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Abstract

Following the ideas and methods of a recent work of Skinner and Urban, we prove the one
divisibility of the Iwasawa main conjecture for nearly ordinary Hilbert modular forms under certain
local hypotheses. As a consequence, we prove that for a Hilbert modular form of parallel weight,
trivial character, and good ordinary reduction at all primes dividing p, if the central critical L-value
is zero then the p-adic Selmer group of it has rank at least one. We also prove that one of the local
assumptions in the main result of Skinner and Urban can be removed by a base-change trick.

2010 Mathematics Subject Classification: 16W10 (primary); 16D50 (secondary)

1. Introduction

1.1. The conjecture. Let p be an odd prime and F a totally real number field
where p is unramified. Suppose that [F : Q] = d . Let K be a totally imaginary
quadratic field extension of F such that each prime v of F above p is split.
Suppose that

(4) K is not contained in the narrow Hilbert class field of F and all primes v
ramified in F/Q are split in K.

We let F∞ be the cyclotomic Zp extension of F . The Galois group, which we
denote as ΓF , is isomorphic to Zp. Let K−∞ be the maximal abelian anticyclotomic
(the complex conjugation acting by −1 on the Galois group) Zp-extension of K
unramified outside p with Galois group denoted as Γ −K . This is isomorphic to
Zd

p. Write K+∞ for F∞K with Γ +K the Galois group over K (identified with ΓF ).
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LetK∞ :=K−∞K+∞ and ΓK := Gal(K∞/K). This is a Galois extension with Galois
group Zd+1

p . Conjecturally (Leopoldt) this is the maximal unramified outside
p abelian Zp-extension of K. We define ΛK := Zp[[ΓK]]. For any A a finite
extension of Zp, define ΛK,A := A[[ΓK]]. We define more Iwasawa algebras ΛF ,
Λ−K, Λ+K, Λ−K,A, Λ+K,A, in an analogous way. We let εF be the canonical character
G F → ΓF ↪→ Λ×F of G F and εK be the composition GK → ΓK ↪→ Λ×K. Let
ΨF or ΨK be εF or εK composed with the reciprocity map of class field theory
(normalized by the geometric Frobenius).

We fix topological generators for each group above:

γ := recF

(∏
v|p
(1+ p)v

)
, γ + := recK

(∏
v|p
(1+ p, 1+ p)1/2v

)

for ΓF ad Γ +K and
{γ −v,i}v,i

for Γ −v with {γ −v,i}i being a set of [Fv : Qp] elements with γ −v,i ∈ Im(recK(Kv)).
Here rec means the reciprocity map of class field theory normalized by the
geometric Frobenius. Let Γ −v be the Zp-span of {γ −v,i}.

Let Σ be a finite number of primes of F . We can use unitary groups to study
Iwasawa theory for Hilbert modular forms. Let f (f) be a nearly ordinary Hilbert
modular form (or Hida family with the normal domain I as coefficient ring). Let
L/Qp be a finite extension containing all Fourier coefficients of f and χ a OL-
valued character of K×\A×K. Then, by results of Wiles [51], the restriction to
Gv of the Galois representation associated to f for each v|p is isomorphic to
an upper triangular representation V where the one-dimensional subspace V+v
has some prescribed Galois action. One can define its Selmer group SelΣf,K,χ and
its Pontryagin dual XΣ

f,K,χ (see Section 2 for details). For Σ containing all the
bad primes, we construct in Section 7.3 a p-adic L-function LΣ

f,K,χ ∈ OL[[ΓK]]
(LΣ

f,K,χ ∈ I[[ΓK]]). We can formulate the following main conjecture as follows.

CONJECTURE 1. As ideals of OL[[ΓK]] (I[[ΓK]]),
(LΣ

f,K,χ ) = charΣf,K,χ , (LΣ
f,K,χ ) = charΣf,K,χ .

Here char means the characteristic ideal for the ΛK-module XΣ
f,K,χ (or

I[[ΓK]]-module XΣ
f,K,χ ). We can construct a nonintegral p-adic L-function

L̃Σ
f,K,χ in great generality. (This is an element in FI[[ΓK]] instead of I[ΓK]

which is also interpolating special values of the L-functions with a slightly
different interpolation formula; see Section 7.) This is enough for proving the
characteristic-zero results (Theorem 7). However, we need certain Gorenstein
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properties of some Hecke algebras to construct the integral p-adic L-function
LΣ

f,K,χ that appears in the conjecture above. Let us briefly discuss this issue. Let
f be an I-valued Hida family of nearly ordinary Hilbert modular eigenforms with
tame level M for I some finite extension of some weight space (to be defined in
the text). Let mf be the maximal ideal of the full Hecke algebra T(M, I) with I
coefficients corresponding to f. Let Tm f := T(M, I)mf be the localization. Then
we say that it is Gorenstein if HomI(Tmf, I) is free of rank one over Tmf as a
Tmf -module.

1.2. Main results.

DEFINITION 2. We give the following definitions.

• (irred) The residual Galois representation ρ̄ f of f is irreducible.

• (dist) For V = ρ f and each prime v|p, the O×L -valued characters giving the
actions of G F,v on V+v and V/V+v are distinct modulo the maximal ideal of OL .

We always assume that (irred) and (dist) hold for our residual representation
ρ̄ f . We write (irredK) to mean that the restriction to GK of the residual Galois
representation is absolutely irreducible.

These conditions are used in various places in the proof. First of all (irred) is
used in constructing Galois representations for Hida families of Hilbert modular
forms. Second, they are part of the conditions to ensure that a certain local
Hecke algebra is Gorenstein. Third, (irredK) and (dist) are used in the ‘lattice
construction’ to construct elements in the dual Selmer groups. Finally, in the
proof of Theorem 100, we used a modularity-lifting result to prove that a
certain automorphic form is a CAP form (meaning that its associated Galois
representation is the same as that of a Klingen Eisenstein series) under these
assumptions.

Our first theorem (Theorem 101) is one divisibility of the multivariable main
conjecture similar to the one proved in [44].

THEOREM 3. Suppose that p > 5. Let L be a finite extension of Qp and I a local
normal domain and a finite integral extension of the ‘parallel weight space’ (to
be defined in Section 2.3.2) Λpara

W,OL
. Let f be an I-adic ordinary Hilbert modular

eigenform over F of tame level M (a finite idele) with trivial character, such that
some specialization of it is an ordinary cusp form of even parallel weight κ0 > 2,
and trivial nebentypus. Suppose that (4) is true and that M = M+M− with M+

divisible only by primes split in K and M− divisible only by primes of F inert in
K. Suppose also that the following hold.
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• (irredK) and (dist) hold for the residual Galois representation ρ̄f associated
to f.

• The assumptions of Theorem 8 hold.

• M− is square free and its number of prime factors is congruent to d modulo 2.

• The residual representation ρ̄f is ramified at all v|M−.

Let Σ be any finite set of primes containing p. Then we have the containment of
fractional ideals.

charΣK∞(f) ⊆ (LΣ
f,K).

In the text we construct the Σ-imprimitive p-adic L-function for Σ containing
all bad primes. This is integral (that is, in I[[ΓK]]). By putting back the Euler
factors at Σ we may construct the three-variable p-adic L-functions for general
Σ . But we do not know if they are integral. So we use a fractional ideal in the
statement of the above theorem. Here we only consider ‘parallel’ Hida family f
which is the Zariski closure of the set of points with parallel weights and trivial
characters. This is due to our knowledge about the anticyclotomic µ-invariant.
In fact there is a small mistake in [44, 12.3.2], where they claimed that the
µ-invariant for the Σ-imprimitive p-adic L-function is 0 from the same property
for the original L-function. However at nonsplit primes the local Euler factors do
contribute nontrivially to the µ-invariant (split primes are OK). So it is necessary
to compare to Hida’s construction in [15] for the argument, and in our paper we
are only able to make such comparison along the ‘parallel weight’ Hida family.
It is still possible, however, to prove the result for a general Hida family by
constructing the full (not Σ-imprimitive) p-adic L-function (for example in the
forthcoming work [7]). Therefore we still do the computation for a general Hida
family.

In fact, using the results for the other side divisibility of the anticyclotomic main
conjecture using Heegner points, we can prove the equality in the main conjecture
as in [44] under more technical conditions. See [32] for example. We leave this
for interested readers. However, we are unable to prove the main conjecture over
F due to the lack of analogs of results of Kato.

Our next result (Theorem 103) states that the main theorem of [44, Theorem
3.29] is true without the third assumption in [44].

THEOREM 4. Suppose that p > 5. Let f ∈ Sκ(M, L), 2|κ > 2 be a p-ordinary
cuspidal eigenform with trivial character, p - M, and L ⊂ Q̄p a finite extension
of Qp. Suppose that
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• (irred) and (dist) hold for ρ f .

Then, for any set of primes Σ ,

charΣQ∞,L( f ) = (LΣ
f )

in ΛQ,OL ⊗Zp Qp. If, furthermore,

• there is an OL-basis of T f with respect to which the image of ρ f contains
SL2(Zp), and

• there exists a real quadratic extension F/Q such that

– p is unramified in F,
– any prime ` dividing M such that ` ≡ −1(mod p) is inert in F, and any

other prime divisors of M is split in F, and
– the canonical period of f over F is a p-adic unit times the square of its

canonical period over Q,

then the equality holds in ΛQ,OL .

REMARK 5. We will use the trick of passing to the base change to a real quadratic
extension to prove the theorem. Unfortunately, for this trick to work we will face
the issue of comparing the periods, at least when we are concerned with the main
conjecture without inverting p. This problem is in general difficult.

Our last result is a characteristic-zero one which does not need the Gorenstein
properties mentioned above (Theorem 102). We first state the following
conjecture.

CONJECTURE 6. Let F be a totally real field, p be an odd prime unramified
in F, κ > 2 an even integer, and g a Hilbert modular cuspidal eigenform over
F of parallel weight κ and trivial character. Suppose that g has good ordinary
reduction at all primes above p. Assume moreover that if [F : Q] is even then
there is at least one prime v of F such that πg,v is not a principal series. If
L(g, κ/2) 6= 0 then H 1

f (F, ρ
∗
g((2− κ)/2)) = 0.

This conjecture is proved when κ = 2 in [38, Theorem B]. Note that the
assumptions in [38] are satisfied by the description of G p action on ρg. For general
κ this conjecture is not known but we expect the method of [3] to work in the
totally real case as well.

THEOREM 7. Let F be a totally real number field. Let p be an odd rational
prime unramified in F. Let f be a Hilbert modular form over F of even parallel
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weight κ0 and trivial character. Let ρ f be the p-adic Galois representation
associated to f such that L(ρ f , s) = L( f, s). Suppose that

(i) f is good ordinary at all primes dividing p,

(ii) assumption (irred) holds for f , and

(iii) if [F : Q] is even and the global sign of f is −1, then the automorphic
representation of f is not a principal series in at least one finite place.

Suppose moreover that Conjecture 6 is true for F, p, κ = κ0 in our theorem,
and any g satisfying the assumption of Conjecture 6. If the central critical value
L( f, κ0/2) = 0, then the Selmer group H 1

f (F, ρ
∗
f ((2− κ0)/2)) is infinite. Here ρ∗f

means the Pontryagin dual HomZp(ρ f ,Qp/Zp).

Note that (dist) is ensured by other assumptions because the two characters
giving the diagonal actions of the inertial group at p are the trivial character and
the cyclotomic character. In the special case that F = Q, Theorem 7 is essentially
proved in [44], though our result is slightly more general (in particular, we do not
need to assume that f is special or even square integrable at any finite place).

In the case when the root number is −1, Theorem 7 is a result of Zhang and
Nekovar (in fact conditions (iii) is made to apply their results). We prove it when
the root number is +1. In fact, our theorem, combined with the parity result of
Nekovar, implies that, when the order of vanishing is even and at least two, then
the rank of the Selmer group is also at least two. Also note that the method of [43]
does not seem to generalize to the totally real field case.

In order to prove Theorem 7, we need to choose a CM extension (that is a
totally imaginary quadratic extension) K of F and make use of the unitary group
U(1, 1)/F which is closely related to GL2. We embed f into a Hida family f
and use some CM character ψ to construct a family of forms on U(1, 1). Then
our proof consists of four steps. (1) From this family on U(1, 1) we construct
a p-adic family of Klingen Eisenstein series on U(2, 2), such that the constant
term is divisible by the p-adic L-function of f over K. (2) We prove that (the
Fourier expansion of) the Klingen Eisenstein family is coprime to the p-adic L-
function by a computation using doubling methods. (3) We use the results about
the constant terms in step 1 to construct a cuspidal family which is congruent
to the Klingen Eisenstein family modulo the p-adic L-function. (4) We pass to
the Galois side, using the congruence between the Galois representations for the
Klingen Eisenstein family and the cuspidal family to prove the theorem.

We record here a theorem of Fujiwara which gives sufficient conditions for Tmf

to be Gorenstein.

THEOREM 8 (Fujiwara). Let ρ̄ be the residual Galois representation associated
to f. Suppose that the following hold.
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• p > 3 and ρ̄|F(ζp) is absolutely irreducible. When p = 5 the following case
is excluded: the projective image Ḡ of ρ̄ is isomorphic to PGL2(Fp) and the
mod p cyclotomic character χ̄cycle factors through G F → Ḡab ' Z/2.

• (dist) is true.

• There is a minimal modular lifting of ρ̄.

• In the case when d := [F : Q] is odd, Ihara’s lemma is true for Shimura curves.

• For each finite place v, qv 6≡ −1(mod p) if ρ̄f|IFv
is absolutely irreducible.

Then the ring Tm f is Gorenstein.

This is [9, Theorems 11.1 and 11.2].
Many of our arguments are straightforward generalizations of [44]. However

we do all the computations in the adelic language instead of the mixture of
classical and adelic language of [44]. This simplifies the computations somewhat
since we no longer need to compare the classical and adelic pictures. The required
nonvanishing modulo-p results of some special L-values are known thanks to
the recent work of Hsieh [24] and Hung [26]. Also we use Hida’s work on the
anticyclotomic main conjecture to compare the CM periods and canonical periods
for some auxiliary CM forms. To construct the cuspidal family in step (3) we
generalize the geometric argument in [44] 6.3. (In the case when F 6= Q we
need to restrict to a certain subfamily of the whole weight space to have freeness
of the nearly ordinary forms over the (sub) weight space and surjectivity of the
restricting to the boundary map.) To adapt the argument to the totally real case our
choices for Fourier coefficients and Eisenstein series also differ from [44] slightly.

The paper is organized as follows (for convenience we keep the argument
parallel to that in [44]). In Section 2 we recall the notion of Hilbert modular forms
and record some results on Iwasawa theory for their Selmer groups. In Section 3
we recall some results about p-adic automorphic forms and Hida theory for the
group U(2, 2). Sections 4–8 (corresponding to steps (1) and (2)) are parallel to
[44, Ch. 9–13] and we do the local and global calculations to deduce the required
p-adic properties needed in Section 9. We prove our main theorems in Section 9
(corresponding to step (4)).

2. Backgrounds

2.1. More notation. We fix a CM typeΣ∞ forK which means that the disjoint
union Σ∞ ∪ Σ c

∞ is the set of all Archimedean places of K. We sometimes write
Σ∞ for the set of Archimedean places of F as well. Fix ιp : C ' Cp. For each v|p



X. Wan 8

there is a unique place w above v whose corresponding Archimedean place is in
Σ∞. The set of such places is a p-adic CM type of K. We define µp∞ as the set
of roots of unity with order powers of p. Let δK, d = dF be the differents of K
and F . Let D = DK = NmK/F(δK) (not the discriminant of K!). We write Dv for
the v component of it. Let δ̃K be the different from K to F and D̃K = NmK/F(δ̃K).
We denote N to be the level of f and M the prime to p part of it. Here N ,M,
δK, d, DK, DF are all elements in the ideles of F,K, or Q supported at the finite
primes (also the MD defined later). This is much more convenient when working
in the adelic language. For each prime v of F we write $v for a uniformizer
and qv for the cardinality of the residual field. For each v|p we suppose that
prv‖Nv (we save the notation rv for other use). Let ev be the inertial degree of
Fv/Qp. We usually adopt the convention that ξp(prp) = ∏

v|p ξv(p
rv ). Also we

write ξ c(x) := ξ(x̄) and ξ̄ (x) = ξ(x). We use the following convention: if v
is nonsplit in K/F then for an integer r we write λr = ($ r

w) where $w is the
uniformizer of a prime w of K above v. If v is split then for a pair of integers
r = (r1, r2) we write λr := ($ r1

v ,$
r2
v ). For a character say ξ we often write fξ

for the conductor of it. We assume that K/F is split at all primes dividing dF .
This assumption makes the computation of Fourier–Jacobi coefficients easier. Let
h = hF be the narrow ideal class number of F . We divide the ideal classes Cl(K)
into I1 t · · · t Ih corresponding to the image of the norm map to Cln(F) and
suppose that I1 are those mapping to the trivial class. (Here n stands for narrow.)
We assume that K is disjoint from the narrow Hilbert class field of F and thus it
is easy to see that the norm map above is surjective. Also we write 〈 f, g〉 to be the
integration of f · ḡ along U(1, 1)(F)\U(1, 1)(AF). We denote eF : AF/F → C×
the standard additive character such that eF(x∞) = exp(2π iσσ xσ ) for σ running
over all Archimedean places of F . For any OF -algebra R we define Sn(R) :=
{A ∈ Mn(R ⊗OF OK), S̄ = tS}.

For f and g Hilbert modular forms such that the product of the central
characters of f and ḡ is trivial then we denote 〈, 〉GL2 to be the inner product
on GL2 (integration over GL2(F)A×F\GL2(AF); note that we need to mod out the
center here). We also write, for example, 〈, 〉UD , 〈, 〉GL2,Γ0(N ) the inner product with
respect to the indicated level group; that is, [U(1, 1)(OF) : UD] · 〈, 〉, and so on.
We sometimes write Z ⊂ GL2 for the central subgroup.

The unitary similitude group defined in this subsection is not the one used to
construct Shimura varieties. The ones usually used to define Shimura varieties
consist of elements whose similitude factors are rational. Our groups here are
slightly larger. The reason for this definition is that they are more convenient for
constructing various Eisenstein series, since the representation theory is easier and
the Hasse principle holds. We restrict the various automorphic forms constructed
to the smaller similitude group to get what we want. Let G = Gn = GU(n, n) be
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the unitary similitude group associated to the pairing

w = wn =
(

1n

−1n

)
on K2n . We define algebraic groups G := GU(n, n) and Un = U(n, n) as follows:
for any F-algebra R, the R points are

G(R) = GU(n, n)(R) := {g ∈ GL2n(K⊗F R)|gwg∗ = µ(g)w,µ(g) ∈ R×}
(µ : GU(n, n)→ Gm is called the similitude character) and

U(n, n)(R) := {g ∈ GU(n, n)(R)|µ(g) = 1}.
We define Q = Qn to be the Siegel parabolic subgroup of G consisting of
block matrices of the form

(
A B
C D

)
such that C = 0. Let P be the Klingen

parabolic subgroup of GU(2, 2) which consists of matrices of the form
(∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

)
and MP its Levi subgroup. For g ∈ GU(1, 1), x ∈ ResK/FGm , we write m(g,

x) =
(a b

µ(g)x̄−1

c d
x

)
∈ MP .

For v a finite prime of F , as in [44, Section 8], we define the level group Kr,t ⊂
GU(2, 2)(Fv) for r, t > 0 as follows: for Q and P being the Siegel and Klingen
parabolic respectively,

Kr,t = KQ,v(λ
r ) ∩ w′2 K P(λ

t)w′2,

where KQ,v($
r
v ) means the matrices which are in Q(OF,v) modulo $ r

v and

K P,v($
t
v) means matrices which are in P(OF,v) modulo $ t

v , and w′2 =
(

1
1

1
1

)
.

We usually denote h as the Poincare upper half plane. Write η for the matrix(
1

−1

)
.

For any domain A we usually write FA for the fraction field of A.
We sometimes write ε for the cyclotomic character and ω for the Teichmuller

character.

2.2. Hermitian half space and automorphic forms. For any finite place v of
F let Kv = GU(OF,v). Let

Hn := {Z ∈ Mn(C) : −i(Z − tZ̄) > 0}.
(Note that H1 is the usual upper half plane.)
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Let Z ∈ HΣ∞
n . Write α = (

A B
C D

) ∈ G(F∞) with A, B,C, D (n × n) block
matrices. Let µα(Z) := C Z + D, κα(Z) := C̄ tZ + D̄. We define the automorphy
factor:

J (α, Z) := (µα(Z), κα(Z)).
Let G(F∞)+ = {g ∈ G(R), µ(g) � 0}, where � 0 means positive at all
Archimedean places. Then G(F∞)+ acts on HΣ∞

n by

g(Z) := (Ag Z + Bg)(Cg Z + Dg)
−1, g =

(
Ag Bg

Cg Dg

)
.

Let K+∞ = {g ∈ U(R) : g(i) = i} (we write i for the matrix i1n ∈ HΣ∞
n ) and

Z∞ be the center of G(R). Let K∞ be the group generated by K+∞ and
(1n
−1n

)
.

We define C∞ := Z∞K+∞. Then k∞ 7→ J (k∞, i) defines a homomorphism from
C∞ to GLn(C)× GLn(C).

DEFINITION 9. A weight k is a set of integers (kn+1,σ , . . . , k2n,σ ; kn,σ , . . . , k1,σ )

such that k1,σ > k2,σ > · · · > k2n,σ and kn,σ > kn+1,σ + 2n.

A weight k defines an algebraic representation of GLn(C)Σ∞ × GLn(C)Σ∞ by

ρk(g+, g−) := ρ(kn ,...,k1)(g+)⊗ ρ(−kn+1,...,−k2n)(g−),

where ρ(a1,...,an) is the dual of the usual irreducible algebraic representation of GLn

with highest weight (a1, . . . , an). Let Vk(C) be the representation of C∞ given by

k∞→ ρk ◦ J (k∞, i).

Fix K an open compact subgroup of G(A f ). We let

ShK (G) = G(F)+\HΣ∞
n × G(AF, f )/K C∞.

The automorphic sheaf ωk is the sheaf of holomorphic sections of

G(F)+\HΣ∞
n × G(AF, f )× Vk(C)/K C∞→ G(Q)+\HΣ∞

n × G(AF, f )/K C∞.

One can also define these Shimura varieties and automorphic sheaves in terms of
moduli of abelian varieties. We omit these here.

The global sections of ωk are called the space of modular forms. These are
functions

f : HΣ∞
n × G(AF, f )→ Vk(C)
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that are holomorphic in the first variable, fixed by some open compact subgroup
K of the second variable, and such that

µ(γ )(k1+···+k2n)/2ρk(J (γ, Z))−1 f (γ (Z), g) = f (Z , g)

for all γ ∈ gK g−1 ∩ G+(Q). Also, when n = 1 we require a moderate growth
condition.

REMARK 10. We will be mainly interested in the scalar-valued forms. In this
case Vk(C) is one dimensional of weight kσ = (0, . . . , 0; κ, . . . , κ) for any σ and
some integer κ > 2.

2.3. Hilbert modular forms.

2.3.1. Hilbert modular forms. We set up the basic notions of Hilbert modular
forms, following [15] with minor modifications. Let I be the set of all field
embeddings of F into Q̄. We may regard I as the set of infinite places of F via
ι∞ : Q̄ ↪→ C. The weight of a Hilbert modular form over F is a pair of elements
(κ,w) in the free module Z[I ] generated by I such that κ − 2w is parallel. We
identify F∞ = F ⊗Q R with RI and embed F into RI via the diagonal map
a 7→ (aσ )σ∈I . Then the identity component G+∞ of GL2(F∞) naturally acts on
L = hI with h the Poincare half plane. We write C+∞ for the stabilizer in G+∞ of
the center point z0 = (

√−1,
√−1, . . . ,

√−1) ∈L . Then, for each open compact
subgroup U of GL2(AF f ), we denote by Mκ,w(U ;C) the space of holomorphic
modular forms of weight (κ,w) with respect to S (see [15] for more detail),
namely Mκ,w(U ;C) is the space of smooth functions f : GL2(AF)→ C satisfying
the automorphic condition

f (αxu) = f (x) jκ,w(u∞, z0)
−1 for α ∈ GL2(F) and u ∈ UC+∞,

where jκ,w
((

a b
c d

)
, z
) = (ad − bc)−w(cz + d)κ for

(
a b
c d

) ∈ GL2(F∞) and z ∈ L
and such that for any g f ∈ GL2(A f ) the associated classical form defined by
fcl(z, g f ) := f (g) · jκ,w(g∞, z0) for g = (g0, g∞) such that g∞ · z0 = z is
holomorphic on the symmetric domain and at all cusps. We write Sκ,w(U ;C)
for the subspace of Mκ,w(U ;C) consisting of cusp forms. Here we have used the
convention that cs = ∏

σ∈I csσ
σ for c = (cσ )σ∈I ∈ CI and s = ∑

sσσ ∈ C[I ].
Setting t =∑σ σ , we sometimes use another pair (n, v) to denote the weight, for
n = κ − 2t and v = t −w. Each automorphic representation π spanned by forms
in Sκ,w(U ;C) has central character | · |−m

A up to a finite-order character. The twist
π u = π ⊗ | · |m/2A is called the unitarization of π .
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Let h be the narrow class number of F , and decompose

A×F =
h⊔

i=1

F×ai(ÔF)
×F×∞+ with ai ∈ A×F, f ,

where F×∞+ is the set of totally positive elements. Then by strong approximation

G(AF) =
h⋃

i=1

GL2(F)tiU0(N )G∞+ for ti =
(

a−1
i 0
0 1

)
,

where for any ideal N of OF let U0(N ) (U1(N )) be the open compact subgroup
of GL2(ÔF) whose image modulo N is inside B(ÔF) (N (ÔF)). Let T be the
diagonal torus of GL2 and ε be a neben character of T (Ô×F ) whose conductor
contains (N ). Let Mκ,w(U0(N ), ε;C) be the space of Hilbert modular forms of
weight (κ,w) with level group U0(N ) and nebentypus ε. Any automorphic form
in the space Mκ,w(U0(N ), ε;C) is determined by its restriction to the connected
components of the ti in GL2(F)\GL2(AF)/U0(N )G∞+. So we identify the above
space with the space of h-tuples: { fi}, where the fi are forms in Mκ,w(Γi\hΣ∞,
C) for Γi := tiU0(N )t−1

i ∩ GL2(F) with fi(g∞) := f (g∞ti). Each fi has a q-
expansion:

fi(z) = a(0, fi)+
∑

0�ξ∈F×
a(ξ, fi)eF(ξ z).

More generally we have the q-expansions for Hilbert modular forms at
y ∈ GL2(AF, f ). More precisely, each f ∈ Mκ,w(U ;C) has a Fourier expansion at
y of the following type:

f
((

y∞ x∞
1

)
y
)
= yw∞ ·

a0(y, f )+
∑

0�ξ∈F×
a(yξ, f )qξ

 (2.1)

with qξ = eF(2π iξ∞(x∞ + iy∞)) = e(2π i
∑

σ |∞ ξσ (xσ + iyσ )). For any t ∈ A×F
we define a(t, ξ, f ) to be a(diag(t, 1), ξ, f ).

2.3.2. Hida families. First of all let us define the weight space for Hilbert
modular Hida families. We fix an even number κ0 > 2 throughout the paper. For A
the integer ring of some finite extension of Qp, let Λ′W,A = Λ′W be the A-algebra
parameterizing continuous characters of T (1+ pOF,p) (T is the diagonal torus of
GL2). This is a power series ring of 2d variables. A point φ ∈ Spec(Λ′W ) is called
arithmetic if, for any a, b ∈ 1 + OF,p, φ ((a 1)) is a p-power root of unity and
φ
((

1
b

)) 7→ NmFv/Qp(b)
κφ−κ0 times a p-power root of unity, where κφ > 2 is some
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integer. (This means we only consider Hilbert modular forms of parallel weight,
which is already enough for constructing the whole Hida family by moving the
nebentypus only.)

Let Z ⊂ GL2 be the center. Define ΛW = ΛW,A such that SpecΛW is the
closed subspace of SpecΛ′W defined as the Zariski closure of the arithmetic points
such that φ|Z(1+OF,p) factors through NmOF,p/Zp . It is naturally a power series
ring with d + 1 variables. We only consider this weight space for simplicity.
In fact, if the Leopoldt conjecture is true, then this is the whole weight space
for Hida families of Hilbert modular forms. We define the parallel weight space
Λ

para
W whose spectrum is the Zariski closure in SpecΛW of points such that the

composition of 1 + pOF,p → T (1 + OF,p), x 7→ (x
1) with φ factors through

NmOF,p/Zp . This parameterizes forms with parallel weight and trivial character.
Now we define the nebentypus associated to φ: the φ determines a character of

T (1 + pOF,p). We extend these to be characters on O×v by requiring them to be
trivial on the torsion part of O×F,p. Define

εφ,v

((
a

b

))
= φ(diag(a, b))ωκφ−κ0(b)

for a, b ∈ O×F,p (recall that ω is the Teichmuller character). It is well known
that in the Hilbert modular form case there is a nearly ordinary idempotent
e = limn→∞(

∏
v|p Uv)

n! defined by Hida, where Uv is the usually ‘Up’ operator
associated to

(p
1

)
at v.

DEFINITION 11. A Hilbert modular form f is called nearly ordinary if e f = f .
We define Mord

κ,w(U ;C) and Sord
κ,w(U ;C) to be the space of nearly ordinary modular

forms and the space of cusp forms with level group U .

REMARK 12. We say that f is of nebentypus εφ if

f (gt) = f (g)εφ(t)

for t ∈ T (OF,p). Suppose that f is a nearly ordinary unitary eigenform of weight
(κφ, κφ/2) and nebentypus εφ . Then we can assume that for each v|p the v-
component of the automorphic representation π f of f is π(µ1,v, µ2,v), where
valpµ1,v(p) = −(κφ − 1)/2, valpµ2,v(p) = (κφ − 1)/2 and µ1,v, µ2,v have the
same restriction to O×F,v as ε′1,φ,v and ε′2,φ,vω

κφ−2, respectively.

Let I be a finite integral extension of eitherΛW orΛpara
W which is a local normal

domain.
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DEFINITION 13. Let M be an ideal of F prime to p. An I-adic nearly ordinary
cusp form f of level U0(M) or U1(M) and nebentypus ε is a set of elements of I:

{ci(ξ, I) ∈ I for ξ ∈ F×, ci(0, I) ∈ I for i = 1, . . . , h}
with the property that for a Zariski dense set of primes φ ∈ SpecI which
map to arithmetic points in Spec(ΛW ), the specializations φ(ci(ξ, I)) are the q-
expansions a0(ti , fφ) or a(tiξ, fφ) (see (2.1)) of nearly ordinary cusp forms fφ of
weight (κφ, κφ/2), prime to p level M and nebentypus εφ at primes dividing p.

We discuss the analog of the ‘normalized’ cuspidal eigenform on GL2(AQ). In
the Q case we take the form with a1 = 1 to be normalized. In the totally real case
we require the normalized cuspidal eigenform f to have a(d−1, f ) = 1.

2.3.3. Galois representations of Hilbert modular forms. Let A be a finite
extension of Qp. One can also define the space of Hilbert modular forms
Mκ,w(U0(N ), ε, A) and the corresponding cuspidal spaces Sκ,w(U0(N ), ε, A). Let

f ∈ Sκ,w(U0(N ), ε, A)

with coefficient ring A, κ > 2, nebentypus ε. Recall that we fix L ⊂ Q̄p to be a
finite extension of Qp containing all the Fourier coefficients of f . For OL be the
integer ring of L and F its residue field. Then we have a continuous semisimple
two-dimensional Galois representation [46] (ρ f , V f ): ρ f : GQ → GL2(V f ),
characterized by being unramified at primes v - p where πv is unramified and
satisfying

trρ f (Frobv) = a(v, f ),

where a(v, f ) is the Hecke eigenvalue of f under the Hecke operator Tv (recall
that this is associated to

(
$v

1

)
, where$v is a uniformizer at v). Furthermore, if f

is nearly ordinary at all primes dividing p, then we have the following description
of ρ f restricted to the decomposition groups for all primes v dividing p:

ρ f |G Fv
'
(
σµ1,v ∗

σµ2,v

)
.

Here σ is the local reciprocity map via local class field theory (we use the
geometric Frobenius normalization) and πv ' π(µ1,v, µ2,v), where µ1,v(p) has
smaller p-valuation than µ2,v(p).

Therefore for each v|p we have a one-dimensional subspace V+f,v ⊂ V f such
that the action of Gv on V+f,v is given by the character σµ1,v and Gv acts on the
quotient V−f,v := V f,v/V+f,v by σµ2,v .
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Assume that ρ f is residually irreducible. We choose a Galois stable OL lattice
T f of V f which is unique after scaling. Let T+f = V+f ∩ T f and T−f = T f /T+f .

Similarly, let f be a Hida family of eigenforms with coefficient ring I. Suppose
that the residual Galois representation ρ̄ fφ for some member fφ of this family is
irreducible ((irred) is defined in the introduction). Then it is well known that we
have a Galois representation

ρf : G F → GL2(I),

and we denote the representation space (a free rank-two module over I) by Tf and
we have similarly T+f and T−f . This Galois representation is characterized by

Trρf(σl) = Tl(f)

for every geometric Frobenius σl at l - pN (Tl(f) is the Hecke eigenvalue of Tl

acting on f). In fact one can construct a pseudorepresentation by patching the
Galois representation for each arithmetic specializations of f and then produce an
actual Galois representation for f under assumption (irred).

2.4. Selmer groups. We recall the notion of Σ-imprimitive Selmer groups,
emphasizing the case of Hilbert modular case, following [44, 3.1] with some
modifications. Let F be a totally real number field as before. Let T be a free
module of finite rank over a profinite Zp-algebra A, and assume that T is equipped
with a continuous action of G F . Denote by A∗ the Pontryagin dual of A. Assume
furthermore that for each place v|p of F we are given a Gv-stable rank-one
free A-direct summand Tv ⊂ T . For any finite set of primes Σ we denote by
SelΣF (T, (Tv)v|p) the kernel of the restriction map:

H 1(F, T ⊗A A∗)→
∏

v 6∈Σ,v-p

H 1(Iv, T ⊗A A∗)×
∏
v|p

H 1(Iv, T/Tv ⊗A A∗).

We now assume that Σ contains all primes at which T is ramified. We put

XΣ
F (T, (Tv)v|p) := HomA(SelΣF (T, (Tv)v|p), A∗).

If E/F is a finite extension, we put SelΣE (T ) := SelΣE
E (T, (Tw)w|p) and XΣ

E (T ) :=
XΣE

E (T, (Tw)w|p), whereΣE is the set of places of E over those inΣ , and ifw|v|p
then Tw = gwTv for gw ∈ G F such that g−1

w G E,wgw ⊆ G F,v. If E/F is infinite we
set SelΣE (T ) = lim−→E⊆F ′⊆E

SelΣF ′(T ) and XΣ
E (T ) = lim←−F⊆F ′⊆E

XΣ
F ′(T ), where F ′

runs over the finite extensions of F contained in E .
There is an action of complex conjugation c on the Selmer groups of K. We

have the following lemma as in [44, Lemma 3.1]. (Recall that we have assumed
that p 6= 2.)
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LEMMA 14. There is a decomposition

SelΣK(T ) = SelΣK(T )
+ ⊕ SelΣK(T )

−,

according to the ±1 eigenspaces of the action by c. Also, restriction induces
isomorphisms

SelΣF (T )→ SelΣK
K (T )+ SelΣF (T ⊗χK)→ SelΣK

K (T )−.

2.5. Iwasawa theory of Selmer groups.

2.5.1. Control of Selmer groups. Before formulating the main conjecture we
first define the characteristic ideals and the Fitting ideals. We let A be a Noetherian
ring. We write FittA(X) for the Fitting ideal in A of a finitely generated A-module
X . This is the ideal generated by the determinant of the r×r minors of the matrix
giving the first arrow in a given presentation of X :

As → Ar → X → 0.

If X is not a torsion A-module then Fitt(X) = 0.
Fitting ideals behave well with respect to base change. For I ⊂ A an ideal, then

FittA/I (X/I X) = FittA(X) mod I.

Now suppose that A is a Krull domain (a domain which is Noetherian and
normal). Then the characteristic ideal is defined by

charA(X) := {x ∈ A : ordQ(x)> lengthQ(X) for any Q a height-one prime of A}.
Again if X is not torsion then we define charA(X) = 0.

We recall some results in [44, 3.2] with minor modifications to the totally real
situation. These will be used in proving the main theorem in the last section. In
this (and only in this) subsubsection we let A be any profinite Zp algebra and a be
an ideal of A. Let T be a free A-module equipped with a continuous G F -action
and let T ∗ := T ⊗A A∗. Let a ⊂ A be an ideal. It is noted in [44, 3.2.5] that there
is a canonical map

SelΣF (T/aT )→ SelΣF (T )[a].
Here [a] on the right-hand side means the a-torsion part.

PROPOSITION 15. Suppose that there is no nontrivial A-subquotient of T ∗ on
which GK+∞ acts trivially. Suppose also that for any prime p|p of F the action of
Ip on T/Tp factors through the image of Ip in ΓF and that Σ ∪ {p} contains all
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primes at which T is ramified. Let F̃ = F∞,K+∞. Then the above map induces
isomorphisms

SelΣF̃ (T/aT ) ' SelΣF̃ (T )[a]
and

XΣ

F̃ (T ) ' XΣ

F̃ (T )/aXΣ

F̃ (T ).

Proof. The proof is the same as that of [44, Proposition 3.7].

Descent from K∞ to K+∞. We have the following immediate corollaries of the
above proposition (see [44, Corollary 3.8, Proposition 3.9]).

COROLLARY 16. We assume that the hypotheses of the above proposition hold.
If F̃ is F∞ or K+∞ then

FittΣF̃,A/a(T/aT ) = FittΣF̃,A(T ) mod a.

COROLLARY 17. Let I− be the kernel of the natural map ΛK → Λ+K. Then,
under the hypotheses of the above proposition, we have an isomorphism

XΣ
K∞(T )/I−XΣ

K∞(T )
∼−→ XΣ

K+∞
(T )

of Λ+K,A-modules.

From K+∞ and F∞ to K and F. Let (T, Tv(v|p)) be as above. Let φ be a algebra
homomorphism ΛF → Cp and Iφ be its kernel.

PROPOSITION 18. Let (T ′, T ′v |v|p) be (T, Tv|v|p) twisted by φ ◦ εF . Suppose that
there is no nontrivial A-subquotient of T ′∗ on which G F acts trivially. Assume
that the following hold.

(i) Σ ∪ {primes above p} contains all primes at which T is ramified.

(ii) For any v|p, (H 0(Iv, T/Tv ⊗A Λ
∗
F,A(ε

−1
F ))⊗ΛF ΛF/Iφ)Gv = 0.

Then restriction yields isomorphisms

SelΣF (T
′)→ SelΣF∞(T )[Iφ] and SelΣK(T

′)→ SelΣK+∞(T )[Iφ].

Here we have identified Λ+K with ΛF .

This is only a slight generalization of [44, Proposition 3.10], and the proofs are
identical.
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2.5.2. Main conjecture. Let T := (Tf⊗I I[[ΓK]]((ε−c
K )⊗ ε)) and T +v := (T+f ⊗I

I[[ΓK]]((ε−c
K )⊗ ε)) for each v|p. Let

charΣK,f ⊂ I[[ΓK]]
be the characteristic ideal of the dual Selmer group XΣ

K(T ,T +v |v|p). Let LΣ
f,K

be the Σ-imprimitive p-adic L-function we construct in Theorem 82 with the
character ξ = 1 there.

CONJECTURE 19. The Iwasawa main conjecture states that

charΣf,K = (LΣ
f,K).

(We have only focused on the special case when the character is trivial in the
main conjecture in the introduction.)

3. Hida theory for unitary Hilbert modular forms

3.1. Iwasawa algebras. Recall that A is the integer ring of a finite extension
of Qp and I a finite extension of ΛW which is a normal domain. We let IK :=
I[[ΓK]] and ΛD := I[[Γ −K × ΓK]] = IK[[Γ −K ]]. Here we used the notation D,
which stands for the Eisenstein datum to be defined in the beginning of Section 7.
Let W be the element in ΛW,A defined as follows. For any arithmetic point φ, the
corresponding character of T (1+OF,p) restricting to Z(1+OF,p) factors through
Nm : 1 + OF,p → 1 + pZp; that is, φ′ ◦ Nm = φ for some φ′. We require that
φ(1+W ) = φ′(1+ p) for all such points φ. (It is easily seen that there is such a
W in ΛW,A.) Let

α: A[[ΓK]] → I−K, α(γ +) = (1+W )1/2(1+ p), γ −v → γ −v
β: Zp[[ΓK]] → Zp[[ΓK]], β(γ +) = γ +, β(γ −v ) = γ −v

for each v. We also let Λ := ΛW [[Γ −K × ΓK]]. Thus ΛD is finite over Λ.

DEFINITION 20. A Q̄p point φ ∈ SpecΛD is called arithmetic if φ|I is arithmetic
with some weight κφ , and φ(γ +) = ζ+ for ζ+ ∈ µp∞ , φ(γ −v,i) = ζ−v,i for ζ−v ∈ µp∞ ,
φ(γ

′,−
v,i ) = (x ′,−v,i )κφ/2ζ ′,−v,i with (x ′,−v,i , 1/x ′,−v,i ) = rec−1

K (γ
′,−
v,i ) and ζ ′,−v,i ∈ µp∞ . We use

the convention that γ ′,−v,i are elements in the first Γ −K and γ −v,i are elements in the
ΓK.

We write X a
D for the set of arithmetic points. Next let W2 := (1 + OF,p)

4 and
Λ2 be the completed group algebra of W2 with coefficient ring A. We give a
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Λ2-algebra structure for ΛD by

(t1, t2, t3, t4)→ (α⊗β)(recKp(t3t4, t−1
1 t−1

2 )× recKp(t
−1
4 , t2)) ·

(
t1t−1

3
1

)
.

In the last term we regard the matrix as an element of ΛW,A. Here rec means the
reciprocity map in class field theory. From this Λ ⊂ ΛD is also a Λ2-algebra and
is in fact a quotient of Λ2.

REMARK 21. When F = Q, then Λ2 = Λ. In general, Λ is of lower dimension.
In other words we are only considering a subfamily of the whole weight space.
This is the weight space on which our Klingen Eisenstein family sits. Only on this
weight space we can prove required control results and freeness of the family of
nearly ordinary forms (not necessarily cuspidal).

3.2. Igusa tower and p-adic automorphic forms. For any v|p, U(2, 2) '
GL4(Zp) under the projection to the first factor of Kv = Fv × Fv. (Recall that our
convention is that the first factor corresponds to the Archimedean place inside the

CM type under ι : C ' Cp.) Define B to be the standard Borel
(× × × ×

× × ×
×
× ×

)
and N

to be the unipotent radical of B. Let I0,s (I1,s) consist of elements in U(n, n)(Zp)

which are in B(Zp/psZp) (N (Zp/ps)) modulo ps (see [44, 5.3.6]).
We refer to the definition of Shimura varieties S(K ) (over O(p), the localization

at p of the integer ring of the reflex field) for the unitary similitude group and
open compact K ⊂ G(AF, f ) such that the components of K are GL4(Zp) at all
primes above p and the automorphic sheaves ωk and the universal differential
sheaf ω to [29], [16] and [23], respectively. Let S(K )∗ and S(K ) be the minimal
and a fixed toroidal compactification of S(K ), again over O(p). For 0 6 q 6 n
as in [44, Section 5], one defines the genus q cusps, and we let Iq

S∗(K ) be the
ideal sheaf of S∗(K ) of the boundary of genus less than n − q . Let Iq

S(K ) be
the corresponding pullback sheaf on S(K ). Recall that a weight is k = {kσ }σ∈Σ
where kσ = (ks+1,σ , . . . , kr+s,σ ; k1,σ , . . . , ks,σ ). We write Mk(K , R) for the space
of automorphic forms with weight k, level K , and coefficient R. We write
M0

k (K , R) for the cuspidal part.
Let L be a finite extension of Qp. Let IS be the ideal of the boundary of S .

There is a subsection Hass of det(ω)⊗ (p−1)⊗ F̄p, called the Hasse invariant. Since
det(ω) is ample on the minimal compactification S∗, one finds E , a lifting of
Hassm over OL for sufficiently large m. Then S∗[1/E] is affine. For any positive
integer m, set Sm := S[1/E] × OL/pm . Let H = GL2 × GL2. For any integers
s > m, we have the Igusa variety Is,m (see [44, Section 6]) which is an etale Galois
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covering of Sm with Galois group canonically isomorphic to

∏
v|p

GL2(OF,v/ps)+ × GL2(OF,v/ps)− = H

(∏
v|p

OF,v/ps

)
.

We put V q
s,m := Γ (Is,m,OIs,m ⊗OS Iq

S). For j = 0, 1, let I H
j,s := I j,s ∩

H(
∏

v|p Ov/ps), and define

W q
s,m := H 0(I H

1,s, V q
s,m)

and
Wq := lim−→

m

(lim−→
s

W q
s,m).

As in [23, Section 2], we define the p-adic cusps to be the set of ([g], h) with [g]
a cusp (of any genus) and h ∈ H(OF,p). These can be thought of as cusps on the
Igusa varieties. For q = 0 or 1 we also define the space of p-adic automorphic
forms on G of weight k and level K = K 0

p K p with p divisible coefficients:

V q
k (K , L/OL) := lim−→

m

Γ (Sm, ωk ⊗OS IS).

Similarly, if A is an OL-algebra the space of p-adic automorphic forms with
coefficients in A are defined as the inverse limits:

Vk(K , A) := lim←−
m

Γ (Sm, (ωk ⊗OS IS)⊗OL A).

Finally, for any a = {av}v|p where each av ∈ (F×p )4 we define the modules
V q

a,k(K , L/OL), and so on, to be the corresponding component such that the
torsion part of p-nebentypus is given by a, in the same way as [44, 6.2].

3.3. Nearly ordinary automorphic forms. Hida defined an idempotent eord

on the space of p-adic automorphic forms (see [16, Section 8.1] for compact
unitary Shimura varieties). For more general unitary Shimura varieties, eord can
be constructed following the same ideas of Hida (see [23, 3.8.3, 4.3] for details;
note that the construction of e = eUp in [23, 4.3] includes our case). Let t k and ψk

be similar to those in [44, Section 6.1]. We recall the following important theorem
of Hida.

LEMMA 22. For any weight k, we have canonical isomorphisms

V q
k,ord(K ,Qp/Zp) 'Wq

ord[k] := {w ∈Wq : t · w = t kw ∀t ∈ TH (Zp)}
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and

V q
k,ord(K

p Is, ψ,Qp/Zp) ' (Wq ⊗Z A)[ψk]
:= {w ∈Wq ⊗Z A : t · w = ψk(t)w ∀t ∈ TH (Zp)}

for any Zp(ψ)-algebra A.

Proof. The proof is the same as that of [44, Lemma 6.5].

PROPOSITION 23. We have, for any sufficiently regular weight k > 0 such that
k2 − k3 is parallel, the canonical base-change morphism

eord · Γ (S∗[1/E], π∗(ωk ⊗OS π
∗Iq)⊗Z/pmZ)

→ eord · Γ (S∗[1/E], π∗(ωk ⊗OS π
∗Iq ⊗Z/pmZ))

is an isomorphism.

Proof. The proof is a generalization of that of [44, Proposition 6.6]. As in [44]
we define Γ[g] := GLK(Ws)∩ gK g−1, and Γ[g](h) ⊂ Γ[g] the stabilizer of h (recall
that the action of γ is given by γ · h = tγ hγ ). Also write Bh for the Borel
subgroup of H that stabilizes the kernel of h (regarded as a Hermitian form)
and Nh for its unipotent radical. Let R̃g,k/A = ∏

h H 0(Γ[g](h), ρk(A)). Define
R̄g,k/A =

∏
h ρ

Nh
k (A). We have ρΓ[g](h)k ⊆ ρBh

k . We want to prove an analog of [44,
Lemma 6.8]. If p is nilpotent in A, then we can take representatives of h modulo
the action of Γ[g] such that either (a) Nh = NH or (b) Nh = N−H , and in case

(a) a(h, f |eord) = 0 (see [44]) and in case (b) a(h, f |eord) ⊆ ρN−H
k (A) = ρNh

k (A).
Since K is neat, Γ[g](h)/Γ[g](h) ∩ Nh(K) is embedded into the unit group O×F .

Since k2 − k3 is parallel, Γ[g](h)/Γ[g](h) ∩ Nh(K) acts trivially on ρN−H (A)
k . So we

have (see [44, Lemma 6.8])

eord R̃[g],k/A = eord R̄g,k/A.

The proposition follows from this in the same way as [44, Proposition 6.6] (using
again the fact that k2 − k3 is parallel).

The following corollary is immediate from the above proposition (see [44,
Corollary 6.7]).

COROLLARY 24. For any sufficiently regular weight k such that k2−k3 is parallel
the module V q

k,ord(K ,Qp/Zp) is divisible.
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3.4. Λ-adic ordinary automorphic forms. Recall that we have defined the
Iwasawa algebra Λ2. There is an action of it on the space of p-adic automorphic
forms (see [44, Section 6]). As in [44] we have the following theorem by the
above corollary.

THEOREM 25. For q = 1 or 0, write Vq
ord = Homcont(eordW,Qp/Zp) ⊗Λ2 Λ.

Then Vq
ord is free of finite rank over Λ.

Proof. The proof is similar to that of [44, Theorem 6.11], using Corollary 24 and
the following theorem, Theorem 26.

We define the space of Λ-adic forms to be

Mq
ord(K

p,Λ) = HomΛ(Vq
ord ⊗Λ2 Λ,Λ).

For any finite Λ algebra A we also define the space of A-adic forms to be

Mq
ord(K

p, A) =Mq
ord(K

p,Λ)⊗Λ A.

Classicality of ordinary forms.

THEOREM 26. Let t = (tσ )σ be such that tσ = (0, 0; 1, 1) for any σ . Assume that
q = 0 or 1. Let k be a sufficiently regular such that k2 − k3 is parallel. There is a
constant C(k) > 0 such that

eord Mk+`(p−1)t(K ,Qp/Zp) ↪→ V q
k+`(p−1)t,ord(K ,Qp/Zp)

is an isomorphism for all ` > C(k).

Proof. The proof is similar to that of [44, Theorem 6.10] and uses Corollary 24.
See also [23, Theorem 4.19]. The ‘parallel’ weight condition is important.

From this theorem we know that there are enough classical forms in our family
and thus we can construct families of (pseudo)Galois representations from the
classical ones.

Fundamental exact sequence. Consider the embedding T1 ↪→ T2 given by (t1,

t2)→ (t1, 1, t2, 1). This givesΛ2 aΛ1 = OL[[T1(1+Zp)]]-algebra structure. The
following theorem is a generalization of [44, Theorem 6.15] and follows from the
above corollary by noting that SpecΛ is the Zariski closure of the weights such
that k2 − k3 is parallel.
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THEOREM 27. For any Λ-algebra A there is a short exact sequence

0→M0
ord(K

p, A)→M1
ord(K

p, A)→⊕[g]∈Cn−1(K )M0
ord(K

p
n−1,g,Λ1)⊗Λ1 A→ 0

where the next to last arrow is the Siegel operator (that is, the projection to
boundary operator).

To see that the image of ordinary forms on U(2, 2) under Siegel operator are
ordinary forms on U(1, 1), we may use the argument of [23, Lemma 4.14]. We
consider forms whose level groups at p are K0(p) and allow the weights to vary.
By the contraction property of the eord operator ([23, Proposition 4.4]) we can
thus get a Zariski dense set of arithmetic points. For each cusp [g], by Bruhat
decomposition we just need to consider the p-adic cusps ([g], w) for w a Weyl
element of H(OF,p) '

∏
v|p GL2(Zp)×GL2(Zp). The argument in [23] applying

[47, Lemma 4.2] implies that for any nearly ordinary form F its boundary at ([g],
w) can be nonzero only when w = id, and that the eord on U(2, 2) induce the
eord on U(1, 1) at this p-adic cusp. See also [47] for a similar fact for the group
Gsp(4).

3.5. q-expansions. The q-expansion principle will be crucial for our later
argument. Similar to [44], for x running through a (finite) set of representatives
of G(F)\G(AF, f )/K with x p ∈ Q(OF,p), we have that the Λ2-adic q-expansion
map

Mq
ord(K

p,Λ) ↪→⊕xΛ[[q S+x ]]
is injective. Here S+x is the set of Hermitian matrices h in M2(K) such that
TrF/QTrhh′ ∈ Z for all Hermitian matrices h′ such that

(
1 h′

1

) ∈ NQ(F) ∩ x K x−1

and K is the open compact of G(ÔF)maximal at primes dividing p. This follows
from the irreducibility of the Igusa tower for the group SU(n, n) ⊂ U(n, n)
(defined as the kernel of det) proved by Hida in [20]. For more details see [44,
Theorem 6.3] and the discussion at the end of Section 6.2 there. Let A be a torsion-
free Λ algebra finite over Λ, and let X be a Zariski dense subset of primes Q of
A such that Q ∩ Λ = Pψk for some pair (k, ψ) (for the definitions, refer to [44,
Section 6]). Let N q

X ,ord(A) be the set of elements (Fx)x ∈ ⊕x A[[q S+x ]] such that
for each Q ∈ X above Pψk the reduction of (Fx)x is the q-expansion of some
element f ∈ V q

k,ord(K
p Is, ψ, A/Q). Then we have the following.

LEMMA 28. The inclusion

Mq
ord(K

p, A) ↪→ N q
X ,ord(A)

is an equality.
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Proof. See [44, Lemma 6.13].

We will use this lemma to see that the family constructed later by formal q-
expansions comes from some Λ-adic form defined here (after Theorem 25).

4. Klingen Eisenstein series

Now we recall the notion of Klingen Eisenstein series in the totally real case.
The p-adic constructions are just special cases of [50] (this is slightly more
general than in [44] since we allow nearly ordinary forms instead of only ordinary
forms). For the `-adic construction we just follow [44].

4.1. Induced representations.

4.1.1. Archimedean picture. Let (π, H) be a unitary Hilbert representation of
GL2(R) and H∞ be the smooth vectors. Let χ be the central character of π , and
let ψ and τ be unitary characters of C× such that ψ |R× = χ . As in [44], we can
use π and ψ to define a representation of GU(1, 1) which we denote as πψ . Now
we define a representation ρ of P(R) in H : for p = mn, n ∈ NP(R),m = m(bx,
a) ∈ MP(R) with a, b ∈ C×, x ∈ GL2(R), we define

ρ(p)v := τ(a)ψ(b)π(x)v, v ∈ H.

We define a representation by smooth induction I (H∞) := IndGU(2,2)(R)
P(R) ρ, and

denote I (ρ) as the space of K∞-finite vectors in I (H∞). We also define for each
z ∈ C a function

fz(g) := δ(m)3/2+zρ(m) f (k), g = mk ∈ P(R)K∞,

where δ is such that δ3 = δP for δP the modulus character of P , and an action of
GU(2, 2)(R) on it by

(σ (ρ, z)(g) f )(k) := fz(kg).

Denote η = (
1

−1

)
. Let (π∨, V ) be H but with the action given by π∨(x) =

π(η−1xη) for x in GL2(R). Denote ρ∨, I (ρ∨), I∨(H∞), and σ(ρ∨, z), I (ρ∨))
the representations and spaces defined as above but with π,ψ, τ replaced by
π∨⊗ (τ ◦det), ψττ c, τ̄ c. Also, recall that, for any z ∈ C, f ∈ I (H∞), and k ∈ K∞
we have defined the intertwining operator

A(ρ, z, f )(k) :=
∫

NP (R)
fz(wnk) dn.
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Then A(ρ, z,−) ∈ HomC(I (H∞), I∨(H∞)) intertwines the actions of σ(ρ, z)
and σ(ρ∨,−z).

We let K ′∞ = O(2) ⊂ GL2 and K ′∞,+ = SO2. Suppose that π∞ is the
holomorphic discrete series representation associated to the weight κ > 6. Then
it is well known that there is a unique (up to scalar) vector v ∈ π such that
k · v = detµ(k, i)−κ (here µ means the second component of the automorphic
factor J instead of the similitude character) for any k ∈ K ′∞. Then, as in
[44, 9.2.1], by the Frobenius reciprocity law there is a unique (up to scalar) vector
ṽ ∈ I (ρ) such that k · ṽ = detµ(k, i)−κ ṽ for any k ∈ K+∞. We fix v and scale ṽ
such that ṽ(1) = v. In π∨, π(w)v (w is defined in Section 3.1) has the action of
K+∞ given by multiplying by detµ(k, i)−κ . There is a unique vector ṽ∨ ∈ I (ρ∨)
such that the action of K+∞ is given by detµ(k, i)−κ and ṽ∨(w) = π(w)v. Then
by uniqueness there is a constant c(ρ, z) such that A(ρ, z, ṽ) = c(ρ, z)ṽ∨.

DEFINITION 29. We define Fκ ∈ I (ρ) to be the ṽ as above.

4.1.2. Non-Archimedean picture. Let v be a prime of F and (π, V ) an
irreducible admissible representation of GL2(Fv) which is unitary and tempered,
with central character χ . Let ψ and τ be unitary characters of K×v such that
ψ |F×v = χ . We extend π to a representation ρ of P(Fv) on V as follows. For
p = mn, n ∈ NP(Fv), m = m(bx, a) ∈ MP(Fv), a, b ∈ K×v , x ∈ GL2(Fv), put

ρ(g)v := τ(a)ψ(b)π(s)v v ∈ V .

Let I (ρ) be the representation defined by admissible induction: I (ρ) =
IndGU(2,2)(Fv)

P(Fv) ρ. As in the Archimedean case, for each f ∈ I (ρ) and each
z ∈ C we define a function fz on GU(Fv) by

fz(g) := δ(m)3/2+zρ(m) f (k), g = mk ∈ P(Fv)Kv

and a representation σ(ρ, z) of GU(2, 2)(Fv) on I (ρ) by

(σ (ρ, z)(g) f )(k) := fz(kg).

Let (π∨, V ) be V but the action given by π∨(g) = π(η−1gη). This
representation is also tempered and unitary. We denote by ρ∨, I (ρ∨), and
(σ (ρ∨, z), I (ρ∨)) the representations and spaces defined by replacing π,ψ and
τ by π∨⊗ (τ ◦ det), ψττ c, and τ̄ c, respectively.

Also we define for f ∈ I (ρ), k ∈ Kv, and z ∈ C the intertwining operator

A(ρ, z, v)(k) :=
∫

NP (Fv)
fz(wnk) dn.
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As a consequence of our hypotheses on π this integral converges absolutely and
uniformly for z and k in compact subsets of {z : Re(z) > 3

2 } × Kv. As in [44,
9.1.3], this has a meromorphic continuation (in the sense defined there) to C, and
the poles can only occur when Re(z) = 0,± 1

2 . In the case when everything is
unramified we define a spherical vector F sph

w for the unique vector invariant under
GU(OF) and Fρ,w(id) = ϕur for ϕur ∈ πw the unramified vector.

4.1.3. p-adic picture. Now assume that v|p. We need to study the relations
between the GL2 picture and the computations in [50] for U(1, 1). Suppose that
πv ' π(µ1, µ2) where valp(µ1(p)) = −(κ − 1)/2 and valp(µ2(p)) = (κ − 1)/2.
Later we may write µ1,v and µ2,v to indicate the dependence on v. Let ψ, τ, I (ρ),
I (ρ∨), and A(ρ, z, v) be as before. From now on we write ξ = ψ/τ and ξ = (ξ1,

ξ2) with respect to Kv ≡ Fv × Fv, and similarly for τ1, τ2, ψ1, ψ2. Note that our
ξ here is different from that in [50]. In fact the ξ1, ξ2, χ1, χ2 there are µ1ξ̄2, µ1ξ̄1,

µ1ψ
−1
2 , µ2ψ

−1
2 . Note that ψ1ψ2 = µ1µ2.

Generic case. The generic case mentioned in [50] corresponds to cond(χ1) >

cond(τ2) > cond(χ2) > cond(τ1) (note that the τ in ρ∨ is τ̄ c). We assume that

cond(µ2) = cond(ψ2) > cond(τ2) > cond(ψ1) > cond(τ1) > cond(µ1) > 0.

Then the datum is generic in the sense of [50]. We write pn1,v , pn2,v , pn3,v , pn4,v for
the first four terms above.

4.1.4. Global picture. Let (π, V ) be a cuspidal automorphic representation of
GL2(AF), and let τ, ψ : A×K→ C× be Hecke characters such that ψ |A×F = χπ . We
let τ = ⊗ τw and ψ = ⊗ψw be their local decompositions, for w running over
places of F . We define I (ρ) to be the restricted product ⊗I (ρw) with respect to
the Fρ,w at those w at which τw, ψw, πw are unramified.

For each z ∈ C and f ∈ I (ρ) we define a function fz on G(AF) as

fz(g) := ⊗ fw,z(gw)

where fw,z are defined as before. Also we define an action σ(ρ, z) of (gu, K∞)
⊗G(A f ) on I (ρ) by σ(ρ, z) := ⊗ σ(ρw, z). Similarly we define ρ∨, I (ρ∨), and
σ(ρ∨, z) but with ρ replaced by ρ∨.

4.1.5. Klingen-type Eisenstein series on G. Let π,ψ , and τ be as above. For
f ∈ I (ρ), z ∈ C, and g ∈ GU(2, 2)(AF), the series

E( f, z, g) :=
∑

γ∈P(F)\G(F)
fz(γ g)
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is known to converge absolutely and uniformly for (z, g) in compact subsets of

{z ∈ C : Re(z) > 3
2 } × GU(2, 2)(AF).

We call this series the Klingen Eisenstein series (see [35, II 1.5]).

4.2. Explicit local sections.

4.2.1. Archimedean sections. The Klingen subsection at each place dividing∞
is the Fκ defined before.

4.2.2. Prime to p sections. Let v ∈Σ be a prime of F not dividing p. Let ($ rψ
v )

and ($ s
v ) be the conductors of ψv and ξv. The sections chosen here are the same

as in [44, Section 9], which we briefly recall. For K ⊆ Kr,s with r > max(rψ , s)
we define a character ν of Kr,s by

ν

a b
c d ∗
∗ ∗

 := ψ(ad − bc)ξ̄ (d).

Let ϕ ∈ V be any vector having a conductor with respect to π∨, and let (λrϕ ) :=
condπ∨(ϕ). For any Kr,t with r > max(rψ , rϕ, s) and t > s we define Fϕ,r,t ∈ I (ρ)
by

Fϕ,r,t(g) :=
{
ν(k)ρ(p)ϕ g = pmk ∈ P(OF,v)wKr,t

0 otherwise.

4.2.3. p-adic sections. Let Kv,0 consist of matrices
(k11 k12 k13 k14

k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

)
in GL4(OF,v)

such that the under diagonal entries of the first column are divisible by pn1,v ,
the under diagonal entries of the second column are divisible by pn2,v , and k34 is
divisible by pn3,v . Let Kv,1 ⊂ Kv be the set of matrices such that k11 ≡ 1modpn1,v ,
k22 ≡ 1modpn2,v , k33 ≡ 1modpn3,v , k44 ≡ 1modpn4,v . We define our p-adic
subsection F0

v to be the one supported in P(Qp)Kv,1 which takes value p−n1,v−n3,v

on the identity and is invariant under Kv,1. This is nearly ordinary as proved in
[50] (see also [44, Proposition 9.15]).

4.3. Good Eisenstein series.

4.3.1. Eisenstein datum. Let (π, V ) be an irreducible cuspidal unitary
automorphic representation of GL2(AF) with central character χ , and let
V = ⊗ Vw and π = ⊗πw. Suppose that the Galois character corresponding
to χ factors through ΓK. By an Eisenstein datum for π we will mean a 4-tuple
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D = {Σ,ϕ,ψ, τ } consisting of a finite set of primes Σ , a cusp form ϕ ∈ V that
is completely reducible ϕ = ⊗ϕv, and unitary Hecke characters ψ = ⊗ψw and
τ = ⊗ τw of A×K/K× satisfying the following.

• Σ contains all primes dividing p, primes ramified in K/Q, and all primes v
such that πv, ψv or τv is ramified.

• For all k ∈ K ′∞, π∞(k)ϕ∞ = j (k, i)−κϕ∞.

• If v 6∈ Σ , then ϕv is the newvector.

• If v ∈ Σ , v - p, then ϕv has a conductor with respect to π∨v .

• If v|p, then ϕv is the nearly ordinary vector.

• ψ |A×F = χ .

• τv(x) = (x/|x |)−κ = ψv(x) for any x ∈ Fv and v|∞.

We remark that all the above are similar to [44, 9.3.1] except that for v|p we are
allowing nearly ordinary (not just ordinary) vectors. Also we assume that the χ0

in [44] is trivial for simplicity.
Let ξ = ⊗ ξw = ψ/τ , and define F := ⊗v|∞Fκ

∏
v 6∈Σ Fρ,v⊗v∈Σ,v-p Fϕ,r,t⊗v|p F0

v .
We define ED(z, g) = E(F, z, g) to be the Klingen Eisenstein series associated
to the subsection F . For any parabolic subgroup R of G and an automorphic form
ϕ on G we define the constant term of ϕ along R to be

ϕR :=
∫

NR(F)\NR(AF )

ϕR(ng) dn.

Then we have the following straightforward generalization of [44, Lemma 9.7].
The proofs are completely the same.

LEMMA 30. Suppose that κ > 6, and let zκ := (κ − 3)/2. Let F = Fκ ⊗ F f ∈
I (ρ) = I (ρ∞)⊗ I (ρ f ).

(1) A(ρ, zκ , F) = 0.

(2) E(F, zκ , g)P = Fzκ (g).

Let κ > 6. Then for any F = Fκ ⊗ F f ∈ I (ρ) we define a function of (Z , x) ∈
HΣ∞

2 ⊗G(AF, f ):

E(Z , x; F) := J (g, i)κµ(g)κE(F, zκ , gx), g ∈ GU (2, 2)+(F∞), g(i) = Z .

Here J (g, i) = det(Cgi + Dg) for g =
(

Ag Bg
Cg Dg

)
. The following proposition is

essentially [44, Proposition 9.8].
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PROPOSITION 31. Suppose that κ > 6 and F = Fκ ⊗ F f . Then E(Z , x; F) is a
holomorphic modular form of weight κ .

DEFINITION 32. We write E(F, zκ , g) = ∑β∈S2(F) µD(β, F, g) for the Fourier
expansion of E(F, zκ , g) at g.

4.4. Hecke operators. We will recall the definitions for the Hecke operators at
the unramified primes at the beginning of Section 9, and some Hecke polynomials
Qw for places w of K, which are essentially those given in [44, 9.5]. We let
h = hΣ be the abstract Hecke algebra generated by Hecke operators introduced
there at primes outsideΣ . Define λD : hΣ → C by h ·ED = λD(h)ED. We record
the following generalization of proposition [44, Proposition 9.14].

PROPOSITION 33. Suppose that κ > 6 and w 6∈ Σ . Then λD(Qw)(q−s
v ) is given

by the Euler factor at w:

LΣK( f, ξ̄ cψ c, s − 2)LΣ(ψ c, s − 3)LΣ(χξ̄ ′ψ c, s − κ)
where LΣK( f, ξ̄ cψ c, s − 2) is the corresponding L-function for f twisted by the
character ξ̄ cψ c over K, with the Euler factors at primes dividing Σ removed.

The proof is completely the same as that in [44] (there is no difference between
the local situations for F = Q and general F).

5. Hermitian theta functions

We generalize results in [44, Section 10] in this section.

5.1. Weil Representations.

The local set-up. Let v be a place of F . Let h ∈ S2(Fv), det h 6= 0. Let Uh be the
unitary group of this matrix, and denote Vv as the corresponding Hermitian space.
Let V1 := Kv ⊕Kv := Xv ⊕ Yv be the Hermitian space associated to U(1, 1). Let
W := Vv ⊗Kv

V1,v. Then

(−,−) := TrKv/Fv (〈−,−〉h ⊗Kv
〈−,−〉1)

is an Fv linear pairing on W that makes W into an eight-dimensional symplectic
space over Fv. The canonical embedding of Uh ×U1 into Sp(W ) realizes the pair
(Uh,U1) as a dual pair in Sp(W ). Let λv be a character of K×v such that λv|F×v =
χ 2
K/F,v. It is well known (see [28]) that there is a splitting Uh(Fv) × U1(Fv) ↪→

Mp(W, Fv) of the metaplectic cover Mp(W, Fv)→ Sp(W, Fv) determined by the
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character λv. This gives the Weil representation ωh,v(u, g) of Uh(Fv) × U1(Fv)
where u ∈ Uh(Fv) and g ∈ U1(Fv), via the Weil representation of Mp(W, Fv)
on the space of Schwartz functions S(Vv ⊗Kv

Xv). Moreover we write ωh,v(g)
to mean ωh,v(1, g). For X ∈ M2×1(Kv), we define 〈X, X〉h := tX̄βX . We record
here some useful formulas for ωh,v which are generalizations of the formulas in
[44, Section 10].

• ωh,v(u, g)Φ(X) = ωh,v(1, g)Φ(u−1 X).

• ωh,v(diag(A, tĀ−1))Φ(X) = λ(det A)| det A|KΦ(X A).

• ωh,v(r(S))Φ(x) = Φ(x)ev(tr〈X, X〉h S).

• ωh,v(η)Φ(x) = | det h|v
∫
Φ(Y )ev(TrKv/Fv (tr〈Y, X〉h)) dY .

Global set-up. Let h ∈ S2(F), h > 0. We can define global versions of Uh,GUh,

W , and (−,−), analogous to the local case. Fixing an idele class character λ =
⊗ λv of A×K/K× such that λ|F× = χ 2

K/F , the associated local splitting described
above then determines a global splitting

Uh(AF)× U1(AF) ↪→ Mp(W,AF)

and hence an action ωh := ⊗ωh,v of Uh(AF) × U1(AF) on the Schwartz space
S(VAK ⊗ X).

Theta functions. Given Φ ∈ S(VAF ), we let

Θh(u, g;Φ) :=
∑
x∈V

ωh(u, g)Φ(x).

This is an automorphic form on Uh(AF)× U1(AF).

5.2. Some useful Schwartz functions. We now record some Schwartz
functions that will show up later on and their properties. These are straightforward
generalizations of [44, Section 10] with some modifications. We have been
keeping the presentation parallel to that in [44] for convenience.

5.2.1. Archimedean Schwartz functions. Suppose that v|∞. LetΦh,v ∈ S(V ⊗R)
be

Φh,v(x) = e−2π〈x,x〉h .

Let
λv(z) = (z/|z|)−2.

Recall that h is the Poincare half plane.
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LEMMA 34. Given z ∈ h, let Φh,z(x) := e(〈x, x〉hz) (so Φh,i = Φh,∞). For any
g ∈ U1(R),

ωh(g)Φh,z = J1(g, z)−2Φh,g(z).

In particular, if k ∈ K+∞,1 then ωh(k)Φh,∞ = J1(k, i)−2Φh,∞.

Proof. The proof is just [44, Lemma 10.1].

5.2.2. Schwartz functions at finite places. For a finite place v of F dividing a
rational prime `, letΦ0 ∈ S(Vv) be the characteristic function of the set of column
vectors with entries in OK,v. For y ∈ GL2(Kv) we let Φ0,y(x) := Φ0(y−1x).

LEMMA 35. Let h ∈ S2(Fv), det h 6= 0. Let y ∈ GL2(Kv). Suppose that tȳhy ∈
S2(OF,v)

×. (In this paper we use S2(OF,v)
∗ to mean to dual of S2(OF,v) under the

paring on S2(Fv) defined by (x, y) 7→ tr(xy).)

(i) If λ is unramified, v is unramified in K, and h, y ∈ GL2(OF,v), then

ωh(U1(OF,v))Φ0,y = Φ0,y.

(ii) If Dv det tȳhy|$ r
v , r > 0, then

ωh(k)Φ0,y = λ(ak)Φ0,y, k ∈ U1(OF,v),$
r
v |ck .

Proof. See [44, Lemma 10.2].

Let θ be a character of K×v , and let 0 6= x ∈ cond(θ). Let

Φθ,x(u) :=
∑

a∈(OK,v/x)×
θ(a)Φ0(

t(u1 + a/x, u2)), u = t(u1, u2).

For y ∈ GL2(Kv) we let Φθ,x,y(u) := Φθ,x(y−1u). We let Φh,θ,x := ωh(η
−1)Φθ,x

and Φh,θ,x,y := ωh(η
−1)Φθ,x,y .

LEMMA 36. Let h ∈ S2(Fv), det h 6= 0. Let y ∈ GL2(Kv). Suppose that ȳt hy ∈
S2(OF,v)

∗. Let θ be a character of K×v , and let 0 6= x ∈ cond(θ) be such that$v|x.
Let (c) := cond(θ)∩($̃v) where $̃v =$v if v splits in K (that is, $̃v = ($v,$v)

for$v the uniformizer of Fv), and $̃v is a uniformizer of Kv at v is non-split in K.

(i) If cDv det tȳhy ‖ x and y−1hy ∈ GL2(OF,v), and Dv = 1 or y−1h−1ty−1 =
(∗ ∗∗ d) with d ∈ OF,v, then

ωh(k)Φθ,x,y = λθ(ak)Φθ,x,y, k ∈ U1(OF,v), d
−1 Dv|ck, d

−1x x̄ |bk .
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(ii) If h = diag(α, β), then Φh,θ,x,y is supported on the lattice h−1ty−1 L∗θ,x where
if v is nonsplit in K then

L∗θ,x =
{
(u1, u2)

t : u2 ∈ δK−1OK,v, ū1 ∈ x
cδK

{
OK,v, cond(θ) = OK,v,

O×K,v, cond(θ) 6= OK,v,

}

and if v splits in K, then

L∗θ,x :=
{
(u1, u2)

t : u2 ∈ δ−1
K OK,v, ū1,i ∈ xi

ciδK

{
OF,v, cond(θ) = OF,v,

O×F,v, cond(θ) 6= OF,v,

}

with ū1 = (ū1,1, ū1,2), x = (x1, x2), c = (c1, c2) ∈Kv = Fv×Fv, and θ = (θ1,

θ2). Furthermore, for v = h−1ty−1u with u ∈ L∗θ,x ,

Φh,θ,x,y(v) = | det hy ȳ|vD−1
v λ(−1)

∑
a∈(OK,v/x)×

θ(s)e`(TrK/Qaū1/x).

Proof. See [44, Lemma 10.3].

LEMMA 37. Suppose that v|p splits in K. Let (c) := cond(θ) and suppose that
c = (pr , ps) with r, s > 0. Let γ = (η, 1) ∈ SL2(OK,v)= SL2(OF,v)×SL2(OF,v).
Suppose that h = diag(α, β) with α, β ∈ F×v . Then the following hold.

(i) Φh,θ,c,γ is supported on

L ′ := {u = (a, b)t : a ∈ O×F,v ×OF,v, b ∈ OF,v ×O×F,v}

and for u ∈ L ′

Φh,θ,c,γ (u) = θ−1
1 (αa2)g(θ1)θ

−1
2 (βb1)g(θ2)

where a = (a1, a2), b = (b1, b2) ∈ OF,v ×OF,v, and θ = (θ1, θ2).

(ii) ωh(u, k)Φh,θ,c = θ−1
1 (ag)θ2(dg)λθ(dk)Φh,θ,c for u = (g, g′) ∈ Uh(Zp) with

pmax(r,s)|cg and for k ∈ U1(Zp) such that pmax(r,s)|ck . Here we write k = (ak bk
ck dk

)
and g =

(
ag bg
cg dg

)
.

Proof. See [44, Lemma 10.4].
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6. Siegel Eisenstein series and their pullbacks

For the reader’s convenience we try to present the work in a parallel way to that
in [44, Section 11]. We remark that the differences in the formulas from those
in [44] are mostly due to the discriminant and the unit group of F and that we
are allowing nearly ordinary forms (not only ordinary forms). Also in [44] they
used symbols χ and τ for the same object. We make the corresponding notation
consistent here.

From now on we always write ξ = ψ/τ once ψ and τ are defined.

6.1. Some isomorphisms and embeddings. We recall the notation of [44,
11.1]. Let Vn := K2n . Then wn defines a skew-Hermitian pairing 〈−,−〉n on
Vn : 〈x, y〉n := xwn

tȳ. The group Gn/F is the unitary similitude group GU(Vn)

of the Hermitian space (Vn, 〈−,−〉n). Let Wn := Vn+1 ⊕ Vn and W ′
n : Vn ⊕ Vn .

The matrices wn+1 ⊕ −wn and wn ⊕ −wn define Hermitian pairings on Wn and
W ′

n , respectively.
One can define isomorphisms αn : GU(Wn) ' G2n+1, α′n : GU(W ′

n) ' G2n ,
γn : GU(Wn) ' G2n+1, and γ ′n : GU(W ′

n) ' G2n . We omit the details and refer to
[44, 11.2.1]. Also as in [44] we use S and S′ to denote the matrices

1
1

1
−1 1

1
−1 1


and 

1
1
−1 1

−1 1

 .

6.2. Siegel Eisenstein series on Gn. Let Q = Qn be the Siegel parabolic

subgroup of GUn consisting of matrices
(

Aq Bq
0 Dq

)
. For a place v of F and a

character τ of K×v we let In(τ ) be the space of smooth Kn,v-finite functions f :
Kn,v → C such that f (qk) = τ(det Dq) f (k) for all q ∈ Qn(Fv)∩ Kn,v (we write

q as block matrix q =
(

Aq Bq
0 Dq

)
). Given z ∈ C and f ∈ I (τ ) we define a function
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f (z,−) : Gn(Fv) → C by f (z, qk) := τ(det Dq))| det Aq D−1
q |z+n/2

v f (k),
q ∈ Qn(Fv) and k ∈ Kn,v.

For an idele class character τ = ⊗ τv of A×K we similarly define a space
In(τ ) of smooth functions on

∏
v Kn,v. We also similarly define f (z,−) given

f ∈ In(τ ) and z ∈ C. There is an identification⊗In(τv) = In(τ ), the former being
the restricted tensor product defined using the spherical vectors f sph

v ∈ In(τv),

f sph
v (Kn,v)= 1, at the finite places v where χv is unramified:⊗ fv is identified with

k 7→ ∏
v fv(kv). Let U ⊆ C be an open set. By a meromorphic section of In(τ )

on U we mean a function ϕ : U 7→ In(τ ) taking values in a finite-dimensional
subspace V ⊂ In(τ ) and such that ϕ : U → V is meromorphic.

Let τ = ⊗ τv be a unitary idele class character of A×K. For f ∈ In(τ ) we
consider the Eisenstein series

E( f ; z, g) :=
∑

γ∈Qn(F)\Gn(F)

f (z, γ g).

This series converges absolutely and uniformly for (z, g) in compact subsets
of {Re(z) > n/2} × Gn(AF) and defines an automorphic form on Gn and a
holomorphic function on {Re(z) > n/2}. The Eisenstein series E( f ; z, g) has
a meromorphic continuation in z to all of C. If ϕ : U → In(τ ) is a meromorphic
section, then we put E(ϕ; z, g) = E(ϕ(z); z, g). This is clearly a meromorphic
function of z ∈ U and an automorphic form on Gn for those z where it is
holomorphic.

6.3. Pullbacks of Siegel Eisenstein series. Now we follow [44, 11.2] closely
to recall the pullback formulas. However we repeat it here since the conventions
are slightly different.

6.3.1. The pullback formulas. Let τ be a unitary idele class character of A×K.
Given a cusp form ϕ on Gn we consider

Fϕ( f ; z, g) :=
∫

Un(AF )

f (z, γ (g, g1h))τ̄ (det g1g)ϕ(g1h) dg1,

f ∈ Im+n(τ ), g ∈ Gm(AF), h ∈ Gn(AF), µm(g) = µn(h),m = n + 1 or n,

with γ = γn or γ ′n depending on whether m = n+1 or m = n. This is independent
of h. The pullback formulas are the identities in the following proposition.

PROPOSITION 38. Let τ be a unitary idele class character of A×K.

(i) If f ∈ I2n(τ ), then Fϕ( f ; z, g) converges absolutely and uniformly for
(z, g) in compact sets of {Re(z) > n} × Gn(AF), and for any h ∈ Gn(AF)
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such that µn(h) = µ(g)∫
Un(F)\Un(AF )

E( f ; z, γ ′n(g, g1h))τ̄ (det g1h)ϕ(g1h) dg1 = Fϕ( f ; z, g).

(ii) If f ∈ I2n+1(τ ), then Fϕ( f ; z, g) converges absolutely and uniformly for
(z, g) in compact sets of {Re(z) > n + 1/2} × Gn+1(AF) such that
µn(h) = µn+1(g)∫

Un(F)\Un(AF )

E( f ; z, γn(g, g′h))τ̄ (det g1h)ϕ(g1h) dg1

=
∑

γ∈Pn+1(F)\Gn+1(F)

Fϕ( f ; z, γ g),

with the series converging absolutely and uniformly for (z, g) in compact
subsets of

{Re(z) > n + 1/2} × Gn+1(AF).

Proof. See [44, Proposition 11.1].

6.4. Fourier–Jacobi expansions: Generalities. Let 0 < r < n be an integer.
We define the Fourier–Jacobi expansion

E( f ; z, g) =
∑

β∈Sn−r (F)

Eβ( f ; z, g)

where

Eβ( f ; z, g) :=
∫

Sn−r (F)\Sn−r (AF )

E

 f ; z,
1n

S 0
0 0
1n

 g

 eF(−Tr(βS)) d S.

LEMMA 39. Let f = ⊗v fv ∈ In(τ ) be such that for some prime v the support of
fv is in Qn(Fv)wn Qn(Fv). Let β ∈ Sn(F) and q ∈ Qn(AF). If Re(z) > n/2 then

Eβ( f ; z, g) =
∏
v

∫
Sn(Fv)

fv(z, wnr(Sv)qv)ev(−TrβSv) d Sv.

In particular, the integrals on the right-hand side converge absolutely for Re(z) >
n/2.

Proof. See [44, Lemma 11.2].
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LEMMA 40. Suppose that f ∈ I3(τ ) and β ∈ S2(F), β > 0. Let V be the two-
dimensional K-vector space of column vectors. If Re(z) > 3/2 then

Eβ( f ; z, g) =
∑

γ∈Q1(F)\G1(F),γ∈U1(F)

∑
x∈V

∫
S2(AF )

f

w3

13
S x
tx̄ 0
13

α1(1, γ )g


× eA(−TrK/QβS) d S.

Recall that eA(x) = eAQ(TrF/Qx) for x ∈ AF .

Proof. See [44, Lemma 11.3].

We also recall a few identities which are straightforward generalizations of [44,
(11.15)–(11.18)]. Letting

F Jβ( f ; z, x, g, y)

:=
∫

S2(Fv)
f

z, w3

1n

(
S x
tx̄ 0

)
1n

α1(diag(y, ty−1), g)

 ev(−TrβS) d S,

then

F Jβ

(
f ; z, x,

(
a ā−1b

ā−1

)
g, y

)
= τ c

v (a)
−1|aā|z+3/2

v ev(tx̄βxb)F Jβ( f ; z, xa, g, y).

For u ∈ Uβ(AF), Uβ being the unitary group associated to β,

F Jβ( f ; z, x, g, uy) = τ(det u)| det uū|−z+1/2
AF

F Jβ( f ; z, u−1x, g, y).

If, as a function of x , F Jβ( f ; z, x, g, y) ∈ S(V ⊗ Fv), then

F Jβ

(
f ; z, x,

(
a ā−1b

ā−1

)
g, y

)
= (λv/τ c

v )(a)|aā|z+1/2
v ωβ

((
a ā−1b

ā−1

))
F Jβ( f ; z, x, g, y).

6.5. Some good Siegel sections.

6.5.1. Archimedean Siegel sections. Let v be an Archimedean place of F . We
summarize the results of [44, 11.4.1]. Let κ > 2 be an integer. Then τ(x) =
(x/|x |)−κ is a character of C×.
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The sections. We let fκ,n ∈ In(τ ) be fκ,n(k) := Jn(k, i)−κ . Then

fκ,n(z, qk) = Jn(k, i)−κτ(det Dq)| det Aq D−1
q |z+1/2, q ∈ Qn(R), k ∈ Kn,∞.

If g ∈ Un(R) then fκ,n(z, g) = Jn(g, i)−κ |Jn(g, i)|κ−2z−n .

Fourier–Jacobi coefficients. Given a matrix β ∈ Sn(R) we consider the local
Fourier coefficient:

fκ,n,β(z, g) :=
∫

Sn(R)
fκ

(
z, wn

(
1n S

1n

)
g
)

e∞(−TrβS) d S.

This converges absolutely and uniformly for z in compact subsets of {Re(z) >
n/2}.

LEMMA 41. Suppose that β ∈ Sn(R). The function z 7→ fκ,β(z, g) has a
meromorphic continuation to all of C. Furthermore, if κ > n, then fκ,n,β(z, g) is
holomorphic at zκ := (κ−n)/2, and for y ∈ GLn(C), fκ,n,β(zκ , diag(y, tȳ−1)) = 0
if detβ 6 0, and if detβ > 0 then

fκ,n,β(zκ , diag(y, tȳ−1
)) = (−2)−n(2π i)nκ(2/π)n(n−1)/2∏n−1

j=0(κ − j − 1)!
× e(iTr(βytȳ))(detβ)κ−n det ȳκ .

Proof. See [44, Lemma 11.4].

Suppose now that n = 3. For β ∈ S2(R) let F Jβ,κ(z, x, g, y) := F Jβ( fκ; z, x,
g, y).

LEMMA 42. Let zκ := (κ − 3)/2. Let β ∈ S2(R), detβ > 0.

(i) F Jβ,κ(zκ , x, η, 1) = fκ,2,β(zκ + 1/2, 1)e(i〈x, x〉β).
(ii) For g ∈ U1(R)

F Jβ,κ(zκ , x, g, y) = e(iTrβytȳ) det ȳκc(β, κ) fκ−2,1(zκ , g′)ωβ(g′)Φβ,∞(x),

where g′ = (1
−1

)
g
(

1
1

)
and

c(β, κ) = (2π i)2κ(2/π)
4(κ − 1)!(κ − 2)! detβκ−2,

and the Weil representation ωβ is defined using the character λ∞(z) =
(z/|z|)−2.

This is just [44, Lemma 11.5].
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Pullback integrals. We let ϕ and Fκ,z be as defined in Section 4.1. The
Archimedean situation is completely the same as the situation in [44]. Let
fκ ∈ I3(τ ) be as before, and let

Fκ(z, g) :=
∫

U1(R)
fκ(z, S−1α1(g, g1h))τ̄ (det g1h)π1(g1h)ϕ dg1,

g ∈ G2(R), h ∈ G1(R), µ1(h) = µ2(g).

Similarly, for fκ ∈ I2(τ ) and g ∈ G1(R) we let

F ′κ(z, g) :=
∫

U1(R)
fκ(z, S′−1α′1(g, g1h))τ̄ (det g1h)π1(g1h)ϕ dg1,

g, h ∈ G1(R), µ1(h) = µ1(g).

LEMMA 43 [44, Lemma 11.6]. The integrals converge if Re(z) > (κ −m− 1)/2
and Re(z) > (m−1−κ)/2, m = 2 and 1, respectively (according to the convention
of Section 6.3.1) and for such z we have the following.

(i) Fκ(z, g) = π2−2z−1(Γ (z + (1+ κ)/2))/(Γ (z + (3+ κ)/2))Fκ,z(g).
(ii) F ′κ(z, g) = π2−2z(Γ (z + κ/2))/(Γ (z + 1+ κ/2))πψ(g)ϕ.

6.5.2. Prime to p Siegel sections: the unramified case.

Fourier–Jacobi coefficients.

LEMMA 44. Let β ∈ Sn(Fv), and let r := rank(β). Then, for y ∈ GLn(Kv),

f sph
v,β (z, diag(y, ty−1)) = τ(det y)| det y ȳ|−z+n/2

v Vol(Sn(OF,v))

×
∏n−1

i=r L(2z + i − n + 1, τ̄ ′χ i
K)∏n−1

i=0 L(2z + n − i, τ̄ ′χ i
K)

hv,tȳβy(τ̄
′($v)q−2z−n

v )

where hv,tȳβy is a monic polynomial depending on v and tȳβy but not on τ .

Proof. This is proven in [39]. See [44, Lemma 11.7].

LEMMA 45. Suppose that v is unramified in K. Let β ∈ S2(Fv) be such that
detβ 6= 0. Let y ∈ GL2(Kv) such that ȳtβy ∈ S2(OF,v). Let λ be an unramified
character of K×v such that λ|F×v = 1.

(i) If β, y ∈ GL2(OK,v) then for u ∈ Uβ(Fv),

F Jβ( f sph
3 ; z, x, g, uy) = τ(det u)| det uū|−z+1/2

v

f sph
1 (z, g)ωβ(u, g)Φ0,y(x)∏1

i=o L(2z + 3− i, τ̄ ′χ i
K)
.
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(ii) If ȳtβy ∈ GL2(OK,v), then for u ∈ Uβ(Fv),

F Jβ( f sph
3 ; z, x, g, uy) = τ(det uy)| det uy|−z+1/2

K
f sph
1 (z, g)ωβ(u, g)Φ0,y(s)∏1

i=0 L(2z + 3− i, τ̄ ′χ i
K)
.

Proof. (i) is the same as [44, Lemma 11.8]. Note that in (ii) we have removed the
assumption in [44] that g is of the form

(
1
n 1

)
. In fact since

F Jβ( f sph
3 ; z, x, g, uy) = χ(det uy)| det uy|−z−1/2

K F Jtȳβy( f sph
3 ; z, y−1u−1x, g, 1)

by (i) we have only to prove that

ωtȳβy(1, g)Φ0(y−1u−1x) = ωβ(u, g)Φ0,y(x) = (ωβ(1, g)Φ0,y)(u−1x),

that is,
(ωtȳβy(1, g)Φ0),y(x) = (ωβ(1, g)Φ0,y)(x).

Here for any Schwartz function Φ we write Φ,y to be the function defined by
Φ,y(x) = Φ(y−1x). By definition one checks that, for any Φ,

ωβ(g)Φ,y = (ωtȳβy(1, g)Φ),y(x)

for g of the forms
(a

ā−1

)
,
(

1 s
1

)
, η, thus for all g ∈ U1(Fv). In particular, it is true

for Φ = Φ0.

Pullback integrals. Recall that we have (π, ψ, τ) as in Section 4. Let ϕ ∈ V . Let
m = 1 or 2 according to the convention of Section 6.3.1. Given f ∈ Im+1(τ ) we
consider the integral

Fϕ( f ; z, g) :=
∫

U1(Fv)
f (z, γ (g, g1h))τ̄ (det g1h)πψ(g1h)ϕ dg1,

where γ = γ1 or γ ′1 depending on whether m = 2 or m = 1. (Similar to [44,
11.4].)

LEMMA 46. Suppose that π,ψ , and τ are unramified and that φ is a newvector.
If Re(z) > (m + 1)/2 then the above integral converges and

Fϕ( f sph
v ; z, g) =


L(π̃, ξ, z + 1/2)∏1

i=0 L(2z + 2− i, τ̄ ′χ i
K)
πψ(g)ϕ m = 1,

L(π̃, ξ, z + 1)∏1
i=0 L(2z + 3− i, τ̄ ′χ i

K)
Fρ,z(g) m = 2.

Here Fρ is the spherical section.

Proof. This is proved in [30, Proposition 3.3]. See [44, Lemma 11.9].
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6.5.3. Siegel sections at ramified primes.

The sections. Let v be a finite prime of F . We are going to define two important
Siegel sections.

(1) Let f †
n ∈ In(τ ) be the function supported on Qn(OF,v)wn NQn (OF,v) such

that
f †
n (wnr) = 1, r ∈ NQn (OF,v).

(2) Given (λu) ⊆ OK,v contained in the conductor of τ , we let fu,n ∈ In(τ ) be
the function such that fu,n(k) = τ(det Dk) if k ∈ K Qn (λ

u) and fu,n(k) = 0
otherwise.

LEMMA 47. Suppose that v is not ramified in K and suppose that τ is such that
OK,v 6= cond(τ ) ⊇ cond(ττ c). Let (λu) := cond(τ ). Then

M(z, f †
n ) = fu,n · Vol(Sn(OF,v)) ∈ In(τ̄

c)

for all z ∈ C.

Proof. See [44, Lemma 11.10].

LEMMA 48. Let A ∈ GLn(Kv). If detβ 6= 0, then

f †
n,β(z, diag(A, tĀ−1))

=
{
τ(det A)| det A|−z+n/2

v Vol(Sn(OF,v))
tĀβA ∈ Sn(OF,v)

∗,
0 otherwise.

Proof. See [44, Lemma 11.11].

LEMMA 49. Suppose that β ∈ Sn(Fv), detβ 6= 0, char(v) = `, and ` splits
completely in K.

(i) If β 6∈ Sn(OF,v), then M(z, f †
n )β(−z, 1) = 0.

(ii) Suppose that β ∈ Sn(OF,v). Let c := ordv(cond(τ ′)). If c > 0, then

M(z, f †
n )β(−z, 1) = τ ′(detβ)| detβ|−2z

v g(τ̄ ′)ncn(τ
′, z),

where

cn(τ
′, z) =

{
χ ′($ nc

v )q
2ncz−cn(n+1)/2
v c > 0,

q2nz−n(n+1)/2
v c = 0.
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Proof. See [44, Lemma 11.12].

Now we use the convention for m = 1 or 2 in Section 6.3.1.

PROPOSITION 50. Let m = 1 or 2. There exists a meromorphic function
γ (m)(ρ, z) on C such that the following hold.

(i) If m = 1, then

Fϕ∨(M(z, f );−z, g) = γ (1)(ρ, z)τ (µ1(g))Fϕ( f ; z, ηg).

Moreover, if π ' π(χ1, χ2) and v splits in K, then

γ (1)(ρ, z) = ψ(−1)g(τ̄ ′,$ c
v )

2 · τ ′($ 2c
v )|$v|−4cz+3c

v

× ε(π̃ ⊗ ξ c, z + 1/2)
L(π ⊗ ξ̄ c, 1/2− z)
L(π̃ ⊗ ξ c, z + 1/2)

.

(ii) If m = 2 and π,ψ, τ are the v constituents of a global triple, ϕ∨ = π(η)ϕ,
then

Fϕ∨(M(z, f );−z, g) = γ (2)(ρ, z)A(ρ, z, Fϕ( f ; z,−))−z(g).

Each of these equalities is an identity of meromorphic functions of z.

(iii) Suppose moreover that Ov 6= cond(τ ) ⊃ cond(ττ c). Then

γ (2)(ρ, z) = γ (1) (ρ, z − 1
2

)
.

Proof. See [44, Lemma 11.12].

6.5.4. Sections at ramified primes again.

The sections. Again let v be a finite prime of F . As in [44, 11.4.14], we define a
modified version of the sections f †. Let m = 1 or 2. For x ∈ OK.v ∩K×v let

f †,(m)
x (z, g) = f †

m+1

z, g


1 1/x

1m−1 0m−1

1 1/x̄
1m−1

1
1



 .
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Fourier–Jacobi coefficients.

LEMMA 51. Let β = (bi, j) ∈ Sm+1(Fv). Then, for all z ∈ C, f †,(m)
x,β (z, 1) = 0 if

β 6∈ Sm+1(OF,v)
∗. If β ∈ Sm+1(OF,v)

∗, then

f †,(m)
x,β (z, 1) = Vol(Sm+1(OF,v))ev(TrKv/Fv (bm+1,1/x)).

Proof. See [44, Lemma 11.14].

LEMMA 52. Let β ∈ S2(Fv), detβ 6= 0. Let y ∈ GL2(Kv), and suppose that
tȳβy ∈ S2(OF,v)

∗. Let λ, θ be characters of K×v , and suppose that λ|F×v = 1. Let
(c) := cond(λ)

⋂
cond(θ)

⋂
($v). Let x ∈ K×v be such that Dv|x, cond(χ c)|x,

and cDv det ȳtβy|x, where Dv := NmK/F(δK/Q). Suppose that y−1β−1tȳ−1 = (∗ ∗∗ d)

with d ∈ Fv. For D̃v := NmK/F(δK/F) then, for h ∈ Uβ(Fv),∑
a∈(Ov/x)×

θ τ̄ c(a)F Jβ( f †,(2)
x ; z, u, g

(
a−1

ā

)
, hy)

= τ(det hy)| det hy|−z+1/2
K Vol(S2(OF,v))

×
∑

b∈(Ov/D̃vdOv)

f−b(z, g′η)ωβ

(
h, g′

(
1
−b 1

))
Φθ,x,y(u)

where g′ = (1
−1

)
g
(

1
−1

)
and

fb(g) =
 τλ−1(dp), g = pη

(
1 m

1

)
, p ∈ B1(OF,v),m − b ∈ D̃vdOF,v

0 otherwise.

Proof. The proof is the same as that of [44, Lemma 11.15].

Pullback integrals. Let T denote a triple (ϕ, ψ, τ)with ϕ ∈ V having a conductor
with respect to π̃ . Let

ϕx := πψ(η diag(x̄−1, x))ψ,

and let

F (m)
T ,x(z, g) :=

∫
U1(Fv)

f †,(m)
x (z, S−1α(g, g′h))τ̄ (det g′h)πψ(g′h)ϕx dg′,

where α = α1 or α′1 depending on whether m = 2 or 1. If f (z, g) = f †,(m)
x

(z, gS−1) then F (m)
T ,x(z, g) = Fϕx ( f ; z, g).
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PROPOSITION 53. Suppose that x = λt , t > 0 is contained in the conductors of
τ and ψ and x x̄ ∈ (λrφ ) = condπ̃ (ϕ). Then F (m)

T ,x(z, g) converges for all z and g
and

F (1)
T ,x(z, η) = [U1(OF,v) : Kx ]−1τ(x)|x x̄ |−z−1

v ϕ

and
F (2)
T ,x = [U1(OF,v) : Kx ]−1τ(x)|x x̄ |−z−3/2

v Fϕ,r,t
for any r > max{rϕ, t}. Here Kx is the subgroup defined as

Kx :=
{(

a b
c d

)
∈ U1(OF,v) : a − 1 ∈ (x̄), b ∈ (x x̄), c ∈ Ov, d − 1 ∈ (x)

}
.

Proof. See [44, Proposition 11.16].

PROPOSITION 54. For m = 1 or 2, let γ (m)(ρ, z) be as in Proposition 50. Assume
that char(v) = `, which is unramified in K. If Ov 6= cond(τ ) ⊇ cond(ττ c) then

γ (2)(ρ, z) = γ (1)(ρ, z − 1/2).

Proof. See [44, Proposition 11.17].

6.5.5. p-adic sections. Now let v|p be a prime of F . We record the formulas
for Fourier–Jacobi coefficients and pullback sections below (see [50] for the
discussion). These are only slightly different from [44, 11.4] (the ξ c that appeared
there are replaced by ξ cµ−1

1,v in our cases). Let x ∈ OK,v be such that (x) =
cond(ξ̄ c). We define

f 0,(m)
z (k) := ψ(det k)ψ̄m+1(µm+1(k))M(z, f †,(m)

x (k)).

LEMMA 55. Suppose that our data (Section 4.1.3) is in the generic case, and let
(pm) := cond(τ ′). Let β ∈ S2(Fv), detβ 6= 0, and suppose that β ∈ GL2(Ov). Let
y ∈ GL2(Ov). Let λ be an unramified character of K×v such that λ|F×v = 1. Then,
for h ∈ Uβ(Fv),∑

a∈(Ov/x)×
µ−1

1,vξ
cτ(a)F Jβ( f 0,(2)

−z ; z, u, g diag(a−1, ā), hy)

= ξ(−1)c(β, τ, z)τ (det hy)| det hh̄|−z+1/2
v fm,1(z, gη)ωβ(h, g)Φµ−1

1,vξ
c,x,y(u),

where ω is defined using λ, and

c(β, τ, z) := τ̄ ′(−detβ)| detβ|2z+1
v g(τ ′)2τ̄ ′(p2m)p−(4mz+5m)ev ,

where ev is [Fv : Qp].
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Proof. See [44, Lemma 11.20]. The argument in [44] still works as long as Fv is
unramified.

Now we use the convention for m = 1 or 2 as in Section 6.5.2.

PROPOSITION 56. Let ϕ ∈ V be an eigenvector for π such that v|condπ (ϕ). Let

(x) := cond(ξ̄ c) = ($ t
v) = ($ t1

v ,$
t2
v ).

Suppose again that we are in the generic case. Let

ϕ∨x := ψ(−1)π(diag(x, x̄−1))ϕ.

Then

Fϕ∨x ( f̃ 0,(m)
−z ; z, g)

= γ (m)(ρ∨,−z)[U1(OF,v) : Kx ]−1τ̄ c(x)|x x̄ |z−(m+1)/2
v

{
F0
ϕ,z(g), m = 2,
πψ(g)ϕ, m = 1,

where f̃ 0,(m)
−z (z, g) = f 0,m

−z (z, gS−1).

Proof. The proof is the same as that of [44, Proposition 11.21].

6.6. Good Siegel Eisenstein series. From now on we assume that the
characters ψ and τ are unramified outside p. Let (π, V ) = (⊗πv,⊗Vv) be as
before, and let D = (Σ, ϕ,ψ, τ) be an Eisenstein datum as defined in Section 4.3.
We augment the datum with a choice of an MD ∈ A×F satisfying the following.

• MD is divisible only by primes in Σ \ {v|p}.
• For v ∈ Σ \ {v|p}, MD is contained in δK, cond(ξv), cond(ψv), cond(τv), and

condπ∨v (ϕv).

We remark that we have freedom to choose such MD. This is crucial for proving
the p-adic properties of the Eisenstein series.

The Siegel Eisenstein series. For m = 1 or 2 we define a meromorphic section
f (m)D : C→ Im+1(τ ) as follows:

f (m)D (z) = ⊗ f (m)D,w(z),

where

• f (m)∞ (z) := fκ ∈ Im+1(τ∞) for any infinite place;

• v - Σ then f (m)D,v(z) := f sph
v ∈ Im+1(τv);
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• if v ∈ Σ, v - p, then f (m)D,v(z) := f (m)MD,v
∈ Im+1(τv); and

• for v|p, f (m)D,v(z) := f 0,(m)
−z ∈ Im+1(τv), where xv is used to define f 0,(m)

−z .

DEFINITION 57. H (m)
D (z, g) := E( f (m)D ; z, g).

Now we define a level group for U(1, 1):

UD :=
∏
v|p

Kxv ,v

∏
v 6∈Σ\{v|p}

KMD,v

∏
v 6∈Σ

U1(OF,v),

with Kxv ,v defined in Proposition 53.

REMARK 58. Later on we will use UD to denote the corresponding level groups
in GL2 as well.

We also let

K (m)
D :=

{
k ∈ Gm+1(ÔF) : 1− k ∈ M2

D

∏
v|p
(xv x̄v) · M2(m+1)(ÔF)

}
.

Then it easily follows from the definition of the f (m)D,v(z) that

H (m)
D (z, gk) = H (m)

D (z, g), k ∈ K (m)
D ,

and that
H (m)

D (z, gα(1, k)) = τ(akp)H
(m)
D (z, g), k ∈ UD.

For u ∈ GLm+1(AK, f ) let

L (m)v := {β ∈ Sm+1(F) : β > 0,Trβγ ∈ ÔF , γ ∈ uSm+1(ÔF)
tū}.

We record the following formulas, which are slight generalizations of the
results in [44, 11.5]. These will be used to construct the p-adic families of L-
values and Eisenstein series.

LEMMA 59. (i) If κ > m+1, then H (m)
D is holomorphic at zκ := (κ−m−1)/2.

(ii) If κ > m + 1 and if g ∈ Qm+1(AF), then

H m
D(zκ , g) =

∑
β∈Sm+1(F),β>0

H (m)
D,β(zκ , g).
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Furthermore, if S2(F) 3 β � 0, g∞,i = r(X i)diag(Yi ,
tȲi
−1
) for the i th

Archimedean place and g f = r(a)diag(u, tū−1) ∈ Gm+1(AF, f ), then H (m)
D,β(zκ , g)

= 0 if β 6∈ L (m)u , and otherwise

H (m)
D,β(zk, g)

= e(trβa)
(−2)−(m+1)d(2π i)(m+1)dκ(2/π)m(m+1)d/2 ∏

j(detβκ−(m+1)
j · det Ȳ κ

j )

(
∏m

j=0(κ − j − 1)!)d ∏m
j=0 L S(κ − j, τ̄ ′χ j

K)

×
∏
j∈I

e(Trβ j(X j + iY j Ȳ t
j ))
∏
v 6∈S

fD,βu ,v(zκ , 1)

× τ(det u)| det uū|m+1−κ/2
F

∏
v 6∈S

hv,β(τ̄ ′v($v)q−2z−n
v ),

where βu = tūβu, β j = ι j(β), ι j is the j th embedding F ↪→ R, and S ⊇ Σ is a
finite set of primes such that gv ∈ Km+1,v if v 6∈ S.

Proof. The proof is the same as that of [44, Lemma 11.22].

If κ > m + 1, define a function H m
D(Z , x) on HΣ∞

m+1 × Gm+1(AF, f ) by

H (m)
D (Z , x) :=

d∏
j=1

µm+1(g∞, j )
(m+1)κ/2

d∏
j=1

Jm+1(g∞, j , i)−κH (m)
D ((κ−m−1)/2, g∞x),

where g∞ ∈ G+m+1(R), g∞(i) = Z , and define A(m)D,β(x) as the βth Fourier
coefficient of H (m)

D (Z , x).

LEMMA 60. Suppose that κ > m+ 1. Then H (m)
D (Z , x) ∈ Mκ(K

(m)
D ) (notation as

in Section 2.3, where κ stands for the scalar weight k := (0, . . . , 0; κ, . . . , κ)).

Proof. The proof is the same as that of [44, Lemma 11.23].

LEMMA 61. Suppose that κ > m + 1 and that x = diag(u, tū−1), u ∈
GLm+1(AF, f ) with uv = diag(1m, āv), av ∈ O×v , if v ∈ Σ . Then, if β 6∈ L (m)u
or if detβ = 0, then AD,β(x) = 0, and for β = (βi, j) ∈ L (m)u with detβ > 0,

A(m)D,β (x) = |δK|
m(m+1)/4
K |δF |(m+1)/2

F

× (−2)−(m+1)d (2π i)(m+1)κd (2/π)m(m+1)d/2∏
v|p(detβ|β|v)κ−m−1∏m

j=0(κ − j − 1)!d ∏m
j=0 LΣ (κ − j, τ̄ ′χ j

K)

×
∏
v|p

τ̄v(av det(β))g(τ ′v)m+1c(τ̄ ′v,−(κ −m− 1)/2)ev(TrKv/Qv (avbm+1,1/xv))
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×
∏

v∈Σ,v-p

τ c
v (av)ev(TrKv/Qv (avbm+1,1/MD))

×
∏
v 6∈Σ

τv(det uv)|uv ūv |m+1−κ/2
v hv,ūt

vβuv (τ̄v($v)q
−κ
v ).

Proof. See [44, Lemma 11.24], taking into account the VolSn(OF,v).

6.7. ED via pull-back. For a normalized Hilbert modular eigenform f ∈ π
we write ϕ := π(ηM) f , where ηM

v = η if v|M and is 1 otherwise. As in [44, 11.6]
we let ϕ0 be defined by ϕ0(g) = ϕψ(gy) for

yv =


1, v = ∞, v 6∈ Σ,
η−1 diag(M−1

D ,MD) v ∈ Σ, v 6 | p,
diag(xv, x̄−1

v ), v|p.
Here ϕ ∈ V and ϕψ is the form on GU(1, 1)(AF) given by ϕ and ψ .

PROPOSITION 62. Let m = 1 or 2. Suppose that, for any v|p, (xv) = (ptv ) with
tv > 0, and that xv ∈ cond(ψ) and xv x̄v ∈ condπv (ϕv), where ϕv is defined by
ϕ = ⊗ϕv. Let g ∈ Gm(AF) and h ∈ G1(AF) be such that µ1(h) = µm(g). If
k > m + 1 then∫

U1(F)/U1(AF )

H (m)
D (z, α(g, g′h))τ̄ (det g′h)ϕ0(g′h) dg′

= [U1(ÔF) : UD]−1

{
c(1)D (z)ϕ(g) m = 1
c(2)D (z)ED(z, g) m = 2,

where

c(m)D (x) := π d2(−2z−m+1)d |MD|(2z+m+1)
F

∏
v|p
|xv x̄v|z−(m+1)/2

v τ̄ c
v (xv)

∏
v-p

τv(MD)

× Γ (z + (m − 1+ κ)/2)d LΣ(π̃, ξ, z + m/2)

Γ (z + (m + 1+ κ)/2)d ∏1
i=0 LΣ(τ̄ ′εi

K, 2z + m + 1− i)

×
∏
v|p
γ (m)(ρ1,v,−z).

This is just a summary of the previous computations, similar to [44, Proposition
11.25]. We also have the following result for Fourier coefficients which is an
immediate consequence of the above proposition.
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PROPOSITION 63. Let m = 1 or 2. Suppose that, for each v|p, (xv) = (ptp) with
tp > 0, and that xv ∈ cond(ψ) and xv x̄v ∈ condπv (φv). Let g ∈ Gm(AF) and
h ∈ G1(AF) be such that µ1(h) = µm(g). Let β ∈ Sm(F). If κ > m + 1 then∫

U1(F)/U1(AF )

H (m)
D,β(z, α(g, g′h))τ̄ (det g′h)ϕ0(g′h) dg′

= [U1(ÔF) : UD]−1

{
c(1)D (z)ϕβ(g) m = 1,
c(2)D (z)µD(β, z, g) m = 2,

where c(m)D (z) is as defined above.

Recall that a1, . . . , ahK ∈ ÔK are representatives for the class group of K. We
assume that each ai = ($v, 1) ∈ OK,v for some prime v 6∈ Σ that splits in K. Let

ΓD : U1(F) ∩UD, ΓD,i := U1(F) ∩
(

a−1
i

āi

)
UD

(
ai

ā−1
i

)
.

Also, we write ΓD,0 ⊇ ΓD by removing the congruence conditions required for
diagonal entries (similar to Γ0(N ) ⊃ Γ1(N ) in the classical case). We often
write ΓD,0 for the GL2(AF, f ) open compact group with the same congruence
requirement as for U1 (that is putting the same congruence conditions on c for(

a b
c d

)
). For any v|p let

(puv ) := (xv) ∩OF,v, (prv )v := (xv x̄v).
It follows easily from the strong approximation that if we let Y ⊂ Ô be any set

of representatives for (ÔK/
∏

v|p x̄vMD)
×/(ÔF/pu p MD)

×, then

U1(AF) =
hK⊔
i=1

⊔
a∈Y

U1(F)U1(F∞)
(

a−1
i a−1

āi ā

)
UD,

with each element appearing 2vKhF times, where vK is a number depending only
on K. Define

H̃ (m)
D,β(z, g) :=

∑
a∈(ÔK/((

∏
v|p xv)MD))×

(∏
v|p
µ−1

1,v

)
ξ cτ(a)H (m)

D,β(z, gα(1, diag(a−1, ā))).

6.8. Nebentypus. In this subsection we discuss the relations between U(1, 1)
automorphic forms and GL2 automorphic forms. In the [44] case the situation is
easier since they assumed that the forms are newforms, that is, invariant under the
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action of matrices:
(x y

1

)
for x ∈ O×F,v, y ∈ OF,v. Since we are going to work with

the full-dimensional Hida family we do not assume this anymore. A principle for
this issue is that we assume the neben characters at places not dividing p and the
torsion part at p-adic places to be invariant under the action of matrices:

(x y
1

)
for x ∈ O×F,v, y ∈ OF,v and let the ‘free part’ of the p-adic neben characters
vary arbitrarily. Let ε′ = ⊗vε′v be a character of TU(1,1)(ÔF). First look at a p-
adic place v. Note that O×F,v = ∆ × Γ for ∆ ' F×pev (ev = [Fv : Qp]) and Γ =
1 + pOF,v. TU(1,1)(OFv ) =

{(
ā−1

a

)∣∣ a ∈ O×K,v
}
, TGL2(OF,v) ' O×F,v × O×F,v. For

v|p, a character ε′v of TU(1,1)(OF,v) can be written as ε′v,tor · ε′v, f r (torsion and free
part) with respect to∆×Γ . Let ψ be a Hecke character. We can define ψv,tor and
ψv, f r to be characters of O×K,v in the same way. Since ε′v, f r and ψv, f r have order
powers of p, there are unique square roots ε′1/2v, f r and ψ1/2

v, f r of them. Now suppose
that for each v|p we have

ε′v,tor

((
ā−1

a

))
= ψv,tor (a)

for all a ∈ O×K,v and that, for all v - p,

ε′v

((
ā−1

a

))
= ψv(a)

for all a ∈ O×K,v. Then we define a neben character of TGL2(ÔF) by the following:
for v - p,

εv

((
a

b

))
= ψv(b),

for v|p
εv,tor

((
a

b

))
= ψv,tor (b)

and

εv, f r

((
a

b

))
= ε′1/2v, f r

(( a
b

b
a

))
ψ

1/2
v, f r (ab)

and
ε = ⊗vεv.

Thus ε|TSL2(ÔF )
= ε′|TSL2(ÔF )

.

Now let ψ and ε′ be as above, and let I be an ideal of ÔF contained in the
conductors of ε′ and ε. Let ϕ be a unitary automorphic form on U(1, 1)(AF) such
that the action of k ∈ U0(I ) (recall that U0(I ) consists of matrices

(ak bk
ck dk

)
such
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that ck ∈ I ) is given by ε′
((ak

bk

))
. Suppose moreover that it satisfies the condition

that, for any totally positive global unit b ∈ O×F , we have

ϕ

((
b1/2
∞

b−1/2
∞

)
h∞

(
ā j

a−1
j

))
ε′
((

b
1

))
= ϕ

(
h∞

(
ā j

a−1
j

))
(6.1)

for h∞ ∈ U(1, 1)(F∞). (This condition is necessary for a SL2 modular form to
extend to a unitary Hilbert modular form on GL2 with nebentypus ε.)

We define a map αψ from ϕ’s on U(1, 1)(AF) as above to automorphic forms
on GL2(AF). Recall that by our assumption (4) at the beginning of this paper the
Norm map from the ideal class group of K to that of F is surjective.

DEFINITION 64. We say that a j ā j ∼ g if (det g/a j ā j) is in the trivial narrow
class group of F . Define

αψ(ϕ)(g) = αψ,ε,ε′(ϕ)(g) =
∑

j :a j ā j∼g

ϕ

(
h∞

(
ā j

a−1
j

))
ε(k)ψ(z∞a j)

for g = γ z∞h∞
(ā j ā j

1

)
k ∈ GL2(AF) where γ ∈ GL2(F), h∞ ∈ SL2(F∞), z∞ ∈

Z(F∞), k ∈ Γ0(I )GL2 ⊆ GL2(ÔF). The (6.1) condition makes sure that this is well
defined. Note also that by our assumptions on K/F any element g can be written
as the above form. This definition does not depend on the choice of I .

We have the following lemma.

LEMMA 65. The assumptions are as above. Suppose that ϕ1, ϕ3 are automorphic
forms on GU(1, 1)(AF), and that ϕ2 is an automorphic form on U(1, 1). Let ψ1,

ψ2, ψ3 be Hecke characters for K. Suppose that ψ1ψ2ψ̄3 = 1 and that the central
characters of ϕ1, ϕ3 are ψ1, ψ3. Suppose also that ε′1, ε

′
2, ε
′
3 are nebentypus of

α1|U (1,1), α2, α3|U(1,1). Assume that ε′1ε
′
2ε̄
′
3 = 1 and that the ε′i and ψi satisfy the

assumptions above. Then

2uK[O×K : O×F ]〈ϕ1ϕ2, ϕ3〉U (1,1) = 〈ϕ1αψ2(ϕ2), ϕ3〉GL2,

where uK is some number depending only on K. (This factor comes out when
considering GL2/F modulo the center and considering vK.)

Here we implicitly identified GL2 with a subgroup of GU(1, 1) in the obvious
way. The proof is straightforward.
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6.9. Formulas.

DEFINITION 66. If f is a Hilbert modular form on GL2/F with central character
ψ , we define

f c(g) := f
((

1
−1

))
g
((

1
−1

))
,

f̃ c := f c⊗ψ(det−).

DEFINITION 67.

g̃(m)D,β(−, x) := (H̃ (m)
D,β(α(x,−))⊗ ξ(det−))

and

g(m)D,β := trΓ0(M)/Γ0(M2
D)
π

((
1

M2
D

M

))
(g̃(m)D,β).

We have the following generalization of [44, Proposition 11.28]. Note that
the formulas are slightly different from those in [44] since we used the adelic
language. Write aD(β, x) and cD(β, x) for the β-Fourier coefficients for ϕ(z, x)
and E(Z , x).

PROPOSITION 68. The notation is as above. Let β ∈ Sm(F).

(i) There exists a constant C (m)
D depending only on D and m such that〈

g̃(m)D,β(−, x), ρ
(( −1

1

)
f

(
M2

D
∏

v|p xv x̄v
1

)
f

)(
1

−1

)
f

f̃ c

〉
ΓD,0

= C (m)
D

{
aD(β, x) m = 1
cD(β, x) m = 2.

(ii) If µv,1(p) 6= 0 for any v|p and if p|fχ and p|fχ−1ξ then

C (1)
D = (−π22−κ i−κ)d

∏
v-p,v∈Σ

ψ c
vτv(MD)|MD|κFγ (1)(ρp,−zκ)

×
∏
v|p
ξ c
v (xv) ·

Γ (κ − 1)d LΣK( f, χ−1ξ, κ − 1)

Γ (κ)d
∏1

j=0 LΣ(χ−1ξ ′χ j
K, κ − j)

prv(2−κ/2),
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where

γ (1)(ρp,−zκ) = ψ̄p(−1)
∏
v|p

c2(τ̄
′
0,v, 1− κ/2)ξ̄ c

v (xv)g(τ
′
0,v)

2 · p−rv+nv(κ−2)

×
∏
v|p
µ1,v(p)rv−nvg(µ−1

1,vξ
c
v , xv) · χv ξ̄v(yv)g(µ1,vχ̄vξ

c
v , yv)

and (yv) := cond(χ̄vξ c
v ) and (pnv ) := (yv ȳv).

(iii) Suppose that we are in the generic case for any v|p. Then C (2)
D =

C (1)
D
∏

v|p pevrv .

Proof. One argues similarly to [44, Proposition 11.28] and the end of [44, 11.6].

Now we define a normalization constant

B(m)
D := |MD|κ/2K ·

m∏
j=0

(κ − j − 1)!d
m∏

j=0

LΣ(κ − j, χ̄ξ ′χ j
K)

×
∏

v∈Σ,v-p

χv ξ̄
c
v (yvδK)g(χ̄vξ

c
v , yvδK)|yvδK|2−κK,v


/ ∏

v-p,v∈Σ
ψ c
vτv(MD)ψ̄p(−1)

×
∏
v|p

cm+1(τ̄
′
0,v,−(κ − m − 1)/2)g(τ ′0,v)

m+1g(ξ c
v , xv)

}
× (−1)md2m(m+1)d(2π i)−(m+1)dκ(π/2)m(m+2)d/2

×


∏
v∈Σ,v-p

χv ξ̄
′
v($

ev
v )q

ev(κ−2)
v g(χv ξ̄

′
v,$

ev
v )
−1 m = 2

1 m = 1

and let
f (m)D,β,x(−) = B(m)

D g(m)D,β(−, x), (6.2)

where ($ ev
v ) is the conductor of ξv ξ̄ ′v.

Now for m = 1 or 2 we define

L (m)D =
2−3d(2i)d(κ+1)∏
v|p pevrv(1−κ/2) B(m)

D C (m)
D
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and
S( f ) :=

∏
v|p
µ1,v(p)−rv pevrv(κ/2−1)W ′( f )−1,

where W ′( f ) is the prime to p part of the root number of f with |W ′( f )|p = 1
(see [44, page 221]). Recall that in the subsection on notation we defined r v such
that prv ‖ Nv for v|p.

PROPOSITION 69. The assumptions are as before. Suppose that κ > 2 if m = 1
and κ > 6 if m = 2. Suppose that x = diag(u, tū−1

) with u ∈ GLm(AK, f ). Suppose
that p|fχ̄ξ and pr |Nm(fξ ). Suppose also that cond(ψp)|fcξOK,p.

(i) 〈
( f (m)D,β,x ⊗ ξ), ρ

(
M
∏

v|p

( −1
prv

)
f

)
f̃ c

〉
ΓD,0〈

f, ρ
(

M
∏

v|p

( −1
prv

))
f̃ c

〉
GL2,ΓD,0

= L (m)D

2−3d(2i)d(κ+1)S( f )
〈

f, ρ
(( −1

N

))
f̃ c

〉
GL2,Γ0(N )

× W ′( f )−1

{
aD(β, x) m = 1
cD(β, x) m = 2.

Here, ‘⊗ ξ ’ means multiplying by ξ ◦det considered as a function on 1×U(1,
1)(AF) and the subscript ‘ f ’ means the finite part.

(ii)

L (1)D =
∏
v|p

a(v, f )−ordv(Nm(fχ̄ξ ))

(
(κ − 2)!
(−2π i)κ−1

)2d

× g(χ̄ξ)Nm(fχ̄ξδK)κ−2 LΣK( f, χ̄ξ, κ − 1),

where LΣK( f, χ̄ξ, κ − 1) is the Σ-primitive L-function for f twisted by χ̄ξ
over K.

(iii) Under the hypotheses of Proposition 50(iii),

L (2)D =
∏
v

prv × L(3− κ, χξ̄ ′)
∏
v∈Σ
(1− χ̄ξ ′($v)q2−κ

v )L (1)D .
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Proof. See [44, Proposition 11.31].

COROLLARY 70. Under the hypotheses above for some choices of x and β〈
( f (1)D,β,x ⊗ ξ), ρ

(( −1
prp M

)
f

)
f̃ c

〉
ΓD,0〈

f, ρ

(( −1
prp M

)
f

)
f̃ c

〉
GL2,ΓD,0

= L (1)D

(2−3(2i)κ+1)d S( f )

〈
f, ρ

(( −1
N

)
f

)
f̃ c

〉
GL2,U0(N )

.

Proof. See [44, Corollary 11.32]. Note that in the Hilbert modular form case the
β and x are not necessarily the same as in [44]. (We need to use the assumption
that Nm : Cl(K)→ Cl(F) is surjective.)

For any x ∈ G(AF, f ) let

GD(Z , x) := W ′( f )−1 L (2)D |µ(x)|−κF ED(Z , x),

and let CD(β, x) be its βth Fourier coefficient.

COROLLARY 71. Under the hypotheses as above,〈
( f (2)D,β,x ⊗ ξ), ρ

(( −1
prp M

)
f

)
f̃ c

〉
ΓD,0〈

f, ρ

(( −1
prp M

)
f

)
f̃ c

〉
GL2,ΓD,0

= CD(β, x)

(2−3(2i)κ+1)d S( f )

〈
f, ρ

(( −1
N

)
f

)
f̃ c

〉
GL2,Γ0(N )

.

Proof. See [44, Corollary 11.33].

6.10. A formula for Fourier coefficients. Now we express certain Fourier
coefficients of GD(Z , x) as essentially Rankin–Selberg convolutions of f and
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sums of theta functions. This is used later to prove various p-adic properties
of these coefficients. Let D = ( f, ψ, ξ,Σ) be an Eisenstein datum. We assume
that

for any v|p, πv, φv, ψv, τv are in the generic case.

Let λ be an idele class character of A×K such that

• λ|A×F = 1;

• λv(x) = (xv/|xv|)−2 for all v|∞;

• λv is unramified if v - Σ \ {v|p}.
Let a1, . . . , ahK ∈ A×K be representatives of the class group of K as in the previous
sections such that ai = ($vi , 1) for some place vi of F splitting in K. Also, for
i ∈ I1 (defined in Section 2.1), ai āi is trivial in the narrow class group of F . Let
qi ∈ F× be a generator. For such i we assume that $vi = qi . Let Q = {vi}i∈I1 .

Let β ∈ S2(F), β > 0, and u ∈ GL2(AK, f ) be such that

• uv ∈ GL2(OK,v)for v 6∈ Q;

• tūvβuv ∈ S2(OF,v)
∗for all primes v;

• tūβu is v-primitive for all v 6∈ Σ \ {v|p};
• if u−1β−1tū−1 = (∗ ∗∗ d) then dv ∈ OF,v for all v ∈ Σ \ {v|p}.

Let MD be as before and also satisfying

cond(λ)|MD and DK det tūβu|MD.

All Weil representations that show up in the following are defined using the
splitting determined by the character λ. By our choice of K, there is an idele d1

of AK so that d1d̄1 = d. Later we are going to choose u and β such that they do
not belong to GL2(Ov) only when v = vi for some vi above. Let gη = η−1gη and
g′ = (1

−1

)
g
(

1
−1

)
. Recall that we have proved the following.

For v = vi ∈ Q

F Jβ,v( f ; zκ , x, gv, uv yv)

= τ(det uv yv)| det uv yv|−z+1/2
K∏1

j=0 L(2z + 3− j, τ̄ ′vχ
j
K,v)

f sph
1 (gv)ωβ(uv, gv)Φ0,yv (x).
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For v ∈ Σ \ {v|p} (note that we have restricted ourselves to the case when the
local characters ψv, τv are unramified),

∑
a∈(OK,v/MD)×

F Jβ,v

(
z; x, gv

(
a−1

ā

)
, rvuv

)
= τ(det rv yv)| det rv|−z+1/2

K

×
∑

b∈OF,v/D̃vd

f−b(z, g′vη)ωβ

(
rv, g′v

(
1
−b 1

))
Φ1,MD,uv (x).

For these v, we have

f−b,v

((
1
−n 1

)
g′η
)
= (τvλ−1

v )(−1) f−b,v

((
1
−n 1

)
gvη

)
= (τvλ−1

v )(δ̃Kd̄1)
−1|δKd̄1|κ/2 f †

v

×
((

1
−n 1

)
gvη

(
1 b

1

)(
δ̃Kd̄1 ¯̃

δ−1
K d̄−1

1

))
.

For v|p,

∑
a∈(OK,v/xv)×

µ−1
1,vξ

c
v τ(a)F Jβ,v

(
−z; x, gv

(
a−1

ā

)
, rvuv

)
= ψv(−1)τ̄ ′v(det h)g(τ ′v)

2τ̄ ′v(p
2uv )p−4uv z−5uvτ(det rv yv)| det rv|−z+1/2

K | det h|2z+1
v

× fuv ,1(z, gvη)ωβ(rv, gv)Φξ cµ−1
1,v ,xv ,uv

(x).

(Here xv is a generator of the conductor of ξ cµ−1
1,v. Here we use the bad notation uv,

the last one means the v-component of u while the other uv means the conductor
defined at the end of Section 6.7.)

For h ∈ Uβ(AF), u ∈ GL2(AK), we define

Φ̃ := Φ̃D,β,u =
⊗
v|∞

Φβ,v

∏
v|p
Φβ,ξ c

vµ
−1
1,v ,xv ,uv

⊗
v-p

Φβ,1,MD,uv

⊗
v 6∈Σ

Φ0,uv

and Φ := ΦD,β,u = λ(d1δ
−1
K )
−1|d1δ

−1
K |−1

K ω
((

d1δ
−1
K

d̄−1
1 δ̄K

)
η−1

)
Φ̃D,β,u , and define

ΘD,β(h, g; u) := Θβ(h, g;ΦD,β,u).
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The following formula will be useful in Equation (6.4):(
ωβd−1,v

(
η

(
1 n

1

)
gηv

(
1 b

1

)
η−1

)
Φ̃

)
(vd1)

= ωβ,v
((

d1

d̄−1
1

)(
d−1

1

)
η

(
1 n

1

)
gηv

(
1 b

1

)
η−1

(
d

1

))
Φ̃(v)

= λ(d1δ
−1
K )|d1δ

−1
K |Kωβ,v

((
d̄−1

1
d̄−1

1

)
η

(
1 n

1

)
× gηv

(
1 b

1

)(
1
d

)(
δKd

−1
1
δ̄−1
K d̄1

))
Φ(v)

= λ(d1δ
−1
K )|d1δ

−1
K |Kωβ,v

(
η

(
1 n

1

)
gηv

(
1 b

1

)(
δ̃K ¯̃
δ−1
K

))
Φ(v).

To see this, observe that

Φ̃ = λ(d1δ
−1
K )|d1δ

−1
K |Kωβ

(
η

(
δKd

−1
1
δ̄−1
K d̄1

))
Φ

and

ωβd−1(g) = ωβ
((

d−1

1

)
g
(
d

1

))
.

DEFINITION 72. Let⊗
fv = fD :=

⊗
v|∞

fκ
⊗
v|p

fuv

⊗
v∈Σ,v-p

f †
v

⊗
v 6∈Σ

f sph
v ∈ I1

(τ
λ

)
and define ED to be the corresponding Eisenstein series on U(1, 1)(AF).

We define

CD(β, r, u)

= (2π i)2κd(2/π)d |δK|−1/2
K |δF |−1

F χξ̄(det ru)| det ru|−κ/2+2
K

∏
vi |∞(detβκ−2

vi
)∏1

j=0((κ − 1− j)!d LΣ(κ − j, χ̄ξ ′χ j
K))

× ψp(−1)χ̄pξ
′
p(detβ)| detβ|κ−2

p

∏
v|p

g2(χv ξ̄
′
v, p)χ̄pξp(p2u p)pu p(1−2κ).

If x = (hu
t(hu)−1

)
for u ∈ GL2(AK), h ∈ Uβ(AF) satisfies the assumptions at the

beginning of this subsection, then, using the useful formula before Definition 72,
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we get that if g is such that g′f ∈ B(AF, f )U0(M2
D D̃Kdprp) we have

H̃D,β(zk, α(x, g′)) diag(d−1
1 , d

−1
1 , 1, d̄1, d̄1, 1)

=
∑

a∈(Ô/x p MD)×

µ−1
p,1ξ

cτ(a)HD,β

×
(
α

(
x, g′

(
a−1

ā

))
diag(d−1

1 , d
−1
1 , 1, d̄1, d̄1, 1)

)
= CD(β, r, u)

×
∑
n∈F

∑
v∈K2

∑
b

∏
v

f−b,v

((
1
−n 1

)
gvη

)

× ωβd−1,v

(
h,
(

1
n 1

)′
gv

(
1
−b 1

))
Φ̃D,β,u(vd1)

= |δ̃Kd̄1|κ/2−1
K τ(δ̃Kd̄1)

−1CD(β, r, u)

×
∑

n

∑
v

∑
b

∏
v

fv

((
1
−n 1

)
gvη

(
1 b

1

)(
δ̃K ¯̃
δ−1
K

)(
d̄1

d−1
1

))

× ωβ,v
(
η

(
1 n

1

)
gηv

(
1 b

1

)(
δ̃K ¯̃
δ−1
K

))
ΦD,β,u(v)

= |δ̃Kd̄1|κ/2−1
K τ(δ̃Kd̄1)

−1CD(β, r, u) (6.3)

×
∑

b

ρ

(
η

(
1 b

1

)(
δ̃K ¯̃
δ−1
K

))
ΘD,β(h, g; u)

× ρ
(
η

(
1 b

1

)(
δ̃K ¯̃
δ−1
K

)(
d̄1

d−1
1

))
ED(g). (6.4)

The last step is because Θβ is an automorphic form. Here we use ρ for the right
action of U(1, 1). By strong approximation this is true for all g.

Now let x =
(

hud−1
1

th̄−1 tū−1 td̄1

)
. Then

〈
g̃(m)D,β

(−, x), ρ
(( 1
−1

)
f

(
1

M2
D
∏

v|p(p
rv )v

)( −1
1

)
f

)
f̃ c

〉
ΓD ,0

= |δ̃Kd̄1|(κ/2)−1
K τ(δ̃Kd̄1)

−1

〈∑
b

ρ

(
η
(1 b

1

)(
δ̃K ¯̃

δ−1
K

))
(ΘD,β ⊗ ξ)(h,−, u)·

ρ

(
η
(1 b

1

)(
δ̃Kd̄1 ¯̃

δ−1
K d1

−1

))
ED, ρ

(( 1
−1

)
f

(
1

M2
D
∏

v|p(p
rv )v

)( −1
1

)
f

)
f̃ c

〉
ΓD,0
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= |δ̃Kd̄1|(κ/2)−1
K τ(δ̃Kd̄1)

−1

〈∑
b

ρ

((1 b
1

)(
δ̃K ¯̃

δ−1
K

))
(ΘD,β ⊗ ξ)(h,−; u)·

ρ

((1 b
1

)(
δ̃Kd̄1 ¯̃

δ−1
K d1

−1

))
ED, ρ

((
1

M2
D
∏

v|p(p
rv )v

)( −1
1

)
f

)
f̃ c

〉
Γ0(M2

D
∏
v|p (prv )v )

= |δ̃Kd̄1|(κ/2)−1
K τ(δ̃Kd̄1)

−1

〈
ρ

((
d−1

1
d̄1

))
A′β(h,−; u) · ED,

ρ

((
δ̃−1
K d̄−1

1 ¯̃
δKd1

)(
1

M2
D
∏

v|p(p
rv )v

)( −1
1

)
f

)
f̃ c

〉
Γ0(M2

D D̃Kd
∏
v|p prv )

= |δ̃Kd̄1|κ/2−1
K ξ(δ̃Kd̄1)

〈
ρ

((
d−1

1
d̄1

))
A′β(h,−; u) · ED,

ρ

((
1

D̃Kd

)(
1

M2
D
∏

v|p(p
rv )v

)( −1
1

)
f

)
f̃ c

〉
Γ0(M2

D D̃Kd
∏
v|p prv )

where A′β = (ΘD,β ⊗ ξ)(h,−; u)). Now, for vi with i ∈ I1, by definition we have
that vi v̄i is an ideal of F generated by a totally positive global element. Let us
take such a generator qi . Also we take representatives {b j } j of the coset:

{b: totally positive units in O×F }/{cc̄ for c a unit in O×K}.
Then we define

A′(g) :=
∑
i, j,k

ΘD,βi jk (h, g, u).ξ(det g) (6.5)

where βi jk =
(

b j
qi bk

)
.

REMARK 73. The reason for introducing such b j is to make sure that the A′

satisfy (∗) in the subsection for nebentypus (by checking the q-expansion) and
can be extended later to some theta functions on GL2.

DEFINITION 74. Let αξλ be the operator α defined in Definition 64 using the
character ξλ. We define

A := αξλA′. (6.6)

(Recall that A′ is a form in U(1, 1) and A is a form on GL2(AF).)

These A and A′ will be used in Proposition 92 in Section 8. We are in a position
to state our formula for the Fourier coefficients for Klingen Eisenstein series.
Before this let us do some normalizations:

BD,1 = (κ − 3)!d LΣ (κ − 2, χ̄ξ ′)
(−2)d(2π i)(κ−2)d

∏
v|p(g(χv ξ̄ ′v, p))χ̄vξ ′v(pu p )p(2−κ)u p

, (6.7)



X. Wan 60

BD,2

:=
|MD|κ/2K 23d i−2d |δK|−1/2

K |δF |−1
F
∏
v|Σ\{v|p} χv ξ̄c

v (yvδK)g(χ̄vξ
c
v , yvδK)|yvδK|2−κK,v

g(ξc
p, x p)

,

(6.8)

BD(β, r, u) := ψξ̄(det ru)| det ru|(κ/2)+2
K χ̄pξ

′
p(detβ)| detβ|κ−2

p
∏
vi |∞(detβκ−2

vi
)∏

v|Σ/{v|p} χ̄vξ ′v($
ev
v )q

ev(2−κ)
v g(χv ξ̄ ′v)

.

(6.9)

Then
B(2)
D CD(β, r, u) = BD(β, r, u)BD,1 BD,2.

The following proposition follows immediately from Proposition 68 and the
previous calculation.

PROPOSITION 75. With the assumptions at the beginning of this subsection, let

β ∈ S2(F), β � 0,

and u, h, x be as before. Then

CD(β, x)

2−3d (2i)(κ−1)d S( f )
〈

f, ρ
(( −1

N

))
f̃ c
〉

GL2,Γ0(N )

= |δ̃Kd̄1|(κ/2)−1
K ξ(δ̃Kd̄1)BD(β, h, u)BD,1ED(−)BD,2〈

π

((
d−1

1

d̄1

))
A′β (h,−; u), ρ

(( −1
M2
D D̃Kd

)( −1∏
v|p prv

))
f̃ c

〉
Γ0(

∏
v|p prv M2

D D̃Kd)〈
f, ρ

(( −1∏
v|p prv

)( −1
M

))
f̃ c
〉

GL2,ΓD

.

Now let us make some choices for the u and β and record some formulas for the
theta kernel functions. We remark that our convention for Φ is slightly different
from [44] in the F = Q case (ours is given by applying ω

((
d1δ
−1
K

d̄−1
1 δ̄K

))
to the

one chosen by [44]).
Let γ0 ∈ GL2(AK, f ) be such that γ0,v = (η, 1) for v|p and γ0,v = 1 otherwise.

We let ui = γ0

(
1

a−1
i

)
. Then the βi jk, ui satisfy the assumptions at the beginning

of this subsection.
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The following formulas follow from our computations in Section 5. For v|p,

Φβi jk ,ξ c
vµ
−1
1,v ,xv ,γ0,p

(x) =
ξ̄v,2µ

−1
1,v(bkqi x ′′2 )g(ξv,2)ξ̄v,1µ

−1
1,v(x

′
1b j)g(ξv,1) x1 = (x ′1, x ′′2 ) ∈ O×F,v ×OF,v,

x2 = (x ′2, x ′′2 ) ∈ O×F,v ×OF,v,

0 otherwise.

For j ∈ I , then

ωβi jk (g∞ j )Φβi jk ,∞ j (x) = e(Nm(x1)b jw)e(Nm(x2)bkqiw) j (g∞ j , i)−2.

Also, if v - p, v ∈ Σ ,

Φβi jk ,1,MD,1(x) = |Dv|−1λv(−1)|M2
D|−1

v


1− 1

q ′v
, x1 ∈ MDOv, x2 ∈ Ov,

− 1
q ′v
, x2 ∈ Ov, x1 ∈ MD

$v

O×v ,

0 otherwise,

for v nonsplit, and

Φβi jk ,1,MD,1(x) = |Dv|−1λv(−1)|MD|−1
v

(
1− 1

qv

)2

, x1 ∈ MDOv

d1
, x2 ∈ Ov

d1
,

− 1
qv

(
1− 1

qv

)
, x2 ∈ Ov

d1
, x1 ∈

(
MD

$v′d1
O×Fv ×

O×Fv
d1

)
or
(O×Fv

d1
× MD

$v′d1
O×Fv

)
,

1
q2
v

, x2 ∈ Ov

d1
, x1 ∈ MD

$vd1
O×v ×

MD

$vd1
O×v ,

0 otherwise,

for v split.
If v = vi ,

Φ0,ui ,v(x) =
{

1 x1 ∈ OK,v, x2 ∈ a−1
i OK,v,

0 otherwise.
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6.11. Identify with Rankin–Selberg convolutions. From now on we assume
that all characters (χ, ξ, τ ) are unramified outside p. We recall the notion of
Rankin–Selberg convolution for Hilbert modular forms, following [15]. Let f
and g be two Hilbert automorphic forms (as functions on GL2(AF)) with level
dividing some m. For simplicity, we assume that both f and g have unitary central
characters χ and ξ and have parallel weight k and κ such that k > κ . Let τ = χ/ξ
and Γ∞ = N (OF) define Eisenstein series

E (x; s) =
∑

γ∈Γ∞\Γ0(m)

τ(γ x)η(γ x)s j (γ, x∞(z0))
k−κ | j (γ, x∞(z0))|κ−k

as in [15, page 341 (4.5)], where η is defined at the bottom of [15, page 341].
Suppose that the nebentypus of g and f differ by the nebentypus of E (this
satisfies [15, 4.5]). Consider the following integral:

Z(s, f, g, τ ) =
∫

F×A+ /F+

∫
FA/F

Φ( f c, g)
((

y x
0 1

))
τ(y)|y|sA dx d×y,

where Φ( f c, g)(x) = f u(x)gu(x)| j (x∞, z0)
−k−κ |, f u(x) = D−1 f (x) j (x∞, z0)

k ,
and gu(x) = D−1g(x) j (x∞, z0)

κ , with D the discriminant of F/Q. Note that
there are minor differences between the notation here and in [15], and that the
m and µ there are 0 in our case. Now for any ideal a ⊂ OF we define a value
a(a, f c)a(a, g)τ (a) as follows. Take any t ∈ A×F which represents the ideal a,
and define

a(a, f c)a(a, g)τ (a) = a(t, f c)a(t, g)τ (t)

if a is prime to the conductor or τ and is 0 otherwise. This definition does not
depend on the choice of t by our assumption on nebentypus. Then

Z(s, f, g, τ ) = D(1+2s)/2τ(d)−1(4π)−d(s+(k+κ)/2)Γ (s + k/2+ κ/2)d D(s, f, g),

where
D(s, f, g) =

∑
OF⊃a 6=0

a(a, f c)a(a, g)τ (a)NmF/Q(a)
−s .

By (4.7) in [15], up to a nonzero constant

Z(s, f, g, τ ) = D−2
∫

X0

f̄ g(x)

× E (x; s + 1) j (x∞, z0)
κ−k | j (x∞, z0)

k−κ |dx,

where X0 := GL2(F)\GL2(AF)/U0(m)A×F C+∞. Note that our formula is a special
case of (4.7) in [15], and is easier due to our assumptions on the nebentypus.
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Let α f = (av)v ∈ GL2(AF, f ) be defined by av =
( −1

M2
D D̃Kd

)
of v ∈Σ \{p} and

av = 1 otherwise. For m > 0, let bm ∈ GL2(AF, f ) be defined by bm,v =
( −1

pm

)
for v|p and bm,v = 1 for v - p. Then

ρ(α)ED = E( f ′D, zκ; γ∞),
where f ′D(z, g) := fD(z, gα−1

f ) ∈ I1(τ/λ). It follows that f ′D(z, g) is supported
on

B1(AF)ηK+1,∞NB1(ÔF)α = B1(AF)K+1,∞K1(pu p M2
D D̃Kd)

and that for g = bk∞k f in the support we have

f ′D(z, g) = |M2
D D̃Kd|−(κ/2−1)

F τ λ̄(dbdk f )|ab/db|z+1/2
AF

J1(k∞, i)2−κ , b =
(

ab ∗
db

)
.

Suppose that h ∈ S2(prp M2
D D̃K) is a normalized eigenform such that the

nebentypus of ED · h is the same as f . Then

BD,1

〈
EDρ

((
1

−1

)
v-p,∞

(
D̃KdM2

D
1

)
f

)
h, ρ

×
( 1
−1

)
f

(
D̃KdM2

D
∏
v|p

prv
v

1

)
f

 f̃ c

〉
ΓD,0

= BD,1

〈
ρ

((
D̃KdM2

D
1

)−1

f

(
1

−1

)−1

v-p,∞

)
ED · h, ρ

×
(D̃KdM2

D
∏
v|p

prv
v

1

)−1

f

(
1

−1

)−1

v-p,∞

×
(

1
−1

)
f

(
D̃KdM2

D
∏
v|p

prv
v

1

)
f

 f̃ c

〉
ΓD,0

= BD,1

〈
ρ

((
D̃KdM2

D
1

)
f

(
1

−1

)
v-p,∞

)
ED · h, ρ

( −1∏
v|p

prv
v

)
p

 f̃ c

〉

= BD,1

〈
ρ

((
D̃KdM2

D
1

)
f

(
1

−1

)
v-p,∞

)
ED · h, (χp(p)ap( f̃ c

p ))
rp−u pρ

×
( −1∏

v|p
puv
v

)
p

 f̃ c

〉
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= D(κ+1)/2τ(d)−1|M2
D D̃K|κ/2−1

F (χ̄p(p)a( f p))
rp−u p BD,1(4π)(1−κ)dΓ (κ − 1)d

× D

(
ρ

(( −1
pu p

)
p

)
f̃ c,u, hu; κ − 1

)
= D(κ+1)/2τ(d)−1|M2

D D̃K|κ/2−1
F (χ̄p(p)ap( f p))

rp−u p

× BD,1c( f )(ξp(p)ap(h p))
u p−r (4π)(1−k)dΓ (κ − 1)d

× LΣ(κ − 2, χ̄ξ ′)−1 L( f c
1 × h, κ − 1).

Here the superscript u means the unitarization. We get the following.

LEMMA 76. The assumptions are as above. Suppose that h ∈ S2(prp M2
D D̃K) is

a normalized eigenform on GL2(AF). Then〈
BD,1ED · ρ

((
1

−1

)
v-p,∞

(
D̃KdM2

D
1

)
f

)
h, ρ

((
1

−1

)
f

(
D̃KdM2

D
∏
v|p prv

v

1

)
f

)
f̃ c

〉
= BD,3 L( f̃ c × h, κ − 1),

where

BD,3 := |M2
D D̃K|κ/2−1

F (χ̄p(p)ap( f p))
rp−u p

× BD,1c( f )(ξp(p)ap(h p))
u p−r (4π)(1−κ)dΓ (κ − 1)d × LΣ (κ − 2, χ̄ξ ′)−1.

7. p-adic interpolations

7.1. p-adic Eisenstein datum. As in [44, Section 12], we define the p-adic
Eisenstein datum to be D = (A, I, f, ψ,Σ) which consists of:

• The integer ring A of a finite extension of Qp.

• I, a local finite integral domain over ΛW,A.

• A nearly ordinary I-adic normalized eigenform f which is new at all v - p such
that some specialization fκ0 is of parallel weight κ0 and trivial character.

• A finite-order Hecke character ψ of A×K/K× and (condψ)|p and ψ |A×F = 1.

• A finite-order Hecke character ξ of K such that (cond ξ)|p, and the p-adic
avatar of ξ · | · |κ0/2−1 factors through ΓK.

• A finite set Σ of primes containing all primes dividing NδK and conductors of
ψ and ξ .

REMARK 77. For simplicity we have assumed that ψ is unramified outside p and
that the χ f in [44, 12.1] is trivial. The assumption on the p-adic avatar is used to
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require that the central critical value L( fκ0, κ0/2) is an interpolation point of our
family so that we can apply Theorem 86.

Recall also that we have defined in Section 3.1 the maps α and β. Let ψ :=
α ◦ ωψΨ −1

K and ξ := (β ◦ ΨK) · ξ .

DEFINITION 78. Recall that we define X a
D to be the set of arithmetic weights φ

such that κφ > 6. Let X gen
D ⊂ X a

D be the subset such that the local Eisenstein
datum is generic as defined in Section 4.1.3.

For φ ∈ X a
D we define

ψφ(x) :=
(∏
σ∈Σ

x−κφσ xκφvσ

)
(φ ◦ ψ(x))|x |κφ/2K .

Here vσ is the p-adic place corresponding to σ under ι : C ' Cp. We also define

ξφ := φ ◦ ξ .

7.2. Interpolation.

7.2.1. Congruence module and the canonical period. Suppose that R is a finite
extension of Zp. We let Tord

κ (Mpr , ε; R) (T0,ord
κ (Mpr , ε; R)) be the R-subalgebra

of EndR(Mord
κ (Mpr , ε; R)) (respectively, EndR(Sord

κ (Mpr , ε; R))) generated by
the Hecke operators Tv (these are Hecke operators defined using the double coset

U1(N )v

(
$v

1

)
U1(N )v

for the v). For any f ∈ Sord
κ (N , ε; R) a nearly ordinary eigenform we have

1 f ∈ T0,ord
κ (N , ε; R)⊗R FR = T′κ × FR

as the projection onto the second factor. Let m f be the maximal ideal of Tord
κ (N ,

ε; R) corresponding to f .
Suppose that the localization of the Hecke algebra at m f satisfies the Gorenstein

property. Then Tord,0(M, ε; R)m f is a Gorenstein R-algebra, so Tord,0(M, ε; R) ∩
(0 ⊕ FR) is a rank-one R-module. We let ` f be a generator; so ` f = η f 1 f for
some η f ∈ R.

Suppose that f ∈ Mord(M, I) is a nearly ordinary I-adic cuspidal eigenform.
Then, as above,

Tord,0(M, I)⊗ FI ' T′ × FI,
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where FI is the fraction field of I and projection onto the second factor gives the
eigenvalues for the actions on f. Again let 1f be the idempotent corresponding
to projection onto the second factor. Then for an g ∈ Sord(M, I) ⊗I FI, 1fg = cf
for some c ∈ FI. As above, under the Gorenstein property for f, we can define `f
and ηf.

DEFINITION 79. For a classical point fφ of f under the Gorenstein assumption
the canonical period of fφ is defined by

Ω fφ ,can :=
2−3d(2i)(κφ+1)d S fφ

〈
fφ, ρ

(( −1
N

)
f

)
f̃ c
φ

〉
Γ0(Nφ)

η fφ
.

(The Nφ is the conductor of fφ .)

REMARK 80. This ‘canonical’ period depends on the generator `f.

For X ⊆ X a
D a Zariski dense set of points we define MX (M,ΛD) to be the

space of (finite set of) formal q expansions which when specializing to φ ∈ X
is a classical modular form with nebentypus εφ . The [44, Lemma 12.2] is true as
well for the Hilbert modular forms (the character θ there is assumed to be trivial
in our situation).

LEMMA 81. There exists an idempotent e ∈ EndΛD(MX (M;ΛD)) such that, for
any g ∈MX (M;ΛD), (eg)φ = egφ ∈ Mord

κφ
(Mptφ , εφ;φ(ΛD)) for all φ ∈ X a ,

and such that eMX (M;ΛD) =MX (M; I)⊗I ΛD.

We also have an analog of [44, Lemma 12.2.4, 12.2.5] (the key interpolation
lemma) in the Hilbert modular case and the proofs are completely the same. We
omit the details. They are used in constructing the p-adic L-functions and p-adic
Eisenstein series in the next two subsections.

7.3. p-adic L-functions. Now we state the main theorem for the existence of
the nonintegral and integral p-adic L-functions following [44, 12.3].

THEOREM 82. Let A, I, f, ξ , andΣ be as before. Suppose that there exists a finite
A-valued idele class character ψ of A×K such that ψ |A×F = χf and ψ is unramified
outside Σ .
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(i) There exists L̃Σ
f,K,ξ ∈ FI⊗I IK such that, for any φ ∈ X gen

D , L̃Σ
f,K,ξ ∈ FI⊗I IK

is finite at φ and

φ(L̃Σ
f,K,ξ ) =

∏
v|p
µ1,v,φ(p)

−ordv(Nm(fχ̄fφ ξφ
))

×
((κφ − 2)!)2dg(χ̄fφξφ)Nm(fχ̄fφ ξφ

δK)
κφ−2 LΣK(fφ, χ̄fφξφ, κφ − 1)

(−2π i)2d(κφ−1)2−3d(2i)d(κφ+1)S(fφ)

〈
fφ, ρ

(( −1
N

)
f

)
f̃c
φ

〉
Γ0(N )

.

(ii) Suppose that the localization of the Hecke algebra at m f is Gorenstein. Then
there exists LΣ

f,K,ξ ∈ IK such that, for any φ ∈ X gen
D , LΣ

f,K,ξ is finite at φ and

φ(LΣ
f,K,ξ ) =

∏
v|p
µ1,v,φ(p)

−ordv(Nm(fχ̄fφ ξφ
))

×
((κφ − 2)!)2dg(χ̄fφξφ)Nm(fχ̄fφ ξφ

δK)
κφ−2 LΣK(fφ, χ̄fφξφ, κφ − 1)

(−2π i)2d(κφ−1)Ω fφ ,can
.

Recall that in Remark 12 the µ1,v are defined as follows: the v component πv of
π fφ is such that πv ' π(µ1,v, µ2,v) and µ1,v(p) has p-adic valuation−(κφ − 1)/2
and µ2,v(p) has p-adic valuation (κφ − 1)/2. In terms of the q-expansion (2.1), if
yv ∈ A×F is the element which is p at v and is 1 at other places, then

µ1,v(p) = a(yv diag(d−1, 1), fφ) · p−(κφ−1)/2.

Proof. The proof is similar to that of [44, Proposition 12.6]. We first interpolate
the Fourier coefficients of the fD,β(−, x) defined in (6.2) (get a ΛD-adic
expansion) in the same way as in [44, Proposition 12.3]. Now there arises a
difference from the situation in [44]: these are only forms on U(1, 1) instead of
GL2/F . So we consider

∑
j

f (1)D,β

((
b1/2

j,∞
b−1/2

j,∞

)
g
)
ε−1

((
b j

1

)
f

)
(7.1)

instead (as functions of g), where the b j are defined before Remark 73 and ε
is the neben character for the fD,β(−, x). By checking the q-expansions we see
equation (7.1) satisfies (6.1). So it makes sense to define

αψ

(∑
j

f (1)D,β

((
b1/2

j,∞
b−1/2

j,∞

)
g
)
ε−1

((
b j

1

)
f

))
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(see Definition 64). We thus obtain an element fD,β(−, x) ∈MX (M;ΛD) in the
sense of Lemma 81. Let β and x be as in Corollary 70. Then the first Fourier
coefficient of 1 f e fD,β(−, x) or ` f e fD,β(−, x) at diag(d−1, 1) gives the L̃Σ

f,K,ξ or
LΣ

f,K,ξ by Corollary 70.

We will often write L̃Σ
D and LΣ

D for L̃Σ
f,K,ξ and LΣ

f,K,ξ .

REMARK 83. In [15, Theorem I] Hida also constructed a full-dimensional p-
adic L-function LHida

f,K,ξ for Hilbert modular Hida families (the g there is taken to
be the Hida family of CM forms corresponding to characters of ΓK times ξ ).
Our interpolation points are not quite the same as his. In fact he used differential
operators to allow nonparallel weights to get the whole family while we instead
allowed more general nebentypus at p. (Recall that Hida used the Rankin–Selberg
method and required the difference of the p-parts of the nebentypus of f and g to
come from a global character.) Hida is able to interpolate more general critical
values. In particular, the point φ0 corresponding to the special value L( f2, 1)
where f2 is the element in f with parallel weight 2 and trivial nebentypus is an
interpolation point. We look at the subfamily which is the Zariski closure W ′

of the arithmetic points where the specializations of both f and g are of parallel
weights and trivial characters. (W ′ is the spectrum of a quotient of I[[ΓK]] with
dimension 4.) The comparison between our construction and Hida’s will be useful
in proving Theorem 102 since our interpolation formula did not include the central
critical value L( fκ0, κ0/2). So we state the following proposition.

PROPOSITION 84. Up to a factor which is a unit in I[[ΓK]], we have

LHida
f,K,ξ |W ′ =

(
L̃Σ

D ·
∏

v∈Σ\{v|p}
EHida

f,K,v

)∣∣∣∣∣
W ′

,

where |W ′ means restriction to W ′, and EHida
f,K,φ,v is the local Euler factor at v. They

are by definition p-adic analytic functions since v - p.

Proof. The proposition is proved by comparing the interpolation formula for our
L̃Σ

D and the one in [15, Theorem I]. The factor mentioned in the proposition which
is a unit in I[[ΓK]] is a product of local root numbers at primes outside p for f and
CM forms (it is well known that they are units). We simply point out a couple of
items for comparison.

• In Hida’s interpolation formula in his Theorem I there are three p-adic Gauss
sum terms, while only two show up in our formula. The one in the denominator



The Iwasawa main conjecture for Hilbert modular forms 69

of [15] is caused by the difference in the Petersson inner product. It is well
known that the ratio is indeed given by root numbers, for example, by using the
global functional equation.

• Hida only proved the interpolation formula of for critical values of the Rankin–
Selberg product of some f and g both having weight at least two, while in our
case the corresponding g is of weight one. However it is easily seen that Hida’s
interpolation extends to our situation as well.

We also have the Σ primitive p-adic L-functions L̃Σf,K,ξ and LΣf,K,ξ for a single
f by specializing the one for f to f (see [44, Theorem 12.7]).

7.3.1. Connections with anticyclotomic p-adic L-functions. Let β : ΛK,A →
Λ−K,A be the homomorphism which corresponds to specializing to anticyclotomic
twists of the central critical values L( fκ0, κ0/2). (The β means this only in this
subsection.) For A the integer ring of a finite extension of Qp, β extends to

FA ⊗A ΛK,A → FA ⊗A Λ
−
K,A,

for FA the ring of fractions of A. Now we define the anticyclotomic p-adic L-
function:

LΣ,−
f,K,ξ := β(LΣ

f,K,ξ ) ∈ Λ−K,A
and

L̃Σ,−
f,K,ξ,v := β(L̃Σ

f,K,ξ ) ∈ Λ−K,A ⊗A FA.

For v|p we can further specialize γ −v′,i = 1 for all v′ 6= v to get LΣ,−
f,K,ξ,v and

L̃Σ,−
f,K,ξ,v.

DEFINITION 85. For some v|p, L̃Σ,−
f,K,ξ,v ∈ A[[Γ −v ]]×ZpQp, andLΣ,−

f,K,ξ ∈ A[[Γ −v ]]
when we have the Gorenstein property required to construct it. Then we say for
v, f satisfies the following ((NV1) or (NV2)) if:

(NV1) L̃Σ,−
f,K,ξ,v is not identically 0;

(NV2) LΣ,−
f,K,ξ is not divisible by$A in A[[Γ −v ]] where$A is a uniformizer of A.

Recall that fκ0 is an ordinary form in the family f of parallel weight κ0 > 2 and
trivial nebentypus. Write φ0 ∈ I[[ΓK]] for a point corresponding to the special
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L-value L( fκ0, κ0/2). Now we state a theorem giving a sufficient condition for
(NV1) and (NV2). We assume the branch character ξ = 1.

Now we state the following theorem of Hung [26].

THEOREM 86. Assume that p > 5. Suppose that the level of fκ0 is M = M+M−,
where M+ and M− are products of split and inert primes, respectively. Suppose
that

(1) M− is square free with the number of prime factors being congruent to d
modulo 2;

(2) ρ̄ f is ramified at all v|M−.

Then for any v|p (NV1) is true. Suppose moreover that

(3) the assumptions in Theorem 8 are satisfied.

Then for any v|p (NV2) is true.

Proof. This is essentially that of [26, Theorem B] except that we need to compare
the periods. We need to prove that the period defined in (5.2) of [26] is Hida’s
canonical period under our assumptions. We first claim that in his definition for
〈 fπ ′, fπ ′〉 in Section 4.7 there, the cardinality of the stabilizer is a p-adic unit.
Otherwise there will be a global element γ ∈ B×(F) of order p which means
F(γ ) is a field quadratic over F containing the pth roots of unity. However
since p is unramified in F the only possibility is p = 3, which contradicts
our assumption. This proves the claim, and thus this inner product is a perfect
pairing. Then assumptions (1) and (2) above ensure that the local Hecke algebras
corresponding to f on B and on GL2 are the same. Assumption (3) implies that the
self-inner product 〈 fπ ′, fπ ′〉 on B generates the congruence module. To see this we
need to know that the space of integral modular forms on B of level M is free of
rank one over Tm f . This can be proved using the argument of [9, Theorem 11.2].
There is a small difference between our situation and Fujiwara’s that, under the
assumptions, the quaternion algebra Fujiwara considers is split at primes dividing
M− while our B is ramified at those primes. But by our assumption (2) above this
does not make any difference for the argument. These altogether tell us that the
period in [9] is nothing but Hida’s canonical period.

Now we consider our LΣ
f,K,1 for f a parallel Hida family of eigenforms. The

local Euler factors at Σ\{v|p} for split primes v do not affect the anticyclotomic
µ-invariant (see [44, 12.3.2]). However the Euler factors at nonsplit primes are
nonzero elements of I[[Γ +]]. We still have the following.
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LEMMA 87. Let P be a height-one prime of LΣ
f,K,1 which is a pullback of a height-

one prime of I[[Γ +]]. Then

ordPLΣ
f,K,1 6 ordP

 ∏
nonsplit v∈Σ\{v|p}

Ef,K,1,v

 .
(Recall that Ef,K,1,v means the local Euler factor at v.)

Proof. The proof follows from our Remark 83 and Theorem 86.

7.4. p-adic Eisenstein series. We state some theorems which are straight
generalizations of [44, Section 12.4].

THEOREM 88. We use the assumptions as in Theorem 82(ii). Let D = (A, I,
f, ψ, ξ,Σ) be a p-adic Eisenstein datum. Suppose that (irred) and (dist) hold
and that the local Hecke algebra Tmf is Gorenstein. Then for each x = diag(u,
tū−1

) ∈ G(AΣ
F, f ) there exists a formal q-expansion

ED(x) :=
∑

β∈S(F),β>0

cD(β, x)qβ, cD(β, z) ∈ ΛD,

with the property that, for each φ ∈ X gen
D ,

EDφ
(x) :=

∑
β∈S(F),β>0

φ(cD(β, x))e(TrβZ)

is the q expansion at x for GDφ
/Ω fφ ,can . Moreover, if detβ = 0 then cD(β, x) ∈

LΣ
f,K,ξLΣ

ξ ′ΛD.

REMARK 89. There is also a ẼD version of the above theorem under the
hypothesis of Theorem 82(i) using 1f instead of `f. We omit it here. Also, from the
definition of 1f and the fact that the congruence number of fφ0 is finite, we can find
an element b ∈ I such that b1f is a Hecke operator with integral (I-coefficients)
and such that b(φ0) 6= 0. Now we explain how to see this using [14, Theorem II].
The Hida families are just components of the Hecke algebra h acting on the space
of cuspidal ΛW -adic nearly ordinary forms (recall that the ΛW is defined to be a
complete power series ring whose coefficient ring may be assumed to contain all
Fourier coefficients of fφ0 ). We need to know that f is the only component passing
through φ0. We invert p and look at the map of local rings

(ΛW ⊗Zp Qp)Pκφ0
→ (h⊗Zp Qp)(φ0),
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where the subscripts Pκφ0
and (φ0)mean localizations at these primes (Pκφ0

means
the prime corresponding to the weight of φ0). We denote this as A → B. Using
the fact that the congruence number at φ0 is finite and Hida’s theorem mentioned
above we know that A/mA ' B/mB (both isomorphic to (ΛW/Pκφ0

)⊗Zp Qp since
the coefficient ring ofΛW contains all Fourier coefficients of fφ0 ) and mB = mA B.
So A ' B by Nakayama’s lemma. So there are no more components passing
through φ0 since otherwise the local ring (h⊗Zp Qp)(φ0) cannot be isomorphic to
(ΛW ⊗Zp Qp)Pκφ0

.

8. p-adic properties of Fourier coefficients of ED

In this section, following [44, Section 13], using the theta correspondence
between different unitary groups, we prove that certain Fourier coefficient of ED
is not divisible by certain height-one prime P .

8.1. Automorphic forms on some definite unitary groups.

8.1.1. Generalities. Let β ∈ S2(F), β � 0. Let Hβ be the unitary group of the
pairing determined by β. We write H for Hβ sometimes for simplicity.

For an open compact subgroup U ⊆ H(AF, f ) and any Z-algebra R we let

A(U, R)
:= { f : H(AF)→ R : f (γ hku) = f (h), γ ∈ H(F), k ∈ H(F∞), u ∈ U }

and for any subgroup K ⊆ (AF, f ) let

AH (K ; R) := lim−→
U⊇K

AH (U ; R).

8.1.2. Hecke operators. For a prime v let U,U ′ ⊂ H(Fv) be open compact
subgroups, and let h ∈ H(Fv). We can define Hecke operators [UhU ′] : A(U,
R)→ AH (U ′; R) in the usual way.

We will be mainly interested in two cases.

Split case. Suppose that v splits in K. The identification GL2(Kv) = GL2(Fv)×
GL2(Fv) yields an identification of H(Fv) with GL2(Fv) via projection on the
first factor: H(Fv) = {(A, β−1tA−1β) ∈ GL2(Kv)}. We let Hv ⊂ H(Fv) be the
subgroup identified with GL2(ÔF,v). For U = Hv we define T H

v as the Hecke
operator [UhvU ], hv :=

(
$v

1

) ∈ GL2(Fv) = H(Fv), where $v is a uniformizer
at v.
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Primes dividing p. If v|p then v splits in K. For a positive integer n we let
In,v ⊂ Hv be the subgroup identified with the set of g ∈ GL2(Zp) such that
g mod pn belongs to NB(Z/pnZp). For U = In,v, we write U H

v for the Hecke
operator [UhvU ] where hv :=

(p
1

)
. This operator respects variation in n and

commutes with the T H
v for v - p. Let Up :=

∏
v|p Uv.

Now we define the nearly ordinary projector. First recall that we have fixed an
ι : Cp ' C. Let R be either a p-adic ring or of the form R = R0 ⊗Zp Qp with R0

a p-adic ring. Then we define

eH := lim−→
m

U H,m!
p ∈ EndR(AH (U ; R)).

It is well known that this exists and is an idempotent. We can define the Hecke
operators for automorphic forms on U(1, 1) in the split and p-adic case in the
same way as above (using the projection onto the first factor).

8.2. Applications to Fourier coefficients.

8.2.1. Forms on H × U1. If v splits in K we always fix once for all a prime
w above v such that v = ww̄. Then we view representations of H(Fv) via the
respective identifications of these groups with GL2(Fv) (projection onto the first
factor of GL2(Kv) = GL2(Fv)× GL2(Fv)). Let λ be a character of A×K/K× such
that λ∞(z) = (z/|z|)−2 and λ|A×F = 1. Let (π,V),V ⊆ AH , be an irreducible
representation of H(AF, f ), and let (σ,W),W ⊆ A(U1), be an irreducible
representation of U1(AF, f ). Let χπ and χσ be their respective central characters.
We assume the following.

• χσ = λχ−1
π .

• If v splits in K then σv ' π̃v ⊗ λv,1 as representations of GL2(Fv).

• We fix a finite set S of primes outside of which λ is unramified.

Let ϕ ∈ V ⊗W . We assume that

• if v 6∈ S then ϕ(hu, g) = ϕ(h, g) for u ∈ Hv;

• there is a character ε of TU(1,1)(ÔF) and there is an ideal N divisible only
by primes in S such that ϕ(h, gk) = ε

((ak
dk

))
ϕ(h, g) for all k ∈ U1(ÔF)

satisfying N |ck .
(
k = (ak bk

ck dk

))
.

Now for the group U1 we can similarly define Hecke operators T U
v for unramified

split v using the double coset action for
(
$v

1

)
and Uv operators for v|p and the

nearly ordinary projector eU . The following lemma follows immediately from our
assumptions for π and σ .
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LEMMA 90. Suppose that the above assumptions are valid. Then, for any v 6∈ S
that splits in K,

(χ−1
π,v(($v,$

−1
v ))λv,1($v)T H

v ϕ)(h, u) = T U
v (ϕ)(h, u),

where λv = (λv,1, λv,2) with respect to Kv = Fv × Fv and T H
v and T U

v means
Hecke operators on the groups H and U1.

Now we consider the p-adic ordinary idempotents eH and e. For any v|p
suppose that εv(k) = ε1,v(ak)ε2,v(dk). Suppose additionally that, for such v, the
following hold.

• λv is unramified at v.

• cond(ε2,v) = (pr ), cond(ε1,v) = (ps), r > s for any v|p.

• pr ‖ N .

• ϕ(hk, g) = ε−1
2,v(ak)ε

−1
1,v(dk)ϕ(h, g) for k = (k1, k2) ∈ Hv, pr |ck1 .

LEMMA 91. The assumptions are as above. Then

(eHϕ)(h,−) = eU (ϕ)(h,−).

Proof. The proof is completely the same as that of [44, Lemma 13.2]. The point is
that the vector with the prescribed level group action has to be the nearly ordinary
one.

8.2.2. Consequences for Fourier coefficients. We return to the notation and set-
up of Section 6. In particular, D = (ϕ, ψ, τ,Σ) is an Eisenstein datum. Let
Θi jk(h, g) := Θβi jk (h, g;ΦD,βi jk ,ui ). Now we decompose each Θi jk(h, g) with
respect to irreducible automorphic representations πH of Hi jk(AF, f ):

Θi jk(h, g) =
∑
πH

ϕ(i jk)
πH

(h, g).

Then, as in [44, 13.2.2], using general consequences of theta correspondences in
the split case we may decompose:

Θi jk(h, g) =
∑
(πH ,σ )

ϕ
(i jk)
(πH ,σ )

(h, g), ϕ(i jk)
(πH ,σ )

∈ πH ⊗ σ,

σv ' π̃H,v ⊗ λv,1 as representations of GL2(Fv) for all v split in K,

and such ϕ(i jk)
(πH ,σ )

(h, g) satisfies the assumptions about the nebentypus in the last
subsubsection.
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For i ∈ I1, let

CD,i jk(h) := τ̄ (det h)CD(βi jk, diag(ui ,
tūi
−1); h) ∈ AHi jk .

Recall that we have defined A′ :=∑i jk A′βi jk
.

PROPOSITION 92. Let L = {v1, v2, . . . , vm} be a set of primes that split in K and
do not belong to Σ ∪Q. Let P ∈ C[X1, . . . , Xm]. Let

PHi jk := P(ξv1,1($v1)T
Hi jk
v1

, . . . , ξvm ,1($vm )T
Hi jk
vm

)

and PU1 := P(ξv1,2λ
−1
v1,1($v1)T

U
v1
, . . . , ξvm ,2λ

−1
vm ,1($vm )). Then

∑
i jk eHi jk PHi jk CD,i jk (h)BD(βi jk , h, ui )

−1

2−3d (2i)d(k+1)S( f )
〈

f, ρ
(( −1

N

))
f̃ c
〉

= τ̄ (det h)|δ̃Kd̄1|κ/2−1ξ(δ̃Kd̄1)

×

〈
BD,1ED · BD,2ρ

((
d−1

1
d̄1

))
eU PU1 A′, ρ

(( −1
M2
D D̃Kd

)∏
v|p

( −1
prv

))
f̃ c
〉

〈
f, ρ

(( −1
M

)∏
v|p

( −1
prv

)
f

)
f̃ c

〉 .

Proof. The proof follows from Lemmas 90 and 91 in the same way as for [44,
Proposition 13.3] and [44, 13.2.5]. The assumptions for these lemmas follow from
our explicit calculations in Section 5. Observe that ρ

((
d−1

1
d̄1

))
commutes with

eP1.

Recall that we defined A′ and A in Equations (6.5) and (6.6). The following
corollary follows easily from the above proposition by comparing the GL2 and
U(1, 1)Hecke eigenvalues for unramified split primes on automorphic forms with
central character λξ , and applying Lemma 65.

COROLLARY 93. Let P1 = P(Tv1, . . . , Tvm ) be a GL2 Hecke operator for the
polynomial P in the above proposition, and let e be the GL2 nearly ordinary
projector. Then the last expression of the above proposition equals

τ̄ (det h)|δ̃Kd̄1|κ/2−1ξ(δ̃Kd̄1)2−uK[O×K : O×F ]−1 BD,1 BD,2

×

〈
ED · ρ

((
d−1

1
d̄1

))
eP1 A, ρ

(( −1
M2

D D̃Kd

)
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×
∏
v|p

( −1
prv

))
f̃ c

〉
GL2,Γ0(M2

D D̃Kd
∏
v|p prv )


/


〈

f, ρ

(( −1
M

)∏
v|p

( −1
prv

)
f

)
f̃ c

〉
GL2,Γ0(M

∏
v|p prv )

 .
Proof. It follows from the definition of αλξ that for any A′ on U(1, 1)(AF)

satisfying (*) and split v outside Σ we have

(λξ)v,2($
−1
v )Tvαλξ A′ = α(TvA′).

The corollary follows readily.

8.3. p-adic properties of Fourier coefficients. In this subsection we put the
operations above in p-adic families. Let D = (A, I, f, ψ, ξ,Σ) be a p-adic
Eisenstein datum as in the last section, and ED ∈Ma,ord(K ′D,ΛD) or ẼD be as
there. For x ∈ G(AF, f ) with x ∈ Q(OF,v) for all primes v|p we let cD(β, x)
∈ ΛD or c̃D(β, x) ∈ ΛD be the β-Fourier coefficient of ED or bẼD at x (here b is
defined in Remark 89). So, for φ ∈ X a

D , cDφ
(β, x) := φ(cD(β, x)) is the β-Fourier

expansion at x of a holomorphic Hermitian modular form EDφ
(Z , x). We define

the c̃Dφ
(β, x) correspondingly. Define

ϕD,β,x,φ(h) := χfψ
−1
φ ξφ(det h)cDφ

(
β,

(
h

th̄−1

)
x
)

and

ϕ̃D,β,x,φ(h) := χfψ
−1
φ ξφ(det h)c̃Dφ

(
β,

(
h

th̄−1

)
x
)
.

As in [44, 13.3.1], recall that βi jk =
(

b j
qi bk

)
and ui = γ0

(
1

a−1
i

)
. For h ∈

GL2(AK, f ) with hv ∈ GL2(OK,v) for all v|p, let

ϕD,i jk := χ fψ
−1ξ−1

(det h)cD

(
βi jk,

(
huid

−1
1

th̄−1tūi d̄1

))
BD(βi jk, h, ui)

−1 ∈ΛD,

where BD(βi jk, h, ui) is the element interpolating the BDφ
(βi jk, h, ui) defined in

equation (6.9). Note that by our choices BD(βi jk, h, ui)
−1 is a unit in ΛD.

For φ ∈ X a
D and h ∈ GL2(AK, f ), let

ϕD,i jk,φ(h) := ϕD,βi jk ,diag(uid
−1
1 ,tūi

−1d̄1),φ
(h).
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We define the ϕ̃ versions of the above objects correspondingly when the local
Hecke algebra for f is not known to be Gorenstein. Now we have the following
lemma interpolating the Hecke operators, completely as in [44, Lemma 13.4].

LEMMA 94. Let L := {v1, . . . , vm} be a finite set of primes that split in K and do
not belong toΣ∪Q. Let P ∈ ΛD[X1, . . . , Xm]. For h ∈ Hi(AF, f ) with h p ∈ Hi,p,
there exists ϕD,i(L, P; h) ∈ ΛD such that the following hold.

(a) For all φ ∈ X a
D,

φ(ϕD,i jk(L, P; h))
= Pφ(ξφ,v1,1($v1)T

Hi jk
v1

, . . . , ξφ,vm ,1($vm )T
Hi jk
vm

)eHi jkϕD,i jk,φ(h),

where Pφ is the polynomial obtained by applying φ to the coefficients of P.

(b) If M ⊆ ΛD is a closed ΛD-submodule and ϕD,i jk(h) ∈ M for all h with
h p ∈ Hi,p, then ϕD,i jk(L, P; h) ∈ M.

Observe that the nebentypus of αξλ(A) at v|p are given by

ε′
((

av
dv

))
→ µ1,v(av)µ2,v(dv)τ−1

1,v τ
−1
2,v (dv)

for any av, dv ∈ O×Fv . From the definition of the theta functions (q-expansion)
we know that αξλ(A) is a ΛD-adic form. Also for each arithmetic weight φ the
specialization at φ is a form of parallel weight two and the nebentypus at all v|p
only depend on the restriction of φ to

R+ := I[[Γ +K ]]. (8.1)

Now let g ∈ Mord(M2
D D̃K, 1;ΛW,A) be a Hida family of forms which are

new at primes not dividing p and such that g⊗χK = g. Suppose also that the
localization of the Hecke algebra at the maximal ideal corresponding the g is
Gorenstein so that `g makes sense. Now following the remark of [44] before
Proposition 13.5, one can change the weight homomorphism and view g as an
element of Mord(M2

D D̃K, 1; R+) (the space of R+-adic families of nearly ordinary
forms with tame level M2

θ D̃K and trivial character) such that, at any φ, gφ is a
normalized nearly ordinary eigenform of parallel weight two and nebentypus at
v|p the same as αξλ(A). Also as in [44] one can find a polynomial of the Hecke
actions Pg := P(Tv1, . . . , Tvm ) ∈ Tord(M2

D D̃K, 1; R+) such that Pg = ag`g with
0 6= ag ∈ R+.

With these preparations we can prove the following proposition in the same
way as [44, Proposition 13.5].
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PROPOSITION 95. Under the above hypotheses we have the following.

(1) If the local Hecke algebra for f is Gorenstein, then we have∑
i, j,k

ϕD,i jk(L, Pg; 1) = AD,gBD,g

with AD,g ∈ I[[Γ +K ]] and BD,g ∈ I[[ΓK]] such that for all φ ∈ X gen
D :

φ(AD,g) = 2−uK [O×K : O×F ]−1|δ̃Kd̄1|κ/2−1
K ξ(δ̃Kd̄1)φ(ag)ηfφ〈

BD,1EDφ
ρ
((

1
d

))
gφ, ρ

(( −1
M2

D D̃Kd

)∏
v|p
( −1

prv,φ

))
f c
φ

〉
GL2〈

fφ, ρ
(( −1

M

)∏
v|p
( −1

prv,φ

))
f c
φ

〉
GL2

,

and for φ ∈ X a ,

φ(BD,g) = ηgφ×〈
BD,2αξλ

(∑
i jk ΘDφ ,βi jk ⊗ ξφ

)
, ρ

(( −1
M2

D D̃K

)∏
v|p
( −1

prv,φ

))
gc
φ

〉
GL2〈

gφ, ρ
(( −1

M2
D D̃K

)∏
v|p
( −1

prv,φ

))
gc
φ

〉
GL2

.

Furthermore, AD,g 6= 0 (recall that MDφ
is independent of φ and thus we

write MD for it).

(2) In general, we have ∑
i, j,k

ϕ̃D,i jk(L, Pg; 1) = ÃD,gBD,g,

where ÃD,g ∈ FI[[Γ +K ]] and φ(ÃD,g) is the expression in (1) with ηfφ replaced
by bφ and BD,g the same as in (1).

Now we prove the following key proposition.

PROPOSITION 96. Let A be the integer ring of a finite extension of Qp, I a local
domain and a finite torsion-free ΛW,A or Λpara

W,A -algebra, and f ∈Mord(M, 1; I)
an I-adic newform such that (irred) and (dist) hold.

(i) Suppose that Tmf is Gorenstein. Then, by possibly enlarging the Σ in our
Eisenstein datum, there exists an integer MD as before and divisible by all
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primes dividing Σ such that the following holds for the associated ΛD-adic
Eisenstein series ED and the set

CD = {cD(βi jk, x); x ∈ G(AF, f ) ∩ Q(Fp)}
of Fourier coefficients of ED. If R ⊆ ΛD is any height-one prime containing
CD, then R = PΛD for some height-one prime P ⊂ I[[Γ +K ]].

(ii) In general (not assuming Gorensteinness), the conclusion in (i) is still true
with the CD and cD(βi jk, x) replaced by C̃D and c̃D(βi jk, x).

Proof. We follow the proof of [44, Proposition 13.6] closely. As in [44], we only
need to find an MD so that there is a g with BD,g a p-adic unit.

First we find an idele class character θ of A×K such that

• θ∞(z) =
∏

v∈Σ z−1
v ;

• θ |A×F = | · |FχK/F ;

• Nm(fθ ) = (M2
θ ) for some Mθ ∈ F× prime to p and such that DKM |Mθ

• and v|Mθ for all v ∈ Σ \ {p};
• for some v|D̃K, the anticyclotomic part of θ |×OK,q

has order divisible by qv;

• Ω−2Σ
∞ L(1, θ) is a p-adic unit, where Ω∞ is the CM period defined in [16];

• θv,2(p)− 1 is a p-adic unit for any v|p;

• θ a
tor has order prime to p;

• the local character θ a
tor is nontrivial over K×P for all P ∈ Σp; and

• the restriction of θ a
tor to Gal(F̄/K[√p∗]) is nontrivial.

Here θ a
tor is the ‘torsion part’ (as defined in [18]) of the anticyclotomic part of

θ a := θ c/θ , p∗ is (−1)(p−1)/2 p.
The existence is proven in a similar way as in [44, Proposition 13.6], using the

main theorem of [24] instead of results of Finis. (The result in [24, Theorem A] is
not stated in the generality we need since he puts a condition (C) there requiring
that the nonsplit part of the conductor of the CM character is square free. But this
condition is removed in a later paper of his paper; see [25, Section 6].) Write gθ for
the CM-eigenform corresponding to θ . Now using the main result of [18] and [19]
(we thank Hida for informing us his results in [19]), under the last three conditions
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above (which are put to apply Hida’s result), we have that the Gorensteinness for
gθ is true and

ηgθ |
(gθ , gθ )
Ω2Σ∞

.

Thus
L(1, θ)2/Ω2Σ

∞
L(1, θ)2/Ωcan

is p-adically integral where Ωcan is the canonical period associated to gθ .
The gθ has parallel weight two, level M2

θ D̃K, and trivial neben character.
Similar to [44, Proposition 13.6], we see that it satisfies (irred) and (dist). Let g ∈
Mord(M2

θ D̃K, 1; R+) (see the discussion before Proposition 95) be the ordinary
CM newform associated with θ . (This is constructed in [22, page 133–134].
One needs to first construct the automorphic representation generated by some
theta series and then pick up the nearly ordinary vector inside that representation
space.) Recall that we have defined A := αξλ(

∑
i, j,k Θβi jk ⊗ ξ) in Equation (6.6).

Now we evaluate BD,g at the φ which restricts trivially to the Wi,v and ΓK. In this
case, by checking the q-expansion (at the end of Section 6.10), the argument in
[44, 11.9.2] gives that up to a constant which is a p-adic unit (in fact the number
of roots of unity in OK) we have

Aφ = (BD,4)φE ′(χK)ρ
(( −1

M2
D

))
E ′(χK),

where (BD,4)φ = |M2
D|−1

F |δK|K23d i−2d |δK|1/2K which is a p-adic unit, and Aφ is the
A defined using the Eisenstein datum at φ. Here

E ′ =
∏
v|p

(
1− p1/2

(
ρ

((
1

p

)
v

)))
E(χK)

for E(χK) being the weight-one Eisenstein series whose L-function is L(F, s) ·
L(F, χK, s). We write

h = E ′(χK)ρ
(( −1

M2
D

))
E ′(χK).

Then the argument in [44, Proposition 13.6] tells us that〈
h, ρ

(∏
v|p

( −1
p

)
v

( −1
MD D̃K

))
gc

〉

= ±|D̃K|F
∏

v|p θv,2(p)
−2

id(−2π i)2dg(χK)
L(1, θ)2

∏
v|p
(1− θv,2(p))3.
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(In [44] they used [34] to construct the weight-one Eisenstein series with the
required q-expansion when F = Q, using the theory of analytic continuation of
Eisenstein series. In the totally real field case we use, for example, [5, Section 6]
for this generalization.)

Thus

φ(BD,g) =
±|D̃K|F

∏
v|p θv,2(p)

−2

id(−2π i)2dg(χK)Ωcan
L(1, θ)2

∏
v|p
(1− θv,2(p))3.

By definition, φ(BD,g) is p-integral. But, as noted before, (L(1, θ)2)/Ωcan divides
(L(1, θ)2)/Ω2Σ∞∞ , a p-adic unit. Thus itself must also be a p-adic unit. Therefore,
BD,g is a unit. This proves (i). Part (ii) follows similarly (note b ∈ F×I for b defined
in Remark 89).

9. Proof of the main results

9.1. The Eisenstein ideal.

9.1.1. Hecke operators. Let K ′ = K ′ΣKΣ ⊂ G(Ap
f ) be an open compact

subgroup with KΣ = G(ÔΣ
F ) and such that K := K ′K 0

p is neat. The Hecke
operators we are going to consider are at the unramified places and at primes
dividing p. We closely follow [44, 9.5, 9.6].

Unramified inert case. Let v be a prime of F inert in K. Recall as in [44, 9.5.2]
that Zv,0 is the Hecke operator associated to the matrix z0 := diag($v,$v,$v,

$v) by the double coset K z0 K where K is the maximal compact subgroup
of G(OF,v). Let t0 := diag($v,$v, 1, 1), t1 := diag(1,$v, 1,$−1

v ) and t2 :=
diag($v, 1,$−1

v , 1). As in [44, 9.5.2], we define

Rv := Z[Xv, q1/2, q−1/2]

for Xv being T (Fv)/T (OFv ), and write [t] for the image of t in Xv. Let HK

be the abstract Hecke ring with respect to the level group K . There is a map
SK : HK → Rv given by SK (K gK ) =∑ j∈J δ

1/2
B (t j)[t j ] if K gK =⊔ j∈J t j n j K

for t j ∈ T (Fv), n j ∈ NB(Fv) and extend this map linearly. We define the Hecke
operators Ti for i = 1, 2, 3, 4 by requiring that

1+
4∑

i=1

SK (Ti)X i =
2∏

i=1

(1− q3/2
v [ti ]X)(1− q3/2

v [ti ]−1 X)
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is an equality of polynomials of the variable X . We also define

Qv(X) := 1+
4∑

i=1

Ti(Z0 X)i .

Unramified split case. Suppose that v is a prime of F split in K. In this case
we define z(1)0 and z(2)0 to be (diag($v,$v,$v,$v), 1) and (1, diag($v,$v,$v,

$v)) and define the Hecke operators Z (1)
0 and Z (2)

0 as above but replacing z0 by
z(1)0 and z(2)0 . Let t (1)1 := diag(1, ($v, 1), 1, (1,$−1

v )), t (1)2 := diag(($v, 1), 1, (1,
$−1
v ), 1). Define t (2)i := t̄ (1)i and ti = t (1)i t (2)i for i = 1, 2. We define Rv and SK

in the same way as in the inert case. Then we define Hecke operators T ( j)
i for

i = 1, 2, 3, 4 and j = 1, 2 by requiring

1+
4∑

i=1

SK (T
( j)

i )X i =
2∏

i=1

(1− q3/2
v [t ( j)

i ]X)(1− q3/2
v [t ( j ′)

i ]−1 X)

to be equalities of polynomials of the variable X . Here j ′ = 3 − j and the [t ( j)
i ]

are defined similarly to the inert case. Now let v = ww̄ for w a place of K. Define
iw = 1 and iw̄ = 2. Then we define

Qw(X) := 1+
4∑

i=1

T (iw)
i (Z (3−iw)

0 X)i .

Qw̄(X) := 1+
4∑

i=1

T (iw)
i (Z (3−iw̄)

0 X)i .

p-adic case. Let t = diag(pa1, pa2, pa4, pa3), and let ut be Hida’s normalized
operator defined in [44, 6.2.2].

Let hD = hD(K ′) be the reduced quotient of the universal ordinary cuspidal
Hecke algebra which is defined by the ring of elements in EndΛD(S

ord(K ′,ΛD))

generated by the Hecke operators Zv,0, Z (i)
v,0, Ti,v, T ( j)

i,v , ut,v defined above. This is
a finite reduced ΛD-algebra. Now we define for each prime w of K a polynomial
Qw,D(X) = det(1− ρD(Frobw)X) associated to Eisenstein series where ρD is the
Galois representation defined in Section 9.2.2.

We define the Eisenstein ideal ID (which is actually the kernel of
homomorphism from the abstract Hecke algebra to ΛD determined by the
Eisenstein family) generated by the following.

• The coefficients of Qw(X)− Qw,D(X), Qw̄(X)− Qw̄,D(X), Qv(X)− Qv,D(X)
for all finite places v of K and not dividing a prime in Σ .
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• Zv,0 − σψσ−1
ξ (Frobv) for v inert places outside Σ .

• Z (i)
v,0−σψσ−1

ξ (Frobwi ) for all v outsideΣ such that v = w1w2 is the factorization
of Kv = Fv × Fv.

• For all v|p, ut,v − λED(ut,v) with t = diag(pa1, pa2, pa4, pa3), a1 6 · · · 6 a4.

Here, σ is the reciprocity map of class field theory normalized by the geometric
Frobenius, and λED is the Hecke eigenvalue for uv,t acting on ED. These
are elements in I[[ΓK]] (the λi,v(p) can be expressed in terms of the Hecke
eigenvalues of Uv on f and the ξv,1(p) and ξv,2 in our situation). We omit the
precise formulas. We remark that the elements in ID all annihilate ED. Note also
that the factor Γ −K in ΛD corresponds to twisting everything by characters so our
families are essentially parameterized by I[[ΓK]].

The structure map ΛD → hD/ID is surjective, and we denote ED ⊂ ΛD to be
kernel of this map so that

ΛD/ED
∼−→ hD/ID.

Recall that we have defined φ0 to be the point on the weight space in Section 7.3.1
such that the special L-value interpolated is L( f2, 1)where f2 is an ordinary form
in our Hida family of parallel weight two and trivial nebentypus at primes dividing
p. (In fact this notion is a little bit ambiguous since we might have several f2

inside the Hida family and what we are going to prove is true for any such point
φ0.)

Recall that we have chosen a b ∈ I such that b(φ0) 6= 0 and b1f is an integral
element of Hecke action. Then bL̃Σ

D and bẼD are all integral. We have the
following theorem which is the analog of [44, Theorem 6.17] in our situation.

THEOREM 97. If P ⊂ ΛD,I is a height-one prime ofΛD contained in φ0 such that
bẼD is nonzero modulo P (that is, if the ideal generated by the Fourier coefficient
of bẼD is not contained in P), and if P is not a pullback of a height-one prime
from I[[Γ +K ]], then

ordP(ED) > ordP(L̃Σ
D ).

If we do not assume P to be contained in φ0 but assume Tm f is Gorenstein, then

ordP(ED) > ordP(LΣ
D ).

Proof. The proof is completely the same as that of [44, Theorem 6.17]. By
Theorem 27 we can find an F ∈ M0

ord(K ,ΛD) such that F ≡ bẼD(modLD) in
terms of q-expansion. Then for some β ∈ S2(F) and x ∈ U(2, 2)(AF) unramified
at primes dividing p we have that the Fourier coefficient c(β, x;F) is not in P .
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Suppose that Pr ‖ L̃Σ
D . Then the map µ : hD 7→ ΛD defined by µ(h) = c(β,

x; hF)/c(β, x;F) is ΛD-linear and, for any h ∈ hD, we have

c(β, x; hF) ≡ c(β, x; hED) ≡ λD(h)c(β, x;ED) ≡ λD(h)c(β, x;F)(mod Pr ).

Here λD(h) is the Hecke eigenvalue of h for ED, and we note that b 6∈ P . Thus µ
gives

hD/ID → ΛD,P/EDΛD,P � ΛD,P/PrΛD,P .

This gives the first claim of the theorem. The second is proved similarly.

9.2. Galois representations.

9.2.1. Galois theoretic argument. In this subsection, for ease of reference we
axiomatize the results from [44, Section 4], which are used to construct elements
in the Selmer group.

Let G be a group and C a ring, and let r :→ AutC(V ) be a representation of G
with V ' Cn . This can be extended to r : C[G] → EndC(V ). For any x ∈ C[G],
define

Ch(r, x, T ) := det(id− r(x)T ) ∈ C[T ].
Let (V1, σ1) and (V2, σ2) be two C representations of G. Assume that both are
defined over a local henselian subring B ⊆ C . We say that σ1 and σ2 are residually
disjoint modulo the maximal ideal mB if there exists x ∈ B[G] such that Ch(σ1,

x, T ) mod mB and Ch(σ2, x, T ) mod mB are relatively prime in κB[T ], where
κB := B/mB .

Let H be a group with a decomposition H = G o {1, c} with c ∈ H an element
of order two normalizing G. For any C representations (V, r) of G we write r c

for the representation defined by r c(g) = r(cgc) for all g ∈ G.

Polarizations: Let θ : G → GLL(V ) be a representation of G on a vector space
V over a field L , and let ψ : H → L× be a character. We assume that θ satisfies
the ψ-polarization condition:

θ c ' ψ ⊗ θ∨.
By a ψ-polarization of θ we mean an L-bilinear pairing Φθ : V × V → L such
that

Φθ (θ(g)v, v′) = ψ(g)Φθ (v, θ
c(g)−1v′).

Let Φ t
θ (v, v

′) := Φθ (v
′, v), which is another ψ-polarization. We say that ψ is

compatible with the polarization Φθ if

Φ t
θ = −ψ(c)Φθ .
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Suppose that the following hold.

(1) A0 is a profinite Zp algebra and a Krull domain.

(2) P ⊂ A0 is a height-one prime and A = Â0,P is the completion of the
localization of A0 at P . This is a discrete valuation ring.

(3) R0 is local reduced finite A0-algebra.

(4) Q ⊂ R0 is a prime such that Q ∩ A0 = P and R = R̂0,Q .

(5) There exist ideals J0 ⊂ A0 and I0 ⊂ R0 such that I0 ∩ A0 = J0, A0/J0 =
R0/I0, J = J0 A, I = I0 R, J0 = J ∩ A0 and I0 = I ∩ R0.

(6) G and H are profinite groups; we have subgroups Di ⊂ G for i = 1, . . . , d .

The set-up. Suppose the we have the following data:

(1) a continuous character ν : H → A×0 ;

(2) a continuous character ξ : G→ A×0 such that χ̄ 6= ν̄χ̄−c, and let χ ′ := νχ−c;

(3) a representation ρ : G → AutA(V ), V ' An , which is a base change from a
representation over A0, such that

(a) ρc ' ρ∨⊗ ν,
ρ̄ is absolutely irreducible,
ρ is residually disjoint from χ and χ ′;

(4) a representation σ : G → AutR⊗A F(M),M ' (R ⊗A F)m with m = n + 2,
which is defined over the image of R0 in R, such that

(a) σ c ' σ∨⊗ ν,
(b) trσ(g) ∈ R for all g ∈ G,
(c) for any v ∈ M , σ(R[G])v is a finitely generated R-module;

(5) a proper ideal I ⊂ R such that J := A∩ I 6= 0, the natural map A/J → R/I
is an isomorphism, and

trσ(g) ≡ χ ′(g)+ trρ(g)+ χ(g) mod I

for all g ∈ G;

(6) ρ is irreducible and ν is compatible with ρ;
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(7) (local conditions for ρ) for each v|p there is a Gv-stable; sub-A0-module; A0-
modules V+0,v ⊂ V0 such that V+0,v and V−0,v := V0,v/V+0,v are free A0 modules;

(8) (local conditions for σ ) for each v|p there is a Gv-stable; sub-R⊗A F-module
M+v ⊆ M such that M+v and M−v := M/M+v are free R ⊗A F modules;

(9) (compatibility with the congruence condition) Assume that for all x ∈ R[Gv],
we have congruence relation:

Ch(M+v , x, T ) ≡ Ch(V+v , x, T )(1− Tχ(x)) mod I

(then we automatically have

Ch(M−v , x, T ) ≡ Ch(V−v , x, T )(1− Tχ ′(x)) mod I );

(10) for each F-algebra homomorphism λ : R ⊗A F → K , K a finite field
extension of F , the representation σλ : G → GLm(M ⊗R⊗F K ) obtained
from σ via λ is either absolutely irreducible or contains an absolutely
irreducible two-dimensional sub K -representation σ ′λ such that trσ ′λ(g) ≡
χ(g)+ χ ′(g) mod I .

One defines the Selmer groups XH (χ
′/χ) := ker{H 1(G, A∗0(χ

′/χ))→ H 1(D,
A∗0(χ

′χ))}∗ and XG(ρ0⊗χ−1) := ker{H 1(G, V0⊗A0 A∗0(χ
−1))→ H 1(D, V−0 ⊗A0

A∗0(χ
−1))}∗. Let ChH (χ

′χ) and ChG(ρ0⊗χ−1) be their characteristic ideals as A0

modules.

PROPOSITION 98. Under the above assumptions, if ordP(ChH (χ
′/χ)) = 0 then

ordP(ChG(ρ0⊗χ−1)) > ordP(J ).

This can be proved as in the proof of [44, Corollary 4.16].
We record here an easy lemma about Fitting ideals and characteristic ideals

which will be useful in proving the main conjectures.

LEMMA 99. Let A be a Krull domain and T a finitely generated A-module.
Suppose that f ∈ A is such that, for any height-one primes P of A, if
ordP(FittAT ) > ordP( f ), then charA(T ) ⊂ ( f ).

Proof. For any g ∈ charA(T ), the assumption and the definition for characteristic
ideals ensure that, for any height-one prime P , ordP(g/ f ) > 0. Since A is normal
this implies that g/ f ∈ A. Thus g ∈ ( f ).
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9.2.2. Galois representations. Now we are going to apply the results in the last
subsubsection to our situation. First we define a semisimple representation

ρD := σ c
ψε
−3 ⊕ (ρf⊗ σ ξ−cσψcε−2)⊕ ε−1 det ρfσ

−1
ξ ′ σ

c
ψ .

Recall that here σ means the reciprocity map. This is the Galois representation
associated to the Eisenstein family by Proposition 33.

On the other hand, recall that we have fixed some prime to p level K p, and let
K =∏v|p K 0

v K p. By an argument completely the same as that in [44, Proposition
7.3], using results of [41], [36], and [42], there exists a pseudorepresentation TΣ

K p :
GK → hD such that for each irreducible cuspidal automorphic representation πφ
on GU(2, 2)/F of weight kφ which is a classical specialization at some φ ∈ SpechD
then

tr(Rp(π)) = φ ◦ TΣ
K p .

As in [44, 7.3] we let TD be the pseudocharacter TΣ
K p . We have defined hD , and

we let BD := hD⊗ΛD FΛD . Let hD,m be the localization of hD at the maximal ideal
containing the Eisenstein ideal.

For any prime v|p of F we let T+f,v ⊆ Tf be the rank-one I-summand of Tf that
is Gv-stable. Given a height-one prime P ofΛD containing ED, with the notations
in the last subsubsection we let

• H := G F,Σ ,G := GK,Σ , c = the usual complex conjugation;

• A0 := ΛD, A := Λ̂D,P ;

• J0 := ED, J := ED A;

• R0 := hD,m, I0 := ID;

• Q ⊂ R0 is the inverse image ofP mod ED under hD,m→ hD,m/ID = ΛD/ED;

• R := ĥD,Q, I := ID R;

• V0 := Tf ⊗I ΛD, ρ := ρf⊗ σ−c
ξ σ

c
ψε
−2;

• for any v|p, V+0,v := T+f,v ⊗I A0, V−0,v := (Tf/T+f,v)⊗A0 A;

• V = V0 ⊗A0 A, ρ = ρ0 ⊗A0 A, V±v := V±0,v ⊗A0 A;

• χ ′ := ε−1 det ρfσ
−1
ξ ′ σ

c
ψ , ν := σψ ′σ−1

ξ ′ ε
−4;

• χ := σ c
ψε
−3 so χ ′ = νχ−c;

• M := (R ⊗A FA)
4; FA is the field of fractions of A; and

• we let σ be the representation on M obtained from TD in the same way
as [44, 7.3].
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Recall that T := (Tf⊗I I[[ΓK]])(ε−c
K )⊗ ε and T +v := (T+f,v⊗I I[[ΓK]])(ε−c

K )⊗ ε
for each v|p. Let charΣK(f) ⊂ I[[ΓK]] be the characteristic ideal of the dual Selmer
group XΣ

K(T ,T +v |v|p).

THEOREM 100. Suppose that I is an integrally closed domain. Let P0 ⊂ I[[ΓK]]
be a height-one prime that is not a pullback of one of I[[Γ +K ]], and let P = P0ΛD
be the height-one prime of ΛD it generates. Suppose also that

V+ ⊕ A(χ) and V− ⊕ A(χ ′) modulo P do not have common irreducible pieces.

Then
ordP0(charΣK(f)) > ordP(ED).

Proof. One just applies Proposition 98. The condition (10) there is guaranteed by
an argument similar to that in [44, Theorem 7.6]: we use the modularity-lifting
results in [45] for ordinary Galois representations satisfying (irred) and (dist) and
Harris’ result that there are no (CAP) forms when the weight k is sufficiently
regular. We also use the main conjecture for totally real field F proven in [52] to
conclude that ordP(ChH (χ

′/χ)) = 0. (Since the p-adic L-function for a Hecke
character involves only the cyclotomic direction and is nonzero, it is not in P . By
[52] we know that the characteristic ideal is bounded by this p-adic L-function
and thus is not contained in P .)

9.3. Proof of the main results.

THEOREM 101. Suppose that p > 5. Let L be a finite extension of Qp and I a
local normal domain and a finite integral extension of Λpara

W . Let f be an I-adic
nearly ordinary eigenform of tame level M (a finite idele) with trivial character,
such that some specialization of it is an ordinary cusp form of even parallel weight
κ0 > 2. Suppose that M = M+M− with M+ divisible only by primes split in K
and M− divisible only by primes inert in K, and that K satisfies assumption (4)
defined in the introduction. Suppose also that the following hold.

• (irredK) and (dist) hold for f.

• The assumptions of Theorem 8 hold.

• M− is square free and its number of prime factors is congruent to d modulo 2.

• The reduction ρ̄f of ρf modulo the maximal ideal of I is ramified at all v|M−.
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Let Σ be any finite set of primes. Then

charΣK∞(f) ⊆ (LΣ
f,K).

Proof. We first consider a Σ as before (containing all the bad primes) so that the
Σ-imprimitive p-adic L-function is integral. By Theorems 97 and 100 we have
the inequalities for the orders of any height-one prime which is not the pullback of
a height-one prime of I[[Γ +K ]]. Now suppose that P is a height-one prime which
is the pullback of a height-one prime of I[[Γ +K ]]. If the module of dual Selmer
group is not torsion then the conclusion is trivially true. Suppose that it is torsion.
We use the idea of the argument in [13]. We first look at a long exact sequence
coming from the Poitou–Tate long exact sequence

0→ H 1
Σ∗(K, T ∨f ⊗ΛK(ε

c
K · ε−1))→ H 1

f (K, T ∨f ⊗ΛK(ε
c
K · ε−1))

→
∏

v∈Σ\{v|p}
H 1

f (Kv, T ∨f ⊗ΛK(ε
c
K · ε−1))

→ XΣ
f,K→ X f,K→ 0.

Here we use the standard notation H 1
f for the local Selmer conditions (finite

part). We write the subscript Σ∗ to mean take the H 1
f at primes outside Σ\{v|p}

but take {0} ⊆ H 1
f (K,−) at Σ\{v|p}. On the one hand, it is easy to see that

H 1
f (K, Tf⊗ΛK) is a torsion-free I[[ΓK]] module from assumption (irredK). On

the other hand, it is torsion by the assumption that XΣ
f,K is torsion and an easy

control argument. So it has to be zero. By [12, Proposition 2.4] we see that the
characteristic ideal of H 1

f (Kv, Tf⊗ΛK) is exactly the local Euler factor of our
p-adic L-function at v (note that K∞ contains the cyclotomic extension so the
conclusion in [12] is true in our situation as well). The inequality for the order of
P follows from Lemma 87. This finishes the proof for such choices of Σ . The
result for general Σ follows from this and a similar argument using the Poitou–
Tate exact sequences.

Now we prove the following.

THEOREM 102. Let p be a rational odd prime that splits completely in F. Let f
be a Hilbert modular form over F of even parallel weight κ0 and trivial character.
Suppose that

(i) f is ordinary at all primes of F dividing p;

(ii) assumption (irred) holds for f ;
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(iii) if [F : Q] is even and the global sign of f if −1, then the automorphic
representation of f is special in at least one finite place.

Suppose that Conjecture 6 is true for F, p, κ = κ0 and any g satisfying the
assumption of Conjecture 6. If the central critical value L( f, κ0/2) = 0, then the
Selmer group H 1

f (F, ρ
∗
f ((2− κ0)/2)) is infinite. (So if f has weight two then the

theorem is unconditional.)

Note that assumption (dist) is automatically true in this case.

Proof. We only need to prove the theorem in the case when the root number for f
is +1, since otherwise it is a well-known result of Nekovar [37, Theorem 12.2.3]
(which crucially uses the work of S. Zhang). Condition (iii) is put by Nekovar’s
work.

First suppose that d = [F : Q] is even. Then we choose an imaginary quadratic
extension K of F so that K/F is split at all primes at which f is ramified and such
that L( f, χK/F , κ0/2) 6= 0 where χK/F is the quadratic character of A×F associated
to K/F . This is possible by a well-known result of Waldspurger [48], [49]. Then
the S(1) defined in [4, page 123] consists of exactly all the infinite places, and
since d is even we are in the definite case there.

The (normalized ordinary) form f belongs to a Hida family. (This is well-
known to experts, see [14].) Recall we have defined the point φ0 in SpecΛD
(Section 7.3.1). We remark that later we will use φ0 to denote the point (or prime)
not only of SpecΛD but also subspaces of it.

We do not know the Gorenstein properties for the local Hecke algebra
associated with f in general, so we have to use 1f instead of `f everywhere (recall
they are defined in Section 7.2) and the nonintegral p-adic L-functions L̃Σ

f,K,1 (in
FI ⊗I I[[ΓK]] actually) and nonintegral Klingen Eisenstein series ẼD. Suppose
that L̃Σ

f,K,1 = h/g. It follows from Remark 89 that we may choose g ∈ I so that
g(φ0) 6= 0. Start with the one-dimensional family of cyclotomic twists of f , that
is, the subspace SpecOL[[Γ +K ]] defined by the natural map ΛD,I → OL[[Γ +K ]]
where the map I → OL is the specialization map at f . Since L( f, κ0/2) = 0,
h(φ0) = 0 by our Remark 83. Then there is a height-one prime P0 of A[[Γ +K ]]
contained in φ0 and containing the image of h in OL[[Γ +K ]].

Now we consider the specialization from I[[ΓK]] to OL[[Γ +K ]]. Note that any
minimal prime of I[[ΓK]] containing h will be height one. So we can find P1 a
height-one prime of OL[[Γ +K ]] contained in φ0 and containing the image of h in
OL[[Γ +K ]] such that SuppP0 ⊂ SuppP1. Note also that P1 does not contain g since
g(φ0) 6= 0. In Theorem 86 we have seen that (NV1) is satisfied in our situation
and thus h is not contained in any height-one prime of I[[Γ +K ]] contained in φ0.
So P1 is not the pullback of a height-one prime of I[[Γ +K ]]. Then Proposition 96(i)



The Iwasawa main conjecture for Hilbert modular forms 91

and Theorem 97 gives

1 6 ordPL̃Σ
D 6 ordP(ED,I).

By Theorem 100,
ordP1 FittΣf,K,1 > 1.

Then we need to specialize back to OL[[Γ +K ]]. Using the control theorem for
Selmer groups (results in Section 2.5.1, Proposition 15, Corollary 16, 17), we
have ordP0 FittΣf,K+∞,1 > 1. By results of [12], we know that at primes v ∈ Σ\{p}
the module of the finite part of the dual local Galois cohomology group has
characteristic ideal generated by the local Euler factor of the corresponding p-
adic L-functions, which is not contained in φ0. So we get ordP0 Fitt f,K+∞,1 > 1. We
apply the control results in [11] and get that H 1

f (K, ρ∗f ((2− κ0)/2)) is infinity.
However by Lemma 14 this Selmer group is the product of Selmer groups for
f and f ⊗χK. By Conjecture 6 and our choice of K, we know that H 1

f (F,
ρ∗f ⊗χK((2− κ0)/2)) is finite. So our theorem is true.

Finally we assume d is odd. Then again by Waldspurger’s result we can find
a real quadratic character χF ′/F such that F ′ is split at all primes at which f is
ramified and L( f, χF ′/F , κ0/2) 6= 0. We consider fF ′ the base change of f to F ′.
Then [F ′ : Q] is even, and we deduce that at least one of H 1

f (F, ρ
∗
f ((2− κ0)/2))

and H 1
f (F, ρ

∗
f ⊗χF ′/F((2− κ0)/2)) is infinite. But by Conjecture 6 we know

that H 1
f (F, ρ

∗
f ⊗χF ′/F((2− κ0)/2)) is finite. So H 1

f (F, ρ
∗
f ((2− κ0)/2)) must be

infinite.

Finally we prove that the main theorem of [44] is true without one of the
technical local assumptions (namely the existence of an ` ‖ M with ρ̄|GQ`
ramified), using the base-change trick as in the above theorem.

THEOREM 103. Suppose that p > 5. Let f ∈ Sκ(M, L), κ > 2, 2|κ , p - M and
L ⊂ Q̄p a finite extension of Qp, be a p-ordinary cuspidal eigenform with trivial
central character. Suppose that

• (irred) and (dist) hold for ρ f ;

then, for any set of primes Σ ,

charΣQ∞,L( f ) = (LΣ
f )

in ΛQ,OL ⊗Zp Qp. If, furthermore,

• there is an OL-basis of T f with respect to which the image of ρ f contains
SL2(Zp), and
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• there exists a real quadratic extension F/Q such that

– p is unramified in F,

– any prime ` dividing M such that ` ≡ −1(mod p) is inert in F, and any
other prime divisors of M is split in F, and

– the canonical period of f over F is a p-adic unit times the square of its
canonical period over Q,

then the equality holds in ΛQ,OL .

Proof. We choose a quadratic real extension F of Q with p unramified and
consider the base change fF of f to F . Assume that any prime ` dividing M
such that ` ≡ −1(mod p) is inert in F , and that any other prime divisor of M is
split in F . We need to know the Gorensteinness for the base change to F . Since
p > 5, this follows from [6]. In order to apply Theorem 86 we have to check the
assumptions in Theorem 8. The first and second assumptions are trivially true.
The third condition in Fujiwara’s theorem is true since the base change to F of
a minimal modular lifting of ρ̄ f gives a minimal modular lifting for ρ̄ fF (by our
choice of F). The fourth assumption is empty since d = 2. The last one is also
guaranteed by our choice of F . We choose a quadratic imaginary field K over
F such that all primes dividing the conductors of f or F are split. So (NV2) is
satisfied for any v|p. Thus we have that the one divisibility for the three-variable
main conjecture is true. The theorem can be proved in the same way as in [44],
using the control theorem for Selmer groups, results in [12] and results of Kato
(note that the one-variable (cyclotomic) Selmer group for f over K splits into
the products of four Selmer groups for modular forms over Q and thus Kato’s
results apply). Note also that the assumption of image containing SL2(Zp) is
unchanged by taking quadratic twists. The assumption on the canonical periods
for base change is used to ensure that the p-adic L-function of the base change
splits into p-adic L-functions over Q.
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