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Congruent numbers and Heegner points∗

Ye Tian

1. Introduction and main results

A positive integer is called a congruent number if it is the area of a right-

angled triangle, all of whose sides have rational length. The problem of

determining which positive integers are congruent is buried in antiquity (see

Chapter 9 of Dickson [6]), with it long being known that the numbers 5, 6,

and 7 are congruent. Fermat proved that 1 is not a congruent number, and

similar arguments show that also 2 and 3 are not congruent numbers. No

algorithm has ever been proven for infallibly deciding whether a given integer

n ≥ 1 is congruent. The reason for this is that it can easily be seen that an

integer n ≥ 1 is congruent if and only if there exists a point (x, y), with x and

y rational numbers and y �= 0, on the elliptic curve ny2 = x3− x. Moreover,

assuming n to be square free, a classical calculation of root numbers shows

that the complex L-function of this curve has zero of odd order at the center

of its critical strip precisely when n lies in one of the residue classes of 5,

6, or 7 modulo 8. Thus, in particular, the unproven conjecture of Birch and

Swinnerton-Dyer predicts that every positive integer lying in the residue

classes of 5, 6, and 7 modulo 8 should be a congruent number. The aim of

this paper is to prove the following partial results in this direction.

Theorem 1.1. For any given integer k ≥ 0, there are infinitely many

square-free congruent numbers with exactly k+1 odd prime divisors in each

residue class of 5, 6, and 7 modulo 8.

Remark 1.2. The above result when k = 0 is due to Heegner [11], Birch

[1], Stephens [24], and completed by Monsky [19], and that when k = 1

is due to Monsky [19] and Gross [26]. Actually Heegner is the first mathe-

matician who found (in [11]) a method to construct fairly general solutions

to cubic Diophantine equations. The method of this paper is based on his

construction.
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In addition to Theorem 1.1, we have the following result on the conjec-
ture of Birch and Swinnerton-Dyer. For any abelian group A and an integer
d ≥ 1, we write A[d] for the kernel of multiplication by d on A.

Theorem 1.3. Let m ≡ 5, 6, 7 mod 8 be a square-free positive integer such
that its odd part n = p0p1 · · · pk, k ≥ 0, has prime factors pi ≡ 1 mod 8 for
1 ≤ i ≤ k, and satisfies the condition that the field Q(

√
−n) has no ideal

classes of exact order 4. Then for the elliptic curve E(m) over Q: my2 =
x3 − x, we have

rankZE
(m)(Q) = 1 = ords=1L(E

(m), s).

Moreover, the Shafarevich-Tate group of E(m) is finite and has odd cardi-
nality.

We will often work with the field K = Q(
√
−2n). For the integer n in

Theorem 1.3, the condition that Q(
√
−n) has no ideal classes of exact order

4 is equivalent to the condition that the ideal class group A of the field K
satisfies:

(1.1) dimF2
(A[4]/A[2]) =

{
0, if n ≡ ±3 mod 8,

1, if n ≡ 7 mod 8.

Remark 1.4. The work of Perrin-Riou [21] and Kobayshi [13] shows that the
order of the p-primary subgroup of the Tate-Shafarevich group of E(m) is
as predicted by the conjecture of Birch and Swinnerton-Dyer for all primes
p with (p, 2m) = 1. At present, it is unknown whether the same statement
holds for the primes p dividing 2m, so that the full Birch-Swinnerton-Dyer
conjecture is still not quite completely known for the curves E(m). However,
toward to the conjecture for p = 2 we have Theorem 1.5 below in view of
Gross-Zagier formula.

The condition (1.1) on A[4]/A[2] in Theorem 1.3 allows us to complete
the first 2-descent and to show that the 2-Selmer group of E(m) modulo the
2-torsion subgroup of E(m) is Z/2Z (see Lemma 5.1). It follows that

rankZE
(m)(Q) + dimF2

X(E(m)/Q)[2] = 1,

and therefore that rankZE
(m)(Q) is either 0 or 1. Any one of the parity con-

jecture for Mordell-Weil group and the finiteness conjecture for Shafarevich-
Tate group predicts that the elliptic curve E(m) has Mordell-Weil group of
rank 1. Therefore the BSD conjecture predicts that the analytic rank is 1.
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Then the generalization of Gross-Zagier formula predicts that the height of a

Heegner divisor is non-zero, so this Heegner divisor class should have infinite

order. However, we shall follow a different path, and, always assuming (1.1),

we shall prove independently of any conjectures that this Heegner divisor

does indeed have infinite order, and the Tate-Shafarevich group is finite of

odd order. Our method uses induction on the number of primes dividing the

congruent number m, Kolyvagin’s Euler system, and a generalization of the

Gross-Zagier formula.

Let E be the elliptic curve y2 = x3−x so that E(m) is a quadratic twist

of E. It is not difficult to see that the only rational torsion on E(m) is the

subgroup E(m)[2] of 2-torsion. Let E(Q(
√
m))− denote the subgroup of those

points in E(Q(
√
m)) which are mapped to their negative by the non-trivial

element of the Galois group of Q(
√
m) over Q. Then the map which sends

(x, y) to (x,
√
my) defines an isomorphism from E(m)(Q) onto E(Q(

√
m))−.

Thus m will be congruent if and only if we can show that E(Q(
√
m))− is

strictly larger than E[2]. Note that E(m) and E(−m) are isomorphic over Q.

The modular curve X0(32) of level Γ0(32) has genus 1 and is defined

over Q. Its associated Riemann surface structure is given by the complex

uniformization

X0(32)(C) = Γ0(32)\(H ∪ P1(Q)),

where H is the upper half complex plane, and we write [z] for the point on

the curve defined by any z ∈ H∪P1(Q). It is easy to see that [∞] is defined

over Q. The elliptic curve E has conductor 32 and there is a degree 2 modular

parametrization f : X0(32) → E mapping [∞] to 0. Such f is unique up to

multiplication by −1 because the elliptic curve (X0(32), [∞]) has only one

rational torsion point of order 2 (see Proposition 2.2). Let n = p0p1 · · · pk and
m be integers as in Theorem 1.3. Let K = Q(

√
−2n) and H its Hilbert class

field. Let m∗ = (−1)
n−1

2 m and χ the abelian character over K defining the

unramified extension K(
√
m∗). Define the point P ∈ X0(32) to be [i

√
2n/8]

if n ≡ 5 mod 8, and to be [(i
√
2n+2)/8] if n ≡ 6 or 7 mod 8. Both Theorem

1.1 and Theorem 1.3 will follow from the following main theorem of the

paper.

Theorem 1.5. Let n = p0p1 · · · pk and m be the integers as in Theorem

1.3. Then the point f(P ) ∈ E is defined over H(i); and the χ-component of

f(P ), defined by

Pχ(f) :=
∑

σ∈Gal(H(i)/K)

f(P )σχ(σ),
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satisfies

Pχ(f) ∈ 2k+1E(Q(
√
m∗))− and Pχ(f) /∈ 2k+2E(Q(

√
m∗))− + E[2].

In particular, Pχ(f) ∈ E(Q(
√
m∗))− ∼= E(m)(Q) is of infinite order and m

is a congruent number.

We now explain our method in the case n ≡ 5 mod 8 in details. Other

cases are similar. Let p0 ≡ 5 mod 8 and pi ≡ 1 mod 8, 1 ≤ i ≤ k, be distinct

primes. Let n = p0p1 · · · pk and K = Q(
√
−2n). The theory of complex

multiplication implies that

z := f(P ) + (1 +
√
2, 2 +

√
2)

is a point on E defined over the Hilbert class field H of K, even though

neither f(P ) nor the 4-torsion point (1 +
√
2, 2 +

√
2) on E is defined over

H. Note that if we use −f instead of f , then we still obtain an H-rational

point −f(P ) + (1+
√
2, 2+

√
2) = −z+ (1, 0). The desired Heegner point is

defined by taking trace of z from H to K(
√
n)

yn := TrH/K(
√
n)z ∈ E(K(

√
n)).(1.2)

It turns out that yn is actually defined over Q(
√
n). Moreover, yn (resp. 2yn)

belongs to E(Q(
√
n))− if k ≥ 1 (resp. k = 0). Now it is easy to see that the

point Pχ(f), defined in Theorem 1.5, is equal to 4yn.

The condition (1.1) in Theorem 1.3, in the case p0 ≡ 5 mod 8, is equiv-

alent to that the Galois group Gal(H/H0) ∼= 2A has odd cardinality where

H0 = K(
√
p0, . . . ,

√
pk) is the genus field of K. We will show that the point

yn is of infinite order for n = p0p1 · · · pk satisfying the condition (1.1) in

Theorem 1.3. When k = 0, classical arguments show that yn is of infinite

order (see, for example, [19]). However, when k is at least 1, we will prove

by induction on k that, provided n = p0p1 · · · pk satisfies condition (1.1)

in Theorem 1.3, the point yn belongs to 2k−1E(Q(
√
n))− + E[2], but does

not belong to 2kE(Q(
√
n))− + E[2]. This clearly shows that yn must be of

infinite order. (Note that condition (1.1) holds automatically when k = 0).

We now give some more details on how these arguments are carried through

in detail.

In fact, we find a relation of yn with other Heegner divisors. Now assume

that k ≥ 1 and let y0 = TrH/H0
z ∈ E(H0). It turns out that y0 ∈ E(H+

0 )

where H+
0 = H0 ∩ R. For any positive divisor d of n divisible by p0, let
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yd = TrH/K(
√
d)z, which actually belongs to E(Q(

√
d))−. The points yd’s

with p0|d|n and y0 are related by the following relation:

(1.3)
∑
p0|d|n

yd =

{
2ky0, if k ≥ 2,

2ky0 +#2A · (0, 0), if k = 1.

Next, for any proper divisor d of n divisible by p0, we need to know the
2-divisibility of yd in the Mordell-Weil group E(Q(

√
d))−. To do this, we sim-

ilarly construct a point y0d ∈ E(Q(
√
d)) with K replaced by K0 = Q(

√
−2d),

whose 2-divisibility is understood by induction hypothesis. We can reduce
the comparison of 2-divisibilities of yd and y0d to the comparison of their
heights via Kolyvagin’s result. The heights of these two points are related to
central derivative L-values via Gross-Zagier formula Theorem 1.2 in [27]. The
comparison of heights of these two points is further reduced to the compari-
son of two central L-values, which is given by Zhao in [28]. It turns out from
the comparison and induction hypothesis that yd ∈ 2kE(Q(

√
d))−+E[2] for

all proper divisors d of n. It follows from the equality (1.3) that

yn = 2k

⎛⎝y0 −
∑

p0|d|n,d �=n

y′d

⎞⎠+ t

for some y′d ∈ E(Q(
√
d))− and t ∈ E[2]. It can then be shown by ad-

ditional arguments (see the proof of Theorem 4.1) that this implies that
yn ∈ 2k−1E(Q(

√
n))− +E[2]. The fact that yn /∈ 2kE(Q(

√
n))− +E[2] with

n satisfying the condition (1.1) follows from the same algebraic ingredient
as in the initial case k = 0 and some ramification argument. Note that
4yn = Pχ(f) and then Theorem 1.5 follows in the case n ≡ 5 mod 8.

Remark 1.6. By a conjecture of Goldfeld [8] or Katz-Sarnak [12], combined
with Coates-Wiles’ result [4], almost all positive integers n ≡ 1, 2, 3 mod 8
are non-congruent numbers.

It is known ([7] and [18]) that for any given integer k ≥ 0, there are
infinitely many square-free non-congruent positive integers with exactly k+1
odd prime divisors in each residue class of 1, 2, and 3 modulo 8. In fact, let
n = p0p1 · · · pk be a product of distinct odd primes with pi ≡ 1 mod 8 for
1 ≤ i ≤ k satisfying the condition (1.1) in Theorem 1.3. Let m = n or 2n
such that m ≡ 1, 2, 3 mod 8. Then m is non-congruent if p0 ≡/ 1 mod 8.
Moreover, if p0 ≡ 1 mod 8, then n is non-congruent provided the additional
assumption

(
2
n

)
4
= −(−1)(n−1)/8.



122 Ye Tian

The above non-congruent numbers are constructed easily by minimizing
the 2-Selmer groups attached to 2-isogenies of E(m) and taking 2-part of the
Shafarevich-Tate group into account in the case p0 ≡ 1 mod 8.

Notations and Conventions. We often work with the imaginary quadratic
field K = Q(

√
−2n) where n is a square-free positive odd integer. We fix an

embedding of the algebraic closure K̄ of K in C. Let OK denote the ring
of integers in K. Then OK = Z + Zw with w = i

√
2n. Let Kab denote the

maximal abelian extension of K. Let Ẑ =
∏

p Zp and K̂ = K ⊗Z Ẑ the finite
adéles of K. Denote by

[ ,Kab/K] : K̂×/K× −→ Gal(Kab/K),

the Artin reciprocity law, and similarly for [ ,Qab/Q]. We also often write
σt = [t,Kab/K]. For each prime p|2n, let �p be a uniformizer

√
−2n of

the local field Kp of K at the unique prime above p; for each 0 < d|n, let
�d =

∏
p|d�p ∈ K̂×. We often use the convention � = �2 ∈ K×

2 . For

t ∈ K̂× (resp. Q̂×), we denote by t2 ∈ K×
2 (resp. Q2) its component at 2.

We will also need Gauss’ genus theory for the imaginary quadratic field
K. Denote by H the Hilbert class field of K and A the ideal class group of
K. Suppose that n has exact k + 1 prime divisors: n =

∏k
j=0 pj . Let H0 =

K(
√

p∗0,
√

p∗1, . . . ,
√

p∗k) ⊂ H be its genus field ofK, where p∗ = (−1)(p−1)/2p
so that p∗ ≡ 1 mod 4. Sometimes we identify the ideal class group A of K
with the class group K̂×/K×Ô×

K . Consider the exact sequence

0 −→ A[2] −→ A ×2−→ A −→ A/2A −→ 0.

Gauss’ genus theory says the following

(i) the subgroup A[2] consists of the ideal classes of (d,
√
−2n), corre-

sponding to the classes of �d in K̂×/K×Ô×
K , where d runs over all

positive divisors of n. Therefore A[2] has cardinality 2k+1.
(ii) under the class field theory isomorphism σ : A � Gal(H/K), the

subgroup 2A � Gal(H/H0), i.e. the class of t ∈ 2A if and only if σt

fixes all
√

p∗j , 0 ≤ j ≤ k.

By Gauss’ quadratic reciprocity law, for each 0 < d|n and p|n, σ�d
fixes

√
p∗

iff (dp) = 1 for p � d and (2n/dp ) = 1 for p|d.
It is easy to see that i /∈ H and therefore the restriction map gives

the natural isomorphism Gal(H(i)/K(i)) ∼= Gal(H/K). Let O2 denote the
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ring of integers in the local field K2. Its unit group O×
2 is generated by

−1, 5, 1+� as a Z2-module. We often need the structure of the Galois group

Gal(H(i)/Q) ∼= Gal(H(i)/K) � {1, c}, where c is the complex conjugation
and

Gal(H(i)/K) ∼= K̂×/K×Ô×(2)
K U2, with U2 = Z×

2 (1 + 2�O2).

Here the supscript in Ô×(2)
K means the component above 2 is removed. Note

that U2 ⊂ O×
2 is generated by −1, 5, (1 + �)2. Thus the Galois group

Gal(H(i)/H) is generated by σ1+�. The group Gal(H(i)/Q) is generated
by Gal(H(i)/H0(i)) ∼= 2A, the complex conjugation c, and elements repre-

senting Gal(H0(i)/K). For example, when 2A ∩ A[2] = 0, Gal(H0(i)/K) is

represented by σ1+� and σ�d
with all 0 < d|n.
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2. Modular parametrization and CM points

Let E be the elliptic curve with Weierstrass equation y2 = x3 − x. It is
known that E has conductor 32. Let f : X0(32) −→ E be a fixed modular

parametrization over Q of degree 2 mapping the cusp [∞] at the infinity

on X0(32) to the zero element 0 ∈ E. In this section, we will construct
suitable CM points on E associated to the modular parametrization f and

the imaginary quadratic field K = Q(
√
−2n) with n a positive square-free

odd integer. We will show that E′ := (X0(32), [∞]) is an elliptic curve with

Weierstrass equation y2 = x3+4x. Before giving construction of points on E,
we need set up the correspondence of torsion points of E′ over Q(i) between

their (x, y)-coordinates and their modular expressions.



124 Ye Tian

We now recall the following standard notation. Let H be the upper half

complex plane, on which the subgroup GL+
2 (R) of elements of GL2(R) with

positive determinant acts by linear fractional transformations. Let Γ0(32) be

the subgroup of SL2(Z) consisting of all matrices
(
a b
c d

)
with c ≡ 0 mod 32,

which acts onH∪P1(Q by linear fractional transformation. Denote by Y0(32)

the modular curve of level Γ0(32) over Q and X0(32) its projective closure

over Q. Then the underlying compact Riemann surface of X0(32) is given

as:

X0(32)(C) = Y0(32)(C) ∪ S,

where

Y0(32)(C) = Γ0(32)\H, S = Γ0(32)\P1(Q).

For each z ∈ H ∪ P1(Q), let [z] denote the point on X0(32)(C) represented

by z. The set S consists of 8 cusps:

[∞], [0], [−1/2], [−1/16], [−1/4], [−3/4], [1/8], [−1/8],

where the first 4 cusps are defined over Q and the later 4 ones have the

field of definition Q(i). The curve X0(32) has genus one and thus we have

an elliptic curve E′ := (X0(32), [∞]) over Q with the cusp [∞] as its zero

element.

Proposition 2.1. The elliptic curve E′ = (X0(32),∞) has complex multi-

plication by Z[i] and Weierstrass equation y2 = x3 + 4x such that the cusp

[0] = (2, 4) in (x, y)-coordinates. Moreover, the set S of cusps on X0(32) is

exactly E′[(1 + i)3].

Proof. Define N to be the normalizer of Γ0(32) in GL+
2 (R) and let Z(R)

denote the center of GL+
2 (R). Let Aut(X0(32)(C)) denote the group of au-

tomorphisms of X0(32)(C) and Aut(X0(32)(C), S) its subgroup of automor-

phisms t satisfying t(S) = S. Then the action of N ⊂ GL+
2 (R) on H∪P1(Q)

induces a homomorphism

T : N −→ Aut(X0(32)(C), S)

with kernel Z(R)Γ0(32).

Now, as is very well known, every element of Aut(X0(32)(C)) is of form

tα,ε(x) = ε(x) + α,
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where ε belongs to the group Aut(E′
C) of automorphisms of the elliptic curve

E′
C (i.e. ones with ε([∞]) = [∞]), and α is some point in E′(C).
Now consider the matrices

A =

(
0 1

−32 0

)
, B =

(
1 1/4
0 1

)
, C = AB2 =

(
0 1

−32 −16

)
.

One verifies immediately thatA,B, and C belong toN , and that their classes
in N/Z(R)Γ0(32) have exact orders 2, 4, 4, respectively. Thus T (A), T (B),
T (C) have exact orders 2, 4, 4, respectively. Also T (B) maps [∞] to itself.
Thus T (B) ∈ Aut(E′

C) is an automorphism of E′
C of exact order 4, proving

that E′
C has complex multiplication by Z[i]. Since T (A) has fixed point

[i
√
2/8], it is not translation. It now follows immediately from that T (A)2 =

1 that T (A) = tα,−1 for some point α in E′(C). Therefore, T (C) = T (AB2) =
tα,1. But T (C) has exact order 4, whence we see that α must have order 4.
Finally, T (A) is defined over Q since it is the Atkin-Lehner involution. As
T (B2) is the multiplication by −1 and then is clearly defined over Q. Hence
α = T (AB2)([∞]) = [0] must be a rational point of exact order 4.

Since every elliptic curve over Q is known to be parametrized by the
modular curve of the same level as its conductor, it follows that E′ =
(X0(32), [∞]) must be isogenous to the elliptic curve y2 = x3 + 4x. How-
ever, there are just two isomorphism classes of curves defined over Q in the
isogeny class of E′, and y2 = x3+4x is the unique one with a rational point
of order 4. Thus E′ must be isomorphic to y2 = x3 + 4x over Q. Since ra-
tional points on y2 = x3 + 4x of exact order 4 are (2,±4), the isomorphism
is unique if we require the order 4 point [0] on E′ is mapped to (2, 4). Thus
E′ has Weierstrass equation y2 = x3 + 4x for unique modular functions x, y
such that the cusp [0] has coordinate (2, 4).

Let ψ denote the unique Grossencharacter of any elliptic curve defined
over Q with conductor 32 and complex multiplication by Z[i]. Then the
conductor of ψ must be (1+i)3Z[i] because the norm of this conductor times
the absolute value 4 of the discriminant of Q(i) must be 32. It then follows
easily from the main theorem of complex multiplication that E′[(1 + i)3] =
E′(Q(i))tor. But we know that S ⊂ E′(Q(i))tor and has cardinality 8, thus
S = E′(Q(i))tor = E′[(1 + i)3].

For any field extension F over Q, let X0(32)F be the base change of
X0(32) to F and write Aut(X0(32)F ) for the group of automorphisms of
X0(32)F . Similarly one defines Aut(E′

F ). Then it is easy to see that

Aut(X0(32)F ) ∼= E′(F )�Aut(E′
F ).
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Using the notations in the proof of Proposition 2.1, we have seen above that
there is a natural homomorphism

T : N −→ Aut(X0(32)(C), S) ⊂ Aut(X0(32)C),

with kernel Z(R)Γ0(32). Now we have that Aut(E′
C)

∼= Z[i]× and T (B) ∈
Aut(E′

C) is of order 4. One can see that T (B) maps (x, y) to (−x, iy) by
looking at actions of T (B) at 0 and B at [∞]: at [∞], the differential is
represented by dq with q = e2πiz. It is clear that B∗dq = dB∗q = idq; at
0 ∈ E′, the morphism (x, y) �→ (−x, iy) brings the Neron differential dx/y
to idx/y.

Proposition 2.2. With the notations above, the normalizer N of Γ0(32)
is generated by Z(R)Γ0(32), A and B. The homomorphism T induces an
isomorphism

N/Z(R)Γ0(32)
∼−→ Aut(X0(32)Q(i)) ∼= E′(Q(i))�Aut(E′

Q(i)).

Moreover, if write tα ∈ Aut(E′
C) for the translation by α ∈ E′(C), then the

following relations hold:

t(2,4) = T

(
0 1

−32 −16

)
, t(2,−4) = T

(
−16 −1
32 0

)
, t(0,0) = T

(
−2 −1
32 14

)
,

t(−2,4i) = T

(
−24 −7
32 8

)
, t(−2,−4i) = T

(
8 7

−32 −24

)
,

t(2i,0) = T

(
−4 −3
32 20

)
, t(−2i,0) = T

(
4 1
32 12

)
.

Proof. Since E′(Q) has rank 0, we see that E′(Q(i)) = E′[(1 + i)3] consists
of the following 8 points:

[∞], (0, 0), (2,±4), (±2i, 0), (−2,±4i).

Note that T (C) = t(2,4) and T (B) generate E′(Q(i))�Aut(E′
Q(i)). It follows

that the image of T contains Aut(X0(32)Q(i)). But any t in the image of
T , t([∞]) ∈ S = E′(Q(i)). It follows that Im(T ) ⊆ E′(Q(i)) � Aut(E′

Q(i)).

Thus the image of T is Aut(X0(32)Q(i) and the homomorphism T induces

an isomorphism N/Z(R)Γ0(32)
∼−→ Aut(X0(32)Q(i)). It also follows that N

is generated by Z(R)Γ0(32), A, and B.
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Note that α = (2, 4) and iα generate E′(Q(i)) and

t−iα = [−i] ◦ [tα] ◦ [i] = T (B−1) ◦ T (C) ◦ T (B) = T (B−1CB).

The verifying of remaining relations is then straightforward.

There is a well known alternative adelic expression for the complex points
of X0(32), which we will also need. Let A be the adeles of Q and Af its finite
part. Let G = GL2,Q, G(Af ) its finite-adelic points, and U0(32) ⊂ G(Af )
the open compact subgroup defined by

U0(32) =

{(
a b
c d

)
∈ GL2(Ẑ)

∣∣∣ c ≡ 0 mod 32Ẑ

}
.

The complex uniformization of X0(32) has the following adelic form

X0(32)(C) = G(Q)+\(H ∪ P1(Q))×G(Af )/U0(32).

For any z ∈ H ∪ P1(Q) and any g ∈ G(Af ). we denote by [z, g] its image in
X0(32)(C).

The matrix B2 ∈ G(Q) ⊂ G(Af ) normalizes both Γ = Γ0(32) and
U0(32). The morphism T (B2) is represented by the Hecke action

[z, g] �→ [z, gB−2], ∀z ∈ H, g ∈ G(Af )

which is defined over Q by the functriality of canonical models of Shimura
varieties. However, the matrix B does not normalize U0(32), though it nor-
malizes Γ0(32). The morphism T (B) on X0(32) can be written as

[z, γ] �→ [z, γB−1], ∀γ ∈ G(Q)+, z ∈ H,

but we can not conclude that it is defined over Q. In fact, it is defined over
Q(i).

We now construct suitable points on E from CM points on X0(32). We
first consider the case with n ≡ 1 mod 4 and the case with n ≡ 3 mod 4 will
be considered later in Theorem 2.8. Note that the set of torsion points with
exact order 4 on E is the union of the following subsets:

(i, 1−i)+E[2],
(
1 +

√
2, 2 +

√
2
)
+E[2], and

(
−1−

√
2, i
(
2 +

√
2
))

+E[2],

whose doubles are (0, 0), (1, 0), and (−1, 0), respectively.
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Definition 2.3. Let n ≡ 1 mod 4 be a positive integer and K = Q(
√
−2n).

Let P ∈ X0(32)(K
ab) be the image of i

√
2n
8 under the complex uniformization

H → X0(32). Define the CM point on E

z := f(P ) + (1 +
√
2, 2 +

√
2) ∈ E(Kab).

For each t ∈ K̂×, let zt denote the Galois conjugation zσt of z.

Theorem 2.4. Assume that n ≡ 1 mod 4 is a positive integer. Then, for

each t ∈ K̂×, we have

1. the point zt is defined over the Hilbert class field H of K and only

depends on the class of t modulo K×Ô×
K ;

2. the complex conjugation of zt, denoted by z̄t, is equal to zt−1; and

3. z�t + zt = 0 or (0, 0) according to n ≡ 1 mod 8 or ≡ 5 mod 8.

Remark 2.5. The CM points zt above are essentially the same as those

Monsky studied in [19] using modular functions on X(8). Theorem 2.4 still

holds if we replace z by any CM point ±f(P ) +Q where Q is any 4-torsion

point of E with 2Q = (1, 0).

We will prove Theorem 2.4 by showing the following corresponding result

on X0(32) via the modular parametrization f .

Proposition 2.6. Let n ≡ 1 mod 4 be a positive integer and K = Q(
√
−2n).

Let P ∈ X0(32) be the point defined by i
√
2n/8 ∈ H via the complex uni-

formization. Let H ′ be the defining field of P . The following hold:

1. the field H ′ ⊂ Kab of P over K is characterized by

Gal(H ′/K)
∼−→ K̂×/K×(Z×

2 (1 + 4O2))Ô×(2)
K

via Artin reciprocity law. Here the supscript in Ô×(2)
K means the com-

ponent at the unique place of K above 2 is removed.

2. The extension H ′/K is anticyclotomic in the sense that H ′ is Ga-

lois over Q such that the nontrivial involution on K over Q acts on

Gal(H ′/K) by the inverse.

3. The field H ′ is a cyclic extension of degree 4 over H with Gal(H ′/H)

generated by σ1+�, where recall that � ∈ K×
2 is the uniformizer

√
−2n.

4. Moreover,

P σ1+� = P + (−2i, 0), P σ� + P = (2, 4).
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Proof. Recall Shimura’s reciprocity law (for example, see [17]). Let w =

i
√
2n ∈ K× and view K× as a sub-torus of GL2,Q via the Q-embedding of

K× into GL2,Q: a+ bw �→
(
a −2nb
b a

)
. Then w ∈ H is the unique point on H

fixed by K×. For any point

x = [w, g] ∈ X0(32)(C) = G(Q)+\(H∪P1(Q))×G(Af )/U0(32), g ∈ G(Af )

and any t ∈ K̂× ⊂ G(Af ), the action of σt on x is given by: [w, g]σt = [w, tg].

It follows that the defining field K(x) of x is characterized by

Gal(K(x)/K) � K̂×/K×(K̂× ∩ gU0(32)g
−1)

via the reciprocity law.

Write the point P =
[
w,
(
8 0
0 1

)]
∈ X0(32) in adelic form. Then H ′ cor-

responds to the open compact subgroup

K̂× ∩
(
8 0
0 1

)
U0(32)

(
8−1 0
0 1

)
= Z×

2 (1 + 4O2)Ô×(2)
K .

It gives the statement (1) and

Gal(H ′/H)
∼−→ K×Ô×

K/K×(Z×
2 (1 + 4O2))Ô×(2)

K =O×
2 /Z

×
2 (1 + 4O2)

= (1 +�)Z/4Z.

Here we use the fact that O×
2 = {±1} × 5Z2 × (1 + �)Z2 as a Z2-module.

Moreover, since

Q̂× ⊂ K× · (Z×
2 (1 + 4O2)Ô×(2)

K ),

the non-trivial involution of K acts on Gal(H ′/K) by the inverse. The state-

ments (2) and (3) are now proved.

By Proposition 2.2, t(−2i,0) = T
(

4 1
32 12

)
. Note that (−2i, 0) is of order 2.

Thus the relation P σ1+� = P + (−2i, 0) is equivalent to

P σ1+� = T

(
4 1
32 12

)
P,

which is just[
w, (1 +�)

(
8 0
0 1

)]
=

[
w,

(
8 0
0 1

)(
4 1
32 12

)]
(2.1)
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It is further equivalent to

(1 +�)

(
8 0
0 1

)
∈ K×

(
8 0
0 1

)(
4 1
32 12

)
U0(32),

and then to

(1 +�) ∈ K×(V ∩ K̂×), V =

(
1 2
1 3

)(
8 0
0 1

)
U0(32)

(
8−1 0
0 1

)
.

It follows easily from n ≡ 1 mod 4 that

V ∩ K̂× = Ô×(2)
K Z×

2 (1 +� + 4O2).

Then (2.1) is equivalent to

1 +� ∈ K×Ô×(2)
K Z×

2 (1 +� + 4O2),

which is obvious.
By proposition 2.2, t(2,4) = T

(−16 −1
32 0

)−1
, thus the relation P σ� + P =

(2, 4) is equivalent to

P σ� = T

(
−16 −1
32 0

)−1

(T (B2)P ),

which is just[
w,�

(
8 0
0 1

)]
=

[
w,

(
8 0
0 1

)(
1 1/2
0 1

)(
−16 −1
32 0

)]
(2.2)

It is further equivalent to

�

(
8 0
0 1

)
∈ K×

(
8 0
0 1

)(
0 −1
32 0

)
U0(32)

and then to

� ∈ K×(V ∩ K̂×), V =

(
0 −2
1 0

)(
8 0
0 1

)
U0(32)

(
8−1 0
0 1

)
.

It is easy to have that

V ∩ K̂× = Ô×(2)
K Z×

2 (� + 8O2).
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Then (2.2) is equivalent to � ∈ K×Ô×(2)
K Z×

2 (� + 8O2), which is obvious.
The proof of (4) is complete.

Proof of Theorem 2.4. Recall that the defining field H ′ = K(P ) of P over

K corresponds to the subgroup K×Ô×(2)
K Z×

2 (1 + 4O2) ⊂ K̂×. The norm

of this subgroup over the extension K/Q is Q×Ẑ×(2)Z×2
2 (1 + 8Z2), which

corresponds to the abelian extension Q(
√
2, i) over Q. Thus

√
2, i ∈ H ′.

For any t ∈ K̂×, let Pt =
[
w, t
(
8

1

)]
= P σt

1 ∈ X0(32), then

zt := zσt = f(Pt) + (1 +
√
2, 2 +

√
2)σt ∈ E(H ′).

Since H ′/K is anti-cyclotomic and P ∈ X0(32)(R), the complex conjugation
of f(Pt) is f(Pt−1) and therefore the complex conjugation of zt is equal to
zt−1 . This proves (2).

To show (1), we only need to consider the case with t = 1, i.e. z := z1 ∈
E(H). Note that

σ1+�(
√
2) = [1 +�,Kab/K](

√
2) = [(1 + 2n)2,Q

ab/Q](
√
2) = −

√
2.

Since σ1+� generates Gal(H ′/H), z ∈ E(H) is equivalent to the relation
zσ1+� = z, and therefore is equivalent to

f(P σ1+�) = f(P ) + (1 +
√
2, 2 +

√
2)− (1 +

√
2, 2 +

√
2)σ1+�

= f(P ) + (0, 0) = f(P + (−2i, 0))

which follows from the first equality in Proposition 2.6 (4).
To show (3), we only need to show that z� + z = 0 or (0, 0) according

to n ≡ 1 mod 8 or ≡ 5 mod 8. Note that

[�,Kab/K](
√
2) = [(2n)2,Q

ab/Q](
√
2) = [n2,Q

ab/Q](
√
2) = (−1)(n−1)/4

√
2

and that f((2, 4)) = (1, 0). It follows that

zσ� + z = f(P σ� + P ) +

{
(1, 0), if n ≡ 1 mod 8,

(−1, 0), if n ≡ 5 mod 8.

= f(P σ� + P − (2, 4)) +

{
0, if n ≡ 1 mod 8,

(0, 0), if n ≡ 5 mod 8.

Thus the desired follows then from the second equality in Proposition 2.6
(4).
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We now consider the case with n ≡ 3 mod 4.

Definition 2.7. Let n ≡ 3 mod 4 be a positive integer and K = Q(
√
−2n).

Let P ∈ X0(32) be the image of 2+i
√
2n

8 under the complex uniformization
and define a CM point

z := f(P ) + (1 +
√
2, 2 +

√
2) ∈ E(Kab).

For any t ∈ K̂× satisfying σt fixing i, define zt := zσt.

Theorem 2.8. Assume that n ≡ 3 mod 4 is a positive integer. Then, for
each t ∈ K̂× with σt fixing i, we have

1. the point zt ∈ E(H(i)) and the involution σ1+� of Gal(H(i)/H) maps
zt to zt + (0, 0);

2. the complex conjugation of zt, denoted by z̄t, is equal to −zt−1 +(1, 0);
3. let �′ = �(1 +�) ∈ K×

2 (so that σ�′ fixes i), then z�′t − zt = (1, 0)
or (−1, 0) according to n ≡ 7 mod 8 or 3 mod 8.

We will give the proof of Theorem 2.8 after we prove the following

Proposition 2.9. Let n ≡ 3 mod 4 be a positive integer and P ∈ X0(32)

be the CM point corresponding to 2+i
√
2n

8 ∈ H via complex uniformization.
The defining field H ′ ⊂ Kab of P over K is characterized by

Gal(H ′/K)
∼−→ K̂×/K×(Z×

2 (1 + 4O2))Ô×(2)
K

via Artin reciprocity law so that Gal(H ′/H) is generated by σ1+�. Moreover,

P σ1+� = P + (2i, 0), P σ�′ − P = (2, 4).

Here �′ = �(1 +�) ∈ K×
2 so that σ�′ fixes i.

Proof. The proof of the first part is the same as in the case n ≡ 1 mod 4.
By Proposition 2.2, t(2i,0) = T

(−4 −3
32 20

)
. The relation P σ1+� = P + (2i, 0) is

equivalent to

P σ1+� = T

(
−4 −3
32 20

)
P

which is[
w, (1 +�)

(
8 −2
0 1

)]
=

[
w,

(
8 −2
0 1

)(
−4 −3
32 20

)−1
]
.(2.3)
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It is further equivalent to,

(1 +�)

(
8 −2
0 1

)
∈ K×

(
8 −2
0 1

)(
20 3
−32 −4

)
U0(32),

and then to

(1 +�) ∈ K×(V ∩ K̂×),

V =

(
7 8
−1 −1

)(
8 0
0 1

)
U0(32)

(
8 0
0 1

)−1(
1 −2
0 1

)−1

.

But it is easy to see that V ∩ K̂× = Ô×(2)
K Z×

2 (1 +� + 4O2) provided that
n ≡ 3 mod 4. Therefore (2.3) is equivalent to

1 +� ∈ K×Ô×(2)
K Z×

2 (1 +� + 4O2),

which is obvious.
By Proposition 2.2, t(2,4) = T

(
0 1

−32 −16

)
. Thus the relation P σ�′ − P =

(2, 4) is equivalent to[
w,�(1 +�)

(
8 −2
0 1

)]
=

[
w,

(
8 −2
0 1

)(
0 1

−32 −16

)−1
]
.(2.4)

It is further equivalent to,

�(1 +�)

(
8 −2
0 1

)
∈ K×

(
8 −2
0 1

)(
−16 −1
32 0

)
U0(32),

and then to

�(1 +�) ∈ K×(V ∩ K̂×),

V =

(
−6 −2
1 0

)(
8 0
0 1

)
U0(32)

(
8 0
0 1

)−1(
1 −2
0 1

)−1

.

But it is easy to see that V ∩ K̂× = Ô×(2)
K Z×

2 (2+�+8O2). Therefore (2.4)
is equivalent to

�(1 +�) ∈ K×Ô×(2)
K Z×

2 (2 +� + 8O2),

which is obvious since n ≡ 3 mod 4.
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Proof of Theorem 2.8. It is clear that
√
2 ∈ H but i /∈ H and that the

Galois group Gal(H ′/H(i)) = {1, σ2
1+�}. Thus the item (1) follows from the

relation zσ1+� = z + (0, 0). It is clearly that the relation is equivalent to
f(P σ1+� − P − (2i, 0)) = 0 by noting f((2i, 0)) = (0, 0), which is given in
Proposition 2.9.

Note that the point [i
√
2n/8] is real. Then the complex conjugation

of f(P ) is −f(P ) and therefore the complex conjugation z of z is equal
to −z + (1, 0). Thus we have that for any t ∈ K̂× fixing i, zt = zt

−1

=
−zt−1 + (1, 0). This proves the item (2).

For item (3), it is enough to show the case with t = 1. Now σ�′(
√
2) =

σ�(
√
2) = [(2n)2,Q

ab/Q](
√
2) = (−1)(n

2−1)/8
√
2. By the relation P σ�′−P =

(2, 4) and f((2, 4)) = (1, 0), we have

z�′ − z = f(P σ�′ − P ) + (1 +
√
2, 2 +

√
2)σ� − (1 +

√
2, 2 +

√
2)

= (1, 0) +

{
(0, 0), if n ≡ 3 mod 8,

0, if n ≡ 7 mod 8,

which is equal to (−1, 0) or (1, 0) according to n ≡ 3 mod 8 or ≡ 7 mod 8,

3. Comparison of Heegner points

Let n = p0p1 · · · pk be a product of distinct odd primes with pi ≡ 1 mod 8
for 1 ≤ i ≤ k and p0 ≡/ 1 mod 8. Let m0 be a positive divisor of 2n such
that m0 ≡ 5, 6, or 7 mod 8. In this section, we will generalize the con-
struction in Theorem 1.5 to define a point Pχ(f) ∈ E(Q(

√
m∗))−, where

m∗ = (−1)(n−1)/2m. With n replaced by the odd part n0 of m0, this con-
struction gives a point Pχ0(f) already define in Theorem 1.5 for n = n0.
By Gross-Zagier and Kolyvagin, these two points are actually linearly de-
pendent modulo E[2]. The main result of this section is a comparison of
2-divisibility of these two points using the generalized Gross-Zagier formula
and the 2-divisibility of special values of L-series. The comparison will be
a key ingredient in the induction argument of proving Theorem 1.5 in the
next section. Let us begin with some notations.

Put

K = Q(
√
−2n), K0 = Q(

√
−2n0),

and write η, η0 for the abelian characters of Q defining these two quadratic

fields. Let m∗
0 = (−1)

n0−1

2 m0 and we will also consider the two extensions

J = K(
√

m∗
0), J0 = K0(

√
m∗

0)
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and write χ, χ0 for the abelian characters of K and K0, respectively, defining
them. These two extensions are both unramified. In fact, it is easy to see
that they are contained in genus subfields of K,K0, respectively. For any
non-zero integer d, let us write L(E(d), s) for the complex L-function of the
elliptic curve E(d) : dy2 = x3 − x over Q. On the other hand, we write
L(E/K,χ, s), L(E/K0, χ0, s) for the complex L-functions of E over K,K0,
twisted by the characters χ, χ0, respectively.

Lemma 3.1. Let c ∈ {1, 2} denote the integer 2n0/m0. Then the following
equalities hold:

L(E/K,χ, s) = L(E(cn/n0), s)L(E(m0), s),

L(E/K0, χ0, s) = L(E(c), s)L(E(m0), s).

The proof is an immediate consequence of the Artin formalism applied
to the L-functions of E for the extensions J, J0 of Q, which are quartic
when m∗

0 �= −2n. For example, the first equality follows on noting that the
induced character of χ is the sum of the characters defining the two quadratic
extensions Q(

√
m∗

0) and Q(
√

−2n/m∗
0). We hope that the usefulness of such

a Lemma in an inductive argument is immediately clear. Indeed, it is very
well known (see [2] p.87) that L(E(c), s) does not vanish at s = 1. Thus
L(E/K,χ, s) and L(E/K0, χ0, s) will have a zero of the same order at s = 1
if and only if L(E(cn/n0), s) does not vanish at s = 1. We note that this
latter assertion does not always hold. For example, if we take n = p0p1,
n0 = p0 ≡ 5 mod 8 to be any prime, and p1 = 17, then 2n/n0 = 34
and L(E(34), s) has a zero of order 2 at s = 1 (indeed, 34 is the smallest
square free congruent number which does not lie in the residue classes of
5, 6, 7 mod 8). Nevertheless, the work of Zhao (See Proposition 3.8) always
provides a lower bound of the power of 2 dividing the algebraic part of
L(E(cn/n0), 1), which is precisely what we will need to carry out an induction
argument on k, via the comparison of the heights of two Heegner points on
E, which we now construct.

View K as a Q-subalgebra of M2(Q) via the embedding

K −→ M2×2(Q), a+ b
√
−2n/8 �−→

(
a −2nb/64
b a

)
, ∀a, b ∈ Q,

with which K× is a Q-subtorus of GL2,Q such that i
√
2n/8 is the unique

fixed point of K× on the upper half complex plane H. Define a CM point
P ∈ X0(32) to be [w/8, 1] if n ≡ 1 mod 4 and [(w+ 2)/8, 1] if n ≡ 3 mod 4.
Let f : X0(32) → E be a modular parametrization of degree 2 of the elliptic
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curve E : y2 = x3 − x. By Theorem 2.4 and 2.8, we have that f(P ) + (1 +√
2, 2 +

√
2) ∈ E(H(i)). Thus f(P ) ∈ E(H(i)) since

√
2 ∈ H(i). Here H is

the Hilbert class field of K. Define

Pχ(f) =
∑

σ∈Gal(H(i)/K)

f(P )σχ(σ) ∈ E(K(
√

m∗
0))

−,

where E(K(
√

m∗
0))

− is the subgroup of points in E(K(
√

m∗
0)) which are

mapped to their inverses under the involution of K(
√

m∗
0) over K. Similarly,

let E(Q(
√

m∗
0))

− denote the subgroup of points in E(Q(
√

m∗
0)) which are

mapped to their inverses under the non-trivial involution of Q(
√

m∗
0) over Q.

Note that χ in this section is the character defining the extension K(
√

m∗
0)

over K, but is not the one in the introduction defining K(
√
m∗) if m0 �= m.

Lemma 3.2. The point Pχ(f) belongs to E(Q(
√

m∗
0))

−.

Proof. Note that when m∗
0 �= −2n, the extension K(

√
m∗

0) over Q is quartic

and its Galois group is generated by complex conjugation and the non-

trivial element in Gal(K(
√

m∗
0)/K). In this case, we only need to check

that Pχ(f) ∈ E(Q(
√

m∗
0)).

If n ≡ 5 mod 8, then m∗
0 = m0 = n0 is positive. Note that P =

[i
√
2n/8, 1] is defined over R since i

√
2n is pure imaginary. Note also that

the complex conjugation acts on Gal(H(i)/K) by the inverse. It follows

that Pχ(f) is invariant under complex conjugation, and therefore belongs

to E(Q(
√

m∗
0)).

Now assume n ≡ 3 mod 4, then m∗
0 = −m0. Note that P is the

multiplication of a real point by [i] and therefore is mapped to its nega-

tive under the complex conjugation. It follows that Pχ(f) is mapped to

−Pχ(f) under the complex conjugation. If m0 = 2n, it is now clear that

Pχ(f) ∈ E(Q(
√−m0))

−. When m0 �= 2n, choose σ ∈ Gal(H(i)/K(i)) map-

ping
√−m0 to −√−m0, then both σ and the complex conjugation take

Pχ(f) to −Pχ(f). Therefore their composition fixes Pχ(f) and has fixed

field Q(
√−m0) in K(

√−m0). This shows that P
χ(f) ∈ E(Q(

√−m0)).

Analogously for K0, let P0 ∈ X0(32)(K
ab
0 ) be the point [

√
−2n0/8, 1] if

n0 ≡ 1 mod 4 and [(
√
−2n0 +2)/8, 1] if n0 ≡ 3 mod 4. Replacing K,P, χ by

K0, P0, χ0, we similarly obtain another point Pχ0(f) ∈ E(Q(
√

m∗
0))

−.
The main goal of this section is to compare 2-divisibilities of the two

points Pχ(f) and Pχ0(f) in the group E(Q(
√

m∗
0))

−, which is given by the

following result.
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Theorem 3.3. Let n = p0p1 · · · pk and n0, m, and m0 be integers as above.
Assume that n0 = p0pi1 · · · pik−s

is a proper divisor of n, i.e. s > 0, and that
Pχ0(f) belongs to 2tE(Q(

√
m∗

0))
− + E[2] for some integer t ≥ 0. Then

Pχ(f) ∈ 2t+s+1E(Q(
√

m∗
0))

− + E[2].

The proof of Theorem 3.3 is divided into three steps. First, reduce the
comparison of the two points in Mordell-Weil group to the comparison of
their heights via Kolyvagin’s result; second, further reduce to the comparison
of two Special L-values via generalized Gross-Zagier formula; third, estimate
2-adic valuations of these special L-values.

Proposition 3.4. If either Pχ0(f) or Pχ(f) is not torsion, then
E(Q(

√
m∗

0))
− ⊗Z Q is one dimensional Q-vector space. In this case, the

ratio [Pχ(f) : Pχ0(f)] ∈ Q ∪ {∞} of the two points in this one dimensional
space is given by

[Pχ(f) : Pχ0(f)]2 = [ĥ(Pχ(f)) : ĥ(Pχ0(f))],(3.1)

where ĥ : E(Q̄) → R denotes the Néron-Tate height function.

Proof. Note that Heegner hypothesis is not satisfied for (E,K, χ), but one
can still use Kolyvagin’s Euler system method to see that E(K(

√
m∗

0))
−

is of rank one if Pχ(f) is not torsion (for example, see Theorem 3.2 of
[20]) and therefore E(Q(

√
m∗

0))
− is of rank one by Lemma 3.2. Another

argument with Kolyvagin’s original result is as follows. Using the gener-
alized Gross-Zagier formula (Theorem 1.2 in [27]), we know the L-series
L(s, E, χ) = L(s, E(2n/m0))L(s, E(m0)) has vanishing order 1 at the cen-
tral point s = 1. Considering ε-factors, we then know that L(s, E(m0)) has
vanishing order 1 at s = 1. Taking an imaginary quadratic field K ′ such

that the Heegner hypothesis is satisfied for (E(m0),K ′) and L(s, E
(m0)
K′ ) has

vanishing order 1 at s = 1, then Kolyvagin’s original result shows that
E(m0)(Q) ∼= E(Q(

√
m∗

0))
− is of rank one. Similarly, if Pχ0(f) is not torsion

then E(Q(
√

m∗
0))

− is of rank one.

The equality (3.1) now follows from the fact that the height function ĥ
is quadratic.

Using the generalized Gross-Zagier formula (Theorem 1.2 in [27]), we
further express this ratio in term of special L-values. For any square-free
integer d ≥ 1, let Ω(d) denote the real period of E(d), defined by

Ω(d) :=
2√
d

∫ ∞

1

dx√
x3 − x

.
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It is known that the algebraic part of L-values

Lalg(E(d), 1) := L(E(d), 1)/Ω(d)

is a rational number. Note again that Lalg(E(c), 1) �= 0 for c = 1 and 2.

Proposition 3.5. We have that

ĥ(Pχ(f)) =
Lalg(E(cn/n0), 1)

Lalg(E(c), 1)
· ĥ(Pχ0

0 (f)).(3.2)

Remark 3.6. In the proof of this proposition, we will use the language of

automorphic representation. Let π(d) denote the automorphic representation

associated to the elliptic curve E(d). Let L(s, π(d)) denote its complete L-

series and L(∞)(s, π(d)) its finite part. Then

L(∞)
(
s, π(d)

)
= L
(
E(d), s+

1

2

)
.

Moreover, we have that

Lalg(E(cn/n0), 1)

Lalg(E(c), 1)
=

L(1/2, π(cn/n0))/Ω(cn/n0)

L(1/2, π(c))/Ω(c)
.

Before the proof of this proposition, we need to recall the generalized

Gross-Zagier formula in [27].

Let G = GL2,Q. Let X = lim←−U
XU be the projective limit of modular

curves indexed by open compact subgroups U ⊂ G(Af ). Let ξ = (ξU ) be the

compatible system of Hodge classes such that ξU is represented by∞ on each

geometric irreducible component ofXU . For the elliptic curve E : y2 = x3−x,

define

πE := Hom0
ξ(X,E) := lim−→

U

Hom0
ξU (XU , E)

where Hom0
ξU (XU , E) is the group of the morphisms f in HomQ(XU , E)⊗Q

satisfying f(∞) = 0. The Q-vector space πE is endowed with the natural

G(Af )-structure. Let H be the division quaternion algebra over R and let

π∞ = Q be the trivial representation of H×. Then the representation π = πE
is a restricted tensor product π = ⊗v≤∞πv (with respect to a spherical family

f◦
v ) as a representation of the incoherent group G = G(Af )×H×. We call πE
the rational automorphic representation associated to the elliptic curve E.
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The representation π = πE is self-dual via the perfect G-invariant pairing

( , ) : π × π −→ Q

given by

(f1, f2) = Vol(XU )
−1f1,U ◦ f∨

2,U , Vol(XU ) =

∫
XU (C)

dxdy

2πy2

where fi is represented by fi,U ∈ HomξU (XU , E) = Hom0(JU , E) with JU the
Jacobian of XU , and f∨

2,U : E → JU is the dual of f2,U so that f1,U ◦ f∨
2,U ∈

Q = End0(E). For each place v, let ( , )v be a G(Qv)-invariant pairing
such that for almost all unramified v � ∞, (f0

v , f
0
v )v = 1 and such that for

f = ⊗vfv ∈ πE , (f, f) =
∏

v(fv, fv)v.

Let η : Q̂×/Q× → {±1} be the character associated to the quadratic
extension K/Q. Let K1 = K×/Q×. Fix a Haar measure dtv on K1(Qv) =
K×

v /Q×
v for each place v of Q such that the product measure over all v is

the Tamagawa measure on K1\K1(A) multiplied by L(1, η). Define

βv(fv) =
L(1, ηv)L(1, πv, ad)

ζQv
(2)L(1/2, πv, χv)

∫
K×

v /Q×
v

(πv(t)fv, fv)vχv(t)dtv.

The Gross-Zagier formula ([27] Theorem 1.2) says:

(2hK)−2ĥ(Pχ(f)) =
ζQ(2)L

′(1/2, π, χ)

4L(1, η)2L(1, π, ad)

∏
v

βv(fv), ∀ f = ⊗vfv(3.3)

where all L-functions, including ζQ, are all complete L-series and L(s, π, χ)
(resp L(s, π, ad)) is L-series defined for Jacquet-Langlands lift of π, and hK
is the ideal class number of K. Similarly,

(3.4) (2hK0
)−2ĥ(Pχ0(f)) =

ζQ(2)L
′(1/2, π, χ0)

4L(1, η0)2L(1, π, ad)

∏
v

β0,v(fv), ∀ f = ⊗vfv

where the subscript 0 corresponds to K0 = Q(
√
−2n0).

We use the formulae (3.3) and (3.4) to compute the ratio of Pχ(f) and
Pχ0

0 (f). It is more convenient to fix Haar measures as follows (which are
used in [27]).

• for each place v of Q, the Haar measure dxv on Qv is self dual with re-
spect to the standard additive character ψv on Qv: ψ∞(x) = e2πix and
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ψv(x) = e−2πiιv(x) for v � ∞ where ιv : Qv/Zv → Q/Z is the natural
embedding. The Haar measure dx×v on Q×

v is given by ζQv
(1)|x|−1

v dxv,
where | |v is the normalized absolute value on Qv.

• the Haar measure dy on Kv is such that the Fourier transform

Φ̂(x) =

∫
Kv

Φ(y)ψv(〈x, y〉)dy

satisfies
̂̂
Φ(x) = Φ(−x) where the pairing is

〈x, y〉 = NKv/Qv
(x+ y)−NKv/Qv

(x)−NKv/Qv
(y).

The Haar measure d×y on K×
v is given by

d×y = ζKv
(1)|NKv/Qv

(y)|−1
v dy

where ζKv
(s) = ζQv

(s)2 for v splits in K. For any v � ∞, let D be the
discriminant of Kv in Zp, then

Vol(OKv
, dy) = Vol(OK×

v
, d×x) = |D|1/2v .

• take the quotient Haar measure dtv on K1
v = K×

v /Q×
v and the prod-

uct Haar measure ⊗vdtv on K1(A) such that the total volume of
K1(Q)\K1(A) is equal to 2L(1, η). Then these measures satisfy the
requirement in the Gross-Zagier formula above. Then

Vol(K1
v , dtv) =

⎧⎪⎨⎪⎩
2, if v = ∞,

1, if v is inert in K,

2|D|1/2v , if Kv/Qp is ramified.

Lemma 3.7. Let f : X0(32) → E be a degree 2 modular parametrization.
With the above fixed Haar measure, we have

βv(fv)
/
β0,v(fv) =

⎧⎨⎩p−1/2, if v = p
∣∣∣ n
n0

,

1, otherwise.

Proof. Note that βv(fv)/(fv, fv) = 1 in the following spherical case: Kv/Qv,
πv, χv are all unramified and f ∈ πG(Zv) and O×

Kv
/Z×

v has volume one. Thus

βv(fv)/(fv, fv) = 1, ∀v � 2n∞, β0,v(fv)/(fv, fv) = 1, ∀v � 2n0∞
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and therefore βv(fv)
/
β0,v(fv) = 1 for any v � 2n∞.

Now let p be an odd prime. Then πp is unramified and fp is a non-zero

(spherical) vector in the one-dimensional space π
G(Zp)
p . Then the normalized

matrix coefficient

Ψp(g) := (πp(g)fp, fp)/(fp, fp), g ∈ G(Qp)

is bi-G(Zp)-invariant and satisfies the Macdonald formula (See [3] Theorem
4.6.6):

Ψp

((
pm

1

))
=

p−m/2

1 + p−1

(
αm 1− p−1α−2

1− α−2
+ α−m 1− p−1α2

1− α2

)
, m ≥ 0.

Here (α, α−1) are the Satake parameters of πp.
For p|n which is then ramified in K and �p a uniformizer of Kp, using

the above formula and the decomposition

K×
p /Q×

p = (O×
Kp

/Z×
p )∪(�pO×

Kp
/Z×

p ), �p =
√
−2n ∈ G(Zp)

(
p

1

)
G(Zp),

we compute the integral∫
K×

p /Q×
p

Ψp(t)χp(t)dt = (1 + Ψp(�p)χp(�p))Vol(O×
Kp

/Z×
p )

=
Vol(O×

Kp
/Z×

p )

1 + p−1
·
(
1 + αχp(�p)p

−1/2
)

·
(
1 + α−1χp(�p)p

−1/2
)

By the following formula for local factors:

L(1, πp, ad) = (1− α2p−1)−1(1− α−2p−1)−1(1− p−1)−1

L(1/2, πp, χp) = (1− αχp(�)p−1/2)−1(1− α−1χp(�)p−1/2)−1,

we have

βp(fp)

(fp, fp)
=

L(1, ηp)L(1, πp, ad)

ζQp
(2)L(1/2, πp, χp)

·
∫
K×

p /Q×
p

Ψp(t)χp(t)dt

= Vol(O×
Kp

/Z×
p ) = p−1/2.
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It follows that βp(fp)/β0,p(fp) = p−1/2 for each p|(n/n0) and = 1 for all
p � 2∞n/n0. But n/n0 ≡ 1 mod 8 implies that n/n0 = γ2 for some γ ∈ Q×

2 ,
i.e. K2 � K0,2. Note that f2 is a new vector in π2, i.e. invariant under the
2-component U0(32)2 of U0(32) and that the two embeddings of K×

2 = K×
0,2

into GL2(Q2) are conjugate by
(
1

γ

)
∈ U0(32)2. Now it is easy to see that

β2(f2)/β0,2(f2) = 1. Note that π∞ = Q is the trivial representation of H×,
one can also easily check that β∞(f∞)/β0,∞(f∞) = 1.

Proof of Proposition 3.5. Recall that for a non-zero integer square-free d, we
denote by π(d) the automorphic representation corresponding to the elliptic
curve E(d) : dy2 = x3 − x. Then π(d) = π(−d) and by Lemma 3.1,

L(s, π, χ) = L(s, π(m0))L(s, π(cn/n0)), L(s, π, χ0) = L(s, π(m0))L(s, π(c)).

Note that the functional equation of L(s, π(m0)) (resp. L(s, π(2n/m0))) has
sign -1 (resp. 1) since m0 ≡ m ≡ 5, 6, or 7 mod 8 by our assumption. Thus

L′(1/2, π, χ)/L′(1/2, π, χ0) = L(1/2, π(cn/n0))/L(1/2, π(c)).

Since the special value L(1/2, π(c)) �= 0 for c = 1, 2, thus Pχ0

0 (f) is
torsion if and only if L′(1/2, π(m0)) = 0. It follows that if Pχ0(f) is torsion
then Pχ(f) is torsion. By the class number formula for imaginary quadratic
fields, we have that the special value of L-series removed infinite factor

L(∞)(1, η) = πhK/
√
8n, L(∞)(1, η0) = πhK0

/
√
8n0,

where L(∞) denotes the L-functions with the factor at infinity removed.
Putting everything together, we have that

ĥ(Pχ(f))

ĥ(Pχ0(f))
=

L′(1/2, π, χ)

L′(1/2, π, χ0)
·
h−2
K0

L(1, η0)
2

h−2
K L(1, η)2

·
∏

v|∞2n

βv(f)

β0,v(f)

=
L(1/2, π(cn/n0))

L(1/2, π(c))
· n

n0
·
∏

p|(n/n0)

p−1/2

=
L(1/2, π(cn/n0))/Ω(cn/n0)

L(1/2, π(c))/Ω(c)
=

Lalg(E(cn/n0), 1)

Lalg(E(c), 1)
,

which completes the proof of Proposition 3.5.

We have the following estimation of the 2-adic valuation of
Lalg(E(cn/n0), 1). Note that all prime divisor of n/n0 are congruent to 1
modulo 8.
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Proposition 3.8 (Zhao [28], [29]). Let s ≥ 1 be an integer and let m =
p1 · · · ps be a product of distinct primes pi ≡ 1 mod 8. Then

1. the 2-adic additive valuation of Lalg(E(2m), 1) is not less than 2s− 1.
2. the 2-adic additive valuation of Lalg(E(m), 1) is not less than 2s−1 and

the equality holds if and only if the ideal class group A of Q(
√
−2m)

satisfies that dimF2
A[4]/A[2] = 1 and ( 2

m)4 · (−1)(m−1)/8 = −1.

Proof. By Corollary 2 in [28], for any m a product of s distinct odd primes
pi ≡ 1 mod 4, the 2-adic valuation of Lalg(E(2m), 1) is not less than 2s − 2
and is equal to 2s − 2 if and only if there are exactly an odd number of
spanning subtrees in the graph G̃−m whose vertices are −1, p1, . . . , ps and
whose edges are those (−1, pi) with pi ≡ 5 mod 8 and those (pi, pj), i �= j,
with ( pi

pj
) = −1. Since all primes pi in the proposition are ≡ 1 mod 8,

the graph G̃−m is not connected so that the 2-adic valuation can not reach
the lower bound 2s− 2 and therefore (1) follows. The statement (2) is just
Theorem 1 in [29].

It is known that the 2-adic valuations of Lalg(E(1), 1) and Lalg(E(2), 1)
are −3 and −2, respectively (See [2] p.87). In fact, it is also known that the
full BSD conjecture holds for E(1) and E(2).

Now Theorem 3.3 follows from Propositions 3.4, 3.5, and 3.8.

4. Induction argument on quadratic twists

We now prove Theorem 1.5 by induction on k. Recall that a non-zero integer
m is a congruent number if and only if the Mordell-Weil group E(m)(Q) of
the elliptic curve E(m) : my2 = x3 − x has rank greater than zero. Note
that E(m) ∼= E(−m) only depends on the square-free part of m. Let n =
p0p1 · · · pk be a product of distinct odd primes with k ≥ 0, m = n or 2n
such that m ≡ 5, 6, or 7 mod 8, and m∗ = (−1)(n−1)/2m. It is known
that E(m)(Q) ∼= E(Q(

√
m∗))−, where E(Q(

√
m∗))− is the group of points

P ∈ E(Q(
√
m∗)) such that P σ = −P where σ ∈ Gal(Q(

√
m∗)/Q) is the

non-trivial element. Note that the torsion subgroup of E(Q(
√
m∗))− is E[2].

Thus m is congruent if we can construct a point y ∈ E(Q(
√
m∗))− \ E[2].

In this section, we will show the Heegner divisor Pχ(f) ∈ E(Q(
√
m∗))−

defined in section 3 is of infinite order for n satisfying the condition (1.1) in
Theorem 1.3 and the abelian character χ : Gal(H(i)/K) → {±1} defining
the extension K(

√
m∗) over K. In fact, to prove the non-triviality of Pχ(f),

we will construct a point ym ∈ E(Q(
√
m∗)) following Monsky [19] which

satisfies 4ym = Pχ(f), and study its 2-divisibility.
Recall that K = Q(

√
−2n) and � =

√
−2n ∈ K×

2 is a uniformizer at 2.
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4.1. The case n ≡ 1 mod 4

We first handle the case with p0 ≡ 5 mod 8. In this case, m = n and the

condition (1.1) in Theorem 1.3 says that the ideal class group A of K =

Q(
√
−2n) has no order 4 elements, or equivalently that 2A ∼= Gal(H/H0)

has odd cardinality.

Let P ∈ X0(32) be the image of i
√
2n/8 under the complex uniformiza-

tion of X0(32) ∼= Γ0(32)\(H ∪ P1(Q)). Let f : X0(32) → E be a degree 2

modular parametrization. Define

z = f(P ) + (1 +
√
2, 2 +

√
2) ∈ E(Kab)

which is actually defined over H by Theorem 2.4, and define

yn = TrH/K(
√
n)z ∈ E(K(

√
n)),(4.1)

which is our desired point. It turns out that 4yn = Pχ(f), the point we

defined in Theorem 1.5 and studied in section 3.

Theorem 4.1. Let k ≥ 0 be an integer and n = p0p1 · · · pk a product of

distinct primes with p0 ≡ 5 mod 8 and p1, . . . , pk ≡ 1 mod 8. Then the point

yn := TrH/K(
√
n)z

is actually defined over Q(
√
n) and belongs to 2k−1E(Q(

√
n))−+E[2]. More-

over, the point yn /∈ 2kE(Q(
√
n))− + E[2] if the ideal class group of K =

Q(
√
−2n) does not contain any element of order 4.

We start with the case k = 0, where the statement yn ∈ 2−1E(Q(
√
n))−+

E[2] in the theorem is understood as 2yn ∈ E(Q(
√
n))−. When k = 0 the

above theorem is due to Monsky [19]:

Proposition 4.2. Let n = p0 ≡ 5 mod 8 be a prime. Then the point yp0

satisfies:

yp0
∈ E(Q(

√
p0)) \ E(Q(

√
p0))

− and

2yp0
∈ E(Q(

√
p0))

− \
(
2E(Q(

√
p0))

− + E[2]
)
.

In particular, 2yp0
∈ E(Q(

√
p0))

− is of infinite order and therefore p0 is a

congruent number.
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Proof. In this case K(
√
p0) = H0 and the ideal class group A of K =

Q(
√
−2p0) satisfies that 2A ∼= Gal(H/H0) has odd cardinality. Note that

the action of the complex conjugation on Gal(H/K) is given by inverse and
Gal(H/K(

√
p0)) is stable under this action. It follows that the point yp0

=
TrH/K(

√
p0)z is fixed by the action of complex conjugation and therefore

yp0
∈ E(Q(

√
p0)).

For any t ∈ K̂×, we have that z�t+zt = (0, 0) by Theorem 2.4 (3). Thus

yp0
+ yσ�

p0
= #Gal(H/K(

√
p0)) · (0, 0) = #2A · (0, 0) = (0, 0).

Since

σ�(
√
p0) = [(2p0)2,Q

ab/Q](
√
p0) = [22,Q

ab/Q](
√
p0) =

(
2

p0

)
√
p0 = −√

p0,

σ� acts on K(
√
p0) non-trivially, thus 2yp0

∈ E(Q(
√
p0))

− but
yp0

/∈ E(Q(
√
p0))

−.
Suppose that 2yp0

∈ 2E(Q(
√
p0))

− + E[2], say, 2yp0
= 2y′ + t for some

y′ ∈ E(Q(
√
p0))

− and t ∈ E[2]. Then we have that 2(yp0
− y′) = t. Thus

yp0
−y′ ∈ E[4]∩E(Q(

√
p0)) = E[2] and then yp0

∈ y′+E[2] ⊂ E(Q(
√
p0))

−,
a contradiction. In particular, 2yp0

∈ E(Q(
√
p0))

− is of infinite order and
therefore p0 is a congruent number.

For each positive divisor d of n divisible by p0, define

yd := TrH/K(
√
d)z ∈ E(K(

√
d)).

Define y0 = TrH/H0
z ∈ E(H0).

Lemma 4.3. Assume k ≥ 1 and let � ∈ K×
2 be the uniformizer

√
−2n.

Then

1. the point yd ∈ E(Q(
√
d))− for each d with p0|d|n.

2. the point y0 ∈ E(H+
0 ), where H+

0 = H0 ∩ R = Q(
√
p0, . . . ,

√
pk),

satisfies:

(4.2) y0 + yσ�

0 = #2A · (0, 0).

Moreover these points satisfy the following relation:

(4.3)
∑
p0|d|n

yd =

{
2ky0, if k ≥ 2,

2ky0 +#2A · (0, 0), if k = 1.
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Proof. Similar to Proposition 4.2, for each d with p0|d|n, Gal(H/K(
√
d))

is stable under the action of the complex conjugation and therefore yd ∈
E(Q(

√
d)). Moreover, by Theorem 2.4,

yd + yσ�

d = #Gal(H/K(
√
d)) · (0, 0) = 0

since the cardinality of A[2] is 2k+1 and thus Gal(H/K(
√
d)) has even car-

dinality #2A · 2k. Similarly, y0 is invariant under the complex conjugation
so that y0 ∈ E(H+

0 ) and satisfies the relation (4.2).
Note that any element σ in Gal(H0/K) maps

√
pi to ±√

pi for 0 ≤
i ≤ k, Note also that σ ∈ Gal(H0/K(

√
d)) if and only if the cardinal-

ity of {p|d, σ(√p) = −√
p} is even. For any 1 �= σ ∈ Gal(H0/K), let

nσ = #{d, p0|d|n, σ ∈ Gal(H0/K(
√
d))}. Note that σ�(

√
p0) = −√

p0 and
σ�

√
pi =

√
pi for all 1 ≤ i ≤ k. If 1 �= σ ∈ Gal(H/K) fixes

√
p0 and changes

exact s elements among
√
p1, . . . ,

√
pk, then nσ = 2k−s

[(
s
0

)
+
(
s
2

)
+ · · ·+

]
=

2k−1 and nσσ�
= 2k−s

[(
s
1

)
+
(
s
3

)
+ · · ·

]
= 2k−1. Thus∑

p0|d|n
yd − 2ky0 =

∑
p0|d|n

(yd − y0) =
∑
p0|d|n

∑
1�=σ∈Gal(H0/K(

√
d))

yσ0

=
∑

1�=σ∈Gal(H0/K)

nσy
σ
0

=
∑

1�=σ,σ fixing
√
p0

(nσy
σ
0 + nσσ�

yσσ�

0 )

= 2k−1(2k − 1)#2A · (0, 0).

The equality (4.3) now follows.

Proof of Theorem 4.1. We do induction on k. It holds when k = 0 by Propo-
sition 4.2. Now assume k ≥ 1. By Lemma 4.3, we now have

yn +
∑

p0|d|n,d �=n

yd = 2ky0 mod E[2].(4.4)

For each d with p0|d|n, d �= n, let y0d be the point constructed similarly with
Q(

√
−2n) replaced by Q(

√
−2d). Then 4yd, 4y

0
d are Pχ(f) and Pχ0(f) in

section 3, respectively. If y0d is torsion, so is yd. If y
0
d is not torsion, then the

ratio of yd to y0d in the one dimensional Q-vector space E(Q(
√
d))− ⊗Z Q is

[yd : y0d] = [Pχ(f) : Pχ0(f)]. By induction hypothesis and Theorem 3.3, we

know that yd ∈ 2kE(Q(
√
d))− + E[2].
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Now write yd = 2ky′d + td with y′d ∈ E(Q(
√
d))− and td ∈ E[2]. Then by

(4.4) we have that

yn = 2k

⎛⎝y0 −
∑

p0|d|n,d �=n

y′d

⎞⎠+ t(4.5)

for some t ∈ E[2]. Note any proper sub-extension of H+
0 /Q must be ramified

at some odd prime. Thus

E[2∞] ∩ E(H+
0 ) = E[2].

Consider the (injective) Kummer map

E(Q(
√
n))/2k+1E(Q(

√
n)) −→ H1(Q(

√
n), E[2k+1]),

and the exact inflation-restriction sequence

1 −→ H1(Gal(H+
0 /Q(

√
n)), E[2]) −→ H1(Q(

√
n), E[2k+1])

−→ H1(H+
0 , E[2k+1]).

Since 2yn = 2k+1(y0 −
∑

p0|d|n,d �=n y
′
d) with y0 −

∑
p0|d|n,d �=n y

′
d ∈ E(H+

0 ), we
know that the image of 2yn in the Kummer map belongs to
H1(Gal(H+

0 /Q(
√
n)), E[2]) and then the image is killed by 2. Thus 4yn ∈

2k+1E(Q(
√
n)), or 4(yn − 2k−1ỹn) = 0 for some ỹn ∈ E(Q(

√
n)). It follows

that yn = 2k−1ỹn modulo E[2] and then belongs to 2k−1E(Q(
√
n)) + E[2].

Moreover, with the relation (4.5), we have that 2k−1(ỹn−2y0+
∑

d �=n 2y
′
d) ∈

E[2], which implies that

ỹn = 2y0 −
∑
d �=n

2y′d + t, for some t ∈ E[2].

Note that for any 0 < d|n with p0|d, we have that σ�(
√
d) = −

√
d and

therefore y′σ�

d = −y′d. Thus ỹ
σ�
n +ỹn = 2(yσ�

0 +y0) = 0, i.e. ỹn ∈ E(Q(
√
n))−.

This shows that yn ∈ 2k−1E(Q(
√
n))− + E[2].

Now assume that the ideal class group of K = Q(
√
−2n) has no order

4 element. Suppose that yn = 2ky′n + tn for some y′n ∈ E(Q(
√
n))− and

tn ∈ E[2]. Then by the relation (4.3) in Lemma 4.2, we have that

2k

⎛⎝y0 −
∑
p0|d|n

y′d

⎞⎠ ∈ E[2], with y0 −
∑
p0|d|n

y′d ∈ E(H+
0 ).
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Again, any proper sub-extension of H+
0 /Q must be ramified at some odd

prime, we have that y0 −
∑

p0|d|n y
′
d = t for some t ∈ E[2]. Thus

y0 + yσ�

0 =
∑
p0|d|n

(y′d + y′σ�

d ) + (t+ tσ�) = 0.

But with the assumption that the ideal class group of K has no elements of
order 4, we have y0 + yσ�

0 = (0, 0) ∈ E[2] by the equality (4.2) in Lemma
4.3. It is a contradiction.

4.2. The case n ≡ 3 mod 4

In this subsection, we assume that n = p0p1 · · · pk is a product of distinct
primes with p0 ≡ 3 mod 4 and p1, . . . , pk ≡ 1 mod 8.

The genus field of K = Q(
√
−2n) is H0 = K(

√−p0,
√
p1, . . . ,

√
pk).

Thus
√
2 ∈ H0 but i /∈ H. We identify the ideal class group A of K with the

subquotient of K̂× corresponding to Gal(H(i)/K(i)). Recall that we denote
by � the uniformizer

√
−2n in K×

2 and let �′ = �(1 +�) ∈ K×
2 which is

also a uniformizer and σ�′ fixes i. Let �′
pi

=
√
−2n ∈ K×

pi
for 1 ≤ i ≤ k

and let �′
p0

= (
√
−2n)p0

(1 +�) ∈ K×
p0
K×

2 . Note that the condition (1.1) in
Theorem 1.3 says that

• if p0 ≡ 3 mod 8, then A has no order 4 elements, or equivalently, 2A
has odd cardinality.

• if p0 ≡ 7 mod 8, then the class of �′ ∈ K×
2 in A is the only non-trivial

element in A[2] ∩ 2A. In fact, by Gauss’ genus theory, one can check
that σ�′

∣∣
H

fixes
√−p0 and all

√
pi for 1 ≤ i ≤ k.

Let d ≡ 6, 7 mod 8 be a positive divisor of 2n, then
√
−d ∈ H0 is fixed by

σ�′ . Let χ = χd be the character of A = Gal(H(i)/K(i)) factoring through
Gal(K(i,

√
−d)/K(i)) which is non-trivial when d �= 2n. Since Kerχ contains

the class [�′] ∈ A of �′, the character χ factors through A/〈[�′]〉. For any
complete set of representatives φ ⊂ A of A/〈[�′]〉, we define

yd,φ =
∑
t∈φ

χ(t)zt.(4.6)

The point yd,φ is independent of φ up to E[2] by Theorem 2.8 (3). More
precisely, let φ′ be a second set of representatives and φc the complement of
φ in A. If φ′∩φc has even cardinality then yd,φ′ = yd,φ; and if the cardinality
is odd, then yd,φ′ − yd,φ = (−1, 0) or (1, 0) according as n ≡ 3 or 7 mod 8.
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We will often ignore the dependence of yd,φ on φ and abbreviate it to yd.
Note that 4yd = Pχ(f) with m0 = d in section 3 in then case n ≡ 3 mod 4.

Recall that E(Q(
√
−d))− denotes the subgroup of points P ∈ E(Q(

√
−d))

satisfying σP = −P where σ is the non-trivial element in Gal(Q(
√
−d)/Q).

Then E(Q(
√
−d))− is isomorphic to the Mordell-Weil group of the elliptic

curve E(d) : dy2 = x3 − x over Q and its torsion subgroup is E[2].
Let m = n or 2n such that m ≡ 6 or 7 mod 8. We will show that ym is

of infinite order under the condition (1.1) in Theorem 1.3 by induction on
the number of prime divisors of n. More precisely, the rest of this section
will be devoted to proving the following two theorems.

Theorem 4.4. Let k ≥ 0 an integer and n = p0p1 · · · pk a product of distinct
primes with p0 ≡ 7 mod 8 and p1, . . . , pk ≡ 1 mod 8. Then for m = n or 2n,
ym ∈ 2k−1E(Q(

√
−m))− + E[2], and if dimF2

A[4]/A[2] = 1 then the point
ym /∈ 2kE(Q(

√
−m))− + E[2].

Theorem 4.5. Let k ≥ 0 be an integer and n = p0p1 · · · pk a product of
distinct primes with p0 ≡ 3 mod 8 and p1, . . . , pk ≡ 1 mod 8. Then y2n ∈
2k−1E(Q(

√
−2n))− + E[2], and if the field K = Q(

√
−2n) has no order 4

ideal class, then the point y2n /∈ 2kE(Q(
√
−2n))− + E[2].

The following proposition is the first step for the induction process and
is proved in [19], and we repeat its proof here for completeness.

Proposition 4.6. Let n = p0 be a prime congruent to 3 modulo 4. Let
m = p0 or 2p0 such that m ≡ 6, 7 mod 8. Then we have

2ym ∈ E(Q(
√
−m))− \

(
2E(Q(

√
−m))− + E[2]

)
.

In particular, 2ym ∈ E(Q(
√
−m))− is of infinite order and therefore m is a

congruent number.

Proof. Note that the Galois group Gal(H(i)/Q) is generated by
Gal(H(i)/K(i)), the complex conjugation, and the operator σ1+�.

The element σ1+� induces the non-trivial involution on H(i) over H.
By Theorem 2.8 (1),

y
σ1+�

m,φ − ym,φ =
∑
φ

(0, 0)(4.7)

Thus σ1+� fixes 2ym, i.e. 2ym is rational over H. Moreover, by Theo-
rem 2.8 (2),

ym,φ =
∑
[t]∈φ

χ(t)(−zt−1 + (1, 0)) = −ym,φ−1 +
∑
φ

(1, 0),(4.8)
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thus the complex conjugation of 2ym is equal to −2ym. Any σs ∈
Gal(H(i)/K(i)) maps ym,φ to∑

φ

χ(t)zst = χ(s)ym,[s]φ.(4.9)

So it takes 2ym to 2ym or −2ym according to σs acts trivially or non-

trivially on
√
−m. Thus 2ym is rational over K(i,

√
−m) and therefore ra-

tional over K(i,
√
−m)∩H = K(

√
−m). Now we claim that 2ym is rational

over Q(
√
−m). This is clear if m = 2n. When m �= 2n choose an element

σ ∈ Gal(H(i)/K(i)) mapping
√
−m to −

√
−m, then both σ and the com-

plex conjugation take 2ym to −2ym, and therefore their composition fixes

2ym and has fixed field Q(
√
−m) in K(

√
−m). This shows the claim and

therefore it follows that 2ym ∈ E(Q(
√
−m))−.

Let us first consider the case with p0 ≡ 3 mod 8. Then m = 2p0 ≡
6 mod 8 and φ has odd cardinality. We need to show that 2ym
/∈ 2E(Q(

√
−m))− + E[2]. Suppose this is not the case, i.e. 2ym = 2y + t

for some y ∈ E(Q(
√
−m))− and t ∈ E[2]. Then P := ym − y is a 4-torsion

point. Note that
√
−m ∈ H. Then, by the equation (4.4), we have that

σ1+�(P )− P = σ1+�(ym)− ym =
∑
φ

(0, 0) = (0, 0).

On the other hand, as we pointed out at the beginning of section 2, E[4]/E[2]

is represented by 0, (i, 1 − i), (1 +
√
2, 2 +

√
2), (−1 −

√
2, i(2 +

√
2)). Note

that σ1+� moves i but fixes
√
2. Thus σ1+� acts on any point Q ∈ E[4] via

the complex conjugation. It follows immediately that σ1+�(Q) − Q = 0 if

Q ≡ 0, (1 +
√
2, 2 +

√
2) mod E[2] and σ1+�(Q)−Q = (−1, 0) otherwise. It

is a contradiction.

Assume now that p0 ≡ 7 mod 8. Then m = p0 or 2p0 corresponding

χ non-trivial or trivial. We need to show that 2ym /∈ 2E(Q(
√
−m))− +

E[2]. Suppose this is not the case, i.e. 2ym = 2y mod E[2] for some y ∈
E(Q(

√
−m))−. Since φ has even cardinality, ym is rational over H. Then

P := ym − y ∈ E[4] ∩ E(H) = E[4] ∩ E((Q(
√
2)) and therefore P = 0 or

(1 +
√
2, 2 +

√
2) modulo E[2].

Note that A[2∞] is cyclic by Gauss’ genus theory. Take an element [t] ∈
A−2A (for example, a generator of A[2∞]), then A/([t]) has odd cardinality.

Let φ0 be a set of representatives for the A/([t]) and then we may take

φ =
⋃m−1

i=0 [t]iφ0 if the order of [t] is 2m (thus [t]m = [�′]). Use this φ to
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define ym. Now we have

yσt

m,φ =

⎛⎝∑
[t′]∈φ

χ(t′)zt′

⎞⎠σt

= χ(t)
∑

[t′]∈[t]φ
χ(t′)zt′

= χ(t)

⎛⎝∑
φ

χ(t′)zt′ +
∑
φ0

χ(t′)(z�′t′ − zt′)

⎞⎠ = χ(t)ym,φ + (1, 0)

Note that σt fixes
√
−2p0 but moves

√
2 and

√−p0. Thus σty = χ(t)y and
then

P σt − χ(t)P = yσt
m − χ(t)ym = (1, 0).

But we have shown that P = 0 or (1 +
√
2, 2 +

√
2) modulo E[2]. If follows

that P σt − χ(t)P = 0 if P = 0 mod E[2] and that P σt − χ(t)P = (−1, 0) or
0, 0) if P = (1 +

√
2, 2 +

√
2) mod E[2] according to χ(t) = 1 or −1. It is a

contradiction.

We now refine the beginning argument of previous Proposition to obtain
the defining field of points yd’s when k ≥ 1.

Lemma 4.7. Assume that k ≥ 1 and that n = p0p1 · · · pk is a product of
distinct primes p0 ≡ 3 mod 4 and pi ≡ 1 mod 8 for 1 ≤ i ≤ k. Let d|2n be
a positive integer ≡ 6, 7 mod 8. Then the point yd ∈ E(Q(

√
−d))−.

Proof. Note again that the Galois group Gal(H(i)/Q) is generated by
Gal(H(i)/K(i)), the complex conjugation, and the operator σ1+�. Take a
prime p|n, then the class [�′

p] ∈ A[2] is neither trivial nor equal to [�′] since
k ≥ 1. Let φ0 ⊂ A be a complete set of representatives of A/([�′], [�′

p]) and
let φ = φ0 ∪ [�′

p]φ0, which has even cardinality.

(i) Since φ has even cardinality, by Theorem 2.8 (1), we have

y
σ1+�

d,φ − yd,φ =
∑
φ

(0, 0) = 0.

Thus σ1+� fixes yd, i.e. yd is rational over H.
(ii) The set φc ∩ φ−1 is stable under multiplication by [�′

p] and then has
even cardinality. It follows that yd,φ = yd,φ−1 . Then by Theorem 2.8
(2), we have

yd,φ =
∑
[t]∈φ

χ(t)(−zt−1 + (1, 0)) = −yd,φ−1 +
∑
φ

(1, 0) = −yd,φ.
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Thus the complex conjugation maps yd to its negative.

(iii) For any [t] ∈ A, [t]φ = [t]φ0 ∪ [t�′
p]φ0, the set φc ∩ [t]φ is stable under

multiplication by [�′
p] too and then has even cardinality. Thus for any

σt ∈ Gal(H(i)/K(i)),

yσt

d,φ =
∑
φ

χ(t′)ztt′ = χ(t)yd,[t]φ = χ(t)yd,φ,

So yσt

d is equal to yd or−yd according to σt acts trivially or non-trivially

on
√
−d, thus yd is rational over K(i,

√
−d).

Now by the same argument as the previous Proposition, we have that the

point yd belong to E(Q(
√
−d))−.

We are now going to show separately Theorem 4.4 and Theorem 4.5,

which correspond to the case with p0 ≡ 7 mod 8 and the case with p0 ≡
3 mod 8.

Let k ≥ 1 be an integer and n = p0p1 · · · pk with p0 ≡ 7 mod 8 and

pi ≡ 1 mod 8 for 1 ≤ i ≤ k. Note that [�′] ∈ 2A ∩ A[2]. Let φ0 be a set

of representatives of 2A/([�′]). Let ψ be a set of representatives of A/2A.

Then φ =
⋃

[s]∈ψ[s]φ0 is a set of representatives of A/([�′]). We use this

φ to define all yd’s. Let β ∈ Gal(H(i)/K(i)) be an element which moves√
2,
√
p1, . . . ,

√
pk. Then β fixes or moves

√
p0 according to that k is odd or

even.

Lemma 4.8. Assume k ≥ 1. Let n = p0p1 · · · pk with p0 ≡ 7 mod 8 and

pi ≡ 1 mod 8 for 1 ≤ i ≤ k. Let m = n or 2n such that m ≡ 6 or 7 modulo

8. Then we have

1. for each positive divisor d of 2n congruent to 6 or 7 mod 8, the point

yd ∈ E(Q(
√
−d))−.

2. Let y0 :=
∑

[t]∈φ0
zt. Then y0 + (−1)myβ0 is rational over the genus

subfield H0 = K(
√−p0,

√
p1, . . . ,

√
pk) of K.

These points satisfy the following relation:

(4.10)
∑

p0|d|2n
ν0(d)≡ν0(m) mod 2

yd = 2k
(
y0 + (−1)myβ0

)

where for any integer d, ν0(d) denotes the number of prime divisors of d.
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Proof. Note that the Galois group Gal(H(i)/H0) is generated by
Gal(H(i)/H0(i)) and the operator σ1+�. The statement (1) is showed in
Lemma 4.7. By Theorem 2.8, for any [s] ∈ 2A, y0 − yσs

0 = 0 or (1, 0) and

thus (y0 ± yβ0 ) is fixed by σs and then rational over H0(i). Since σ1+� in-

duces the involution of H(i) over H, Theorem 2.8 also implies that y0 ± yβ0
is rational over H0. Moreover, we have that

∑
p0|d|2n

ν0(d)≡ν0(m) mod 2

yd =
∑
[t]∈φ0

∑
[s]∈ψ

⎛⎜⎜⎝ ∑
p0|d|2n

ν0(d)≡ν0(m) mod 2

χd(s)

⎞⎟⎟⎠ (zt)
σs

It is clear that the summation in the last bracket is equal to 2k for σs = 1,
(−1)m · 2k for σs = β, and 0 otherwise. Thus the equality (4.9) follows.

Proof of Theorem 4.4. We prove the theorem by induction on k. The initial
case k = 0 is given by Proposition 4.6. Now assume that k ≥ 1. For m = n
or 2n, Similar to the case with p0 ≡ 5 mod 8, we have the following

1. the point ym ∈ 2k−1E(Q(
√
−m))− + E[2], using the equality (4.9);

2. for each positive d with p0|d|2n and d �= n, 2n, yd ∈ 2kE(Q(
√
−d))−+

E[2], i.e. of form 2ky′d + td for some y′d ∈ E(Q(
√
−d))− and td ∈ E[2].

Now we show that ym /∈ 2kE(Q(
√
−m))− + E[2] under the condition

dimF2
A[4]/A[2] = 1. Suppose it is not the case, i.e. ym = 2ky′m + tm for

some y′m ∈ E(Q(
√
−m))− and tm ∈ E[2]. Thus the previous lemma implies

that

P :=

⎛⎜⎜⎝y0 + (−1)myβ0 −
∑

p0|d|2n
ν0(d)≡ν0(m) mod 2

y′d

⎞⎟⎟⎠
∈E[2k+1] ∩ E(H0) = E[4] ∩ E(Q(

√
2)).

It follows that P β − P = 0 or (0, 0) and P β + P = 0 or (−1, 0).
The assumption dimF2

A[4]/A[2] = 1 implies that [�′] is the unique
non-trivial element in 2A ∩A[2]. Note that (y′d)

β = (−1)my′d and therefore

P − (−1)mP β = y0 − yβ
2

0 .

Write β = σt0 , we claim that [t0] ∈ A has order 4s for some integer s.
(Proof. Suppose it is not the case, then [t0] belongs to the subgroup of A
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generated by A[2] and the odd part of A. Since A[2] ∼= (Z/2Z)k is generated

by [�p], p|n where �p =
√
−2n ∈ K×

p , we may write [t0] =
∏

p|n[�p]
εpa for

some εp = 0 or 1 and a ∈ A is of odd order. Note that σ�′
p
(
√
p∗)/

√
p∗ = (p

′

p )

if p′ �= p and = (n/pp ) otherwise. Let A = (aij) be the k × k matrixes whose

(i, j)-entry is (pj

pi
) and (i, i)-entry is (n/pi

pi
). Let v = (vi) be the column vector

in Fk+1
2 with vi = 0 if β fixes

√
pi and 1 otherwise. Then ε = (εpi

) ∈ Fk
2 is a

solution of the equation over F2: Aε = v. But the summation of all rows is

a zero row vector and
∑

i vi = 1 by definition of β, a contradiction.)

Thus [t0]
2s = [�′] and the group 2A/([t0]

2) is of odd order. Let φ1

be a set of representatives for the group 2A/([t0]
2), then we may take

φ0 =
⋃s−1

i=0 [t0]
2iφ1 to be our set of representative for 2A/([�′]) and use it

to define y0. Then

y0−yβ
2

0 =
∑
[t]∈φ0

zt−
∑
[t]∈φ0

zt20t =
∑
[t]∈φ1

(zt−z�′t) = #2A/([t0]
2) ·(1, 0) = (1, 0).

It is a contradiction.

Finally, we consider the case that p0 ≡ 3 mod 8 and k ≥ 1. Then

A = 2A × A[2] and [�′] ∈ A[2]. Let ψ be the set of representatives for

A[2]/([�′]) consisting of those [�′
d] fixing

√
2, then φ :=

⋃
[s]∈ψ[s](2A) is a

set of representatives for A/([�′]). The set φ is stable under [t] �→ [t]−1 and

we use φ to define all yd’s.

Lemma 4.9. Assume k ≥ 1. Let n = p0p1 · · · pk be a product of distinct

primes with p0 ≡ 3 mod 8 and pi ≡ 1 mod 8 for 1 ≤ i ≤ k. Then we have

1. for each positive divisor d of 2n divisible by 2p0, the point yd
∈ E(Q(

√
−d))−;

2. the point y0 :=
∑

[t]∈2A zt ∈ E(H0(i)) satisfies the following relation:

(4.11) y
σ1+�

0 − y0 = #2A · (0, 0)

Moreover, these points satisfy the following relation:

(4.12)
∑

2p0|d|2n
yd = 2ky0.

Proof. The statement (1) is showed in Lemma 4.7. The statement (2) follows
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from Theorem 2.8 (1):

y
σ1+�

0 − y0 =
∑

[t]∈2A
(z

σ1+�

t − zt) = #2A · (0, 0).

Moreover, ∑
2p0|d|2n

yd =
∑

[t]∈2A

∑
[s]∈ψ

⎛⎝ ∑
2p0|d|2n

χd(s)

⎞⎠ zσs

t .

It is clear that the summation in the last bracket is equal to 2k for σs = 1
and 0 otherwise. Thus the equality (4.11) follows.

Proof of Theorem 4.5. We prove the theorem by induction on k. The initial
case k = 0 is given by Proposition 4.6. Now assume that k ≥ 1. Similar to
previous cases, we have that

1. the point y2n ∈ 2k−1E(Q(
√
−2n))− + E[2], using the equality (4.11);

2. for each positive d with 2p0|d|2n and d �= 2n, yd ∈ 2kE(Q(
√
−d))− +

E[2], i.e. of form 2ky′d + td for some y′d ∈ E(Q(
√
−d))− and td ∈ E[2].

Now we show that y2n /∈ 2kE(Q(
√
−2n))−+E[2] if the field K = Q(

√
−2n)

has no order 4 ideal class. Suppose it is not the case, i.e. y2n = 2ky′2n + t2n
for some y′2n ∈ 2kE(Q(

√
−2n))− and t2n ∈ E[2]. Then as before, we have

that

P := y′2n − y0 +
∑

2p0|d|2n,d �=2n

y′d ∈ E[2k+1] ∩ E(H0(i))

=E[2k+1] ∩ E(Q(i,
√
2)) = E[4].

Thus we have the formula

y0 =
∑

2p0|d|2n
y′d − P

with P ∈ E[4], and then

y
σ1+�

0 −y0 =
∑

2p0|d|2n
((y′d)

σ1+�−y′d)−(P σ1+�−P ) = −P+P = 0 or (−1, 0).

But if A has no order 4 element or equivalently 2A is odd, we have y
σ1+�

0 −
y0 = (0, 0) by the equality (4.10) in Lemma 4.9. It is a contradiction.



156 Ye Tian

5. Proof of main results

In this section, we give proofs of Theorem 1.1, Theorem 1.3, and Theorem
1.5.

Proof of Theorem 1.5. Let n = p0p1 · · · pk be a product of distinct odd
primes with pi ≡ 1 mod 8, 1 ≤ i ≤ k, and p0 ≡/ 1 mod 8. Let m = n
or 2n such that m ≡ 5, 6 or 7 modulo 8, and m∗ = (−1)(n−1)/2m. Let χ
be the abelian character over K defining the unramified extension K(

√
m∗).

Let P ∈ X0(32) be the point [i
√
2n/8] if n ≡ 5 mod 8 and [(i

√
2n + 2)/8]

if n ≡ 6, 7 mod 8. Then by Theorem 2.4 and Theorem 2.8, we have f(P ) ∈
E(H(i)). We showed in Lemma 3.2 that the point

Pχ(f) =
∑

σ∈Gal(H(i)/K)

f(P )σχ(σ)

belongs to E(Q(
√
m∗))− by taking m0 = m there. It is easy to see from the

definitions (4.1) and (4.5) of ym that

Pχ(f) = 4ym.

By Theorem 4.1, Theorem 4.4, and Theorem 4.5, we know that for integers
m in Theorem 1.5,

ym ∈ 2k−1E(Q(
√
m∗))− + E[2] \ 2kE(Q(

√
m∗))− + E[2].

It then follows that, by noting that E[2∞] ∩ E(Q(
√
m∗))− = E[2],

Pχ(f) ∈ 2k+1E(Q(
√
m∗))− \

(
2k+2E(Q(

√
m∗))− + E[2]

)
.

In particular, Pχ(f) ∈ E(Q(
√
m∗))− is of infinite order and m is a congruent

number. This completes the proof of our main result Theorem 1.5.

By the following lemma, the condition (1.1) in Theorem 1.3 is actually
easy to check. This allow us not only to show the existence result Theorem
1.1 but also to construct many congruent numbers.

Lemma 5.1. Let n = p0p1 · · · pk be a product of distinct odd primes with
pi ≡ 1 mod 8 for 1 ≤ i ≤ k and p0 ≡/ 1 mod 8. Let G be the graph whose
vertices set V consists of p0, . . . , pk and whose edges are those pipj, i �= j,
with the quadratic residue symbol ( pi

pj
) = −1. Then the condition (1.1) in

Theorem 1.3 is equivalent to any one of the following conditions:
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1. there does not exist a proper even partition of vertices V = V0 ∪ V1 in
the sense that any v ∈ Vi has even number edges to V1−i, i = 0, 1;

2. the graph G has an odd number of spanning subtrees.

Proof. Note that the multiplication by 2 induces an isomorphism

A[4]/A[2]
×2� A[2] ∩ 2A. The condition (1.1) is the same as

2A ∩A[2] =

{
0, if n ≡ ±3 mod 8;

{0, [�]}, otherwise.

Note that the group A[2] consists of [�d] for all positive divisors d|n, that
[�] = [�n] in A, and that [�d] ∈ 2A if and only if(

d

p

)
= 1, ∀ p|(n/d) and

(
2n/d

p

)
= 1, ∀ p|d.

The equivalence between (1) and the condition (1.1) in Theorem 1.3 is then
clear. See either [7] Lemma 2.2. or [18] Lemma 2 for the equivalence between
(1) and (2).

By Dirichlet’s theorem, we can construct infinitely many numbers n for
each given isomorphism class of graph with an odd number of spanning
subtrees. Thus Theorem 1.1 follows from Theorem 1.5. We can even obtain
the following stronger version.

Theorem 5.2. Let p0 ≡/ 1 mod 8 be an odd prime. Then there exists an
infinite set Σ of primes congruent to 1 modulo 8 such that the product of p0
(resp. 2p0) and primes in any finite subset of Σ is a congruent number if
p0 ≡ 5, 7 mod 8 (resp. p0 ≡ 3 mod 4).

Proof. Suppose we are given an odd prime p0 ≡/ 1 mod 8. By Dirichlet
theorem, we can choose inductively primes p1, p2, . . . satisfying the following
conditions:

(i) all pi ≡ 1 mod 8,
(ii) the quadratic residue symbol ( pi

p0
) = −1, and

(iii) for all 1 ≤ j ≤ i− 1, ( pi

pj
) = 1.

Let Σ be the infinite set {p1, p2, . . .}. Then the graph with vertices set {p0}∪
Σ and edges those pipj satisfying ( pi

pj
) = −1, is an infinite star-shape graph.

It is now easy to see that the product n of p0 with primes in any finite
subset of Σ satisfies the condition (1.1) in Theorem 1.3. Thus the set Σ is
the desired one.
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Finally, we explain how Theorem 1.3 follows from Theorem 1.5. Recall
E′ = (X0(32), [∞]) is an elliptic curve defined over Q with Weierstrass
equation y2 = x3 + 4x.

Lemma 5.3. Let n = p0p1 · · · pk be a product of distinct odd primes with
pi ≡ 1 mod 8 for 1 ≤ i ≤ k. Let m = n or 2n such that m ≡ 5, 6, or
7 mod 8. Let ϕ be a 2-isogeny from E(m) to E

′(m) : my2 = x3 + 4x with
kernel {0, (0, 0)}, and ψ its dual isogeny. Let S(ϕ) = S(ϕ)(E(m)) (resp. S(ψ) =
S(ψ)(E′(m))) denote the ϕ-(resp. ψ-) Selmer group. Then the condition (1.1)
in Theorem 1.3 implies that

dimF2
S(ϕ) = 1 and dimF2

S(ψ) = 2,

and moreover, that the 2-Selmer group S(2)(E(m)/Q) satisfies

dimF2
S(2)(E(m)/Q)

/
E(m)[2] = 1.(5.1)

Proof. These Selmer groups can be computed using [23] Ch.X Proposi-
tion 4.9. For example, when m = n ≡ 5 mod 8, the ϕ-Selmer group
S(ϕ) ⊂ H1(Q, E(m)[ϕ]) ∼= Q×/Q×2 has representatives divisors d (includ-
ing negative ones) of 2n satisfying the condition that the curve

Cd : dw2 = d2 + 4n2z4

over Q is solvable locally everywhere while ψ-Selmer group S(ψ) ⊂
H1(Q, E

′(m)[ψ]) ∼= Q×/Q×2 has representatives divisors d (including neg-
ative ones) of 2n satisfying the condition that the curve

C ′
d : dw2 = d2 − n2z4

over Q is solvable locally everywhere. Using the equivalence between the
condition (1.1) in Theorem 1.3 and (1) in Lemma 5.1, one can check easily
by Hensel’s Lemma that S(ϕ) consists of only two elements 1, n and is then
of F2-dimension 1, and S(ψ) consists of ±1,±n and then is of dimension 2.

Note that there is an exact sequence:

0 −→ S(ϕ) −→ S(2)(E(m)/Q) −→ S(ψ).

Since the subgroup E(m)[2] ⊂ S(2)(E(m)/Q) of 2-torsion points provides 2-
dimensional image in S(ψ), the last morphism is also surjective and therefore
dimF2

S(2)(E(m)/Q) = 3. The formula (5.1) follows.
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Proof of Theorem 1.3. Let m = n or 2n be as in the Theorem 1.3 and Pχ(f)
the Heegner point constructed in Theorem 1.5. By Theorem 1.5, we know
that Pχ(f) ∈ E(Q(

√
m∗))− ∼= E(m)(Q) is of infinite order. Via the argument

in the proof of Proposition 3.4, the Euler system theory of Kolyvagin implies
that the Mordell-Weil group E(m)(Q) has rank one and the Shafarevich-Tate
group X(E(m)/Q) is finite. By the generalized Gross-Zagier formula ([27]
Theorem 1.2) and the non-vanishing of L(E(1), 1) and L(E(2), 1) �= 0, the
vanishing order of L(E(m), s) at s = 1 is exactly one.

It follows from (5.1) in Lemma 5.3 that

rankZE
(m)(Q) + dimF2

X(E(m)/Q)[2] = 1.

Since we have shown that rankZE
(m)(Q) = 1, X(E(m)/Q)[2] = 0, which

implies that X(E(m)/Q) has odd cardinality.
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