking the product over all good primes, the special L-values
we are interested in show up as the constant term of the Klingen Eisenstein series obtained by pullback.
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8 p-adic Interpolation

Definition 11. An Eisenstein datum is a sextuple D := (A,I, f,ψ,ξ ,Σ) where

• A is a finite Zp-algebra and I is a normal domain finite over A[[W ]].
• f is a Hida family of cuspidal newforms with coefficient ring I.
• ψ is an A-valued finite order character which restricts to the tame part of the central character of f on A×Q.
• ξ is another A-valued finite order Hecke character of A×K .
• Σ is a finite set of primes containing all the bad primes.

Recall that we have defined a ring ΛD = I[[ΓK ]][[Γ−K ]]. We use ΛD to interpolate triples ( f ,ψ,τ) that are used to
construct Klingen Eisenstein series. Recall that we have defined a weight ring Λ2 ' Zp[[Γ2]] for Γ2 ' (1+ pZp)

4. We
first give ΛD a Λ2-algebra structure. We define homomorphisms α : A[[ΓK ]]→ I[[Γ−K ]] and β : A[[ΓK ]]→ I[[ΓK ]] (we
omit the formulas). Then the Λ2-algebra structure map is given by composing α ⊗β : A[[ΓK ×ΓK ]]→ ΛD with the
map Γ2→ ΓK ×ΓK given by:

(t1, t2, t3, t4) 7→ recK (t3t4, t−1
1 t−1

2 )× recK (t4, t−1
2 ),

where recK is the reciprocity map in class field theory normalized by the geometric Frobenius. Let ψ :=α ◦ω−1ψΨ
−1
K

and ξ := β ◦χfξΨK .

Definition 12. A point φ ∈ SpecΛD is called arithmetic if φ |I is arithmetic with some weight κφ ≥ 2 and there are
ζ±,ζ

′
− ∈ µp∞ such that φ(γ+) = ζ+(1+ p)κφ−2,φ(γ−) = ζ− for γ± ∈ Γ

±
K and φ(γ−

′
) = ζ ′− for γ−

′
the topological

generator of Γ
−

K .

For every such φ we define Hecke characters. Let p = v0v̄0 be the decomposition in K and let

ψφ (x) := x
−κφ

∞ x
κφ

v0 (φ ◦ψ)(x), ξφ = φ ◦ξ .

Then we can construct a ΛD -coefficient formal q-expansion Esieg that, when specialize to a Zariski dense set of
arithmetic points φ , is the nearly ordinary Klingen Eisenstein series EKling,φ we constructed using the triple: (fφ ,

ψφ |.|
κφ

2 ,τφ = ψφ ξ
−1
φ
|.|

κφ

2 ). This is achieved by first constructing a ΛD -adic Siegel Eisenstein series on GU(3,3) and
using the pullback formula to construct the Klingen Eisenstein family on GU(2,2). To do this we need to choose a
Siegel section fφ at each arithmetic point φ so that

1 fφ depends p-adic analytically on φ ;
2 the pulls back of fφ to (a multiple of) the nearly ordinary Klingen Eisenstein section.

The hardest part is the computations at the primes dividing p ([11, 11.4.14,15,19]). It turns out that certain Siegel-Weil
Eisenstein sections work well. In fact in [11], the section is not given in terms of the Siegel-Weil section. However it
indeed provided the idea of how the section given in loc.cit is figured out. Let us briefly explain the idea.

Let Φ be the Schwartz function on M(3,6)(Qp) defined by:

Φ(X ,Y ) := Φ1(X)Φ̂2(Y ),

where X and Y are 3×3 matrices and define a Siegel-Weil section by:

f Φ(g) = χ
−1
2 (detg)|detg|−s+ 3

2
p ×

∫
GL3(Qp)

Φ((0,X)g)χ−1
1 χ

−1
2 (detX)|detX |−2s+3

p d×X

for χp = (χ1,χ2). The Φ̂2 means the Fourier transform of Φ2. We let Φ1 be a Schwartz function supported on the set
of matrices X such that the X13 and X31 are in Z×p and the values on it is given by the product of two characters of
X13 and X31. Choosing Φ2 properly and unfolding the formula for the β -th local Fourier coefficients, we can make
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sure that it is essentially given by Φ1(
tβ ) (up to some easier constant depending on β ). Thus the first requirement is

ensured. This Siegel Weil section is explicitly given by

fp(g) = ∑
a∈(Op/x)×

f 0,(2)
z (g

(
a−1

ā

)
)

where (x) = cond(ξ c), τ is our χ defining the Siegel Eisenstein section, ξ = ψ/τ and f 0,(2)
z in loc.cit lemma 11.4.20.

How to interpolate the Klingen Eisenstein series?

Hida proved the existence of a Hecke operator 1 f ∈ Tord
κ (N,χ f ,A)⊗A FA on the space Sord

κ (N,χ f ) of ordinary cusp
forms with weight κ level N and character χ f . such that

1 f .g =

< g, f c|κ
(
−1

N

)
>

< f , f c|κ
(
−1

N

)
>

f .

This 1 f is not necessarily p-adically integral ([3]). The congruence number η f is defined (up to a p-adic unit) to be
the minimally divisible by p number such that ` f := η f 1 f is in Tord

κ (N,χ f ,A). The candidate that we choose for the
Klingen Eisenstein series EKling,φ at the arithmetic point φ is the one such that:

`
U(1,1)
f eU(1,1)Esieg,φ |U(2,2)×U(1,1) = EKling,φ � f .

Here the superscript means the Hecke operators are applied to the forms considered as a form on U(1,1). If we replace
f by a Hida family f and suppose the local Hecke algebra Tm f (the localization of the Hecke algebra at the maximal
ideal m f corresponding to f ) is Gorenstein, then we can similarly define 1f and ηf, `f, thus interpolating everything in
p-adic families.

In particular, we get the Klingen-Eisenstein series interpolating EKling,φ whose constant terms are divisible by L Σ
f,K .L Σ

1
in light of the discussion at the end of the last section.

9 Fourier-Jacobi Coefficients

Recall that we have seen that the constant terms of the Klingen Eisenstein family are divisible by the p-adic L-function.
In order to show that the Eisenstein ideal is contained in the principal ideal (L Σ

f,K ), we still need to show that some
Fourier coefficient is co-prime to the p-adic L-function.

9.1 Generalities

We are going to compute the Fourier-Jacobi coefficient of the Siegel Eisenstein serie Esieg as a function on U(1,1)(A)
via the embedding γ3 : U(2,2)×U(1,1) ↪→U(3,3). The purpose is, by the pullback formula introduced in the previous
section, to express the Fourier coefficients of the Klingen Eisenstein series in terms of the Petersson inner product with
the cusp form we start with. For Z ∈H3

Esieg(Z ) = ∑
T≥0

aT e(TrTZ ).

Write S2(Q) or S2(Qv) for the set of 2×2 Hermitian matrices over Q or Qv. For β a 2×2 Hermitian matrix the β th
Fourier-Jacobi coefficient is

∑

T=

(
β ∗
∗ ∗

)aT e(TrTZ ).
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We have an integral representation for the Fourier-Jacobi coefficients:

Esieg,β (g) =
∫

NQ(Q)\NQ(A)
Esieg(

13
S 0
0 0
13

g)eA(−TrβS)dS.

Here eA =⊗ev and ev(xv) = e−2πi{xv} for v a finite primes and ev(xv) = e2πxv for x ∈ ∞. The following lemma gives a
way to compute the Fourier-Jacobi coefficients of Esieg.

Lemma 1. Let f ∈ I3(χ), β ∈ S2(Q). Suppose β > 0. Let V be the 2-dimensional K -space of column vectors. If
Re(z)> 3

2 . Then:

Esieg,β ( f ;z,g) = ∑
γ∈Q1(Q)\G1(Q)

∑
x∈V

∫
S2(A)

f (w3

13
S x
tx̄ 0
13

α1(1,γ)g)eA(−TrβS)dS.

Proof. We omit it here. See [11, 11.3]

The integrand in the lemma is a product of local integrals. We are mainly interested in evaluating the Fourier Jacobi
coefficients at α1(diag(y, tȳ−1),g) for y ∈ GL2(AK ) and g ∈U1(AQ).

Definition 13. For each prime v of Q and f ∈ I3(χv), set

FJβ ( f ;z,x,g,y) =
∫

S2(Qv)
f (z,w3

13
S x
tx̄ 0
13

α1(diag(y, tȳ−1),g))ev(−TrβS)dS.

We are going to identify the Fourier Jacobi coefficients with some forms that we are more familiar with.

9.2 Backgrounds for Theta Functions

Local Picture
Let v be a prime of Q and h ∈ S2(Qv), deth 6= 0. Then h defines a two-dimensional Hermitian space Vv. Let Uh be the
corresponding unitary group. Let λv be a character of K ×

v whose restriction to Q×v is trivial. One can define the Weil
representation ωh,λ of Uh(Qv)×U(1,1)(Qv) on the space S(Vv) of Schwartz functions on Vv (we omit the formulas).

Global Picture
Now let h ∈ S2(Q),h > 0 and a Hecke character λ = ⊗λv of A×K /K × such that λ |A×Q = 1. Then we define a Weil

representation ωh,λ of Uh(AQ)×U(1,1)(AQ) on S(V ⊗A) by tensoring the local representations.

Theta Functions
Given Φ ∈ S(V ⊗AQ) we define

Θh(u,g;Φ) := ∑
x∈V

ωh,λ (u,g)Φ(x)

which is an automorphic form on Uh(AQ)×U1(AQ) and gives the theta correspondence between Uh and U(1,1).

9.3 Coprime to the p-adic L-function

Now let us return to the Fourier Jacobi coefficients. It turns out that by some local computations, for each v, FJβ ( f ;z,x,g,y)
has the form f1(g)(ωβ ,λv(y,g)Φv)(0) where we have chosen a Hecke character λ as above, f1 ∈ I1(χv/λv) and Φv is a
Schwartz function on K 2

v , ωβ ,λv is defined using the character λv. Thus from lemma 1 the Fourier Jacobi coefficient
is the product of an Eisenstein series E1(g) and a theta series Θβ (y,g).
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Now we prove that the Klingen Eisenstein series is coprime to the p-adic L-function. Let us take an auxiliary Hida
family g of cuspidal eigenforms. Using the functorial property of the theta correspondence we can find some linear
combinations of Eβ ( f ;zκ ,α1(diag(y, tȳ−1),g))’s which “picks up” the g-eigencomponent of Θβ (y,g) (as a function of
g). By pairing this with the original φ ∈ π we started with, we find certain linear combinations of the Fourier coef-
ficients of the Klingen Eisenstein family which can be expressed in the form AgBg where Bg is the “multiple” of g
showing up in Θβ (y,g). By choosing g properly Bg can be made a unit in ΛD (g is chosen to be a Hida family of theta
series from the quadratic imaginary field K . Bg interpolates a square of central critical values of Hecke L-functions
of CM characters. One needs to use a result of Finis [2] on the non-vanishing modulo p of anticyclotomic Hecke
L-values to conclude Bg can be chosen to be a unit). The factor Ag is interpolating < E1(g).g, fφ >, essentially the
Rankin Selberg L-values of g with f. By checking the nebentypus we find that Ag only involves I[[Γ +

K ]] and is non-zero
by the temperedness of f and g.

Now we make the following assumption: N = N+N− where N+ is a product of primes split in K and N− is a square-
free product of an odd number of primes inert in K . Furthermore we assume that for each `|N−, ρ̄f is ramified at `.
Under this assumption Vatsal [12] proved if we expand the p-adic L-function as:

L Σ
f,K = a0 +a1(γ

−−1)+a2(γ
−−1)2 + ......

for ai ∈ I[[Γ +
K ]], then some ai must be in (I[[Γ +

K ]])×. This implies (easy exercise) that Ah is outside any height one
prime P of I[[ΓK ]] containing L Σ

f,K (since Ag belongs to I[[Γ +
K ]], one may assume P = P+I[[Γ +

K ]] for some height
one prime P+ of I[[Γ +

K ]]. By Vatsal’s result, ordP+(L
Σ

f,K ) = 0.)

We are ready to prove the result promised in the previous section: ordP(ED ) ≥ ordP(L Σ
f,K .L Σ

1 ) for any height one
prime P (Here L Σ

1 is the p-adic L-function for the trivial character, which is co-prime to (L Σ
f,K ) by the work of Vatsal.

In [11] Skinner-Urban actually worked in a more general setting by allowing non-trivial characters). First recall that
all constant terms of the Klingen Eisenstein family are divisible by L Σ

f,K L Σ
1 . By the fundamental exact sequence

one can find some family F of forms on GU(2,2) such that ED − (L Σ
f,K )(L Σ

1 )F := H is a cuspidal family. Now we
prove the desired inequality. Suppose r = ordP(L Σ

f,K )≥ 1. By construction there is a Fourier coefficient of the above
constructed cuspidal family H outside P. Denote it as c(β ,x;H) where β ∈ S2(Q) and x ∈GU(2,2)(AQ). We define a
map:

µ := hD →ΛP/Pr
ΛP

by: µ(h) = c(β ,x;hH)/c(β ,x;H). This is ΛD -linear and surjective. Moreover,

c(β ,x;hH)≡ c(β ,x;hED )≡ λD (h)c(β ,x;ED )≡ λD (h)c(β ,x,H)(mod Pr).

Thus ID ⊆ kerµ . So we have a surjection µ : hD/ID � ΛP/PrΛP. But the right hand side is ΛD/ED . This gives the
inequality.

10 Generalizations of the Skinner-Urban Work

We have seen that the key ingredient of this work is a study of the p-adic properties of the Fourier coefficients of the
Klingen Eisenstein series. To generalize this argument to more general unitary groups we need some non-vanishing
modulo p results for special values of L-functions, which so far is only available for forms on unitary groups of rank
at most 2. We are able to study the Klingen Eisenstein series for U(1,1) ↪→U(2,2) and U(2,0) ↪→U(3,1), proving
the corresponding main conjectures for two different Rankin Selberg p-adic L-functions. Here we only mention the
following by product ([13]):

Theorem 5. Let F be a totally real field in which p splits completely. Let f be a Hilbert modular form over F with
trivial character and parallel weight 2. Let ρ f be the p-adic representation of GF associated to f . Suppose:

1 f has good ordinary reduction at all primes dividing p;
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2 ρ̄ f is absolutely irreducible.
3 If [F : Q] is even and the global sign of f if −1, then the automorphic representation of f is not principal series in

at least one finite place.

If the central value L( f ,1) = 0, then H1
f (F,ρ f )is infinite.

In the case when the sign of L( f ,s) is −1 this is an early result of Nekovar [7] and Zhang [16]. The cases when this
sign is +1 is new. Note that even in the case when F =Q our result is slightly stronger than the one in [11]. The reason
is that by working with general totally real fields we can use a base change trick to remove some of the technical local
conditions [11].
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