
HARDER-NARASIMHAN STRATA AND p-ADIC PERIOD DOMAINS

XU SHEN

Abstract. We revisit the Harder-Narasimhan stratification on a minuscule p-adic
flag variety, by the theory of modifications of G-bundles on the Fargues-Fontaine
curve. We compare the Harder-Narasimhan strata with the Newton strata introduced
by Caraiani-Scholze. As a consequence, we get further equivalent conditions in terms
of p-adic Hodge-Tate period domains for fully Hodge-Newton decomposable pairs.
Moreover, we generalize these results to arbitrary cocharacters case by considering
the associated B+

dR-affine Schubert varieties. Applying Hodge-Tate period maps, our
constructions give applications to p-adic geometry of Shimura varieties and their local
analogues.
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1. Introduction

This paper is a continuation and complement of our previous work [3]. We look at
“p-adic period domains” from a different perspective (we refer to [3] and the references
therein for more background on p-adic period domains). We also extend the main result
of [3] to general (not necessarily minuscule) cocharacters.

More precisely, we revisit the Harder-Narasimhan stratifications on p-adic flag va-
rieties, which were defined using the theory of filtered vector spaces with additional
structures by Rapoport [34], and Dat-Orlik-Rapoport[6] Parts 1 and 2. In fact, in
[34] only the maximal open strata were considered, while in [6] Parts 1 and 2 these
Harder-Narasimhan stratifications were mainly investigated for reductive groups over
finite fields. In this paper, we are interested in the p-adic setting, motivated by the work
of Fargues [13] in the context of Harder-Narasimhan polygons for p-divisible groups.
The pure linear algebra context here suggests that it should be easier to access than the
usual context of filtered isocrystals with additional structures as [32, 37] and [6] Part 3.
Under base change, filtered vector spaces can be viewed as filtered isocrystals with triv-
ial underlying isocrystals. Thus we can study these p-adic Harder-Narasimhan strata by
plugging them into the setting of Rapoport-Zink [37] chapter 1 and Dat-Orlik-Rapoport
[6] Part 3, where the theory of filtered isocrystals with additional structures serves as
the basic tool. In a different direction, the open Harder-Narasimhan strata were also

2010 Mathematics Subject Classification. Primary: 11G18; Secondary: 14G20.

1



2 XU SHEN

defined and studied in certain cases by van der Put and Voskuil in [43].

Thanks to the recent developments in p-adic Hodge theory [14, 40], now we can apply
the theory of modifications of G-bundles on the Fargues-Fontaine curve to study the
Harder-Narasimhan strata. This new method has the advantage that it is easier and
natural to compare the Harder-Narasimhan stratification with some other important
stratifications on p-adic flag varieties, such as the Newton stratification1 introduced
by Caraiani-Scholze in [2] section 3, where the Fargues-Fontaine curve also plays the
key role. From the point of view of period morphisms of local Shimura varieties, we
consider these Harder-Narasimhan and Newton stratifications as constructions on the
Hodge-Tate side. The purpose of this paper is to understand the relation between these
two stratifications. In our previous work [3], we studied the Harder-Narasimhan strata
and Newton strata on the de Rham side (although we mostly restricted to the open
strata: the weakly admissible locus and the admissible locus). At the end, we will see
the theories on both sides are very closely related, in the sense they are actually dual to
each other.

To be more precise, let us fix some notations. Let G be a reductive group over2 Qp

and {µ} be a conjugacy class of cocharacters µ : Gm,Qp
→ GQp

. Attached to (G, {µ}),
we have flag varieties F `(G,µ) and F `(G,µ−1), defined over a finite extension E of Qp.

We view them as adic spaces over Ĕ, the completion of maximal unramified extension
of E. We assume that µ is minuscule at this moment for simplicity.

Consider the p-adic flag variety F `(G,µ−1) first. Then by studying modifications of
the trivial G-bundle over the Fargues-Fontaine curve, we can introduce two stratifica-
tions as follows. The first one is the Newton stratification introduced by Caraiani-Scholze
in [2] section 3. Let C|Ĕ be any algebraically closed perfectoid field and X = XC[ be

the Fargues-Fontaine curve over Qp attached to the tilt C[ equipped with a closed point
∞ with residue field C. To each point x ∈ F `(G,µ−1)(C), we can attach a modified
G-bundle at ∞

E1,x

of the trivial G-bundle E1 over X. The isomorphism class of E1,x defines a point in B(G)

(the set of σ-conjugacy classes in G(Q̆p), cf. [23, 25]), which in fact lies in the Kottwitz
set B(G,µ) ([25] section 6). This gives the Newton stratification

F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)Newt=[b′].

Each stratum F `(G,µ−1)Newt=[b′] is a locally closed subspace of F `(G,µ−1), therefore
we can either view it as a pseudo-adic space in the sense of Huber ([21]) or a diamond
in the sense of Scholze ([38]).

On the other hand, we can define the Harder-Narasimhan vector

ν(E1, E1,x, f)

attached to the modification triple, which is an element in the set N (G) of [35] 1.7
attached to G. In the case of GLn this has been studied by Cornut-Irissarry in [5]. It
turns out that this vector ν(E1, E1,x, f) is identical to the Harder-Narasimhan vector
ν(Fx) defined in [6] chapter VI.3 for the “G-filtration” Fx attached to x. We can show
that in fact ν(E1, E1,x, f) (in fact some normalization of it) lies in N (G,µ), the image of

1Here to consider the Newton stratification on a p-adic flag variety, one has to assume that the
corresponding cocharacter is minuscule. For general cocharacters, we need to work with the B+

dR-affine

Schubert cells, see the later discussions.
2Throughout this paper, the base field for our reductive groups is Qp. However one can replace it by

any finite extension of Qp and all the results are still true.
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B(G,µ) under the Newton map ν : B(G) → N (G) (cf. [23] section 4). In this way we
get the Harder-Narasimhan stratification

F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)HN=[b′].

Similarly as above, each Harder-Narasimhan stratum is a locally closed subspace of
F `(G,µ−1). For both stratifications, the maximal open strata are indexed by the basic
element [b] ∈ B(G,µ) and we have an inclusion

F `(G,µ−1)Newt=[b] ⊂ F `(G,µ−1)HN=[b],

which comes from the inequality between the Harder-Narasimhan vector and the Newton
vector in N (G)

ν(E1, E1,x, f) ≤ ν(E1,x),

cf. Proposition 3.4. See also [13] Proposition 14 and [5] Proposition 44 (both in the case
of GLn).

Now consider the side of F `(G,µ). Let b ∈ G(Q̆p) be such that the associated class
[b] ∈ B(G,µ) and it is the basic element. The triple (G, {µ}, [b]) then forms a basic local
Shimura datum ([36]). Recall that by Fargues’s main theorem in [11], we have a bijection

B(G)
∼−→ H1

et(X,G), [b′] 7→ [Eb′ ]. Then we can also define the Newton stratification
and Harder-Narasimhan stratification on F `(G,µ) by considering the modifications

Eb,x, x ∈ F `(G,µ)(C)

of the G-bundle Eb on X similarly as above. The Newton stratification3 in this setting
was introduced in [3] 5.3, while the Harder-Narasimhan stratification was introduced in
[6] chapter IX.6, where the more classical theory of filtered isocrystals with additional
structures was used. The open Newton stratum is the admissible locus F `(G,µ, b)a

([39, 40, 34, 3]), while the open Harder-Narasimhan stratum is the weakly admissible
locus F `(G,µ, b)wa ([37, 6]). By the theorem of Colmez-Fontaine (see [14] chapter 10),
we have also the inclusion

F `(G,µ, b)a ⊂ F `(G,µ, b)wa.

The Newton and Harder-Narasimhan stratifications on the side of F `(G,µ) also have
the same index set, B(G, 0, νbµ

−1), a generalized Kottwitz set which was introduced in
[34] and [3] section 4.

To summarize, we have the open strata F `(G,µ−1)Newt=[b] and F `(G,µ−1)HN=[b]

inside F `(G,µ−1) constructed starting from the triple (G, {µ−1}, [1]) (the Hodge-Tate
side), and the open strata F `(G,µ, b)a and F `(G,µ, b)wa inside F `(G,µ) constructed
from the local Shimura datum (G, {µ}, [b]) (the de Rham side). These open strata are
related by the following diagram

M(G,µ, b)∞
πdR

vvvv

πHT

)) ))
F `(G,µ, b)a,3� _

��

F `(G,µ−1)Newt=[b],3
� _

��
F `(G,µ, b)wa,3 F `(G,µ−1)HN=[b],3,

whereM(G,µ, b)∞ is the local Shimura variety with infinite level attached to the datum
(G, {µ}, [b]) (cf. [3] Theorem 3.3 and [40] sections 23 and 24), πdR and πHT are the p-adic

3In [3] this was called the Harder-Narasimhan stratification, which should not be confused with the
Harder-Narasimhan stratification here.
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de Rham and Hodge-Tate period morphisms respectively. Thus it is more reasonable to
call F `(G,µ, b)a and F `(G,µ−1)Newt=[b] p-adic period domains, although historically in

[34, 6] it was the open Harder-Narasimhan strata F `(G,µ, b)wa and F `(G,µ−1)HN=[b]

that were called period domains. By construction, M(G,µ, b)∞ is a diamond over Ĕ.
This is why we pass to the diamonds associated to the above spaces.

Recall that Görtz-He-Nie have introduced the notion of fully Hodge-Newton decom-
posability for the Kottwitz set B(G,µ) (or the pair (G, {µ}), cf. [17] Definition 2.1,
where µ is a not necessarily minuscule cocharater). Roughly, this condition means that
for any non basic element [b′] ∈ B(G,µ), the pair ([b′], {µ}) satisfies the Hodge-Newton
condition. By [17] Theorem 2.5 we have a complete classification for fully Hodge-Newton
decomposable pairs (G, {µ}). Now we have the following theorem.

Theorem 1.1 (Theorem 5.1). Assume that µ is minuscule and [b] ∈ B(G,µ) is basic.
The following statements are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable,
(2) F `(G,µ, b)a = F `(G,µ, b)wa,

(3) F `(G,µ−1)Newt=[b] = F `(G,µ−1)HN=[b].

The equivalence (1)⇔ (2) was proved in [3] Theorem 6.1. Here the novelty is to add
the additional information (3). In fact, the equivalence (1) ⇔ (3) was conjectured by
Fargues in [13] 9.7. In Theorem 5.1 we will give several further equivalent conditions.

The idea to prove the above theorem is to introduce the dual local Shimura datum
(Jb, {µ−1}, [b−1]) (see subsection 4.1 or [36] Conjecture 5.8 and [40] Corollary 23.2.3)
and consider the following similar statements:

(a) B(Jb, µ
−1) is fully Hodge-Newton decomposable,

(b) F `(Jb, µ
−1, b−1)a = F `(Jb, µ

−1, b−1)wa,

(c) F `(Jb, µ)Newt=[b−1] = F `(Jb, µ)HN=[b−1].

By [3] Corollary 4.15, we have shown (1) ⇔ (a) by purely group theoretical methods.
Then by [3] Theorem 6.1, we get (a) ⇔ (b). The point here is to show (3) ⇔ (b)
and (2) ⇔ (c), which can be viewed as certain dualities for the Newton and Harder-
Narasimhan stratifications on the p-adic flag varieties F `(G,µ) and F `(G,µ−1). See
Theorem 4.4 and Corollary 4.5. In fact, the duality for Newton stratifications already
appeared implicitly in [3] 5.3, and the duality for Harder-Narasimhan stratifications
appeared implicitly in [6] IX.6. The novelties here are:

• studying both dualities more systematically in the setting of twin towers principle
(see [3] 5.1 and the following section 4),
• showing that how the combination of both dualities produces new information

and sheds new lights on the other side of the whole story,
• extending both dualities to general not necessarily minuscule cocharacters µ by

looking at the corresponding B+
dR-affine Schubert cells, see below.

On the other hand, we can show directly the equivalence (1) ⇔ (3) by similar argu-
ments as in the proof of [3] Theorem 6.1, see Remark 5.2. Then under the equivalences
(1)⇔ (a), (2)⇔ (c) and (3)⇔ (b), we get (a)⇔ (c)⇔ (b), and thus (1)⇔ (2). In this
way we give another proof for [3] Theorem 6.1, although essentially the two proofs are
the same. As one has seen, the equivalence (1)⇔ (a) is in fact the only key ingredient
which we take from [3].

For a general not necessarily minuscule cocharacter µ, to have a similar picture as
above, the correct objects to study are the B+

dR-affine Schubert cells (cf. [40] sections
19 and 20)

Grµ and Grµ−1



HARDER-NARASIMHAN STRATA AND p-ADIC PERIOD DOMAINS 5

instead of the corresponding flag varieties. One of the main results of [40] says that Grµ
and Grµ−1 are locally spatial diamonds over E. They are related to flag varieties by the
Bialynicki-Birula maps (cf. [2] Proposition 3.4.3 and [40] Proposition 19.4.2)

πµ : Grµ → F `(G,µ)3, and πµ−1 : Grµ−1 → F `(G,µ−1)3.

For any algebraically closed field C|Ĕ and any point x ∈ Grµ−1(C,OC), we have a
modification E1,x of the trivial G-bundle E1 on the Fargues-Fontaine curve X = XC[ .
By considering the Newton vector (resp. Harder-Narasimhan vector) attached to E1,x

(resp. the triple (E1, E1,x, f)), we can construct the Newton (resp. Harder-Narasimhan)
stratification on Grµ−1 similarly as before. It turns out the Harder-Narasimhan strat-
ification is the pullback of the corresponding stratification on the flag variety under
πµ−1 : Grµ−1 → F `(G,µ−1)3. Let b ∈ G(Q̆p) be such that [b] ∈ B(G,µ). For any

C|Ĕ as above and any point x ∈ Grµ(C,OC), we have a modification Eb,x of the G-
bundle Eb over X = XC[ attached to [b]. By considering the Newton vector of Eb,x,
We can construct the Newton stratification on Grµ. We define the Harder-Narasimhan
stratification on Grµ as the pullback of the corresponding stratification on F `(G,µ)
(defined in [6] Part 3) under the map πµ : Grµ → F `(G,µ)3. Moreover, the dualities
for Newton and Harder-Narasimhan stratifications on Grµ−1 and Grµ also hold in this
general setting (see Theorem 6.10). When µ is minuscule, the Bialynicki-Birula maps
πµ−1 : Grµ−1 → F `(G,µ−1)3 and πµ : Grµ → F `(G,µ)3 are isomorphisms (cf. [2]
Theorem 3.4.5 and [40] Proposition 19.4.2), and we recover the Newton and Harder-
Narasimhan stratifications on the flag varieties F `(G,µ−1) and F `(G,µ).

Let b ∈ G(Q̆p) be such that [b] ∈ B(G,µ). Starting from the datum (G, {µ}, [b]),
we get the admissible locus Graµ (the open Newton stratum) and the weakly admissible
locus Grwaµ (the open Harder-Narasimhan stratum) inside Grµ. Both of them are open
sub diamonds of Grµ. The theorem of Colmez-Fontaine ([14] chapter 10) implies that

we have the inclusion of locally spatial diamonds over Ĕ:

Graµ ⊂ Grwaµ .

Now assume that [b] ∈ B(G,µ) is basic. On the Hodge-Tate side Grµ−1 , by the inequality
ν(E1, E1,x, f) ≤ ν(E1,x) as above, we have the inclusion for open Newton and Harder-
Narasimhan strata:

Gr
Newt=[b]
µ−1 ⊂ Gr

HN=[b]
µ−1 .

Here is the generalization of Theorem 1.1, where we remove the minuscule condition
(see [13] 9.7, Conjecture 1 (1)):

Theorem 1.2 (Theorem 6.16, Corollary 6.17). Let [b] ∈ B(G,µ) be basic. The following
statements are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable,
(2) Graµ = Grwaµ ,

(3) Gr
Newt=[b]
µ−1 = Gr

HN=[b]
µ−1 .

As before, once we prove the equivalence (1)⇔ (2), which is the generalized version of
[3] Theorem 6.1, the remaining equivalence (1)⇔ (3) follows by the dualities for Newton
and Harder-Narasimhan stratifications. The key new idea is to study the geometry of
Grµ in terms of B+

dR-affine Grassmannians of parabolic and Levi subgroups of G, which
is in some sense a theory of (generalized) semi-infinite orbits in the current setting. More
precisely, we have the following new information:

• We prove the dimension formula and closure relation for the B+
dR-affine Schubert

cells (same as the classical setting, see Proposition 6.2).
• Let M be a Levi subgroup inside a parabolic P of G over Qp. Then we have a

stratification Grµ =
∐
λ∈SM (µ) GrG,λ, induced on Grµ by the natural diagram of
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the B+
dR-affine Grassmannians of M,P and G respectively (the strata GrG,λ are

intersections of the generalized semi-infinite orbits Sλ with Grµ, see subsection
6.6 for more details). Moreover, we know the closure relation for this stratifi-
cation and we give some description for the index set SM (µ) (which is in fact
related to the geometric Satake equivalence for B+

dR-affine Grassmannians, cf.
[15]).
• The above stratification naturally arises when we study reductions of modifi-

cations of G-bundles to P -bundles (resp. M -bundles) on the Fargues-Fontaine
curve, cf. Lemma 6.14. Using this, we give an interpretation of the weakly
admissible locus Grwaµ in terms of the Fargues-Fontaine curve, cf. Proposition
6.15, which is a generalization of [3] Proposition 2.7.

With these ingredients at hand, the arguments in the proof of [3] Theorem 6.1 apply
here to establish the above equivalence (1)⇔ (2), see Theorem 6.16 for more details.

The pullbacks under the Hodge-Tate period morphisms define Harder-Narasimhan
stratifications on moduli of local G-Shtukas (cf. [40] section 23) and on Shimura vari-
eties, see sections 7 and 8. We hope these constructions will be found useful for further
arithmetic applications.

We briefly describe the structure of this article. In section 2, we review some basics
about modifications of G-bundles on the Fargues-Fontaine curve, which will be our tool
in the following. In section 3, we define and study the Newton and Harder-Narasimhan
strata on the flag variety F `(G,µ−1). In section 4, we explain how to transfer the point
of view by using modifications of Jb-bundles. More precisely, we explain how to identify
the Newton and Harder-Narasimhan strata on the Hodge-Tate (resp. de Rham) side for
G by the corresponding strata on the de Rham (resp. Hodge-Tate) side for Jb. These
are the dualities of the Newton and Harder-Narasimhan strata established in Theorem
4.4 and Corollary 4.5. In section 5, we summarize several various equivalent conditions
for a fully Hodge-Newton decomposable pair, using the results in sections 3 and 4. In
section 6, we explain how to generalize the previous constructions and results to not
necessarily minuscule cocharacters µ by studying the B+

dR-affine Schubert cells Grµ−1

and Grµ. In particular, we choose to work on the de Rham side Grµ and prove the
generalized Fargues-Rapoport conjecture (Theorem 6.16). Then we transfer back to the
Hodge-Tate side Grµ−1 (Corollary 6.17) by dualities (Theorem 6.10). In sections 7 and
8, we give applications to moduli of local G-Shtukas and Shimura varieties respectively.

Acknowledgments. I would like to thank Sian Nie for some valuable discussions on
group theory. I wish to thank Michael Rapoport for helpful remarks on the first version
of this paper. I also thank Miaofen Chen and Laurent Fargues for useful conversations.
The author was partially supported by the Recruitment Program of Global Experts of
China, and the NSFC grants No. 11631009 and No. 11688101.

2. Modifications of G-bundles on the Fargues-Fontaine curve

Let C|Qp be a fixed algebraically closed perfectoid field, with C[ its tilt. We have the
Fargues-Fontaine curve X = XC[ over Qp, together with the canonical point ∞ ∈ X
with completed local ring ÔX,∞ = B+

dR(C). We refer the reader to [14] for a detailed
study of this curve, and to [3] section 1 for a brief summary. We will simply write
BdR = BdR(C) and B+

dR = B+
dR(C) in the following. Let ξ ∈ B+

dR be a fixed uniformizer.

Let ϕ−ModQ̆p be the category of F -isocrystals over Fp, and BunX be the category of

vector bundles on X. A basic result of [14] says that we have a natural functor

E(−) : ϕ−ModQ̆p −→ BunX
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which is essentially surjective. For E ∈ BunX , we have the Harder-Narasimhan filtration
of E with the associated Harder-Narasimhan vector ν(E) ∈ Qn

+ where n = rank E . To
avoid confusion, we will call it the Newton filtration, since later we will introduce several
further Harder-Narasimhan filtrations. We refer to [1, 4] for some generalities on the
Harder-Narasimhan formalism.

2.1. Modifications of vector bundles. We are interested in the category of modifi-
cations4 of vector bundles on X, which we denote by

ModifX .

Recall that a modification of vector bundles is a triple E = (E1, E2, f), where

• E1, E2 are vector bundles on X,
• f : E1|X\{∞}

∼−→ E2|X\{∞} is an isomorphism.

A morphism F : E → E ′ is a pair of morphisms Fi : Ei → E ′i with F2 ◦ f = f ′ ◦ F1. This
category ModifX is a quasi-abelian Qp-linear rigid ⊗-category with a Tate twist, cf. [5]
3.1.4. For a modification (E1, E2, f), let

E+
i,dR = E∧i,∞

be the completed local stalk at ∞ of Ei, and

fdR : E+
1,dR[ξ−1]→ E+

2,dR[ξ−1]

be the induced isomorphism of BdR-vector spaces. We have the Newton filtrations
FN,i(E) := F(Ei) for i = 1, 2. Moreover, we have the Hodge filtrations FH,i(E), which

are the Z-filtrations on the residues Ei(∞) := E+
i,dR/ξE

+
i,dR of Ei induced by E+

3−i,dR: for
any j ∈ Z,

F jH,1 =
f−1
dR (ξjE+

2,dR) ∩ E+
1,dR + ξE+

1,dR

ξE+
1,dR

, F jH,2 =
fdR(ξjE+

1,dR) ∩ E+
2,dR + ξE+

2,dR

ξE+
2,dR

.

Let n = rank(E1) = rank(E2). Then FH,1 and FH,2 define opposed types νH,i(E) ∈ Zn+.
We have the following natural functors

ModifX
←−
h

yy

−→
h

%%
BunX BunX ,

with ←−
h (E1, E2, f) = E2,

−→
h (E1, E2, f) = E1.

These functors
←−
h and

−→
h will be related to the de Rham periods and the Hodge-Tate

periods respectively.

2.2. Filtered F -isocrystals. For any extension K|Q̆p (not necessary finite), let

ϕ−FilModK/Q̆p

be the category of filtered F -isocrystals with respect to K|Q̆p. A filtered F -isocrystal
D = (D,ϕ,F) ∈ ϕ−FilModK/Q̆p consists of a underlying F -isocrystal (D,ϕ) ∈ ϕ−ModQ̆p
together with a Q-filtration F on D ⊗Q̆p K. We have the rank and degree functions

rank : ϕ−FilModK/Q̆p → N, deg : ϕ−FilModK/Q̆p → Z

defined by
rankD = dim D, degD = tH(D)− tN (D),

where tH(D) =
∑

i idim griFDK and tN (D) = vp(detϕ). These functions induce a
Harder-Narasimhan filtration on ϕ−FilModK/Q̆p .

4In this paper we only consider modifications at the canonical point ∞ ∈ X.
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Consider the case K = C. By Fargues’s de Rham classification for modifications of
vector bundles in [10] 4.2.2, we can construct a functor

π : ModifX −→ ϕ−FilModC/Q̆p

as follows.
Recall that by [10] 4.2.2, given a modification (E1, E2, f) is equivalent to given the pair

(E2,Λ), where Λ ⊂ Ê2,∞ is the B+
dR-lattice defined by E1. Let B+ =

⋂
n≥0 ϕ

n(B+
cris), and

ϕ−ModB+ is the category of ϕ-modules over B+. By [14] Théorème 11.1.9, we have an
equivalence of categories

BunX ' ϕ−ModB+ ,

which then induces an equivalence of categories

ModifX ' ϕ−ModJaB+ ,

where ϕ−ModJaB+ is the category of gauged ϕ-modules over B+. A gauged ϕ-module
(D,ϕ,Λ) over B+ consists of (cf. [10] Définition 4.15)

• a ϕ-module (D,ϕ) over B+,
• and a ϕ-stable B+

dR-lattice Λ ⊂ D ⊗BdR.

Let B = (B+/[$])red with $ ∈ C[ a pseudo-uniformizer, which is a local ring with
residue field W (kC)Q (where kC is the residue field of C), see [11] 5.2.1. Let ϕ−ModB+

and ϕ−ModB be the categories of ϕ-modules over B+ and B respectively. Then the
reduction of scalar induces an equivalence of categories

ϕ−ModB+ ' ϕ−ModB.

Reduction to the residue field of B together with the equivalence ϕ−ModW (kC)Q '
ϕ−ModQ̆p induce a functor

ϕ−ModB −→ ϕ−ModQ̆p .

Now for (V, ϕ) ∈ ϕ−ModQ̆p and Λ ⊂ V ⊗BdR, we can define a filtration on VC by

F iVC =
ξiΛ ∩ V +

dR + ξV +
dR

ξV +
dR

,

where V +
dR = V ⊗B+

dR. Putting all the things together, we get a functor π : ModifX →
ϕ−FilModC/Q̆p by the composition of

ModifX → ϕ−ModJaB+ → ϕ−FilModC/Q̆p .

If K|Q̆p is a finite totally ramified extension and C = K̂, there is also a functor
ϕ−FilModK/Q̆p → ModifX for which we refer the interested reader to [10] Exemple

4.19.

2.3. Admissible modifications. Consider the full subcategory of admissible modifi-
cations

ModifadX

inside ModifX . Recall that a modification E = (E1, E2, f) is called admissible if E1 is
a semi-stable vector bundle of slope 0 (i.e. E1 is the trivial vector bundle). This is
again a quasi-abelian Qp-linear rigid ⊗-category with a Tate twist. For an admissible
modification E = (E1, E2, f), we set

FN (E) := F(E2), FH(E) := FH,1(E), νN (E) := ν(E2), and νH(E) := νH,1(E).

We have an exact Qp-linear faithful ⊗-functor

ω : ModifadX → VectQp , ω(E) = Γ(X, E1),
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which induces a bijection between the poset of strict subobjects of E in ModifadX and the
poset of Qp-subspaces of ω(E). We have the rank and degree functions

rank : ModifadX → N, deg : ModifadX → Z

defined by

rank(E) = rank(E1) = rank(E2) = dimω(E)

and

deg(E) = deg E2.

They induce a Harder-Narasimhan5 filtration on ModifadX with slopes µ = deg/rank in
Q. We denote it by F(E) with the associated Harder-Narasimhan vector ν(E).

Later we will need the following variant. Let Modifad
′

X be the subcategory of modifi-
cations E = (E1, E2, f) with E2 trivial. On this category we have the rank and degree
functions defined by rank(E) = rank(E1) = rank(E2) and deg(E) = deg E1. One checks

similarly as above that they induce a Harder-Narasimhan filtration on Modifad
′

X . More-
over, we have the equivalence

Modifad
′

X
∼−→ ModifadX , E = (E1, E2, f) 7→ E ′ = (E2, E1, f

−1)

and ν(E) = ν(E ′).

Let HTBdR be the category of pairs (V,Ξ), where

• V is a finite dimensional Qp-vector space,
• Ξ is a B+

dR-lattice in VdR = V ⊗BdR.

A morphism F : (V,Ξ) → (V ′,Ξ′) is a Qp-linear morphism f : V → V ′ such that
the induced morphism fdR : VdR → V ′dR satisfies f(Ξ) ⊂ Ξ′. This defines a quasi-

abelian rigid Qp-linear ⊗-category. For (V,Ξ) ∈ HTBdR , as above Ξ induces a Hodge
filtration FH(V,Ξ), which is the Z-filtration on the residue VC = V ⊗ C of the lattice
V +
dR = V ⊗B+

dR ⊂ VdR. Moreover, we have the rank and degree functions

rank : HTBdR → N, deg : HTBdR → Z

defined by

rank(V,Ξ) = dimV = rankB+
dR

(Ξ),

and

deg(V,Ξ) =
∑
i

idim griFHVC .

They induce a Harder-Narasimhan filtration on HTBdR . We denote it by F(V,Ξ) with
Harder-Narasimhan vector ν(V,Ξ).

By Fargues’s Hodge-Tate classification in [10] 4.2.3, we have an exact ⊗-equivalence
of ⊗-categories

HT : ModifadX → HTBdR , E 7→ (Γ(X, E1), f−1
dR (E+

2,dR)).

The inverse functor is given by (V,Ξ) 7→ (E1, E2, f), where

• E1 = V ⊗OX
• E2 and f are given by the modification of E1 at ∞ corresponding to the B+

dR-
lattice Ξ of E∧1,∞[ξ−1] = V ⊗BdR under the Beauville-Laszlo correspondence (cf.

[14] 5.3.1).

The functor HT preserves the rank and deg functions on the two categories, and it
induces a bijection between the posets of strict subobjects of E and HT(E). Thus it
preserves the Harder-Narasimhan filtrations and types on both sides.

5In [5] this filtration is called the Fargues filtration.
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2.4. Filtered vector spaces. Consider the category FilCQp of pairs (V,F), where

• V is a finite Qp-vector space.
• F is a descending Q-filtration on VC = V ⊗ C.

For (V,F) ∈ FilCQp , the rank and deg functions are defined by

rank(V,F) = dimV, deg(V,F) =
∑
i

i dim griFVC

induce a Harder-Narasimhan filtration on FilCQp . We have a natural functor

π : HTBdR −→ FilCQp , (V,Ξ) 7→ (V,FH(V,Ξ)).

Composed with the equivalence functor HT : ModifadX → HTBdR we get

π : ModifadX −→ FilCQp .

We remark that we can also construct the functor π : ModifadX −→ FilCQp by using the

functor in 2.2 and [10] Proposition 4.17. Now one checks directly the following fact
(compare [13] Proposition 10):

Proposition 2.1. The functor π preserves the rank and deg functions on the two cat-
egories, and it induces a bijection between the posets of strict subobjects of E and π(E).
Thus it preserves the Harder-Narasimhan filtrations and vectors on both sides.

2.5. G-structures. Let G be a connected reductive group over Qp. We would like to
add “G-structures” to our previous discussions.

Let us first fix some notations. We fix a minimal parabolic subgroup P0 of G defined
over Qp and a Levi subgroup M0 of P0. Then a standard parabolic subgroup is a para-
bolic P with P ⊃ P0. There is a unique Levi subgroup M of P containing M0, which we
call a standard Levi subgroup. We write UP for the unipotent radical of P . Let A ⊂M0

be the maximal split torus over Qp, and T ⊂M0 be a maximal torus of M0 defined over
Qp which contains A. Then T = M0 if and only if G is quasi-split over Qp.

For a parabolic subgroup P ⊂ G with Levi subgroup M ⊂ P over Qp, let WP := WM

be the absolute Weyl group of M . Assume that P ⊃ P0 is standard with associated
standard Levi M . Let AM be the maximal split torus contained in the center ZM of
M , and A′M be the maximal split quotient torus of M . Then we have a natural isogeny
AM → A′M . We also write AP = AM and A′P = A′M . In particular A = AP0 = AM0 . If
Q ⊃ P , then we have an inclusion AQ ⊂ AP and a quotient A′P → A′Q. Let B ⊂ GQp
be a Borel subgroup such that B ⊂ P0,Qp

. Let T ⊂ B be a maximal torus such that

A ⊂ T ⊂M0. Then we get the absolute based root datum

(X∗(T ),Φ, X∗(T ),Φ∨,∆)

and the relative based root datum

(X∗(A),Φ0, X∗(A),Φ∨0 ,∆0).

Let ∆P (resp. ∆0,P ) be the set of non-trivial restrictions of elements of ∆ (resp. ∆0)
to ZM (resp. AP ) (recall ZM ⊂ T resp. AP ⊂ A). If we replace G by M and let6

∆M (resp. ∆0,M ) be the set of simple roots (resp. relative roots) of M , then ∆P (resp.
∆0,P ) is in bijection with ∆\∆M (resp. ∆0 \∆0,M ). Let ∆∨ be the set of simple coroots
of G, then we have ∆∨P corresponding to P . Similarly we have the relative version ∆∨0
and ∆∨0,P .

6Note that the notation here is compatible with the notation of [3].
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Let W and W0 be the absolute and relative Weyl groups of G respectively. We can
identify

X∗(A)Q/W0 = X∗(A)+
Q := {x ∈ X∗(A)Q| 〈x, α〉 ≥ 0, ∀α ∈ ∆0}.

On the other hand, consider

N (G) =
[
Hom(DQp

, GQp
) /G(Qp)-conjugacy

]Γ
,

with D the pro-torus over Qp whose character group is Q and Γ = Gal(Qp/Qp). As in

[6], let X∗(G) denote the set of cocharacters of G defined over Qp. Then

X∗(G)Q = Hom(DQp
, GQp

),

on which G(Qp) acts by conjugation and we will write N (G) = (X∗(G)Q/G)Γ, which

we identify with (X∗(T )Q/W )Γ. We have

X∗(A)+
Q = X∗(A)Q/W0 = X∗(G)Γ

Q/G(Qp) ⊂ (X∗(G)Q/G)Γ = N (G).

Then
G is quasi-split over Qp ⇐⇒ X∗(A)+

Q = N (G).

We identify

X∗(T )Q/W = X∗(T )+
Q = {x ∈ X∗(T )Q| 〈x, α〉 ≥ 0, ∀α ∈ ∆}.

Moreover, the choice of B defines a partial order ≤ on X∗(T ) by µ1 ≤ µ2 if µ2 − µ1

is a sum of positive coroots with non negative integral coefficients. We get an induced
partial order ≤ on X∗(T )Q and thus on N (G) ⊂ X∗(T )+

Q ⊂ X∗(T )Q. By [42] 15.5.8, we

get an involution x 7→ w0(−x) on N (G), where w0 is the element of longest length in
W acting on X∗(T )Q.

Let ωG : RepG → VectQp be the standard fiber functor for the category RepG of

algebraic representations of G. For any field extension K|Qp, let FilK(ωG) be the set of
filtrations of ωG over K. An element F ∈ FilK(ωG) is given by a tensor functor

F : RepG −→ FilKQp

such that ωG = ω0 ◦ F and the induced tensor functor

gr ◦ F : RepG −→ GradK

is exact. Here ω0 : FilKQp → VectQp is the natural functor and gr : FilKQp → GradK is

the graded functor from FilKQp to the category of graded K-vector spaces. We refer the

reader to [6] chapter IV.2 for more discussions on these objects. We have natural maps

FilQp(ω
G)→ X∗(G)Γ

Q/G(Qp) = X∗(A)+
Q ↪→ (X∗(G)Q/G)Γ = N (G).

Recall that an F -isocrystal with G-structure is an exact tensor functor

N : RepG −→ ϕ−ModQ̆p .

An element b ∈ G(Q̆p) defines an isocrystal with G-structure

Nb : RepG −→ ϕ−ModQ̆p

V 7−→ (VQ̆p , bσ).

Its isomorphism class only depends on the σ-conjugacy class [b] ∈ B(G) of b, where B(G)

is the set of σ-conjugacy classes in G(Q̆p), cf. [23, 25, 35]. By Steinberg’s theorem, any
isocrystal with G-structure arises in this way. Thus B(G) is the set of isomorphism
classes of isocrystals with G-structure, cf. [35] Remarks 3.4 (i). We have the Newton
map ([23] section 4) and Kottwitz map ([24] section 6 and [25] 4.9, 7.5)

ν : B(G)→ N (G), κ : B(G)→ π1(G)Γ,
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where
π1(G) = X∗(T )/〈Φ∨〉

(by our previous group theoretic notations, and it does not depend on the choice of

T ) and π1(G)Γ is its Galois coinvariant. In fact, ν is induced by a map ν : G(Q̆p) →
Hom(DQ̆p , GQ̆p), while κ is induced by a map κ : G(Q̆p) → π1(G)Γ. For this reason we

also write ν([b]) = [νb] and κ([b]) = κ(b) for b ∈ G(Q̆p) with the induced class [b] ∈ B(G).
The partial order on N (G) induces a partial order ≤ on B(G) (cf. [35] section 2).

We explain B(G) in terms of G-bundles on the Fargues-Fontaine curve X as follows.
Recall that we have the following two equivalent definitions of a G-bundle on X:

• an exact tensor functor RepG→ BunX , where RepG is the category of rational
algebraic representations of G,
• a G-torsor on X locally trivial for the étale topology.

Attached to a G-bundle E on X, we have the Newton vector ν(E) ∈ N (G) and the G-

equivariant first Chern class cG1 (E) ∈ π1(G)Γ. For b ∈ G(Q̆p), let Eb be the composition
of the above functor Nb and

E(−) : ϕ−ModQ̆p −→ BunX .

In this way, the set B(G) also classifies G-bundles on X. In fact, we have

Theorem 2.2 ([11]). There is a bijection of pointed sets

B(G)
∼−→ H1

ét(X,G)

[b] 7−→ [Eb].
Under this bijection, we have

(1) ν(Eb) = w0(−ν([b])),
(2) cG1 (Eb) = −κ([b]).

A modification of G-bundles is given by

• either an exact tensor functor RepG→ ModifX ,
• or a triple (E1, E2, f), where E1, E2 are G-bundles on X and f : E1|X\{∞}

∼→
E2|X\{∞} is an isomorphism.

Applying the functor π : ModifX → ϕ−FilModC/Q̆p in subsection 2.2, a modification of

G-bundles E = (E1, E2, f) gives rise to a filtered F -isocrystal with G-structure

π(E) : RepG −→ ϕ−FilModC/Q̆p ,

which is in turn equivalent to a pair (N,F), where (cf. [6] p. 239)

• N : RepG→ ϕ−ModQ̆p is the underlying F -isocrystal with G-structure induced

by the natural functor (forgetting filtrations) ϕ−FilModC/Q̆p → ϕ−ModQ̆p ,

• F ∈ FilC(ωG).

Theorem 2.3 ([6] Theorem 9.2.18). For the pair (N,F), there exists a unique Q-
filtration •NF of N , such that for any (V, ρ) ∈ RepG, the induced filtration •NF (V ) on
N(V ) is the Harder-Narasimhan filtration of the filtered isocrystal (N(V ),F•N(V )).

In particular, the Q-filtration •NF ∈ FilQ̆p(ω
G) defines a Harder-Narasimhan vector

ν(N,F) ∈ (X∗(G)Q/G)Γ0 where Γ0 = Gal(Q/Q̆p). By [6] IX.4, we have in fact

ν(N,F) ∈ N (G) = (X∗(G)Q/G)Γ.

In the following we will write ν(E1, E2, f) := ν(N,F) for a modification of G-bundles
(E1, E2, f) with the associated (N,F).

An admissible modification of G-bundles is given by
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• either an exact tensor functor RepG→ ModifadX ,
• or a triple (E1, E2, f), where E1, E2 are G-bundles on X such that E1 is the trivial

G-bundle and f : E1|X\{∞}
∼→ E2|X\{∞} is an isomorphism.

By the equivalence of categories HT : ModifadX
∼→ HTBdR , given an admissible modifica-

tion E = (E1, E2, f) is equivalent to given an exact functor

HT(E) : RepG −→ HTBdR .

Composing with the functor π : HTBdR → FilCQp in 2.4, we then get a functor

π(E) : RepG→ FilCQp ,

which defines an element F ∈ FilC(ωG). Recall on all the categories ModifadX ,HTBdR

and FilCQp , there exist Harder-Narasimhan filtrations, which are compatible under the
functors

ModifadX → HTBdR → FilCQp .

Theorem 2.4. Let C be one of the categories ModifadX ,HTBdR ,FilCQp, and N : RepG→ C
be an exact functor. There exists a Q-filtration •N of N , such that for any (V, ρ) ∈
RepG, the induced filtration •N(V ) on N(V ) is the Harder-Narasimhan filtration of
N(V ).

Proof. For C = FilCQp , this follows from [6] Theorem 5.3.1. For C = ModifadX or C =

HTBdR , by [5] Proposition 47, since the Harder-Narasimhan filtrations are compatible
with tensor products, duals, symmetric and exterior powers, one sees that the arguments
in the proof of [6] Theorem 5.3.1 work here. See also [4] Theorem 5.8, Proposition 5.9
and Proposition 4.2. �

Let E = (E1, E2, f) be an admissible modification of G-bundles on X. Then the
associated Harder-Narasimhan filtration defines an element in FilQp(ω

G), thus we get a
vector

ν(E) ∈ X∗(G)Γ
Q/G(Qp) = X∗(A)Q/W0 = X∗(A)+

Q ⊂ N (G).

We get a standard parabolic P of G such that the associated standard Levi M is the
centralizer of ν(E). By Proposition 2.1, we have

ν(E) = ν(HT(E)) = ν(π(E)) = ν(F),

where F ∈ FilC(ωG) is the element corresponding to π(E).

2.6. Moduli of local G-Shtukas. As before, G is a connected reductive group over
Qp. Let {µ} be the conjugacy class of cocharacters µ : Gm,Qp

→ GQp
. Fixing a Borel

subgroup B ⊂ GQp
containing a maximal torus T . The class {µ} defines an element

µ ∈ X∗(T )+ for the choice of B. We view it as an element in X∗(G)Q/G. Then we
have the associated flag variety F `(G,µ) over a finite extension E = E(G, {µ}) of Qp.
Recall that we have a natural map FilQp(ω

G) → X∗(G)Q/G, sending a filtration to its

type. By construction,

F `(G,µ)(Qp) = G(Qp)/Pµ(Qp) = {F ∈ FilQp(ω
G) of type µ},

where Pµ is the parabolic subgroup of GQp
associated to µ by the formula

Pµ = {g ∈ GQp
| lim
t→0

µ(t)gµ(t)−1 exists}.

In particular Pµ ⊃ B.

In the following sections 3-5, we will assume that µ is minuscule and work with the
associated p-adic flag varieties F `(G,µ) and F `(G,µ−1). For an arbitrary µ, we will
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need the B+
dR-affine Schubert cell Grµ, which is a diamond over E, see [40] 19.2, 20.2

and the following subsection 6.1. There is a morphism of diamonds

πµ : Grµ → F `(G,µ)3,

which is an isomorphism if µ is minuscule, see [2] Proposition 3.4.3, Theorem 3.4.5, [40]
Proposition 19.4.2 and the following 6.1. We have also the B+

dR-affine Schubert variety
Gr≤µ =

∐
µ′≤µ Grµ′ , which is a proper diamond over E.

A local Shtuka datum7 (cf. [40] 23.1) is a triple (G, {µ}, [b]), where

• G is a connected reductive group over Qp,
• {µ} is a conjugacy class of cocharacter µ : Gm,Qp

→ GQp
,

• [b] ∈ B(G) is a σ-conjugacy class of b ∈ G(Q̆p) such that [b] ∈ B(G,µ).

If moreover µ is minuscule, then (G, {µ}, [b]) is called a local Shimura datum (cf. [36]
Definition 5.1).

Let (G, {µ}, [b]) be a local Shtuka datum and fix a representative b ∈ G(Q̆p). Attached
to the triple (G, {µ}, b), we have the moduli space of local G-Shtukas with one leg (cf.
[40] sections 12-14 and the appendix to section 19) with infinite level (cf. [40] section
23)

Sht(G,µ, b)∞,

which is a diamond over Ĕ, and up to isomorphism, all of which depend only on
(G, {µ}, [b]). By construction, there exist two natural morphisms of diamonds

πdR : Sht(G,µ, b)∞ → Grµ, and πHT : Sht(G,µ, b)∞ → Grµ−1 ,

which factor through certain subspaces Graµ ⊂ Grµ (see subsection 6.4) and Gr
Newt=[b]
µ−1 ⊂

Grµ−1 (see subsection 6.3) respectively. We call πdR (resp. πHT ) the de Rham (resp.
Hodge-Tate) period morphism. By [40] subsection 23.3, we can view that Sht(G,µ, b)∞
classifies

• either modifications of G-bundles of type µ between Eb and E1 over Graµ,

• or modifications ofG-bundles of type µ−1 between E1 and Eb over Gr
Newt=[b]
µ−1 .

We get the following diagram of de Rham and Hodge-Tate period morphisms:

Sht(G,µ, b)∞
πdR

yyyy

πHT

'' ''

Graµ Gr
Newt=[b]
µ−1 .

One can replace Grµ by Gr≤µ in the above construction to get the diamond Sht(G,≤
µ, b)∞, which is exactly the version of moduli space of local G-Shtukas with one leg
bounded by µ studied in [40].

If µ is minuscule, we have Sht(G,≤ µ, b)∞ = Sht(G,µ, b)∞, and we will also use
the notation M(G,µ, b)∞ for Sht(G,µ, b)∞. In this case Graµ ' F `(G,µ, b)3 and
F `(G,µ, b) ⊂ F `(G,µ) is the admissible locus introduced in [3] Definition 3.1. The
reader can assume that µ is minuscule and work with the above under this condition
until section 6.

3. Newton strata and Harder-Narasimhan strata on p-adic flag varieties

Let G be a connected reductive group over Qp and {µ} be the conjugacy class of
cocharacters µ : Gm,Qp

→ GQp
. Recall the Kottwitz set (cf. [25] section 6, here we use

the notation of [3] 2.1)

B(G,µ) = {[b] ∈ B(G) | ν([b]) ≤ µ�, κ([b]) = µ]}.
7In this paper we only consider local Shtuka data with one conjugacy class {µ}.
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We have also (cf. [36] 2.2)

A(G,µ) = {[b] ∈ B(G) | ν([b]) ≤ µ�}.

Both B(G,µ) and A(G,µ) are finite subsets of B(G), equipped with the induced partial
order ≤.

In the rest of this section, we will mainly consider the induced conjugacy class {µ−1}
instead. Let F `(G,µ−1) be the flag variety defined over E = E(G, {µ−1}) attached
to (G, {µ−1}), which we consider as an adic space. We are interested in the geometry
of the p-adic flag variety F `(G,µ−1) from the point of view of p-adic Hodge theory.
After reviewing the Newton stratification introduced in [2], we define and study the
Harder-Narasimhan strata of the p-adic flag variety F `(G,µ−1), following the lines in
[6] chapter VI. As mentioned in the introduction, these strata can be studied by the
theory of [6] Part 3. The direct approach here has the advantage that the stratification
is defined over E. On the other hand, these strata generalize the Harder-Narasimhan
strata in the case of GLn studied by Fargues in [13]. Assume that µ is minuscule in this
section.

3.1. Newton strata. We first consider the Newton strata. Let C|E be an algebraically
closed perfectoid field, and E be a G-bundle on the Fargues-Fontaine curve X = XC[ .
Then since µ is minuscule, by [2] 3.4.5, [10] 4.2 and [12] 3.20, for any x ∈ F `(G,µ−1)(C,OC)
we can associate to it a modification Ex of E at ∞. Consider the case E = E1, the trivial
G-bundle. The isomorphism class of E1,x defines a point b(E1,x) ∈ B(G). Letting C vary,
we get a map

Newt : |F `(G,µ−1)| −→ B(G).

We can determine the image of the map Newt as in the following theorem.

Theorem 3.1. (1) We have the following decomposition of F `(G,µ−1) into locally
closed subsets over E:

F `(G,µ−1) =
∐

[b]∈B(G,µ)

F `(G,µ−1)Newt=[b],

such that for x ∈ F `(G,µ−1)(C,OC), we have

x ∈ F `(G,µ−1)Newt=[b](C,OC)⇔ E1,x ' Eb.

The open stratum is associated to the unique basic element [b0] ∈ B(G,µ). Each

stratum F `(G,µ−1)Newt=[b] is stable under the G(Qp)-action on F `(G,µ−1).
(2) We have the following dimension formula: for [b] ∈ B(G,µ),

dim F `(G,µ−1)Newt=[b] = 〈µ− ν([b]), 2ρ〉,

where ρ is the half of the sum of positive roots of G.

Proof. (1) follows from [2] Proposition 3.5.7, Corollary 3.5.9 and [34] Proposition A.9.
The fact that each stratum is locally closed comes from the upper semi-continuity of the
Newton map (cf. [22] and [40] subsection 22.5).

(2) follows from the theory of local Shimura varieties (see also [2] Proposition 4.2.23
for the PEL case). More precisely, consider the local Shimura datum (G, {µ}, [b]). Fix a

representative b ∈ G(Q̆p) of [b]. We have the associated local Shimura variety at infinite
level M(G,µ, b)∞, which fits into the following diagram

M(G,µ, b)∞
πdR

vvvv

πHT

)) ))
F `(G,µ, b)a,3 F `(G,µ−1)Newt=[b],3,
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where πdR is the Hodge-de Rham period map, which is a G(Qp)-torsor, and πHT is the

Hodge-Tate period map, which is a J̃b-torsor. Here J̃b = Aut(Eb) and we have dim J̃b =
〈ν([b]), 2ρ〉 (cf. [12] for example). As µ is minuscule, dim F `(G,µ) = 〈µ, 2ρ〉. As πdR is
pro-étale and F `(G,µ, b)a ⊂ F `(G,µ) is open, dim M(G,µ, b)∞ = dim F `(G,µ, b)a =

〈µ, 2ρ〉. Thus dim F `(G,µ−1)Newt=[b] = 〈µ−ν([b]), 2ρ〉 (see also [3] Proposition 5.3). �

Remark 3.2. We call the decomposition in the above theorem the Newton stratification.
However, we don’t know whether the closure relation holds. Thus the word “stratifica-
tion” in this paper has only a weak sense.

3.2. Harder-Narasimhan strata. Recall that we have the finite subsets B(G,µ) ⊂
A(G,µ) ⊂ B(G). Then under the Newton map ν : B(G)→ N (G) we have

ν(A(G,µ)) = ν(B(G,µ)).

Let
N (G,µ) ⊂ N (G)

be the common image of A(G,µ) and B(G,µ) under the Newton map. In [3] Corollary
4.7 we gave an internal description of the set N (G,µ) (using roots and weights). Here
is an external (Tannakian) description which we will need.

Lemma 3.3. Let v ∈ N (G). We have

(1) v ∈ Im ν if and only if for any representation (V, ρ) ∈ RepG we have ρ(v) ∈
Im νGL(V ).

(2) v ∈ N (G,µ) if and only if for any representation (V, ρ) ∈ RepG we have ρ(v) ∈
N (GL(V ), ρ ◦ µ).

Proof. (1) The only if part follows from the functoriality of the slope map ν : B(·) →
N (·). The if part follows from the Tannakian definition of ν, cf. [23] 4.2.

(2) The only if part follows from the functorialities of the slope map ν : B(·)→ N (·)
and the Kottwitz map κ : B(·)→ π1(·)Γ and the properties of the partial order on B(G)
and N (G). To show the if part, by (1) we have found [b] ∈ B(G) such that ν([b]) = v and
v ≤ µ� by the properties of the partial order. Then by definition we have [b] ∈ A(G,µ).
Thus v = ν([b]) ∈ ν(A(G,µ)) = N (G,µ). �

Now we consider Harder-Narasimhan stratifications. Let C|E be an algebraically
closed perfectoid field. Applying Theorem 2.4 to the admissible modification (E , E ′, f)
with E = E1 and E ′ = E1,x for a point x ∈ F `(G,µ−1)(C,OC), we get a well defined
map

F `(G,µ−1)(C,OC) −→ N (G),

x 7−→ ν(E1, E1,x, f).

We denote ν(E1, E1,x, f)∗ = w0(−ν(E1, E1,x, f)).

Proposition 3.4. For any x ∈ F `(G,µ−1)(C,OC), we have:

(1) The inequality of elements in N (G):

ν(E1, E1,x, f) ≤ ν(E1,x).

(2) The Harder-Narasimhan vector ν(E1, E1,x, f)∗ lies in N (G,µ).

Proof. (1) By Theorem 2.4 and [35] Lemma 2.2 (see also [6] Proposition 6.3.9), it suffices
to show that for any (V, ρ) ∈ RepG,

ν(E1,V , E1,x,V , fV ) ≤ ν(E1,x,V ) ∈ N (GL(V )).

This is exactly [5] Proposition 44. See also [13] Proposition 14.
(2) By Lemma 3.3, it suffices to show for any (V, ρ) ∈ RepG, ρ(ν(E1, E1,x, f)∗) ∈

N (GL(V ), ρ ◦ µ). By (1), we have ν(E1, E1,x, f)∗ ≤ ν(E1,x)∗ := w0(−ν(E1,x)). We
conclude by the construction of ν(E1, E1,x, f). �
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For any x ∈ F `(G,µ−1)(C,OC) we write HN(x) = ν(E1, E1,x, f)∗. Letting C vary,
we get the following map on topological spaces

HN : |F `(G,µ−1)| −→ N (G,µ).

Theorem 3.5. The above map HN is upper semi-continuous, that is, for any v ∈
N (G,µ), the subset

F `(G,µ−1)HN≥v := {x ∈ |F `(G,µ−1)| |HN(x) ≥ v}
is closed. In particular, the subset

F `(G,µ−1)HN=v := {x ∈ |F `(G,µ−1)| |HN(x) = v}
is locally closed.

Proof. For any x ∈ F `(G,µ−1)(C,OC), since by Theorem 2.4

ν(E1, E1,x, f) = ν(Fx)

with Fx ∈ FilC(ωG) attached to x. Then the arguments in the proof of [6] Theorem
6.3.5 (see also the proof of the following Theorem 3.9) and Proposition 6.3.12 apply to
the p-adic setting. �

In the following, we will identify N (G,µ) with B(G,µ) by the Newton map, and for
x ∈ F `(G,µ−1)(C,OC) we will also write HN(x) = b(E1, E1,x, f) ∈ B(G,µ). We have
the following stratification over E:

F `(G,µ−1) =
∐

[b]∈B(G,µ)

F `(G,µ−1)HN=[b].

For any [b] ∈ B(G,µ), the stratum F `(G,µ−1)HN=[b] is a locally closed subspace of
F `(G,µ−1), and it is stable under the action of G(Qp) on F `(G,µ−1).

Let [b0] ∈ B(G,µ) be the basic element. Then the stratum

F `(G,µ−1)HN=[b0]

is open, which is also called the semi-stable locus of F `(G,µ−1). We have a description

for F `(G,µ−1)HN=[b0], which is similar to [3] Proposition 2.7, but here we don’t need
the assumption that G is quasi-split. To state it, we first need some more notations.
Recall that after fixing a maximal torus inside a Borel subgroup T ⊂ B ⊂ GQp

, we view

µ ∈ X∗(T )+. Let B− be the Borel opposite to B. Then by construction Pµ−1 ⊃ B−.

Let P0 ⊂ G be a minimal parabolic subgroup over Qp such that P0,Qp
⊃ B−. Let M0

be a Levi subgroup of P0. For any standard parabolic P ⊃ P0 with associated standard
Levi M ⊃M0, we view

X∗(P/ZG) ⊂ X∗(P ) = X∗(M) = X∗(Mab) ⊂ X∗(ZM ),

where Mab is the maximal abelian quotient of M and ZM →Mab is the natural isogeny.
From the set ∆∨P , we get the following dominant set

X∗(P )+ = X∗(M)+ = {χ ∈ X∗(ZM )| 〈χ, α∨〉 ≥ 0, ∀α∨ ∈ ∆∨P }
and X∗(P/ZG)+ = X∗(P/ZG) ∩X∗(P )+. Similarly, we have

X∗(P/ZG)Γ ⊂ X∗(P )Γ = X∗(M)Γ = X∗(A′M ) ⊂ X∗(AM )

and AM → A′M is the natural isogeny. Using the set ∆∨0,P , we define similarly X∗(P )Γ,+

and X∗(P/ZG)Γ,+.

Proposition 3.6. Let x ∈ F `(G,µ−1)(C,OC). Then x ∈ F `(G,µ−1)HN=[b0](C,OC)
if and only if for any standard parabolic P and any χ ∈ X∗(P/ZG)+, we have

degχ∗(E1,x)P ≤ 0,

where (E1,x)P is the reduction of E1,x to P induced by the reduction E1P of E1 to P .
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Proof. This is essentially a reformulation of [6] Corollary 5.2.10. Indeed, consider the
Schubert cell decomposition8

F `(G,µ−1)(C) =
∐

w∈WP \W/WP
µ−1

F `(G,µ−1)(C)w,

where

F `(G,µ−1)(C)w = P (C)wPµ−1(C)/Pµ−1(C) = P (C)/(P (C)∩Pµ−1,w(C)) =: F `(P, µ−1,w)(C).

Projection to the Levi quotient M of P induces an affine fibration:

prw : F `(P, µ−1,w)(C)→ F `(M,µ−1,w)(C).

Now

(E1,x)P ×M ' E1M ,prw(x),

and one can argue as in the proof of [3] Proposition 2.7 (see also the following Proposition
6.15), except in the last step we use [6] Corollary 5.2.10 instead. �

Remark 3.7. We note that in the above proposition, for each P it suffices to consider
the subset ∆0,P ⊂ X∗(P/ZG)Γ,+ ⊂ X∗(P/ZG)+. In fact, it suffices to consider all
maximal parabolic subgroups P , in which case each ∆0,P consists of only one element.

We have also the following GIT description for F `(G,µ−1)HN=[b0].

Theorem 3.8 ([6] Theorem 6.2.8). Fix an invariant inner product on G and let L be
the corresponding ample homogeneous Q-line bundle on F `(G,µ−1) (cf. [6] p. 146).
Let K be a field extension of E and x ∈ F `(G,µ−1)(K,OK). Then we have

x ∈ F `(G,µ−1)HN=[b0](K,OK) ⇐⇒ ∀λ : Gm → Gder, µL(x, λ) ≥ 0.

The following theorem gives some basic properties of the Harder-Narasimhan strati-
fication.

Theorem 3.9 ([13] Conjecture 2 (1)). For any non basic [b] 6= [b0], the stratum

F `(G,µ−1)HN=[b] is a parabolic induction.

Proof. We may assume that F `(G,µ−1)HN=[b] 6= ∅. We sketch the arguments following
some ideas in [6]. Fix a minimal parabolic subgroup P0 with Levi subgroup M0 as above
Proposition 3.6. Let T be a fixed maximal torus in M0 defined over Qp. We introduce
a finite set Θ(G,µ) be the set of pairs (P, νP ) with P a standard parabolic subgroup of
G and νP ∈ X∗(T )Q/WP , satisfying the following two conditions:

(1) νP ≡ µ−1 mod W ,

(2) Let µ(νP ) ∈ X∗(AP )Q be the image of νP under X∗(T )Q → X∗(A
′
P )Q

∼→
X∗(AP )Q. Then 〈µ(νP ), α〉 > 0, ∀α ∈ ∆0,P .

A such pair (P, νP ) is called a HN type. Let H(G,µ) be the set of HN vectors which
contribute in the HN stratification. Then we have an inclusion H(G,µ) ↪→ N (G,µ) by
Proposition 3.4. We have also a natural surjective map

H : Θ(G,µ) � H(G,µ)

sending a HN type to its HN vector. In the following we fix a finite extension Ẽ of E

which splits G and base change everything to Ẽ. We will denote by the same notations

over Ẽ. Similar to [6] p. 152 (and p. 280-281), we have a refinement of the Harder-
Narasimhan stratification

F `(G,µ−1) =
∐

θ∈Θ(G,µ)

F `(G,µ−1)θ,

8Since the Schubert cell decomposition exists on the algebraic varieties level, we omit OC here to
simplify the notations.
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which is G(Qp)-equivariant and such that

F `(G,µ−1)HN=v =
∐

θ∈Θ(G,µ),H(θ)=v

F `(G,µ−1)θ.

Fix a HN type θ = (P, νP ) ∈ Θ(G,µ). Consider the P -orbits in the flag variety
F `(G,µ−1) = G/Pµ−1 . Then νP determines a unique Schubert cell

F `(P, νP ) = PwPµ−1/Pµ−1

where w ∈WP \W/WPµ−1 such that νP = µ−1,w. By abuse of notation, we still denote

w the minimal length representative in the corresponding coset WPwWPµ−1 . Let M be

the standard Levi of P with induced νM . Then the natural projection

F `(P, νP )→ F `(M,νM )

is an affine bundle of rank `(w). Set

F `(P, νP )θ = F `(G,µ−1)θ ∩F `(P, νP ).

The G(Qp)-action restricts to an action of P (Qp) on F `(P, νP )θ. Let F `(M,νM )ss

be the open HN stratum for the flag variety F `(M,νM ). Then the above projection
F `(P, νP )→ F `(M,νM ) restricts to an affine fibration of rank `(w)

F `(P, νP )θ → F `(M,νM )ss.

We have a homeomorphism

F `(P, νP )θ ×P (Qp) G(Qp)
∼−→ F `(G,µ−1)θ.

Thus the stratum F `(G,µ−1)θ is an affine bundle of rank `(w) over F `(M,νM )ss×P (Qp)

G(Qp). We deduce that for any v ∈ N (G,µ), the stratum F `(G,µ−1)HN=v is a para-
bolic induction.

�

Remark 3.10. We know the dimension formula for the basic stratum, since it is open.
For any non basic [b] 6= [b0], if the stratum F `(G,µ−1)HN=[b] 6= ∅, then by the above
proof we have

dim F `(G,µ−1)HN=[b] = max
w
〈µ−1,w, 2ρM 〉+ `(w),

where M = Mv ⊂ P = Pv with v = w0(−ν([b])) and w runs through the set w ∈ PWPµ−1

such that 〈µ−1,w, α〉 > 0 for any α ∈ ∆0,P . Here we view µ−1,w ∈ X∗(AP )Q under the
above map X∗(T )Q → X∗(AP )Q. In fact, Conjecture 2 (2) of [13] predicts that for any

[b] ∈ B(G,µ) such that the stratum F `(G,µ−1)HN=[b] 6= ∅, we have

dim F `(G,µ−1)HN=[b] = 〈µ− ν([b]), 2ρ〉.
This is verified in the case G = GLn by Fargues in [13] Proposition 23. The above
theorem was also proved by Fargues in [13] Propositions 21 and 22 in the case G = GLn
by a different method.

Remark 3.11. By Theorems 3.9 and 3.8, we can calculate the `(6= p)-adic coho-

mology of F `(G,µ−1)HN=[b]. Indeed, by 3.9 it suffices to consider the open stratum

F `(G,µ−1)HN=[b0]. By the GIT description in 3.8, we can follow [6] chapter VII.2 to
calculate the Euler-Poincaré characteristic, and [27] to calculate the individual cohomol-
ogy groups (see also [28, 30]).

Remark 3.12. For any [b] ∈ B(G,µ) with the associated HN stratum F `(G,µ−1)HN=[b],
we neither know its non-emptiness9, nor the closure relation. If µ is non minuscule, then

9If [b] is basic, then the associated stratum is open and non-empty. Thus the non-emptiness is a
problem on non-basic strata. For the case of GLn, see [29] for a complete solution. For the general case,
see [6] Remark 9.6.3 for some hints.
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in [6] the authors there gave a counter example for the closure relation, see loc. cit. Ex-
ample 2.3.7. However the closure relation may hold for minuscule µ and in the general
case for the B+

dR-affine Schubert cells (see section 6).

3.3. Newton strata vs Harder-Narasimhan strata. By [19] Theorem 0.1, there
exists a unique maximal element [b1] in B(G,µ) for the partial order ≤. If G is quasi-
split, then [νb1 ] = µ�. In the general case, this is not true, see [20] Example 3.1. We call
the stratum

F `(G,µ−1)HN=[b1] (resp. F `(G,µ−1)Newt=[b1])

the µ-ordinary Harder-Narasimhan (resp. Newton) stratum. Both of the µ-ordinary

strata F `(G,µ−1)HN=[b1] and F `(G,µ−1)Newt=[b1] are closed in F `(G,µ−1), by the
semi-continuity of the maps Newt and HN . Proposition 3.4 implies that we have the
inclusion

F `(G,µ−1)HN=[b1] ⊂ F `(G,µ−1)Newt=[b1].

Proposition 3.13 ([13] Conjecture 1 (2)). Assume that G is quasi-split. Then we have
always

F `(G,µ−1)HN=[b1] = F `(G,µ−1)Newt=[b1].

In particular F `(G,µ−1)HN=[b1] 6= ∅ in this case.

Proof. Let C|E be any algebraically closed perfectoid field. We have to show that for
any point x ∈ F `(G,µ−1)(C,OC) such that ν(E1,x)∗ = [νb1 ], then ν(E1, E1,x, f)∗ = [νb1 ].
Since G is quasi-split, [νb1 ] = µ�. Then this follows from [5] Proposition 48. �

Let [b0] ∈ B(G,µ) be the unique basic element. By the last two subsections, we

have the open subspaces F `(G,µ−1)Newt=[b0] and F `(G,µ−1)HN=[b0] of F `(G,µ−1).
Proposition 3.4 implies that we have the inclusion

F `(G,µ−1)Newt=[b0] ⊂ F `(G,µ−1)HN=[b0].

In section 5, we will classify the case when the following equality holds

F `(G,µ−1)Newt=[b0] = F `(G,µ−1)HN=[b0].

4. The twin towers principle and dualities for Newton and HN
stratifications

Let G be a connected reductive group over Qp and [b] ∈ B(G)basic be a basic element.

Fix a representative b ∈ G(Q̆p) of [b]. We have the associated reductive group Jb over
Qp, which is an inner form of G. Fix an isomorphism Jb,Q̆p

∼= GQ̆p . Let BunG be the

groupoid of G-bundles on the Fargues-Fontaine curve, cf. [12] section 2, which is a small
v-stack (over Fp) in the sense of [38].

4.1. The twin towers principle. In [3] 5.1, we have introduced the so called “twin
towers principle”, which is the following isomorphism

BunJb
∼= BunG,

that is to say there is an equivalence of groupoids between G-bundles and Jb-bundles on
the curve. In fact, Jb ×X is the twisted pure inner form of G×X obtained by twisting
by the G-torsor Eb,

Jb ×X = Aut(Eb)
as a group over the curve. If E is a G-bundle on X one associates to it the Jb-bundle

Isom(Eb, E).

At the level of points of the preceding small v-stacks this gives the well known bijection

B(Jb)
∼−→ B(G)
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that sends [1] to [b] and [b−1] to [1]. Here [b−1] ∈ B(Jb) is the class defined by

b−1 ∈ Jb(Q̆p) = G(Q̆p).

In fact, we have the following commutative diagrams on the compatibilities for Newton
maps and Kottwitz maps:

B(Jb)

νJb
��

∼ // B(G)

νG
��

N (H)
·ν([b]) // N (H),

B(Jb)

κJb
��

∼ // B(G)

κG
��

π1(H)Γ
+κ([b])// π1(H)Γ.

Let us make a comment on the notations. Here we have identified N (G) = N (Jb) =
N (H) and π1(G)Γ = π1(Jb)Γ = π1(H)Γ, where H is a fixed quasi-split inner form of G
(and thus of Jb). Recall that π1(G)Γ is an abelian group, for which we will write the
group law additively and the identity as 0; on the other hand, N (G) ⊂ X∗(G)Q/G, the
later has a commutative ordered monoid structure, and we will write its semi-group low
multiplicatively.

The equivalence BunJb
∼= BunG respects modifications of a given type µ, that is to say

it identifies the corresponding Hecke stacks of modifications. Let {µ} be a conjugacy
class of cocharacter µ : Gm,Qp

→ GQp
. In the rest of this section, we assume that

[b] = [b0] ∈ B(G,µ) is the basic element (in B(G)). The isomorphism Jb,Qp ' GQp
induces a conjugacy class of cocharacter {µ} of Jb. Then

[b−1] ∈ B(Jb, µ
−1)

is the basic element (in B(Jb)), and [b−1] 7→ [1] via the above bijection B(Jb)
∼−→ B(G).

One thus has

Jb−1 = G.

Recall that in [3] 4.1 we have introduced the following generalized Kottwitz sets

B(G, 0, νbµ
−1) := {[b′] ∈ B(G) |κ([b′]) = 0, ν([b′]) ≤ ν([b])ω0(−µ�)}

and

B(Jb, 0, νb−1µ) := {[b′′] ∈ B(Jb) |κ([b′′]) = 0, ν([b′′]) ≤ ν([b−1])µ�},
which are finite subsets of B(G) and B(Jb) respectively. They contain the trivial classes
[1] ∈ B(G) and [1] ∈ B(Jb) respectively. One checks directly the following lemma:

Lemma 4.1. The bijection B(Jb)
∼−→ B(G) induces the following bijections:

B(Jb, µ
−1)

∼−→ B(G, 0, νbµ
−1), B(Jb, 0, νb−1µ)

∼−→ B(G,µ).

Consider the following p-adic flag varieties (as adic spaces) over Ĕ:

F `(G,µ), F `(G,µ−1), F `(Jb, µ), and F `(Jb, µ
−1).

We have identifications:

F `(G,µ) = F `(Jb, µ), F `(G,µ−1) = F `(Jb, µ
−1).

To summarize, we have the following data:

• the triples (G, {µ−1}, [1]) and (Jb, {µ}, [1]) (which we call the Hodge-Tate side
for G and Jb respectively),
• the local Shtuka data (G, {µ}, [b]) and (Jb, {µ−1}, [b−1]) (which we call the de

Rham side for G and Jb respectively).

In the rest of this section we will assume that µ is minuscule.
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4.2. Newton strata on the de Rham side. In the last section, we studied the ge-
ometry of F `(G,µ−1) by modifications of the trivial G-bundle EG1 . Now we continue
to study the flag variety F `(G,µ−1) = F `(Jb, µ

−1) by modifications of the Jb-bundle

EJb
b−1 . From the local Shimura datum (Jb, {µ−1}, [b−1]), in [3] subsection 5.3, we have

constructed a stratification of F `(Jb, µ
−1) by locally closed subsets

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)Newt=[b′],

which we call the Newton10 stratification. Let C|Ĕ be an algebraically closed perfectoid

field. For any point x ∈ F `(Jb, µ
−1)(C,OC), we get a modification EJb

b−1,x
of the Jb-

bundle EJb
b−1 on the Fargues-Fontaine X = X[. Then by definition

x ∈ F `(Jb, µ
−1, b−1)Newt=[b′](C,OC) ⇔ b(EJb

b−1,x
) = [b′].

We have the associated p-adic period domain

F `(Jb, µ
−1, b−1)a := F `(Jb, µ

−1, b−1)Newt=[1],

which is the maximal open stratum.
Similarly, starting from the local Shimura datum (G, {µ}, [b]) we can study the ge-

ometry of F `(G,µ) by modifications of the G-bundle EGb . More precisely, we have the
Newton stratification

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)Newt=[b′],

and the associated p-adic period domain

F `(G,µ, b)a := F `(G,µ, b)Newt=[1].

Recall that inside F `(G,µ−1) and F `(Jb, µ), we have respectively the open Newton

strata F `(G,µ−1)Newt=[b] and F `(Jb, µ)Newt=[b−1] introduced in subsection 3.1.

Lemma 4.2. Under the identification F `(G,µ−1) = F `(Jb, µ
−1), we have

F `(Jb, µ
−1, b−1)a = F `(G,µ−1)Newt=[b].

Similarly, under the identification F `(G,µ) = F `(Jb, µ), we have

F `(G,µ, b)a = F `(Jb, µ)Newt=[b−1].

Proof. We only check the identity F `(Jb, µ
−1, b−1)a = F `(G,µ−1)Newt=[b]. Let C be

any algebraically closed complete extension of Ĕ and let x ∈ F `(G,µ−1)(C,OC) =
F `(Jb, µ

−1)(C,OC). Then we have

x ∈ F `(Jb, µ
−1, b−1)a(C,OC)⇔ EJb

b−1,x
= EJb1

⇔ EG1,x = EGb
⇔ x ∈ F `(G,µ−1)Newt=[b](C,OC).

�

10In [3] this is called the Harder-Narasimhan stratification. Here we change the terminology and
modify the notation, since later we will introduce another stratification with the same index set, which
we will call the Harder-Narasimhan stratification following [6], as an analogy of that introduced in last
section.
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4.3. Twin tower local Shimura varieties. ([8, 9], [39] section 7, [40] Corollary
23.2.3.) Consider the local Shimura variety with infinite level

M(G,µ, b)∞,

which is the moduli space classifying

• either modifications of type µ between EGb and EG1 over F `(G,µ, b)a,

• or modifications of type µ−1 between EG1 and EGb over F `(G,µ−1)Newt=[b] =
F `(Jb, µ

−1, b−1)a.

Similarly, we have the local Shimura variety with infinite level

M(Jb, µ
−1, b−1)∞,

which is the moduli space classifying

• either modifications of type µ−1 between EJb
b−1 and EJb1 over F `(Jb, µ

−1, b−1)a,

• or modifications of type µ between EJb1 and EJb
b−1 over F `(Jb, µ)Newt=[b−1] =

F `(G,µ, b)a.

At the end, the twin tower principle induces a Jb(Qp) × G(Qp)-isomorphism of local
Shimura varieties with infinite level

M(G,µ, b)∞
∼−→M(Jb, µ

−1, b−1)∞

as diamonds on Spa(Ĕ)�. This fits into a twin towers diagram using the de Rham and
Hodge-Tate period morphisms that allow us to collapse each tower on its base

M(G,µ, b)∞ M(Jb, µ
−1, b−1)∞

F `(G,µ, b)a,3 F `(Jb, µ
−1, b−1)a,3

πdR

∼

πHTG(Qp) πdRπHT Jb(Qp)

where:

• M(G,µ, b)∞ classifies modifications of type µ between EGb and EG1 over F `(G,µ, b)a.

• For such a modification its image by πdR is x if EG1 = EGb,x. Its image by πHT is

y if EGb = EG1,y.
• M(Jb, µ

−1, b−1)∞ classifies modifications of type µ−1 between EJb
b−1 and EJb1 over

F `(Jb, µ
−1, b−1)a.

• For such a modification its image by πdR is x if EJb1 = EJb
b−1,x

. Its image by πHT

is y if EJb
b−1 = EJb1,y.

4.4. Harder-Narasimhan strata on the de Rham side. Now we continue to look at
the p-adic flag variety F `(Jb, µ

−1). In [6] chapter IX.6, Dat-Orlik-Rapoport introduced
a stratification of F `(Jb, µ

−1) by locally closed subsets (indexed by Harder-Narasimhan
vectors)

F `(Jb, µ
−1) =

∐
v∈H(J,µ−1)

F `(Jb, µ
−1, b−1)HN=v,

which they called the Harder-Narasimhan stratification. Here J is the augmented group
attached to Jb and b−1 as in [6] Example 9.1.22. Let C|Ĕ be an algebraically closed
perfectoid field. For any x ∈ F `(Jb, µ

−1)(C,OC), we have the modification triple

(EJb
b−1,x

, EJb
b−1 , f) of Jb-bundles on X = XC[ . We write

ν(EJb
b−1,x

, EJb
b−1 , f) = ν(Nb−1 ,Fx)

for the filtered F -isocrystal with Jb-structure (Nb−1 ,Fx) attached to (EJb
b−1,x

, EJb
b−1 , f)

constructed in subsection 2.2.

Proposition 4.3. For any x ∈ F `(Jb, µ
−1)(C,OC),
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(1) we have the following inequality in N (Jb)

ν(EJb
b−1,x

, EJb
b−1 , f) ≤ ν(EJb

b−1,x
).

(2) The Newton map for Jb induces an injection

H(J, µ−1) ↪→ B(Jb, 0, νb−1µ).

Proof. Under the bijectionB(Jb)
∼→ B(G), [b−1] 7→ [1] and the identification F `(Jb, µ

−1) =
F `(G,µ−1), we have

ν(EJb
b−1,x

, EJb
b−1 , f) = νbν(E1,x, E1, f) = νbν(E1, E1,x, E1, f)

(for the second “=”, see subsection 2.3) and ν(EJb
b−1,x

) = νbν(E1,x). Since [b] is basic, we

have
νbν(E1, E1,x, E1, f) ≤ νbν(E1,x)⇔ ν(E1, E1,x, E1, f) ≤ ν(E1,x).

Therefore (1) is equivalent to Proposition 3.4 (1). The proof of (2) is similar, which is
equivalent to Proposition 3.4 (2) (using Lemma 4.1). �

We get the composition

|F `(Jb, µ
−1)| → H(J, µ−1) ↪→ B(Jb, 0, νb−1µ)

and we write b(EJb
b−1,x

, EJb
b−1 , f) ∈ B(Jb, 0, νb−1µ). Therefore, starting from the local

Shimura datum (Jb, {µ−1}, [b−1]), for the flag variety F `(Jb, µ
−1), we have the Harder-

Narasimhan stratification:

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)HN=[b′].

Similarly, starting from the local Shimura datum (G, {µ}, [b]), for the flag variety
F `(G,µ), we have the Harder-Narasimhan stratification:

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)HN=[b′].

The open Harder-Narasimhan stratum F `(G,µ, b)HN=[1] corresponds to the trivial ele-
ment [1] ∈ B(G, 0, νbµ

−1), which is also denoted by (cf. [37] chapter 1)

F `(G,µ, b)wa := F `(G,µ, b)HN=[1].

Moreover, by Proposition 4.3 (1) (applied to (G, {µ}, [b])), we have

F `(G,µ, b)a ⊂ F `(G,µ, b)wa.

Alternatively, the above inclusion also follows from the theorem of Colmez-Fontaine
(cf. [14] chapter 10). Our argument above shows that it is equivalent to the inclusion

F `(G,µ−1)Newt=[b] ⊂ F `(G,µ−1)HN=[b], see subsection 3.3.

4.5. Dualities for Newton and Harder-Narasimhan stratifications. Consider
the p-adic flag variety F `(Jb, µ

−1). Starting from the datum (Jb, {µ−1}, [b−1]) (de Rham
side for the group Jb), by subsection 4.4 we have the Harder-Narasimhan stratification:

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)HN=[b′].

By subsection 4.2, we have also the Newton stratification:

F `(Jb, µ
−1) =

∐
[b′]∈B(Jb,0,νb−1µ)

F `(Jb, µ
−1, b−1)Newt=[b′].

Recall the Harder-Narasimhan and Newton stratifications for F `(G,µ−1) introduced in
section 3 starting from the datum (G, {µ−1}, [1]) (Hodge-Tate side for the group G):

F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)HN=[b′], F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)Newt=[b′].
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We have the following generalization of Lemma 4.2, which says that under the twin
towers principle, the corresponding Harder-Narasimhan and Newton stratifications in-
troduced in section 3 and here are identical.

Theorem 4.4. Under the identification

F `(G,µ−1) = F `(Jb, µ
−1),

for any [b′] ∈ B(G,µ) corresponding to [b′′] ∈ B(Jb, 0, νb−1µ) under the bijection (cf.
Lemma 4.1)

B(G,µ)
∼−→ B(Jb, 0, νb−1µ),

we have

(1) F `(G,µ−1)HN=[b′] = F `(Jb, µ
−1, b−1)HN=[b′′].

(2) F `(G,µ−1)Newt=[b′] = F `(Jb, µ
−1, b−1)Newt=[b′′].

Proof. The proof for (2) is identical with the proof for Lemma 4.2, which is in fact also
[3] Proposition 5.3.

The proof for (1) is in fact similar, which follows from the functoriality of the Harder-
Narasimhan filtrations and the morphisms HN : let C be any algebraically closed com-
plete extension of Ĕ, we have the following commutative diagram

F `(Jb, µ
−1)(C,OC)

∼ //

HNJb
��

F `(G,µ−1)(C,OC)

HNG
��

N (H)
·ν([b]) // N (H),

see the similar diagrams for ν and κ in subsection 4.1.
In fact, (1) also follows from [6] p. 252 (3.3), Proposition 9.5.3 (iii) and Remarks

9.6.18 (ii). �

Similarly, starting from (G, {µ}, [b]) (de Rham side for the group G), for the flag
variety F `(G,µ), we have the Harder-Narasimhan stratification (see subsection 4.4)

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)HN=[b′]

and the Newton stratification (see subsection 4.2)

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)Newt=[b′]

introduced in this section. Recall also the Harder-Narasimhan and Newton stratifica-
tions for F `(Jb, µ) in section 3 starting from the datum (Jb, {µ}, [1]) (Hodge-Tate side
for the group Jb):

F `(Jb, µ) =
∐

[b′]∈B(Jb,µ−1)

F `(Jb, µ)HN=[b′], F `(Jb, µ) =
∐

[b′]∈B(Jb,µ−1)

F `(Jb, µ)Newt=[b′].

The following corollary is clear now.

Corollary 4.5. Under the identification

F `(Jb, µ) = F `(G,µ),

for any [b′] ∈ B(G,µ) corresponding to [b′′] ∈ B(Jb, 0, νb−1µ) under the bijection (cf.
Lemma 4.1)

B(Jb, µ
−1)

∼−→ B(G, 0, νbµ
−1),

we have

(1) F `(Jb, µ)HN=[b′] = F `(G,µ, b)HN=[b′′].

(2) F `(Jb, µ)Newt=[b′] = F `(G,µ, b)Newt=[b′′].
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5. Fully Hodge-Newton decomposable case

We keep the notations of the last section. Let (G, {µ}, [b]) be a local Shimura datum
such that [b] ∈ B(G,µ) is basic. In particular µ is minuscule. We get the dual local
Shimura datum (Jb, {µ−1}, [b−1]).

Recall that (cf. [17] Definition 2.1 and [3] 4.3) we have the notion of fully Hodge-
Newton decomposability for the Kottwitz set B(G,µ) (or the pair (G, {µ})). This notion
can be generalized to the sets B(G, 0, νbµ

−1) and B(Jb, 0, νb−1µ).
Now we can summarize the various equivalent conditions for fully Hodge-Newton

decomposability studied in [3] and here.

Theorem 5.1. The following are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable.
(2) B(Jb, µ

−1) is fully Hodge-Newton decomposable.
(3) B(G, 0, νbµ

−1) is fully Hodge-Newton decomposable.
(4) B(Jb, 0, νb−1µ) is fully Hodge-Newton decomposable.
(5) F `(G,µ, b)a = F `(G,µ, b)wa.

(6) F `(Jb, µ)Newt=[b−1] = F `(Jb, µ)HN=[b−1].
(7) F `(Jb, µ

−1, b−1)a = F `(Jb, µ
−1, b−1)wa.

(8) F `(G,µ−1)Newt=[b] = F `(G,µ−1)HN=[b].

Proof. The equivalences (1) ⇔ (2) ⇔ (3) follow from [3] Corollary 4.15. Replacing
(G, {µ}, [b]) by (Jb, {µ−1}, [b−1]), we get the equivalences (2)⇔ (1)⇔ (4).

The equivalence (1) ⇔ (5) was proved in [3] Theorem 6.1, thus we get also the
equivalence (2)⇔ (7).

The equivalences (5)⇔ (6) and (7)⇔ (8) follow from Theorem 4.4 and Corollary 4.5
respectively. Therefore all the above statements are equivalent.

�

Remark 5.2. In the above theorem, the equivalences (1)-(4) are taken from [3], which
are purely group theoretical statements. To show the equivalences with the remaining (5)-
(8), we have taken [3] Theorem 6.1 as one of the key ingredients. On the other hand,
one can show11 the equivalence (1)⇔ (8) directly, by using similar (and in fact easier)
arguments as in the proof of [3] Theorem 6.1. Then using Theorem 4.4 and Corollary
4.5, we get another proof of [3] Theorem 6.1, although essentially the two proofs are the
same. We leave the details to the interested reader.

Remark 5.3. There are some further (conjectural) equivalences for the fully Hodge-
Newton decomposable condition (1). For example, we refer the reader to

(1) [3] Conjecture 7.2 (in terms of fundamental domains of p-adic period domains
and local Shimura varieties),

(2) [17] Theorem 2.3 (in terms of the geometry of affine Deligne-Lusztig varieties).

6. Non minuscule cocharacters

In this section, we indicate how to generalize the constructions and results in previous
sections to a general (not necessarily minuscule) cocharacter µ. Roughly, we need to
replace flag varieties and local Shimura varieties by the corresponding B+

dR-affine Schu-
bert cells and moduli of local G-Shtukas respectively. We have Newton and Harder-
Narasimhan stratifications on both sides (Grµ and Grµ−1), generalizing the previous
constructions in sections 3 and 4. It turns out that the HN stratifications on both sides
are pullbacks of the corresponding HN stratifications on flag varieties via the Bialynicki-
Birula map. Then we analyze the geometry of Grµ using affine Schubert cells of the Levi
subgroups, cf. 6.6, which is in some sense a theory of (generalized) semi-infinite orbits
for B+

dR-affine Grassmannians. This is the key last step to prove the generalization of
[3] Theorem 6.1.

11This is exactly what the author did at the beginning when preparing this article.
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6.1. B+
dR-affine Grassmannians and B+

dR-affine Schubert varieties. Let G be a

connected reductive group over Qp. Recall the B+
dR-affine Grassmannian GrG is the

small v-sheaf (cf. [40] 17.2 and [38]) over SpdQp := (SpaQp)
3 such that for any

affinoid perfectoid space S = Spa(R,R+) over Qp,

GrG(S) = {(E , β)}/ '
where

• E is a G-torsor over SpecB+
dR(R),

• β : E → E0 is a trivialization over SpecBdR(R); here E0 is the trivial G-torsor,

cf. [12] 3.1 and [2] Definition 3.4.1. Equivalently,

GrG = LG/L+G,

where LG and L+G are the loop groups such that

LG(Spa(R,R+)) = G(BdR(R)), and L+G(Spa(R,R+)) = G(B+
dR(R)).

See also [40] Definition 20.2.1 and Proposition 20.2.2 (where it is called the Beilinson-
Drinfeld Grassmannian over SpdQp). Let C|Qp be an algebraically closed perfectoid
field and SpdC := (SpaC)3. The base change GrG,SpdC of GrG to SpdC is given by
Definition 19.1.1 of [40].

Let T ⊂ B ⊂ GQp
be a maximal torus inside a Borel subgroup of GQp

. We have

the set of dominant cocharacters X∗(T )+ of T with respective to B, which is a set of
representatives for X∗(T )/W where W is the absolute Weyl group of G. Recall that we
have the Cartan decomposition12

G(BdR(C)) =
∐

µ∈X∗(T )+

G(B+
dR(C))µ(ξ)−1G(B+

dR(C)),

where ξ ∈ B+
dR(C) is a fixed uniformizer. Any µ ∈ X∗(T )+ defines a closed subfunctor

Gr≤µ

of GrG,SpdE , with an open subfunctor Grµ ⊂ Gr≤µ, where E = E(G, {µ}) is the field
of definition of {µ}. By definition (cf. [40] Definition 19.2.2), Gr≤µ (resp. Grµ )
parametrizes those (E , β) such that over any geometric points x, the relative position
Inv(βx) is bounded (resp. exactly given) by µ. One of the main results of [40] is the
following theorem.

Theorem 6.1 ([40] Theorem 19.2.4, Corollary 19.3.4 and Proposition 20.2.3). Gr≤µ is
a spatial diamond, and it is proper over SpdE. Grµ is then a locally spatial diamond.

By definition we have a stratification of diamonds

Gr≤µ =
∐
µ′≤µ

Grµ′ .

In particular if µ is minuscule, we have Grµ = Gr≤µ.
The inclusion L+G ⊂ LG induces a natural action of L+G on GrG. For any perfectoid

affinoid Qp-algebra (R,R+), let ξ ∈ B+
dR(R) denote a uniformizer. For any µ ∈ X∗(T ),

we write ξµ = µ(ξ) and tµ = µ(ξ)−1 for the corresponding elements in LG. By abuse of
notation we also denote ξµ and tµ the associated points in GrG. The diamond Grµ can
be described as usual the orbit L+Gtµ, and we have

Grµ '
L+G

L+G ∩ tµL+Gt−µ
.

Recall that for a diamond D we have its underlying topological space |D|. We call a sub
diamond D′ is dense in D, if |D′| ⊂ |D| is dense.

Proposition 6.2. (1) The open sub diamond Grµ ⊂ Gr≤µ is dense in Gr≤µ.

12Here we follow [2] and [3] to normalize the sign.
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(2) The dimension13 of Grµ (and thus Gr≤µ) is 〈2ρ, µ〉, where ρ is as usual the half
sum of positive (absolute) roots of G.

Proof. For both statements we may assume that the base field is Ê.
(1) We imitate the proof of [44] Proposition 2.1.5 (2) in the equal characteristic

setting. If λ ≤ µ, then there exists a positive coroot α such that µ − α is dominant
and λ ≤ µ − α ≤ µ. Thus it suffices to show that tµ−α is contained in the closure of
Grµ. To prove this, we will construct a curve C ' P1,3 in Gr≤µ such that tµ−α ∈ C and
C \ {tµ−α} ⊂ Grµ.

For any integer m, let tλm :=

(
tm 0
0 1

)
, regarded as an element in PGL2(BdR). Let

Km = Adtλm(L+SL2) ⊂ LSL2. Then

σm :=

(
0 −tm
t−m 0

)
∈ Km.

Consider the map L+SL2 → SL2 induced by the natural map θ : B+
dR(R) → R for any

perfectoid algebra R over Qp. Let L>0SL2 be its kernel and set K
(1)
m = Adtλm(L>0SL2).

Then Km/K
(1)
m ' SL2. Let iα : SL2 → G be the canonical homomorphism associated to

α. We get the induced map Liα : LSL2 → LG. Let m = 〈µ, α〉 − 1 and consider

Cµ,α := Liα(Km)tµ.

Since Liα(K
(1)
m ) ⊂ L+G∩tµL+Gt−µ, Cµ,α is a homogenous space under Km/K

(1)
m = SL2.

One gets then

Cµ,α ' P1,3, and (L+G ∩ Liα(Km))tµ ' A1,3 ⊂ P1,3.

In addition,
Cµ,α \ (L+G ∩ Liα(Km))tµ = iα(σm)tµ = tµ−αL+G.

Thus Cµ,α is the desired curve.
(2) Since 〈2ρ, µ〉 = 〈2ρ,−w0µ〉 and dim Grµ = dim Grµ−1 (note that LG→ LG, g 7→

g−1 induces an isomorphism Grµ ' Grµ−1), we consider Grµ−1 = L+Gξµ. Let Φ+ be
the set of positive (absolute) roots of G for the choice of the above Borel subgroup
B ⊂ GQp

. Consider the parabolic subgroups Pµ and Pµ−1 defined by the roots α such

that 〈α, µ〉 ≥ 0 and 〈α, µ〉 ≤ 0 respectively. Then Pµ−1 is the opposite parabolic of
Pµ. Let U = UPµ be the unipotent radical of Pµ. Then U × Pµ−1 ⊂ G defines an open

subspace. Consider the associated open functor L+(U×Pµ−1) = L+U×L+Pµ−1 ⊂ L+G.

Then since L+Pµ−1 ⊂ L+G ∩ ξµL+Gξ−µ acts trivially on ξµ, we have open functor

L+Uξµ ⊂ L+Gξµ = Grµ−1 . By definition, U =
∏
α∈Φ+,〈α,µ〉>0 Uα with Uα the subgroup

of G corresponding to the root α. Then

L+Uξµ = (
∏

α∈Φ+,〈α,µ〉>0

L+Uα)ξµ

=
∏

α∈Φ+,〈α,µ〉>0

(L+Uαξ
µ)

=
∏

α∈Φ+,〈α,µ〉>0

B+
dR/ξ

〈α,µ〉ξµ,

where B+
dR is the functor which sends a perfectoid affinoid Qp-algebra (R,R+) to B+

dR(R),

and the last “=” comes from the fact that L+Uα ' B+
dR which acts on ξµ through

B+
dR/ξ

〈α,µ〉. Moreover the action of B+
dR/ξ

〈α,µ〉 on ξµ is free, thus

L+Uξµ '
∏

α∈Φ+,〈α,µ〉>0

B+
dR/ξ

〈α,µ〉.

13We refer the reader to [38] section 21 for the definition and discussions for dimensions of diamonds.
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By [40] subsection 15.2, for each α as above, the Banach-Colmez space B+
dR/ξ

〈α,µ〉 is a

diamond, which is a successive extension of A1,3 and dimB+
dR/ξ

〈α,µ〉 = 〈α, µ〉. Therefore,

dim Grµ = dimL+Uξµ =
∑

α∈Φ+,〈α,µ〉>0

〈α, µ〉 = 〈2ρ, µ〉.

�

For µ ∈ X∗(T )+, as in the above proof let Pµ be the parabolic subgroup of GQp
associated to the roots α such that 〈α, µ〉 ≥ 0. In other words Pµ is given by the
formula

Pµ = {g ∈ G | lim
t→0

µ(t)gµ(t)−1 exists}.

Then Pµ ⊃ B. Consider the flag variety F `(G,µ) = GC/Pµ, which is defined over E.
By [2] Proposition 3.4.3,Theorem 3.4.5 and [40] Proposition 19.4.2, there is a natural
Bialynicki-Birula map14 for diamonds over E

πµ : Grµ → F `(G,µ)3,

which is an isomorphism if µ is minuscule. Let us recall the definition of πµ. Group
theoretically, over C it is the projection

πµ : Grµ '
L+G

L+G ∩ tµL+Gt−µ
−→ GC/Pµ

induced by the projection

θ : L+G(R) = G(B+
dR(R))→ G(R)

for any C-perfectoid algebra R. Alternatively, we can give the moduli interpretation as
follows. By Tannakian formalism, it is enough to define it for GLn. In this case, µ is
given by a tuple of integers (m1, . . . ,mn) with m1 ≥ · · · ≥ mn. Then Grµ parametrizes
lattices Ξ ⊂ BdR(R)n of relative position (m1, . . . ,mn). For any such lattice, we can
define a descending filtration Fil•Ξ on the residue Rn = B+

dR(R)n/ξB+
dR(R)n with

FiliΞ =
ξiΞ ∩B+

dR(R)n

ξiΞ ∩ ξB+
dR(R)n

.

The stabilizer of this filtration defines a parabolic which is conjugate to Pµ. This gives
the desired πµ : Grµ → F `(G,µ)3. From the construction we see that in general, πµ is
surjective, and in fact it is a fibration in diamonds associated to affine spaces.

For C-points, recall (cf. subsection 2.6) F `(G,µ)(C) = {F ∈ FilC(ωG) | F has typeµ},
where FilC(ωG) is the set of Q-filtrations over C of the standard fiber functor ωG. The
map Grµ(C,OC) → F `(G,µ)(C) sends a G-torsor to a “G-filtration”. We can define
similarly

π : GrG(C,OC)→ FilC(ωG),

such that the following diagram commutes

GrG(C,OC)
π //

��

FilC(ωG)

��
X∗(T )+ // X∗(G)Q/G,

where the left vertical arrow is given by the Cartan decomposition, the right verti-
cal arrow is given by taking a splitting modulo conjugacy, and the bottom arrow
is given by the identifications X∗(T )+ = X∗(T )/W = X∗(G)/G and the inclusion
X∗(G)/G ↪→ X∗(G)Q/G.

14Note that according to our convention, here πµ agrees with that in [2] Proposition 3.4.3, and it is
the πµ−1 of that in [40] Proposition 19.4.2.
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Now let H be an arbitrary linear algebraic group over Qp. Then we define the B+
dR-

affine Grassmannian GrH = LH/L+H similarly as above.

Proposition 6.3. GrH is representable by an ind-diamond, which is ind-proper if H is
reductive.

Proof. As in the proof of [31] Theorem 1.4, we can take a faithful representation H ↪→
GLn such that GLn/H is quasi-affine. Then the arguments in the proof of [40] Lemma
19.1.5 show that the induced map GrH → GrGLn is a locally closed embedding. Since
GrGLn is representable by an ind-diamond by [40] 19.3, we conclude that GrH is also
representable by an ind-diamond. In case H is reductive, Theorem 19.2.4 of [40] implies
that it is ind-proper. �

6.2. Hecke stacks and B+
dR-affine Schubert cells. Fix a dominant cocharacter µ ∈

X∗(T )+. We have the Hecke stack Heckeµ over Fp (here we slightly modify the definition
in [12] 3.4): for any Spa(R,R+) ∈ PerfFp , Hecke

µ(Spa(R,R+)) is the groupoid of

quadruples (E1, E2, D, f), where

• E1 and E2 are G-bundles on XR,
• D is an effective Cartier divisor of degree 1 on XR,
• f : E1|XR\D

∼−→ E2|XR\D is a modification of G-bundles, such that the type of

fx is µ for any geometric point x = Spa(C(x), C(x)+)→ Spa(R,R+).

This Hecke stack fits into the following diagram

Heckeµ
←−
h

yy

−→
h

((
BunG,Fp BunG,Fp ×Div

1
X ,

where Div1
X = X3 × Spa(Q̆p)

3/ϕZ is the diamond of degree one divisors on X and
←−
h (E1, E2, f,D) = E2,

−→
h (E1, E2, f,D) = (E1, D).

The above diagram is the stack version of the diagram in subsection 2.1.
Let [b] ∈ B(G,µ) be the basic element. Fix a representative b ∈ G(Q̆p) of [b] and we

have the reductive group Jb. Let

x1 : Spa(Fp)→ [Spa(Fp)/G(Qp)]→ BunG,Fp

and

xb : Spa(Fp)→ [Spa(Fp)/Jb(Qp)]→ BunG,Fp
be the points associated to the classes [1] and [b]. Consider the diamonds Grµ and Grµ−1

over Ĕ. Then we have the following enlarged diagram15 where Grµ and Grµ−1 appear:

Grµ

yy

ib

%%

Grµ−1

''

i1

ww
Spa(Fp)

xb

%%

Heckeµ

←−
h

yy

−→
h

''

Spa(Fp)
(x1id)

ww
BunG,Fp BunG,Fp ×Div

1
X ,

where both the squares are cartesian. In particular, we get

Grµ−1 −→ BunG,Fp

15 We can add Sht(G,µ, b)∞ on the top together with the period maps πdR and πHT to get a further
cartesian square and thus a even larger diagram, cf. [12] 8.2.
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which is the composition
←−
h ◦ i1, and

Grµ −→ BunG,Fp

which is the composition pr◦
−→
h ◦ib, where pr : BunG,Fp×Div

1
X → BunG,Fp is the natural

projection.
We have also the version of Hecke stack Hecke≤µ, which can be defined similarly and

it is related to Gr≤µ and Gr≤µ−1 as above.

6.3. Newton and Harder-Narasimhan stratifications on Grµ−1. Fix a dominant

cocharacter µ ∈ X∗(T )+. Consider the affine Schubert cells Grµ and Grµ−1 .

We first study the geometry of Grµ−1 using modifications of the trivial G-bundle E1.
Consider the morphism Grµ−1 −→ BunG,Fp constructed above. The induced map on

the sets of C-valued points can be described in more concrete terms. Let C|Ĕ be an
algebraically closed perfectoid field. For any x ∈ Grµ−1(C,OC), we have modification
E1,x of E1. The isomorphism class of E1,x defines a point b(E1,x) ∈ B(G). We write
Newt : Grµ−1(C,OC)→ B(G) for the map.

Proposition 6.4. The image of the induced map

Newt : Grµ−1(C,OC)→ B(G)

is B(G,µ).

Proof. The fact that the image of the above map is included in B(G,µ) follows from
[2] Proposition 3.5.3. To show the surjectivity, if µ is minuscule, then it follows from
[34] Proposition A.9. The arguments in loc. cit. in fact apply to the general case. For
the reader’s convenience, we sketch the arguments. Consider Grµ and let [b] ∈ B(G,µ)

be any element. Fix a representative b ∈ G(Q̆p) of [b] and let Graµ ⊂ Grµ be the
associated admissible locus (here Graµ = Grµ ∩ Gra≤µ and Gra≤µ is the admissible locus
introduced in the proof of [40] Proposition 23.3.3), and F `(G,µ, b)wa ⊂ F `(G,µ) be
the associated weakly admissible locus (cf. [37, 6]). Then the Bialynicki-Birula map
induces a morphism of diamonds

πµ : Graµ → F `(G,µ, b)wa,3.

By the theorem of Colmez-Fontaine (cf. [14] chapter 10), we have Graµ(K,OK) =

F `(G,µ, b)wa(K,OK) for any finite extension K|Ĕ. Thus F `(G,µ, b)wa 6= ∅ if and
only if Graµ 6= ∅. Since [b] ∈ B(G,µ), by [36] Proposition 3.1, F `(G,µ, b)wa 6= ∅ and
thus Graµ 6= ∅. Take a point x ∈ Grµ−1(C,OC). By definition,

x ∈ Gr
Newt=[b]
µ−1 (C,OC) ⇔ E1,x ' Eb ⇔ E1 = Eb,x∗

for some x∗ ∈ Grµ(C,OC). This is equivalent to x∗ ∈ Graµ(C,OC). Thus we get for any

[b] ∈ B(G,µ), Gr
Newt=[b]
µ−1 (C,OC) 6= ∅. �

Letting C vary, we get a map

Newt : |Grµ−1 | −→ B(G,µ).

By [22] (in the case G = GLn) and [40] Corollary 22.5.1, this map is upper semi-
continuous. The Newton stratification of Grµ−1 is the following stratification in dia-
monds over E:

Grµ−1 =
∐

[b′]∈B(G,µ)

Gr
Newt=[b′]
µ−1 .

The open Newton stratum Gr
Newt=[b]
µ−1 is associated to the basic element [b] ∈ B(G,µ).

We have a natural action of G(Qp) on Grµ−1 and for any [b′] ∈ B(G,µ), the stratum

Gr
Newt=[b′]
µ−1 is stable under this action.
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Proposition 6.5. We have the following dimension formula: for [b′] ∈ B(G,µ),

dim Gr
Newt=[b′]
µ−1 = 〈µ− ν([b′]), 2ρ〉.

Proof. This is essentially the same as the proof of Theorem 3.1 (2), using the diagram in
subsection 2.6 and the dimension formula dim Grµ = 〈µ, 2ρ〉 of Proposition 6.2 (2). �

For any point x ∈ Grµ−1(C,OC), consider the admissible modification (E1, E1,x, f)
and ν(E1, E1,x, f) ∈ N (G). Then Proposition 3.4 still holds in this setting, since in the
proof we don’t need the minuscule condition. In other words, we have

ν(E1, E1,x, f) ≤ ν(E1,x)

and

ν(E1, E1,x, f)∗ = w0(−ν(E1, E1,x, f)) ∈ N (G,µ).

Letting C vary, we get a map

HN : |Grµ−1 | −→ N (G,µ).

Theorem 6.6. The above map HN is upper semi-continuous, that is, for any v ∈
N (G,µ), the subset

GrHN≥v
µ−1 := {x ∈ |Grµ−1 | |HN(x) ≥ v}

is closed. In particular, the subset

GrHN=v
µ−1 := {x ∈ |Grµ−1 | |HN(x) = v}

is locally closed, thus it defines a sub diamond of Grµ−1.

Proof. This is similar to the proof of Theorem 3.5: for any x ∈ Grµ−1(C,OC), by
Theorem 2.4

ν(E1, E1,x, f) = ν(Fx)

with Fx ∈ FilC(ωG) attached to πµ−1(x) ∈ F `(G,µ−1)(C,OC). Thus the map HN :

|Grµ−1 | −→ N (G,µ) factors throughHN : |F `(G,µ−1)| −→ N (G,µ), via the Bialynicki-

Birula map. For the flag variety F `(G,µ−1), this follows from (the proof of) [6] Theorem
6.3.5 and Proposition 6.3.12.

�

In the following, we will identify N (G,µ) with B(G,µ) by the Newton map. We have
the following stratification of diamonds over E:

Grµ−1 =
∐

[b′]∈B(G,µ)

Gr
HN=[b′]
µ−1 .

For any [b′] ∈ B(G,µ), the stratum Gr
HN=[b′]
µ−1 is stable under the action of G(Qp) on

Grµ−1 . By the proof of Theorem 6.6, this stratification is the pullback of

F `(G,µ−1) =
∐

[b′]∈B(G,µ)

F `(G,µ−1)HN=[b′]

via the Bialynicki-Birula map

πµ−1 : Grµ−1 → F `(G,µ−1)3.

The open Harder-Narasimhan stratum Gr
HN=[b]
µ−1 is associated to the basic element [b] ∈

B(G,µ). Note that theorem 3.9 still holds for the flag variety F `(G,µ−1) (which is
reduced to [6] Theorem 6.3.5). Pulling back under πµ−1 : Grµ−1 → F `(G,µ−1)3, we get

Corollary 6.7. For any non basic [b′] ∈ B(G,µ), the stratum Gr
HN=[b′]
µ−1 is a parabolic

induction.
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6.4. Newton and Harder-Narasimhan stratifications on Grµ. Let [b] ∈ B(G,µ)
be the basic element. Now we study the geometry of Grµ using modifications of the

G-bundle Eb. Consider the map Grµ → BunG,Fp constructed in subsection 6.2. Let C|Ĕ
be an algebraically closed perfectoid field. The induced map on the sets of C-valued
points can be described In more concrete terms. For any x ∈ Grµ(C,OC), we have
modification Eb,x of Eb. The isomorphism class of Eb,x defines a point b(Eb,x) ∈ B(G).
We write Newt : Grµ(C,OC)→ B(G) for the map.

Proposition 6.8. The image of the induced map Newt : Grµ(C,OC) → B(G) is
B(G, 0, νbµ

−1).

Proof. For µ minuscule, this has been studied in [3] section 5 (see also [34] A.10). The
arguments in [3] section 5 work in the general case. See also the proof of Proposition
6.4. �

Letting C vary, we get a map

Newt : |Grµ| −→ B(G, 0, νbµ
−1),

which is upper semi-continuous by [22, 40]. Thus we have the Newton stratification16 of

diamonds over Ĕ:
Grµ =

∐
[b′]∈B(G,0,νbµ−1)

GrNewt=[b′]
µ .

For any [b′] ∈ B(G, 0, νbµ
−1), the stratum Gr

Newt=[b′]
µ is stable under the action of

Jb(Qp) on Grµ. The open Newton stratum Gr
Newt=[1]
µ corresponds to the trivial element

[1] ∈ B(G, 0, νbµ
−1), which we will also denote by Graµ (the admissible locus inside Grµ

with respective to (G, {µ}, [b]), which we already introduced in the proof of Proposition
6.4).

Now we want to define a Harder-Narasimhan stratification on Grµ. We first come back
to the p-adic flag variety F `(G,µ). Starting from the local Shtuka datum (G, {µ}, [b]),
Dat-Orlik-Rapoport introduced a stratification on F `(G,µ) indexed by HN vectors, cf.
[6] IX.6 (and the previous subsection 4.4). The index set of this stratification is denoted
by H(G, µ) in loc. cit., which is a finite subset of N (G), where G is the augmented group
attached to G and b in [6] Example 9.1.22. Similar to Proposition 4.3, we can prove that
the Newton map ν induces an injection H(G, µ) ↪→ B(G, 0, νbµ

−1). Therefore, we have

F `(G,µ) =
∐

[b′]∈B(G,0,νbµ−1)

F `(G,µ, b)HN=[b′].

There is a unique minimal element v0 inH(G, µ), which corresponds to [1] ∈ B(G, 0, νbµ
−1).

The corresponding stratum (called semi-stable locus in [6]) is the weakly admissible locus

F `(G,µ, b)wa ⊂ F `(G,µ)

previously studied in [37] chapter 1. Via the Bialynicki-Birula map

πµ : Grµ → F `(G,µ)3,

the above stratification on F `(G,µ) induces a stratification17 on Grµ:

Grµ =
∐

[b′]∈B(G,0,νbµ−1)

GrHN=[b′]
µ ,

which we call the Harder-Narasimhan stratification. The open Harder-Narasimhan stra-

tum Gr
HN=[1]
µ corresponds to the trivial element [1] ∈ B(G, 0, νbµ

−1), which we will also
denote by Grwaµ (the weakly admissible locus inside Grµ with respective to (G, {µ}, [b])).

16Note here we have used simplified notations compared with the minuscule case: we have omitted
the subscript b on each Newton stratum.

17Similar as Newton stratification case here, we have used simplified notations.
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Remark 6.9. In this subsection, to define the Newton and Harder-Narasimhan strati-
fication, in fact we don’t need the assumption that [b] is basic. However, we don’t know
a description of the index set for a non basic [b]. Nevertheless, the open strata Graµ and
Grwaµ are always well defined.

Consider the dual local Shtuka datum (Jb, {µ−1}, [b−1]) and the triple (Jb, {µ}, [1]).
Then we can consider the Newton and Harder-Narasimhan stratifications on GrJb,µ−1

and GrJb,µ as before. Since [b] is basic, the isomorphism Jb,Q̆p
∼→ GQ̆p induces identifi-

cations GrG,µ = GrJb,µ and GrG,µ−1 = GrJb,µ−1 as diamonds over Spd Ĕ. The results of
subsection 4.3 still hold (cf. [40] subsection 23.3). Now the following generalization of
Theorem 4.4 and Corollary 4.5 is clear:

Theorem 6.10. (1) Under the identification GrG,µ−1 = GrJb,µ−1, for any [b′] ∈
B(G,µ) corresponding to [b′′] ∈ B(Jb, 0, νb−1µ) under the bijection (cf. Lemma
4.1)

B(G,µ)
∼−→ B(Jb, 0, νb−1µ),

we have
(a) Gr

HN=[b′]
G,µ−1 = Gr

HN=[b′′]
Jb,µ−1 .

(b) Gr
Newt=[b′]
G,µ−1 = Gr

Newt=[b′′]
Jb,µ−1 .

(2) Under the identification GrJb,µ = GrG,µ, for any [b′] ∈ B(G,µ) corresponding to
[b′′] ∈ B(Jb, 0, νb−1µ) under the bijection (cf. Lemma 4.1)

B(Jb, µ
−1)

∼−→ B(G, 0, νbµ
−1),

we have
(a) Gr

HN=[b′]
Jb,µ

= Gr
HN=[b′′]
G,µ .

(b) Gr
Newt=[b′]
Jb,µ

= Gr
Newt=[b′′]
G,µ .

6.5. Extensions to Gr≤µ and Gr≤µ−1. We can extend the above constructions to
Gr≤µ and Gr≤µ−1 . First, we note the following lemma.

Lemma 6.11. For µ1, µ2 ∈ X∗(T )+ with w0(−µ1) ≤ w0(−µ2), we have a natural
injection B(G,µ1) ↪→ B(G,µ2).

Proof. The assumption w0(−µ1) ≤ w0(−µ2) implies that µ1 ≤ µ2 and thus µ�1 ≤ µ�2.
Recall that by [25] 4.13,

(κ, ν) : B(G)→ π1(G)Γ ×N (G)

is injective. For [b] ∈ B(G,µ1), consider the pair (µ]2, ν([b]) ∈ π1(G)Γ ×N (G). It comes
from a unique element [b′] ∈ B(G) under the injection (κ, ν) : B(G) ↪→ π1(G)Γ×N (G),

since κ is surjective and µ]2 ≡ ν([b]) in π1(G)Γ. Then since ν([b′]) = ν([b]) ≤ µ�1 ≤ µ�2,
by definition [b′] ∈ B(G,µ2). In this way we get an injection B(G,µ1) ↪→ B(G,µ2). �

By the above lemma, we can define Newton and Harder-Narasimhan stratifications
on Gr≤µ−1 by modifications of the trivial G-bundle E1, with both of the index sets as

B(G,µ). These strata will be the union over all (µ′)−1 ≤ µ−1 of the corresponding strata
(could be empty) inside Gr(µ′)−1 . Similar, for [b] ∈ B(G,µ) basic, we can define Newton
and Harder-Narasimhan stratifications on Gr≤µ by modifications of the G-bundle Eb,
with both of the index sets as B(G, 0, νbµ

−1). The strata will be the union over all
µ′ ≤ µ of the corresponding strata (which could be empty) inside Grµ′ . We will use the
version of moduli of local G-Shtukas Sht(G,≤ µ, b)∞ in this setting. We can consider
the dual local Shtuka datum (Jb, {µ−1}, [b−1]). Then the constructions and results in
subsections 6.3 and 6.4, in particular Theorem 6.10, can be generalized to the current
setting. We leave the details to the interested reader.
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6.6. Fargues-Rapoport conjecture for general µ. Let G be a reductive group over
Qp, P ⊂ G a parabolic subgroup over Qp, M a Levi subgroup contained in P , which
is identified with the reductive quotient of P . Take a maximal torus inside a Borel
T ⊂ B ⊂ GQp

and assume B ⊂ PQp
and thus T ⊂ MQp

. We have the set of dominant

cocharacters X∗(T )+. Let B ∩MQp
be the induced Borel of MQp

. Then we get the set

of M -dominant cocharacters X∗(T )+
M . We have the inclusion X∗(T )+ ⊂ X∗(T )+

M .
To simplify notations, the base field in this subsection will be C, an algebraically

closed perfectoid field of characteristic 0 (in fact an extension F |Qp which splits G
will be enough). In the following we will write BdR = BdR(C). Consider B+

dR-affine
Grassmannians GrM ,GrG and GrP (cf. Proposition 6.3) over C. The inclusion P ⊂ G
and the projection P →M induce the following diagram of B+

dR-affine Grassmannians:

GrP
pr

{{

i

##
GrM GrG.

We have the following fact: the Iwasawa decomposition

G(BdR) = P (BdR)G(B+
dR)

induces a bijection

i : GrP (C,OC) = P (BdR)/P (B+
dR)

∼−→ GrG(C,OC) = G(BdR)/G(B+
dR).

Let UP ⊂ P be the unipotent radical of P . Since G/M (resp. G/UP ) is affine (resp.
quasi-affine), the natural inclusion M ⊂ G (resp. UP ⊂ G) induces a closed embedding
GrM ↪→ GrG by [40] Lemma 19.1.5 (resp. a locally closed embedding GrUP ↪→ GrG by
the proof of Proposition 6.3). For any λ ∈ X∗(T )+

M , we have the locally spatial diamond
GrM,λ ⊂ GrM . Consider the locally closed sub ind-diamond

Sλ := i
(
pr−1(GrM,λ)

)
⊂ GrG.

This is identified with the orbit LUPGrM,λ for the natural action LUP on GrG induced
by LUP ⊂ LG. The natural product defines a map LUP × LM → LG which induces a
map GrUP ×GrM → GrG. Then we have

Sλ = GrUPGrM,λ ⊂ GrG,

where GrUPGrM,λ denotes the image of GrUP ×GrM,λ under GrUP ×GrM → GrG. The
Iwasawa decomposition above implies that

GrG =
∐

λ∈X∗(T )+M

Sλ.

In the following we consider the partial order ≤P 18 on X∗(T ) (and the restriction to
X∗(T )+

M ) with respective to the coroots appearing in LieUP . When the setting is clear,

we simply write λ1 ≤ λ2 for λ1, λ2 ∈ X∗(T )+
M and λ1 ≤P λ2. For any λ ∈ X∗(T )+

M , like
in the classical setting, Sλ is of infinite dimensional. Nevertheless, we have

Proposition 6.12. The closure Sλ of Sλ is given by S≤λ :=
∐
λ′≤λ Sλ′. More precisely,

for any µ ∈ X∗(T )+, we have

Sλ ∩Gr≤µ =
∐
λ′≤λ

Sλ′ ∩Gr≤µ.

18Note that this is different from the partial order ≤M used in some literatures, e.g. [16] 5.1, where
one uses simple coroots of M .
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Proof. We follow the argument of [44] Proposition 5.3.6. We show firstly that S≤λ is
closed. First, assume that Gder is simply connected. For any highest weight representa-
tion Vχ of G, let `χ be the corresponding highest weight line. Then we have the following
description

S≤λ =
⋂
Vχ

{(E , β) ∈ GrG|β−1(`χ) ⊂ t−〈χ,λ〉(EVχ)},

where the intersection runs through all highest weight representations Vχ of G, and
EVχ = E ×G Vχ is the induced vector bundle. It suffices to prove the locus

{(E , β) ∈ GrG|β−1(`χ) ⊂ t−〈χ,λ〉(EVχ)} ⊂ GrG

is closed. This follows from the proof of [40] Lemma 19.1.4. For general G, one can pass
to a z-extension to reduce to the case when Gder is simply connected.

Now we show Sλ = S≤λ. For λ′ ≤ λ, there exists a positive coroot α appearing in
LieUP such that λ− α is M -dominant and λ′ ≤ λ− α ≤ λ. Then the arguments in the
proof of Proposition 6.2 (1) apply. �

Let µ ∈ X∗(T )+ be fixed and consider GrG,µ. For any λ ∈ X∗(T )+
M , note that

Sλ ∩GrG,µ 6= ∅ ⇐⇒ LUP t
λ ∩GrG,µ 6= ∅.

Indeed, to prove the direction “⇒′′, it suffices to work with an algebraically closed field
C and then use the normality of UP . Set

SM (µ) := {λ ∈ X∗(T )+
M |Sλ ∩GrG,µ 6= ∅}.

The stratification GrG =
∐
λ∈X∗(T )+M

Sλ induces a stratification

GrG,µ =
∐

λ∈SM (µ)

Sλ ∩GrG,µ.

For each λ ∈ SM (µ), for simplicity we denote GrG,λ = Sλ ∩GrG,µ, so that

GrG,µ =
∐

λ∈SM (µ)

GrG,λ.

To describe the index set SM (µ), first note by [16] Lemma 5.4.1

SM (µ) ⊂ Σ(µ)M−dom,

where Σ(µ)M−dom ⊂ X∗(T )+
M is the set of M -dominant elements in {µ′ ∈ X∗(T )|µ′dom ≤

µ}. Indeed, to describe SM (µ) we may choose any algebraically closed perfectoid field
C|Qp and consider the C-points of GrG,µ(C,OC). Then λ ∈ SM (µ) if and only if

λ ∈ X∗(T )+
M and UP (BdR(C))tλ ∩ G(B+

dR(C))tµG(B+
dR(C)) 6= ∅ (both as subsets of

G(BdR(C))). Fixing an isomorphism BdR(C) ' C((t)), we translate these to subsets

of G
(
C((t))

)
. As in the proof of [16] Lemma 5.4.1 (which is purely group theoretical

and applies to general base fields), λ ∈ Σ(µ)M−dom if and only if λ ∈ X∗(T )+
M and

UB

(
C((t))

)
tλ ∩G(C[[t]])tµG(C[[t]]) 6= ∅, where UB is the unipotent radical of B.

Recall that attached to µ we have the parabolic subgroup Pµ ⊂ GQp
. Let W (resp.

WP ,WPµ) be the absolute Weyl group of G (resp. P, Pµ). We have the following
inclusion:

Wµ ∩X∗(T )+
M ⊂ SM (µ).

The set Wµ ∩X∗(T )+
M can be described as

Wµ ∩X∗(T )+
M = PWPµµ,

where PWPµ ⊂ W is the set of minimal length representatives in the corresponding
coset in WP \W/WPµ . Then the element

λ0 = µ ∈ SM (µ)
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is the unique maximal element with respective to the partial order ≤P . When µ is minus-
cule, we have Wµ ∩X∗(T )+

M = PWPµµ = SM (µ). In this case, under the isomorphism

GrG,µ
∼→ F `(G,µ)3, for λ = wµ with w ∈ PWPµ , we have

Sλ ∩GrG,µ ' (UPww0Pµ/Pµ)3,

where w0 ∈W is the element of maximal length.

Remark 6.13. The reader who believes the geometric Satake equivalence for B+
dR-affine

Grassmannians (cf. [15]) can have the following descriptions of SM (µ):

Let Ĝ be the dual reductive group of G (over some characteristic zero algebraically

closed field) and M̂ ⊂ Ĝ be Levi subgroup defined by the dual root datum of M . Similarly

let T̂ ⊂ B̂ ⊂ Ĝ be the maximal torus dual to T inside the Borel subgroup of Ĝ dual to B.

Then we may view µ ∈ X∗(T̂ )+ = X∗(T )+. Consider the irreducible representation Vµ
of highest weight µ of Ĝ. The geometric Satake equivalence in the current setting implies

that SM (µ) is the set of M̂ -dominant weights of T̂ such that the associated highest weight

representations of M̂ appear in the restricted representation Vµ|M̂ :

SM (µ) = {λ ∈ X∗(T )+

M̂
| 0 6= Vλ ⊂ Vµ|M̂},

where for any λ ∈ X∗(T )+

M̂
, Vλ is the irreducible representation of M̂ of highest weight

λ.
We identify W = W (Ĝ) and X∗(T̂ )+

M̂
= X∗(T )+

M . The set Wµ ∩X∗(T̂ )+

M̂
= PWPµµ

appears naturally when considering the decomposition of Vµ|M̂ into irreducible represen-

tations of M̂ : we view µ ∈ X∗(T̂ )+

M̂
, then the associated irreducible representation V M̂

µ

of M̂ appears in Vµ|M̂ . Consider the adjoint action of W on Vµ = Vµ|M̂ . For any

w ∈ PWPµ, we have

wV M̂
µ = Vwµ ⊂ Vµ|M̂ .

Any λ ∈ SM (µ) is of the form

λ = µ−
∑

α∈∆\∆
M̂

nαα, nα ∈ N, ∀α,

where ∆ = ∆
Ĝ

(resp. ∆
M̂

) is the set of simple roots of Ĝ (resp. M̂). Therefore,

Wµ ∩X∗(T̂ )+

M̂
= Wµ ∩X∗(T )+

M ⊂ SM (µ)

and µ ∈ SM (µ) is the unique maximal element.

In the following we sketch how to generalize the arguments in the proof of [3] Theorem
6.1 to the non minuscule case.

Fix a µ ∈ X∗(T )+ and consider Grµ = GrG,µ, which is defined over SpdE with

E = E(G, {µ}). As usual, let Ĕ = Êur be the completion of the maximal unramified

extension of E. We will study GrG,µ over Spd Ĕ. First of all, we explain that the

set SM (µ) and the above diagram of B+
dR-affine Grassmannians naturally arise when

considering reductions of modifications of G-bundles to P -bundles (resp. M -bundles),
cf. Lemma 6.14.

For C|Ĕ any algebraically closed perfectoid field, letX = XC[ be the Fargues-Fontaine

curve over Qp attached to C[. Let b ∈ G(Q̆p) be an element with associated class
[b] ∈ B(G) and the G-bundle Eb on X (cf. [11]). For a Levi subgroup M of G, recall
that (cf. [3] Definition 2.5) we have the notion of reductions of b to M . Such a reduction

is given by an element bM ∈ M(Q̆p) together with an element g ∈ G(Q̆p) such that
b = gbMσ(g)−1. Then the M -bundle EbM is a reduction of Eb. If M ⊂ P for some

parabolic subgroup P of G, let bP ∈ P (Q̆p) be the image of bM . This defines a reduction
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of b to P , and thus a reduction of the G-bundle Eb to a P -bundle EbP . By construction,
EbP = EbM ×M P .

For any x ∈ GrG(C,OC), we can define a modification Eb,x of E , thus a map

GrG(C,OC)→ H1
ét(X,G).

It is functorial in the following sense: we have similar maps

GrP (C,OC)→ H1
ét(X,P ), y 7→ EbP ,y,

GrM (C,OC)→ H1
ét(X,M), z 7→ EbM ,z,

by considering modifications of the P -bundle EbP and the M -bundle EbM respectively.
Then the following diagram commutes:

GrG(C,OC) // H1
ét(X,G)

GrP (C,OC)

OO

��

// H1
ét(X,P )

OO

��
GrM (C,OC) // H1

ét(X,M),

where the arrows on the right hand side are E 7→ E ×P G, E 7→ E ×P M , the push
forwards of P -bundles along P ⊂ G and P → M respectively. By Iwasawa decompo-
sition, the map GrP (C,OC) = P (BdR)/P (B+

dR)
∼−→ GrG(C,OC) = G(BdR)/G(B+

dR) is
a bijection. For x ∈ GrG(C,OC), let y ∈ GrP (C,OC) be its inverse image under this
bijection. Then

EbP ,y ×P G = Eb,x,
i.e. EbP ,y is a reduction to P of Eb,x. By [3] Lemma 2.5, EbP ,y is the reduction to P of
Eb,x induced by the reduction EbP of Eb. We will also write

EbP ,y = (Eb,x)P

for this reduction. Recall that we have the decomposition

GrG,µ(C,OC) =
∐

λ∈SM (µ)

GrG,λ(C,OC).

For λ ∈ SM (µ), let prλ : GrG,λ(C,OC)→ GrM,λ(C,OC) be the projection. The following
generalization of [3] Lemma 2.6 is clear now.

Lemma 6.14. For any x ∈ GrG,µ(C,OC), let λ ∈ SM (µ) be such that x ∈ GrG,λ(C,OC).
Then there is an isomorphism of M -bundles

(Eb,x)P ×P M ' EbM ,prλ(x),

where (Eb,x)P is the reduction of Eb,x induced by the reduction EbP of Eb as above.

For any b ∈ G(Q̆p) with associated class [b] ∈ B(G), in [37] Rapoport-Zink introduced
the weakly admissible locus F `(G,µ, b)wa ⊂ F `(G,µ), which is an open subspace of

the adic space F `(G,µ) over Ĕ. Up to isomorphism, it depends only on [b]. Recall that
we have the finite set A(G,µ) ⊂ B(G) (see the beginning of section 3). By [36], we have

F `(G,µ, b)wa 6= ∅ ⇔ [b] ∈ A(G,µ).

Consider the diamond GrG,µ over Ĕ. Assume that [b] ∈ A(G,µ) and we define (see
subsection 6.4 and in particular Remark 6.9, where we don’t require [b] to be basic)

Grwaµ := GrwaG,µ,b ⊂ Grµ = GrG,µ

as the inverse image of F `(G,µ, b)wa,3 under the map πµ : Grµ → F `(G,µ)3 over

Spd Ĕ. The above Lemma 6.14 implies the following generalization of [3] Proposition
2.7 in the non minuscule case.
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Proposition 6.15. Assume that G is quasi-split and [b] ∈ A(G,µ). Then x ∈ GrG,µ(C,OC)
is weakly admissible if and only if for any standard parabolic P with associated standard
Levi M , any reduction bM of b to M , and any χ ∈ X∗(P/ZG)+, we have

degχ∗(Eb,x)P ≤ 0,

where (Eb,x)P is the reduction to P of Eb,x induced by the reduction EbP of Eb as above.

Proof. By definition, x ∈ Grwaµ (C,OC) ⇔ πµ(x) ∈ F `(G,µ, b)wa(C,OC), where πµ :
Grµ(C,OC) → F `(G,µ)(C,OC) is the Bialynicki-Birula map. Recall that we have
similarly π : GrG(C,OC)→ FilC(ωG). The map π is functorial. In particular, for P and
M as above, we have the following commutative diagram:

GrG(C,OC)

πG
��

// GrP (C,OC)

πP
��

// GrM (C,OC)

πM
��

FilC(ωG) // FilC(ωP ) // FilC(ωM ),

where GrG(C,OC)→ GrP (C,OC) is the inverse of the natural bijection GrP (C,OC)→
GrG(C,OC) induced by P ⊂ G and the Iwasawa decomposition as above, FilC(ωG) →
FilC(ωP ) is the map defined by [6] Proposition 4.2.17, and the other arrows are naturally
defined by P →M .

Let λ ∈ SM (µ) be such that x ∈ GrG,λ(C,OC). By Lemma 6.14, (Eb,x)P ×P M '
EbM ,prλ(x). For any χ ∈ X∗(P/ZG)+, since it factorizes through M , we have χ∗(Eb,x)P =
χ∗EbM ,prλ(x). By [2] Lemma 3.5.5,

cM1 (EbM ,prλ(x)) = λ] − κM (bM ) ∈ π1(M)Γ.

Therefore,

degχ∗(Eb,x)P = degχ∗EbM ,prλ(x)

= deg
(
χ(bM ), χ ◦ πM

(
prλ(x)

))
= deg

(
χ(bM ), χ ◦ λ

)
,

where the last two terms are the degrees of rank one filtered isocrystals. Thus we are
reduced to [6] Corollary 9.2.30. �

Before proceeding further, let us fix some conventions. Recall that we have the fol-
lowing commutative diagram for the Kottwitz and Newton maps (see [35] p. 162):

B(G)
ν //

κ

��

N (G)

��
π1(G)Γ

// π1(G)Γ,Q,

where we identify

π1(G)Γ,Q = π1(G)Γ
Q = X∗(ZG)Γ

Q = X∗(AG)Q,

where AG is the maximal split torus inside the center ZG of G. For an element v ∈ N (G),
in the following we will denote its image in π1(G)Γ,Q, by the same notation v for sim-
plicity. For a Levi subgroup M ⊂ G, we have the corresponding commutative diagram
as above for G, which maps to that for G, since all the maps in the diagram is functorial.

Let b ∈ G(Q̆p) be such that [b] ∈ B(G,µ) ⊂ A(G,µ) is basic. Recall that we have
the weakly admissible locus Grwaµ ⊂ Grµ, which is defined as the inverse image of
F `(G,µ, b)wa,3 under the map πµ : Grµ → F `(G,µ)3. Recall that we have also the
admissible locus

Graµ := GraG,µ,b ⊂ Grµ = GrG,µ,
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which is defined as the open Newton stratum Gr
Newt=[1]
µ inside the Newton stratification

(see subsection 6.4)

Grµ =
∐

[b′]∈B(G,0,νbµ−1)

GrNewt=[b′]
µ .

The theorem of Colmez-Fontaine (see [14] chapter 10) implies that under πµ : Grµ →
F `(G,µ)3, we have

πµ(Graµ) ⊂ F `(G,µ, b)wa,3,

see also the proof of Proposition 6.4. Thus we have the inclusion of locally spatial
diamonds over Spd Ĕ:

Graµ ⊂ Grwaµ .

Theorem 6.16. Assume that [b] ∈ B(G,µ) is basic. Then the following statements are
equivalent:
B(G,µ) is fully Hodge-Newton decomposable ⇐⇒ Graµ = Grwaµ .

Proof. With all the ingredients at hand, the arguments in the proof of [3] Theorem 6.1
apply here. We first assume that G is quasi-split.

The direction “⇒”: The arguments is identical to the direction (1) ⇒ (2) in [3]
Theorem 6.1, using

• the Newton stratification Grµ =
∐

[b′]∈B(G,0,νbµ−1) Gr
Newt=[b′]
µ ,

• [3] Corollary 4.15 and Lemma 4.11,
• the above Lemma 6.14,
• [3] Lemmas 6.2 and 6.3,
• the above Proposition 6.15.

We leave the details to the readers.

The direction “⇐”: We follow the arguments in the direction (2) ⇒ (1) of [3]
Theorem 6.1, except in the last step Proposition 6.12 will be used. For the reader’s
convenience, and to clarify the ideas, we sketch the arguments as follows. We use the
notations of [3].

We prove that if B(G,µ) is not fully Hodge-Newton decomposable, then Grwaµ ) Graµ,
i.e. there exists a point x ∈ Grwaµ (C,OC) \ Graµ(C,OC), for any algebraically closed

perfectoid field C|Ĕ.

By [3] Corollary 4.15, B(G, 0, νbµ
−1) is not fully Hodge-Newton decomposable, and

thus by [3] Proposition 4.13 (and its proof), there exists α ∈ ∆0 such that

〈−w0µ, ω̃α〉 > 1,

where ω̃α =
∑

γ∈Φ,γ|A=α ωγ . Let β ∈ ∆ such that β|A = α with corresponding coroot

β∨ ∈ ∆∨. Then 〈β∨, ω̃α〉 = 〈(β∨)�, ω̃α〉 = 1 and thus

〈−w0µ− β∨, ω̃α〉 > 0.

Let M be the standard Levi subgroup such that ∆0,M = ∆0\{α}. Write P the associated

standard parabolic subgroup. Then the element (β∨)] ∈ π1(G)Γ admits to a lift to
π1(M)Γ, which we still denote by

(β∨)] ∈ π1(M)Γ =
(
X∗(T )/〈Φ∨M 〉

)
Γ
.

Let [b′M ] ∈ B(M)basic be the basic element in B(M) such that it is mapped to (β∨)]

under the bijection κM : B(M)basic
∼→ π1(M)Γ. Let [b′] ∈ B(G) be the image of [b′M ]

under the natural map B(M)→ B(G). Then by construction

Mb′ = M, [b′] ∈ B(G, 0, νbµ
−1)
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and ([b′], νbµ
−1) is not Hodge-Newton decomposable.

Consider the Newton stratum Z := Gr
Newt=[b′]
µ attached to [b′]. Then naturally

Z(C,OC)
⋂

Grwaµ (C,OC) ⊂ Grwaµ (C,OC) \Graµ(C,OC). We claim that

Z(C,OC)
⋂

Grwaµ (C,OC) 6= ∅.

This will conclude the proof of the direction “⇐”.

Suppose the claim was not true, i.e. for any x ∈ Z(C,OC), x is non weakly admissible.
By the definition of Z, we have

Eb,x ' Eb′ .
By Proposition 6.15, there exists a standard maximal parabolic Q with the correspond-
ing Levi MQ, a reduction bMQ of b to MQ, a character χ ∈ X∗(Q/ZG)+ such that
degχ∗(Eb,x)Q > 0. Consider the map

v : X∗(Q/ZG)→ Z, χ′ 7→ degχ′∗(Eb,x)Q.

It defines an element v ∈ N (G) and we have v ≤ ν(Eb,x) by [3] Theorem 1.8. From this
inequality, we get Q = P and (Eb,x)Q is the canonical reduction of Eb,x to the maximal
parabolic Q = P .

Consider the decomposition GrG,µ(C,OC) =
∐
λ∈SM (µ) GrG,λ(C,OC). Let λ ∈ SM (µ)

such that x ∈ GrG,λ(C,OC). By Lemma 6.14 we have

Eb′M = (Eb′)P ×P M = (Eb,x)P ×P M = EbM ,prλ(x),

where bM = bMQ
is the above reduction of b to MQ = M . Therefore, by taking −cM1 (·),

we get

κM (b′M ) = κM (bM )− λ] ∈ π1(M)Γ,

which implies

νb′M = νbM − λ
] ⊗ 1 ∈ π1(M)Γ,Q

by our previous convention. As κM (b′M ) = (β∨)] by construction, we get

(1) λ] ⊗ 1 = νbM − (β∨)] ⊗ 1 ∈ π1(M)Γ,Q.

Next we pass to the dual side. Consider the inner form Jb of G. Let [b′′] ∈ B(Jb) be

the element which is mapped to [b′] ∈ B(G) under the bijection B(Jb)
∼→ B(G). Since G

is quasi-split and b′ admits reductions to P and M (by construction), the groups P and
M transfer to parabolic and Levi subgroups respectively of Jb, which we still denote by P
and M by abuse of notation. Moreover, there exist corresponding reductions b′′M and b′′P
of b′′ to M and P respectively. The isomorphism Jb,Q̆p ' GQ̆p induces an identification

GrJb,µ = GrG,µ, and by Theorem 6.10 we have

Gr
Newt=[b′′]
Jb,µ

= Gr
Newt=[b′]
G,µ = Z.

By Lemma 4.1, the bijection B(Jb)
∼→ B(G) restricts to a bijection B(Jb, µ

−1)
∼→

B(G, 0, νbµ
−1). As [b′] ∈ B(G, 0, νbµ

−1), we get [b′′] ∈ B(Jb, µ
−1). Consider the dual

local Shtuka datum (Jb, {µ−1}, [b′′]). We have the following diagram

Sht(Jb, µ
−1, b′′)∞

πdR

wwww

πHT

(( ((

GraJb,µ−1 Gr
Newt=[b′′]
Jb,µ

.

Recall that we have our point x ∈ Z(C,OC) = Gr
Newt=[b′′]
Jb,µ

(C,OC). Consider the
subset

πdR(π−1
HT (x)) ⊂ GrJb,µ−1(C,OC).
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For the parabolic P and Levi M of Jb, we consider the digram of the corresponding B+
dR-

affine Grassmannians. Under the identifications GrG,µ = GrJb,µ and SGM (µ) = SJbM (µ),
the decompositions GrG,µ =

∐
λ∈SGM (µ) GrG,λ and GrJb,µ =

∐
λ∈SJbM (µ)

GrJb,λ coincide.

We consider the side GrJb,µ−1 . Let z ∈ πdR(π−1
HT (x)) ⊂ GrJb,µ−1(C,OC) be a point.

Consider the decomposition of GrJb,µ−1(C,OC) indexed by SM (µ−1) := SJbM (µ−1). Let

λ′ ∈ SM (µ−1) be such that
z ∈ GrJb,λ′(C,OC).

By Lemma 6.14 again, we have

(Eb′′,z)×P M ' Eb′′M ,prλ′ (z)
.

Let λ0 := −w0µ ∈ SM (µ−1) be the maximal element. If λ′ = λ0, that is

λ′ = −w0µ ∈ X∗(T )+
M ⊂ X∗(T ),

then we have

λ′ ⊗ 1 = (−w0µ)⊗ 1 ∈ π1(M)Q =
(
X∗(T )/〈Φ∨M 〉

)
Q
.

Now we come back to the group G and consider M as a Levi subgroup of G. We have
our previous notation π1(M)Γ,Q, taking into account the Galois action on GQ̆p defined

by G over Qp. Then

(2) (λ′)] ⊗ 1 = (−w0µ)] ⊗ 1 ∈ π1(M)Γ,Q.

Recall that we have the corresponding element λ ∈ SM (µ) such that x ∈ GrJb,λ(C,OC).
Then

(λ′)] ⊗ 1 = −λ] ⊗ 1

= −νbM + (β∨)] ⊗ 1 ∈ π1(M)Γ,Q,

where the second “=” comes from equation 1. Combined with equation 2, we get

(3) − νbM = (−w0µ)] ⊗ 1− (β∨)] ⊗ 1 ∈ π1(M)Γ,Q.

Pushing forward equation 3 to π1(G)Γ,Q and taking 〈·, ω̃α〉, we get

〈−νb, ω̃α〉 = 〈−w0µ− β∨, ω̃α〉 > 0.

This is a contradiction, since b is basic in G and thus 〈−νb, ω̃α〉 = 0. Therefore, for any
z ∈ πdR(π−1

HT (x)) such that z ∈ GrJb,λ′(C,OC), we have

λ′ 6= λ0.

Now let x ∈ Z(C,OC) vary. Since GraJb,µ−1(C,OC) =
∐
x∈Z(C,OC) πdR(π−1

HT (x)), by

the above discussion, we get

GraJb,µ−1(C,OC)
⋂

GrJb,λ0(C,OC) = ∅.

As GraJb,µ−1 ⊂ GrJb,µ−1 is open and GrJb,λ0 ⊂ GrJb,µ−1 is dense by Proposition 6.12, we

must have
GraJb,µ−1(C,OC)

⋂
GrJb,λ0(C,OC) 6= ∅.

This contradiction implies that the claim is true: Z(C,OC)
⋂

Grwaµ (C,OC) 6= ∅. Thus
we have proved the direction “⇐”.

The general case: now consider the case G non necessarily quasi-split. Let Gad be
the adjoint group attached to G. Then we get a natural surjective morphism φ : GrG,µ →
GrGad,µad . Let [bad] ∈ B(Gad, µad) be the corresponding element under the bijection

B(G,µ)
∼→ B(Gad, µad). We consider the admissible locus and weakly admissible locus

of GrGad,µad with respective to bad. One checks easily that

GraG,µ = φ−1(GraGad,µad) and GrwaG,µ = φ−1(GrwaGad,µad).
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Thus we are reduced to the case G is adjoint. Let H be a quasi-split inner form of
G. Then H is adjoint and G = Jb∗ for some [b∗] ∈ B(H)basic = H1(Qp, H). Let

[bH ] ∈ B(H) be the image of [b] under the bijection B(G)
∼→ B(H). We can consider

the admissible locus and weakly admissible locus inside GrH,µ with respective to bH .
Under the identification GrG,µ = GrH,µ, we have

GraG,µ = GraH,µ and GrwaG,µ = GrwaH,µ.

Thus we are reduced to the quasi-split case as the last paragraph of the proof of [3]
Theorem 6.1.

�

Come back to the Hodge-Tate side Grµ−1 . For any algebraically perfectoid field C|Ĕ
and any x ∈ Grµ−1(C,OC), the inequality ν(E1, E1,x, f) ≤ ν(E1,x) (see subsection 6.3
and Proposition 3.4 (1)) implies that we have always the inclusion for open Newton and
Harder-Narasimhan strata:

Gr
Newt=[b]
µ−1 ⊂ Gr

HN=[b]
µ−1 .

Our previous efforts (cf. Theorems 5.1 and 6.10) imply the following enlarged version
of Theorem 6.16:

Corollary 6.17. Let [b] ∈ B(G,µ) be basic. The following statements are equivalent:

(1) B(G,µ) is fully Hodge-Newton decomposable,
(2) Graµ = Grwaµ ,

(3) Gr
Newt=[b]
µ−1 = Gr

HN=[b]
µ−1 .

Of course, one can make the above corollary into a similar version as Theorem 5.1, by
including the corresponding information for the dual local Shtuka datum (Jb, {µ−1}, [b−1]).
One can also generalize the results further to Gr≤µ and Gr≤µ−1 . We leave these tasks
to the reader.

7. Application to moduli of local G-Shtukas

Let (G, {µ}, [b]) be a local Shtuka datum. Fix a representative b ∈ G(Q̆p) of [b], and
let Sht(G,µ, b)∞ be the associated moduli space of local G-Shtukas of type {µ} with
infinite level.

Consider the Hodge-Tate period map of diamonds over Ĕ

πHT : Sht(G,µ, b)∞ −→ Gr
[b]
µ−1 ,

where we write Gr
[b]
µ−1 = Gr

Newt=[b]
µ−1 for the associated Newton stratum inside Grµ−1 for

simplicity. By subsection 6.3, the Harder-Narasimhan stratification on Grµ−1 induces a

Harder-Narasimhan stratification on Gr
[b]
µ−1 :

Gr
[b]
µ−1 =

∐
[b′]∈B(G,µ),[b′]≤[b]

Gr
[b],HN=[b′]
µ−1

where each Gr
[b],HN=[b′]
µ−1 ⊂ Gr

[b]
µ−1 is the pullback of Gr

HN=[b′]
µ−1 ⊂ Grµ−1 under the inclu-

sion Gr
[b]
µ−1 ⊂ Grµ−1 , which is empty if [b′] ≥ [b] and [b′] 6= [b] (see subsection 6.3). The

above stratification in turn induces a Harder-Narasimhan stratification on Sht(G,µ, b)∞
by diamonds

Sht(G,µ, b)∞ =
∐

[b′]∈B(G,µ),[b′]≤[b]

Sht(G,µ, b)HN=[b′]
∞ ,

where

Sht(G,µ, b)HN=[b′]
∞ = π−1

HT (Gr
[b],HN=[b′]
µ−1 ).

By Corollary 6.7, we have
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Corollary 7.1. For any non basic [b′] ∈ B(G,µ) such that [b′] ≤ [b], the stratum

Sht(G,µ, b)
HN=[b′]
∞ is a parabolic induction.

Of course, when [b] = [b0] is basic, the above Harder-Narasimhan stratification on
Sht(G,µ, b)∞ is trivial and thus Corollary 7.1 says nothing in this case.

We may also consider the Hodge-Tate period map of diamonds over Ĕ

πHT : Sht(G,≤ µ, b)∞ −→ Gr
[b]
≤µ−1 .

Then we have similar conclusion for Sht(G,≤ µ, b)∞ as above.

8. Application to Shimura varieties

Let (G,X) be an arbitrary Shimura datum. Let p be a prime number. Consider the
conjugacy class of Hodge cocharacters {µ} attached to X, which we view a conjugacy
class of cocharacters over Qp. Set G = GQp .

Let v|p be a place of the reflex field E = E(G,X) above p and E = Ev. Let
K ⊂ G(Af ) be a sufficiently small open compact subgroup. Attached to (G,X,K), we
have the Shimura variety ShK over the local reflex field E, which we view as an adic
space. Assume that K is of the form K = KKp with K ⊂ G(Qp) and Kp ⊂ G(Apf ).

Consider the p-adic flag variety F `(G,µ−1) over E, on which we have an action of
G(Qp). Let Gc denote the quotient of G by the maximal Q- anisotropic R-split subtorus
in the center ZG of G. Then we have an induced action Gc(Qp) on F `(G,µ−1). Let
Kc ⊂ Gc(Qp) be the induced open compact subgroup. The quotient space

[Kc \F `(G,µ−1)3]

exists as a small v-stack in the sense of [38]. The main results of [26] and [7] imply that
we have the Hodge-Tate period map

πHT : Sh3
K −→ [Kc \F `(G,µ−1)3],

which is a morphism of small v-stacks over E. More precisely, by [26] Theorem 1.2 the
universal p-adic local system over ShK is de Rham, thus we get a relative Hodge-Tate
filtration on it; by [7] Theorem 1.3, the type of this Hodge-Tate filtration is exactly
given by {µ−1}.

Noting that the Kc-action on F `(G,µ−1)3 preserves the Harder-Narasimhan strati-
fication

F `(G,µ−1)3 =
∐

[b]∈B(G,µ)

F `(G,µ−1)HN=[b],3,

we get a stratification on Sh3
K via πHT :

Sh3
K =

∐
[b]∈B(G,µ)

Sh
HN=[b]
K ,

where

Sh
HN=[b]
K = π−1

HT

([
Kc \F `(G,µ−1)HN=[b],3

])
.

By Theorem 3.9, we have

Corollary 8.1. For any non basic [b] 6= [b0], the stratum Sh
HN=[b]
K is a parabolic induc-

tion.

Similarly, the Kc-invariant Newton stratification

F `(G,µ−1)3 =
∐

[b]∈B(G,µ)

F `(G,µ−1)Newt=[b],3
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also induces a stratification19 on Sh3
K:

Sh3
K =

∐
[b]∈B(G,µ)

Sh
Newt=[b]
K ,

where

Sh
Newt=[b]
K = π−1

HT

([
Kc \F `(G,µ−1)Newt=[b],3

])
.

Then we have an inclusion of open strata

Sh
Newt=[b0]
K ⊂ Sh

HN=[b0]
K .

Theorem 5.1 implies

Corollary 8.2. If the associated pair (G, {µ}) is fully Hodge-Newton decomposable, then

Sh
Newt=[b0]
K = Sh

HN=[b0]
K .

We refer the reader to [13] 9.7.2 for some speculations on possible arithmetic appli-
cations related to the results above.

Remark 8.3. The readers who prefer diamonds can replace the above by the following
considerations. Let

ShKp = lim←−
Kp

Sh3
K

be the diamond of Shimura variety with infinite level at p and prime-to-p level Kp, on
which we have a natural action of G(Qp). Then we get the Hodge-Tate period map of
diamonds20 over E

πHT : ShKp −→ F `(G,µ−1)3,

which is G(Qp)-equivariant. We can define Harder-Narasimhan strata and Newton
strata on the diamond ShKp, which are inverse limits of the corresponding strata at
finite levels. Corollaries 8.1 and 8.2 admit the corresponding diamond versions.
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[16] U. Görtz, T.J. Haines, R.E. Kottwitz, D.C. Reuman, Dimensions of some affine Deligne-Lusztig
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Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 423-434.
[33] M. Rapoport, Period domains over finite and local fields, Proceedings of Symposia in Pure Mathe-

matics, vol. 62.1, 1997, 361-381.
[34] M. Rapoport, Accessible and weakly accessible period domains, Appendix of On the p-adic coho-

mology of the Lubin-Tate tower by P. Scholze, Ann. Sci. de l’École Normale Supérieure 51 (2018),
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