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1. Introduction

Let E be an elliptic curve defined over a number field F . For each finite extension
L of F , write rE(L) for the rank of the group E(L) of L-rational points on E. A
p-adic Lie extension of F is a Galois extension L∞/F whose Galois group G is a
p-adic Lie group (for example, the splitting field of any continuous representation
of the absolute Galois group of F acting on a finite dimensional Qp-vector space).
The present note is motivated by the following general problem:

Question 1.1. To understand the variation of rE(L) as L ranges over all finite
extensions of F contained in L∞.

This question dates back at least to the foundational article [Ma], which considers
the case when G = Zp, and makes the first steps towards examining this problem
by the methods of Iwasawa theory. As in classical descent theory, it is convenient
to replace the Mordell-Weil group E(L) by the p-power Selmer group of E over L,
thus sidestepping the difficulties associated with the Shafarevich-Tate conjecture.
This Selmer group is defined to be

(1.1) Selp(E/L) := ker

(
H1(L,E[p∞]) −→

⊕

v

H1(Lv, E)[p∞]

)
,

where E[p∞] denotes the Galois module of all p-power division points on E, and v
runs over all places of L. The idea of Iwasawa theory is to exploit the structure of
the Selmer group of E over L∞ as a module for the Galois group G to show that
the groups Selp(E/L) exhibit some coherence as L varies.

A rich, well-developed theory now paints a fairly precise picture when F = Q
and G is either abelian or dihedral.

The last decade has seen the emergence of a program of non-abelian Iwasawa
theory whose goal is to study Question 1.1 in settings which are further removed
from the abelian setting. A prototypical example is the case where L∞ = Q(A[p∞])
is the field generated over Q by the coordinates of the p-power division points of
an elliptic curve A over Q. The article [Har] exhibits cases where rE(Q(A[pn])) is
unbounded with n, but it is fair to say that the type of growth it could exhibit is
at present only poorly understood.
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