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Mohammed Ben Alhocain, in an Arab manuscript of the 10th
century, stated that the principal object of the theory of rational
right triangles is to find a square that when increased or diminished
by a certain number,m becomes a square [Dickson LE (1971)History
of the Theory of Numbers (Chelsea, New York), Vol 2, Chap 16]. In
modern language, this object is to find a rational point of infinite
order on the elliptic curve my2 =x3 −x. Heegner constructed such
rational points in the case that m are primes congruent to 5,7 mod-
ulo 8 or twice primes congruent to 3 modulo 8 [Monsky P (1990)
Math Z 204:45–68]. We extend Heegner’s result to integers m with
many prime divisors and give a sketch in this report. The full details
of all the proofs will be given in ref. 1 [Tian Y (2012) Congruent
Numbers and Heegner Points, arXiv:1210.8231].
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Apositive integer is called a congruent number if it is the area
of a right-angled triangle, all of whose sides have rational

length. The problem of determining which positive integers are
congruent is buried in antiquity (ref. 2, chap. 16) with it long
being known that the numbers 5, 6, and 7 are congruent. Fermat
proved that 1 is not a congruent number, and similar arguments
show that 2 and 3 are not congruent numbers. No algorithm has
ever been proven for infallibly deciding whether a given integer
n≥ 1 is congruent, the reason being that an integer n≥ 1 is
congruent if and only if there exists a point ðx; yÞ, with x and
y rational numbers and y≠ 0, on the elliptic curve E(n):
y2 = x3 − n2x. Moreover, assuming n to be square-free, a classical
calculation of root numbers shows that the complex L-function
of this curve has zero of odd order at the center of its critical
strip precisely when n lies in one of the residue classes of 5, 6,
and 7 modulo (mod) 8. Thus, in particular, the unproven con-
jecture of Birch and Swinnerton-Dyer (3, 4) predicts that every
positive integer lying in the residue classes of 5, 6, and 7 mod 8
should be a congruent number. The aim of this paper is to prove
the following partial results in this direction.

Theorem 1. For any given integer k≥ 0, there are infinitely many
square-free congruent numbers with exactly k+ 1 odd prime divisors
in each residue class of 5, 6, 7 mod 8.
Theorem 1 follows from the following result by Remark

2 below. For any abelian group A and an integer d ≥ 1, we write
A[d] for the Kernel of the multiplication by d on A.

Theorem 2. Let k≥ 0 be an integer and n= p0p1⋯pk a product of
distinct odd primes with pi ≡ 1 mod 8 for 1≤ i≤ k. Let m= n or 2n
such that m≡ 5; 6, or 7 mod 8. Then m is a congruent number
provided that the ideal class group A of the field K =Qð ffiffiffiffiffiffiffiffiffi

−2n
p Þ

satisfies the condition

dimF2ðA½4�=A½2�Þ=
�
0; if n≡ ± 3 mod 8;
1; otherwise:

[1]

Remark 1: The above result when k= 0 is due to Heegner (5),
and completed by Birch (6), Stephens (7), and Monsky (8); and
that when k= 1 is due to Monsky (8) and Gross (9). Actually
Heegner is the first mathematician who found a method to con-
struct fairly general solutions to cubic Diophantine equations (5).
The method of this paper is based on Heegner’s construction.

Remark 2: The kernelA½2� and the image 2A of themultiplication
by 2 on A are characterized by Gauss’ genus theory. Note that the
multiplication by 2 induces an isomorphismA½4�=A½2�’× 2A½2�∩ 2A.
By Gauss’ genus theory, Condition 1 is equivalent in that there are
exactly an odd number of spanning subtrees in the graph whose
vertices are p0;⋯; pk and whose edges are those pipj, i≠ j, with the

quadratic residue symbol
�
pi
pj

�
= − 1. It is then clear that Theorem 1

follows from Theorem 2.
The congruent number problem is not only to determine

whether a given integer m is congruent, but also to construct
infinite order points on the elliptic curve EðmÞ : my2 = x3 − x for
congruent m.
Let X0ð32Þ be the modular curve defined over Q for the

congruent subgroup Γ0ð32Þ, which is a genus 1 curve, and the
cusp ∞ is rational so that E′ := ðX0ð32Þ;∞Þ is an elliptic curve
over Q. It is known that E′ has Weierstrass equation y2 = x3 + 4x.
Let E be the elliptic curve y2 = x3 − x and let f : X0ð32Þ→E be
a modular parametrization of degree 2 mapping ∞ to 0, i.e., it is
a degree 2 isogeny from E′ to E.
Let n= p0p1⋯pk be a product of distinct odd primes with

p1;⋯; pk ≡ 1 mod 8. Let m= n or 2n such that m≡ 5; 6 or
7 mod 8. Let H be the Hilbert class field of the imaginary qua-
dratic field K =Qð ffiffiffiffiffiffiffiffiffi

−2n
p Þ. Let m* = ð−1Þðn−1Þ=2m so that

Kð ffiffiffiffiffiffiffiffi
m*

p Þ⊂H and let EðQð ffiffiffiffiffiffiffiffi
m*

p ÞÞ− be the group of points
x∈EðQð ffiffiffiffiffiffiffiffi

m*
p ÞÞ such that σx= − x where σ is the nontrivial ele-

ment in the Galois group GalðQð ffiffiffiffiffiffiffiffi
m*

p Þ=QÞ. Then EðQð ffiffiffiffiffiffiffiffi
m*

p ÞÞ− ≅
EðmÞðQÞ, whose torsion subgroup is E½2�. We now construct the
so-called Heegner point ym ∈EðQð ffiffiffiffiffiffiffiffi

m*
p ÞÞ− ≅EðmÞðQÞ, which will

be shown to be of infinite order for m satisfying Condition 1 in
Theorem 2.

1. If n≡ 5 mod 8, then m=m* = n. Let P∈X0ð32Þ be the
image of i

ffiffiffiffiffi
2n

p
=8 on the upper half plane H via the complex

uniformization X0ð32Þ=Γ0ð32Þ∖ðH∪P1ðQÞÞ. It turns out that
the point z := f ðPÞ+ ð1+ ffiffiffi

2
p

; 2+
ffiffiffi
2

p Þ on E is defined over the
Hilbert class field H, and that yn :=TrH=Kð ffiffi

n
p Þz∈EðQð ffiffiffi

n
p ÞÞ.

Moreover, yn (resp. 2yn) belongs to EðQð ffiffiffi
n

p ÞÞ− if k≥ 1 (resp.
k= 0).

2. If n≡ 3; 7 mod 8, then m* = −m. Let P∈X0ð32Þ be the im-
age of ði ffiffiffiffiffi

2n
p

+ 2Þ=8 via the complex uniformization and let
z := f ðPÞ+ ð1+ ffiffiffi

2
p

; 2+
ffiffiffi
2

p Þ, which turns out to be a point de-
fined over HðiÞ. Identify A with G=GalðHðiÞ=KðiÞÞ and let
σ0 ∈GalðHðiÞ=KðiÞÞ be the element corresponding to the
ideal class of ð2; ffiffiffiffiffiffiffiffiffi

−2n
p Þ. Let χ be the character of G factor

through GalðKði; ffiffiffiffiffiffiffiffi
m*

p Þ=KðiÞÞ, which is nontrivial if m≠ 2n.
Let ϕ⊂A be a complete representative of G=hσ0i and define
ym := ym;ϕ =

P
σ∈ϕχðσÞzσ .

The following theorem is our main result, from which Theorem
2 follows.
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