AN UPPER BOUND FOR THE ABBES-SAITO FILTRATION OF FINITE FLAT GROUP SCHEMES AND APPLICATIONS

YICHAO TIAN

ABSTRACT. Let \mathcal{O}_K be a complete discrete valuation ring of residue characteristic p > 0, and G be a finite flat group scheme over \mathcal{O}_K of order a power of p. We prove in this paper that the Abbes-Saito filtration of G is bounded by a linear function of the degree of G. Assume \mathcal{O}_K has generic characteristic 0 and the residue field of \mathcal{O}_K is perfect. Fargues constructed the higher level canonical subgroups for a "near from being ordinary" Barsotti-Tate group \mathcal{G} over \mathcal{O}_K . As an application of our bound, we prove that the canonical subgroup of \mathcal{G} of level $n \geq 2$ constructed by Fargues appears in the Abbes-Saito filtration of the p^n -torsion subgroup of \mathcal{G} .

Let \mathcal{O}_K be a complete discrete valuation ring with residue field k of characteristic p > 0and fraction field K. We denote by v_{π} the valuation on K normalized by $v_{\pi}(K^{\times}) = \mathbb{Z}$. Let G be a finite and flat group scheme over \mathcal{O}_K of order a power of p such that $G \otimes K$ is étale. We denote by $(G^a, a \in \mathbb{Q}_{\geq 0})$ the Abbes-Saito filtration of G. This is a decreasing and separated filtration of G by finite and flat closed subgroup schemes. We refer the readers to [AS02, AS03, AM04] for a full discussion, and to section 1 for a brief review of this filtration. Let ω_G be the module of invariant differentials of G. The generic étaleness of Gimplies that ω_G is a torsion \mathcal{O}_K -module of finite type. There exist thus nonzero elements $a_1, \dots, a_d \in \mathcal{O}_K$ such that

$$\omega_G \simeq \bigoplus_{i=1}^d \mathcal{O}_K / (a_i)$$

We put $\deg(G) = \sum_{i=1}^{d} v_{\pi}(a_i)$, and call it the degree of G. The aim of this note is to prove the following

Theorem 0.1. Let G be a finite and flat group scheme over \mathcal{O}_K of order a power of p such that $G \otimes K$ is étale. Then we have $G^a = 0$ for $a > \frac{p}{p-1} \deg(G)$.

Our bound is quite optimal when G is killed by p. Let $E_{\delta} = \text{Spec}(\mathcal{O}_K[X]/(X^p - \delta X))$ be the group scheme of Tate-Oort over \mathcal{O}_K . We have $\deg(E_{\delta}) = v_{\pi}(\delta)$, and an easy computation by Newton polygons gives [Fa09, Lemme 5]

$$E_{\delta}^{a} = \begin{cases} E_{\delta} & \text{if } 0 \le a \le \frac{p}{p-1} \deg(E_{\delta}) \\ 0 & \text{if } a > \frac{p}{p-1} \deg(E_{\delta}). \end{cases}$$

However, our bound may be improved when G is not killed by p or G contains many identical copies of a closed subgroup. In [Hat06, Thm. 7], Hattori proves that if K has characteristic 0 and G is killed by p^n , then the Abbes-Saito filtration of G is bounded by that of the multiplicative group μ_{p^n} , i.e., we have $G^a = 0$ if $a > en + \frac{e}{p-1}$ where e is the absolute ramification index of K. Compared with Hattori's result, our bound has the advantage that it works in both characteristic 0 and characteristic p, and that it is good if deg(G) is small.

The basic idea to prove 0.1 is to approximate general power series over \mathcal{O}_K by linear functions. First, we choose a "good" presentation of the algebra of G such that the defining equations of G involve only terms of total degree m(p-1) + 1 with $m \in \mathbb{Z}_{\geq 0}$ (Prop. 1.6). The existence of such a presentation is a consequence of the classical theory on p-typical curves of formal groups. With this good presentation, we can prove that the neutral connected component of the *a*-tubular neighborhood of G is isomorphic to a closed rigid ball for $a > \frac{p}{p-1} \deg(G)$ (Lemma 1.9), and the only zero of the defining equations of G in the neutral component is the unit section.

The motivation of our theorem comes from the theory of canonical subgroups. We assume that K has characteristic 0, and the residue field k is perfect of characteristic $p \geq 3$. Let G be a Barsotti-Tate group of dimension $d \geq 1$ over \mathcal{O}_K . If G comes from an abelian scheme over \mathcal{O}_K , the canonical subgroup of level 1 of G was first constructed by Abbes and Mokrane in [AM04]. Then the author generalized their result to the Barsotti-Tate case [Ti06]. We actually proved that if a Barsotti-Tate group G over \mathcal{O}_K is "near from being ordinary", a condition expressed explicitly as a bound on the Hodge height of G (cf. 2.1), then a certain piece of the Abbes-Saito filtration of G[p] lifts the kernel of Frobenius of the special fiber of G [Ti06, Thm. 1.4]. Later on, Fargues [Fa09] gave another construction of the canonical subgroup of level 1 using Hodge-Tate maps, and his approach also allowed us to construct by induction the canonical subgroups of level $n \geq 2$, i.e., the canonical lifts of the kernel of n-th iteration of the Frobenius. He proved that the canonical subgroup of higher level appears in the Harder-Narasihman filtration of $G[p^n]$, which was introduced by him in [Fa07]. It is conjectured that the canonical subgroup of higher level also appears in the Abbes-Saito filtration of $G[p^n]$. In this paper, we prove this conjecture as a corollary of 0.1 (Thm. 2.5). Fargues's result on the degree of the quotient of $G[p^n]$ by its canonical subgroup of level n (see Thm. 2.4(i)) will play an essential role in our proof.

0.2. Acknowledgement. This research was supported by a grant DMS-0635607 from the National Science Foundation. I would like to thank Ahmed Abbes for his comments on an earlier version of this paper. I also express my deep gratitude to the anonymous referee for his careful reading, and useful suggestions to clarify some arguments.

0.3. Notation. In this paper, \mathcal{O}_K will denote a complete discrete valuation ring with residue field k of characteristic p > 0, and with fraction field K. Let π be a uniformizer of \mathcal{O}_K , and v_{π} be the valuation on K normalized by $v_{\pi}(\pi) = 1$. Let \overline{K} be an algebraic closure of K, K^{sep} be the separable closure of K contained in \overline{K} , and \mathcal{G}_K be the Galois group $\text{Gal}(K^{\text{sep}}/K)$. We denote still by v_{π} the unique extension of the valuation to \overline{K} .

1. Proof of Theorem 0.1

We recall first the definition of the filtration of Abbes-Saito for finite flat group schemes according to [AM04, AS03].

1.1. For a semi-local ring R, we denote by \mathfrak{m}_R its Jacobson radical. An algebra R over \mathcal{O}_K is called *formally of finite type*, if R is semi-local, complete with respect to the \mathfrak{m}_R -adic topology, Noetherian and R/\mathfrak{m}_R is finite over k. We say an \mathcal{O}_K -algebra R formally of finite type is formally smooth, if each of the factors of R is formally smooth over \mathcal{O}_K .

Let $\mathbf{FEA}_{\mathcal{O}_K}$ be the category of finite, flat and generially étale \mathcal{O}_K -algebras, and $\mathbf{Set}_{\mathcal{G}_K}$ be the category of finite sets endowed with a discrete action of the Galois group \mathcal{G}_K . We have the fiber functor

$$\mathscr{F}: \mathbf{FEA}_{\mathcal{O}_K} \to \mathbf{Set}_{\mathcal{G}_K},$$

which associates with an object A of $\mathbf{FEA}_{\mathcal{O}_K}$ the set $\operatorname{Spec}(A)(K)$ equipped with the natural action of \mathcal{G}_K . We define a filtration on the functor \mathscr{F} as follows. For each object A in $\mathbf{FEA}_{\mathcal{O}_K}$, we choose a presentation

$$(1.1.1) 0 \to I \to \mathscr{A} \to 0,$$

where \mathscr{A} is an \mathcal{O}_K -algebra formally of finite type and formally smooth. For any $a = \frac{m}{n} \in \mathbf{Q}_{>0}$ with m prime to n, we define \mathscr{A}^a to be the π -adic completion of the subring $\mathscr{A}[I^n/\pi^m] \subset \mathscr{A} \otimes_{\mathcal{O}_K} K$ generated over \mathscr{A} by all the f/π^m with $f \in I^n$. The \mathcal{O}_K -algebra \mathscr{A}^a is topologically of finite type, and the tensor product $\mathscr{A}^a \otimes_{\mathcal{O}_K} K$ is an affinoid algebra over K [AS03, Lemma 1.4]. We put $X^a = \operatorname{Sp}(\mathscr{A}^a \otimes_{\mathcal{O}_K} K)$, which is a smooth affinoid variety over K [AS03, Lemma 1.7]. We call it the *a*-th tubular neighborhood of $\operatorname{Spec}(A)$ with respect to the presentation (1.1.1). The \mathcal{G}_K -set of the geometric connected components of X^a , denoted by $\pi_0(X^a(A)_{\overline{K}})$, depends only on the \mathcal{O}_K -algebra A and the rational number a, but not on the choice of the presentation [AS03, Lemma 1.9.2]. For rational numbers b > a > 0, we have natural inclusions of affinoid varieties $\operatorname{Sp}(A \otimes_{\mathcal{O}_K} K) \hookrightarrow X^b \hookrightarrow X^a$, which induce natural morphisms $\operatorname{Spec}(A)(\overline{K}) \to \pi_0(X^b(A)_{\overline{K}}) \to \pi_0(X^a(A)_{\overline{K}})$. For a morphism $A \to B$ in $\operatorname{FeA}_{\mathcal{O}_K}$, we can choose properly presentations of A and B so that we have a functorial map $\pi_0(X^a(B)_{\overline{K}}) \to \pi_0(X^a(A)_{\overline{K}})$. Hence we get, for any $a \in \mathbf{Q}_{>0}$, a (contravariant) functor

$\mathscr{F}^a: \mathbf{FEA}_{\mathcal{O}_K} \to \mathbf{Set}_{\mathcal{G}_K}$

given by $A \mapsto \pi_0(X^a(A)_{\overline{K}})$. We have natural morphisms of functors $\phi_a : \mathscr{F} \to \mathscr{F}^a$, and $\phi_{a,b} : \mathscr{F}^b \to \mathscr{F}^a$ for rational numbers b > a > 0 with $\phi_a = \phi_{b,a} \circ \phi_b$. For any A in $\mathbf{FEA}_{\mathcal{O}_K}$, we have $\mathscr{F}(A) \xrightarrow{\sim} \varprojlim_{a \in \mathbf{Q}_{>0}} \mathscr{F}^a(A)$ [AS02, 6.4]; if A is a complete intersection over \mathcal{O}_K , the map $\mathscr{F}(A) \to \mathscr{F}^a(A)$ is surjective for any a [AS02, 6.2].

1.2. Let $G = \operatorname{Spec}(A)$ be a finite and flat group scheme over \mathcal{O}_K such that $G \otimes K$ is étale over K, and $a \in \mathbf{Q}_{>0}$. The group structure of G induces a group structure on $\mathscr{F}^a(A)$, and the natural map $G(\overline{K}) = \mathscr{F}(A) \to \mathscr{F}^a(A)$ is a homomorphism of groups. Hence the kernel $G^a(\overline{K})$ of $G(\overline{K}) \to \mathscr{F}^a(A)$ is a \mathcal{G}_K -invariant subgroup of $G(\overline{K})$, and it defines a closed subgroup scheme G^a_K of the generic fiber $G \otimes K$. The scheme theoretic closure of G^a_K in G, denoted by G^a , is a closed subgroup of G finite and flat over \mathcal{O}_K . Putting $G^0 = G$,

we get a decreasing and separated filtration $(G^a, a \in \mathbf{Q}_{\geq 0})$ of G by finite and flat closed subgroup schemes. We call it *Abbes-Saito filtration* of G. For any real number $a \geq 0$, we put $G^{a+} = \bigcup_{b \in \mathbf{Q}_{\geq a}} G^a$.

Assume G is connected, i.e., the ring A is local. Let

$$(1.2.1) 0 \to I \to \mathcal{O}_K[[X_1, \cdots, X_d]] \to A \to 0$$

be a presentation of A by the ring of formal power series such that the unit section of G corresponds to the point $(X_1, \dots, X_d) = (0, \dots, 0)$. Since A is a relative complete intersection over \mathcal{O}_K , I is generated by d elements f_1, \dots, f_d . For $a \in \mathbf{Q}_{>0}$, the \overline{K} -valued points of the a-th tubular neighborhood of G are given by

(1.2.2)
$$X^{a}(\overline{K}) = \left\{ (x_1, \cdots, x_d) \in \mathfrak{m}_{\overline{K}}^{d} \mid v_{\pi}(f_i(x_1, \cdots, x_d)) \ge a \text{ for } 1 \le i \le d \right\},$$

where $\mathfrak{m}_{\overline{K}}$ is the maximal ideal of $\mathcal{O}_{\overline{K}}$. The subset $G(\overline{K}) \subset X^a(\overline{K})$ corresponds to the zeros of the f_i 's. Let X_0^a be the connected component of X^a containing 0. Then the subgroup $G^a(\overline{K})$ is the intersection of $X_0^a(\overline{K})$ with $G(\overline{K})$.

The basic properties of Abbes-Saito filtration that we need are summarized as follows.

Proposition 1.3 ([AM04] 2.3.2, 2.3.5). Let G and H be finite and flat group schemes, generically étale over \mathcal{O}_K , $f: G \to H$ be a homomorphism of group schemes.

(i) G^{0+} is the connected component of G, and we have $(G^{0+})^a = G^a$ for any $a \in \mathbf{Q}_{>0}$.

(ii) For $a \in \mathbf{Q}_{>0}$, f induces a canonical homomorphism $f^a : G^a \to H^a$. If f is flat and surjective, then $f^a(\overline{K}) : G^a(\overline{K}) \to H^a(\overline{K})$ is surjective.

Now we return to the proof of Theorem 0.1.

Lemma 1.4. Let R be a \mathbb{Z}_p -algebra, \mathscr{X} be a formal group of dimension d over R such that $\operatorname{Lie}(\mathscr{X})$ is a free R-module of rank d. Then

(i) the ring \mathbf{Z}_p acts naturally on \mathscr{X} , and its image in $\operatorname{End}_R(\mathscr{X})$ lies in the center of $\operatorname{End}_R(\mathscr{X})$;

(ii) there exist parameters (X_1, \dots, X_d) of \mathscr{X} , such that we have $[\zeta](X_1, \dots, X_d) = (\zeta X_1, \dots, \zeta X_d)$ for any (p-1)-th root of unity $\zeta \in \mathbf{Z}_p$.

Proof. This is actually a classical result on formal groups. In the terminology of [Haz78], the formal group \mathscr{X} comes from the base change of $\mathscr{X}^{\text{univ}}$ defined by the *d*-dimensional universal *p*-typical formal group law (denoted by $F_V(X, Y)$ in [Haz78, 15.2.8]) over $\mathbf{Z}_p[V] = \mathbf{Z}_p[V_i(j,k); i \in \mathbf{Z}_{\geq 0}, j, k = 1, \cdots, d]$, where the $V_i(j,k)$'s are free variables. So we are reduced to proving the Lemma for $\mathscr{X}^{\text{univ}}$. If X and Y are short for the column vectors (X_1, \cdots, X_d) and (Y_1, \cdots, Y_d) respectively, the formal group law on $\mathscr{X}^{\text{univ}}$ is determined by

$$F_V(X,Y) = f_V^{-1}(f_V(X) + f_V(Y)), \text{ with } f_V(X) = \sum_{i=0}^{\infty} a_i(V)X^{p^i},$$

where $a_i(V)$'s are certain $d \times d$ matrices with coefficients in $\mathbf{Q}_p[V]$ with $a_1(V)$ invertible, X^{p^i} is short for $(X_1^{p^i}, \dots, X_d^{p^i})$, and f_V^{-1} is the unique *d*-tuple of power series in (X_1, \dots, X_d) with coefficients in $\mathbf{Q}_p[V]$ such that $f_V^{-1} \circ f_V = 1$ [Haz78, 10.4]. We note that $F_V(X, Y)$ is a *d*-tuple of power series with coefficient in $\mathbf{Z}_p[V]$, although $f_V(X)$ has coefficients in $\mathbf{Q}_p[V]$ [Haz78, 10.2(i)]. Via approximation by integers, we see easily that the multiplication by an element $\xi \in \mathbf{Z}_p$ can be well defined as $[\xi](X) = f_V^{-1}(\xi f_V(X))$. This proves (i). Statement (ii) is an immediate consequence of the fact that $f_V(X)$ involves just *p*-powers of *X*.

Remark 1.5. The referee gives the following alternative proof of this Lemma via the Cartier theory of formal groups. Let \mathscr{X} be the formal group over R as in the Lemma. We denote by $\mathscr{X}(R[[T]])$ the group of R[[T]]-valued points of \mathscr{X} whose reduction modulo T is the neutral element $0 \in \mathscr{X}(R)$. A formal group law over \mathscr{X} is a datum $(\mathscr{X}; \gamma_1, \dots, \gamma_d)$, where $\gamma_1, \dots, \gamma_d \in \mathscr{X}(R[[T]])$ are such that their image in $\mathscr{X}(R[T]/T^2)$ forms a basis of Lie (\mathscr{X}) . In particular, $(\gamma_i)_{1 \leq i \leq d}$ establish an isomorphism of formal schemes over R $\mathscr{X} \simeq \operatorname{Spf}(R[[X_1, \dots, X_d]])$. Recall that $\mathscr{X}(R[[T]])$ is the Cartier module associated with \mathscr{X} over the big Cartier ring (denoted by $\operatorname{Cart}(R)$ in [Ch94, 2.3]). Since R is a \mathbb{Z}_p -algebra, the Cartier theory [Ch94, 4.3, 4.4] implies that there exists a p-typical formal group law $(\mathscr{X}; \gamma_1, \dots, \gamma_d)$ over \mathscr{X} , i.e. we have $\epsilon_p \cdot \gamma_i = 0$, where

$$\epsilon_p = \prod_{\substack{\ell \text{ prime}\\(\ell,p)=1}} (1 - \frac{1}{\ell} V_\ell F_\ell)$$

is Cartier's idempotent in Cart(R) (see [Ch94, 4.1]). Let $\Delta : \mathbf{Z}_p = W(\mathbf{F}_p) \to W(\mathbf{Z}_p)$ be the Cartier homomorphism given by $(x_0, x_1, \ldots) \mapsto ([x_0], [x_1], \ldots)$, where $x_n \in \mathbf{F}_p$ and $[x_n]$ denotes its Teichmüller lift. Then we get a natural map $u : \mathbf{Z}_p \xrightarrow{\Delta} W(\mathbf{Z}_p) \to W(R)$. For a (p-1)-th root of unity $\zeta \in \mathbf{Z}_p$, we have $u(\zeta) = [\zeta] \in W(R)$. Note that for any $a \in R$ and $1 \leq i \leq d$, the p-typical curve $[a] \cdot \gamma_i$ is the image of γ_i under the map $\mathscr{X}(R[[T]]) \to \mathscr{X}(R[[T]])$ induced by $T \mapsto aT$. Applying this fact to $u(\zeta) \cdot \gamma_i = [\zeta] \cdot \gamma_i$, one obtains the Lemma immediately.

Proposition 1.6. Let G = Spec(A) be a connected finite and flat group scheme over \mathcal{O}_K of order a power of p. Then there exists a presentation of A of type (1.2.1) such that the defining equations f_i for $1 \leq i \leq d$ have the form

$$f_i(X_1, \cdots, X_d) = \sum_{|n| \ge 1}^{\infty} a_{i,\underline{n}} X^{\underline{n}} \qquad \text{with } a_{i,\underline{n}} = 0 \quad \text{if } (p-1) \nmid (|\underline{n}| - 1),$$

where $\underline{n} = (n_1, \cdots, n_d) \in (\mathbf{Z}_{\geq 0})^d$ are multi-indexes, $|\underline{n}| = \sum_{j=1}^d n_j$, and $X^{\underline{n}}$ is short for $\prod_{j=1}^d X_j^{n_j}$.

Proof. By a theorem of Raynaud [BBM82, 3.1.1], there is a projective abelian variety V over \mathcal{O}_K , and an embedding of group schemes $j: G \hookrightarrow V$. Let V' be the quotient of V by G. Let \mathscr{X}, \mathscr{Y} be respectively the formal completion of V and V' along their unit sections. They are formal groups over \mathcal{O}_K . Since G is connected, it's identified with the kernel of the natural isogeny $\phi: \mathscr{X} \to \mathscr{Y}$. Let (X_1, \dots, X_d) (resp. (Y_1, \dots, Y_d)) be parameters of \mathscr{X} (resp. \mathscr{Y}) satisfying the preceding lemma. The isogeny ϕ is thus given by

$$(X_1, \cdots, X_d) \mapsto (f_1(X_1, \cdots, X_d), \cdots, f_d(X_1, \cdots, X_d)),$$

where $f_i = \sum_{|\underline{n}| \ge 1} a_{i,\underline{n}} X^{\underline{n}} \in \mathcal{O}_K[[X_1, \cdots, X_d]]$. Since for any (p-1)-th root of unity $\zeta \in \mathbf{Z}_p$ we have $f_i(\zeta X_1, \cdots, \zeta X_d) = \zeta f_i(X_1, \cdots, X_d)$, it's easy to see that $a_{i,\underline{n}} = 0$ if $(p-1) \nmid (|\underline{n}| - 1)$.

Remark 1.7. As pointed out by the referee, we can avoid using Raynaud's deep theorem to realize G as the kernel of an isogeny of formal groups over \mathcal{O}_K . In fact, by the biduality formula $G \simeq (G^D)^D$, where G^D denotes the Cartier dual of G, we have a canonical closed embedding $u : G \hookrightarrow U = \operatorname{Res}_{G^D/S}(\mathbf{G}_m)$ of group schemes over $S = \operatorname{Spec}(\mathcal{O}_K)$. Here, "Res $_{G^D/S}$ " means Weil's restriction of scalars, so U is an affine smooth group scheme over S. Since the quotient of an affine scheme by a finite flat group scheme is always representable by a scheme [Ra67], we can consider the quotient U' = U/G and the formal groups \mathscr{X}, \mathscr{Y} associated with U and U', so that G is the kernel of the natural isogeny $\phi : \mathscr{X} \to \mathscr{Y}$.

1.8. Proof of Theorem 0.1. Let $H = G^{0+}$ be the connected component of G. By 1.3(i), we have $G^a = H^a$ for $a \in \mathbf{Q}_{>0}$. The exact sequence of finite flat group schemes $0 \to H \to G \to G/H \to 0$ induces a long exact sequence of finite \mathcal{O}_K -modules

$$0 \to H^{-1}(\ell_{G/H}) \to H^{-1}(\ell_G) \to H^{-1}(\ell_H) \to \omega_{G/H} \to \omega_G \to \omega_H \to 0,$$

where ℓ_G means the co-Lie complex of G [BBM82, 3.2.9]. Since the generic fiber of G/H is étale, it's easy to see that $H^{-1}(\ell_H) = 0$. It follows thus that $0 \to \omega_{G/H} \to \omega_G \to \omega_H \to 0$ is exact. Since G/H is étale, we have $\omega_{G/H} = 0$ and hence $\deg(G) = \deg(H)$. Up to replacing G by H, we may assume that $G = \operatorname{Spec}(A)$ is connected.

We choose a presentation of A as in Prop. 1.6 so that we have an isomorphism of \mathcal{O}_{K} -algebras

$$A \simeq \mathcal{O}_K[[X_1, \cdots, X_d]]/(f_1, \cdots, f_d)$$

where

$$f_i(X_1,\cdots,X_d) = \sum_{j=1}^d a_{i,j}X_j + \sum_{|\underline{n}| \ge p} a_{i,\underline{n}}X^{\underline{n}}.$$

As A is finite as an \mathcal{O}_K -module, we have

$$\Omega^{1}_{A/\mathcal{O}_{K}} = \widehat{\Omega}^{1}_{A/\mathcal{O}_{K}} \simeq \left(\bigoplus_{i=1}^{d} A \ dX_{i}\right)/(df_{1}, \cdots, df_{d}).$$

Since $\omega_G \simeq e^*(\Omega^1_{A/\mathcal{O}_K})$, where e is the unit section of G, we get

$$\omega_G \simeq \left(\bigoplus_{i=1}^d \mathcal{O}_K dX_i \right) / \left(\sum_{1 \le j \le d} a_{i,j} dX_j \right)_{1 \le i \le d}$$

In particular, if U denotes the matrix $(a_{i,j})_{1 \le i,j \le d}$, then we have $\deg(G) = v_{\pi}(\det(U))$.

For any rational number λ , we denote by $\mathbf{D}^d(0, |\pi|^{\lambda})$ (resp. $\mathbb{D}^d(0, |\pi|^{\lambda})$) the rigid analytic closed (resp. open) disk of dimension d over K consisting of points (x_1, \dots, x_d) with $v_{\pi}(x_i) \geq \lambda$ (resp. $v_{\pi}(x_i) > \lambda$) for $1 \leq i \leq d$; we put $\mathbf{D}^d(0, 1) = \mathbf{D}^d(0, |\pi|^0)$ and $\mathbb{D}^d(0, 1) =$ $\mathbb{D}^d(0, |\pi|^0)$. Let $a > \frac{p}{p-1} \deg(G)$ be a rational number, X^a be the a-th tubular neighborhood of G with respect to the chosen presentation. By (1.2.2), we have a cartesian diagram of rigid analytic spaces

where horizontal arrows are inclusions, and $\mathbf{f}(y_1, \dots, y_d) = (f_1(y_1, \dots, y_d), \dots, f_d(y_1, \dots, y_d))$. Let X_0^a be the connected component of X^a containing 0. By the discussion below (1.2.2), we just need to prove that 0 is the only zero of the f_i 's contained in X_0^a .

Let $V = (b_{i,j})_{1 \le i,j \le d}$ be the unique $d \times d$ matrix with coefficients in \mathcal{O}_K such that $UV = VU = \det(U)I_d$, where I_d is the $d \times d$ identity matrix. If \mathbf{A}_K^d denotes the *d*-dimensional rigid affine space over *K*, then *V* defines an isomorphism of rigid spaces

$$\mathbf{g}: \mathbf{A}_K^d \to \mathbf{A}_K^d; \qquad (x_1, \cdots, x_d) \mapsto (\sum_{j=1}^d b_{1,j} x_j, \cdots, \sum_{j=1}^d b_{d,j} x_j).$$

It's clear that $\mathbf{g}(\mathring{\mathbb{D}}^d(0,1)) \subset \mathring{\mathbb{D}}^d(0,1)$, so that **f** is defined on $\mathbf{g}(\mathring{\mathbb{D}}^d(0,1))$. The composite morphism $\mathbf{f} \circ \mathbf{g} : \mathring{\mathbb{D}}^d(0,1) \to \mathring{\mathbb{D}}^d(0,1)$ is given by

(1.8.2)
$$(x_1, \cdots, x_d) \mapsto (\det(U)x_1 + R_1, \cdots, \det(U)x_d + R_d)$$

where $R_i = \sum_{|\underline{n}| \ge p} a_{i,\underline{n}} \prod_{j=1}^d (\sum_{k=1}^d b_{j,k} x_k)^{n_j}$ involves only terms of order $\ge p$ for $1 \le i \le d$. For $1 \le i \le d$, we have basic estimations

(1.8.3)
$$v_{\pi}(\det(U)x_i) = \deg(G) + v_{\pi}(x_i) \text{ and } v_{\pi}(R_i) \ge p \min_{1 \le j \le d} \{v_{\pi}(x_j)\}.$$

Lemma 1.9. For any rational number $a > \frac{p}{p-1} \deg(G)$, the map **g** induces an isomorphism of affinoid rigid spaces

$$\mathbf{g}: \mathbf{D}^d(0, |\pi|^{a-\deg(G)}) \xrightarrow{\sim} X_0^a.$$

Assuming this Lemma for a moment, we can complete the proof of 0.1 as follows. Consider the composite

$$\mathbf{h} = \mathbf{f} \circ \mathbf{g}|_{\mathbf{D}^d(0,|\pi|^{a-\deg(G)})} : \mathbf{D}^d(0,|\pi|^{a-\deg(G)}) \xrightarrow{\sim} X_0^a \hookrightarrow X^a \xrightarrow{\mathbf{f}} \mathbf{D}^d(0,|\pi|^a).$$

In order to complete the proof of 0.1, we just need to prove that the inverse image $\mathbf{h}^{-1}(0) = \{0\}$. Let (x_1, \dots, x_d) be a point of $\mathbf{D}^d(0, |\pi|^{a-\deg(G)})$, and $(z_1, \dots, z_d) = \mathbf{h}(x_1, \dots, x_d)$. We may assume $v_{\pi}(x_1) = \min_{1 \le i \le d} \{v_{\pi}(x_i)\}$. We have $v_{\pi}(x_1) \ge a - \deg(G) > \frac{1}{p-1} \deg(G)$ by the assumption on a. It follows thus from (1.8.3) that

$$v_{\pi}(R_1) \ge pv_{\pi}(x_1) > \deg(G) + v_{\pi}(x_1) = v_{\pi}(\det(U)x_1).$$

Hence, we deduce from (1.8.2) that $v_{\pi}(z_1) = \deg(G) + v_{\pi}(x_1)$. In particular, $z_1 = 0$ if and only if $x_1 = 0$. Therefore, we have $\mathbf{h}^{-1}(0) = \{0\}$. This achieves the proof of Theorem 0.1.

Proof of 1.9. Let ϵ be any rational number with $0 < \epsilon < \frac{p-1}{p}a - \deg(G)$. We will prove that

$$\mathbf{D}^{d}(0, |\pi|^{a - \deg(G)}) = \mathbf{D}^{d}(0, |\pi|^{a - \deg(G) - \epsilon}) \cap \mathbf{g}^{-1}(X^{a}).$$

This will imply that $\mathbf{D}^d(0, |\pi|^{a-\deg(G)})$ is a connected component of $\mathbf{g}^{-1}(X^a)$. Since $\mathbf{g} : \mathbf{A}^d_K \to \mathbf{A}^d_K$ is an isomorphism, the lemma will follow immediately.

We prove first the inclusion " \subset ". It suffices to show $\mathbf{g}(\mathbf{D}^{d}(0, |\pi|^{a-\deg(G)})) \subset X^{a}$. Let (x_{1}, \dots, x_{d}) be a point of $\mathbf{D}^{d}(0, |\pi|^{a-\deg(G)})$. By (1.8.1), we have to check that $(z_{1}, \dots, z_{d}) = \mathbf{f}(\mathbf{g}(x_{1}, \dots, x_{d}))$ lies in $\mathbf{D}^{d}(0, |\pi|^{a})$. We get from (1.8.3) that $v_{\pi}(\det(U)x_{i}) = \deg(G) + v_{\pi}(x_{i}) \geq a$ and $v_{\pi}(R_{i}) \geq p(a - \deg(G))$. As $a > \frac{p}{p-1} \deg(G)$, we have $v_{\pi}(R_{i}) > a$. It follows from (1.8.2) that

$$v_{\pi}(z_i) \ge \min\{v_{\pi}(\det(U)x_i), v_{\pi}(R_i)\} \ge a.$$

This proves (z_1, \dots, z_d) is contained in $\mathbf{D}^d(0, |\pi|^a)$, hence we have $\mathbf{g}(\mathbf{D}^d(0, |\pi|^{a-\deg(G)})) \subset X^a$.

To prove the inclusion " \supset ", we just need to verify that every point in $\mathbf{D}^{d}(0, |\pi|^{a-\deg(G)-\epsilon})$ but outside $\mathbf{D}^{d}(0, |\pi|^{a-\deg(G)})$ does not lie in $\mathbf{g}^{-1}(X^{a})$. Let (x_{1}, \cdots, x_{d}) be such a point. We may assume that

(1.9.1)
$$a - \deg(G) - \epsilon \le v_{\pi}(x_1) < a - \deg(G)$$
 and $v_{\pi}(x_i) \ge a - \deg(G) - \epsilon$ for $2 \le i \le d$.

Let $(z_1, \dots, z_d) = (\det(U)x_1 + R_d, \dots, \det(U)x_d + R_d)$ be the image of (x_1, \dots, x_d) under the composite $\mathbf{f} \circ \mathbf{g}$. According to (1.8.1), the proof will be completed if we can prove that (z_1, \dots, z_d) is not in $\mathbf{D}^d(0, |\pi|^a)$. From (1.8.3) and (1.9.1), we get $v_\pi(\det(U)x_1) =$ $\deg(G) + v_\pi(x_1) < a$ and $v_\pi(R_1) \ge p(a - \deg(G) - \epsilon)$. Thanks to the assumption on ϵ , we have $p(a - \deg(G) - \epsilon) > a$, so $v_\pi(z_1) = v_\pi(\det(U)x_1) < a$. This shows that (z_1, \dots, z_d) is not in $\mathbf{g}^{-1}(X^a)$, hence the proof of the lemma is complete.

2. Applications to Canonical subgroups

In this section, we suppose the fraction field K has characteristic 0 and the residue field k is perfect of characteristic $p \geq 3$. Let e be the absolute ramification index of \mathcal{O}_K . For any rational number $\epsilon > 0$, we denote by $\mathcal{O}_{K,\epsilon}$ the quotient of \mathcal{O}_K by the ideal consisting of elements with p-adic valuation greater or equal to ϵ .

2.1. First we recall some results on the canonical subgroups according to [AM04], [Ti06] and [Fa09]. Let $v_p : \mathcal{O}_K/p \to [0,1]$ be the truncated *p*-adic valuation (with $v_p(0) = 1$). Let *G* be a truncated Barsotti-Tate group of level $n \geq 1$ non-étale over $\mathcal{O}_K, G_1 = G \otimes_{\mathcal{O}_K} (\mathcal{O}_K/p)$. The Lie algebra of G_1 , denoted by Lie(G_1) is a finite free \mathcal{O}_K/p -module. The Verschiebung homomorphism $V_{G_1} : G_1^{(p)} \to G_1$ induces a semi-linear endomorphism φ_{G_1} of Lie(G_1). We choose a basis of Lie(G_1) over \mathcal{O}_K/p , and let *U* be the matrix of φ under this basis. We define the Hodge height of *G*, denoted by h(G), to be the truncated *p*-adic valuation of det(*U*). We note that the definition of h(G) does not depend on the choice of *U*. The Hodge height of *G* is an analog of the Hasse invariant in mixed characteristic, and we have h(G) = 0 if and only if *G* is ordinary.

Theorem 2.2 ([Fa09] Théo. 4). Let G be a truncated Barsotti-Tate group of level 1 over \mathcal{O}_K of dimension $d \ge 1$ and height h. Assume $h(G) < \frac{1}{2}$ if $p \ge 5$ and h(G) < 1/3 if p = 3. (i) For any rational number $\frac{ep}{p-1}h(G) < a \leq \frac{ep}{p-1}(1-h(G))$, the finite flat subgroup G^a

of G given by the Abbes-Saito filtration has rank p^d . (ii) Let C be the subgroup $G^{\frac{ep}{p-1}(1-h(G))}$ of G. We have $\deg(G/C) = eh(G)$.

(iii) The subgroup $C \otimes \mathcal{O}_{K,1-h(G)}$ coincides with the kernel of the Frobenius homomorphism of $G \otimes \mathcal{O}_{K,1-h(G)}$. Moreover, for any rational number ϵ with $\frac{h(G)}{p-1} < \epsilon \leq 1-h(G)$, if H is a finite and flat closed subgroup of G such that $H \otimes \mathcal{O}_{K,\epsilon}$ coincides with the kernel of Frobenius of $G \otimes \mathcal{O}_{K,\epsilon}$, then we have H = C.

The subgroup C in this theorem, when it exists, is called the *canonical subgroup* (of level 1) of G.

Remark 2.3. (i) The conventions here are slightly different from those in [Fa09]. The Hodge height is called Hasse invariant in *loc. cit.*, while we choose to follow the terminologies in [AM04] and [Ti06]. Our index of Abbes-Saito filtration and the degree of G are etimes those in [Fa09].

(ii) Statement (iii) of the theorem is not explicitly stated in [Fa09, Théo. 4], but it's an easy consequence of loc. cit. Prop. 11.

For the canonical subgroups of higher level, we have

Theorem 2.4 ([Fa09] Théo. 6). Let G be a truncated Barsotti-Tate group of level n over \mathcal{O}_K of dimension $d \geq 1$ and height h. Assume $h(G) < \frac{1}{3^n}$ if p = 3 and $h(G) < \frac{1}{2p^{n-1}}$ if $p \geq 5$.

- (i) There exists a unique closed subgroup of G that is finite and flat over \mathcal{O}_K and satisfies
 - $C_n(\overline{K})$ is free of rank d over $\mathbf{Z}/p^n\mathbf{Z}$.
 - For each integer i with $1 \leq i \leq n$, let C_i be the scheme theoretic closure of $C_n(\overline{K})[p^i]$ in G. Then the subgroup $C_i \otimes \mathcal{O}_{K,1-p^{i-1}h(G)}$ coincides with the kernel of the *i*-th iterated Frobenius of $G \otimes \mathcal{O}_{K,1-p^{i-1}h(G)}$.
- (ii) We have $\deg(G/C_n) = \frac{e(p^n-1)}{p-1}h(G)$.

The subgroup C_n in the theorem above is called the canonical subgroup of level n of G. Fargues actually proves that C_n is a certain piece of the Harder-Narasimhan filtration of G. The aim of this section is to show that C_n appears also in the Abbes-Saito filtration.

Theorem 2.5. Let G be a truncated Barsotti-Tate group of level n over \mathcal{O}_K satisfying the assumptions in 2.4, and C_n be its canonical subgroup of level n. Then for any rational number a satisfying $\frac{ep(p^n-1)}{(p-1)^2}h(G) < a \leq \frac{ep}{p-1}(1-h(G))$, we have $G^a = C_n$.

Proof. We proceed by induction on n. If n = 1, the theorem is 2.2(i). We suppose $n \geq 2$ and the theorem is valid for truncated Barsotti-Tate groups of level n-1. For each integer i with $1 \leq i \leq n$, let G_i denote the scheme theoretic closure of $G(K)[p^i]$ in G, and C_i the scheme theoretic closure of $C_n(\overline{K})[p^i]$ in C_n . By Theorem 2.4(i), it's clear that C_i is the canonical subgroup of level *i* of G_i . Let *a* be a rational number with

 $\frac{ep(p^n-1)}{(p-1)^2}h(G) < a \leq \frac{ep}{p-1}(1-h(G)).$ By the induction hypothesis and the functoriality of Abbes-Saito filtration 1.3(ii), we have $C_{n-1}(\overline{K}) = G_{n-1}^a(\overline{K}) \subset G^a(\overline{K})$, and the image of $G^a(\overline{K})$ in $G_1(\overline{K})$ is exactly $C_1(\overline{K}) = G_1^a(\overline{K})$. Note that we have a commutative diagram of exact sequences of groups

where vertical arrows are natural inclusions. So we have $C_n(\overline{K}) \subset G^a(\overline{K})$. On the other hand, Theorems 0.1 and 2.4(ii) imply that $(G/C_n)^a(\overline{K}) = 0$ as $a > \frac{ep(p^n-1)}{(p-1)^2}h(G) = \frac{p}{p-1} \deg(G/C_n)$. Therefore, we get $G^a(\overline{K}) \subset C_n(\overline{K})$ by 1.3(ii). This completes the proof.

References

- [AM04] A. ABBES and A. MOKRANE, Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes, Publ. Math. Inst. Hautes Étud. Sci. 99 (2004), 117-162.
- [AS02] A. ABBES and T. SAITO, Ramification of local fields with imperfect residue fields, Am. J. Math. 124 (2002), 879-920.
- [AS03] A. ABBES and T. SAITO, Ramification of local fields with imperfect residue fields II, Doc. Math. Extra Volume: Kazuya Kato's Fiftieth Birthday (2003), 5-72.
- [BBM82] P. BERTHELOT, L. BREEN, and W. MESSING, *Théorie de Dieudonnés Cristalline II*, Lecture Notes in Math. **930**, Springer-Verlag, (1982).
- [Ch94] C. L. CHAI, Notes on Cartier-Dieudonné theory, available at the author's homepage.
- [Fa07] L. FARGUES, La filtration de Harder-Narasimhan des schémas en groupes finis et plats, preprint in 2007, to appear in *J. für die Reine und Angewandte Math.*
- [Fa09] L. FARGUES (avec la collaboration de Yichao TIAN), La filtration canonique des points de torsion des groupes p-divisibles, preprint in 2009, available at the author's homepage.
- [Hat06] S. HATTORI, Ramification of a finite flat group scheme over a local field, J. Number Theory, 118, Issue 2, 145-154.
- [Haz78] M. HAZEWINKEL, Formal groups and applications, Adademic Press, (1978).
- [Ra67] M. RAYNAUD, Passage au quotient par une relation d'équivalence plate, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, (1967), 78-85.
- [Ti06] Y. TIAN, Canonical subgroup of Barsotti-Tate groups, arXiv:math/0606059, to appear in Ann. Math.

Mathematics Department, Fine Hall, Washington Road, Princeton, NJ, 08544, USA E-mail address: yichaot@princeton.edu