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Abstract

In this paper we use the doubling method to construct p-adic L-functions and families of
nearly ordinary Klingen Eisenstein series from nearly ordinary cusp forms on unitary groups of
signature (r, s) and Hecke characters, and prove the constant terms of these Eisenstein series are
divisible by the p-adic L-function, following earlier constructions of Eischen-Harris-Li-Skinner
and Skinner-Urban. We also make preliminary computations for the Fourier-Jacobi coefficients
of the Eisenstein series. This provides a framework to do Iwasawa theory for cusp forms on
unitary groups.

1 Introduction

Let p be an odd prime. Let L be a CM field with the maximal totally real subfield F' such that
[F' : Q] = d. Suppose p is totally split at K. We fix an isomorphic ¢, := C, ~ C and a CM
type Yoo, which means a set of d different embeddings K — C such that X, U X< is the set
of all embeddings of K into C where ¢ means complex conjugation. This determines a set of
embeddings K — C,, using ¢, which we denote as >,. Let r > s > 0 be integers. We often write
a=r—sand b=s. Let U(r,s) be the unitary group associated to the skew-Hermitian matrix
1y
¢ where ( is a diagonal matrix such that i~ is positive definite.
—1,

In [2] the authors constructed the p-adic L-function for an irreducible cuspidal automorphic
representation of U(r, s) that is nearly ordinary at all primes dividing p, which interpolates (the
algebraic part of) critical values of the standard L-function of the representation twisted by
general CM characters at far from center critical points. The main tool used in loc.cit is the
doubling method of Piatetski-Shapiro and Rallis. This paper can be thought of as a continuation
of their work, but instead using a more general pullback formula of Shimura (which is actually
due to Garrett [5], [6] and is called the “Garrett map”) to construct p-adic families of Klingen
Eisenstein series on U(r + 1, s 4+ 1) from the original automorphic representation.

The motivation for doing this is to provide a framework to generalize the important work of
Skinner-Urban [28] on Iwasawa main conjectures for GLy to forms on general unitary groups.
The general strategy is start with a family of cuspforms on the unitary group U(r,s) and a
family of CM characters, we construct a family of Klingen Eisensstein series on the bigger group
U(r+1,s+41). One tries to prove the constant terms of the Klingen Eisenstein family is divisi-
ble by the standard p-adic L-function of the cuspforms on U(r, s) and therefore, the Eisenstein



family is congruent to cuspidal families modulo this p-adic L-function. Passing to the Galois
side such congruences enable us to construct elements in the Selmer groups, proving one di-
visibility of the corresponding Iwasawa main conjecture. We have been able to use it to prove
one divisibility of the Iwasawa main conjectures for Hilbert modular forms and some kinds of
Rankin-Selberg p-adic L-functions, see [30], [3I]. C. Skinner has recently been able to use the
result of [30] to prove a converse of a theorem of Gross-Zagier-Kolyvagin which states that if
the rank of the Selmer group of an elliptic curve is one and the p-part of the Shafarevich-Tate
group is finite, then the Heegner point is non-torsion and the central L-value vanishes at order
exactly one ([27]). The first step towards the plan outlined above, is to construct the family
of Klingen-Eisenstein series and studying the p-adic properties of its Fourier-Jacobi coefficients,
which is the main task of the present paper.

In [2] the interpolation formulas are proved at all arithmetic points. However in this paper we are
only able to understand the pullback Eisenstein sections in the “generic case” (to be defined in
Definition [£.42] basically this puts restrictions on the ramification of the form at primes dividing
p). The reason is it seems difficult in general to describe the nearly ordinary Klingen Eisenstein
sections. Fortunately, since along a Hida family, the set of forms that are “generic” is Zariski
dense, these computations are enough to construct the whole Hida family of Klingen Eisenstein
series (similar to the [28] case). Thus we only work with a Hida family of forms instead of a
single cusp form due to this “generic” condition. We remark that when s = 0 by working with
forms of general vector-valued weights, we are able to construct a class of the p-adic L-function
and Klingen Eisenstein family for a single form unramified at p (not necessarily ordinary, see [3]).

Now we state the main results. Let K4, be the maximal abelian pro-p-extension of K unramified
outside p. We write I'c = Gal(K s /K). This is a free Z,-module whose rank should be d + 1
assuming the Leopoldt conjecture. Take a finite extension L over Q,. Let O, be the integer ring
of L. Let Of" be the completion of the integer ring of the maximal unramfied extension of L.
We define A = Op[[Tk]]. Let & > 4 be an integer and 7y a Hecke character of £*\Ag whose
infinite types are (—%, §) at all infinite places. We have a Ax-valued family of Hecke characters
of K*\Ag containing 7y as a specialization (to be precise later). Let A be the weight algebra
for U(r, s) defined later and I a normal domain containing A which is finite over A. Let I“" be
the normalization of an irreducible component of I, O¥. (In fact for each such irreducible
component we can make the following construction). Let Q. € C¥>~ be the CM period of the
CM field K and Q, € (Z4")*= be the p-adic period (we refer to [I1] for the definition). We

write Q2 for the product of the d elements of 2, and define QEOO similarly. Throughout this

paper we write z, = "””*Tgsfl, 2zl = B2,

Theorem 1.1. Let f be an I-coefficient nearly ordinary cuspidal eigenform on GU(r,s) such
that the specialization fy at a Zariski dense set of “generic” arithmetic points ¢ is classical
and generates an irreducible automorphic representation of U(r,s). Let ¥ be a finite set of
primes containing all primes dividing the any entry of ¢ or the conductor of £ or K. In the
case when s # 0 we make the assumptions TEMPERED, Projev and DUAL; or assumptions
TEMPERED, Proj¢, Projev (to be defined in Subsection . Then

(i) There is an element EETO € I""[[Tk]] ®pur Frur such that for a Zariski dense subset of
arithmetic points ¢ € Specl""[[T'k]] (to be specified in the Definition we have if
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where x;’s are defined in Definition Top = (11,75 1) such that 7; has conductor p®
with sg > s1. The
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(the x, and y, are the x and y in Subsubsection and ), s defined in Definition
-) The cx(2),c.(2) are defined in Lemma and kg is the weight associated to the
arithmetic point ¢. The g and <p‘”d are the specialization of £ and the £V provided by
the assumption Projgv (notice that they are ordinary vectors with respect to different Borel
groups, e.g. when s =0 the level group for ¢y at p is with respect to the upper triangular
Borel subgroup while that for <p°”l is with respect to the lower triangular Borel subgroup).

The factor
p(r+s)(r+sfl)/2 . (p _ 1)T+s

(ITimy Pt =) - (T2 e =) T (0 - 1)

is the volume of a set K' defined in Deﬁm’tion (this is smaller than the level group
for @?Jd), The Fpur is the fraction field of I*". The 74 are specializations of the family
of CM characters containing 79. The pi’s are conductors of some characters defined in
Definition @ The Mg, is defined in whose p-order is 25:1 tatbrila+b— k).

There is a set of formal g-expansions Eg -, = {3 5 aflg] (B)d°} (g1,n) for PP a?g] (B)g® €
(I [T k)] @2, Rig],00) @rur Fiur where Rig) o is some ring to be defined later in equation ,
([g], k) are p-adic cusp labels (Deﬁnition, such that for a Zariski dense set of arithmetic
points ¢ € Specl[[I'x]], ¢(E¢ »,) is the Fourier-Jacobi expansion of the holomorphic nearly
ordinary Klingen Eisenstein series E( fxiing,¢, Zrgs —) we construct in Subsection (see
the interpolation formula in Proposition . Here friing is a certain “Klingen section”
to be defined there.




(iii) The terms afg] (0) are divisible by sz,ro ~£§6 where E?C,) is the p-adic L-function of a Dirichlet
character to be defined in the text.

The assumption “TEMPERED?” is included so that we can easily write down the explicit range
of absolute convergence for pullback formulas. It is not serious and may be relaxed using ideas
of [9]. Besides the theorem, we also make some preliminary computations for the Fourier-Jacobi
coefficients for Siegel Eisenstein series. This is crucial for analyzing the p-adic properties of the
Klingen FEisenstein series we construct. When doing arithmetic application we need to prove
that certain Fourier-Jacobi coefficient of this Eisenstein family is prime to the p-adic L-function.

This paper is organized as follows. In Section 2 we recall various backgrounds. In Section 3 we
recall the notion of p-adic automorphic forms on unitary groups and Fourier-Jacobi expansion.
In Section 4 we recall the notion of Klingen and Siegel Eisenstein series, the pullback formulas
relating them and their Fourier-Jacobi coefficients, and then do the local calculations. (This
is the most technical part of this paper). We manage to take the Siegel sections so that when
we are moving our Eisentein datum p-adically, these Siegel Eisenstein series also move p-adic
analytically. The hard part is to choose the sections at p-adic places. At Non-Archimedean cases
prime to p the choice is more flexible (We might change this choice whenever doing arithmetic
applications, see30], [31]). At the Archimedean places we restrict ourselves to the parallel scalar
weight case which is enough for doing Hida theory. In Section 5 we make the global calcula-
tions and construct the nearly ordinary Klingen Eisenstein series by the pullbacks of a Siegel
Eisenstein series from a larger unitary group. Finally we include an appendix by Kai-Wen Lan
for detailed proofs of some facts used for the p-adic g-expansion principle. (This is not strictly
needed in our construction. But we think it is good to include it for completeness and for
convenience of readers).
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2 Background

In this section we recall notations for holomorphic automorphic forms on unitary groups, Eisen-
stein series and Fourier-Jacobi expansions.

2.1 Notations

Suppose F is a totally real field such that [F: Q] = d and K is a totally imaginary quadratic
extension of F'. For a finite place v of F or K we usually write w, for a uniformizer and g,
for the cardinality of its residue field. Let ¢ be the non trivial element of Gal(}C/F). Let r,s
be two integers with r > s > 0. We fix an odd prime p that splits completely in K/Q. We fix
i Q> Cand::C~ C, and write i, for ¢ 0 io. Denote ¥, to be the set of Archimedean
places of F'. We take a CM type of K, still denoted as ¥, (thus X, L XS are all embeddings
K — C where X5, = {T0¢,7 € o }).

We use € to denote the cyclotomic character and w the Techimuller character. We will often adopt
the following notation: for an idele class character x = ®,x, we write x,(z) = Hv|p Xv (). For

a character ¢ of K or Ag we often write ¢’ for the restriction to F,* or Aj. For a character 7 of



K> or Ag we define 7¢ by 7¢(z) = 7(x). (Note: we will write 7(x) for the complex conjugation
of 7(x) while the “¢” means taking complex conjugation for the source).

(Gauss sum) If v is a prime of F' with characteristic £ and 9,Op,, = (d,),d, € F,* is the different
of F/Q at v and if 4, is a character of F* and (cy.) C OF,, is the conductor, then we define
the local Gauss sums:

8 cpnds) = D wu(a)e(Tre, g, (1))

a€(OFv/Cypv)™ bt

where ¢ is the rational prime above v. If ®1, is an idele class character of A} then we set the
global Gauss sum:

®7~/Jv . H¢ cwv v (l[%cwv 'u)

This is independent of all the choices of d, ad Cy . Also if F,, ~ Q, and (p') is the conductor
for 1), then we write g(1,) := g(1,, p"). We define the Gauss sums for K similarly.

Let Koo be the maximal abelian Z,-extension of K unramified outside p. Write I'c := Gal(Koo/K)
and G the absolute Galois group of K. We define: Ax := Z,[[I'c]]. For any A a finite extension
of Z,, define Ak 4 := A[[['k]]. Let ex : Gx — ' = Ag be the canonical character. We define
Wi to be the composition of ex with the reciprocity map of global class field theory, which we
denote as rec : K*\Ag — G¢. Here we used the geometric normalization of class field theory.
We make the corresponding definitions for F' as well.

Let Sy, (R) be the set of matrices S € M,,(R ®0, Ox) such that S = S where conjugation is
with respect to the second variable of R ®o, Ox. We write B = B,, and N = N,, for the upper
triangular Borel and unipotent radical of the group GL,. Let N°PP or N~ be the opposite
unipotent radical of N. We define the function ey, = [], e, and e, the function on Q; such
that e, (z,) = 212} for {x,} the fractional part of z, and e, (z) = =27, We will usually

. 1 . .
write n = ( 1 ™) if m is clear from the context.
—tm

2.2  Unitary Groups
We define:

where ( is a fixed diagonal matrix such that i~!( is totally positive. Let V = V(r,s) be the
skew Hermitian space over K with respect to this metric, i.e. K™% equipped with the metric
given by (u,v) := uf, ;'v. We define algebraic groups GU(r, s) and U(r, s) as follows: for any
Op-algebra R, the R points are:

GU(r,s)(R) := {g € GLy15(Ok ®0, R)|gbr,s9" = 11(9)0r,s, p(g) € R*}.
(The g* ='g and p : GU(r, s) = Gy, F is called the similitude character) and
U(r,s)(R) := {g € GU(r, s)(R)|u(g) = 1}.

So the unitary group U(r, s) in this paper really means the unitary group with respect to our
fixed metric 6, ,. Sometimes we write GU,, and U,, for GU(n,n) and U(n,n). For two forms



©1,p2 on U(r, s)(Ar) we define the inner product by

(p1,p2) = ©1(9)p2(9)dg

/U(T’S) (FO\U(r,5)(Ar)

where the measure is chosen such that U(r, s)(Op,) = 1 for all finite v and we take the measure
at Archimedean places as [24] (7.14.5)].
We have the following embedding;:

GU(r,5) x Resoy /0, Gm — GU(r + 1,5 + 1)

a b ¢

a b e u(g)z!
gxx=1[|d e f]xz—|d e f
h 1 k h l k

We write m(g, x) for the right hand side. The image of the above map is the Levi subgroup of the
Klingen parabolic subgroup P of GU(r +1, s+ 1), which consists of matrices in GU(r +1,s+1)
such that the off diagonal entries of the (s + 1)-th column and the last row are 0. We denote
this Levi subgroup by Mp . We also write Np for the unipotent radical of P. We also define

B = B(r,s) to be the standard Borel consisting of matrices g = Ay gg where the blocks

are with respect to the partition r + s and we require that A, is lower friangular and Dy is
upper triangular.

We write =V (r,s) = V(s,r) for the hermitian space whose metric is —6,. ;. We define some
embeddings of GU(r + 1,s + 1) x GU(=V/(r, s)) into some larger unitary groups. This will be
used in the doubling method. We define GU(r 4+ s 4+ 1,7 + s + 1)’ to be the unitary similitude
group associated to (recall we wrote a = r — s,b = s at the beginning of the introduction):

1p

—1,

1

and G(r + s,r + s)’ to be associated to

We define an embedding
a:{g1 xg2€GU(r+1,s+1) x GU(=V(r,s)),u(g1) = pu(g2)} = GU(r + s+ 1,7 +s+1)

as follows: we consider g; as a block matrix with respect to the partition s+ 1+ (r—s)+s+1
(this means we use this partition to divide both all the rows and all the columns into blocks) and



g2 as a block matrix with respect to s+ (r—s)+s, then we define a by requiring the 1,2, 3,4, 5-th

(block wise) rows and columns of GU(r+1, s+ 1) embeds to the 1,2, 3,5, 6-th (block wise) rows

and columns of GU(r + s + 1,7 + s + 1)’ and the 1,2, 3-th (block wise) rows and columns of

GU(V (s,r)) embeds to the 8,7,4-th rows and columns (block-wise) of GU(r +s+1,r +s+1)".
We also define an embedding:

o :{g1 x g2 € GU(r,5) x GU(=V(r,5)), u(g1) = p(g2)} = GU(r + 5,7+ s)’

in a similar way as above: consider GU(r, s) and GU(—V(r, s)) as block matrices with respect
to the partition s + (r — s) + s. Putting the 1,2,3-th (block wise) rows and columns of the
first GU(r, s) into the 1,2,4-th (block wise) rows and columns of GU(r + s, + s)’ and putting
the 1,2,3-th (block wise) rows and columns of the second GU(r,s) into the 6,5,4-th rows and
columns of GU(r + s,r + s)’.

We also define an isomorphism:

B:GU(r+s+1,r+s+1) S GU(r+s+1,r+s+1)

and
B GU(r +s,7+s) = GU(r + s,7 + s)
by:
g— S¢S
or
g— 8199,
where )
1y -3 1y
1
1, -5
P Lol (1)
Iy 51
1
1, ,%
—1 5L
and L
Iy 31
1, —5
-1, L.1,
S = 2
1, L1, 2)
1, —%
—1p _% -1

Remark 2.1. (About Unitary Groups) In order to have Shimura varieties for doing p-adic mod-
ular forms and Galois representations, we need to use a unitary group defined over Q. More
precisely consider V' as a skew-Hermitian space over Q and still denote 6, 5 to be the metric on
it. Let T be a Oy lattice that we use to define GU(r, s). Then the correct unitary similitude
group should be

GU(r,s)(A) == {g € GLog,4(T @z A)|g0r,s9" = 11(9)br.s, u(g) € A}

for any commutative ring A. This group is smaller than the one we defined before. However
this group is not convenient for local computations since we can not treat the primes of F' each
independently. So what we do (implicitly) is: for analytic construction, we write down forms
on the larger unitary similitude group defined above and then restrict to the smaller one. For
the algebraic construction, we only do the pullbacks for unitary (instead of similitude) groups.



We are going to fix some basis of the various Hermitian spaces. We let

yl oLyt wt w2t

be the standard basis of V' such that the Hermitian forms is given above. Let W be the span
over K of w!,...,w™™*. Let XV = Oxa' @ ... Oz’ and Y = Oxy! @ ... ® Oxy®. Let L be an
Oj-maximal lattice such that L, := L ®zZ, = >_._; (Ox ®z Z,)w'. We define a Ox-lattice M
of V by

M=Y®L®X".

Let M, = M ®z Z,. A pair of sublattice Pol, = {N~! N°} of M, is called an ordered
polarization of M, if N=! and N° are maximal isotropic direct summands in M, and they are
dual to each other with respect to the Hermitian pairing. Moreover we require that for each v =
ww®, w € ¥, rankN, ' = rankN2. = r and rank N, = rankN? = s. The standard polarization

we T
of M, is given by: M;l =Y, DL,DY,e and MB = Xue®Ly®Xy. Welet —V be the Hermitian
space V with the metric given by the negative of V. We let ¢',--- , g%, @', -+, @" "%, &', -+ ,&°

be the corresponding basis. Let Ky*t! @ Kz*t! be a two dimensional Hermitian space with

metric (_1 1). We define

W =VaoKyeks o (-V).

Let T € U(n+ 1,n + 1)(F,) be such that for each v|p such that v = ww® where w is in our
p-adic CM type X, T, = S, '. We define another basis of W given by:

tr, 1 s+1 1 r—s .1 s+1 1 s 1 r—s .1 s
(y7"'ay y Wy, W y Ly, X Y Y Y W W ,(L’,"',.’I,')T

= t(ylv"' ’yr+s+1,xl’“. ’Xr+s+1).
Then Y := &7 (O @7 Z,)y" and X := @777 (Ox @4 Z,)x" gives another polarization
(Y,X) of L, := M, & (—M,) & Oxy* ™! & Ozt
2.3 Automorphic Forms

2.3.1 Hermitian Symmetric Domain

Suppose 7 > s > 0. Then the Hermitian symmetric domain for G := GU(r, s) is
XtT=X,,={r= (;) |z € M,(C¥),y € M(T,S)XS((CE),i(x* —x) > —iy* 0y}

For oo € GU(r, $)(Fx)) (here Fo := F ®g R) we write

Q
|
a9
~ 0 o
R O

according to the standard basis of V' together with the block decomposition with respect to
s+ (r—s)+s. There is an action of « € G(Fx)™ (here the superscript + means the component
with positive similitude factor at all Archimedean places) on X, ; defined by:

z\  [ax+by+c 1
a(y)_(gx+ey+f)(hx+ly+d) .

If rs = 0, X, s consists of a single point written @y with the trivial action of G(F). For an
open compact subgroup U of G(Ap, ) put

Ma(X*,U) := G(F)N\XT x G(Aps)/U



where U is an open compact subgroup of G(Ap ¢). We let C™* = C(X°)° @ C(X°)"° @ C(¥)°
and define a map ¢, s on it by (u1, ug, us)c,,s = (U1, U2, uz). We define p(7) : V ®g R ~ C™* by
p(T)v = vB(T)cp,s. Let

oyt oz
Br)=(0 ¢
1, 0 1

We define the automorphic factors x(«, 7), u(a, 7) by aB(1) = B(at)(k(a, 7), p(a, 7)) for a €
GR),7 € Xt. We sometimes write k, (v, 7), prs(e,7) to emphasis the group U(r,s). We
define j(g,z) := det(u(g,2)). For z € X, 11 ¢41, we define p(z) € X, 5 to be the lower right

(r x s) submatrix. For z; = il , 2 € z , we define 7(z1,2) = i(z} — x) — y;(i¢"1)y and
1

0(z1,2) =27 % det(n(z1, 2)).

2.3.2 Automorphic forms

We will mainly follow [I5] to define the space of automorphic forms, with slight modifications.
We define a cocycle: J : Rp/gG(R)T x X* — GL,(C¥) x GLy(C*) := H(C) by J(a,7) =

a b c
(k(a, 7), (e, 7)) where for 7 = <x> anda=1[g e f],
Y holod
_ hw+d h'y +10 _
Ko, 7) = (_H—I(gtx+ P —0-'gly+ 9—169> ; mwla, ) = ha +ly +d.

Let ¢ be the point (l(l)g) on the Hermitian symmetric domain for GU(r, s) (here 0 means the

(r —s) x s matrix 0). Let GU(r, s)(R)* be the subgroup of GU(r, s)(R) whose similitude factor
is totally positive. Let K be the compact subgroups of U(r, s)(R) stabilizing 72 and let K
be the groups generated by K1 and diag(1l,ys,—1s). Then J : KX — H(C), koo + J(koo,1)
defines an algebraic representation of KJ.

Definition 2.2. A weight k is defined by a set {k, }sex., where each

Ea’ = (CT‘+S7U, <y Cs41,05Cl,0) ...70370-)
With ¢1,6 > ... > Cs6 = Cs41,6 T+ 8> . > Coqro + 7+ 5 for the c;n's in Z

Remark 2.3. Our convention is different from others in the literature. For example in [I5] the
ayry1—; there for 1 < ¢ < r is our —cyy; and bgy1—; there for 1 < j < s is our ¢;. We let
k' = (a1,...,ar;b1,...,bs). We also note that if each k, = (0,...,0;k, ..., k) then LE(C) is one
dimensional with p&(h) = det u(h,i)".

For a weight k = (¢y45, .-, Cs+1; €1, -+, Cs), We define the representation of GL, x GLg with
minimal weight —k by

Lﬁ = {f c OGLTXGLS f(tn-l‘g) = Elil(t)f(g)vt S Tr X Ts7n+ € N’I‘ X th}

(the OgL, xar, is the structure sheaf of the algebraic group GL, x GLs. See [I5 Section 3]).
The group action is denoted by p,. We define the functional I; on L; by evaluating at the

identity. and define a model LE(C) of the representation H(C) with the highest weight k as
follows. The underlying space of L%(C) is Ly(C) and the group action is defined by

pE(h) = pe(h™1), h € H(C).



For a weight k, define ||k|| = {||k||s }oex € Z* by:
||EHO’ = —Cs41,0 — -+ — Cstr,o T Clog + .o + Cs0

and |k| € Z¥Y*° by:

|E| = Z(CL(7 + i+ Cs0).0 — (Cst1,60 oo F Cotro).0°
oeY

Let x be a Hecke character of K with infinite type |k|, i.e. the Archimedean part of x is given
by:
X(Zoo) _ (H 25.6110-4%..4’6575).ZO_-C(CS+1,0+“'+CS+'V‘,U)).
ag

Definition 2.4. Let U be an open compact subgroup in G(Ap ). We denote by My(U,C)
the space of holomorphic LE(C)-valued functions f on X+ x G(Apy) such that for 7 € X,
a € G(F)" and uw € U we have:

flam, agu) = p(a) k(I (0, 7)) f (7, 9)-

Now we consider automorphic forms on unitary groups in the adelic language. Let 4 € X T
and K1 C U(r, s)(Fx) be the stabilizer of 4. The space of automorphic forms of weight k and
level U with central character x consists of smooth and slowly increasing functions F' : G(Ap) —
Ly(C) such that for every (o, koo,u,2) € G(F) x KL x U x Z(Ap),

F(zagkecu) = p*(J (koo i) ") F(g)x ' (2).

2.3.3 The Group GU(s,r)

Now we consider the unitary group GU(s,r) which has the same Hermitian space as GU(r, s)
but with the metric (, )5, := —(,)r,s. We define the symmetric domain X, = X, ; but with the
complex structure such that a function is holomorphic on Xj , if and only if it is holomorphic
on X, s after composed with the following map

X, o= Xor, (x) o (‘“f).
: 7\ y —y

We let C*" = C(X)* @ C(X)"~* @ C(X°)® and define ¢, by (u1,u2,us)cs, = (u1,uz,us). For
GU(s,r) we define p(7) : V ®g R ~ C*" by p(r)v = vB(7)cs,. We require the automorphic
factors ks (o, T), sr(a,7) by aB(1) = B(at)(usr(a,7), ks r(a,7)). We define a weight k
of U(r,s) to be such that k& = (¢r41,6, s Crts.0}Clos s Cro)o Such that ¢1 5, > ... > ¢ o >
Crylo + 7+ 8 > ...Cryso + 7 + 5. Using these we can develop the theory of holomorphic
automorphic forms on GU(s, ) similar to the GU(r, s) case.

2.3.4 Embeddings of Symmetric Domains
We still follow [24]. Pick one Archimedean place. Write z = <Zj> € Xyq1,641 0r Xy s and w =

(5) € X, . We define the embeddings ¢ from X, 541 X X5, or X; o X X5, t0 Xpysqi1 rpst1

or Xr—i-s,r-i-s by



(The ¢ really means the image of ¢ at this Archimedean place). Let U = RTQ for Q =

1 e
1 Tigs
1 % 27117«—5 *27117’—5
L3 d RT = e
1 _% an = A
1 _C_l _C—l
-1 _% Ls
-1 %
for A = (1 1). (The U here is the U, defined in [24 Section 22] and other notations are
slightly different.) We also define @' to be @ with the second and sixth rows and columns
1s
271, —2711,
(block-wise) deleted. Let R'T' = o L with A’ = 1,. Define
¢! -t
L

U' = R'T'Q’". Let p(z) be the lower right 7 x s block for z € X, 11 511, tr(z,w) = (U 1i(z,w)
as [24, 22.2.1]. If z = (;), z1 = <§1>, let §(z1, 2) = 257" det[i(z} — x) — y}0~1y]. If we write
1

[h]s for SIS then we have [diag(g, g1)]stv(z,w) = w(gz, rw), ([diag(g, g1)]s v/ (z,w) =
tw(gz, g1w)) and

J([diag(g, g1)]s, v (z,w)) = 6(w, p(2)) ™" 6(gw, p(g12)) det(v)jg (w)jg, (2). 3)

For a function g on X, ys41 rysy1 OF X;ps 45 we define the pullback g° to be the function
on X, 41 641 X X or X, o X X, given by

9°(z,w) = 8(w, p(2)) " g(ew (2,w)).

Definition 2.5. We define a scalar weight  of U(s,r) to be the weight (—k, -+ ,—k;0,--- ,0)
(in total s k’s and r 0’s).

2.4 Shimura varieties and Igusa varieties

Fix a neat open compact subgroup K of GU’(r, s)(Ay) whose p-component is GU (r, s)(Zy),
we refer to [I5] for the definitions and arithmetic models of Shimura varieties over the reflex
field F which we denote as Sg(K). It parameterizes isomorphism classes of the quadruples
(A, )\ ¢, 77(']))/5 where O is a finite set of primes, (A, \) is a polarized abelian variety over some
base ring S, X is an orbit (see [15, Definition 2.1]) of prime to O polarizations of A, ¢ is an
embedding of Ok into the endomorphism ring of A and 7(®) is some prime to O level structure
of A. To each point (7,9) € X x G(Ap ) we attach the quadruple as follows:

e The abelian variety Ay(7) :=V ®q R/M (Mg := H1(Ay(7), ZP)).
e The polarization of A is given by the pullback of —(, ), s on C™* to V ®g R via p(7).
e The complex multiplication ¢ is the Ox-action induced by the action on V.

e The prime to p level structure: ngp) M QZP ~ Mg is defined by nép) (x) = g *x for
xe M.

We have a similar theory for Shimura varieties for GU(s,r) as well.

11



There is also a theory of compactifications of Sg(K) developed in [I8]. We denote Sg(K) a
fixed choice of a toroidal compactification and S (K') the minimal compactification.

We define some level groups at p as in [I5, 1.10]. Recall that G(Ay) O K =[], K, is an open
compact subgroup such that K, = G(Z,) and let 3 be a finite set of primes including all primes

B
) for the p-component

above p such that K, is spherical for all v ¢ 3. If we write g, = (é D

of g, then define

n 17‘ * T
K —{g€K|gp—<0 1S>m0dp }7

K ={g9 € K|A € N.(Z,)modp™, D € N, (Z,)modp™,C = 0},
Ky ={g € K|A € B.(Zy)modp", D € B (Z,)modp",C = 0}.

Now we recall briefly the notion of Igusa schemes over O,, (the localization of the integer ring
of the reflex field at the p-adic place vy determined by ¢, : C ~ C,) in [I5, Subsection 2]. Let V'
be the Hermitian space for U(r,s) and M be a standard lattice of V' and M, = M ®z Z,. Let
Pol, = {N~!,N°} be a polarization of M,. The Igusa variety Ic(K") of level p™ is the scheme
representing the usual quadruple for Shimura variety together with a

J o @2 N° s Afp")

where A is the abelian variety in the quadruple. Note that the existence of j implies that if
p is nilpotent in the base ring then A must be ordinary. For any integer m > 0let O,, := O,, /p™.

Igusa Schemes over S (K):

To define p-adic automorphic forms on needs Igusa Schemes over Sg(K). We fix such a toroidal
compactification and refer to [I5, 2.7.6] for the construction. We still denote it as Ig(K™).
Then over O,, the I¢(K™) is a Galois covering of the ordinary locus of the Shimura variety
with Galois group [[,, GL;(Op,u/p") X GLs(OF,/p"). We write Io(K{) = Ig(K™)X0 and
Ig(K}) = Ig(K™)X1 over O,),.

Cusps
Let 1 <t <s. We let P, be the maximal parabolic subgroup of GU(r, s) consisting of matrices
X X X
such that in the block form with respect to t + (r + s — 2t) + ¢, it is of the form X X
X

Let G'p, be the unitary similitude group with respect to the skew-Hermitian space for (. Let Y;
be the Ok span of {y!, - ,y'}. We define the set of cusp labels by:

Ci(K) := (GL(Y;) x Gp,(Af))Np, (Ap)\G(Ay) /K.

This is a finite set. We denote [g] for the class represented by g € G(Ay). For each such g
whose p-component is 1 we define K§, = Gp,(Ay) N gKg~" and denote Sy := Sq,, (K,) the
corresponding Shimura variety for the group Gp with level group K I%t)' By the strong approx-
imation we can choose a set C,(K) of representatives of C;(K) consisting of elements g = pk°
for p € P, (A?) and G(Ayx) 3 k° € K° for K° the spherical compact subgroup.

p-adic Cusps

Definition 2.6. As in [15] each pair (g,h) € C,(K) x H(Z,) can be regarded as a p-adic cusp,
i.e. cusps of the Igusa tower.

12



Igusa Schemes for Unitary Groups

We refer to [15, 2.5] for the notion of Igusa Schemes for the unitary groups U(r,s) (not the
similitude group). It parameterizes quintuples (A, \,:, 7%, 5) /s similar to the Igusa Schemes
for unitary similitude groups but requiring A to be a prime to p-polarization of A (instead of an
orbit). In order to use the pullback formula algebraically we need a map of Igusa schemes given
by:

i([(A, Ay e, i K 1)), [(Az2, Aoy be, nh Ko, j2)]) = [(Ar X Ao, M X Ag, e, Lo, (0] X 05) K, 41 X j2)].

Similar to [15], we know that taking the change of polarization into consideration

i([z, 9], [w, h]) = [t(z,w), (g, h)T].

(T is defined at the end of Subsection [2.2})

2.4.1 Geometric Modular Forms

Let H = H'L}|p(GL"' x GLg) and N C H being Hv|p(NT x Ny). To save notation we will also
write H =[], GL(OF,u) x GLs(OF,») and N C H be [],, Nr-(Op,) x ‘Ns(OF,). We define
w = €"Qg/5. (k) for 2 the sheaf of differentials on the universal semi-abelian scheme G over
the toroidal compactification (see [15], 2.7.2] for a brief discussion). Recall that for v|p we have
v =ww in K with w € ¥,. Let e,, and ey be the corresponding projections for IC, ~ I, x Ky
then w = ey ,w ® egw. We also define:

Et = Isom(Og,, (s Cww),

E7 = Isom((’)%G(K), EpW),
E=ETpE.

This is an H-torsor over Sg(K). We can define the automorphic sheaf wy, = € x Lj,. A section
[ of wy, is a morphism f: & — Ly such that

f(z, hw) = pp(h) f(z,w),h € H,x € Sg(K).

2.5 p-adic Automorphic Forms on Unitary Groups
Let R be a p-adic Zy-algebra and let R,, := R/p™. Let T, ,, := Ic(K") R, . Define:

Vn,m = HO(Tn,ma OTn,m)’

n

VE(Kzlv Rm) = HO(Tn,m/Rmawﬁ)K. :

Let Voo = lim Vi m and Vig oo = lim  Voe . Define Vo(G,K) := VY  the space of p-adic
modular forms. Let T = T(Z,) C H and let A := Zy[[T]]. The Galois action of T on V&
makes the space of p-adic modular forms a discrete Ap-module.

Suppose n > m. To each R,,-quintuple (4, j) of level K™ we can attach a canonical basis w(j)
of HY(A,Q4). Therefore we have a canonical isomorphism

HO(Tn,m/Rmawﬁ) = Vn,m ® L&(Rm)

given by

[ f(4,5) = f(4A,5,w(5))-

13



We call f the p-adic avatar of f.

Similarly we can define an embedding of geometric modular forms into p-adic modular forms by

fFr FAJ) = f(A w()).

We also define the morphism
ﬂ& : VE(K?aRm) — Vn]Ym
by R
[ Bi(f) = l(f).
We can also pass to the limit for m — oo to get the embedding of Vi (KT, R) into VY . We
refer to [I5) 3.8, 3.9] for the definition of an U, Hecke operator and define the Hida’s ordinary

projector
e:=lmU™.
n p

2.6 Algebraic Theory for Fourier-Jacobi Expansions

We suppose s > 0 in this subsection. Let X = spany, {z',---,2'} and ¥; = spany, _{y',--- ,y'}.
Let W be the skew-Hermitian space spang, {y'™, -y, wy, -,z ... 2}, Let GY be the
unitary similitude group of W;. Let [g] € Cy(K) and Kg,, = Gp,(Af)NgKg~" (we suppress the
subscript [g] so as not to make the notation too cumbersome). Let A; be the universal abelian
scheme over the Shimura variety Sg,, (Kgp,). Write g¥ = kg/~ for y € G(F)" and k € K.
Define X/ = X}/ g/, Yy = Yig/'v. Let Xy = {y € (Y; ®qZ) -7y, X,/) € Z}. Then we have

i Yg — Xg.
Let Z[g] be
Homo, (Xg, AY) XHom,,_(v,.4y) Homo, (Yg, Ar) = {(c,c")], e(i(y)) = A(c" (1)), € Yy}

Here Hom’s are the obvious sheaves over the big étale site of Sg, , represented by Abelian
schemes. Let ¢ and ¢ be the universal morphisms over Homg, (Xg, A;) and Homy  (Yy, Ay).
Let Np, be the unipotent radical of P, and Z(Np,) be its center. Let Hyy = Z(Np,(F)) N

giKgi_l. Note that if we replace the components of K at v|p by K7 then the set Hj, remain
unchanged. Let Iy := GL(Y;) N g;Kg; '. Let P4, be the Poincaré sheaf over Ay x At/ 2,
and P}, its associated G,,-torsor. Let Spy := Hom(H,,Z). For any h € Si let ¢(h) be the
tautological map Zig — Ay x A; and L(h) := c¢(h)*P} its associated G,, torsor over Z).

It is well-known (see e.g. [I8, Chapter 7]) that the minimal compactification S&(K) is the
disjoint union of boundary components corresponding to t’s for all 1 < ¢ < s. Let Ocp be the
valuation ring for C,. The following proposition is proved in [I8, Proposition 7.2.3.16]. Let
l9] € Ci(K) and 7z is a Oc,-point of the t-stratum of SF,(K)(1/E) corresponding to [g].

Proposition 2.7. Let [g] and T be as above. We write the subscript T to mean formal completion

along . Let w be the map Sq(K) — S§(K). Then m.(Og,, i)z is isomorphic to

{3 HYZg, £(0)sg" 0.

+
hES[g]

Here S[Z] means the totally non-negative elements in Sig. The q" is just regarded as a formal
symbol and Ty acts on the set by a certain formula which we omit.
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For each [g] € C¢(K) we fix a T corresponding to it as above. Now we consider the diagram

Tn,m *
—r
Thm T m

| !

Sc(K)[1/Elo,, —— S&(K)[1/Elo,

where Ty, e — Ty, — SG(K)[1/E]o,, is the Stein factorization. By [19, Corollary 6.2.2.8]
T, ., is finite étale over S&(K)[1/E]o,,. Taking a preimage of = in T}; ,, which we still denote
as Z. (For doing this we have to extend the field of definition to include the maximal unramified
extension of L). Then the formal completion of the structure sheaf of 7}; ,,, and Sg(K)[1/FE]o,,
at 2 are isomorphic. So for any p-adic automorphic form f € lim lim H Y Thm, Onm) (with

trivial coefficients) we have a Fourier-Jacobi coefficient

m*

FI(f) e { T limlim 221, £(0)s - ¢"}yy (4)
hesf, ™"
by considering f as a global section of 7}, ,,(Or, ,,) = Or: and pullback at z’s. Note that
if t = s = 1 then there is no need to choose the Z’s and pullback since the Shimura varieties
for G; is 0-dimensional (see [15], (2.18)]). In application when we construct families of Klingen
Eisenstein series in terms off Fourier-Jacobi coefficients, we will take ¢ = 1 and define

Rigloo = ] limlim HO(Zy, L(h))z - ¢". (5)
hest, ™ "
lg]

We remark that the map F'J is injective on the space of forms with prescribed nebentypus at
p (this is not needed for our result though). This can be seen using the discussion of [28] right
before Section 6.2 of loc.cit (which in turn uses result of Hida in [I2] about the irreducibility of
Igusa towers for the group SU(r,s) C U(r,s) (kernel of the determinant)). In particular to see
this injectivity we need the fact that there is a bijection between the irreducible components
of generic and special fiber of S&(K) (see [I8, Subsection 6.4.1]) and that there is at least one
cusp of any given genus on the ordinary locus of each irreducible component (Note that the
signature is (r,s) for r > s > 0 at all Archimedean places so there is at least one cusp in Cy(K)
at each irreducible component. Since p splits completely in I the cusps of minimal genus must
be in the ordinary locus. On the other hand by the construction of minimal compactification
the closure of the stratum of any genus r is the union of all stratums of genus less than or equal
to r. Note also that since the geometric fibers of the minimal compactification are normal, their
irreducible componenents are also connected components. This implies the existence of such
cusp on the ordinary locus.) See the appendix of this paper for more details.

3 Eisenstein Series and Fourier-Jacobi Coefficients

The materials of this section are straightforward generalizations of parts of [28, Section 9 and
11] and we use the same notations as loc.cit; so everything in this section should eventually be
the same as [28] when specializing to the group GU(2,2) q.

3.1 Klingen Eisenstein Series

Let gu(R) be the Lie algebra of GU(r,s)(R). Let ¢ be a character of the Klingen parabolic
subgroup P such that §972*! = §p (the modulus character of P).
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3.1.1 Archimedean Picture
Let v be an infinite place of F so that F,, ~ R. Let 4’ and i be the points on the Hermitian

symmetric domain for GU(r, s) and GU(r + 1, s + 1) which are <Zés> and <216+1> respectively
(here 0 means the (r —s) x s or (r—s) x (s+1) matrix 0). Let GU(r, s)(R)" be the subgroup of
GU(r, s)(R) whose similitude factor is positive. Let KI and K1 be the compact subgroups of
U(r + 1,5+ 1)(R) and U(r, s)(R) stabilizing 4 or i’ and let K., (K. ) be the groups generated
by K;ro (cho’/) and diag(1r+s+la 7]-s+1) (resp. diag(1r+57 715))'

Now let (m, H) be a unitary tempered Hilbert representation of GU(r, s)(R) with H. the
space of smooth vectors. We define a representation of P(R) on H., as follows: for p = mn,n €
Np(R),m =m(g,a) € Mp(R) with a € C*,g € GU(r + 1, s+ 1)(R), put

p(p)v = 1(a)m(g)v,v € Heo.

We define a representation by smooth induction I(Hs) = Indggg FLeth(R) p and denote I(p)

as the space of Ko-finite vectors in I(Hy). For f € I(p) we also define for each z € C a
function

J=(g) = 8(m) DI p(m) [ (k), g = mhk € P(R) Ko,
and an action of GU(r + 1,5+ 1)(R) on it by

(o(p,2)(9))(k) := f=(kg)-

1p
Let (7, V) be the irreducible (gu(R), K’ )-module given by 7V (z) = w(n~tan) forn = 1a
1,
and z in gu(R) or K/ (this does not mean the contragradient representation!). Denote p¥, I(p¥), [V (Hx)
and o(pY,2),I(pY)) the representations and spaces defined as above but with 7,7 replaced by

Lo
7V ®(Todet), 7¢. We are going to define an intertwining operator. Let w = 1,
—lpt1
For any z € C, f € I(Hw) and k € K, consider the integral:
Alpe.£)E)i= [ fo(wnk)dn (6)
Np(R)

This is absolutely convergent when Re(z) > “2L and A(p,z,—) € Home(I(Hs), IV (Hso))
intertwines the actions of o(p, z) and o(p¥, —2).

Suppose 7 is the holomorphic discrete series representation associated to the (scalar) weight
(0,...,0;K, ..., k), then it is well known that there is a unique (up to scalar) vector v € 7 such
that k- v = det u(k,7)™" (here g means the second component of the automorphic factor J
instead of the similitude character) for any k € K. Then by Frobenius reciprocity law there
is a unique (up to scalar) vector v € I(p) such that k- v = det pu(k,7) "0 for any k € KI,. We
fix v and multiply @ by a constant so that ©(1) = v. In 7", 7(w)v has the action of KT given

1
1
by multiplying by det u(k, ) ™. We define w’ € U(r+1,s+1) by v’ = 14
1y
—1
There is a unique vector 0¥ € I(p¥) such that the action of K1 is given by det u(k,7)™" and
?¥(w') = m(w)v. Then by uniqueness there is a constant ¢(p, z) such that A(p, z,?) = c(p, 2)0".

Definition 3.1. We define F,; € I(p) to be the ¥ as above.
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3.1.2 Prime to p Picture

Our discussion here follows [28, 9.1.2]. Let (7, V') be an irreducible, admissible representation
of GU(r, s)(F,) which is unitary and tempered. Let ¢ and 7 be unitary characters of I such
that 1 is the central character for m. We define a representation p of P(F,) as follows. For
p=mn,n € Np(F,), m=m(g,a) € Mp(F,),a € K),g € GU(F),) let

v

p(p)v = T7(a)m(g)v,v € V.

Let I(p) be the representation defined by admissible induction: I(p) = Ind(;ggr)+ Le+D(F)

As in the Archimedean case, for each f € I(p) and each z € C we define a function f, on
GU(r+1,s+1)(F,) by

J-(g) 1= 0(m) T2 p(m) f (), g = mk € P(F,)K,
and a representation o(p, z) of GU(r +1,s+ 1)(F,) on I(p) by

(a(p,2)(9)f)(k) := f:(kg).

(n~tgn). This representation is also tempered and unitary.
,2),I(pV)) the representations and spaces defined as above

Let (7V,V) be given by n¥(g) = 7
\
® (7 odet), and 7€, respectively.

We denote by p¥,I(pY), and (o(p
but with 7 and 7 replaced by 7V

For f € I(p),k € K, and z € C consider the integral

Alp, 2, 0) (k) = / £ (wnk)dn. 1)

Np(Fy)

As a consequence of our hypotheses on 7 this integral converges absolutely and uniformly for
z and k in compact subsets of {z : Re(z) > (a + 2b + 1)/2} x K,. Moreover, for such z,
A(p,z, f) € I(p¥) and the operator A(p, z,—) € Homc(I(p),I(p")) intertwines the actions of
a(p,z) and o(p¥, —2).

For any open subgroup U C K, let I(p)V C I(p) be the finite-dimensional subspace consisting
of functions satisfying f(ku) = f(k) for all w € U. Then the function

{z€C:Re(2) > (a+2b+1)/2} — Homec(I(p)Y, I(p")Y), 2+ Ap, 2, —)
is holomorphic. This map has a meromorphic continuation to all of C.

We finally remark that when 7 and 7 are unramified, there is a unique up to scalar unramified
vector F, € I(p).

3.1.3 Global Picture

We follow [28], 9.1.4]. Let (m, V') be an irreducible cuspidal tempered automorphic representation
of GU(r, s)(Ap). It is an admissible (gu(R), K., )yjoo X GU(r, 5)(A)-module which is a restricted
tensor product of local irreducible admissible representations. Let ¢, 7 : AZ — C* be Hecke
characters such that ¢ is the central character of 7. Let 7 = ®7, and ¢ = ®1,, be their local
decompositions, w running over places of F'. Define a representation of (P(Fuo) N Koo)X P(Arp 5)
by putting:

p(P)v = &(puw(Pw)vw),
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Let I(p) be the restricted product ®I(p,)’s with respect to the F}, ’s at those w at which
Tw, Y, Ty are unramified. As before, for each z € C and f € I(p) we define a function f, on
GU(r+1,s+1)(Ar) as

f:(9) == ®fuw,2(9w)

where f,, . are defined as before and an action o(p, z) of (gu, Koo) @ GU(r+1,s+1)(Af) on I(p)
by o(p, z) := ®0(pw, ). Similarly we define p¥,I(p"), and o(p", z) but with the corresponding
things replaced by their V’s and we have global versions of the intertwining operators A(p, f, z).

Definition 3.2. Let ¥ be a finite set of primes of F' containing all the infinite places, primes
dividing p and places where w or 7 is ramified. Then we call the triple D = (7, 7,%) an Eisenstein
Datum.

3.1.4 Klingen-Type Eisenstein Series on G
We follow [28, 9.1.5] in this subsubsection. Let m,, and 7 be as above. For f € I(p),z € C,

there are maps from I(p) and I(p") to spaces of automorphic forms on P(Afp) given by

[ (g f2(9)(1)).

In the following we often write f, for the automorphic form on P(Ar) given by this recipe.
If g€ GU(r+1,s+1)(Ap) it is well known that

E(f,2,9):= >,  [(19) (®)

YEP(F)\G(F)

converges absolutely and uniformly for (z,g) in compact subsets of {z € C: Re(z) >
GU(r + 1,s + 1)(Ap). Therefore we get some automorphic forms which are called Klingen
Eisenstein series.

a+22b+ 1 } %

Definition 3.3. For any parabolic subgroup R of GU(r 4+ 1,s+ 1) and an automorphic form ¢
we define pg to be the constant term of ¢ along R defined by

¢r(g) = / @(ng)dn.
nENR(F)\Nr(AFr)

The following lemma is well-known (see [28, Lemma 9.2]).

Lemma 3.4. Let R be a standard F-parabolic subgroup of GU(r + 1,8+ 1) (i.e, R O B where
B is the standard Borel subgroup). Suppose Re(z) > %b“.

(i) If R # P then E(f,2,9)r = 0;

(ZZ) E(fa 2, 7)P = fz + A(P, fa Z)—z-

3.2 Siegel Eisenstein Series on G,
3.2.1 Local Picture

Our discussion in this subsection follows [28, 11.1-11.3] closely. Let @ = @, be the Siegel
Aq By

0 Dq>' It consists of matrices whose

parabolic subgroup of GU,, consisting of matrices (

lower-left (n x n) block is zero.

For a finite place v of F and a character x of K} we let I,(x) be the space of smooth
K, ,-finite functions (here K, , means the open compact group Gn(Opy)) f : Knn — C

such that f(gk) = x(det Dy)f(k) for all ¢ € Q.(F,) N K, , (we write ¢ as block matrix
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q = (Aq gq>). For z € C and f € I(x) we also define a function f(z,—) : G,(F,) — C
X

by f(z,qk) == x(det Dy))|det A, D 57 f(k), q € Qu(F,) and k € K,

For f € I,(x),z € C, and k € K, ,, the intertwining integral is defined by:

M(z, f)(k) := X"(un(k))/ [z, wprk)dr.

N, (Fv)

For z in compact subsets of {Re(z) > n/2} this integral converges absolutely and uniformly,
with the convergence being uniform in k. In this case it is easy to see that M (z, f) € I,,(x°). A
standard fact from the theory of Eisenstein series says that this has a continuation to a mero-
morphic section on all of C.

Let 4 C C be an open set. By a meromorphic section of I,,(x) on & we mean a function
¢ : U — I,(x) taking values in a finite dimensional subspace V' C I,,(x) and such that ¢ : U — V'
is meromorphic.

For Archimedean places there is a similar picture (see loc.cit).

3.2.2 Global Picture

For an idele class character x = ®x, of Ag we define a space I,(x) to be the restricted tensor
product defined using the spherical vectors f3P" € I,,(xy), fP"(K,,») = 1, at the finite places v
where x, is unramified.

For f € I,(x) we consider the Eisenstein series
E(f;2,9) = > f(z,79).
YEQn (F)\Gn (F)

This series converges absolutely and uniformly for (z, g) in compact subsets of {Re(z) > n/2} x
G (Ap). The automorphic form defined is called Siegel Eisenstein series.

Let ¢ : U — I,(x) be a meromorphic section, then we put E(p;z,g9) = E(¢(2);2,g). This
is defined at least on the region of absolute convergence and it is well known that it can be
meromorphically continued to all z € C.

Now for f € I,(x),z € C, and k € Hv)[oo K, Hv|oo K, there is a similar intertwining inte-
gral M(z, f)(k) as above but with the integration being over Ng, (Ar). This again converges
absolutely and uniformly for z in compact subsets of {Re(z) > n/2} x K,,. Thus z — M (z, f) de-
fines a holomorphic section {Re(z) > n/2} — I,,(x®). This has a continuation to a meromorphic
section on C. For Re(z) > n/2, we have

M(Z7f) = ®UM(Z, fv)af = ®fv~

The functional equation for Siegel Eisenstein series is:

E(f,z,9) = x"(u(9))E(M(z, f); =2, 9)

in the sense that both sides can be meromorphically continued to all z € C and the equality is
understood as of meromorphic functions of z € C.
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3.2.3 The Pullback Formulas

Let x be a unitary idele class character of Ag. Given a unitary tempered cuspidal eigenform ¢
on GU(r, s) which is a pure tensor we formally define the integral

Fo(fizg) = / £(2, 5 alg, g1h) S)x(det g19)o (g1 h)dan
U(r,s)(Ar)
Felisir(x),g € QU(r+ 1,5+ 1)(Ar), h € GU(r, s)(Ar), u(g) = u(h).

This is independent of h. (We suppress the x in the notation for F,, since its choice is implicitly
given by f). We also formally define

Fl(f:2.9) == /U o, T8l g Kt ol

[ € Iis(),9 € GU(r, 5) (Ap), h € GU(r, ) (Ar), u(g) = (h)
The pullback formulas are the identities in the following proposition.

Proposition 3.5. Let x be a unitary idele class character of Ag.
(1) If f € I,15(x), then Fy(f;2,g) converges absolutely and uniformly for (z,g) in compact sets
of {Re(z) > r + s} x GU(r, s)(Ar), and for any h € GU(r, s)(Ar) such that p(h) = p(g)

/ E(f:2.5' alg, uh)S)x(det uh)p(guh)dg = FL(fizg).  (9)
U(r,s)(F)\U(r,s)(Ar)

(i1) If f € Lyst1(x), then F,(f;z,9) converges absolutely and uniformly for (z,g) in compact
sets of {Re(z) > r+s+1/2} x GU(r +1,s + 1)(Ap) such that u(h) = p(g)

E(f; 2,8 a(g, g1h)S)x(det g1h)¢(g1h)dg:

= > Fo(f;2,79),

NEP(F)\G(r+1,5+1)(F)

/U(r.,s)(F)\U(T,S)(AF) (10)

with the series converging absolutely and uniformly for (z,g) in compact subsets of {Re(z) >
r+s+1/2} x GU(r+1,s+1)(Ap).

Proof. The global integral F, and F, can be written as a product of local integrals. The absolute
convergence of local integrals for I, is proved in [2I, Lemma 2]. The absolute convergence for
the global integral I, follows from this and the explicit computations in [21] at all unramified
places, together with the temperedness assumption of . The absolute convergence for F,, is
proved in the same way. Then part (i) is proved by Piatetski-Shapiro and Rallis [7] and (ii) is
a straight-forward generalization by Shimura [24], which is in turn due to Garrett (in earlier
works [5], [6]). Both are straightforward consequences of the double coset decompositions in
24, Proposition 2.4, 2.7]. O

3.3 Fourier-Jacobi Expansion

3.3.1 Fourier-Jacobi Expansion

We will usually use the notation e (z) = ea,(Tra, a,®) for € Ap. For any automorphic
form ¢ on GU(r,s)(Agr), 8 € Sp(F) for m < s. We define the Fourier-Jacobi coefficient at
g € GU(r, s)(Ap) as

S
oato) = [ ol g 1 00 | weat-m(s)as.
Sm (F)\Sm (AF) 0 T(;S 1



In fact we are mainly interested in two cases: m = s or r = s and arbitary m < s. In particular,
suppose G = G,, = GU(n,n), 0 < m < n are integers, 8 € S,,(F). Let ¢ be a function on
G(F)\G(A). The p-th Fourier-Jacobi coefficient ¢z of ¢ at g is defined by

S 0
¢5(9) ::/so( In g 0 g)ea(—TrBS)dS.
1n

Now we prove a useful formula on the Fourier-Jacobi coefficients for Siegel Eisenstein series.

Definition 3.6. Put:

L 0
Z={[1 0 0 |zes.kn
0, 1,
1,, T z oy
_{ 1 |$,y€ (nfm)( ),Z Ty € m( )}
0, m
-z 1n7m
1, X T 0,
X = { e |2 € My (K}
On m»<
-z ]-nfm
1, 5 Y
Y= { " y* 0 |y € Mm(n—m) (]C)}
0, 1,

. . 1,
From now on we will usually write w,, for ( 1 ”).
—in

Proposition 3.7. Let f be in I,(1) and Suppose B € S,,(F) is totally positive. If E(f;z,g) is
the Siegel Fisenstein Series on GU,, defined by [ for some Re(z) sufficiently large then the B-th
Fourier-Jacobi coefficient Eg(f;z,g) satisfies:

Y
1,
Ep(f;2,9) = S S [ g Mg 0 ) arngen-Tis)s
YEQn-m (F)\GUp - (F) yeY 7 5m (4] 1,
1
where au, _m s defined by: if g1 = (é g) then ap—m () = D 1 ¢ where A, B, C, D
B A

are (n —m) x (n —m) matrices.
Proof. We follow [16, Section 3]. Let H be the normalizer of V in G. Then

Gn(F) = U2 Qn(F)&H(F)
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for & = 1 07 1n 6” e 0. 0 00 . Unfolding the Eisenstein series we get:
0 Op—pmti 0  lp—m+d

Bs(f;z,9)= ) /f(

>0 'yeQn(F)\Qn(F)ﬁ H(F)

0
0 ) g)ea(=Tr(5S))dS

0

+ L/f ( 0 0 )gkmC—TMﬁSDdS

’YGQTL(F)\QTL(F)soH(F
By [16, Lemma(3.1)] (see loc.cit P628), the first term vanishes. Also, we have (loc.cit)
= £OZ(F)X(F)Qn—m(F)\Gn—m<F)

§0X(F)-Qn—m(F)\Gn—m(F)~Z(F)
Wy Y (F) S (F)wn—mQn—m (F)\Gn—m(F)

(note that S, commutes with X and G,,—,). So

Es(fiz,g) = 3 EZ(LMMfwm(“/l )cquLVMkMﬁ@ﬁDﬂ?

YEQn—m (F)\Gpn—m (F) yeY (F)

Note that the final integral is essentially a product of local ones.

Now we record some useful formulas:

Definition 3.8. If g, € U,,_n(Fy), x € GL,,,(K,), then define:

Sy
F%%m&w@=/ ﬂw(“fyO)M®MWTWQMM4M$%
snz (Fu)

L
. A B A B
where if g = (C D> , g2 = (C’ D’) then:

We also define

1, S
Funst) = Fen () ghen(-1i8)
Since
1 1, XBA™! S — XB'X
L, 20X A-1 A-1 n 7 qig
X f—
1 _ 17” lm 1
" BA™! A BA™! A "
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it follows that:

A BA!
FJﬁ(f,Z,X7( Afl >g7y):
7¢(det A)~1| det AA|ST e, (—tr(XX BXB))FJs(f;2, XA, g,Y).
Also we have:

FJs(f;2,y,9,x) = Ty(det )| det ml;(z%_m)Fthx(f; z,2 'y, g,1).

3.3.2 Weil Representations

We define the Weil representations which will be used in calculating local Fourier-Jacobi coeffi-
cients in the next section.

The local set-up.

Let v be a place of F. Let h € S,,(F,),det h # 0. Let Uy, be the unitary group of this metric and
denote V,, to be the corresponding Hermitian space. Let V,,_,, := ICq(,"_m) @ ng"_m) =X,8Y,
be the skew-Hermitian space associated to U(n —m,n —m). Let W :=V,, ®x, Vi—m,». Then
(=, =) == Trg,/r,({(= —)n ®k, (= —)n—m) is a F, linear pairing on W that makes W into an
4m(n — m)-dimensional symplectic space over F,. The canonical embeding of U, x U, _,, into
Sp(W) realizes the pair (U, U,,—,) as a dual pair in Sp(W). Let A, be a character of K such
that Ay|px = XK/ F,p- 1t is well known (see [I7]) that there is a splitting Up, (F,) X Uy (Fy) <
Mp(W, F,) of the metaplectic cover Mp(W, F,,) — Sp(W, F,) determined by the character \,.
This gives the Weil representation wp, ,(u,g) of Up(Fy) X Up_p (F,) where u € Uy(F,) and
g € Up_n(F,), via the Weil representation of Mp(W, F,) on the space of Schwartz functions
S(V, ®k, Xy). Moreover we write wy »(g) to mean wp, ,(1,9). For X € My (n—m)(Ky), we
define (X, X);, := !X 3X (note that this is a (n —m) X (n — m) matrix). We record here some
useful formulas for wy, ,, which are generalizations of the formulas in [28 section 10].

o Who(u, 9)B(X) = who(l, g)P(u"'X),
o wyo(diag(A, A1) B(X) = A(det A)| det Al D(X A),
(

Global setup:

Let h € S,,(F) be positive definite. We can define global versions of Uy, GU, X, Y, W, and
(—,—), analogously to the local case. Fixing an idele class character A = ®A\, of AZ/K*
such that A|px = X%/ > the associated local splitting described above then determines a global

splitting Uy (Ap) x Uy (Ar) < Mp(W, Ar) and hence an action wy, := Quwp, , of Up(Ap)x Ui (Ap)
on the Schwartz space S(Vi, ®x X).

4 Local Computations
In this section we do the local computations for Klingen Eisenstein sections realized as the pull-

backs of Siegel Eisenstein sections. We will compute the Fourier and Fourier-Jacobi coefficients
for the Siegel sections and the pullback Klingen Eisenstein sections.

4.1 Archimedean Computations

Let v be an Archimedean place of F.
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4.1.1 Fourier Coefficients
Definition 4.1.
fon(z,9) = Jnlg,i1,) 5| JTn(g, i1,)|" 227",

Now we recall [28, Lemma 11.4]. Let J,(g,%1,) := det(Cyil,, + D) for g = (gg g‘]).
9 Yy

Lemma 4.2. Suppose 5 € S,(R). Then the function z — f. 3(2,9) has a meromorphic con-
tinuation to all of C. Furthermore, if k > n then fy (2, 9) is holomorphic at z, := (k —n)/2
and for y € GLy,(C), fun.5(2x, diag(y, 571)) = 0 if det 8 < 0 and if det 3 > 0 then
(_2)—71(27ri)n/i(2/7r)n(n—l)/2
1= (k—j—1)

Frm.p (2w, diag(y, 5 71)) = eu (iTr(By')) det ()" det 7.

4.1.2 Pullback Sections

Now we assume that our 7 is the holomorphic discrete series representation associated to the
(scalar) weight (0,...,0;K, ..., k) and let  be the unique (up to scalar) vector such that the action
of K + (see subsectlon 3. 1 ) is given by det u(k, i) ~". Recall also that in subsection 3.1 we have
deﬁned the Klingen section Fy(z, g) there (denoted as F). Recall we have defined S and 5" in

51p i i
i b
equations (1)) and (2. Let i := or % be the distinguished
i 1b %117

point in the symmetric domain for GU(n,n) or GU(n + 1,n + 1) for n = a + 2b. We define
archimedean sections to be:

fe(9) = Tns1(9.3) " Jnga (g, D))" 2770

N

and
Fi(9) = Julg, 1) | Julg, D577
and the pullback sections on GU(a + b+ 1,b+ 1) and GU(a + b, a) to be

Fi(z,9) ::/ fi(z,8 (g, 1) S)7(det g1)m(g1)edagr
(a+b,b)(R)

and
F/(z,9) :=/ fl(z,8 Talg, g1)S")7(det g1)m(g1)edgs .
U(a+b,0)(R)

Lemma 4.3. The integrals F,, and F. are absolutely convergent for Re(z) sufficiently large and
for such z, we have:

(i)

Fn(z,g) = CR(Z)FH,Z(9)§
(ii)

Fi(z,9) = c.(2)m(g)e;

where

(av+by)bu ( ntrs _ o p T ntky-1
/ _ ov b ™ b, (2 + =5 Ay v) bv(z+ 2 ) ) >0
cx(2,9) = 27| det (], { 1, otherwise.

m(m+1)

and c.(z,9) = c(z+ 3,9). Here Ty (s) =7 = = 7/?:701 I'(s — k) and v := (a + 2b)db (recall
that d = [F : Q).

24



Proof. See [24], 22.2, A2.9]. Note that the action of (3,v) € U(r,s) x U(s,r) is given by (5',7")
defined there. Taking this into consideration, our conjugation matrix S are Shimura’s S times
$~! (notation as in loc.cit), which is defined in (22.1.2) in [24]. Also our result differs from [28]
Lemma 11.6] by some powers of 2 since we are using a different S here. O

4.1.3 Fourier-Jacobi Coefficients

We write F'Jg, for the Fourier-Jacobi coefficient defined in Definition with f, chosen as
fK,YL'
Lemma 4.4. Let z, = 5%, B € Sp(R), m <n, det § > 0. then:

(i) FJgr(2k, 2,1, 1) = frmp(ze + 2552, De(iTr(*XBX));
(ii) If g € Un_m(R), then

Fg (2, X, 9,1) = e(iTrB)em (B, £) fu—mn—m(2x, 9 )ws(9") ®p,00 (7).

].n ].'n, (72)7t(Qﬂi)tN(Q/w)t(t71>/2 »
’_ B ) )
where g = ( —1n> g (177, >7 Ct(/g) K:) - H;;(l)(ﬁ—j—l) detﬁ and @B,oo(l') _
e—27’l’TI‘(<a:7;1;>ﬁ) )

Proof. Our proof is similar to [28, Lemma 11.5]. For (i) we first assume that m < n/2, then there
is a matrix U € U, _,, such that XU = (0, A) for A a (m x m) positive semi-definite Hermitian
matrix . It then follows that FJs (2, X,n,1) = FJgz.(2,(0,4),n,1) and e(iTr('’XX)) =
e(iTr(U~"XBXU)), so we are reduced to the case when X = (0, A).

Let C be a (m x m) positive definite Hermitian matrix defined by C' = v/ A2 + 1. (Since A
is positive semi-definite Hermitian, this C' exists by linear algebra.) We have

c ct

1 c c! Cc—1A
A Ac—t ct -C71A c—1

AC! c! -Cc71A

Write k(A) for the second matrix in the right of above which belongs to K,too, then as in [28]
Lemma 11.5],

c1! X X X
1 X X X U-lsu—t
1, ﬁ X x x OV x x x 1,
W, X = c Wy, k(A)
In 1 1,
x x C

Thus

FJg (2, (0, A),m,1) (det C)*™ 25 F Jg . (2s,0,m,1), B’ = CBC

_ (det )220 f, 0 (2 + ”_2 1)

, De(iTr(CBC = B)).

n—m

= from.p(z+

25
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But
e(iTH(CHC — B)) = e(iTr(C2B — B)) = e(ITx((C? — 1)B)) = e(iTr(A2B)) = e(iTr(ABA)).

This proves part (i).

Part (ii) is proved completely the same as in [28, Lemma 11.5].

In the case when m > % we proceed similarly as in [28, Lemma 11.5], replacing a and u
there by corresponding block matrices just as above. We omit the details.

O

4.2 Finite Primes, Unramified Case

4.2.1 Pullback Integrals

Lemma 4.5. Suppose w,9 and 7 are unramified and ¢ € m is a new vector. If Re(z) > (a+b)/2
then the pullback integral converges and

L(7,7%, 24 1)
Fip(fgph;zag) = a+2b—1 I

— 129
I1izo (2z+a+2b+1—14,7x}) p.2(9)

where F, . is the spherical section taking value ¢ at the identity and

= FC 1
Fo(f3P"2,9) = L& 72+ 5) ™
[142 " L2z + a+ 20— i, 7/x%)

(9)e-
This is computed in [21] Proposition 3.3].

4.2.2 Fourier-Jacobi Coefficients

Let v be a prime of F not dividing p and 7 a character of K*. For f € I,,(7) and 8 € S,,(F}),0 <
m < n, we define the local Fourier-Jacobi coefficient to be

S 0
0 0 |g)e,(—TrsS)dS.

1,
Folzig) = / (2w
S’VTL(FW) 1,',L

We first record straightforward generalizations of [28, Lemma 11.7, Lemma 11.8] to any fields
(Propositions 18.14 and 19.2 of [24]).

Lemma 4.6. Let 8 € S,(F,) and let r := rank(B). Then fory € GL,(K,),

fjf;h (z,diag(y,5™")) = T(dety)\detyy\52+n/2D;n(n71)/4

[T, L(22+i—n+1,7"xk) —/ —2z—n
[T7= L(2z+n—i, 7/ xk) ho, 8y (7' (@) g, )-

X

where h, yp, € Z[X] is a monic polynomial depending on v and By but not on 7. If B €
Sn(OFy) and det 5 € O;yv, then we say that B is v-primitive and in this case h, g = 1.

Lemma 4.7. Suppose v is unramified in K. Let 8 € S,,(F,) such that det 5 # 0. Let 8 €
Sm(OF,), let X be an unramified character of K such that A[px = 1. If B € GLy,,(Oy), then
foruw e Ug(F,):

frnghm(Za g)wﬁ(uvg)@o(x)
H;T;Ol L(2z+n—i,7'x%)

FJa(f3P"; 2,2, 9,u) = 7(det u)| det wal =/
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4.3 Prime to p Ramified Case
4.3.1 Pullback integrals

Again let v be a prime of F not dividing p. We fix some x and y in K which are divisible
by some high power of w, (can be made precise from the proof of the following two lemmas).
(When we are moving things p-adically the x and y are not going to change). We define
fT € I,41(7) to be the Siegel section supported on the cell Q(F,)wq12v+1Ng(OF.,) where

latop+1

Watobtl = and the value at Ng(Op,,) equals 1. Similarly we define

—Llotab+1
[T € I,,(7) to be the section supported in Q(F,)wa+25No(OF.) and takes value 1 on Ng(OF,,).

Definition 4.8. ~
fv,sieg(g) = fT(gSv_lﬁ/v) € In+1(T)
where 7, is defined to be:

1 i1,
1
1a L1,
. ]
lb Elb
1,
1
1q
1,
and .
1b 751[)
1
1
& _ -1, 5L
S0 = L L,
1
1a
-1 -3
Similarly we define 1’)78i6g(g) = fT”(gggl%) for
1, 31,
1q
& =1y 51
S =
v 1y glb
1q
-1y —31y
and
lb *1b
1, L1,
. ]
’7 _ lb Elb
v 1,
1,
1y
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1

a 1 f
Lemma 4.9. Let K be the subgroup of G(F,) of the form 14

b

1y

— 0o Q@ o Q

where e =

_ta; b= tJ; g = _th_7 be M(Ov)’ (G fth_ € OF,U; (S (SL’), e € (i’): f € (yg); g € (Zny)
Then Fy(z;g, f) is supported in Pwa,z) and s invariant under the action of Ki(,z).

Si1 Si2 Sz Su
So1 S22 Sz S
S31 S32 Szz Ss
S41 Saz Saz Su

Proof. Let S, consist of matrices S :=

(a+2b+1) x (a+ 2b+ 1) matrices (the blocks are with respect to the partition b+ 1 + a + b)
such that the entries of Si3, S23 are divisible by y, the entries of S14, S24 are divisible by z, the
entries of S31, S32 are divisible by ¢, the entries of Sy1, Syo are divisible by Z, the entries of S33
are divisible by yy, the entries of S34 are divisible by xy, the entries of Sy3 are divisible by Zy,

and the entries of Sy4 are divisible by zZ. Let Q , := Q(F,) - ( 1 1).

Say
a; az
Iy as as
Write n = 14 . As in [28] Proposition 11.16] for g = | a7 as
-1 1 co
C4 Cjy
we have:
’Y(ga 1) € Suppfv,sieg
And Sv_la(ga 1)Awa+2b+ldw,y’7_1 € Qu,y
& S, ta(gw,ndiag(z ', 1,2))Aw'd, 7™ € Quy.
1y
1
1, -5
Here A = L 1, , dyy = diag(l,1,y,2,1,1,5~
1
-1, _%

1,

28

in the space of Hermitian

as bl b2
Qg b3 b4
ag bs be
C3 d1 d2
Cg d3 d4
Lzl d,



diag(1,1,9,1,1,1,5~

1y

1
17 1)7 U}/ _
-1,
1,
1
la
:)’ =
la
1,

1,

1,

and

Here x and y stand for the corresponding block matrices of the corresponding size. Recall that
v((m(g1,1),91) € Q, by multiplying this to the left for g; = diag(z, 1,2z~ )n~!, we are reduced
to proving that if (g, 1)w'd, 7! € Q,.,, then g € PwKPw . A computation tells us that:

1—-dy
—ds

—by
—bs

_bs
2
1

ds
dy

1
asy

—1
agy

(ag+1)g~"
2

——1
Cc3yY

——1
CelY

_(aotly 4 e Yag —1)gt ¢lbs —Clbs —Clbe CY(1— ag)g !

v(g, )w'd, 7" equals:
1 —31p
1
1a
-1y 51
1 %
1
1o
1,
ay as Sasy — azy !
ay as Sasy — agly B
CL7/2 a8/2 Cy(‘lz_l) _ (M)"Fé)y
1 C2 %C:‘ay — 3yt
Cq Cs %CGQ —cey
—¢tar —(la
a; —1 as 3a3Y — asy~!

by

by

ba

agg_l 1

One first proves that dy # 0 by looking at the second row of the lower left of the above matrix,
so by left multiplying g by some matrix in Np, we may assume that do = by = by = bg = 0,
then the result follows by an argument similarly to the proof of Lemma [£.30] later on. O

Now recall that g =

as G Qa4
ag ag ar
a2 as a1

. Let Q) be the set of ¢g’s so that the entries of as are integers,

the entries of a3 are divisible by yy, the entries of a; — 1 are divisible by Z, the entries of 1 — a5
are divisible by z, the entries of ag are divisible by Zy, the entries of a4 are divisible by zZ,

1— a9 = yy¢(1 + yyN) for some N with integral entries, the entries of ag are divisible by

and the entries of a7 are divisible by gyx(.
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Lemma 4.10. Let ¢, = n(diag(z, 1,27 1)) where ¢ is invariant under the action of 2
defined above, then

_,_at2bil
(i) Fp,(fo.sicgi 7,w) = T(ygr)|(yy)?azle”  * Vol(Y) - .
_p_at2b
(i) Fy,, (f} sieqi % w) = T(yyo)|(yy)*azzly 2 Vol() - .

Proof. First one computes:

1 1 1
1 1 1
: -4 ! ! 5
1 ay az a 1
1 1 1 1
1 1 1
—¢t —¢! az ag ag -1 —%
1 1 Qa4 g Qas
1 1 1
1 1 1
1 Y 1
« 1 1 1
1 1 -1 1
1 1 1
-1 g ! -1 1
1 1 —1 1
1
1
o (1 — ag) — (1 + ag) ~g L-(1+a) — —%
_ —az WY 4 azy! a1 —azy~? as
—ag Lgcy + azy? ap—1 1 —azy ag
1
¢ lag 21+ tag)+ ¢ (1 —ag) —Clar ¢yt (1 —ag) —(las
1— as a62Cy + a6g—1 ay —aeﬂ_l as

One checks the above matrix belongs to (), if and only if the a;’s satisfy the conditions required
by the definition of ). The lemma follows by a similar argument as in Lemma below. [

Definition 4.11. We will sometimes write ), for the ) above to emphasis the dependence on
v.

4.3.2 Fourier-Jacobi Coefficient

We first give a formula for the Fourier coefficients for fy sicy = P(’%)fg,sieg and f1'}7sieg =
.

p(’%) v,steg”
Lemma 4.12. (i) Let 8 = (Bi;) € Snt1(Fy) then for all z € C we have:

= + ...+ + ...+
Fosieon(:1) = V01(5n+1(@F,u))eu(Trzc,u/Fv(ﬂa+b+2’1 : 5a+2b+1,b)+ﬁb+2,b+2 ygﬂb-ﬁ-l-‘ra,b-‘rl-{-a)'

(ii) Let B = (Bi;) € Su(Fy). Then

a5 1) = Vol(Su(Or))en (T, g, (Ptoitt bt Pusoniy | Qosnes oo & vt
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The proof is straightforward.
Here we record a lemma on the Fourier-Jacobi coefficient for fi € I,,(7,) and 8 € S, (F,).

Lemma 4.13. If 8 & Sim(OF,)* then FJs(fT;2,u,g9,hy) = 0. If B € S,,(OF,)* then

FJs(ffz,u,9.h) = f1(z, g'm)ws(h, g'n)®oy (1) NVol(Sm(OF,)),

where ¢’ = (1"_’” 1 )g(ln_m 1 )

The proof is similar to [28, Lemma 11.15].

4.4 p-adic Computations

In this subsection we first prove that under some ‘generic conditions’ the unique up to scalar
nearly ordinary vector in I(p) is just the unique up to scalar vector with certain prescribed ac-
tion of level subgroup. Then we construct a section F in I(p") which is the pullback of a Siegel
section fT supported in the big cell. We can understand the action of the level group of this
section. Then we define F° to be the image of F't under the intertwining operator. By check-
ing the action of the level subgroup on F° we can prove that it is just the nearly ordinary vector.

In our calculations we will usually use the projection to the first component of IC,, ~ K, X
’Cw ~ Qp X Qp.
4.4.1 Nearly Ordinary Sections
Let A1, ..., A be n characters of F) which we identify with Q,, 7 = IndgL" (Ay ey An).

Definition 4.14. Letn =r+s and k = (Cr4s, ., Cs41; C1, ..., Cs) be a weight. We say (A1, ...\pn)
is nearly ordinary with respect to k if the set:

{val,A1(p), ..., val, A\, (p) }
= {a+s—1-%+tco+s—2-2+% . cs— L+ comi+tr+s—1-2+1 cpt+s—2+3}

We denote the set as {k1,..., Krys}. Thus K1 > ... > Kpps.
Let A, = Z[t1,ta, ..., tn,t, ] be the Atkin-Lehner ring of G(Q,), where t; is defined by

ti = N(Zp)aiN(Zyp), i = In—i p1->' Then t; acts on 7V (%) by

vlt; = g xiajlv.

wEN\(xleai
We also define a normalized action with respect to the weight k following ([10]):

ot 2= 3a) M 2prt Ry

t;

Definition 4.15. A wvector v € 7 is called nearly ordinary if it is an eigenvector for all ||t;’s
with eigenvalues that are p-adic units.

We identify 7 as a set of smooth functions on GL, (Q,):

7 ={f:GL,(Q,) — C, f(bz) = A(b)d5(b)*/2 f(x)}.
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by x X

Here A(b) := [T\, Ai(b;) for b = ... x| and dp is the modulus function for the upper
bn
1
triangular Borel subgroup. Let wy be the longest Weyl element 1 , and let f¢ be
1

the element in 7 such that f* is supported in Bw,N(Z,) and invariant under N(Z,). The f* is
unique up to scalar. We have:

Lemma 4.16. f¢ is an eigenvector for all t;’s.

Proof. Note that for any 4, f‘|t; is invariant under N(Z,). By looking at the definition of v|t;
for the above model of 7, it is not hard to see that f*|t; is supported in B(Q,)w¢B(Z,). So
f¢|t; must be a multiple of f*. O

Lemma 4.17. Suppose that (A1, ..., \n) is nearly ordinary with respect to k and suppose

vp(A1(p)) > vp(Aa(p)) > ... > vp(An(p))
then the eigenvalues of ||t; acting on f* are p-adic units. In other words f* is an ordinary vector.

Proof. A straightforward computation gives that
fg”ti - Al...)\i(pfl)p'ﬁ1+“.+mf[

which is clearly a p-adic unit by the definition of (A1, ..., A,) to be nearly ordinary with respect
to k. O

Remark 4.18. Hida proved in [I0, Theorem 5.3] that the nearly ordinary vector is unique up to
scalar.

Lemma 4.19. Let A1,...,\ay2p be a set characters of Qp such that cond(Agyap) > ..., >
cond(Ap+1) > cond(A1) > ... > cond(Xy). We define a subgroup: Ky of GLyt2v(Z,) to be
those matrices whose below diagonal entries of the i-th column are divisible by cond(Aa+2p+1—:)
for1 <i<a+b, and the left to diagonal entries of the j-th row are divisible by cond(Ag+2p+1—;)
fora+b+2<j<a+2b. Let \°P be the character of Ky defined by:

Aat26(911) Aat2o—1(922) - A1(Jat2b at20)-

Then f* is the unique (up to scalar) vector in  such that the action of Ky is given by multiplying
A°P.,

Proof. We only need to prove the uniqueness. We use the model of induced representation as
above. Let n = a+2band ey, - -- , e, be the standard basis of the standard representation of GL.,.
Let p' be the conductor of \;. So tq42p = max{t;};. Write Ko(p) C GL,(Z,,) for the subgroup
consisting of elements in B(Z,) modulo p. Suppose f is any vector satisfying the requirement of
the lemma. Let w be a Weyl element of GL,, such that f is not identically 0 on wKy(p). Then

we see that w - e; = eq19p by considering right multiplication by diag(1 + pfe+2e=1 1 ... 1).
Continue this argument, we see that w - es = egy2p-1, ---. Finally we have w = w’ and the
lemma is clear by Bruhat decomposition. O
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We let wq := 1 . Now let B = B¥! and K, = K.
1

1

Corollary 4.20. Denote a; := v,(Ai(p)). Suppose A1, ..., Aat2p are such that cond(Ay) > ... >
cond(Agyap) and ay < ... < Gaqp < Aay2p < oo < Gaypr1- Then the unique (up to scalar)
ordinary section with respect to B s

Ford(g) = A1 (911) - Aat2n(Gatabatas), 9 € K,
0 otherwise .

Proof. We only need to prove that m(w; ) f°"%(z) is ordinary with respect to B¥* = B . Let A} =
Aatbils o Ay = Aat2bs Apy1 = Aaths - Agpop = A1- Then )\ satisfies Lemma and thus the
ordinary section for B (up to scalar) is f5,. Since A" also satisfies the assumptions of Lemma

f% is the unique section such that the action of Ky is given by A, 5, (g11)..-\] (ga+26,a+25)- But

A is clearly regular, so IndgL““b (\) =~ IndgL““b (XN). So the ordinary section of IndgL““b()\)

for B also has the action of K given by this character. It is easy to check that 7(w;)f°"? has
this property and the uniqueness (up to scalar) gives the result. O

4.4.2 Pullback Sections

In this subsubsection we construct a Siegel section on U(a + 2b + 1,a + 2b + 1) which pulls
back to the nearly ordinary Klingen sections on U(a + b+ 1,0 + 1). We need to re-arrange
the basis since we are going to study large block matrices and the new basis will simplify the
explanation. One can check that the Klingen Eisenstein series we construct in this subsection,
when going back to our previous basis, is nearly ordinary with respect to the Borel subgroup

x ok * ok
* * ok
B, = % % * x|, where the first to fifth diagonal blocks are upper, upper, upper,
*k

* ok

lower, lower triangular, respectively. But the one we need is nearly ordinary with respect to the
x ok k ok ok

Xk ok ok
Borel subgroup Bs := * x| (it is for this one we can use the A-adic Fourier-Jacobi
*
x %

expansions). (Here the blocks are with respect to the partition: b+ 14 a + b+ 1.) There is
a Weyl element wporer of GLgyap42 such that w;}relB2wBorel = By. This wpgere is in fact in
the Weyl group of GLyt14, embedded as the upper left minor. In the case of doubling method
(U(r,s) x U(s,r) < U(r + s,r + s)) we have a corresponding change of index and we write
Wgope; for the corresponding Weyl element. In Subsubsection we will come back to the
original basis.

Clq
Now we explain the new basis. Let V,; be the hermitian space with matrix 1,
1
¢

and V; 41 be the hermitian space with metric 1p+1 |. (These are our skew-
=1y
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Hermitian spaces for U(r,s) and U(r + 1,s + 1) under the new basis). The matrix S for the
embedding: U(V,) X U(Vyp41) < U(Vapopt+1) becomes:

¢
1 —$ 1
1 2
1
-1 %
1 f%
1
1 2
1
1
-1 -1

Godement Sections at p

Let v|p be a prime of F and K, ~ Q,, xQ,,. Let 7 be character of Q, xQp . Suppose T = (71, T{l)
and let p® be the conductor of 7,7 = 1,2. Let x1,...Xa, Xa+1, ---Xa+2b be characters of Q;( whose
conductors are p’t, ..., pfe+2t. Suppose we are in the:

Definition 4.21. (Generic case):
t1 >ta > ... > taqp > 81 > tagby1 > .o > Lar2p > S2.

Also, let & =y * for1 <i < a+b, & = Xj_lT2 fora+b+2<j<a+2b+1. Let€qppr1 = 1.

Let @, be the following Schwartz function on My12p4+1(Qp): let I' be the subgroup of GLg42p+1(Zp)
consisting of matrices v = (v;;) such that p®* divides the below diagonal entries (i.e. i > j) of
the k*" column for 1 < k < a+b and p** divides vij when a+b+2 <i<a+2b0+1,j =a+b+1;
pli-t divides v;; when a +b+2<j<a+2b+1,i<a+b+1lori>j.

Let &/ = yiry 1 <i<a+b, & :Xj_lrl, a+b+2<j<a+2b+1,and ¢, ., =7yt
(Thus &), = &7y ! for any k).
Definition 4.22.

0 z ¢l

[} = a
1) { P (o) z el

Now we define another Schwartz function ®2 on Mgy op41(Qp).
A A Az Ay
Aoy Az Az Aoy
Az1 Az Azz Az
Ap Ay Ayz Ay
with respect to the partition: a +2b+1=a+ b+ 1+ b, then:
- x has entries in Z,;

<A11 Ay

Ag1 Aoy

- and Ay has i-upper-left minors B; so that (det B;) € Z, for i =1,2,...,b.
We define:

Let X be the following set: if X > x = is in the block matrix form

) has the i-th-upper-left minors A; such that (det A;) € Z)* for i =1,2,...,a + b;

0 & X,
Pe(x) = ¢ &1/&(det Ay)...&aqp—1/Eavb(det Aarp_1)Earb(Aats)
XEa+bt2/Eatbts(det Br)...6arav/Eatav1(det By—1)aapt1(det By). z € X.
(11)
This is a locally constant function with compact support. Let
Dy(x) := (ig(x) = / D¢ (y)e, (try'z)dy
Mat2011(Qp)
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(tilde stands for Fourier transform). Let ® be the Schwartz function on M, op41,2(a+26+1)(Qp)
defined by:

q)(Xv Y) = (I)l(X)(I)Q(Y)a
and define a Godement section (terminology of Jacquet) by:

a42b41

F2(g) = 2(det g)| det gl °F 2 x/ ®((0,X)g)r; '2(det X)| det X[, 220t g X
GLa+20+1(Qp)

Lemma 4.23. Ify €T, then:

a+2b+1

(v X) = [ (Gklmr)@e(X).

k=1

Proof. Straightforward. For example to see that the Ayo-block of v X has invertible upper-
left minors (i.e. having determinants in Z;) for v € T',x € X, one notes that all entries
of the upper-right block of ~ is zero modulo p, and that multiplying by invertible matrices
which are lower-triangular modulo p does not change the property that all upper-left minors are
invertible. O

Fourier Coefficients:
Let z be in the absolutely convergent range. For 5 € Sq42p+1(Qp) (isomorphic to Ma42p+1(Qp)
through the first projection) the Fourier coefficient is defined by:

fg)(l,Z) - /M (Q)fé((_la-i-%-ﬁ—l 1a+2b+1> <1 Z¥>)6p(trﬁN)dN

— / / @((O,X)( 1 1a+3€]+1>)7'1172(detX)
Mat264+1(Qp) Y GLat264+1Qp) T ta+2b+1 -

x| det X |, 2=ttt e (—trBN)dNd* X

:/ By (— X)Pe(—X 1) r ry(det X)| det X250 X
GLay204+1(Qp)
= 7 'ra(=1)vol(T)®¢('8). (12)

1 Ma+2b+1(Zp)>

Definition 4.24. Let fT = fg+2b+1 be the Siegel section supported on Q(Qp)wWat2p+1 ( |

z 1 X
and fT(wa—i-Qb-&-l ( 1)) =1 fO?” X e Ma+2b+1(Zp)-

Lemma 4.25.
iy = { 1 B€ Matops1(Zy)
A 0 B¢ Mayant1(Zy)

(here we used the projection of B onto its first component in K, = F, x F,) where the first
component correspond to the element inside our CM-type ¥ under v := C ~ C,, (see subsection
2.1).

Definition 4.26.
f@
e (—1)Vol(T)

e

Thus f} = ®¢('8).
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We define

7 (pnt 2ntz—tn(n+1)/2 t>0
en(T,2) 1= { pggﬁ_z?nﬂ)p t=0. (13)

Now we recall a lemma from [28, Lemma 11.12] which will be useful later.

Lemma 4.27. Suppose v|p and B € S,,(Q,),det 5 # 0.
(i) If B &€ Sy(Zy) then M(z, f1)s(—2,1) = 0.
(i) Suppose 5 € Sp(Zy). Let t := ord,(cond(7')). Then:

Mz, f1)s(—2,1) = 7/(det B)| det 8], 2*g(F')"en (7', 2).
Note that our f1 is the f in [28] and our 7 is their .

Now we want to write down our Godement section f® in terms of fT. First we prove the
following:

Lemma 4.28. Suppose ®¢ ,, is the function on M, (Q,) defined as follows: if cond(§;) = (p*)
forty > ... > t,, and &; are characters of Q, with conductor p'i. Let X,, be the subset of M (Z,)
such that the ith upper-left minor M; has determinant in Z, . Define ®¢ ,, to be

%(det Ml)...g’g1 (det M,,_1)&, (det M,,)
on X, and 0 otherwise. Let
; N p MLy
Xen = Xe := N(Zp) NOPP(Z,).

p—th;;
Then the Fourier transform ‘i’g of ®¢ is the following function:

0 xr ¢ .%5
Pe(x) = _ v -
‘5( ) H?:l g(fz) H:-L:l fi($ipt‘) 3€§ >r =
1 Ty v 1
Proof. First suppose x is in the "big cell”: N(Q,)T(Q,)N°P?(Q,). It is easily seen that we can
write x in terms of block matrices:

()

where z € GL,—1(Qp) and w € QX, v € M,,_11(Q,),v € My ,,-1(Q,). A first observation is

that ®¢ is invariant under right multiplication by N°PP(Z,) and left multiplication by N(Z,).
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We show that v € My (,—1)(Zp) if ®¢(z) # 0. By definition:

Pe(z) = /M “ @E(y)ep(trytx)dy

i (753 () (1) (o an'™)
- /aﬁs,nhmewzp)xewzp),bezz <1>§(<; 1> (a b) (1 T>)
(o () (DD )6 e
o i NI o
@5( )e” (ix( ((tmtfv)ta (tm+v)(té(;i)u)+b) <Z w)))dy

Joet(" ) entertaz-+ (¢t oyali-+ )+ vy

X

(Note that ® is invariant under transpose.)

If <f>£(a:) # 0, then it follows from the last expression that w € p’t"sz. Suppose v &
Mix(n—1)(Zyp), then 'm 4+ v & My (n—1)(Zp). We let a,m,b to be fixed and let £ to vary in
M (n—1)(Zp), we find that this integral must be 0. (Notice that a € X¢ 1 and w € p*t"Z;,
thus (m + v)law & Mixn—1(Zp)). Thus a contradiction. Therefore, v € M} xp—1(Z,), similarly
u € M,,_11(Z,). Thus by the observation at the beginning of the proof we may assume u = 0
and v = 0 without lose of generality.

Thus if we write ®¢ 1 as the restriction of ®¢ to the upper-left (n — 1) x (n — 1) minor,

D¢ ()

/cbg((“ b))e,,(tr(az+(maté+b) ))dy
= )G ) [ Sl (az)dy,

a€Xe n—1
By an induction procedure one gets:

= 0 x € -%5 n
(I) xTr) = no n n ¢ i %
() { pm 2zt [Ty 0(&) [Ti2y Gilzap™) o € Xem.

We have thus proved that CIJE »n When restricting to the ” blg cell” has support in Xg n. Since
%5 n 18 compact, therefore <I>5 n itself must be supported in %5 n- O

Lemma 4.29. Let .’%g be the support of Py = ‘ig, then a complete representative ofig mod Mgtop+1(Zp)
is given by:

A B

C D

E

where the blocks are with respect to the partition a + b+ 1+ b where (A

C D) runs over the
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following set:

1 mio mMi,a+b T 1
n21
Ma4b—1,a+b .
1 ZTatb) \Matbl - TNatbatb—1 1

—ti 77X t ¢
where x; Tuns over p~"*Z,; mod Zy, mi; runs over Z, mod p'i and n;; runs over Z, mod p",
and E runs over the following set:

1 klg Ifl’b Y1 1
621
k‘bfl)b
1 w) \Log - Llop—1 1

where y; runs over p~titety ZX mod Z,: ki; runs over Z, mod ptetv+i; £;: runs over Z, mod ptetvti.
P ps Kij P 5 bij D

Proof. This is elementary and we omit it here. O
laxa Lpxp
Also we define for g € GLy+25(Qp), ¢* = loxs | 9| laxa and
Toxo Toxo
-1 -1
]-a><a 1b><b
9. = Loxo 9 | laxa
lpxp Loxo

Corollary 4.30.

a-+b b
_ a+bz b )
fzg) = pZim i icvternss TT g(6)&(—1) [ 0(Carvrrri)€aroripi(=1)
i=1 i=1
a b
~ det A4; det D; o detE; ,
. a+z a+b+i
X Z HfZ(detAi | H a+i, a+z det D,_ 1 X Hga-&-b-‘rl-‘rz det E;_ 1p )
A,B,C,D,Ei=1 i=1 i=1
A B
D
Fi(z,g lat2o+1 )
F
lat2p41

Here A; is the i-th upper-left minor of A, D; is the (a+1i)-th upper left minor of <é g) (not

D), E; is the i-th upper-left minor of E, and the sum is running over the set of representative

of Lemma [£.29]

Proof. We only need to check the Siegel Eisenstein sections on both hand sides coincide on
wWNg+25+1(Q)) since the big cell Qqt2p+1(Qp)wWNyt2p+1(Qp) is dense in GLgg44p+2. To see this
we just need to know that they have the same $-th Fourier coefficients for all 8 € Sq42511(Qp).

O

But this is seen by (12, Lemma and

Now we define several sets: Let B’ be the set of (a + b) x (a + b) upper triangular matrices

of the form
1 mi2 mMi,a+b X1

Ma+b—1,a+b
1 La+b
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where x; runs over Z,¢ mod p“, m;; runs over Z, mod p“.
Let ©’ be the set of b x b lower triangular matrices of the form

1

n21

naer}l

where n;; runs over Z, mod p'ita+t.
Let ¢ be the set of b x b upper triangular matrices of the form

1

where k;; runs over Z, mod ple+t+i.
Let €’ be the set of (a + b) X (a + b) lower triangular matrices of the form

Y1

Natb,atb—1 1

klg kl,b

ky—1p
1

1
o1

Yb b1 oo by 1

x t; . tatbri
where y; runs over Z; mod p*i+ettZ,; £;; runs over Z, mod p'ettti,

Thus if B’,C’, D', E' run over the set 8’, &', D’ &', then

f(z.9)

p- S it =30 itagbri

a+b b

Y ITe@)a0 T oCarvrrea)éarvrrsi(=1)

B'.C’,D',E' i=1 i=1

a+b

b
X Z H &(Bj;) H Earvti(Ciy)

B/,C',D',E’ i=1
B/

= 1
x f (2, gal o

b, b
p- POHASRIED DU IR

a+b b

I  IIs@&ED T osriei)éarsrri(=1)

B/,C",D' B i=1 i=1
a-+b B b a-+b b
x Z H &i(Bj;) | | ba+o+i(Ch) H 71(B}) H 72(C})
B/,C",D' " i=1 i=1 i=1 i=1
B/
z 1 E (1A
< Fi(zga( o |7 o ()
1
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—t1

pte
—t
p a+1
where A’ = ptors
0
p—ta+b+1
p—ta+2b
We let = e
1
1
1
Y= 1 1 )
2 2
1 1
1
1 1
1
1
1
1
’_
and w' = .
1
1
1

Definition 4.31. (pullback section) If f is a Siegel section and ¢ € m,, then
Fy(z, f,9) ::/ f(zvalg, 91)y~")7(det g1)p(91)pdgr.
GLg+426(Qp)

Now we define a subset K of GLg42p4+2(Z,) so that k € K if and only if p* divides the below
diagonal entries of the i-th column for 1 < i < a + b, p°* divides the below diagonal entries of
the (a+b+1)-th column, and p'«+¥+i divides the right to diagonal entries of the (a+b+1+j)-th
row for 1 < j < b—1. We also define v, a character of K by:

a-+b b
V(k) =7 (ka+b+1,a+b+1)7—2(ka+2b+2,a+2b+2) H Xz(kn) H Xa+b+i (ka+b+i+1,a+b+i+1)
i=1 i=1

for any k € K.

Definition 4.32. We define Y to be the element in U(n,n)(F,)(= U(n,n)(Qp)) such that the
projection to the first component of K, = F, X F,, equals that of v (note that v & U(n,n)(Fy)).

Lemma 4.33. Let K' C K be the compact subgroup defined by:
a; az as bl b2
ay as asg bg by
K'3k=|a; ag a9 bs; bg | € K (here the blocks are with respect to the partition (a +
c1 c2 c3 dy dp
C4 Cp Cg d3 d4
b+1+b+1))if and only if: ptatv+itti divides the (i,5)th entry of ¢1 for 1 <i<b,1<j<a
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and ptetv+itteri divides the (i, j)th entry of ca for 1 <i <b, 1 < j <b. (it is not hard to check
that this is a group).
Then: Fu(z, p(Y)fT, gk) = v(k)F,(z,p(Y)f1,g) for any o € m and k € K.

Proof. This follows directly from the action of K’ on the Godement section fT. O

We define K" to be the subgroup of K consists of matrices

such that pt divides the (i,j)th entry of ¢; for 1 < i < b, 1 < j < a and ple+i divides the
(i,7)th entry of ¢o for 1 <i<b, 1 <j<b.

a1 asz az
Definition 4.34. Let K C GLyy25(Z,,) be the set of matrices | az a9 as | (blocks are with
a4 Qg G5

respect to the partition (b+ a + b)) such that the columns of az,ag are divisible by p't, ..., pta;
the column’s of as are divisible by plet1, ... plett: ptati divides the below diagonal entries of the
i-th column of a1 (1 < i <b); pt divides the below diagonal entries of the j-th column of ag
(1 <j < a); ptato+r divides the above diagonal entries of the k-th row of as.

Let K' C K be the set such that ptetv+ittetsi divides the (i, j)-th entry of ay for 1 < i < b,
1 < j < b and ptato+itli divides the (i,7)-th entry of ag for 1 <i <b, 1 < j < a. We also
define K" to be the subset of K consisting of matrices:

1
1
aq a61

such that pt«+i divides the (i, 7)th entry of ay for 1 <i <b, 1 < j <b andp' divides the (i, j)th
entry of ag for 1 <i<b, 1< j <a. We also define v a character of K by:

b a b
v(k) = H Xa+i(Kii) H Xi (Kbti,b+4) H Xa+bti(Katbriatbri)-

i=1 i=1 i=1
The following lemma would be useful in identifying our pullback section:

Lemma 4.35. Suppose F,(z,p(T)fT,g) as a function of g is supported in PwK and
Fy(z,p(0) fT, gk) = v(k) Fy (2, p(Y) fT, 9)

for k€ K', and Fy(z, p(Y)ft,w) is invariant under the action of (K")*. then F,(a,p(T)f', g)
is the unique section (up to scalar) whose action by k € K is given by multiplying by v(k).

Proof. This is easy from the fact that K = K'K"” = K" K’. The uniqueness follows from Lemma
4.19 O

la la
From now on in this subsection we use w to denote 1y41 | or 1
—Tp11 =1y

Lemma 4.36. If ya(g,1)y~" € supp(p(Y)f1) then g € PwK. (Here p denotes the action of
GUgyop4+1(Fy) on the Siegel sections given by right translation.)
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Proof. Since f1is of the form fT(g) =3 4.5 fi(g (1 /11>), where X is some set, we only have

to check the lemma for each term in the summation.

Recall we defined: A’ =

_p*tl

_p—ta+b+1

,p*ta+2b

_pta+1

_pta+b

where the blocks are with respect to the partition (a+b+1+b). Let ¢, and ~, be the projection
of ¢ and =, to the first component of IC, ~ F,, x F,,, then:

Yo

We denote the last term 4, (different from the definition in the prime to p case).

C—l
1y
1
1y
3la
1,
1y
26,
1
1
1,

-G
31
1,
1
1y
7§1)71
3la
1p
1
1y

1,

Using the expression for f1 involving the B’, C’, D', E'’s as above and the fact that y(m(g,1),g) €
@ and that K is invariant under the right multiplication of B’s and C’s, we only need to check

/ ~
that if J,a(g,1)7, ! € supp(p('f)p((1 ?)))ﬂ, then g € PwK. Our calculations below are

generalizations of the proof of [28, Proposition 11.16]. If gw =

this is equivalent to
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az
as
as
C2
Cs

as
aeg
a9
C3
Ce

by
b3
bs
dy
ds

by
by
bs
dy
dy

then




14
1y
1
1y
1q 1a
1 1p
1,
diag(plt1 s ple, 1y, 1, platt

X diag(p_tla "'ap_tua ]-b; 1ap_ta+17 )

a1
a4
ar

az
as
asg

C1
Cy

C2
Cs

being in supp fT, which is equivalent to

belonging to:

supp(p(diag(p~*,

The right hand side is contained in: Q; := @ - {(;V 1) : 5 e s

—tq —taq
c D 7]-b7]-7p +17'~~,

p*ta+b+1

asz
Qg
ag

C3
Ce

ta —ta
P +b71aa1b713p +b+13"';

1,

—ta ta
p +b71a71b717p +b+17°"

bi b

bs by

bs  bg

1,

di do

ds dy
prer) x

,pleter)
ph

platt

P L Ly, 1 ptet e ple e wg gy ) 1)

a(l,wHw' x
1y
1a
1,
1
1y
1, 1,
_1, 1,
1
-1, 1,
—1
Wy t2b41
Jw'y,
S11 Sz Sz Su
So1 Saa Saz Sag }
S31 S32 Szz S
Sa1 Sio Saz Su

where the blocks for S; are with respect to the partition @ + b+ 1 + b and consist of matrices
such that S;; € M (Z,), and such that pti divides the i-th column for 1 < i < a of the matrix 9,
plati divides the (a+b+ 14 1)-th column for 1 < i < b, plett+i divides the (a+ b+ 1+14)-th row
for 1 <4 < b, and the (i,7)-th entry of Sy; and Sy4 are divisible by pla+s+itii and platv+ittat
respectively. Observe that we have only to show that if ya(gw, 1)w'3~1 € Q4 then g € PwK,
ie. gw € PKY for K* := wKw (note that v(m(g1,1),01) € Q).

Let

Fwalgw, Nw'y, =

—aq
—ay
—ar

—1-— (5]
—c
—cCy
—ay

az
as
as

a2

C2

Cs
as — 1
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asg
ag
ag

as
C3
Ce
ag

—b;
—bs
—bs
1
by
1—d;
—ds
—bs

by
by
bs

by
day
dy
by




aq b1 bg

Thus if H € Q, then 21 31 22 is invertible and there exists S € S} such that:
4 3 4
a4 b3 b4 1
—1- aq as as 7b1 aq b1 b2
—C1 C2 C3 1-— d1 . C1 d1 d2 S
—Cy Cs Cg —d3 o Cq d3 d4 ’
—Qy as — 1 ag —b3 a4 b3 b4 1

By looking at the 3rd row (block-wise), one finds dy # 0, so by left multiplying ¢ by a matrix
1, X
1b X
1 x| (which does not change the assumption and conclusion) we may assume
]-b X
d;?
that dy =1 and do = 0,b2 = 0,b4 = 0,bg = 0. So we assume that gw is of the form:

ar az az b

ag as asg b3

ary ag Gy

¢ ¢ c3 di

Cq Cs Cg d3 1

Next by looking at the 2nd row (block-wise) and noting that do = 0 we find that d; is of the
form

Zy Z, e e Ly
pletiZ, 7y e Ly
pret2Zy, Z;
pletiZ, oo e LY
1,
Iy
So by multiplying a matrix of the form 1 x from the left we may assume that
Ly
1

b5 = 0. And by looking at the 3rd row again we see ¢4y = (p*Z,,...,p"*Z,), cs5,c6 € M(Zy),
ds € (pte+,..,p'>+t). From the 2nd row: ¢; € (Myx1(p"*Zy), Myx1(p™2Zy), ..., Myx1(p**Zy)),
Co € beb(Zp), c3 € bel(Zp).

Z; Zy, o e Ly
P Z, Z; Zy,

By looking at the 1st row and note that by = 0 we know aq € ptZZp Z; vee e | ya0,a3 €
piZ, .. oo e LY

M(Zy), by € (Max1(p'*Zy), Max1(p'e+2Zyp), ..., Max1(pt*+*Zy)). Finally looking at the 4-th
row (block-wise), we note that by = 0. Similarly, ay € (Mpx1(p"*Zyp), Mys1(p'2Zy), ..., Myx1(p*Zy)),
b3 S (bel(pta+lzp)a bel(pta+2Zp)a (X3} bel(ptaerZP)))

Mlxb(pta+b+1 Zp) pta+b+1 Zp

M ta,+b+2Z ta,+b+2Z
and a5 — 1 € 1xb(P v) ,a6 € p P

M1xb(pt“+2pr) pta+2pr

Now we prove that gw € PK™ using the properties proven above. First we right multiply gw
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1o

1p
by 1
—ditey —ditcs —dites dit
—C4 —Cs —Cg —d3 1

or what needs to be proven, so without loss of generality we assume that ¢4 = 0,¢5 = 0,¢6 =

0,d3 = 0,c4 = 0,c5 = 0,c3 = 0,d; = 1. Moreover we set (Z
4

la Tl 1a
L, T Ly
Then 1 € K*. By multiplying
1y
1
get an element in P. So it is clear that gw € PK™.

Now suppose that 7 is nearly ordinary with respect to k. We denote ¢ to be the unique (up
to scalar) nearly ordinary vector in 7 with respect to the Borel B. Let ¢, = w(w)ep.

Now write

p*ta+b+1

pta+1

Compute the value F/ (2, p(Y) fT,w)
In fact F (2, p(Y)fT,w) it is equal to:

B

B,C,D,E

1,

1,

-1

XW, g 1)7(det g1)p(g1) ¢’ dg

where sumisover B € B/, C € ¢ D € D' E € ¢. A direct computation gives: Ja(1,

equals
—1, lq
1y
1

—as —a a1

—ag — 1, —asg ar 1,
—as —as9 ayp — 1b
—Qg 11, — Qs Qy
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. 1 E
7w w, (@ ( )
/GLa+2b(Qp) ¢ D

)L>w/:>l/71diag(p7tl7 '_'7p7t‘17 ]‘b7 ]‘7p7ta+17"'7

1y

)

~T

ag
as
az

as

ai
ar
Gy

€ K™, which does not change the above properties

T
Ty

to the right we

pta+1

ag
ag
ag

—ta+b tat+b+1 ptat2b
p a+)a1a;1b717pa+)+ 7pa+

az
ag
as



a; az a2
Now we define ) to be the subset of GL,+25(Z,,) consisting of block matrices | ar a9 asg

a4 Qg Qs
a; as ap ‘
such that o (1, | az a9 ag | )w'y~! is in the Q; defined in the proof of Lemma |4.36| It is
a4 Qg Qas

not hard to prove that it can be described as follows: the i-th column of —ag — 1 and a3 are
divisible by pti for 1 < i < a, the i-th column of ar,a; — 1 are divisible by pte+i, the (4, j)-th
entry of ag is divisible by pla+v+itti the (i, j)-th entry of a4 is divisible by pla+s+itta+i the j-th
row of 1 — as is divisible by p‘e+t+i. The entries in ay and ag are in Z,. Then the pullback
section is equal to

ZB,C,D7E f fNT (:Ya(]-agi)wlﬁ/ildiag(pitla "'apitaa 13 l’p*ta+1’ "'apita-*—b? ]-7 ]-7 1apta'+b+la "'aptn'+2b)

Xwy Loy )T (det g1)m (g1 )pdgn

(superscript w means conjugation by w) where the integration is over the set:

pta+b+1
1
B v ) b —t1
e ol o) [, p
P conj \ —1, p_ta+b
for:
pta+b+1
E — 1 b p E
D . e D
cona —1p p~tet
p*ta+b+1
-1
t1 b
X p 1,
plats 1p

Lemma 4.37. If ¢, is invariant under the action of (K")*. Then
For (2, p(1) f1,w)
is such that the action of K* on it is given by i.

Proof. By the above two lemmas we only need to check that F,/ (2, p(Y) fT,w) is invariant under
L

the action of K”. We first claim that DB 7T(<E D) )¢ is invariant under (K”)*. The
conj

claim follows from direct checking. Also for any k; € K”, we can find a k; € K" such that

B v , B .
k1 ( C’) ky ! runs over the same set of representatives as ( C’) . For any k1 € K", we
L L

can find a ky € K" such that k1k; ' =9). The lemma follows from these observations. O
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pta+b+1

1, .,
The value of fT at g1 = 1, p is

—1, ——

T((pta+b+1+m+ta,+2b , pt1+~~~+ta,+b)) ‘pt1+~~+ta,+2b ‘*Z*%M .

So a straightforward computation making use of the model for 7 = 7(x1, ..., Xa+2p) tells us the
following:

Lemma 4.38. If ¢ and ¢’ are defined as after the proof of Lemma then:

Fyr(z, p(0)fFw) = r((ph - Ftose plasositettaany) phitettopn | == =55 yo) (R7)

a-+b b
_§shatb s )
x p 2imn iy et | I 9(&)&i(—1) I |9(§a+b+1+i)fa+b+1+z‘(—1)<Pw-
=1 i=1

Combining the 3 lemmas above, we get the following:

Proposition 4.39. Assumptions are as in the above lemma. Fu (2, p(Y)fT,g) is the unique
section supported in PwK such that the right action of K is given by multiplying the character
v and its value at w is:

For(z,p(T) flw) = g((phitetass plavsratttaan))phat ftaan | =2= 55 yo) ()

a+b b
Cyatb s .
X pT st TRy et H 9(&)& (1) H 8(§atot1+i)atvr1+i(—1)Pw.
i=1 i=1
Proof. ¢, is clearly invariant under (K")*. O

This Fi (2, p(Y) f1, g) we constructed is not going to be the nearly ordinary vector unless we
apply the intertwining operator to it. So now we start with a p = (7, 7). We define our Siegel
section fY € I, 19p41(7) to be:

fz19) == M(=2z f1).(9)

where f1 € I, 0p11(7¢). We recall the following generalization of a proposition from [28] (in a
generalized form).

Proposition 4.40. Suppose our data (m,7) comes from the local component at v of a global
data. Then there is a meromorphic function v (p, z) such that

Fapv(_za M(Zv f)7 g) = ’7(2) (p7 Z)A(p, Z, Fgo(f§ Z, _))—z(g)'
Moreover if w, ~ T(X1, ..., Xar2p) then if we write vV (p, z) = v (p, 2z + 1) then

1. L(7, 7¢,1/2 —
YD (p.2) = (=Dea(r', 2)g(my)"e(m, 7,2 + 3) M

where ¢, (7', 2) is the constant appearing in lemma |4.27]
Proof. The same as [28, Proposition 11.13]. O

Remark 4.41. Note that here we are using the L-factors for the base change from the unitary
groups while [28] uses the GLy L-factor for 7 so our formula appears slightly differently.
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Now we are going to show that:

F)(z:9) == Fp(z,p(0) ", 9)

is a constant multiple of the nearly ordinary vector if our p comes from the local component of
the global Eisenstein data (see subsection 3.1). Return to the situation of our Eisenstein Data.
Suppose that at the Archimedean places our representation is a holomorphic discrete series
associated to the (scalar) weight: k = (0,...0;k, ...x) with 7 0’s and s k’s. Here r = a+b,s = b.
Suppose 7 ~ Ind(x1, ..., Xa+2b) is nearly ordinary with respect to the weight k. We may reorder
the x;’s such that v,(x1(p)) = s — 2 + 3,... vp(xr(P) =+ s =1 =2 + 2. 1(xr+s(p) =
k=241 (i) =k+s—1—2+1 and 7 = (11,75 ") a character of Q) x Q with

K

vp(11(p)) = 2+ Y] vp(T2(p)) = 5, SO

vp(X1(p)) < - < Vp(Xa+s(P)) < vp(r2(p)p™™) < vp(Ti(P)P™) < Vp(Xat2n(P)) < - < Vp(Xatot1(P))
where z, = £=C>5=1 Tt is easy to see that I(py,2.) ~ Ind(x1,...Xr+s: 72|-|**,71].| 7). By
definition I(p,, z.) is nearly ordinary with respect to the weight (0, ...,0; &, ..., &) with (r 4+ 1)
0’s and (s+ 1) &’s

Definition 4.42. Assumptions and conventions are as above. We say (mw,T) is generic if
cond(x1) > -+ > cond(xa+b) > cond(72) > cond(xgtb+1) > -+ > cond(Xqt2p) > cond().

We suppose also the conductor of T; is p°. Notice that we have so > s1 by our assumption
which is different from Definition (since we have applied the intertwining operator here).

Let us record the following formula for the e-factor in Proposition

S
. _ _ T X . 1
e(m, 7, z+ Hg xiry (0 - [ a0 lime)xosams L (0°2) - [poims tbese ot
=1
r+s +
_ _ r s 1
x [T aCar g tra(h) - [p=ii )7+, (14)

From the form of F/(z,p(Y)f";g) and the above proposition we have a description in the
“generic” case for F2(z,g) as in [28, Lemma 9.6]: it is supported in P(Q,)K,

FS(Z, 1) = 7(2)(,0, —z)fc((pt1+...+ta+b,pta+b+1+..<+ta+2b))|pt1+...+ta+2b|z—7a+";”“Vol([(/)

a+b b
a+b _
— >0ty (i)t (D) tasbgits Hg gT )Ei(— )H (€l+b+1+i)§l+b+1+i(_l)</)
i=1 =1
! 1 /\nzc tit...Ftats platsb+1t-Flat2s ti4...+tayop |2— at2b+1 1
= C’”«(Tp7 —Z = 5)9(7_1)) T ((p , P ))|p | 2 VOI(K)
b r+s r
xpm it it TT o(q  m)xary (0) [T a0om)xg e )e(m, 7, 2)¢
1=r+1 j=1

X [pZier tierse |2 piy b2

where the £ are the & defined in Definition but using (w,7°) instead of (w,7). Here

we also used Proposition [£.40] and the formula for the epsilon factor there. Notice that we
a+b

have absorbed a factor p~ 32 =31 tarera+i which comes from computing the image under
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intertwining operator of F/(z, p(T)fT;g) to get the factor p~ EE Dt =i Dtarsisi iy
the above expression. The right action of K, is given by the character

X1(911) -+ Xa+b(ga+b a+b)T2(Gatb+1 atv+1)Xatb+1(Jatbt2 atbt2)---

X Xa+2b(Gat20+1 a+2b+1)T1(Jat20+2 at2b+2)-
(It is easy to compute A(p, z, F(p(T)f1;2,—))_.(1) and we use the uniqueness of the vector
with the required K, action. Here on the second row of the above formula for F?(z, 1) the power

for p is slightly different from that for the section F(z, fT,w). This comes from the computations
for the intertwining operators for Klingen Eisenstein sections.)

Thus Corollary tells us that F?(z,g) is a nearly ordinary vector in I(p).

Now we describe f0:

Definition 4.43. Suppose (p') = cond(7’) for t > 1 then define f; to be the section supported
in Q(Qp)Kq(p') and fi(k) = 7(detdy) on Kq(p).
Lemma 4.44. ~ R

fo = M(_vaT)z = ft,z~

Proof. This is just [28, Lemma 11.10]. O

Corollary 4.45.

a+b b
_ a+b2 b .
oz g) = p =t iiatens [To(6)&(—1) [ [ 0Carsriri)€aroirri(—1)
im1 i1
a b b
- det 4; - det D; plot = detE; ,
. —_ a-+i - a+b+1
X Z H&(detAi ) H§ tijati( Tot D, ) X H§a+b+1+z(detEi71p )
A,B,C,D,Ei=1 i=1 i=1
A B
|, C D
% ft(Z,g a+2b+1 )
E
Tatopt1

Here A; is the i-th upper-left minor of A, D; is the (a + i)-th upper left minor of <g g), E;

is the i-th upper-left minor of E.
We define the Siegel section f% € I, 95(7) by

a-+b b
— +bz b g ;
(2 9) = Sicritm i e T g(6)€6(—1) [ [ 0(€atvrrsi)€arprapi(=1)
i=1 i=1
b
det A; det D; det F;
a+7 tatbti
<) H& det 4, % H SatiatilGorp. P XH€“+Z’+1+’ g
A,B,C,D.E i= iy -
A B
X f (Z gwlBolrel 1a+2b+1 ¢ E b w/Borel)'
latop41
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Then similar as before the corresponding pullback section £, (2, p(1') Y1) is

)e

=l —)alm) (e e e e Sl ()
r+s r 1
xpm 2Rt TT (G m)xary ' (0) [T o0um G 'm0 e(m, 76,2 + 5
i=r+1 =

ti+s-s2 |—z+2

X |pi=t p

Fourier Coefficients for f°
We record a formula here for the Fourier Coefficients for f° which will be used in p-adic inter-
polation.

Lemma 4.46. Suppose |det 8| # 0 then:
(i) If B & Savavi1(Zp) then f3(2,1) = 0;

(i1) Let t := ordy,(cond(7’). If B € Satav+1(Zp), then:
f8(2,1) = 7'(det B)| det BI276(7') "> copapir (7, —2)De (5).
where catap41(—, —) is defined in equation and ®¢ is defined in ,

Proof. This follows from [28] 11.4.12] and the argument of corollary {4.30) m where we deduce the
form of f1 from the section fT. O

4.4.3 Fourier-Jacobi Coefficients

Now let m = b+ 1. For g € S,,(F,) N GL,,(O,) we are going to compute the Fourier-Jacobi
coeflicient for f; at (.
1

Lemma 4.47. Let x := (D 1) (this is a block matriz with respect to (a +b) + (a +b)).

((l) FJﬁ(ft;Z?van_lal) =0 ZfD gptMa-ﬁ-b(Zp);
(b) if D € p' M, (Z,) then FJs(f;z,v,an71,1) = ¢(B,7,2)Po(v), where

n—m

6(57 T, Z) = 7_—(7 det 5)| det 6|12)2+n7mg(7_/)mcm(7_/’ —z = 2

)

and ¢, is defined in Lemma [£.27]

Proof. Similar to the proof of [28, Lemma 11.20]. We only give the detailed proof for the case
when a = 0. The case when a > 0 is even easier to treat.
Assuming a = 0, we temporarily write n for b and save the letter b for other use. We have:

) S v 1 1n+l
v (0 D Jetta = |
Lont1 D % -1

This belongs to Q2n+1(Qp)KQ2n+1(pt) (KanH( t) co sists of matrices in Q25,41(Z,) modulo
p') if and only if S is invertible, S~ € p' M, 11(O,), S™'v € p' M4 1)xn(Oy) and WS~ v —D €
p' M, (Zy). Since v = 7%(b,0) for some v € SLn_H(O ) and b € M, (K,) we are reduced to the
case v = (b,0). Writing b = (b1,bs) with b; € M,(Q,) and S = (T,'T") with T € M,4+1(Q,)
Z; 24) where a1 € Mp(Qp), a2 € Myx1(Qp),a3 € M1xn(Qp), as € M1(Q,), the
conditions on S and v can be rewritten as:

and 77! =
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(*) detT' 7é 07 a; € ptMn(ZP)v albl € ptMn(Zp)a CLBbl € ptMlxn(Zp)a ta1b2 S ptMn(Zp)a
tagbg S pth7 tbgalbl —De ptMn(Zp).

Now we prove that: if the integral for F.J5(f; 2,v,2n7%, 1) is non-zero then by, by € M, (Z,).
Suppose otherwise, then without loss of generality we assume b; has an entry which has the
maximal p-adic absolute value among all entries of by and by, Suppose it is p* for w > 0
(throughout the paper w means this only inside this lemma). Also, for any matrix A of given
size we say A € by if and only 2 A has all entries in Z, (of course we assume the sizes of the
matrices are correct so that the product makes sense).

Now let

I ¥ = k ‘g) c GLR(ZP) : he GLn+1(Zp),l S Z;,
h—1€% NptMy(Zy), j€ZENDY, k€ pMiy(Zy)

Suppose that our by, be, D are such that there exist a;’s satisfying (*), then one can check that
I is a subgroup, and if T satisfies (*), so does Ty for any v € I". Let 7 denote the set of

T € M,+1(Q,) satisfying (*). Then FJg(fi; 2, v, (1

-1
D 1)" , 1) equals

Z | det T|§"+2_22 / 7'(— det T)e,(—trST)dy.
TeT/T r

C2

Let T" := 8T = (21 (blocks with respect to the partition (n+1)), then the above integral

3
is zero unless ¢1 € p~*M,,(Z,) ® o] nxn, ca € p ' Z co € P ' Myi1(Zy), c3 € [b2]1xn D Mixn(Zp).
Here [tbg]an means the set of ¢ X n matrices such that each row is a Z,-linear combination of

the rows of b,.
But then
b1\ . vpe1 (D1) _ (cra1by 4 coasby
6 (0) =TT 0 - 03a1b1 + C4a3b1 ’
Since 8 € GLy,+1(Zp), the left must contain some entry with p-adic absolute value p*. But
it is not hard to see that all entries on the right hand side have p-adic values strictly less

than p*, a contradiction. Thus we conclude that by € M,(Z,) and by € M,(Z,). By (*):
bo'arby — D € p* M, (Zy), a1 € p* My (Zy). So D € p*M,,(Z,).

The value claimed in part (i) can be deduced similarly as in [28, Lemma 11.20] O
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4.4.4 Original Basis

Recall that we have changed the basis at the beginning of this subsection. Now we go back. We
define the corresponding sections (we use the same notations)

a-+b b
_§shatb b R
[(z9) = p~ 2=t i e TT a(6)& (=) [ ] 0(€ator10)8atsrasi(=1)
i=1 i=1
a b b
- det 4; det D; plots - detE; ,
; — — plati (—— " platbti
X Z ng(det 147 1 H a+1i, a+z de tDl 1 ) X H§a+b+1+z(detEi_1 )
A,B,C,D,Ei=1 i=1 i=1
1y C D
1
1, A B
= _ 1 E
X fT(ngwBllgrel b in wBorel)-
1
1,
1y
iy . a+b b
oz g9) = p =t iiatens [T g(6)&(=1) [ [ 0Carsrire)€aroriri(=1)
i=1 i=1
a b b
~ det 4; det D; ~ det E;
X Z ng( H Satiati(5—m— preti) x Hfa+b+1+i(7
AB,C.D,E i=1 det Al 1 i de tDL 1 il det Ei—l
1p C D
1, A B
5 _ 1 E
X ft(z7gw3(1)rel b 1b wBorel)~
1o
1y
. . . . . . A B
Here A; is the i-th upper-left minor of A, D; is the (a + 4)-th upper left minor of c p) E;

is the i-th upper-left minor of E. The wpgere; is the element in G(

F,) such that for any v = ww

dividing p, w € X, its projection to the first factor of K, ~ K, x Kz is the Weyl element
defined at the beginning of Subsection We also define

a+b
—yathy by )
(9= »p S it =300 itatbta Hg(fi)fi(—l)Hg(fa+b+1+i)§a+b+1+i(—1)
i=1 i=1
a b b
- det 4; det D; - det E;
% Z H&( H aviati(s XHfa+b+1+i(7)
A,B,C,D,Ei=1 det Aj— i1 det D; 1 e det E;_4
C D
1, A B
g - 1 E
< e guihe » o).
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a+b

b
f(z,9) = p B R e H 0(6)& (—1) [T 0(€asvrrs0)€ararsi(-1)
=1

b
det A; det D; det E;
<D Hg’ det A, ) [T osiiani det D, Xl,H’fa“’““ Joi B,

A,B,C,D,Ei=1 i=1
1y C D
1, A B
X fi(z, gwigl ., 1 1Eb Whorel)-
la
Ly

The corresponding pullback section Fi( f°,z,—) is the nearly ordinary section with respect to
the Borel Bs defined in subsubsection such that Fy/ (f°, z, wpere) is given by

Cog1 (1), —2 — D)g(rh)yrize((phtHhase platoiitFlaran))|phttlaras |=2= S5Ol (K1)

xp~ Xt teron [0 a(xg ) xams  (08) Tl—y 006 )G (0)e(m, 7¢, 2) e

Also we have F, (z, p(X) £, why,,.;) is given by

ca(Ty, —z)g(é)ﬂfﬂ((pt1+---+ta+b,pta+b+l+--~+fa+2b>>|pf1+---+ta+%|-z—“*f”vOl(f«)

xp~ Dt itaren [T a(xg ' m)xams (07) [T—y 00T DxG  m(p)e(m, 76, 2 + 5.

5 Global Computations

5.1 p-adic Interpolation

5.1.1 Weight Space and Eisenstein Datum

Recall that we have the algebraic group H = [, |, GL, x GL; such that H(/Z,) is the Galois
group of the Igusa tower over the ordinary locus of the toroidal compactified Shimura variety. Let
T)z, be the diagonal torus. Let T := T'(1+Z,). We define the weight ring A = A, s as O[[T]].
Fix throughout a finite order character yo of T'(F,) (the torsion part of T(Z,)), a Q,-point
¢ € SpecA is called arithmetic if there is a weight k = (cs41, -, Csr; €1y oy Cs) = (0, ..., 05 Ky oy K)
such that ¢ is given by a character xoxgty" " ...t7 "t 14,05 of T for x4 a character of order
and conductor powers of p, kK > 2(a + b+ 1). We write this k as ky. Let Ax = OL[[Tk]]-

Definition 5.1. For 1 a normal domain over A which is also a finite module over A, a Qp—point
¢ € Specl is called arithmetic if its image in SpecA is arithmetic.

(i) If s >0, let V;X’OO(K, I, x0) be the set of I-adic formal Fourier-Jacobi expansions
{f. = Zag(x,f)qﬁ}z
B

such that for a Zariski dense set of generic arithmetic points ¢ € Specll, the specialization
fy is the formal Fourier-Jacobi expansion of a form on U(r,s) whose p-part nebentype at
s given by

XOX(ZWJ(tTSJrl tpq+rt'r+1 trﬁ;)
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for the weight (Cot1, ..., CopriCly oy Cs) = (0,...,0; K, ..., kg). Here by xo we also mean the
character of T(Z,) restricting to x4 on T and trivially on the torsion part of T(Z,). We say
fe VOJXW(K, I) is a family of eigenforms if the specializations f,’s above are eigenforms.
We define Vojgy’ggd(KJ,Xo) for the subspace such that the specializations above are nearly
ordinary.

(i) If s =0, then let K = ][, Ky and Ko(p) = [y, Ko [}, Ko(p)o (Ko(p)v C G(OF,) being
the set of matrices which are in B(OF,,) modulo p). Then G(F)\G(Ar)/Ko(p) is a finite
set with {g;}; a set of representatives. We identify the set

S¢ (K) = G(F)\G(Ap)/K*N(OF,)

with the disjoint union of g; - N~ (pOrp)T(Opyp) and endow the latter with the p-adic
topology on N~ (pOpp)T(OF,). We define VL (K,1,x0) to be the set of continuous I-
valued functions on SY (K) such that for a Zariski dense set of arithmetic points ¢ € Specl,
the specialization fy is a form on U(r,0) whose p-part nebentype at is given by

Xoxow(ti' - 77)

for the weight (0,...,0). Note that by the description of nebentypus at p such family is
determined for its values on g; - N~ (pOp,p)’s. Similarly we define V;,X;ggd(K, I, xo) for the
nearly ordinary part.

Remark 5.2. To see this is a good definition, we have to compare it with the notion of Hida
families in the literature. We refer to [I0, Chapter 8] and [I5, Sections 3, 4] for the definition
of Hida families. We have to see that a Hida family in loc.cit does give a Hida family here. We
need to show that if k4 >> 0 (depending on the p-part of the conductor at ¢) when s > 0,
then any nearly ordinary p-adic cusp form is classical. If s > 0 this is proved by the argument
of [I5] Theorem 4.19]. (Although it is assumed that s = 1 in loc.cit, however the proof for
this particular theorem works in the general case.) If s = 0 the situation is even easier: the
contraction property of the U, operator [I5, Proposition 4.4] (which again works in our case as
well), shows that the specialization at ¢ is right invariant under an open subgroup of U(r)(Z,)
depending only on the conductor of the nebentypus (note also that we have trivial weight if
s =0), and is thus classical.

Definition 5.3. We define an Fisenstein data as a quadruple D := (I, £, 7, x0) where xo is a
finite order character of T(Zy); 7o is a finite order character of K*\AZ whose conductors at
primes above p divides (p); £ € Vg;ggd(K, ) is a Hida family of eigenforms defined as above;
We define Ap := A ®0, Ax. We call a Q,-point ¢ € SpecAp is arithmetic if |y is arithmetic
with some weight Ky and Gp(v1) = (1 —l—p)th)CJr, o(y7)=(1 —i—p)T(b(, for p-power roots of unity
C+. We define 7y = ¢ o Uk

Let X be the set of arithmetic points. If fy is classical and generates an irreducible automor-
phic representation ¢, of U(r, s), we say that ¢ is generic if (m¢,,7) is generic (see Definition
4.42)). Let X9¢™ be the set of generic arithmetic points.

5.2 Some Assumptions

5.2.1 Including Types

Consider the group U(s,r). Suppose K? = Ky K> C G(A];) for a finite set of primes ¥ and
let Wy be a finite O, module on which Ky acts through a finite quotient. Let K¢ C Ky be
a normal subgroup containing HUGE\ {vlp} ), defined in Definition and acting trivially on
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Wy, and let K’ = G(Z,)K{K*. The modules of modular forms on weight x and type Wy and
character i are
M (K, W3 Op) = (M(K';O1) ®0, We)".

Suppose for v € X\ {v|p}, we have open compact subgroups f({, c K, € G(F,) such that f({]
is a normal subgroup of K, and an irreducible finite dimensional representation W, of K, / K v
Suppose ¢, € 7, is a vector in W,. We fix a K’U—invariant measure and let v{,vs,... be a basis
such that ¢, is v;. We also assume that K ! includes the 2)¢ defined in section 4. We let W, be
the dual representation and we write vy, vy, ... for the dual basis. We first prove the following
lemma.

Lemma 5.4. Let G be a finite group and p : G — Aut(V) an irreducible representation on an
n-dimensional vector space V.. We fiz a G-invariant norm and a unitary basis vi, ...,v,. Let p¥

be the dual representation on VY with dual basis vy, ...,v). Then as elements in V @ V'V

> gvi @ gv)) = 0,i # j,

geG

> (gui @ gvy) = [GI Y v @ vy
i=1

g9

Proof. This is a straightforward application of the Schur orthogonal relation. O

Definition 5.5. We define Wx\ () = H'L}GE\{p} W, and v1 = HUEE\{p} Vu,1 € W\ (p}-

We can also make a notion of Wy (;-valued Hida families in a similar manner as Definition

611

5.2.2 Assumption TEMPERED

Let f be a Hida family of eigenforms as defined in Definition p.1} We say it satisfies the
assumption “TEMPERED?” if the specializations fy in the definition are tempered eigenforms.

5.2.3 Assumption DUAL

We first define an Op-involution o : A — A sending any diag(ti, -+ ,t,) € T(1 + Zp) to
diag(t;;',--- ,t7'). We define I° to be the ring T but with the A-algebra structure given by
composing the involution o with the original A structure map of I.

Let f be an [-adic cuspidal eigenform on U(r,s) such that for a Zariski dense set of generic
arithmetic points ¢ the specialization f; is classical and generates an irreducible automorphic
representation ¢, of U(r, s), we say it satisfies assumption DUAL if there is an I°-adic nearly
ordinary cusp form f¥ on U(s,r) such that for all the arithmetic points ¢ € Specl such that ¢
is in the image of some point in X9¢", £ € w};. (Here we identified U(r, s) and U(s,r) in the
obvious way. At an arithmetic point both fs and fq\b/ have scalar weight x. Note also that we
only require the specialization f; to be “generic” (not required for fq\;))

5.2.4 Assumption Projs;v and Projgv

For a nearly ordinary cuspidal eigenform f“ on U(s,7). We say it satisfies assumption Pro] v
if (mpv @ Wg\{p})K is 1-dimensional and there is a Hecke operator 1yv on U(s,r) that is an
L-coefficient polynomial of Hecke operators outside ¥ such that for any g € M, (K, Ws\ (1), we
ord
~g—1jpve

ord

have e - g is a sum of forms in irreducible automorphic representations which are
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orthogonal to myv.

For a nonzero nearly ordinary cuspidal I°-adic family of eigenforms f¥ & (VOJX7OO(K I xo 1) ®
WE\{p})Kz, we say it satisfies assumption Projgv if there is an action e’ acting on (VOJXVOO (K, T°, X51)®
WZ\{Z,})KE interpolating the e®%’s of specializations and there is a Hecke operator lgv which
is an Fy polynomial of Hecke operators outside ¥ such that for Zariski dense set of arith-
metic points ¢ € Specl® in the image of X9¢", (ng ® WZ\{p})K is 1-dimensional and, for
any g € (VY (K, I°xp ") @ We)K=, (e . g — 1gvemg) 4 is a sum of forms in irreducible

automorphic representations which are orthogonal to Ty -

Remark 5.6. If r + s = 2 then these assumptions often hold since the unitary group is closely
related to GLo or quaternion algebras. It is easy to see DUAL by simply taking f¥ = f ® (x) !
for x being the central character of f. To see Proje and Projgv, we first suppose r = s =1
and f is a Hida family of GLy newforms with tame level M such that (M, pdc) =1 and trivial
character. The existence of e"? is the as in [28, Lemma 12.2] Since we have isomorphism of
algebraic groups over F

GU(]., ].) ~ GLs XGom RGSK/FGm,

we can obtain a family on U(1,1) from f and the trivial character of Ag/K*, which we still
denote as f. Take an arithmetic point ¢ and a GLy Hecke operator ¢ involving only Hecke
operators T, at primes v outside ¥ which are split in /IC/F such that the t-eigenvalue t(f;) is
different from its eigenvalues on other forms on Sg;d(I‘O(M )NT1(pt),C) (the space of ordinary
cusp forms on U(1, 1) of weight (0, ks) and level To(M)NTy(p'¢) with p’¢ being the p-part level
at ¢. Also here we use the U(1,1) Hecke operators at split primes v = w@ which are associated
to the elements (diag(wy, 1), diag(1,wg"))). This is possible since any form in Sg;d(FO(M) N
I'y(p*¢),C) is the restriction of a form on GU(1,1) obtained from a GLg form of conductor
dividing NmK/Fé,C/FMpt¢ and a character of Ag/K* unramified outside p. Note that any
cuspidal automorphic representation on GLg/F with the same Hecke eigenvalue with f on
split primes are 7, and 7, ® X/, and that any element g € GLo(F,) such that det(g) €
Nmy,p(K;) can be written as ag’ with a € KJ,g" € U(1,1)(F,). A simple representation
theoretic argument shows that the only forms in Sg;d(Fo(M )NT(pt¢),C) with the same Hecke
eigenvalues with f, at split primes are in the one dimensional space spanned by fs. Let A be
the weight space for U(1,1) and define

Sord(To(M),T) := So"YTo(M), A) @4 L

It follows from Hida’s control theorem for unitary groups (see e.g. [I5, Theorem 4.21]) that this
is a free module over I of finite rank, and the specialization of this free module to ¢ gives the
space Sg;d(FO(M) NT(p'),Oy) for some L finite over Q, provided x, >> 0 with respect to
the p-part of the conductor of ¢. We consider det(T — t) where T is a variable and we regard ¢
as an operator on this free [-module. We thus obtain an I-coefficient polynomial of T'. Moreover
we can write det(T —t) = (T — ¢(f)) - g(T') for some polynomial g(T'). Then we define

(note that g(¢(f)) is not identically zero.) This proves Projg and Projev is seen in a similar way.
If (r, s) = (2,0) we observe that if we set

D = {g € MQ(’C)|gt@ = dEt(g)C}v

then D is a definite quaternion algebra over Q with local invariants inv,(D) = (=5, —Dx/q)v
(the Hilbert symbol). The relation between GU(2) and D is explained by

GU(2) = D* XGom ReS;C/QGm.
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We can similarly show that if f is a Hida family of newforms on D* with trivial character, tame
level prime to p and all primes of §x such that D is unramified, and is the trivial representation
at primes where D is ramified, then we can produce a family f on U(2,0) from f and the trivial
character of Ag/K*. A similar argument proves that Proje and Projgv is true.

5.3 Klingen Eisenstein Series and p-adic L-functions
5.3.1 Construction

Now we are going to construct the nearly ordinary Klingen Eisenstein series (and will p-adically
interpolate them in families). First of all, recall that for a Hecke character 7 which is of infinite
type (=%, %) at all infinite places (here the convention is that the first infinite place of K is
inside our CM type). Recall that we write D := {x, 7,2} for the Eisenstein data (see definition

. We define the normalization factor:

=/

T XK

QreZoo (72)—d(a+2b+1)(27_”)d(a+2b+1)m(2/7r)d(a+2b+1)(a+2b)/2 1 17(at20) 75
BD . = QZ&CEOC Ha+2b(lﬁfj71)d ) Hi:() L (22"{ ta+ 2b + L—i
+2b+1 / —1
XHv|p( a(7y)” Cat2b+1(Tys —2x)) ",
QrrE¥Eoo _9)y—d(a+2b) g yd(at2b)r o d(a+2b)(a+2b—1)/2 2b—1) o
B'/D — 'p (=2) (2mi) (2/m) ) H(‘l"" LE(QZK +a+ 2h — Z’T/X}C)

T Qe [13550  (r—j—1)
X [Loyp(8(70) T Caran(r), —21)) "

The 2, = %2”_1 and 2/ = %‘21’ The ¢,, is defined in equation . The Q. is the CM
period in subsection 2.1.
We construct a Siegel Eisenstein series Ej;., associated to the Siegel section:

stzeg—B'DanHp fO H fvszengSp eIa+2b+1(7— Z)

|oo v|p vEX,vtp

and E’.  associated to the section

sieg
fD ,sieg BD Hf Hp TI fOI H fv szengsph7, €1 JrQb(T Z)

v|oo v|p vEX,vtp

Here T, and Y/ are defined in Definition m First note that since 7 is nearly ordinary with
respect to the scalar weight x and ¢ = ¢°¢ is a holomorphic nearly ordinary vector. Then its
contragradient is also nearly ordinary on U(s,r) with respect to the scalar weight x. We denote
this representation as 7. We consider F(v(g,—)) as an automorphic form on U(s,r). For each
vt p we choose an open compact group f(ws c U(s,r), such that

I ,(v(1,ndiag(z, ", 1,2,).9, ")) (E(v(g, -)) @ 7(det —))
vEX, vip
is invariant under its action. We have the following lemma

Lemma 5.7. There is a bounded measure Ep sieq on T X T'(1+Zy,) with values in the space of
p-adic automorphic forms on U(r+s+1,r+s+1), such that for all arithmetic points ¢ € X 9™
with the associated character ¢ on I'x x T(1 + Z,,), we have

/ (lgng,sieg
Tk XT(1+ZP)

is the Siegel Eisenstein series p(l_[vez_vhg7(1,77diag(9’c;17 1,2,)S;
the Siegel Eisenstein series we construct using the characters (x

can define a measure Ef interpolating the Eswg D, ’s.

)) sieg, Dy where Esz»eg’pq5 is
X161 > Xn,or Tg)- Stmilarly we

,steg

57

)



Proof. 1t follows from our computations for Fourier coefficients Lemmas [4.2] and
and [28, Lemma 11.2] that, all the Fourier coefficients of E,, and E.,, are interpolated by

sieg
elements in A, s[[T'x]]. Then the lemma follows from the abstract Kummer congruence. We

refer to [14, Lemma 3.15, Theorem 3.16] for a detailed proof. O

Now we define our Klingen Eisenstein series using the pullback formula. Note that by the
pullback of the Siegel Eisenstein series are still holomorphic automorphic forms. Let 3 be the
embedding given in subsection Let K, be the open compact subgroup of G(Opx) which is
Kv s as above for v € ¥\ {v|p}, K for v|p and spherical otherwise. We define Ep gying by: for
any x,x; points on the Igusa schemes of U(r + 1,s + 1) and U(s, ),

et 18 g (€ (B (ED sieq) - T(det(g1))) ® v1) (2, 1) = Ep, kiing(z) B (21)

(as a Wy gpy-valued form. Recall vy € Wy g,y (see Subsubsection ) Here we let Ky (5}
acts on both &p ey and WE\{p}. We get a Ap-adic formal Fourier-Jacobi expansion from the
measure e°¥ 3 (€D sieq) and then apply the Hecke operators to the expansion. We also define
the YX-primitive p-adic L-function EE .o € I[[Ic]] by: for z,z1 elements in the Igusa schemes
of U(r,s) and U(s, ),

7BV R ) (17 BT (ED sieg) - T(det g1) @ vr)(, 1) = L 1 () KEY (1)

The f; is the v)Y-component of f (see Subsubsection . This is possible by Lemma Here
note that the necessity of enlarging the coefficient ring to include O}" is caused when specifying
points on Igusa schemes (recall Subsection [2.6).

Here we used the superscript “low” to mean that under U(a +b+ 1,0+ 1) x U(b,a + b) —
U(a+2b+ 1,a + 2b+ 1) the action is for the group U(b, a + b).

5.3.2 Identify with Klingen Eisenstein Series Constructed Before

We define a Klingen Eisenstein section by

fD¢,Klzng z g BDHF v fv siegr 9 )

where F,, (2; fy, sieg, g)’s are the pullback sections we computed in section [5| and ¢,’s for v €
Y\{v|p} are the vy-components as in Subsubsection and We first look at places
dividing p. The pairing (,) induces natural pairing between 7 and 7. Write

:HQDUHQDSP}L H @vH@w,v-

vjoo  v¢gX vET,wfp  vlp

58



Then

Itz &, .p(v(1 ndiag(z, ", 1,2,).5,) (Bsicg (v(g, =) 7(det —)),

vip
p*ta,+b+1 ¢
e _1 L
t1 b
o1 o L o)
v|p pla+t 1p
pta+b+1 ¢
= (] plese 1tk &, (1 ndiag(z, 1,1, 20) 8, ) (E(v(g, —))7(det —),
v|p la vfp
1
1y ‘
P -1\ "
oI Lo ))Pw)-
vlp plett 1y

Since Fsicg(7(g, —))7(det —) satisfies the property that if K™ is the subgroup of GLgy2(Zp)
ay agz a2

(defined in the last section) consisting of matrices [ a; a9 ag | such that the (4, j)-th entry
aq4 Qg Ay

of a7 is divisible by p'iTtett+i and the (i, j)-th entry of a4 is divisible by pfet+itta+v+i the i-th

row of ag and the right to diagonal entries of ag are divisible by p' for i = 1,--- ,a, the i-th

column of the below diagonal entries of a; are divisible by ple++i, the i-th row of the up to

diagonal entries of a5 are divisible by pfe+i, as,a3,as € M(Z,), then the right action of h* for

h e K" on E(y(g,—))7(det —) is given by the character

A(RY) = Xavo1(P11) - - Xar2o(Pon) X1 (Pot1,641) = - X (Patb,atd) Xa+1 (Patos1,a4041) - Xatb(Pat2n,a+2b)-

(This is easily checked from the definition of the Godement section). It is elementary to check
that the above expression equals:

pta+b+1 v
1 low low
(H Hbi pta+b+i(a+b)) <H(ZP () ( 1, )
v|p 11li=1 ulp v ,
b
TL bt i 0L g, 1, 20)87 ) (Bateg (19, =) (et ),
vfp
1y v
ph —1 ¢
AL la ))Pw) (15)
v|p ptn,+1 1y
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where y runs over N(Z,)/BN(Z,)B3~! for N consisting of matrices of the form (1: O) with

1,
pta+b+1
* having Z,-entries and 8 = 1 . Write the following expression
1p
pta+b+1 L
ord,low low low
e TIO o w)et( 1, )
vlp Y 1
b
x [Ttz i, sp(r (1 ndiag(z, 1,1, 20)5)) (Baieg (v(9, =) 7(det —)). (16)

vip

Now let K consists of matrices in GLy(Z,) whose below diagonal entries of the i-th row are
divisible by p’ ,, ; for 1 <i < s. Let K* be the set of elements in GLq425(Z;,) whose right to
diagonal entries of the i-th row are divisible by pti for 1 < i < a + b; whose lower right (b x b)
block is in

diag(ptate+t, ... ,pt““b)K’l’diag(pt“*b“ o ’pthb)*l.

Then a similar argument as in Subsubsection shows that there is a unique up to scalar
vector @f € w(x7t, - 7X[;l%) such that the action of (k;;) € K* is given by the character
diag(x; *(k11), - - ,x;%(kﬁgbaﬂb). We use the model of the induced representation from
Xt ®o® X;—&l-Zb on the space of smooth functions on GLg125(Z,). We take the @F such
that if "¢ takes value 1 on identity in this model, then ¢% also takes value 1 on identity
(and has support K* C GLgy25(Zp)). From the action of the level group we know that the
action of p'°“(K*) on the left part of the inner product in is given by the character
diaxg()(:fl(lﬁl)7 . 7X;_,’1_2b(ka+2ba+2b). For v|p define Té":}“ to be the Hecke operator correspond-
ing to B just in terms of double cosets acting on 7T:£ (no normalization factors involved). By
checking the actions of the level groups at primes dividing p (certain open compact subgroups
of G(Op,)) we can see that the # component of the left part when viewed as an automorphic
form on U(a + b,b) is a multiple of $°"?. Suppose the eigenvalue for the Hecke operator Téog’

on @ is 5\/3,“. It is easy to compute that

b
~ b (at+2b+4+1 - _ .
)\ﬂ,v = pZi:l tatotil 2 RE H Xai2b+17j (pta+b+J) (17)
j=1
with the convention of y;’s after Remark
Let
p_tu.+b+l ¢
h oo ptl _1b L
o =1]eo [T T e [In . 1, )
v|oo vgS vEX, vip v|p " pta+1 1b
and
1 L
. aee ptl _1b L
o =[Le [T I o [ 1, )P0
v|oo g% vEX, vip v|p pta+1 1b

60



Here for v|oo the ¢, is the unique vector mentioned before definition Define the Klingen
Eisenstein section promised in the introduction as

Iy Kiing = Bp,( H |KU/RU,S|)f’S¢,KMng'
vED,vtp

Then we have

Proposition 5.8. For a classical generic arithmetic point ¢ we have:

=~ Exling(fp, Kling: Zrys 9)
¢(ED,Kling) = H |Kv/Kv,s| 1Lg<~o¢rd WL!]> ki
vEX,vtp 90‘75 1 Po
2 . - _ s (e=l., _ 5\ (atl s
< [T s @' +0) TT xg (0% i fotoss G40 pm 2 6505720,
vlp j=1 Jj=1

Proof. We have R
@ _ (16), #") 25,0

(@4 ¢")  Top(TTi<igjcs Proreri—taress)(@ord, o)

and

(@ ") = (") - TIC T plererterrs)

vlp 1<i<j<s

(e.g. using the model of the induced representation). So

(@), ¢") (5 [ ([Ticicjea plortsi—tores) (15) [T (TTycicjco pietr e Ttere)

<9507,da ‘PH> 5‘[3,1} <95ﬁ7 ‘PH> Hu|p(H1§i§j§s platbti=latbt )S‘B,v <¢Orda ‘PH> .

We also have
a+1

T
¢ = [T ') -p=m 059,
j=1

The proposition follows. O

Then part one and two of the Theoremis just a corollary of the above proposition (except
the statement in the s = 0 case which we are going to consider next).

Similarly we obtain an interpolation formula for the p-adic L-function as in Theorem 1.1
using also the formula .

5.3.3 Interpolating Petersson Inner Products for Definite Unitary Groups

To simplify the exposition we only discuss the case when F' = Q in this subsubsection. In
the case when s = 0 we hope that the periods showing up are CM periods. Thus by our
assumption the Archimedean components of 7 are trivial representations. For this purpose
we prove that under certain assumptions the Petersson inner products of two families can be
interpolated by elements in the Iwasawa algebra. Let K = ], K, be an open compact sub-
group of U(r,s)(Af) which is G(Z,) at all primes dividing p and Ky(p) obtained from K by
replacing the v-component by the K} at all primes v dividing p. Now we take {g;}; a set of
representatives for U(r, s)(F)\U(r, s)(Ar)/Ko(p). We take K sufficiently small so that for all
i we have U(r,s)(F) N g;Kg;* = 1. For the nearly ordinary Hida family f¥ of eigenforms
(recall that this Hida family is nearly ordinary with respect to the lower triangular Borel sub-
group) we construct a set of bounded I-valued measure u; on N~ (pZ,) as follows. Let T~
be the set of elements diag(p®',---,p®) with a3 < --- < a,. We only need to specify the
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measure for sets of the form nt™N~(Z,)(t~)~! where n € N=(Z,) and t~ € T~. We assign
its measure p;(nt= N~ (Z,)(t~)™1) by £¥(gin - t7)A(t~)~! where A(¢t7) is the Hecke eigenvalue
of £V for U;-. This does define a measure. We briefly explain the point when r = 2 (the

general case is only notationally more complicated). Write Ty p = 7(X1,p» X2,p) such that
1

vp(x1,p(p)) = %, vp(x2,p(p)) = —%. Then A(diag(1,p")) = (x2,(p) - p2)". One checks that

1 . 1 . _
S () IR, = G (0) (gL,
mepn~1Z,/p"Zy, p

This implies that for any my € pZ,/p" " *Z,,

> pi(mamadiag(1,p" )N~ (Zy)diag(1,p~")) = pi(madiag(1,p" )N~ (Z,)diag(1,p' ")),
ma€pn 1Ly [pn Ly
i.e. this u; does define a measure.

Proposition 5.9. If we define

(£, fY) := / f(gin)dp; € 1.
Z neEN~(pZp)

Then for all ¢ € X9°™ the specialization of (£,£V) to ¢ is (£, f}) - Vol(Ky)~t.

Proof. For each ¢ € X9¢" we choose t~ such that t~ N~ (pZ,)(t")~' C K4. We consider
<f¢,7rfv¢(t_)f¥>.

Unfolding the definitions, note that x;l(t_)6 B(t7) gives the Hecke eigenvalue A(¢7), this gives

5B(t*)xqf1(t’) > fneN_(pr) £(gin)dpu; - Vol(K,). On the other hand, using the model of e, p

and ey p as the induced representation 7(x1,¢, -, Xr,¢) and 7T(X1—,<1¢>’ ey X;;) of GL,(Q,), we get
that
(£, (1)E)) = 0t )xg (¢7)(Es, £))-
This proves that the specialization of (f,f") to ¢ is (s, f)) - Vol(K,)~L. O
So to see the main theorem in the case when s = 0, instead of applying the Hecke operator

e’ . 1¢v we pair the pullback of Siegel Eisenstein series (I“"[[I'x]]-valued) with the measure
determined by the Hida family f using the above lemma (i.e. considering

EKling(gazn) = Z Esieg(S_la(gvgin)Sa Zka)d;uz
neN~(pOr,p)

i

where {du;};’s are the measures constructed from f as above. In our situation when restricting
to U(s,r) the level group at p for Eisenstein series is lower triangular modulo certain power of
p while that for f is upper triangular modulo certain power of p. The above construction works
in the same way). The powers of CM and p-adic periods enter when applying the comparison
between the standard basis and the Néron basis for differentials of CM abelian varieties while
doing pullback (see [15] (3.14)]).

5.4 Constant Terms

We explain part (iii) of the main theorem.
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5.4.1 p-adic L-functions for Dirichlet Characters

There is an element £+ in Ax o, such that at each arithmetic point ¢ € XP’, ¢(Lr) =
L(7}, kg —7).75(p~")p™e~"g(7})~". For more details see [28, 3.4.3].

5.4.2 Archimedean Computation

As in [28], we calculate the Archimedean part of the intertwining operator for Klingen Eisen-
stein sections and prove the “intertwining operator”-part (see Lemma of the constant term
vanishes. Suppose 7 is associated to the weight (0,...,0; %, ..., k), then it is well known that
there is a unique (up to scalar) vector v € 7 such that k.v = det u(k,i)™" for any k € KI'v
(notations as in Subsubsection [3.1.1)). Recall we defined c(p, z) in Subsubsection

Lemma 5.10. Assumptions are as above, then:

b—1 —1
C(pa Z) = qat2btl Hi:o (z+%—1%—i—a)(z—%}r%—i) H?:O (m)

D(2z4a)2” 1722420 ; -2
X Y sy = —y det(i¢/2)~=.

Proof. Tt follows the same way as [28, Lemma 9.3]. O

Corollary 5.11. In case when k > %a +2b or k > 2b and a = 0, we have c(p,z) = 0 at the
point z = £=z2b=1

In the case when & is sufficiently large the intertwining operator:
A(pa 2K F) = A(pooa 2K Fn) Y A(pfa 2K Ff)

and all terms are absolutely convergent. Thus as a consequence of the above corollary we have
A(p, 2, F) = 0. Therefore the constant term of Fkying is essentially
LE(7,7¢ 2, + 1)
(5, )

LE (22, + 1, ?lx%Jr%)(p.

up to a product of normalization factors at local places. Interpolating the calculations in p-adic
families, the part (iii) of the Theorem follows from the above discussion, Lemma and
our local descriptions for Fi,, (2; fu sieq,9)’s In Section (See also the proof of [28, Theorem
12.11]).
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Appendix:

BOUNDARY STRATA OF CONNECTED COMPONENTS IN
POSITIVE CHARACTERISTICS

KAl-WEN LAN

Abstract

Under the assumption that the PEL datum involves no factor of type D, and
that the integral model has good reduction, we show that all boundary strata of the
toroidal or minimal compactifications of the integral model (constructed in earlier
works of the author) have nonempty pullbacks to connected components of geometric
fibers, even in positive characteristics.

A.1 Introduction

Toroidal and minimal compactifications of Shimura varieties and their integral models have
played important roles in the study of arithmetic properties of cohomological automorphic rep-
resentations. While all known models of them are equipped with natural stratifications, they
often suffer from some imprecisions or redundancies due to their constructions. The situation
is especially subtle in positive or mixed characteristics, or when we need purely algebraic con-
structions even in characteristic zero (for example, when we study the degeneration of abelian
varieties), where the constructions are much less direct than algebraizing complex manifolds
created by unions of explicit double coset spaces.

For example, integral models of Shimura varieties defined by moduli problems of PEL struc-
tures suffer from the so-called failure of Hasse’s principle, because there is no known way to
tell the difference between two moduli problems associated with algebraic groups which are
everywhere locally isomorphic to each other. Similarly, when their toroidal and minimal com-
pactifications are constructed using the theory of degeneration, the data for describing them are
also local in nature. Unlike in the case over complex numbers, one cannot just express all the
boundary points as the disjoint unions of some double coset spaces labeled by certain standard
maximal (rational) parabolic subgroups. (Even the nonemptiness of the whole boundaries in
positive characteristics was not straightforward—see the introduction to [9].) As we shall see (in
Example, when factors of type D are allowed, it is unrealistic to expect that the boundary
stratifications in the algebraic and complex analytic constructions match with each other.

Our goal here is a simple-minded one—to show that the strata of good reduction integral
models of toroidal and minimal compactifications constructed as in [I1] have nonempty pullbacks
to each connected component of each geometric fiber, under the assumption that the data
defining them involve no factors of type D (in a sense we will make precise). We will also answer
the analogous question for the integral models constructed by normalization as in [12], allowing
arbitrarily deep levels and ramifications (that is, bad reductions in general).
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Such a goal is motivated by the study of p-adic families of Eisenstein series, for which it
is crucial to know that the strata on connected components of the characteristic p fibers are
all nonempty. For example, this is useful for the consideration of algebraic Fourier—Jacobi
expansions. We expect it to play foundational roles in other applications of a similar nature.

A.2 Main result

We shall formulate our results in the notation system of [I1], which we shall briefly review.
(We shall follow [I1], Notation and Conventions| unless otherwise specified. While for practical
reasons we cannot explain everything we need from [I1], we recommend the reader to make use
of the reasonably detailed index and table of contents there, when looking for the numerous
definitions.)

Let (O,*,L,{-, ), ho) be an integral PEL datum, where O, %, and (L, (-, -), ho) are as in
[I1, Def. 1.2.1.3], satisfying [I1, Cond. 1.4.3.10], which defines a group functor G over Z as
in [II, Def. 1.2.1.6], and the reflex field Fy (as a subfield of C) as in [II, Def. 1.2.5.4], with
rings of integers Op,. Let p be any good prime as in [11, Def. 1.4.1.1]. Let H? be any open
compact subgroup of G(Z?) that is neat as in [L1}, Def. 1.4.1.8]. Then we have a moduli problem
M3 over So = Spec(Op, (p)) as in [I1}, Def. 1.4.1.4], which is representable by a scheme quasi-
projective and smooth over So by [II, Thm. 1.4.1.11 and Cor. 7.2.3.10]. By [I1, Thm. 7.2.4.1
and Prop. 7.2.4.3], we have the minimal compactification Mﬁip“ of My, which is a scheme
projective and flat over Sy, with geometrically normal fibers. Moreover, for each compatible
collection ¥ of cone decompositions for My as in [II) Def. 6.3.3.4], we also have the toroidal
compactification I\/Ig_‘z,r,z,, of My, which is an algebraic space proper and smooth over Sg, by
[I1, Thm. 6.4.1.1], which is representable by a scheme projective over Mg when ¥? is projective
as in [IT} Def. 7.3.1.3], by [II, Thm. 7.3.3.4]. Any such M} y,, admits a canonical surjection
fﬂp : M%f[,E’Ep — Mﬁ;n, which is constructed by Stein factorization as in [IT], Sec. 7.2.3], whose
fibers are all geometrically connected. (The superscript “p” indicates that the objects are
defined using level structures “away from p”. We will also encounter their variants without the
superscript “p”, which also involve level structures “at p”.)

By [11, Thm. 7.2.4.1(4)], there is a stratification of MY" by locally closed subschemes
Z((pp,50)]> Where [Py, I3 )] runs through the (finite) set of cusp labels for My (see [I1], Def.
5.4.2.4]). The open dense subscheme My is the stratum labeled by [(0,0)]; we call all the other
strata the cusps of Myp. Similarly, by [T1, Thm. 6.4.1.1(2)], there is a stratification of Mgfz,‘i’zp by
locally closed subschemes Z(¢,,, 5,,0v)], Where [(®4», 03, 0P)] runs through equivalence classes
as in [II, Def. 6.2.6.1] with o? C Pgﬂp and o” € ¥, € ¥P. By [1I, Thm. 7.2.4.1(5)], the
surjection ¢, , induces a surjection from the [(®yw, d3r, 0F)]-stratum Zya, , s5,0,0v)) Of M5} 5
to the [(Pyr, dpp)]-stratum Zj(e,,, s,,,)) of MEE

Let s — So be any geometric point with residue field k(s), and let U be any connected

component of the fiber My» x 5. Since MY — S is proper and has geometrically normal
So

fibers, the closure U™™ of U in MJ® x s is a connected component of MY® x 5. Similarly,
So SO

since M9} 5, — So is proper and smooth, the closure U'" of U in M4 5, Xs is a connected
0

component of M4 5., X s. (In these cases the connected components are also the irreducible
g

components of the ambient spaces.)

The stratifications of M%i" and M5} s induce stratifications of U™in and UT, respectively,
by pullback. We shall denote thg pullback of Zj@,,, 6,,) tO Umin by Ul(@yp 60))> and call
it the [(Pyp, d3p)]-stratum of U™". Similarly, we shall denote the pullback of Zjs,,, 5, ,07)]
to U™ by Uj(w,p,6,p,00)]> and call it the [(®ypr,dpr,oP)]-stratum of U*. By construction,
the surjection pr induces a surjection U*" — U™ which maps the [(®xr, 634p, 0P)]-stratum
Ul(® 0 ,630p,0v0)] OF U™ surjectively onto the [(®yr,dyr)]-stratum Ujie,,, s, Of Umin Tt is

67



natural to ask whether a particular stratum of U™ or U'" is nonempty.
From now on, we shall make the following:

Assumption A.2.1. The semisimple algebra O @ Q over Q involves no factor of type D (in
the sense of [I1, Def. 1.2.1.15]). :

Our main result is the following;:
Theorem A.2.2. With the setting as above, all strata of U™™ are nonempty.

An immediate consequence is the following:

Corollary A.2.3. With the setting as above, all strata of U™ are nonempty.

Proof. Since the canonical morphism Uj(g,,, 6,,0,07)] = Ul(@40,5,00)] 1S Surjective for each equiv-
alence class [(Pypr, 0r, oP)] with underlying cusp label [(®y», dx»)] as above, the nonemptiness
of U[(‘I’H%‘SHP)] implies that of U[(@,Hp76Hp7o-p)]. O]

Remark A.2.4. Each stratum Zja,,, z,)] (18P Z[(®40.,24,07))) 18 nonempty by [I1, Thm.
7.2.4.1 (4) and (5), Cor. 6.4.1.2, and the explanation of the existence of complex points as
in Rem. 1.4.3.14]. The question is whether its pullback to U™ (resp. U'") is still nonempty
for every U as above.

Remark A.2.5. Tt easily follows from Theorem and Corollary that their analogues
are also true when the geometric point s — Sy is replaced with morphisms from general schemes,
although we shall omit their statements. In particular, we can talk about connected components
of fibers rather than geometric fibers.

The proof of Theorem [A-2.2] will be carried out in Sections[A-3] [A74] and[A5] In Sections[AH]
and [A~6] we will also state and prove analogues of Theorem [A-2.2]in zero and arbitrarily ramified
characteristics, respectively (see Theorems [A.5.1] and |[A.6.1)). We will give some examples in
Section including one (see Example [A.7.2) showing that we cannot expect Theorem
to be true without the requirement (in Assumption that O QZ;) Q involves no factor of type

D.

A.3 Reduction to case of characteristic zero

The goal of this section is to prove the following:

Proposition A.3.1. Suppose Theorem is true when char(k(s)) = 0. Then it is also true
when char(k(s)) = p > 0.

Remark A.3.2. Proposition holds regardless of Assumption

Remark A.3.3. It might seem that everything in characteristic zero is well known and straight-
forward. But Proposition which is insensitive to the crucial Assumption shows
that the key difficulty is in fact in characteristic zero.

By [1I, Thm. 7.2.4.1(4)], each Z{®,,.5,)
M?ﬁf defined in the same way as My (but with certain integral PEL datum associated with
Zyr). Then it makes sense to consider the minimal compactification Zﬁ%nﬂp,aw)] of Z((@,,0.,60))>

] is isomorphic to a boundary moduli problem

which is proper flat and has geometrically normal fibers over My, as in [I1, Thm. 7.2.4.1 and
Prop. 7.2.4.3]. (So the connected components of the geometric fibers of Zﬁf{‘w Sr)] Sy are

closures of those of Z(4,,,.5,,,)] — So-) By considering the Stein factorizations of the structural

morphisms Zfl(%nﬂp,aﬂp)] — S (see [, T1I-1, 4.3.3 and 4.3.4]), we obtain the following:
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Lemma A.3.4 (cf. [II, Cor. 6.4.1.2] and [5, Thm. 4.17]). Suppose char(k(s)) =p > 0. Then
there exists some discrete valuation ring R flat over O, (), with fraction field K and residue
field k(s), the latter lifting the structural homomorphism Op, ) — k(s), such that, for each cusp
label [(Pye, 034p)], and for each connected component V' of Z[(éﬂp’[gﬂp)] ® R, the induced flat

Ory.(p)

morphism V' — Spec(R) has connected special fiber over Spec(k(s)).

Proof of Proposition[A.3.1] Let R be as in Lemma “ Let U denote the connected compo-
nent of My» ® R = Z (001, ® R such that U®k( ) =U assubsets of Myy» ® k(s) =

Ory,(») Orq,(p) Ory,(p)
My X s, and let U™ denote its closure in I\/Imln ® R, which is a connected component
So OFo,(p)
of M @ R because MEi" ® R is normal by [I1, Prop. 7.2.4.3(4)]. For each cusp label
OFg.(p) Org,(p)

[(Pyp, Opp)], let [NJ[@HN;HP)] denote the pullback of Z(¢,,,, syw)] O U™in . Then (NJ[(¢HP75HP)] is an
open and closed subscheme of Z((¢,,, 5,,) ® R such that U[(q)m, S300)] ®k( ) = Ul@y0,600)]
Fo,(p)

as subsets of M* ® k(s). By Lemma |A.3.4] it suffices to show that U[@Hp’(;w)] QK #
Ory, ) R

for some algebraic closure K of K. Also by Lemma |A.3.4 U®K' # (), and so {min ®K' con-

tains at least one connected component of I\/Iﬁi,,n ® K. Thus U[@Hp 530p)] ® K#0 under the
Ory.(m

assumption of the proposition, as desired. O

A.4 Comparison of cusp labels

Let H, := G(Z,) and H := HPH,, the latter being a neat open compact subgroup of G(Z) By

the same references to [I1] as in Section we have the moduli problem My, and its minimal

compactification M3}™ over Sg g := So ® Q = Spec(Fp). For each compatible collection %' of
Z

cone decompositions for My, we also have a toroidal compactification M%f[’fz,, together with a
canonical morphism ¢,, : Mgy, — MIin over Sg g. (Here ¥’ does not have to be related to X7
above.)

Each cusp label [(Zy, Py, 0% )] for My, (where Zy; has been suppressed in the notation for
simplicity) can be described as an equivalence class of the H-orbit (Zz, P, d3) of some triple
(Z,®,0), where:

1. Z = {Z_;};cz is an admissible filtration on L®Z that is fully symplectic as in [T1, Def.
5.2.7.1]. In particular, Z_; = (Z ® Q)N(L ®Z) the symplectic filtration Z® Qon L ®A°°
extends to a symplectic ﬁltratlon Zy on Z®A and each graded piece of Z or Z®Q is

integrable as in [I1] Def. 1.2.1.23], that is, 1t is the base extension of some O- lattlce

2. &= (XY, 0,0_2,p0) is a torus argument as in [I1, Def. 5.4.1.3], where ¢ : Y — ?( is an
embedding of O-lattices with finite cokernel, and where ¢_5 : Gr* , = Homy (X % Z,7(1))
and ¢y : Grg = Y%)Z are isomorphisms matching the pairing (-, - )20 : Gr%, x Gr§ —
Z(1) induced by (-, -) with the pairing (-, - )y : Homz(x§z,2(1)) x(y%z) — Z(1)
induced by ¢.

3. 0:Gr* 5 L is an O-equivariant splitting of the filtration Z.

4. Two triples (Zy, Py, 03) and (2%, P}, 0%,) are equivalent (as in [T, Def. 5.4.2.2]) if Zy, =
Z5, and/ if there exists a pair of isomorphisms (yx : X’ = X, vy : Y = Y’) matching ®
with ®7,.
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Since H = HPH,, it makes sense to consider the p-part of (Zy, Py, 03¢ ), which is the 7 -orbit
of some triple (2z,, (¢—2.z,,%0,z,), 0z,), where:

1. 2z, = {ZZpy,i}iGZ is a symplectic admissible filtration on L ® Z,,, which determines and is
z
determined by a symplectic admissible filtration Zg, = {Zq,,—i}icz of L& Q) by Zg, —; =
Z
ZZP,fi ®Q and ZZp,fi = ZQP,*i ﬂ(L@Zp), for all i € Z.
Z Z

2. ¢ 27, : Grzfg = Homy, (X ® Zy, Zy(1)) and g : Grgz” 5 Y ®Z, are isomorphisms
Z Z

matching the pairing (-, - )20z, : Grz_zé’ X GrgZP — Z,(1) induced by (-, -) with the pairing
(1 )¢z, Homg (X ®Z,, Zy(1)) x (Y @ Zp) — Zp(1) induced by ¢.
Z Z

3. 4z, : Gr’=» 5 L %)Zp is a splitting of the filtration Zz,.

By forgetting its p-part, each representative (Z3, 3, %) for My induces a representative
(Zagr, Pyp, Ogp) for Myp, and this assignment is compatible with the formation of equivalence
classes. Therefore, we have well-defined assignments

(ZH, Dy, 5';.[) — (Z’Hp, Dy, 57.[1)) (A.4.1)
and
[(Z3e, ©3e, 030)] = [(Zaer, P, O] (A4.2)

By construction, these assignments are compatible with surjections on their both sides (see [L1]
Def. 5.4.2.12]). We would like to show that they are both bijective.

Lemma A.4.3. Let k be any field over Z,. Consider the assignment to each flag W of totally
isotropic O®k submodules of L®k (with respect to (-, >®k) its stabilizer subgroup Py in

G®k Then each such Py is a pamboltc subgroup of G®k; and the assignment is bijective.
Moreover given any minimal parabolic subgroup Pw, of G % k, which is the stabilizer of some
mazimal flag Wy of totally isotropic O ® k-submodules of L ®k, every parabolic subgroup of
G%k is comjugate under the action of (Z}(k) to some pambolzz'c subgroup of Gézék containing
Pw,, which is the stabilizer of some subflag of Wy.

Although the assertions in this lemma are well know, we provide a proof because we cannot

find a convenient reference in the literature in the generality we need.

Proof of Lemma[A.4.3] Let kP be a separable closure of k. Since the characteristic of k is

either 0 or p, the latter being a good prime by assumption, it follows from [I1, Prop. 1.2.3.11]

that each of the simple factors of the adjoint quotient of G ® k*°P is isomorphic to one of the
zZ

groups of standard type listed in the proof of [I1}, Prop. 1.2.3.11]. Then we can make an explicit
choice of a Borel subgroup B of G ® k*°P stabilizing a flag of totally isotropic submodules, with a

Z
maximal torus T of G ® k%P contained in B which is isomorphic to the group of automorphisms
zZ

of the graded pieces of this flag. By [16, Thm. 6.2.7 and Thm. 8.4.3(iv)], since all parabolic
subgroups of G ® k°P are conjugate to one containing B, the parabolic subgroups of G ® k*°P
Z Z

are exactly the stabilizers of flags of totally isotropic O ® k*P-submodules of L ® k*P. Then
Z

Z
the analogous assertion over k follows, because the assignment of maximal parabolic subgroups
of G®k*°P is compatible with the actions of Gal(k®°P/k) on the set of flags of totally isotropic

Z
submodules of L ® k*P and on the set of parabolic subgroups of G ® k*°P. The last assertion of
z z
the lemma follows from [I6, Thm. 15.1.2(ii) and Thm. 15.4.6(i)]. O
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Lemma A.4.4. The assignment
Zy — ZHP (A45)

is bijective.
Proof. Let Zy, = {ZZp,fi}ieZ be a symplectic admissible filtration on L ® Z, as above, which
7

determines and is determined by a symplectic filtration Zg, = {Zq,,—i}icz on L®Q,. By
zZ

Lemma the action of G(Q)) on the set of such filtrations Zg, is transitive, because the
O-multirank (see [IT, Def. 1.2.1.25]) of the bottom piece Zg, o of any such Zg, is determined

by the existence of some isomorphism ¢_5 7, : Grz_zg = Homg, (X ® Zy, Zy(1)). Let P denote
z

the parabolic subgroup of G ® Q, stabilizing any such Zg, (see Lemma|A.4.3). Since p is a good
Z

prime by assumption, the pairing (-, -) ® Z, is self-dual, and hence G(Z,) is a maximal open
z
compact subgroup of G(Q,) by [, Cor. 3.3.2]. Since G® Q, is connected under Assumption
Z
(because the kernel of the similitude character of G ®Q,, factorizes over an algebraic
Z

closure of Q, as a product of connected groups, by the proof of [I1 Prop. 1.2.3.11]), we have
the Iwasawa decomposition G(Q,) = G(Z,)P(Q,), by [3} Prop. 4.4.3] (see also [4, (18) on p.
392] for a more explicit statement). Consequently, H, = G(Z,) acts transitively on the set of
possible filtrations Zz, as above, and hence the assignment is injective.

As for the surjectivity of , it suffices to show that there exists some symplectic admis-

sible filtration Zz, such that some isomorphism ¢ o7, : Grz_zg = Homg, (X @ Zy, Zp(1)) exists.
Z

By [14, Thm. 18.10] and [II} Cor. 1.1.2.6], it suffices to show that there exists some symplec-
tic filtration Zg, such that Zg, _» and Homg, (X ® Qp,Q,(1)) have the same O-multirank. Or
zZ

rather, we just need to notice that the O-multirank of a totally isotropic O ® Qp-submodule
z

can be any O-multirank below a maximal one (with respect to the natural partial order), by
Assumption and by the classification in [I1} Prop. 1.2.3.7 and Cor. 1.2.3.10]. O

Lemma A.4.6. The assignment (A.4.1)) is bijective.

Proof. Tt is already explained in the proof of Lemma that an isomorphism ¢_27,, : Grzj‘g =

Homgz, (X ® Zy, Zy(1)) exists for any Zz, considered there. Since p is a good prime, which forces
z

both [L# : L] and [X : ¢(Y)] to be prime to p, any choice of ¢_5 7, above uniquely determines
an isomorphism ¢y : Grgz” =Y ®Z,. Also by the explicit classification in [11 Prop. 1.2.3.7 and
Z

Cor. 1.2.3.10] as in the proof of Lemma|A.4.4} there exists a splitting dz, : Gr¥» 5 L® Zyp, and
Z

the action of G(Z,) NP(Q,) acts transitively on the set of possible triples (¢_2z,,%0,2,,9z,)-
Hence the assignment (A.4.1]) is bijective, as desired. O

Lemma A.4.7. The assignment (A.4.2)) is bijective.

Proof. By Lemma it suffices to show that is injective. Suppose we have two rep-
resentatives (Zy, 4 = (X,Y, ¢, 023, po,u), on) and (23, @5 = (X', Y, ¢, 0" 5 21,00 2) %)
such that the induced (Zyr, ®y», 03r) and (2%, ®yp, 0%, ) are equivalent to each other. By defi-
nition, Zy» = Z},,, so that Zy = Z, by Lemma and there exists a pair (yx : X’ 5 X, vy :
Y = Y’) matching ®»» with ®},,. Hence we may assume that (X,Y,¢) = (X',Y’',¢), take
any Z in Zy» = Zj,,, and take any (p_o : Gr%, = Homz(X%Z,Z(l)),goo cGrE 5 Y%Z)

and (¢', : Grt, = HomZ(X%)Z,Z(l)),gp{) : Gy & Y%Z) inducing (¢—2%, o) and
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(¢” 9.2 ¥0.21), respectively, and inducing the same (2 3»,¢0,2r) and (¢" 5 30, ) 3»). Then

the injectivity of (A.4.2) follows from that of (A.4.1]). O

Lemma A.4.8. If (Zyp, Pyr, dnr) is assigned to (Zq, Py, 03) under (A.4.1)), then we have a
canonical isomorphism
FCI”H — F‘I’HP (A49)

(see [11l, Def. 6.2.4.1]). Moreover, we have a canonical isomorphism
Se,0 — Soy, (A.4.10)
which induces a canonical isomorphism
(Ses )z = (So )k (A.4.11)

matching Pg,, (resp. Pgﬂ) with Pe.,,, (resp. P§._ ), both isomorphisms being equivariant with

Pyp
the actions of the two sides of (A.4.9)) above. *

Proof. Since p is a good prime, with H,, = G(Z,), the levels at p are not needed in the construc-
tions of I'y,, and Sg,, in [I1} Sec. 6.2.3-6.2.4], and hence we have the desired the isomorphisms
(A.4.9) and (A.4.10). The induced morphism (A.4.11) matches Pg,, (resp. P$H) with Pg,,,
(resp. Pgﬂp) because both sides of (|A.4.11) can be canonically identified with the space of
Hermitian forms over Y’ %R, as explained in the beginning of [I1), Sec. 6.2.5], regardless of the

levels H and HP. O

Therefore, we also have assignments
((I)H,5H,G) — (@Hp,dyp,crp) (A.4.12)

and
[(‘I’H,(SH,O')] — [(‘I)Hp,(Sq.[p,O'p)] (A.4.13)

(see [I1l, Def. 6.2.6.2]), where we have suppressed Z3; and Zy» from the notation, where o C
(Sa,, ), and where o C (So,,, )y is the image of o under isomorphism (A.4.11)), which are

compatible with (A.4.1)) and (A.4.2]).

Lemma A.4.14. The assignment (A.4.12)) is bijective.

Proof. This follows from Lemma and the definition of (A.4.12)) based on Lemma O
Lemma A.4.15. The assignment (A.4.13) is bijective.

Proof. By [11], Def. 6.2.6.2], given any representative (®4;, d% ) of cusp label, the collection of the
cones o C (Sa,, )i defining the same equivalence class [Py, 0y, 0)] form an I'g,,-orbit. Similarly,
the collection of the cones o” C (Sg,,, )y defining the same equivalence class [(®yr, dpp, 0P)]
form an I's,,,-orbit. Hence, given , the lemma follows from Lemma O

Definition A.4.16. We say that ¥ is induced by P if, for each cusp label [(Z3, Py, 021)] of
My represented by some (Zy, ®3q,0%), with assigned (Zyp, Pyr, d3p) as in (A.4.1)), the cone
decomposition Xg,, of P, is the pullback of the cone decomposition of Py, under (A.4.11).
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By forgetting the p-parts of level structures, we obtain a canonical isomorphism

M 5 My ©Q (A.4.17)

over So g (as in [I1l (1.4.4.1)]), by [II, Prop. 1.4.4.3 and Rem. 1.4.4.4] and by Assumption
Given any XP for My, with induced ¥ for My as in Definition by comparing
the umversal properties of M%_‘ZYE and M35 s as in [11, Thm. 6.4.1.1 (5) and (6)], using also the
inverse of the isomorphism above we obtain a canonical isomorphism

M3y =5 M2 o ©Q (A.4.18)

over Sg g, extending (A.4.17), and mapping Z((s,,.5,,0)] isomorphically to Z((a,,, 5, ,0v)) When
[(Pyp, dyp, 0P)] is assigned to [(Pyy, 0y, 0)] under (A.4.13)), such that the pullback of the tau-

tological semi-abelian scheme over M%)} 5., ® Q is canonically isomorphic to the pullback of the
=z

tautological semi-abelian scheme over M%ft’,rz. Consequently, by [I1, Thm. 7.2.4.1 (3) and (4)],
and by the fact that the pullback of the Hodge invertible sheaf over MY} 5., ® Q is canonically
i/

isomorphic to the pullback of the Hodge invertible sheaf over Mtor (because their definitions
only use the tautological semi-abelian schemes), the canonical 1somorphism (A.4.18) induces a
canonical isomorphism

~

ME™ S MY © Q (A.4.19)
Z

over Sg g, extending (A.4.17)), compatible with (A.4.18)) (under the canonical morphisms f?—t :
Mgfz — ME™ and ¢, %@ : I\/Ig_‘t)f,,zp %Q — MR 2 Q), and mapping Z(s,, 5,) isomorphi-

cally to Zy(@,,5,6,») When [(Pyr, d3p)] is assigned to [(Py, d7)] under (A.4.2) (where we have
suppressed Zy; and Zy» from the notation).

A.5 Complex analytic construction

By Proposition in order to prove Theorem we may and we shall assume that
char(k(s)) = 0. Thanks to the isomorphisms (A.4. 17) and (A-4.19), we shall identify U with a
connected component of My ® k(s), identify U™™ with the connected component of MJ}" ® k(s)

that is the closure of U, and 1dent1fy Ul(@ 40 ,5200)) With Upa,,, 820)]> the pullback of the stratum
Z[(@H 5,0y of Mg™ under the canonical morphism U™ — M5, when [(®yp»,dyr)] is assigned
to [(Pyy, 03)] under (A42).

Now in characteristic zero we no longer need H to be of the form H = HPH,, as in Section
We shall allow H to be any neat open compact subgroup of G(Z) Then My and M3"
are still defined over Mg g = Spec(Fp), with the stratification on the latter by locally closed
subschemes Z(g,, s,,)] labeled by cusp labels [(®4,d5)] for My (see the same references we
made in Section . For any geometric point s — S with residue field k(s) and for any

connected component U of the fiber My» x s, we define U™ to be the closure of U in M?{“n X S,
S[] SO

and define Uy, ,s,,)] to be the pullback of Z(4,, s, to of U™in for each cusp label [(®,5%)].
(These are consistent with what we have done before, when the settings overlap.)
Then we have the following analogue of Theorem

Theorem A.5.1. With the setting as above, every stratum Uj(s,, s,,)] S nonempty.

Since MY} is projective over Sp g, we may and we shall assume that k(s) = C. We shall
denote base changes to C with a subscript, such as My ¢ = My ® C, etc.
Fo

Let X denote the G(R)-orbit of hg, which is a finite disjoint union of Hermitian symmetric
domains, and let Xq denote the connected component of X containing hg. Let G(Q)o denote
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the finite index subgroup of G(Q) stabilizing Xg. Let Shy := G(Q)\X x G(A*>)/H. By [10,
Lem. 2.5.1], we have a canonical bijection G(Q)o\Xo X G(A®)/H — G(Q)\X x G(A>®)/H. Let
{gi}ier be any finite set of elements of G(A>) such that G(A*>) = [[ G(Q)oh;H, which exists

iel
because of [2, Thm. 5.1] and because G(Q)y is of finite index in G(Q). Then we have
Sha = G(Q)o\Xo x G(A™)/H = [[T\X,, (A5.2)
iel
where T := (g;Hg; ') N G(Q)g for each ¢ € I. By applying [I, 10.11] to each @\ X, we
obtain the minimal compactification Shy;™ of Shy;, which is the complex analytification of a
normal projective variety Shﬁfglg over C. Thus Shy is the analytification of a quasi-projective

min

variety Shy a1 (embedded in Sh3j'7,. ).
By [10, Lem. 3.1.1], the rational boundary components Xy of X, (see [I], 3.5]) correspond to
parabolic subgroups of G ® Q stabilizing symplectic filtrations Von L Q withV_3=0C V_5 C
z Z

V_, =V, CVyp = L®Q. Consider the rational boundary components of X x G(A>) as in [10]
Z

Def. 3.1.2], which are G(Q)-orbits of pairs (V, g), where V are as above and g € G(A*). Consider
the boundary components G(Q)\(G(Q)Xy) x G(A*®)/H = G(Q)o\(G(Q)oXy) X G(A®)/H of
Shy = G(Q)o\Xo x G(A>*)/H. By the construction in [I], each such component defines a
nonempty locally closed subset and meets all connected components of Shﬁm, corresponding to
a nonempty locally closed subscheme of ShH’alg which we call its G(Q)(V, g)H-stratum. Thus,
we obtain the following;:

Proposition A.5.3 (Satake, Baily-Borel). Each G(Q)(V,g)H-stratum as above meets every
connected component of Shy;" .

For each g € G(A™), let L) denote the O-lattice in L ® Q such that L) @7 = ¢(L ® Z)
Z zZ VA
in L%Ao". Let 7 € QZ, be the unique element such that v(g) = ru for some u € Z, and let
(-, ->(g) : LW x L9 — 7Z(1) denote the pairing induced by (-, -) ®Q (see [I0, Sec. 2.4]; the
Z

key point being that (-, ~>(9) is valued in Z(1)).

Construction A.5.4. As explained in [I0] Sec. 3.1], we have an assignment of a fully symplectic

admissible filtration Z(¥) on Z®Z and a torus argument ®(9) = (X(g),Y(g), 9, cp(f; ap(()g)) to
z

G(Q)(v, g), by setting:
1. F9) .= {F(fi) =V_;NL9}iez.
2. 7(9) .— {2(792 = g—l(F(g) %Z)}iez ={g (V®AOQ) (L %Z)}iez-

3. X .= HomZ(F(;qQ),Z( 1)) = Homgz(Gr" g), 7Z(1)).
4. Y@ .= Grg(g) = Fég)/F_gl).
5. 9 Y@ — X ig equivalent to the nondegenerate pairing
(08 Gy x G - z(1)
induced by (-, -} : L) x L@ — 7(1).

Z(g

6. : Gr%, 5 Homy (X 7,7(1)) is the composition
z

Gr_2(g)

(9) ~ (9)
Gr% 5 Gt

e ®Z—>Hom L (X9 @7, 7(1)).
Z
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7. s0(()9) . Grg(g) 3 Y ®7Z is the composition
Z

w 9 L .
Grt” 5 Gif " ez YWRL.
Z Z

By the assumption that our integral PEL datum satisfies [I1, Cond. 1.4.3.10], and by the fact

that maximal orders over Dedekind domains are hereditary (see [14, Thm. 21.4 and Cor. 21.5]),

@ ~ .
there exists some splitting €9 : Gr¥ 7 L9 whose base extension from Z to Z defines by

pre- and post- compositions with Gr(g) and g~! a splitting 50 . Grz(g) 3 L ®7. These define
7

an assignment
G(Q)(V,g) = (29,0 59))], (A.5.5)

which is compatible with the formation of H-orbits and induces an assignment
GV, 9)H = (25, 257, 857))- (A.5.6)

Definition A.5.7. For each cusp label [(Z3, Py, 63)], the [(Py, dx)]-stratum of Sh;‘;fglg is the
union of all the G(Q)(V, g)H-strata such that [(Zy, Py, dy)] is assigned to G(Q)(V, g)H under
(A5.0).

Proposition A.5.8. Given the H-orbit Zy of any Z = {Z_;};cz as above, there exists some to-
tally isotropic O @ Q-submodule V_o of L ® Q such that V_o ® A lies in the H-orbit of Z_o ® Q.
Z Z Q Z

Proof. Up to replacing H with an open compact subgroup, which is harmless for proving this

proposition, we may and we shall assume that H = HSHg, where S is a finite set of primes

containing all bad ones for the integral PEL datum (see [IT, Def. 1.4.1.1]), such that H° =

G(Z5) = [] G(Z¢) and Hg € G(Zs) = [] G(Z), where £ ¢ S means that ¢ runs through all
£gs s

prime numbers not in S.

By Assumption by reduction to the case where O ® Q is a product of division algebras
z

by Morita equivalence (see [II, Prop. 1.2.1.14]), and by the local-global principle for isotropy
in [I5] table on p. 347, and its references], it follows that, if Z_s ® Q is nonzero and extends to
Z

some isotropic O ® A-submodule of L ® A isomorphic to the base extension of some O-lattice,
then there exists fome nonzero isotropzic element in L ® Q. By induction on the O-multirank
of Z_o %) Q—by replacing L(%) Q (resp. L (%)AOO) with t}?e orthogonal complements modulo the
span of a nonzero isotropic element in L % Q (resp. L % A )—there exists some totally isotropic
O % Q-submodule V%, of L % Q such that V9, %)A‘X’ and Z_o % Q have the same O-multirank.
Let G’ denote the derived subgroup of G®Q (see [6l VI, 7.2(vii) and 7.10]). Then the
pullback to G’ induces a bijection between thg parabolic subgroups of G % Q and those of G’

(see [6l XXII, 6.2.4 and 6.2.8] and [16, Thm. 15.1.2(ii) and Thm. 15.4.6(i)]), and they both are in
bijection with the stabilizers of flags of totally isotropic O ® Q-submodules as in Lemma [A.4.3
Z

Therefore, there exists some element h = (hy) € G'(A*), where the index ¢ runs through all
prime numbers, such that V%, ® A® = h(Z_, ® Q).
Q z

Since G’ is simply connected by Assumption (because the kernel of the similitude
character of G ® QQ factorizes over an algebraic closure of Q as a product of groups with simply
z

connected derived groups, by the proof of [IT, Prop. 1.2.3.11]), by weak approximation (see [13]
Thm. 7.8]), there exists v € G'(Q) such that y(h¢)ees € Hs. On the other hand, by using the
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Iwasawa decomposition at the places £ € S as in the proof of Lemma up to replacing
he with a right multiple by an element of G'(Qy) stabilizing Z_» ® Q, we may assume that
VA

vhe € G(Zy) for all £ € S. Thus, we can conclude by taking V_o := y(V",). O

Proposition A.5.9. For each cusp label [(Zy, Py, 03)], there exists some rational boundary
component G(Q)(V,g) of X x G(A*®) such that [(Zy, Py, 031)] is assigned to G(Q)(V, g)H under
(A5.6).

Proof. Let (2,® = (X,Y, ¢, 0_2,¢0),d) be any triple whose H-orbit induces [(Zy, Py, 0% )], and
let V_s be as in Proposition Up to replacing (Z, ®,§) with another such triple, we may
and we shall assume that

22 = (V2 0 AY) m(L%Z) =z"), (A.5.10)

where F(U = {F(_li)}iez, zM) = {Z(_li)}iez, and @) = (X(l),Y(l),qﬁ(l),go(j%,(p(()l)) are assigned to
(V,1) as in Construction together with some noncanonical choices of £ and §(1).

Let P denote the parabolic subgroup of G® Q stabilizing V_o (see Lemma [A.4.3). By

Z

(A.5.10)), the elements of P(A>) also stabilizes Z_o %Q. Therefore, for each g € P(A*), the
filtration Z2(9) defined as in Construction [A.5.4] coincides with Z. R .

Using (A.5.10) and the compatibility among the objects, both ¢ ® Z and ¢V) ® Z can be

z z

identified (under (p_s,pg) and (tp(_lg, goél))) with the canonical morphism

(-, )by : Homy (Gr%,,Z(1)) — G} (A5.11)

induced by the pairing (-, - ), which induce compatible isomorphisms

He opml) s XM ®L5 X Q1 (A.5.12)
and
(p(()l) o gpal : Y%Z Xy® %Z (A.5.13)

By [II, Cond. 1.4.3.10], there exists some maximal order @’ in O ® Q, containing O, such
Z

that the O-action on L extends to an O’-action; hence the @-actions on Y and Y(!) also extend
to O'-actions. Using the local isomorphisms given by (A.5.13), by [14, Thm. 18.10] (which is
applicable because we are now considering modules of the maximal order O') and [I1} Cor.
1.1.2.6], there exists an element gy € GLoga~(Gri®Q) and an O-equivariant embedding
Z Z
ho : Y — Y ®Q such that (he(YM)QZ = (9o ®Q)(go(Gr2)) in Y @ A®. Let g_o :=
Z Z Z zZ

tgo_1 € GLo g a~(Gr*, ® Q), where the transposition is induced by (A.5.11). Then there is a
Z Z

corresponding O-equivariant embedding h_ : Homgz(X™, Z(1)) < Homgz(X,Z(1)) ® Q such
Z

that (h_s(Homz(X M, Z(1)))) <§Z = (p_z <§Q)(g_2((;rz_2)) in Homgz (X, Z(1)) %AO".

Take g € P(A*) such that Gr_5(g) = g—2, Gro(g) = g0, and v(g) = 1, which exists thanks
to the splitting 6. Then X ) and Y'(9) are realized as the preimages of X and Y under *h_, ® Q
7

and hgl ® Q, respectively; and the induced pair (yx : X0 5 X 4y Y S Y(g)) matches ®(9)
Z
with ®. Such a (V, g) is what we want. O

As explained in [II], Sec. 2.5], there is a canonical open and closed immersion

Shyalg <= My c. (A.5.14)
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As explained in [8] §8, p. 399] (see also [1I, Rem. 1.4.3.12]), My ¢ is the disjoint union of the
images of morphisms like (A.5.14]), from certain Shgfl)alg defined by some (O, *, LW (-, -)) hg)
such that (LU, (-, YO)®Z = (L,(-,-))®Z and (LY, (-, YD)@R = (L,(-,-))®R, but
Z Z Z Z
not necessarily satisfying (L), (-, Y0))@Q = (L,(-, -))®Q, for all j in some index set .J
Z Z
(whose precise description is not important for our purpose). (Each (LU, (-, -)0)) is de-
termined by its rational version (LU) (-, -)¥))®Q by taking intersection of the latter with
zZ
(L(j)7<'7 >(]))®Z = (La<'a >)®Z in (L(j)7<'7 >(J))®AOO = (L7<'7 >)®AOO Due to the
Z Z Z VA

failure of Hasse’s principle, J might have more than one element.)
By [10, Thm. 5.1.1], (A.5.14)) extends to a canonical open and closed immersion

Shijhe — ML, (A.5.15)

respecting the stratifications on both sides labeled by cusp labels (see Definition [A.5.7). Again,
M%ifé is the disjoint union of the images of morphisms like (A.5.15)), from the minimal compact-

ifications Sh%)’gn fShErJL) g0 forall j € J.
Everything we have proved remain true after replacing the objects defined by (L, (-, -))
with those defined by (LU), (-, -)U)), for each j € J. Thus, in order to show that Ul(®3,690)]

is nonempty, it suffices to note that, by Propositions and [A.5.9] the [(Py, Iy )]-stratum

of ShH ;Tm meets every connected component of Shﬁi ;;m, for all j € J. The proof of Theorem
1] is now complete. O

By Proposition [AZ3.1] and by the explanations in Section [A:4] and in the beginning of this
section, the proof of Theorem is also complete. O

A.6 Extension to cases of ramified characteristics

In this section, we shall no longer assume that p is a good prime for the integral PEL datum
(O,x,L, (-, ), ho), but we shall assume that the image H? of H under the canonical homomor-
phism G(Z) — G(ZP) is neat.

Even for such general H and p, for any collections of lattices stabilized by H as in [12] Sec.
2], we still have an integral model |\7|H of My, flat over Sy constructed by “taking normalization”

see [12 Prop. 6.1; see also the introduction]). Moreover, we have an integral model Mmin of
H
M% projective and flat over Sy (see [12, Prop. 6.4]), with a stratification by locally closed

subschemes Z[(¢H75H)] labeled by cusp labels [(®4, d%)] for My, which extends the stratification
of My, by the locally closed subschemes Z4,, 5, (see [12, Thm. 12.1]). For certain (possibly
nonsmooth) compatible collections X (not the same ones for which we can construct M5y, over

Mo.g), we also have the toroidal compactifications I\7I';_‘Z’“Z of |\7IH projective and flat over Sy (see
[I2, Sec. 7]), with a stratification by locally closed subschemes Z[(%’MU)] (see [12, Thm. 9.13]),
and with a canonical surjection f " M%irz — M’mln with geometrically connected fibers (see [12]

Lem. 12.9 and its proof]), inducing surjections Z[(‘I’H75Ha‘7)] — Z[(@%M] (see [12, Thm. 12.16]).
As in Section consider a geometric point s — So = Spec(Op, (,)) With algebraically

closed residue field k(s), and consider a connected component U™ of the fiber l\_/‘lmin x s. For
So

each cusp label [(@’H,a’}{)] for My;, we define Uy, ,s,,)) to be the pullback of Z[(@H ) to
U™in - Since the fibers of 397—1 are geometrically connected, the preimage of U™ under f u XS
So
is a connected component U™ of l\/Ig_‘ZrE x s. (In general neither Mmm X § nor MtoE X s is
" So So

So
normal.) For each equivalence class [(Py, Iy, 0)] defining a stratum Z[(<I>H 50,00 of MHr27 we
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define U(s,,,5,,0) to be the pullback of Z[(QHV(;H’,,)]. Then we also have a canonical surjection
Ul(@r.0r.0)) = Ul(@s.5,0)) Induced by .
Theorem A.6.1. With the setting as above, all strata of U™™ are nonempty.

By using the canonical surjection Uj(a,, 55,0 — Ul(@y,6,)) (as in the proof of Corollary
1A.2.3]), Theorem implies the following:

Corollary A.6.2. With the setting as above, all strata of U™ are nonempty.
As in Section it suffices to prove the following:

Proposition A.6.3. Suppose Theorem is true when char(k(s)) = 0. Then it is also true
when char(k(s)) =p > 0.

Remark A.6.4. Since My ®Q = My and ME® @Q 22 ML™ by construction, by Theorem
Z z
A5.1] the assumption in Proposition always holds. Nevertheless, the proof of Proposition
A76.3) will clarify that the deduction of Theorem from Theorem does not require
Assumption (cf. Remark [A.3.2)).
The remainder of this section will be devoted to the proof of Proposition We shall

assume that char(k(s)) =p > 0.
While each Zj(g,,,s,,)] is isomorphic to some boundary moduli problem I\/I?_z*, each stratum

Z[(Q%(;H)] of Mﬂi“ is similarly isomorphic to some integral model I\ﬁ?f defined by taking normal-
ization (see [12 Prop. 7.4, and Thm. 12.1 and 12.16]). Hence it also makes sense to consider the

minimal compactification Zﬁ‘é“% 530)] of Z[(@H’(;H)], which is proper flat (with possibly non-normal
geometric fibers) over Sy, and we obtain the following:

Lemma A.6.5 (cf. Lemma and [B, Thm. 4.17(ii)]). There exists some discrete valua-
tion ring R flat over OF, (), with fraction field K and residue field k(s), the latter lifting the
structural homomorphism OFO ) k(s), such that, for each cusp label [(Py,d%)], and for

each connected component V' of me 2] ® R, the induced flat morphism V — Spec(R)
Fo (p)
has connected special fiber over Spec(k(s)).

Proof of Proposition[A.6.3] By [12, Cor. 12.4], it suffices to show that Ua,, s,) 7 § when
[(®y, 0% )] is mazimal with respect to the surjection relations as in [11 Def. 5.4.2. 13] In this case,
by [12, Thm. 12.1], Z[(dm 5;0)] 1s a closed stratum of Mrnln and so Z[(@,H 5] = Z[(dmﬁu)] H.erl1ce
the lemma follows from Theorem 1| and the same argument as in the proof of Proposition
with the reference to Lemma replaced with an analogous reference to Lemma
[A.6.5 O

As explained in Remark the proof of Theorem is now complete. O

A.7 Examples
Ezample A.7.1. Suppose O @ Q is a CM field F' with maximal totally subfield F'*, with positive
Z

involution given by the complex conjugation of F' over F'+. Suppose L = O% @+t \where a > b >
0 are integers. Suppose (2my/—1)71(-, -) is the skew-Hermitian pairing defined in block matrix

1
form ( LS b) where S is some (a — b) x(a — b) matrix over F' such that v/—15 is Hermitian
—1b

and either positive or negative definite. Then, for each 0 < r < b, the O- Submodule Z(T% of
(’)@(GH’) with the last (@ + b — r)-entries zero is totally isotropic, and v ) 2 ®Q is a

totally isotropic F-submodule of L ® Q = F®(¢+0) which is maximal when r = b. The stablhzer
Z
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of V(f% either is the whole group (when r = 0) or defines a maximal (proper) parabolic subgroup
P™) of G®Q (when r > 0), and all maximal parabolic subgroups of G ® Q are conjugate to
Z Z

one of these standard ones, by Lemma |A.4.3] Similarly, Z(_T% = F(_T% ®7Zis a totally isotropic
Z

O ® Z-submodule of L ® Z, and the left G(Q)- and right #- double orbits of Z(_T2)7 for 0 <r <,
Z Z

exhaust all possible Z3,’s appearing in cusp labels [(Zy, ®, 62;)] for My, by Proposition
By Lemma by forgetting their p-parts, their left G(Q)- and right HP- double orbits also
exhaust all possible Zy»’s appearing in cusp labels [(Zyp, Pyp, d3r)] for Myp. Let us say that
a cusp label [(Zy, @y, 03)] for My is of rank r if Zy is in the double orbit of Z(f%, and that
a cusp [(Zye, Py, dyp)] for Myp is of rank r if it is assigned to one of rank r under .
(This is consistent with [I1, Def. 5.4.1.2 and 5.4.2.7].) On the other hand, as a byproduct of
the proof of Proposition A.5.9|, any Zy in the double orbit of Z(_T% does extend to some cusp
label [(Zy, @3, 03)] for My, inducing some cusp label [(Zyr, ®yr, 63»)] for My» under (A.4.1)).
Then Theorem shows that, in the boundary stratification of every connected component
of every geometric fiber of Mﬁip“ — So = Spec(OF,,(p)), there exist nonempty strata labeled
by cusp labels for My» of all possible ranks 0 < r < b. (The theorem shows the more refined
nonemptiness for strata labeled by cusp labels, not just by ranks.)

The next example shows that we cannot expect Theorem to be true without the
requirement (in Assumption that O (§Z§ Q involves no factor of type D.

Ezample A.7.2. Suppose O ® Q is a central division algebra D over a totally real field F' as in
Z

[I1, Prop. 1.2.1.13] such that D ® R = H, the real Hamiltonian quaternion algebra, for every
F,r

embedding 7 : F' — R, with x = o given by x + 2° := Trp,/p(z) — x. Suppose that D is
nonsplit at strictly more than two places. Suppose L is chosen such that L ® Q =2 D®2. By the
Z

Gram-—Schmidt process as in [I1] Sec. 1.2.4], and by [I1], Cor. 1.1.2.6], there is up to isomorphism
only one isotropic skew-Hermitian pairing over L ® Q. But we do know the failure of Hasse’s
zZ

principle (see [8 §7, p. 393]) in this case (see [I5, Rem. 10.4.6]), which means there exists a
choice of (L, (-, -)) as above that is globally anisotropic but locally isotropic everywhere. Thus,
even when k(s) = C, there exists some connected component U of Shy aj; and some nonzero
cusp label [(®3;, 63)] for My such that Uya,, s, = 0.
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