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Abstract. We enlarge the class of Rapoport-Zink spaces of Hodge type by modifying
the centers of the associated p-adic reductive groups. These such-obtained Rapoport-Zink
spaces are called of abelian type. The class of Rapoport-Zink spaces of abelian type is
strictly larger than the class of Rapoport-Zink spaces of Hodge type, but the two type
spaces are closely related as having isomorphic connected components. The rigid analytic
generic fibers of Rapoport-Zink spaces of abelian type can be viewed as moduli spaces of
local G-shtukas in mixed characteristic in the sense of Scholze.

We prove that Shimura varieties of abelian type can be uniformized by the associated
Rapoport-Zink spaces of abelian type. We construct and study the Ekedahl-Oort stratifi-
cations for the special fibers of Rapoport-Zink spaces of abelian type. As an application,
we deduce a Rapoport-Zink type uniformization for the supersingular locus of the moduli
space of polarized K3 surfaces in mixed characteristic. Moreover, we show that the Artin
invariants of supersingular K3 surfaces are related to some purely local invariants.
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1. Introduction

The theory of Rapoport-Zink spaces finds its origin in the work of Drinfeld in [11]. Let E
be a finite extension of Qp, and let Ωd

E be the complement of all E-rational hyperplanes in

the p-adic projective space Pd−1 over E. In [11] Drinfeld interpreted this rigid-analytic space
Ωd
E as the generic fibre of a formal scheme over OE parametrizing certain p-divisible groups.

He used this formal moduli scheme to p-adically uniformize certain Shimura curves and to
construct étale coverings of Ωd

E . In their foundational and seminal work [43], Rapoport
and Zink generalized greatly the construction of Drinfeld by introducing general formal
moduli spaces of p-divisible groups with EL/PEL structures, and proved these spaces M̆
can be used to uniformize certain pieces of general PEL type Shimura varieties. Moreover,
Rapoport and Zink constructed étale coverings MK of the generic fibers of these formal
moduli spaces, and realized these rigid analytic spaces as étale coverings of more general
non-archimedean period domains. Besides these importances in arithemetic geometry and
p-adic Hodge theory, it was conjectured by Kottwitz that the `-adic cohomology of these
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Rapoport-Zink spacesMK realizes the local Langlands correspondence for the related local
reductive group G, cf. [39] section 5.

Recently, in [30] Kim has constructed more general formal moduli spaces of p-divisible
groups with additional structures. (Here and throughout the rest of this introduction we
assume p > 2.) These formal schemes

M̆
are called of Rapoport-Zink spaces of Hodge type, associated to unramified local Shimura
data of Hodge type (G, [b], {µ}) (see below). The additional structures on p-divisible groups
are given by the so called crystalline Tate tensors, cf. [30] Definition 4.6, generalizing
the EL/PEL structures introduced by Rapoport-Zink (in the unramified case). Kim also
constructed a tower (MK)K of rigid analytic spaces (as usual, K ⊂ G(Qp) runs through
open compact subgroups of G(Qp)), when passing to the generic fibers of these formal
moduli schemes. These Rapoport-Zink spaces of Hodge type appear as local analogues of
the recent work of Kisin [32] on integral canonical models of Shimura varieties of Hodge type.
In [31] Kim has proved his Rapoport-Zink spaces of Hodge type can be used to uniformize
certain pieces of Shimura varieties of Hodge type. If the unramified local Shimura datum
of Hodge type comes from a Shimura datum of Hodge type, Howard and Pappas has given
another (global) construction of the associated Hodge type Rapoport-Zink spaces. We refer
to [26] for more details.

In this note, we show that we can in fact go ahead one step further: we will construct
some (slightly) more general formal and rigid analytic Rapoport-Zink spaces, and we will
show that these spaces can be used to uniformize (pieces of) Kisin’s integral canonical
models Shimura varieties of abelian type, cf. [32]. Moreover, we will give some interesting
applications to the moduli spaces of K3 surfaces in mixed characteristic.

There are several motivations for our work here. In our previous work [52], we constructed
perfectoid Shimura varieties of abelian type. One of the main motivations for this work is
to study the local geometric structures of these perfectoid Shimura varieties, and to study
the local geometric structures of Kisin’s integral models of Shimura varieties of abelian type
[32]. Another motivation is the recent developments in the theory of local Shimura varieties.
In [44], Rapoport-Viehmann conjectured the existence of a rigid analytic tower

(MK)K

associated to a local Shimura datum (G, [b], {µ}), where1

• G is a connected reductive group over Qp,
• {µ} is a conjugacy class of minuscule cocharacters µ : Gm → GQp

,

• [b] is a σ-conjugacy class in the Kottwitz set B(G,µ) (see [7] 2.3.4 for example)

These conjectural local Shimura varieties are intended to be generalizations of Rapoport-
Zink spaces, and there should be a theory in the local situation as good as the classical theory
of Shimura varieties ([10]). Recently, using the theory of perfectoid spaces ([47]), and the
developments in p-adic Hodge theory due to Fargues, Fargues-Fontaine, and Kedlaya-Liu
[14, 19, 29], Scholze has almost given a solution for Rapoport-Viehmann’s conjecture by
constructing moduli of local G-shtukas in mixed characteristic (cf. [48])

(ShtK)K

as some reasonable geometric objects. These geometric objects are called diamonds there,
a generalization of perfectoid spaces and analytic adic spaces. Along the way of con-
struction, we get an infinite level moduli space Sht∞, such that as diamonds we have
Sht∞ = lim←−K ShtK .

1Here we have followed [44] to write a local Shimura datum as (G, [b], {µ}).
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In fact, Scholze proved more: one can allow the conjugacy class of cocharacters {µ} non
minuscule, contrary to the original requirement of Rapoport-Viehmann in [44], and in fact
one can allow several {µ}’s. Thus this theory is the mixed characteristic analogue of the
theory of moduli of shtukas in the function fields case ([56]).

Although Scholze’s method makes a great success, it is purely generic: a priori, one has
no information on reduction mod p. In the case of EL/PEL Rapoport-Zink spaces MK ,
Scholze proved the associated diamondsM�K are isomorphic to his moduli spaces of local G-
shtukas ShtK . From the point of view of moduli, this means that one can switch p-divisible
groups with additional structures to local G-shtukas. Thus, in these classical cases, one
gets formal integral structures and can talk about reduction mod p. Assume that G is
unramified over Qp. Using Dieudonné theory, one can prove the special fibers of formal
Rapoport-Zink spaces (of EL/PEL/Hodge type) are closely related to the corresponding
affine Deligne-Lusztig varieties

XG
µ (b) := {g ∈ G(L)/G(W )| g−1bσ(g) ∈ G(W )µ(p)G(W )},

where W = W (Fp), L = WQ, and σ is the Frobenius. These objects are defined purely group
theoretically, and thus make sense for arbitrary (G, [b], {µ}) (as in the case of Scholze’s
moduli of local G-shtukas). These affine Deligne-Lusztig varieties play a crucial role in
understanding the reduction mod p of Shimura varieties, cf. [40].

In this paper, we introduce a class of local Shimura data, the so called unramified local
Shimura data of abelian type, and for each such datum (G, [b], {µ}), we construct a formal

scheme M̆, and a tower of rigid analytic spaces (MK)K such that

• the reduced special fiber Mred(Fp) ' XG
µ (b);

• the rigid analytic (adic) generic fiber M̆ad
η =MG(Zp);

• the associated diamonds M�K ' ShtK .

Moreover, we can prove that there exists a preperfectoid space M∞ over L such that

M∞ ∼ lim←−
K

MK ,

where the meaning of ∼ is as [50] Definition 2.4.1. This class of unramified local Shimura
data of abelian type is strictly larger than the class of unramified local Shimura data of
Hodge type. Thus, among all local Shimrua data, we find a class which is as large as possible
such that

• there exists a formal model M̆, such that M̆ad,�
η ' ShtG(Zp), Mred(Fp) ' XG

µ (b);
• there exists a preperfectoid space M∞, such that M�∞ ' Sht∞.

We remark that the analogue of the above two additional structures in the global situation
of Shimura varieties of abelian type are known by [32, 52]. They are not known for general
local Shimura data (or local shtuka data).

A local Shimura datum (G, [b], {µ}) is called of unramified Hodge type, if G is unramified,
and there exists an embedding (G, [b], {µ}) ↪→ (GL(V ), [b′], {µ′}) of local Shimura data, such
that {µ′} corresponds to (1r, 0n−r) for some integral 1 ≤ r ≤ n. Roughly, the class of local
Shimura data of Hodge type is the largest class for which the associated Rapoport-Zink
spaces can be realized as moduli of p-divisible groups with additional structures. Never-
theless, we introduce the following notion. A local Shimura datum (G, [b], {µ}) is called of
unramified abelian type, if there exists a unramified local Shimura datum of Hodge type
(G1, [b1], {µ1}) such that we have an isomorphism of the associated adjoint local Shimura
data (Gad, [bad], {µad}) ' (Gad1 , [b

ad
1 ], {µad1 }). This is the local analogue of a Shimura datum
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of abelian type2. We remark that although by definition we only change the centers of the
groups, there does not exist local Hodge embedding any more for a general local Shimura
datum of abelian type (G, [b], {µ}) (as in the corresponding global situation of Shimura
varieties). This means that the class of local Shimura data of (unramified) abelian type is
strictly larger than the class of (unramified) Hodge type. The groups G in this larger class
consist exactly of all classical groups, see section 4.

Our first main theorem is as follows. See Theorem 4.6, Proposition 4.15, Corollary 5.24.

Theorem 1.1. Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type. Then

there exists a formal scheme M̆(G, b, µ), which is formally smooth, formally locally of finite
over W , such that

M(G, b, µ)perf ' XG
µ (b).

Here M(G, b, µ)perf is the perfection of the special fiber M(G, b, µ), and XG
µ (b) is the affine

Deligne-Lusztig variety, considered as a perfect scheme by [61, 1]. The formal scheme

M̆ ' M̆(G, b, µ) is equipped with a transitive action of Jb(Qp), compatible with the action
of Jb(Qp) on XG

µ (b). Moreover, there exist a tower of rigid analytic spaces (MK)K and a
preperfectoid space M∞ such that

(1) M̆ad
η =MG(Zp),

(2) M∞ ∼ lim←−KMK ,

(3) M�K ' ShtK ,

(4) there exists a compatible system of étale morphism πdR :MK → F `admG,µ ,

(5) there exists a Hodge-Tate period morphism πHT :M∞ → F `G,−µ.

Here F `admG,µ is the admissible locus in the p-adic flag variety F `G,µ associated to (G, {µ}),
cf. [41] Definition A.6, and F `G,−µ is the p-adic flag variety associated to (G, {µ−1}). In
fact, we will see in Corollary 5.24 that πHT also factors through a locally closed subspace
F `bG,−µ ⊂ F `G,−µ.

The construction of M̆(G, b, µ) associated to (G, [b], {µ}) as above is based on the follow-
ing observations. Take any unramified local Shimura datum of Hodge type (G1, [b1], {µ1})
such that (Gad, [bad], {µad}) ' (Gad1 , [b

ad
1 ], {µad1 }). We have the associated formal Raoport-

Zink space M̆(G1, b1, µ1) constructed by Kim [30], by patching together Faltings’s construc-
tion of deformation ring for p-divisible groups (with crystalline Tate tensors) with Artin’s
criterion for algebraic spaces. By [61] Proposition 3.11, M(G1, b1, µ1)perf ' XG1

µ1
(b1). For

any local Shimura datum (G, [b], {µ}), we have a Jb(Qp)-equivariant surjective map

ωG : XG
µ (b) −→ cb,µπ1(G)Γ,

which factors through the set of connected components π0(XG
µ (b)). Here π1(G) is the

algebraic fundamental algebraic group of G and Γ = Gal(Qp|Qp). See subsection 2.2 for
the construction of this map and the element cb,µ ∈ π1(G). Moreover, by [7] Theorem 1.2,

Jb(Qp) acts transitively on π0(XG
µ (b)). For any local Shimura datum (G, [b], {µ}), by [7]

Corollary 2.4.2, we have a cartesian diagram

XG
µ (b) //

��

X
Gad1

µad
(bad)

��
cb,µπ1(G)Γ // cbad,µadπ1(Gad)Γ.

2More precisely, our local Shimura data of abelian type are the local analogues of Shimura data of
preabelian type.
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In particular we apply the above diagram to (G, [b], {µ}) and (G1, [b1], {µ1}) as above. Let
XG1
µ1

(b1)+ ⊂ XG1
µ1

(b1) be a fixed choice of fiber of the map ωG1 : XG1
µ1

(b1) → cb1,µ1π1(G1)Γ.

This is isomorphic to the corresponding local piece for XG
µ (b). Let

M̆(G1, b1, µ1)+ ⊂ M̆(G1, b1, µ1)

be the open and closed subspace corresponding to XG1
µ1

(b1)+. As XG
µ (b) = Jb(Qp)X

G
µ (b)+,

we get the formal scheme M̆(G, b, µ) whose special fiber satisfies M(G, b, µ)perf ' XG
µ (b).

By construction, this formal scheme does not depend on the choice of the Hodge type local
Shimura datum (G1, [b1], {µ1}). The other properties can be proved similarly.

Let
(
M(G, b, µ)K

)
K⊂G(Qp)

and
(
M(G1, b1, µ1)K1

)
K1⊂G1(Qp)

be the two towers associ-

ated to (G, [b], {µ}) and (G1, [b1], {µ1}) as above. By construction, the two towers are
locally isomorphic in the sense that there exist sub towers

(
M(G, b, µ)+

K

)
K⊂G(Qp)

and(
M(G1, b1, µ1)+

K1

)
K1⊂G1(Qp)

such that(
M(G, b, µ)+

K

)
K⊂G(Qp)

=
(
M(G1, b1, µ1)+

K1

)
K1⊂G1(Qp)

.

This implies in particular that F `admG,µ = F `admG1,µ1
. The tower

(
M(G, b, µ)K

)
K⊂G(Qp)

can

be recovered from
(
M(G, b, µ)+

K

)
K⊂G(Qp)

and π1(G)Γ by the action of either G(Qp) or

Jb(Qp). We expect that such results hold true for any local shtuka data (G, [b], {µ}) and
(G1, [b1], {µ1}) with the same adjoint data.

We note that the above construction is simpler than the corresponding global situation,
cf. [52, 32], where one has to make a quotient on each geometric connected component of
Shimura varieties of Hodge type.

In subsection 4.3 we will give a (non canonical local) moduli interpretation for the formal

scheme M̆(G, b, µ) associated to (G, [b], {µ}) as above. It will be desirable to find a more

canonical moduli interpretation for M̆(G, b, µ). After the first version of this paper appeared
online, Bültel and Pappas have recently found an intrinsic (and more canonical) moduli

interpretation for M̆(G, b, µ) with (G, [b], {µ}) of Hodge type, cf. [4]. They use a notion
of (G,µ)-displays, which is group theoretical. We naturally expect that the formal scheme

M̆(G, b, µ) associated to a general abelian type datum (G, [b], {µ}) admits a similar moduli
interpretation. We decide to discuss nothing about (G,µ)-displays here, and we will leave
the task of finding a more canonical moduli interpretation to a future work, where we plan
to treat arbitrary unramified local Shimura data.

If the unramified local Shimrua datum of abelian type comes from a Shimura datum of
abelian type (G,X), we can prove the following uniformization theorem. LetKp ⊂ G(Apf ) be

a fixed sufficiently small open compact subgroup. Consider SK , the Kisin integral canonical
model over W of the Shimura variety ShK with K = G(Zp)Kp. Let

φ : Q→ GG

be a Langlands-Rapoport parameter with [b] = [b(φ)], with the associated reductive group
Iφ over Q. Fix a Langlands-Rapoport parameter φ0 : Q → GGad for the adjoint group

such that φad = φ0. In section 6 we will construct a subspace Zφ0,Kp ⊂ SK , such that the
formal completion of SK along Zφ0,Kp can be defined. The following theorem was proved by
Rapoport and Zink in the PEL type case ([43]), and by Kim in the Hodge type case ([31], see
also [26]). It can be viewed as the geometric version of the Langlands-Rapoport description
for the underlying Fp-points, cf. [33]. In fact, it was pointed out in the introduction of [44]
that the works of Kisin [32, 33] should yield new Rapoport-Zink spaces (comp. [26]). Here
we construct these spaces locally, and show that they admit global application (comp. [44]
Remark 5.9). See Theorems 6.7 and 6.13.
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Theorem 1.2. We have an isomorphism of formal schemes over W

Θ :
∐

[φ],φad=φ0

Iφ(Q) \ M̆ ×G(Apf )/Kp ∼−→ ŜK/Zφ0,K
p ,

where φ0 : Q → GGad is a fixed admissible morphism such that [b] = [b(φ)],∀φ, φad = φ0.

When [b] is basic, we have Zφ0,Kp = S
b
K which is the basic locus, and the above isomorphism

reduces to

Θ : Iφ(Q) \ M̆ ×G(Apf )/Kp ∼−→ ŜK/SbK
.

Unsurprisingly, we apply the tricks of Kisin as in [33] to deduce the theorem from the
Hodge type case. One can also deduce rigid analytic and perfectoid versions of the above
uniformization theorem.

We consider the examples of basic GSpin and special orthogonal groups Rapoport-Zink
spaces. Let M̆1 = M̆(GSpin, b, µ),M̆ = M̆(SO, b′, µ′) be the associated Rapoport-Zink
spaces, where GSpin = GSpin(V,Q), SO = SO(V,Q) are unramified GSpin and special
orthogonal groups associated to a quadratic space (V,Q) over Qp, with dimV = n + 2 for
some integer n ≥ 1. By considering the G-zip associated to the universal p-divisible group
with crystalline Tate tensors on the special fiberM1 of M̆1, we can define an Ekedahl-Oort
stratification on M1, and thus on M1red (the reduced special fiber), which is the local
analogue of the Ekedahl-Oort stratification for Shimura varieties of Hodge type, cf. [60].
The index set of this stratification is a subset JWb of the Weyl group of G1, which is then in
bijection with some set of integers. For each w ∈ JWb, we have the associated Ekedahl-Oort
stratum M1w of M1red. By Corollary 7.8 M̆ ' M̆1/p

Z, we get an induced Ekedahl-Oort
stratification of Mred. On the other hand, in [26], Howard and Pappas introduced another
stratification for the reduced special fiber M1red:

M1red =
∐
Λ

M◦1Λ,

where Λ runs through the set of vertex lattices, see loc. cit. section 5. The following
theorem is proved in subsection 7.4: see Theorem 7.10 and Corollary 7.11 for more precise
statements.

Theorem 1.3. Each Ekedahl-Oort stratum M1w of M1red is some (disjoint) union of
Howard-Pappas strata. Similar result holds for Mred.

For a similar result in the case of the basic unitary group GU(1, n − 1) Rapoport-Zink
space, see [55] Theorem D.

In fact, in subsection 7.1 we construct the Ekedahl-Oort stratification for the special
fibers of arbitrary Rapoport-Zink spaces of abelian type, cf. Proposition 7.1. We can
compare our geometric construction with the Ekedahl-Oort stratification for affine Deligne-
Lusztig varieties (with hyperspecial levels) in [20], cf. Proposition 7.2. In subsection 7.2,
we discuss a theorem of similar phenomenon as Theorem 1.3 (cf. Theorem 7.5) for a
unramified local Shimura datum of abelian type (G, [b], {µ}), with (G, {µ}) fully Hodge-
Newton decomposable in the sense of [21] Definition 2.1. Our discussion in this more
general setting is indeed motivated by [21] Theorems 2.3 and 2.5, where a posteriori the
classification there (for minuscule µ) lies in our class of local Shimura data of abelian type.
The basic GSpin and special orthogonal groups Rapoport-Zink spaces are just special cases
where one can make things more explicit (by the work of [26]).

Specializing further to the case of K3 surfaces, we have some interesting applications.
Take an integer d ≥ 1 such that p - 2d. Let M2d,K be the moduli spaces of K3 surfaces
f : X → S together with a primitive polarization ξ of degree 2d and a K-level structure
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over W . Recall that by the global integral Torelli theorem (cf. [37] Corollary 5.15), the
integral Kuga-Satake period map

ι : M2d,K −→ SK

is an open immersion, where SK is the integral canonical model over W of the Shimura
variety ShK for G = SO(2, 19), see subsection 7.5 for more details. Here, we assume that
K = KpK

p with Kp = G(Zp) is the fixed hyperspecial subgroup. Let X be a supersingular

K3 surface over Fp, then the discriminant of its Néron-Severi lattice is equal to

−p2σ0(X)

for some integer 1 ≤ σ0(X) ≤ 10. The integer σ0(X) is called the Artin invariant of X.
The following corollary is a consequence of the above theorems. Note that the group G is
adjoint and thus φ = φ0.

Corollary 1.4 (Corollaries 7.18 and 7.20 ). (1) Let φ, [b] and Zφ,Kp be as in the above

Theorem 1.2, and let Jφ be the pullback of Zφ,Kp under the open immersion M2d,K ↪→
SK of special fibers. Then we have the following identity

M̂2d,K/Jφ
=
∐
j∈I
N̆/Γj ,

where N̆ ⊂ M̆(G, b, µ) is an open subspace, Γj ⊂ Jb(Qp) are some discrete sub-

groups. If moreover b = b0 is basic, then Jφ = M
ss
2d,K which is the supersingular

locus in M2d,K , and the above disjoint union is finite.

(2) Let x ∈ M
ss
2d,K(Fp) be a point, and Xx the associated supersingular K3 surface over

Fp. Then we have the identity between the Artin invariant σ0(Xx) and the type
t(Λx):

σ0(Xx) =
t(Λx)

2
,

where Λx is the vertex lattice attached to the special lattice associated to (Xx, ξx),
cf. subsection 7.7.

We briefly describe the structure of this article. In section 2, we review some basics
about affine Deligne-Lusztig varieties which will be used later. In section 3, we first re-
call the Rapoport-Viehmann conjecture on the theory of local Shimura varieties, then we
concentrate on the case of unramified local Shimura datum of Hodge type, and review the
construction of Kim [30] on the associated Rapoport-Zink spaces of Hodge type. In section
4, we introduce unramified local Shimura datum of abelian type, and construct the associ-
ated formal and rigid analytic Rapoport-Zink spaces. Section 5 is devoted as a review the
general framework of moduli of local G-shtukas in mixed characteristic due to Scholze, to
give a moduli interpretation of the generic fibers of our Rapoport-Zink spaces of abelian
type. In section 6, we turn to the global situation of Shimura varieties of abelian type,
and prove a Rapoport-Zink type uniformization theorem in this setting. In section 7, we
discuss some applications of our theory. Motivated by the study of Artin invariants of K3
surfaces, we first construct the Ekedahl-Oort stratification for special fibers of Rapoport-
Zink spaces. Then we work on the examples of basic GSpin and special orthogonal groups
Rapoport-Zink spaces, and then more specially on the case of moduli spaces of K3 surfaces.
These examples are just (related to) special cases of the fully Hodge-Newton decomposable
Shimura varieties introduced in [21] (see also [54]). Finally, we investigate p-adic period
domains in the basic orthogonal case in the appendix following Fargues.
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2. Affine Deligne-Lusztig varieties in mixed characteristic

In this section, we recall some basic facts about affine Deligne-Lusztig varieties in mixed
characteristic, which will be used later.

Fix a prime p. Let G be a connected reductive group over Qp, which we assume to be

unramified. Fix T ⊂ B a maximal torus inside a Borel subgroup of G. Let W = W (Fp) be
the ring of Witt vectors, and L = WQ. Denote σ as the Frobenius on L and W .

2.1. Affine Deligne-Lusztig varieties. For b ∈ G(L) and a conjugacy class {µ} of cochar-
acters µ : Gm → GQp

, we define the affine Deligne-Lusztig sets

XG
µ (b) = {g ∈ G(L)/G(W )| g−1bσ(g) ∈ G(W )µ(p)G(W )},

and
XG
≤µ(b) = {g ∈ G(L)/G(W )| g−1bσ(g) ∈

⋃
µ′≤µ

G(W )µ′(p)G(W )}.

Here, for dominant elements µ, µ′ ∈ X∗(T ), we say that µ′ ≤ µ if µ − µ′ is a non-negative
integral linear combination of positive coroots. The isomorphism classes of both XG

µ (b) and

XG
≤µ(b) depend only on the σ-conjugacy class [b] of b, and they are non empty if and only if

[b] ∈ B(G,µ). Here B(G,µ) is the Kottwitz subset inside B(G), the set of all σ-conjugacy
classes in G(L). We assume [b] ∈ B(G,µ) from now on. The triple (G, [b], {µ}) will be
called a local shtuka datum in the section 5, cf. Definition 5.9. By construction, we have
XG
µ (b) ⊂ XG

≤µ(b). When {µ} is minuscule, we have XG
≤µ(b) = XG

µ (b).

By the recent work of Zhu [61] and Bhatt-Schoze [1], there exist perfect scheme structures
on the sets XG

µ (b) and XG
≤µ(b). More precisely, XG

µ (b) and XG
≤µ(b) are the sets of Fp-points

of some perfect schemes over Fp, which are locally closed subschemes of the Witt vector
affine Grassmannian GrG (cf. [61, 1]). It will be useful to briefly recall the related moduli
interpretation. Denote E0 the trivial G-torsor on W . For any perfect Fp-algebra R, we have
(cf. [61]1.2 and 3.1) GrG(R) = {(E , β)}/ ', where

• E is a G-torsor in W (R),
• β : E [1/p] ' E0[1/p] is a trivialization,

and

XG
≤µ(b)(R) = {(E , β) ∈ GrG(R)|Invx(β−1bσ(β)) ≤ µ, ∀x ∈ SpecR},
XG
µ (b)(R) = {(E , β) ∈ GrG(R)|Invx(β−1bσ(β)) = µ, ∀x ∈ SpecR},

where Invx is the relative position at x. By abuse of notation, we denote also by XG
≤µ(b)

and XG
µ (b) the associated perfect schemes. By construction, XG

µ (b) ⊂ XG
≤µ(b) is an open

subscheme.

Lemma 2.1. Let (G1, [b1], {µ1}) → (G2, [b2], {µ2}) be a morphism (cf. Definition 3.3) It
induces a natural map

XG1
≤µ1

(b1)→ XG2
≤µ2

(b2).

If G1 → G2 is a closed immersion, the above map is a closed immersion.

Proof. The first statement is clear. For the second statement, see [30] Lemma 2.5.4 (1) and
[26] 2.4.4. �
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2.2. Connected components. In [7] 2.3.5, Chen, Kisin and Viehmann introduced a no-
tion of connected components for the affine Deligne-Lusztig sets XG

≤µ(b) by some ad hoc

methods, since the algebro-geometric structure on XG
≤µ(b) had not been known by then. We

denote by π0(XG
≤µ(b) the set of connected components defined by Chen-Kisin-Viehmann in

such a way. By resorting on the perfect scheme structure, we have a naturally defined
notion of connected components for XG

≤µ(b). It is conjectured that the two definitions co-

incide, cf. [61] Remark 3.2 and [7] 2.3.5. This is known in the case of unramified EL/PEL
Rapoport-Zink spaces, cf. [7] Theorem 5.1.5.

Let π1(G) be the quotient3 of X∗(T ) by the coroot lattice of G. There is the Kottwitz
homomorphism

ωG : G(L)→ π1(G)

for which an element g ∈ G(W )µ(p)G(W ) ⊂ G(L) is sent to the class of µ. Recall that for
our pair (b, µ) we assume that [b] ∈ B(G,µ). Then there is an element cb,µ ∈ π1(G) such

that ωG(b)− µ = (1− σ)(cb,µ). The π1(G)Γ-coset of cb,µ is uniquely determined. Here and

the following, Γ = Gal(Qp/Qp) is the local Galois group. As ωG is trivial on G(W ), when

restricting to XG
≤µ(b) ⊂ G(L)/G(W ), by [7] 2.3 we have a Jb(Qp)-equivariant map

ωG : XG
≤µ(b) −→ cb,µπ1(G)Γ,

which factors through π0(XG
≤µ(b)). Thus we get a commutative diagram

XG
≤µ(b)

����

ωG

''
π0(XG

≤µ(b)) // cb,µπ1(G)Γ.

Therefore, the non empty fibers of the map ωG : XG
≤µ(b) → cb,µπ1(G)Γ are unions of

connected components of XG
≤µ(b). Recall the following main theorem of [7].

Theorem 2.2 ([7] Theorems 1.2 and 1.1). Assume that µ is minuscule.

(1) Jb(Qp) acts transitively on π0(XG
µ (b)).

(2) Assume that Gad is simple, and (µ, b) is Hodge-Newton indecomposable in G. Then
ωG induces a bijection

π0(XG
µ (b)) ' cb,µπ1(G)Γ

unless [b] = [µ(p)] with µ central, in which case

XG
µ (b) ' G(Qp)/G(Zp)

is discrete.

Assume that µ is minuscule. By (1) of the above theorem, all non empty fibers of
ωG : XG

≤µ(b) −→ cb,µπ1(G)Γ are isomorphic to each other under the transition induced by

the action of Jb(Qp). Fix a point x0 ∈ Im(ωG : XG
µ (b) → cb,µπ1(G)Γ) (Soon we will show

that ωG is surjective). Let

XG
µ (b)+ ⊂ XG

µ (b)

be the fiber of ωG over x0. By (1) of the above theorem, we have the equality

XG
µ (b) = Jb(Qp)X

G
µ (b)+.

3We note that π1(G) is finite if G is semisimple.
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In the following, we will not need to work on each connected component of XG
µ (b). The

subspace XG
µ (b)+ and the equality above will be all what we need.

Now let µ be arbitrary. As in [33] 1.2.20 and 1.2.15, if we take υ = σ(µ), we have a
natural bijection

XG
υ (b)

∼−→ XG
µ (b), g 7→ σ−1(b−1g),

and similarly
XG
≤υ(b)

∼−→ XG
≤µ(b).

For XG
≤υ(b), as we can choose b ∈ [b] such that b ∈ G(W )σ(µ(p))G(W ), we have 1 ∈ XG

≤υ(b)

and thus cb,υ = 1 (we note that the element cb,µ can be defined for arbitrary µ). Therefore,

we may assume the element cb,µ = 1 by working on XG
≤υ(b) in the following.

Lemma 2.3. (1) The restriction of ωG : G(L) → π1(G) to G(Qp) induces a surjective
map

ωG : G(Qp)→ π1(G)Γ.

(2) The map Jb(Qp)→ π1(G)Γ is surjective.

Proof. For (1): this is contained in Lemma 1.2.3 of [33].
For (2): in the case that (G, [b], {µ}) comes from a Hodge type Shimura datum (G, X)

unramified at p (and ZG is a torus), see Lemma 4.6.4 of [33]. The arguments there work
also in the general case. �

With the above convention, we have

Proposition 2.4. The map
ωG : XG

≤µ(b) −→ π1(G)Γ

is surjective. In particular we get a surjection

π0(XG
≤µ(b)) � π1(G)Γ.

Proof. By Lemma 2.3.6 of [7], the map ωG is compatible with the Jb(Qp)-actions on both
sides. By construction, Jb(Qp) acts on π1(G)Γ by left multiplication via the map Jb(Qp)→
π1(G)Γ, which is surjective by (2) of Lemma 2.3. Thus ωG : XG

≤µ(b)→ π1(G)Γ is surjective.
�

We continue to assume that µ can be arbitrary. For a reductive group G over Qp, we
write ZG as its center.

Proposition 2.5. Let (G1, [b1], {µ1})→ (G2, [b2], {µ2}) be a morphism. If G2 = G1/Z for
some central group Z ⊂ ZG1, we have the following cartesian diagram

XG1
≤µ1

(b1) //

ωG1

��

XG2
≤µ2

(b2)

ωG2

��
cb1,µ1π1(G1)Γ // cb2,µ2π1(G2)Γ.

Proof. This is contained in [7] Corollary 2.4.2. �

Let the notations be as in the above proposition. Combined with Proposition 2.4, we get

Corollary 2.6. Let x1 ∈ cb1,µ1π1(G1)Γ be a point and x2 ∈ cb2,µ2π1(G2)Γ be its image

under cb1,µ1π1(G1)Γ → cb2,µ2π1(G2)Γ. Let XG1
≤µ1

(b1)+ and XG2
≤µ2

(b2)+ be the fibers of ωG1

and ωG2 at x1 and x2 respectively, which are non empty by Proposition 2.4. Then the map

XG1
≤µ1

(b1)→ XG2
≤µ2

(b2) induces a bijection

XG1
≤µ1

(b1)+ ∼−→ XG2
≤µ2

(b2)+.
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We still keep the above notations.

Lemma 2.7. If π1(G1)Γ → π1(G2)Γ is surjective, then the map XG1
≤µ1

(b1) → XG2
≤µ2

(b2)
induces an isomorphism

XG1
≤µ1

(b1)/Z(Qp) ' XG2
≤µ2

(b2).

Proof. This is implied by the proof of [7] Corollaries 2.4.2 and 2.4.3: under the assumption

that π1(G1)Γ → π1(G2)Γ is surjective, all fibers of XG1
≤µ1

(b1)→ XG2
≤µ2

(b2) are torsors under

X∗(Z)Γ. The group Z(Qp) acts on XG1
≤µ1

(b1) via the natural map Z(Qp)→ X∗(Z)Γ. �

3. Rapoport-Zink spaces of Hodge type

Following Rapoport-Viehmann, we first review the general conjecture on the theory of
local Shimura varieties in [44]. Then we concentrate on the Hodge type case, cf. [30, 26].

3.1. Local Shimura data and local Shimura varieties. Recall the following definition
of Rapoport-Viehmann.

Definition 3.1 ([44] Definition 5.1). A local Shimura datum over Qp is a triple (G, [b], {µ})
where

• G is a connected reductive group over Qp,
• [b] ∈ B(G) is a σ-conjugacy class,
• {µ} is a conjugacy class of cocharacters µ : Gm → GQp

,

such that the following conditions are satisfied

(1) [b] ∈ B(G,µ),
(2) {µ} is minuscule.

Associated to a local Shimura datum, we have

• the reflex field E = E(G, {µ}), which is the field of definition of {µ} inside the fixed
algebraic closure Qp,
• the flag variety F `G,µ, considered as a rigid analytic space (or an adic space) over

Ĕ, the completion of the maximal unramified extension of E,
• the reductive group Jb over Qp, for b ∈ [b], which up to isomorphism only depends

on [b]. The group Jb(Qp) acts on F `G,µ,
• the weakly admissible open subspace F `waG,µ ⊂ F `G,µ defined in [43] 1.35 and [9]

Definition 9.5.4. The action of Jb(Qp) on F `G,µ stabilizes F `waG,µ.

In fact, if G is unramified, we have also (cf. the last section)

• the affine Delligne-Lusztig variety XG
µ (b) over Fp (which will be expected to be the

special fiber of some formal model of the following local Shimura variety MG(Zp),
cf. Conjecture 3.2).

Let (G, [b], {µ}) be a local Shimura datum, with local reflex field E. We have the following
conjecture ([44] 5.1):

Conjecture 3.2 (Rapoport-Viehmann). There is a tower of rigid analytic spaces over SpĔ,

(MK)K ,

where K runs through all open compact subgroups of G(Qp), with the following properties:

(1) the group Jb(Qp) acts on each space MK ,
(2) the group G(Qp) acts on the tower (MK)K as Hecke correspondences,
(3) the tower is equipped with a Weil descent datum over E,



12 XU SHEN

(4) there exists a compatible system of étale and partially proper period maps

πK :MK → F `waG,µ

which is equivariant for the action of Jb(Qp).

In fact, in [44] 5.1 there is a more precise statement on the point (4) of the conjecture.
In particular, there should be an open subspace

F `aG,µ ⊂ F `waG,µ,

which should be the image of the period maps πK for all K. In fact, Rapoport and Zink
conjecture that there exists a Qp-local system with G-structure over F `aG,µ which interpo-
lates the p-adic crystalline Galois representations attached to all classical points. Moreover,
the tower (MK)K⊂G(Qp) should be the geometric realization (i.e. spaces of lattices with
level structures) of this universal Qp-local system with G-structure over F `aG,µ. We refer to

[44] 5.1, [43] section 1, [9] Conjecture 11.4.4, and [23] Conjecture 2.3 for more details. This
conjecture has been known for the local Shimura data which arise from local EL/PEL data
([43]), and the unramified local Shimura datum of Hodge type ([30]). In both cases, these
spacesMK are finite étale covers of the rigid analytic generic fibers of some formal schemes
M̆ over SpfOĔ , which are formal moduli spaces of p-divisible groups with some additional

structures. The special fibers of these formal schemes M̆ are the affine Deligne-Lusztig
varieties which we introduced in the last section. In section 5 we will give a partial solution
of the above conjecture by applying Scholze’s ideas and methods in [48].

It will be useful to make a definition for morphisms of local Shimura data.

Definition 3.3. Let (G1, [b1], {µ1}), (G2, [b2], {µ2}) be two local Shimura data. A morphism

(G1, [b1], {µ1})→ (G2, [b2], {µ2})
is a hommorphism of algebraic groups f : G1 → G2 sending ([b1], {µ1}) to ([b2], {µ2}).

If (G1, [b1], {µ1}) → (G2, [b2], {µ2}) is a morphism of local Shimura data, then it is con-
jectured ([44] Properties 5.3 (iv)) that for any open compact subgroups K1 ⊂ G1(Qp),K2 ⊂
G2(Qp) with f(K1) ⊂ K2, there exists a morphism of the associated local Shimura varieties

M(G1, b, µ)K1 −→M(G2, b2, µ2)K2 × SpĔ1,

and when G1 → G2 is a closed immersion these are closed embeddings for K1 = K2∩G1(Qp).

3.2. Local Shimura data of Hodge type. Now we recall the definition of a special class
of local Shimura data (cf. [44] Remark 5.4 (i)):

Definition 3.4. A local Shimura datum (G, [b], {µ}) is called of Hodge type, if there exists
an embedding f : G ↪→ GL(V ) and a local Shimura datum (GL(V ), [b′], {µ′}) with {µ′}
corresponds to (1r, 0n−r) for some integer 1 ≤ r ≤ n = dimV , such that [b], {µ} are mapped
to [b′], {µ′} under f .

If G is moreover unramified, by [32] Lemma 2.3.1, we can find some Zp-lattice VZp ⊂ V
such that G ↪→ GL(V ) is induced by an embedding GZp ↪→ GL(VZp), where GZp is a
reductive model of G over Zp.

Definition 3.5. A local Shimura datum of Hodge type (G, [b], {µ}) is called unramified, if
G is unramified.

We note that for a unramified local Shimura datum of Hodge type (G, [b], {µ}), the local

reflex field E is a unramified extension of Qp. Thus Ĕ = L,OĔ = OL = W where as before

W = W (Fp), L = WQ. We will fix a reductive model GZp of G over Zp.
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Remark 3.6. The above definition of unramified local Shimura data of Hodge type is more
general than that in [26] Definition 2.3.3. Moreover, for a unramified local Shimura datum
of Hodge type (G, [b], {µ}) in the sense of [26], one always has ZG ⊃ Gm.

We want to classify local Shimura data of Hodge type. Let (G, [b], {µ}) be a given
local Shimura datum. Take any faithful representation V of G over Qp, so that we get
an embedding ρ : G ↪→ GL(V ). Therefore we get a conjugacy class {µ′} of cocharacters
µ′ = ρQp ◦ µ : Gm → GL(V )Qp . Let N(G) be the set of Newton points of G, cf. [42] 1.7.

Recall that the maps

νG : B(G)→ N(G), κG : B(G)→ π1(G)Γ

are functorial in G, cf. [42] 1.9 and 1.15. We get in particular a map

B(G,µ)→ B(GL(V ), µ′).

Let [b′] ∈ B(GL(V ), µ′) be the image of [b] under this map. The triple (GL(V ), [b′], {µ′})
is a local Shimura datum if and only if {µ′} is minuscule and corresponds to (1r, 0n−r) for
some integer 1 ≤ r ≤ dimV . In which case (G, [b], {µ}) is of Hodge type. As above, let
G be a reductive group over Qp and {µ} be a conjugacy class of minuscule cocharacters
µ : Gm → GQp

. In [51] Serre classified the pair (G, {µ}) for which there exists a faithful

representation V of G such that the induced class of cocharacters {µ′} under the embedding
G ↪→ GL(V ) corresponds to (1r, 0n−r) for some integer 1 ≤ r ≤ dimV . It turn out the
simple factors of GadQp

are groups of type A,B,C or D, cf. [51] section 3.

The following examples of local Shimura datum of Hodge type are standard.

Example 3.7. (1) Let (G, [b], {µ}) be a local Shimura datum which comes from a local
EL/PEL datum, then it is of Hodge type.

(2) Let (G,X) be a Shimura datum of Hodge type, i.e. there exists some embedding into
the Siegel Shimura datum (G,X) ↪→ (GSp, S±). Let µ be the cocharacter associated
to X. Take any [b] ∈ B(GQp , µ). Then the local Shimura datum (GQp , [b], {µ}) is of
Hodge type.

Here is an example of non Hodge type local Shimura datum.

Example 3.8 (See [44] Example 5.5). Let G = PGLn, µ be any non trivial minuscule
cocharacter, and [b] ∈ B(G,µ) be arbitrary. Then the local Shimura datum (G, [b], {µ}) is
not of Hodge type.

3.3. Rapoport-Zink spaces of Hodge type. Throughout the rest of this section, we
assume that p > 2. Let (G, [b], {µ}) be a unramified local Shimura datum of Hodge type.

Kim ([30]) constructs a formal moduli scheme M̆ = M̆(G, b, µ) over SpfW parametrizing
p-divisible groups with crystalline Tate tensors. We briefly review the related constructions
in this subsection. By abuse of notation, we write also G as the fixed associated reductive
group scheme over Zp. Then there exists a faithful representation

ρ : G ↪→ GL(Λ),

such that the induced cocharacter µ′ = ρQp ◦µ : Gm → GL(Λ⊗Qp) is minuscule. Let Λ∨ be

the dual lattice, and Λ⊗ be the tensor algebra of Λ⊕Λ∨. By Proposition 1.3.2 of [32], there
exists a finite collection of tensors {sα ∈ Λ⊗}α∈I such that ρ : G ⊂ GL(Λ) is the schematic
stabilizer of (sα). We fix a representative µ. Let Λ ⊗W = Λ0 ⊕ Λ1 be the decomposition
of Λ⊗W according to the weights of µ, which in turn induces a filtration Fil•Λ⊗W with
Fil0Λ⊗W = Λ⊗W,Fil1Λ⊗W = Λ1. We assume that rank Λ = n, rank Λ1 = d. We note
that Pµ := Aut(Λ, sα,Fil•Λ⊗W ) is a parabolic subgroup of GW .
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By our assumption and the classical Dieudonné theory, there exists a p-divisible group X0

of dimension d and height n over Fp, together with an isomorphism ε : D(X0) ' (Λ⊗W, bσ),
where D(X0) is the contravariant Dieudonné module of X0. The pair (X0, ε) is unique up
to a unique isomorphism and we fix it in the sequel. Then we can regard sα ⊗ 1 as tensors
in D(X0)⊗ via ε. We note that bσ fixes (sα⊗ 1) and (sα⊗ 1) lie in Fil1Λ⊗W . Each sα⊗ 1
can be regarded as a map 1 := D(Qp/Zp) → D(X0)⊗, compatible with the filtrations, and
such that the induced map 1→ D(X0)⊗[1

p ] is Frobenius-invariant, i.e. sα⊗1 is a crystalline

Tate tensor of X0, cf. [30] Definition 4.6.
Let NilpW be the category of W -algebras on which p is locally nilpotent. Let R ∈ NilpW

and X be a p-divisible group on SpecR. Consider the contravariant Dieudonné crystal
D(X) attached to X. Then as usual there is a decreasing (Hodge) filtration Fil•D(X)R on
D(X)R with locally free graded pieces over R. Here D(X)R is the value of D(X) at the

trivial PD-thickening R
id→ R. Namely, Fil0D(X)R = D(X)R,Fil1D(X)R = (LieX)∨ and

Fil2D(X)R = 0. As above, a crystalline Tate tensor of X is a morphism tα : 1→ D(X)⊗ of
crystals, such that tαR : 1R → D(X)⊗R is compatible with the filtrations, and the induced

map tα : 1→ D(X)⊗[1
p ] is Frobenius-invariant.

Denote by NilpsmW the full subcategory of NilpW consisting of formally smooth formally
finitely generated W/pm-algebras for m ≥ 1. We use the following version of Rapoport-Zink
functor, cf. [61] Definition 3.8, which is equivalent to Definition 4.6 of [30].

Definition 3.9. The Rapoport-Zink space associated to the unramified local Shimura datum
of Hodge type is the functor M̆ on NilpsmW defined by M̆(R) = {(X, (tα)α∈I , ρ)}/ ' where

• X is a p-divisible group on SpecR,
• (tα)α∈I is a collection of cystalline Tate tensors of X,
• ρ : X0 ⊗ R/J → X ⊗ R/J is a quasi-isogeny which sends sα ⊗ 1 to tα for α ∈ I,

where J is some ideal of definition of R,

such that the following condition holds:
the R-scheme

Isom
((

D(X)R, (tα),Fil•(D(X)R)
)
,
(
Λ⊗R, (sα ⊗ 1),Fil•Λ⊗R

))
that classifies the isomorphisms between locally free sheaves D(X)R and Λ ⊗ R on SpecR
preserving the tensors and the filtrations is a Pµ ⊗R-torsor.

Theorem 3.10 ([30] Theorem 4.9.1). The functor M̆ is represented by a separated formal
scheme, formally smooth and locally formally of finite type over W

In the classical EL/PEL case ( and with ramification), see [43] Theorem 3.25. In [30] 4.7,
the unramified local EL/PEL data are explained as special examples of unramified Hodge
type data. See also [26] Theorem 3.2.1 for the case that (G, [b], {µ}) comes from a Shimura

datum of Hodge type. We denote also by M̆ the associated formal scheme, and refer it as
the formal Rapoport-Zink space of Hodge type attached to (G, [b], {µ}).

Let M be the rigid analytic generic fiber over L = WQ of the formal scheme M̆. In
the rest of this paer, we will use the following convention: if G is a unramified reductive
group over Qp, we will fix a reductive model over Zp and write G(Zp) for the associated
hyperspecial group. In [30] 7.4, Kim explained how to construct a tower of rigid analytic
spaces

(MK)K⊂G(Zp)

that satisfies the list of properties in Conjecture 3.2. Moreover, MG(Zp) =M, and MK →
M is finite étale for any open compact subgroup K ⊂ G(Zp). In particular, for unramified
local Shimura data of Hodge type, the Conjecture 3.2 is true.
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LetM be the special fiber over Fp of M̆. Recall that in section 2 attached to (G, [b], {µ}),
we introduced the affine Deligne-Lusztig variety XG

µ (b) over Fp, viewed as a perfect scheme.

The relation between M̆ and XG
µ (b) is as follows.

Proposition 3.11 ([61] Proposition 3.11). XG
µ (b) is the perfection Mperf

of M.

If (G, [b], {µ}) ↪→ (GLn, [b
′], {µ′}) is an embedding of unramified local Shimura data of

Hodge type, by construction, we have the following embeddings

M̆(G, b, µ) ↪→ M̆(GLn, b
′, µ′), XG

µ (b) ↪→ XGLn
µ′ (µ′),

which are compatible in the sense of the above proposition.

3.4. Connected components. Let the notations be as above. Recall in subsection 2.2 we
have the map

ωG : XG
µ (b) −→ cb,µπ1(G)Γ.

By Proposition 3.11 we get an induced map

ωG : M̆ → cb,µπ1(G)Γ.

Let Gder ⊂ G be the derived subgroup, and Gab the abelian quotient G/Gder. Consider the
exact sequence

1→ Gder → G→ Gab → 1,

which induces a map

cb,µπ1(G)Γ → cb,µπ1(Gab)Γ = cb,µX∗(G
ab)Γ,

where X∗(G
ab) is the cocharacter group of the torus Gab over Qp. Let X∗Qp(G) be the group

of Qp-rational characters of G. Then we have

X∗Qp(G) = X∗(Gab)Γ.

The Γ-equivariant pairing X∗(G
ab)×X∗(Gab)→ Z then induces a map

cb,µX∗(G
ab)Γ → Hom(X∗(Gab)Γ,Z) = Hom(X∗Qp(G),Z).

In summary, we get a map by considering the composition

κM̆ : M̆ → cb,µπ1(G)Γ → cb,µX∗(G
ab)Γ → Hom(X∗Qp(G),Z).

In the EL/PEL case, this is just the map constructed in [43] 3.52. (See also [7] 5.1.3.)
If (G, [b], {µ}) ↪→ (GLn, [b

′], {µ′}) is an embedding of unramified local Shimura data of
Hodge type, we get the following commutative diagram

XG
µ (b) //

��

XGLn
µ′ (b′)

��
cb,µπ1(G)Γ // cb′,µ′π1(GLn)Γ.

Moreover, we know π1(GLn)Γ = π1(GLn) ' Z.

Since by Proposition 3.11 XG
µ (b) is the perfectionMperf

ofM, we have the isomorphism
between the sets of connected components

π0(Mred) ' πperf0 (XG
µ (b)).

Here πperf0 (XG
µ (b)) denotes the set of connected components of the perfect scheme XG

µ (b).

On the other hand, we have also the set of connected components π0(XG
µ (b)) defined in [7].
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Proposition 3.12. With the above notations, there is a bijection

π0(Mred) ' π0(XG
µ (b)).

Proof. See the Remark 3.2 of [61]. �

Let π0(M̆) be the set of connected components of the formal scheme M̆, which is the
same as π0(Mred). On the other hand, we have also the set of connected components π0(M)

of the generic fiberM. As M̆ is formally smooth and in particular normal, by [28] Theorem
7.4.1, we have a bijection

π0(Mred) ' π0(M).

One can also consider the set of connected components π0(MK) for the finite étale cover
MK of M. In [44], Rapoport and Viehmann made a conjecture on π0(MK × Cp) under

the assumption that Gder is simply connected. We refer to [44] Conjecture 4.26 for the
precise statement on the existence of a determinant morphism for the tower (MK)K . This
conjecture is known in the unramified simple EL/PEL case, cf. Theorem 6.3.1 of [6] (see
also [7] Theorem 5.1.10 and Remark 5.1.11). It will be interesting to consider the more
general Hodge type case studied here.

Fix a point x0 ∈ cb,µπ1(G)Γ. Let M+
red ⊂ Mred be the fiber of ωG over x0. Then M+

red

is some union of connected components of Mred. Let M̆+ ⊂ M̆ be the associated sub
formal scheme, with generic fiber M+. For any open compact subgroup K ⊂ G(Qp), let
M+

K ⊂MK be the pullback of M+ ⊂M. We get a tower

(M+
K)K⊂G(Zp).

We have the equalities

M̆ = Jb(Qp)M̆+, Mred = Jb(Qp)M+
red, M = Jb(Qp)M+

and
MK = Jb(Qp)M+

K .

4. Rapoport-Zink spaces of abelian type

We enlarge the class of Rapoport-Zink spaces of Hodge type in this section. They are
constructed locally from Rapoport-Zink spaces of Hodge type. Throughout this section we
assume p > 2.

4.1. Local Shimura data of abelian type. Let (G, [b], {µ}) be a local Shimrua datum.
Consider the natural projection G → Gad from G to its associated adjoint group. We get
induced [bad], {µad}, so that

(Gad, [bad], {µad})
is also a local Shimura datum and (G, [b], {µ})→ (Gad, [bad], {µad}) is a morphism of local
Shimura data. We introduce the local analogue of a Shimura datum of abelian type (more
precisely, of preabelian type) as follows.

Definition 4.1. A local Shimura datum (G, [b], {µ}) is called of abelian type, if there exists
a local Shimura datum of Hodge type (G1, [b1], {µ1}) such that we have an isomorphism of
the associated adjoint local Shimura data (Gad, [bad], {µad}) ' (Gad1 , [b

ad
1 ], {µad1 }).

Thus any local Shimura datum of Hodge type is also of abelian type. The later class is
strictly larger.

Example 4.2. Let G = PGLn. Consider a nontrivial minuscule cocharacter µ1 : Gm →
GLn and b1 ∈ B(GLn, µ1). Take µ = µad1 , b = bad1 . Then (G, [b], {µ}) is of abelian type, but
not of Hodge type, cf. Example 3.8.
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Recall that for a local Shimura datum (G, [b], {µ}), if Gi is a simple local factor of GadQp
such that the component µadi of µad is not trivial, then Gi is a group of one of types
A,B,C,D,E6, E7, cf. [51] Annexe. By Serre’s classification ([51] section 3) and our defini-
tion, simple factors of G appearing in local Shimura data of abelian type consists exactly of
local reductive groups of types A,B,C,D. This is compatible with Deligne’s classification
of Shimura data of abelian type in [10], cf. Example 4.4.

4.2. The associated Rapoport-Zink spaces. To construct Rapoport-Zink spaces, we
need the following unramified assumption.

Definition 4.3. A local Shimura datum of abelian type (G, [b], {µ}) is called unrami-
fied, if G is unramified, and there exists a unramified local Shimura datum of Hodge type
(G1, [b1], {µ1}) such that (Gad, [bad], {µad}) ' (Gad1 , [b

ad
1 ], {µad1 }).

For a unramified local Shimura datum of abelian type, the local reflex field E is a unram-
ified extension of Qp. Thus Ĕ = L,OĔ = OL = W where as before W = W (Fp), L = WQ.

The following example is one of our main motivations.

Example 4.4. Let (G,X) be a Shimura datum of abelian type such that G is unramified at
p (cf. [10, 32]). Take any [b] ∈ B(G,µ), the associated triple (GQp , [b], {µ}) is a unramified
local Shimura datum of abelian type.

Lemma 4.5. Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type. Con-
sider the associated adjoint local Shimura datum (Gad, [bad], {µad}). We have the following
isomorphism of reductive groups over Qp

Jadb ' Jbad .

Proof. This follows from the definitions of Jb and Jbad . �

Theorem 4.6. Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type. Then

there exists a formal scheme M̆(G, b, µ), which is formally smooth, formally locally of finite
over W , such that

M(G, b, µ)perf ' XG
µ (b),

where M(G, b, µ) is the special fiber of M̆(G, b, µ). The formal scheme M̆(G, b, µ) is
equipped with a transitive action of Jb(Qp), compatible with the action of Jb(Qp) on XG

µ (b).

Proof. Take any unramified local Shimura datum of Hodge type (G1, [b1], {µ1}) as in Defi-

nition 4.3. Consider the associated formal Rapoport-Zink space M̆(G1, b1, µ1) over SpfW .
Then its special fiber M(G1, b1, µ1) satisfies

M(G1, b1, µ1)perf ' XG1
µ1

(b1).

Recall that we have following cartesian diagram (cf. Proposition 2.5)

XG1
µ1

(b1) //

ωG1

��

X
Gad1

µad1
(bad1 )

ω
Gad1

��
cb1,µ1π1(G1)Γ // cbad1 ,µad1

π1(Gad1 )Γ.

LetXG1
µ1

(b1)+ ⊂ XG1
µ1

(b1) be the fiber over cb1,µ1 under the map ωG1 : XG1
µ1

(b1)→ cb1,µ1π1(G1)Γ.

Let M̆(G1, b1, µ1)+ be the corresponding formal sub scheme of M̆(G1, b1, µ1). On the other
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hand, we can consider also the fiber XG
µ (b)+ ⊂ XG

µ (b) over cb,µ under ωG : XG
µ (b) →

cb,µπ1(G)Γ. Then by Corollary 2.6

XG1
µ1

(b1)+ ' XG
µ (b)+.

We set

M̆(G, b, µ)+ := M̆(G1, b1, µ1)+,

then MG, b, µ)+,perf ' XG
µ (b)+. By Theorem 2.2 (1), we have

XG
µ (b) = Jb(Qp)X

G
µ (b)+.

Therefore, there exists a formal scheme M̆(G, b, µ), equipped with an action of Jb(Qp), such
that

M̆(G, b, µ) = Jb(Qp)M̆(G, b, µ)+,

M(G, b, µ)perf ' XG
µ (b),

and the induced action of Jb(Qp) onM(G, b, µ)red is compatible with that on XG
µ (b) under

the above identification. In fact, we can take

M̆(G, b, µ) = [Jb(Qp)× M̆(G, b, µ)+]/Jb(Qp)
+

'
∐

Jb(Qp)/Jb(Qp)+

M̆(G, b, µ)+,

where Jb(Qp)
+ ⊂ Jb(Qp) is the stabilizer of XG

µ (b)+ under the action of Jb(Qp) on XG
µ (b).

The above construction does not depend on the choice of the unramified local Shimura da-
tum of Hodge type (G1, [b1], {µ1}) as in the statement of the theorem, since if (G2, [b2], {µ2})
is another such one, then we have a canonical isomorphism

M̆(G1, b1, µ1)+ ' M̆(G2, b2, µ2)+.

This follows from the bijection XG1
µ1

(b1)+ ' XG2
µ2

(b2)+, the isomorphism of deformation

rings RG1,x1 ' RG2,x2 , where XG1
µ1

(b1)+ 3 x1 7→ x2 ∈ XG2
µ2

(b2)+, cf. [32] 1.5.4 (from the

description there, RG depends only on the adjoint group Gad), and the constructions in
section 6 of [30].

�

As [61] Corollary 3.12, we have the following dimension formula for the special fibers by
applying loc. cit. Theorem 3.1.

Corollary 4.7. Let the notations be as in Theorem 4.6. We have dimMred = 〈ρ, µ −
ν[b]〉 − 1

2defG(b), where ρ is the half-sum of (absolute) positive roots of G, and defG(b) =
rankQpG− rankQpJb.

Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type. Take an embedding
G ↪→ GLn. Then we get an induced triple (GLn, [b

′], {µ′}). If (G, [b], {µ}) is not of Hodge
type, then {µ′} is not minuscule. In any case, we have the embedding

M(G, b, µ)perf ' XG
µ (b) ↪→ XGLn

≤µ′ (b′).
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4.3. A moduli interpretation. Let (G, [b], {µ}) be as in Theorem 4.6. Then by construc-

tion, locally the formal scheme M̆(G, b, µ) admits a moduli interpretation. More precisely,

take (G1, [b1], {µ1}) as in Definition 4.3. Then the formal scheme M̆(G1, b1, µ1) is a moduli

space of p-divisible groups with crystalline Tate tensors. In particular, M̆(G, b, µ)+ is a
moduli space of p-divisible groups with crystalline Tate tensors such that under the map
ωG1 the image is fixed.

Suppose now that there exists a triple (G1, [b1], {µ1}) as in Definition 4.3 such that the
map

π1(G1)Γ → π1(Gad1 )Γ

is surjective. Then the formal scheme M̆(G, b, µ) admits a global moduli interpretation as
follows.

Proposition 4.8. Under the above assumption,

(1) we have an isomorphism of formal schemes

M̆(Gad1 , b
ad
1 , µ

ad
1 ) ' M̆(G1, b1, µ1)/X∗(ZG1)Γ.

(2) M̆(G, b, µ) is the pullback of M̆(G1, b1, µ1)/X∗(ZG1)Γ under the morphism π1(G)Γ →
π1(Gad)Γ.

Proof. We have the following cartesian diagrams

XG1
µ1

(b1) //

��

X
Gad1

µad1
(bad1 )

��

XG
µ (b)oo

��
cb1,µ1π1(G1)Γ // cbad1 ,µad1

π1(Gad1 )Γ cb,µπ1(G)Γoo

All the vertical maps are surjective by Proposition 2.4. The assertions follow by the as-
sumption π1(G1)Γ → π1(Gad1 )Γ is surjective. �

Example 4.9. Consider Example 4.2 again. As the exact sequence 1 → Gm → GLn →
PGLn → 1 induces a surjection

π1(GLn)Γ = π1(GLn)→ π1(PGLn)Γ,

we have

M̆(PGLn, b, µ) ' M̆(GLn, b1, µ1)/pZ.

Another example will be given in section 7.
By construction, both the above local moduli interpretation, and the global moduli in-

terpretation in Proposition 4.8 are not canonical. Moreover, the formal scheme M̆(G, b, µ)
associated to a general unramified local Shimura datum of abelian type does not admit a
moduli interpretation by p-divisible groups with additional structures. Nevertheless, when
passing to the generic fibers, they are indeed canonical moduli spaces of some objects (local
G-shtukas in the sense of Scholze): see the next section.

4.4. Generic fibers and local Shimura varieties of abelian type. Let (G, [b], {µ}) and

M̆ = M̆(G, b, µ) be as in Theorem 4.6. We consider the rigid analytic fiberM =M(G, b, µ)
over L, regarded as an adic space. For any open compact subgroup K ⊂ G(Zp), we construct
a finite étale cover MK of M as follows.

First, assume that K = Kn for some n ≥ 1, where Kn = ker
(
G(Zp) → G(Zp/pnZp)

)
.

On the component M+ = (M̆(G, b, µ)+)adη , we can construct a finite étale cover M+
n by
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taking some unramified loal Shimura datum of Hodge type (G1, [b1], {µ1}) as in Definition
4.3 and using the moduli interpretation of M(G1, b1, µ1). We can take

Mn = [Jb(Qp)×M+
n ]/Jb(Qp)

+.

In this way we get a tower (Mn)n on which G(Zp) acts. SetM0 =M. The action of G(Zp)
on Mn factors through G(Zp)/Kn = G(Zp/pnZp). Now let K ⊂ G(Zp) be arbitrary. Take
some sufficiently large n such that Kn ⊂ K. Set

MK =Mn/K.

Then MK is a finite étale cover of M, and it does not depend on the choice of n. When
K ⊂ G(Zp) is normal, MK is a Galois cover of M, with Galois group G(Zp)/K. For any
g ∈ G(Qp) and any open compact subgroup K ⊂ G(Zp), we have a natural isomorphism

MK
∼−→MgKg−1 .

As a result, the group G(Qp) acts on the tower

(MK)K⊂G(Zp)

by Hecke correspondences.
As before, for any open compact K ⊂ G(Zp), let M+

K ⊂MK be the pullback of M+ ⊂
M. In this way we get a sub tower (M+

K)K ⊂ (MK)K . Let G(Qp)
+ ⊂ G(Qp) be the

subgroup which is the stabilizer of the sub tower

(M+
K)K ⊂ (MK)K .

By Lemma 2.3 (1) the map

ωG : G(Qp)→ π1(G)Γ

is surjective. By construction we have the induced bijection

ωG : G(Qp)/G(Qp)
+ ∼−→ π1(G)Γ,

and moreover,
MK = Jb(Qp)M+

K , (MK)K = G(Qp)(M+
K)K .

Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type. Take any (G1, [b1], {µ1})
as in Definition 4.3. Then we have the canonical identification of the associated p-adic flag
varieties over L

F `G,µ = G/Pµ = F `G1,µ1 = G1/Pµ1 .

Sometimes we will simply write them as F `µ. By [30] 7.5, we have a period map

πG1,dR :M(G1, b1, µ1)→ F `µ,

which is Jb1(Qp)-equivalent. If (G, [b], {µ}) ↪→ (GLn, [b
′], {µ′}) is an embedding of unrami-

fied local Shimura data of Hodge type, we get an induced embedding of flag varieties over
L: F `G1,µ1 ↪→ F `GLn,µ′ . By construction, we have the following commutative diagram

M(G1, b1, µ1)

πG1,dR

��

� � //M(GLn, b
′, µ′)

πGLn,dR

��
F `G1,µ1

� � // F `GLn,µ′ .

Let us briefly review the construction of πG1,dR. Let (sα) be a finite collection of Λ (rankΛ =
n) such that G1 ⊂ GL(Λ) is the schematic stabilizer of (sα). Then the closed embedding
F `G1,µ1 ↪→ F `GLn,µ′ classifies {µ′}-filtrations of Λ with respect to (sα). By [30] 7.5, the

period morphism πG1,dR : M(G1, b1, µ1) → F `G1,µ1 is given by
(
Fil•D(Xuniv)rig

M̆1
, (trigα )

)
using the induced isomorphism ρ : D(Xuniv)rig

M̆1
' OM1 ⊗ Λ which matches (trigα ) with
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1 ⊗ sα, where M̆1 = M̆(G1, b1, µ1),M1 = M(G1, b1, µ1), (Xuniv, (tα), ρ) is the universal

p-divisible group with crystalline Tate tensors and quasi-isogeny over M̆1. Thus the above
diagram is commutative.

Restricting the map πG1,dR to M(G1, b1, µ1)+ =M+, we get a map

π+
dR :M+ =M(G1, b1, µ1)+ → F `µ.

Then applying the group action of Jb(Qp), we can define a Jb(Qp)-equivalent period map
for M

πG,dR :M =M(G, b, µ)→ F `µ.

Let F `admG1,µ1
⊂ F `µ be the open subspace defined by Hartl (using Robba rings) in [23]

section 6, which can be defined equivalently by using the crystalline period ring Bcris (cf.
[13]). In [50, 41], the subspace F `admG,µ is described using the Fargues-Fontaine curve, which

applies to an arbitrary local Shimura datum (G, [b], {µ}). See also Proposition 5.13.

Proposition 4.10. F `admG1,µ1
is the image of πG1,dR. And we have the following commutative

diagram

M(G1, b1, µ1)

πG1,dR����

� � //M(GLn, b
′, µ′)

πGLn,dR
����

F `admG1,µ1

� � // F `admGLn,µ′
.

Proof. By [23] Proposition 6.2, we have

F `admG1,µ1
= F `admGLn,µ′ ∩F `G1,µ1 .

By [23] Theorem 7.3 and [13] section 4, we have Im πGLn,dR = F `admGLn,µ′
. Thus we get the

above commutative diagram. To show Im πG1,dR = F `admG1,µ1
, it suffices to show that for

any algebraically closed complete extension C|L, the induced map on C-valued points is
surjective. Let (x, (sxα)) ∈ F `G1,µ1(C,OC) with image x ∈ F `GLn,µ′(C,OC), such that
there exists a point (X/OC , ρ) ∈ M(GLn, b

′, µ′)(C,OC) maps to x under πGLn,dR. By
definition, we have the isomorphism

ρ : D(XkC )Q ' OM(GLn,b′,µ′) ⊗ Λ,

and x = ρ(Fil1D(XkC )Q) considered as a filtration on the right hand side. Via the rigid-
ification ρ, there exists an element g ∈ G(Qp)/G(Zp) ⊂ GLn(Qp)/GLn(Zp) such that
D(XkC ) ' (gΛ ⊗ W, g−1b′σ(g)σ). Therefore, each tensor sα on Λ induces a crystalline
Tate tensor tα on X. We get a point (X/OC , (tα), ρ) ∈ M(G1, b1, µ1)(C,OC), which by
construction maps to (X/OC , ρ) ∈ M(GLn, b

′, µ′)(C,OC) and (x, (sxα)) ∈ F `G1,µ1(C,OC)
under the embedding M(G1, b1, µ1) ↪→ M(GLn, b

′, µ′) and the period map πG1,dR respec-
tively. �

For any open compact subgroup K ⊂ G(Zp), we have the finite étale map M+
K =

M(G1, b1, µ1)+
K →M+ =M(G1, b1, µ1)+, thus we get a morphism

M+
K → F `µ.

From this we can define a Jb(Qp)-equivalent period map for MK

πG,dR :MK → F `µ.

When K varies, these period maps are compatible with the Hecke action of G(Qp) on
(MK)K . Thus we may think that there exists a G(Qp)-invariant map (MK)K → F `µ.

Recall that we also have F `waG1,µ1
and F `waG,µ. By construction, we have F `admG1,µ1

⊂
F `waG1,µ1

, and similarly F `admG,µ ⊂ F `waG,µ.
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Lemma 4.11. We have

F `waG1,µ1
= F `waG,µ, F `admG1,µ1

= F `admG,µ .

Proof. The equality F `waG1,µ1
= F `waG,µ follows by [9] Proposition 9.5.3 (iv). The second

equality follows by the definition using G-bundles on the Fargues-Fontaine curve. �

Corollary 4.12. F `admG,µ ⊂ F `µ is the image of the above period map πG,dR.

Proof. Let F `adm,+G1,µ1
⊂ F `G1,µ1 be the image of π+

dR.

Since (M(G1, b1, µ1)K)K = G1(Qp)(M(G1, b1, µ1)+
K)K and the map M(G1, b1, µ1)K →

F `admG1,µ1
is G1(Qp)-invariant, we get

ImπG1,dR = F `adm,+G1,µ1
.

We have also (M(G, b, µ)K)K = G(Qp)(M(G, b, µ)+
K)K , and by our construction the map

(M(G, b, µ)K)K → F `µ is G(Qp)-invariant, we get also

ImπG,dR = F `adm,+G1,µ1
.

Thus ImπG1,dR = ImπG,dR. By Proposition 4.10 and Lemma 4.11, we have

ImπG,dR = ImπG1,dR = F `admG1,µ1
= F `admG,µ .

�

Remark 4.13. We always have F `admG,µ ⊂ F `waG,µ. In [23] section 9 and [41] Question A.

20, Hartl and Rapoport asked that when is F `admG,µ = F `waG,µ? For G = GLn, in Theorem

9.3 of [23] Hartl gave a complete solution of this question. For arbitrary unramified G, if
[b] is basic, Fargues and Rapoport conjecture that this holds true if and only if (G, {µ}) is
fully Hodge-Newton decomposable in the sense of [21] Definition 2.1 (2), cf. [21] Theorem
B and Conjecture 0.1. In the appendix we will see that F `admG,µ = F `waG,µ in the case [b] is

basic and G is the special orthogonal group. See also [8].

Recall that by Lemma 2.3 (1) the map

ωG : G(Qp)/G(Zp)→ π1(G)Γ

is surjective.

Lemma 4.14. (1) The following diagram is cartesian:

G(Qp)/G(Zp)
ωG //

��

π1(G)Γ

��
Gad(Qp)/G

ad(Zp)
ω
Gad // π1(Gad)Γ.

(2) In particular, for G and G1 as above we have G(Qp)
+ ' G1(Qp)

+.

Proof. Note that non empty fibers of both vertical maps are torsors under X∗(ZG)Γ. By [33]
Lemma 1.2.4, if gad ∈ Gad(Qp)/G

ad(Zp) and ωGad(g
ad) lifts to an element of π1(G)Γ, then

gad lies in the image of G(Qp)/G(Zp)→ Gad(Qp)/G
ad(Zp). Therefore the above diagram is

cartesian.
In particular, we have the bijection G(Qp)

+ ' G1(Qp)
+ from (1) for G and G1 as above.

�
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Let X be a rigid analytic space over a local field k|Qp, and G be a reductive group
over Qp. Denote by RepG the category of rational representations of G, and Qp − LocX
the category of Qp-local systems on X. Recall that a Qp-G-local system on X is a tensor
functor RepG → Qp − LocX . If G is moreover unramified, and fix a reductive model GZp
of G over Zp, then we can define similarly Zp-G-local systems (or better notion: GZp-local
systems) on X. By construction, we have

Proposition 4.15. There exists a Jb(Qp)-equivariant Qp-G-local system V on F `admG,µ such

that M(R,R+) is the set of GZp-local systems in VSpa(R,R+). In particular, there exists a
Jb(Qp)-equivariant GZp-local system L on M, and the tower (MK)K⊂G(Zp) is obtained by
trivializing L.

Proof. Under the identity F `admG1,µ1
= F `admG,µ , we have a Qp−G1-local system V1 on F `admG,µ .

Indeed, let Vp(X
univ) be the rational Tate module of the universal p-divisible group Xuniv

over M1. We have the étale Tate tensors

tα,et : 1→ Vp(X
univ)⊗

corresponding to each tα under the comparison theorem, cf. [30] Theorem 7.1.6. Vp(X
univ)

descends to a Qp-local system V1 on F `admG,µ , equipped with the induced étale Tate tensors

tα,et. Fix any geometric point x→ F `admG,µ . Let

ρV1,x : π1(F `admG,µ , x)→ GLn(Qp)

be the p-adic representation of the (de Jong’s) fundamental group π1(F `admG,µ , x) corre-

sponding to V1, cf. [27] Theorem 4.2. Then as tα,et is invariant under π1(F `admG,µ , x), cf. [30]
Theorem 7.1.6, we get a morphism

ρV1,x : π1(F `admG,µ , x)→ G1(Qp)

which thus defines a Qp − G1-local system V1 on F `admG,µ . Moreover, as in the proof of

Proposition 4.10,M1(R,R+) can be identified with the set of Zp-lattices together with ten-
sors (tα) in V1Spa(R,R+), or equivalently, IsomF `admG,µ

(G1,V1)/G1(Zp), where G1 is the trivial

Qp-G1-local system on F `admG,µ . The tower (M1K)K⊂G1(Zp) is the geometric realization of

Qp −G1-local system V1 on F `admG,µ in the sense that

M1K ' IsomF `admG,µ
(G1,V1)/K.

This identification preserves the Hecke actions of G1(Qp) and the actions of Jb1(Qp), cf.
[23] Remark 2.7 and the proof of loc. cit. Theorem 7.3 (c) and (d).

The group π1(F `admG,µ , x) acts on G1(Qp) through ρV1,x. The group Jb1(Qp) acts on

G1(Qp) as the Qp-local system V1 on F `admG,µ is Jb1(Qp)-equivariant.

Fix a point x0 ∈ π1(G1)Γ. Then we have the associated M̆+
1 and (M+

1K)K . The tower

(M+
1K)K defines a subgroup G1(Qp)

+ ⊂ G1(Qp) and a morphism

ρ+
V1,x

: π1(F `admG,µ , x)→ G1(Qp)
+.

By Lemma 4.14 (2), we have G(Qp)
+ ' G1(Qp)

+. Therefore, we can define an action of

π1(F `admG,µ , x) on G(Qp), which commutes with the natural action of Jb(Qp). Thus we get a
p-adic representation

ρx : π1(F `admG,µ , x)→ G(Qp),

which defines the desired Qp-G-local system V on F `admG,µ . Moreover, for any K ⊂ G(Zp),
we have the identification

MK ' IsomF `admG,µ
(G,V)/K,
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where G is the trivial Qp-G-local system on F `admG,µ . As above, this identification preserves

the Hecke actions of G(Qp) and the actions of Jb(Qp). �

We note Corollary 4.12 and Proposition 4.15 generalize [23] Theorem 8.4 (EL/PEL type
case, but there one can allow ramification) to the abelian type case.

Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type. For each open
compact subgroup K ⊂ G(Zp), we get the associated Rapoport-Zink space

MK '
∐

π1(G)Γ

M+
K .

Let ∆G be the image of π1(G)Γ → π1(Gad)Γ. This is a finite group. We have an exact
sequence

1→ X∗(ZG)Γ → π1(G)Γ → ∆G → 1.

We have the Hecke action of G(Qp) on the tower (MK)K . The Hecke action of the central
subgroup ZG(Qp) ⊂ G(Qp) stabilizes each MK . This action of ZG(Qp) is the same of that
induced from Jb(Qp) when we view ZG(Qp) ⊂ Jb(Qp). This action on

MK '
∐

π1(G)Γ

M+
K

=
∐
∆G

∐
X∗(ZG)Γ

M+
K

is through the map ZG(Qp)→ X∗(ZG)Γ and the injection X∗(ZG)Γ → π1(G)Γ.
In summary, the tower (MK)K⊂G(Zp) associated to a unramified local Shimura datum of

abelian type can be viewed as the local Shimura varieties thought of in Conjecture 3.2. In
the next section, we will put these spaces in a more general framework to get some moduli
interpretation for each MK .

4.5. Infinite level and the Hodge-Tate period map. Let (G, [b], {µ}) be a unramified
local Shimura datum of abelian type, and (MK)K be associated tower of Rapoport-Zink
spaces of abelian type. Let F `G,−µ be the p-adic flag variety over L associated to (G, {µ−1}).

Proposition 4.16. There exists a preperfectoid space M∞ over L such that

M∞ ∼ lim←−
K

MK ,

cf. [50] Definition 2.4.1 for the precise meaning of such formula. Moreover, there exists a
Hodge-Tate period map

πHT :M∞ → F `G,−µ,

which agrees with the period map previously defined in the EL/PEL cases in [50, 5].

Proof. If (G, [b], {µ}) is of Hodge type, the existence of the preperfectoid space M∞ over
L such that M∞ ∼ lim←−KMK is proved in [30] Proposition 7.6.1. Fix an embedding

(G, [b], {µ}) ↪→ (GLn, [b
′], {µ′}) with {µ′} minuscule. We have the associated preperfeoid

space M(GLn, b
′, µ′)∞ over L such that M(GLn, b

′, µ′)∞ ∼ lim←−K′M(GLn, b
′, µ′)K′ . The

Hodge-Tate period map

πHT :M(GLn, b
′, µ′)∞ → F `GLn,−µ′

is defined in [50] 7.1. Arguing as [5] section 2, we get that the composition

M∞ ↪→M(GLn, b
′, µ′)∞ → F `GLn,−µ′

factors through F `G,−µ. In particular we get

πHT :M∞ → F `G,−µ.
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Now assume that we are in the general case. As Jb(Qp) acts on |M∞| := lim←−K |MK |, it

suffices to prove that there exist a preperfectoid space M+
∞ over L such that

M+
∞ ∼ lim←−

K

M+
K ,

and a Hodge-Tate period map

π+
HT :M+

∞ → FG,−µ.

This follows from the Hodge type case. �

The following corollary is clear now.

Corollary 4.17. There exists a sub preperfectoid spaceM+
∞ ⊂M∞ over L, which is stable

under G(Qp)
+, such that

M+
∞ ∼ lim←−

K

M+
K , M∞ = G(Qp)M+

∞.

5. Generic fibers of Rapoport-Zink spaces as moduli of local G-shtukas

In this section, we work mainly on generic fibers. We want to explain that the generic
fibers of the formal schemes M̆(G, b, µ), associated to unramified local Shimura data of
abelian type (G, [b], {µ}), can be viewed as moduli spaces fo local G-shtukas in mixed
characteristic in the sense of Scholze, cf. [48]. We will work in the more general context of
Conjecture 3.2. The first few subsections will be denoted as some review of works of Fargues
[16, 19] and Scholze [48]. The reader familiar with these can go directly to subsection 5.5.

5.1. The Fargues-Fontaine curve and G-bundles. The Fargues-Fontaine curve XF,E

is associated to a datum (F,E), where E is a local field with finite residue field Fq and F |Fq
is a perfectoid field of characteristic p. For our purpose, we set E = Qp, and denote simply
XF,Qp as XF . It has several incarnations.

5.1.1. The adic curve. The adic curve XF admits the following adic uniformization

XF = YF /ϕ
Z,

where YF = Spa(W (OF )) \ V (p[$F ]), with $F ∈ F satisfying 0 < |$F | < 1. The action of
the Frobenius ϕ on the Witt vectors is given by

ϕ(
∑
n

[xn]pn) =
∑
n

[xpn]pn, ∀
∑
n

[xn]pn ∈W (OF ).

It induces a totally discontinuous action on YF .
Suppose now that F is algebraically closed. Then there is a unique non analytic point

xk ∈ Spa(W (OF )). Set Y = YF = Spa(W (OF ))\{xk}. There exists a surjective continuous
map κ : Y → R≥0 ∪ {∞} defined by

κ(x) =
log |[$F ](x̃)|

log |p(x̃)|
,

where x̃ is the unique maximal generalization of x, cf. [48] 12.2. For any I ⊂ R≥0 ∪ {∞},
we denote YI = κ−1(I). Then Y := YF = Y(0,∞).

Let I ⊂ [0,∞] be an interval of the form [r,∞) or [r,∞]. Recall that a φ-module over YI is
a pair (E , φE), where E is a vector bundle over YI and φE : φ∗E|YI → E is an isomorphism,
cf. [48] Definition 13.2.1. It follows that φ-modules over Y(0,∞) are the same as vector
bundles over X := XF .
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5.1.2. The algebraic curve. There is a natural line bundle O(1) on X, corresponding to the
φ-module on Y(0,∞) whose underlying line bundle is trivial and for which φ is p−1ϕ. Set

O(n) = O(1)⊗n, and

P =
⊕
n≥0

H0(X,O(n)).

We have

H0(X,O(n)) = O(Y )ϕ=pn .

Let

Xsch = Proj(P ).

By [19], this is a one dimensional noetherian regular scheme over Qp. There exists a
morphism of ringed spaces

X −→ Xsch,

and X may be viewed as the analytification of Xsch in some generalized sense.

Remark 5.1. Using the theory of diamond developed in [48], the curve admits yet another
version: the diamond curve

X� = (Spa(F )× Spa(Qp)
�)/ϕZ,

where ϕ = FrobF × Id. We will not use this version in the following.

Let BunXsch and BunX be the categories of vector bundles on Xsch and X respectively.
The morphism X −→ Xsch induces a GAGA functor

BunXsch −→ BunX .

Theorem 5.2 ([29, 15]). The GAGA functor induces an equivalence of categories

BunXsch
∼−→ BunX .

There is another way to describe vector bundles on X. Consider the Robba ring

R̃F = lim−→
r

H0(Y(0,r],OY(0,r]
).

The Frobenius φ induces an action on R̃F . Recall a φ-module over R̃F is a finite free

R̃F -module M equipped with a φ-linear automorphism.

Theorem 5.3 ([29], Theorem 6.3.12). There is an equivalence of categories

BunX ' {φ−modules over R̃F }.

The idea for the proof is that any φ-module over R̃F is defined over

R̃rF := H0(Y(0,r],OY(0,r]
)

for some r small enough. This can be spread to a φ-module over YF = Y(0,∞) via pullback
under Frobenius. Giving a φ-module over Y(0,∞) is the same giving a vector bundle over

XF by the uniformization XF = Y(0,∞)/ϕ
Z.

Let ϕ−ModL be the category of F -isocystals over Fp, where as before L = W (Fp)Q. For

any (D,ϕ) ∈ ϕ−ModL, we can construct a vector bundle E(D,ϕ) on Xsch by

E(D,ϕ) = Proj
(⊕
n≥0

(D ⊗L O(Y ))ϕ⊗ϕ=pn
)
.

Theorem 5.4 ([19]). The functor E(−) : ϕ−ModL → BunXsch is essentially surjective.
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Therefore, the composite E(−) : ϕ − ModL → BunXsch → BunX is also essentially
surjective.

Let G be a connected reductive group over Qp. We have the following equivalent defini-

tions of a G-bundle on X (or equivalently on Xsch):

(1) an exact tensor functor RepG → BunX , where as before RepG is the category of
rational algebraic representations of G,

(2) a G-torsor on X locally trivial for the étale topology.

Recall that an F -isocrystal with G-structure over Fp is an exact tensor functor

RepG→ ϕ−ModL.

If b ∈ G(L), it then defines an F -isocystal with a G-structure

Mb : RepG→ ϕ−ModL

V 7→ (VL, bσ).

Its isomorphism class only depends on the σ-conjugacy class [b] ∈ B(G) of b. Conversely,
by Steinberg’s theorem any F -isocrystal with G-structure arises in this way. Thus B(G) is
the set of isomorphism classes of F -isocrystals with G-structure, cf. [42] Remarks 3.4 (i).
For b ∈ G(L), let Eb be the composition of the above functor Mb and

E(−) : ϕ−ModL → BunXsch ' BunX .

In this way, the set B(G) also classifies G-bundles on X. In fact, we have

Theorem 5.5 ([16]). Assume that F is algebraically closed. Then there is a bijection of
sets

B(G)
∼−→ H1

et(X,G)

[b] 7→ [Eb].

We discuss briefly the relative version of the above theory. Let (R,R+) be a perfectoid
affinoid Fp-algebra, and S = Spa(R,R+) be the associated perfectoid space. We have an
adic space over Qp:

XS = YS/ϕ
Z,

with YS = YR,R+ = Spa(A,A+) \ V (p[$R]), where

A = W (R◦) = {
∑
n≥0

[xn]pn|xn ∈ R◦}, A+ = {
∑
n≥0

[xn]pn ∈ A|x0 ∈ R+},

and $R be a pseudo-uniformizer of R. The adic space XS is the relative version of the
Fargues-Fontaine curve. We can also define the scheme

Xsch
S = Proj

(⊕
d≥0

H0(XS ,OXS (d))
)
.

Then there exists a map of locally ringed spaces XS → Xsch
S . We can define vector bundles

on XS , X
sch
S as above, and the relative Robba ring R̃R. Moreover, we have

Theorem 5.6 ([15, 29] ).

BunXsch
S
' BunXS ' {φ−modules over R̃R}.

Let S = Spa(R,R+) be a affinoid perfectoid space over Fp, and $R be a pseudo-
uniformizer of R. We denote

Y[0,∞)(R,R
+) = SpaW (R+) \ V ([$R]).
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Then we have a continuous map

κ : Y[0,∞)(R,R
+)→ [0,∞),

the relative version of the map defined previously. With the same notation there, we have

YS = Y(0,∞)(R,R
+).

Let G be a connected reductive group over Qp.Then as above we can define G-bundles on
XS , YS = Y(0,∞)(R,R

+) and Y[0,∞)(R,R
+).

If we start with a perfectoid space S over Qp, then there exits a canonical closed embed-
ding

xS : S ↪→ YS[ ,

which in turn induces a closed embedding

xS : S ↪→ XS[ ,

cf. [14] 1.4. Here S[ is the tilt of S over Fp in the sense of [47]. Thus we can view S as
a Cartier divisor on XS[ . If S = Spa(R,R+) is perfectoid affinoid over Qp, by [16] 1.6 we

have a corresponding Cartier divisor D on Xsch
S[

. The formal completion of Xsch
S[

along D is

SpfB+
dR,R,

cf. Proposition 1.33 of [14].

5.2. Local G-shtukas in mixed characteristic. Let the notations be as above. Let
S = Spa(R,R+) be a affinoid perfectoid space over Fp, with a untilt S] of S. Then there

exists a closed embedding S] ↪→ Y[0,∞)(R,R
+).

Definition 5.7 ([48] Definition 11.4.1). A local G-shtuka over S with one paw x : S] →
Y[0,∞)(R,R

+) is a pair (E , φE), where

• E is a G-bundle over Y[0,∞)(R,R
+),

• φE is an isomorphism φE : φ∗E → E over Y[0,∞)(R,R
+) \ Γx, such that along Γx it

is meromorphic. Here Γx is the image of x.

One can then generalize the above notion to define a local G-shtuka over a general
perfectoid space over Fp.

Let C be a complete algebraically closed extension of Qp. We have the associated de Rham
period ring B+

dR := B+
dR,C with a fixed uniformizer ξ ∈ B+

dR. Let BdR = B+
dR[1

ξ ], Ainf =

W (OC[). We have the following various descriptions of local G-shtukas with one paw at C,
in the case G = GLn.

Theorem 5.8 ([48] Proposition 20.1.1; see also [18]). The following categories are equiva-
lent.

(1) Shtukas over Spa(C[,OC[) with one paw at C.
(2) Pairs (T,Ξ), where T is a finite free Zp-module, and Ξ ⊂ T ⊗BdR is a B+

dR-lattice.
(3) Breuil-Kisin-Fargues modules over Ainf .
(4) Quadruples (F ,F ′, β, T ), where F and F ′ are vector bundles on the Fargues-Fontaine

curve X = XC[ , and β : F|X\{∞}
∼→ F ′X\{∞} is an isomorphism, where F is trivial,

and T ⊂ H0(X,F) is a Zp-lattice.

If the paw is minuscule, i.e. we have

ξ(T ⊗Zp B
+
dR) ⊂ Ξ ⊂ T ⊗Zp B

+
dR,

then these categories are equivalent to the category of p-divisible groups over OC .
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Recall that a Breuil-Kisin-Fargues module over Ainf is a pair (M,φM ), where M is a finite

free Ainf -module and φM : (φ∗M)[ξ−1]
∼→ M [ξ−1] is an isomorphism, cf. [48] Definition

11.4.2.

5.3. Moduli of local G-shtukas in mixed characteristic. We have the following gen-
eralizations of Definitions 3.1 and 3.3.

Definition 5.9. (1) A local shtuka datum is a triple (G, [b], {µ}), where
• G is a connected reductive group over Qp,

• {µ} is a conjugacy class of cocharacters µ : Gm → GQp
over Qp,

• [b] ∈ B(G,µ) ⊂ B(G).
(2) Let (G1, [b1], {µ1}), (G2, [b2], {µ2}) be two local shtuka data. A morphism

(G1, [b1], {µ1})→ (G2, [b2], {µ2})

is a hommorphism f : G1 → G2 of algebraic groups sending ([b1], {µ1}) to ([b2], {µ2}).

Remark 5.10. (1) By definition, a local Shimura datum (G, [b], {µ}) is a local shtuka
datum with {µ} minuscule. For a local shtuka datum (G, [b], {µ}), the simple factors
of Gad can be groups of arbitrary type.

(2) In [48], several {µ}’s can be allowed, as in the classical function field case, cf. [56].
(3) In particular, if (G, [b], {µ}) is a local shtuka datum, and G→ G′ is a hommorphism

of reductive groups over Qp, we get the induced [b′], {µ′} such that (G′, [b′], {µ′}) is
also a local shtuka datum.

Let (G, [b], {µ}) be a local shtuka datum. As before, we have the associated local reflex
field E, and the reductive group Jb over Qp. Let F be an algebraically closed perfectoid
field of characteristic p. By Theorem 5.5 we have a G-bundle on XF , which is the same
as a φ-G-module (Eb, φEb) on YF , well defined up to isomorphism. We will use freely the
notion of diamond in the following, cf. [48] for basic definitions and properties. We define
a functor on the category of perfectoid affinoid algebras over Fp as follows.

Definition 5.11 ([48] Definition 19.3.3). Let (R,R+) be a perfectoid affinoid Fp-algebra

together with a map x : Spa(R,R+)� → Spa(Ĕ)� (which is the same as giving a untilt of R

over Ĕ). Let Sht(G, b, µ)→ Spa(Ĕ)� be the functor such that for any
(
(R,R+), x

)
,

Sht(G, b, µ)
(
(R,R+), x

)
= {
(
(E , φE), ι

)
}/ '

where

• (E , φE) is a G-shtuka over Y[0,∞)(R,R
+) with one paw at x, such that (E , φE) is

bounded by {µ}.
• ι : (E , φE)|[ρ,∞)

∼→ (Eb, φEb)|[ρ,∞) is an isomorphism for some sufficiently large ρ.

For our purpose, we assume that G is unramified4 from now on. We will also fix a
reductive model GZp of G over Zp. The main theorem of [48] is

Theorem 5.12 (Scholze, [48] Theorem 20.3.1). The functor Sht(G, b, µ) is represented by

a diamond over Spa(Ĕ)�.

(In [48] the theorem is proved for the case G = GLn, but one sees immediately that the
proof given there works also for the general case.)

4This may be not necessary by the methods of [48, 49]. Here we restrict to the unramified case to simplify
the exposition.
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We want to discuss period maps in this setting. Consider the B+
dR-affine Grassmannian

Gr
B+
dR

G over Qp. This is the functor associating to any perfectoid affinoid Qp-algebra (R,R+)
the set

Gr
B+
dR

G (R,R+) = {(E , β)}/ '
where E is a G-torsor over SpecB+

dR,R, and β is a trivialization of E ⊗B+
dR,R

BdR,R. One can

check that Gr
B+
dR

G is the étale sheaf associated to the presheaf

(R,R+) 7→ G(BdR,R)/G(B+
dR,R).

Consider the case (C,C+) with C|Qp an algebraically closed perfectoid field. Then we have
the Cartan decomposition

G(BdR,C) =
∐

µ∈X∗(T )+

G(B+
dR,C)µ(ξ)G(B+

dR,C),

where T ⊂ B ⊂ G is a fixed choice of maximal torus inside a Borel subgroup B of G, and
X∗(T )+ ⊂ X∗(T ) is the associated set of dominant cocharacters. Fix a conjugacy class of
cocharacters {µ} with the dominant representative µ. Let E be the field of definition of

{µ}. Consider Gr
B+
dR

G,≤µ ⊂ Gr
B+
dR

G ⊗ E the sub functor such that

Gr
B+
dR

G,≤µ(R,R+) = {(E , ξ) ∈ GrB
+
dR

G (R,R+)|Inv(Ex, E0x) ≤ µ, ∀x ∈ Spa(R,R+)}.

This is the analogue of the classical Schubert variety associated to {µ} in the setting of

B+
dR-affine Grassmannian Gr

B+
dR

G . There is an action of Jb(Qp) on Gr
B+
dR

G,≤µ. By abuse of

notation, we still denote Gr
B+
dR

G,≤µ → Spa(Ĕ)� the sheaf base changed over Spa(Ĕ)�. By

Theorem 21.3.6 of [48], this is a diamond.

There exists an étale morphism of diamonds over Spa(Ĕ)� (cf. [48] 20.4)

πdR : Sht(G, b, µ)→ Gr
B+
dR

G,≤µ.

When G = GLn, this morphism can be defined by using Theorem 5.8 (4). Let

Gr
B+
dR,adm

G,≤µ ⊂ GrB
+
dR

G,≤µ

be the image of πdR. This is an open sub-diamond, and we call it the admissible locus. We
have the following description of the admissible locus.

Proposition 5.13 ([48] 20.5, [29] ). Let (E , β) ∈ GrB
+
dR

G,≤µ(R,R+). Then

(E , β) ∈ GrB
+
dR,adm

G,≤µ (R,R+)

if and only if one of the following equivalent conditions holds: for any representation V ∈
RepG such that the center of G is mapped into the center of GL(V ), with the associated
vector bundle (EV , βV ),

(1) ∀x ∈ Spa(R,R+) the vector bundle EV,x is semi-stable of slope 0;
(2) φ-module of EV is trivial;

(3) EV extends to a φ-module over R̃intR , where R̃intR = lim−→r
H0(Y[0,r],OY) is the integral

Robba ring.

The action of Jb(Qp) on Gr
B+
dR

G,≤µ stabilizes the open sub diamond Gr
B+
dR,adm

G,≤µ . The period
morphism

πdR : Sht(G, b, µ)→ Gr
B+
dR,adm

G,≤µ



ON SOME GENERALIZED RAPOPORT-ZINK SPACES 31

is then Jb(Qp)-equivariant.
We have the following definition of local systems with additional structures on the dia-

mond Gr
B+
dR,adm

G,≤µ , similar to the classical situation.

Definition 5.14. Let X be a diamond, and G be a reductive group over Qp. Denote by
RepG the category of rational representations of G, and Qp−LocX the category of Qp-local
systems on X. Then a Qp-G-local system on X is a tensor functor RepG → Qp − LocX .
If G is moreover unramified, and fix a reductive model (over Zp) GZp of G, then we can
define similarly Zp-G-local systems (or better notion: GZp-local systems) on X.

By [29] Corollary 8.7.10, there exists a Jb(Qp)-equivariant Qp-G-local system V over

Gr
B+
dR,adm

G,≤µ , which realizes Sht(G, b, µ) as the functor of the set of Zp-G-local systems in V.

In particular, there exists a Jb(Qp)-equivariant Zp-G-local system L over Sht(G, b, µ).
Scholze’s theorem above (Theorem 5.12) in fact tells us more information. More precisely,

we get a tower of diamonds (
Sht(G, b, µ)K

)
K⊂G(Zp)

indexed by open compact subgroups K ⊂ G(Zp) with Sht(G, b, µ)G(Zp) = Sht(G, b, µ), and

the group G(Qp) acts on this tower
(

Sht(G, b, µ)K

)
K⊂G(Zp)

by Hecke correspondences. Let

(R,R+) be a perfectoid affinoid Fp-algebra together with a map x : Spa(R,R+)� → Spa(Ĕ)�.
Then

Sht(G, b, µ)K
(
(R,R+), x

)
= {
(
(E , φE), ι, α

)
}/ '

where

• (E , φE) is a G-shtuka over Y[0,∞)(R,R
+) with one paw at x, such that (E , φE) is

bounded by {µ}.
• ι : (E , φE)|[ρ,∞)

∼→ (Eb, φEb)|[ρ,∞) is an isomorphism for some sufficiently large ρ.
• α is a K-orbit of an isomorphism L(E , φE) ' L0, where L(E , φE) is the G-local

system associated to (E , φE), L0 is the trivial G-local system over Y[0,∞)(R,R
+).

As

Jb(Qp) ⊂ Aut(Eb, φEb),
cf. [14] 2.5, Jb(Qp) acts each Sht(G, b, µ)K by modifying ι, and these actions are compatible
when K varies. When the context is clear, we will simply denote Sht(G, b, µ)K by ShtK .
The cover

πK : Sht(G, b, µ)K → Sht(G, b, µ)

is obtained by trivializing K-level structures, which is finite étale. By trivializing all of L
we get a pro-étale cover

π∞ : Sht(G, b, µ)∞ → Sht(G, b, µ).

We have the following moduli interpretation for Sht(G, b, µ)∞. Let (R,R+) be a perfectoid

affinoid Fp-algebra together with a map x : Spa(R,R+)� → Spa(Ĕ)�. Then

Sht(G, b, µ)∞
(
(R,R+), x

)
= {
(
(E , φE), ι, α

)
}/ '

where

• (E , φE) is a G-shtuka over Y[0,∞)(R,R
+) with one paw at x, such that (E , φE) is

bounded by {µ}.
• ι : (E , φE)|[ρ,∞)

∼→ (Eb, φEb)|[ρ,∞) is an isomorphism for some sufficiently large ρ.
• α : L(E , φE) ' L0 is an isomorphism, where as before L0 is the trivial G-local system

over Y[0,∞)(R,R
+).
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By construction, we have an isomorphism of diamonds over Spa(Ĕ)�

Sht(G, b, µ)∞/K ' Sht(G, b, µ)K , Sht(G, b, µ)∞ = lim←−
K

Sht(G, b, µ)K .

Question 5.15. For any open compact subgroup K ⊂ G(Qp), we know that the fibers of

Sht(G, b, µ)K(C,OC)→ Gr
B+
dR,adm

G,≤µ (C,OC)

are in bijection with G(Qp)/K. Is it possible to define a notion of étale fundamental group

for the diamond Gr
B+
dR,adm

G,≤µ as [27], so that the Qp-G-local system V on Gr
B+
dR,adm

G,≤µ can be
described in term of a collection of representations

π1(Gr
B+
dR,adm

G,≤µ , x) −→ G(Qp),

for the geometric point x runs through each connected component of Gr
B+
dR,adm

G,≤µ ?

At the infinite level, there exists a Hodge-Tate period map (cf. [14] p.38; see also [22]
Theorem 5.4)

πHT : Sht(G, b, µ)∞ −→ Gr
B+
dR

G,≤−µ,

where Gr
B+
dR

G,≤−µ ⊂ Gr
B+
dR

G ⊗ E is the Schubert diamond associated to {µ−1}. We can make

a little precise on the image of πHT . By [5] Corollary 3.5.2 there is a natural map

E : Gr
B+
dR

G (R,R+)→ BunG,X
R[,R+[

.

Take (R,R+) = (C,OC) with C|Qp complete and algebraically closed. By Theorem 5.5,

we get a map b(·) : Gr
B+
dR

G (C,OC) → B(G). By [5] Proposition 3.5.3, when restricting to

x ∈ GrB
+
dR

G,≤−µ(C,OC), one has

b(x) ∈ B(G,µ).

Then for any [b′] ∈ B(G,µ), we get a locally closed sub diamond

Gr
B+
dR,b

′

G,≤−µ ⊂ Gr
B+
dR

G,≤−µ,

such that the underling topological space |GrB
+
dR,b

′

G,≤−µ| is the fiber over [b′] under the above

map b(·). Consider [b′] = [b] as in the local shtuka datum. Then by construction, one has

πHT : Sht(G, b, µ)∞(C,OC) −→ Gr
B+
dR,b

G,≤−µ(C,OC),

for any (C,OC) with C|Qp complete and algebraically closed. That is, πHT factors through

Gr
B+
dR,b

G,≤−µ.
In summary, we get two period morphisms

Sht(G, b, µ)∞

πdR

ww
πHT

&&

Gr
B+
dR,adm

G,≤µ Gr
B+
dR,b

G,≤−µ,

and the period morphism πdR factors through Sht(G, b, µ).

Remark 5.16. (1) In [14] 8.2.1, there is an alternative construction of the diamond
Sht(G, b, µ)∞.
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(2) It is natural to ask whether Sht(G, b, µ)∞ is representable by a perfectoid space. We
will show that this is the case if (G, [b], {µ}) is a unramified local Shimura datum of
abelian type, cf. Corollary 5.24.

By construction, a morphism (G1, [b1], {µ1}) → (G2, [b2], {µ2}) of local shtuka data in-
duces a morphism of diamonds

Sht(G1, b1, µ1)→ Sht(G2, b2, µ2).

More generally, we have morphisms

Sht(G1, b1, µ1)K1 → Sht(G2, b2, µ2)K2

if K1 is mapped into K2 under G1 → G2.
The above functoriality enables us to apply the Tannakian formalism. As before, we as-

sume that G is unramified over Qp. Consider now an embedding G ↪→ GLn, then ([b], {µ})
induces ([b′], {µ′}), so that (GLn, [b

′], {µ′}) forms a local shtuka datum, and we get a mor-
phism of local shtuka data (G, [b], {µ})→ (GLn, [b

′], {µ′}). The following proposition is the
local analogue of Deligne’s theorem for Shimura varieties.

Proposition 5.17. In the above setting, for any K ⊂ G(Zp), there exists a K ′ ⊂ GLn(Zp)
such that there exists a natural closed embedding of diamonds

Sht(G, b, µ)K ↪→ Sht(GLn, b
′, µ′)K′ .

The induced embedding of diamonds

Sht(G, b, µ)∞ ↪→ Sht(GLn, b
′, µ′)∞

is compatible with the de Rham and Hodge-Tate period morphisms on both sides.

Proof. It suffices to prove that we have a closed embedding of diamonds

Sht(G, b, µ)∞ ↪→ Sht(GLn, b
′, µ′)∞.

This is clear from the construction above. Moreover, we have a closed embedding

Gr
B+
dR,adm

G,≤µ ↪→ Gr
B+
dR,adm

GLn,≤µ′ ,

and the following diagram on de Rham period maps is commutative

Sht(G, b, µ)∞

πdR
��

� � // Sht(GLn, b
′, µ′)∞

πdR
��

Gr
B+
dR,adm

G,≤µ
� � // Gr

B+
dR,adm

GLn,≤µ′ .

We have also the following commutative diagram on Hodge-Tate period maps

Sht(G, b, µ)∞

πHT
��

� � // Sht(GLn, b
′, µ′)∞

πHT
��

Gr
B+
dR,b

G,≤−µ
� � // Gr

B+
dR,b

′

GLn,≤−µ′ .

�
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5.4. Moduli of local G-shtukas and affine Deligne-Lusztig varieties. Let (G, [b], {µ})
be a local shtuka datum. Recall that we assume G is unramified. We want to compare the
moduli space of local G-shtukas Sht(G, b, µ) and the affine Deligne-Lusztig variety XG

≤µ(b)

associated to (G, [b], {µ}) as in section 2.
Let (C,OC) be an affinoid perfectoid field of characteristic p with a untilt C] of C. Let

k be the residue field of OC . We have a Jb(Qp)-equivariant morphism of sets

sp = sp(G,b,µ) : Sht(G, b, µ)(C,OC)→ XG
≤µ(b)(k).

Indeed, consider first the case G = GLn, we have

Sht(G, b, µ)(C,OC) = {
(
(E , φE), ι

)
}/ '

with
(
(E , φE), ι

)
a shtuka over Spa(C,OC) with one paw at C]. By Theorem 5.8, there

exists a Breuil-Kisin module (M,φ) over Ainf = W (OC). Let

(M ⊗Ainf
W (k), φ)

be the associated Dieudonné module. This defines a point in XG
≤µ(b)(k). This construction

is compatible with the Jb(Qp) actions on both sides. For the general case, we apply the
Tannakian formalism: take any embedding (G, [b], {µ})→ (GLn, [b

′], {µ′}), then we have a
commutative diagram

Sht(G, b, µ)(C,OC)

spG,b.µ

��

� � // Sht(GLn, b
′, µ′)(C,OC)

spGLn,b′,µ′

��
XG
≤µ(b)(k) �

� // XGLn
≤µ′ (b′)(k).

Remark 5.18. It would be nice to have a morphism of sheaves sp = sp(G,b,µ) : Sht(G, b, µ)→
XG
≤µ(b) which realizes the above map on the level of sets of points. If Sht(G, b, µ) comes

from the generic fiber of a Rapoport-Zink space, then it is clear how to define sp: it is just
the usual specialization map from the generic fiber to the special fiber.

Recall that we have the map ωG : G(L)/G(W ) → π1(G). In the rest of this subsection
we will only consider XG

≤µ(b) as a subset of G(L)/G(W ). Restricting ωG to XG
≤µ(b), it gives

ωG : XG
≤µ(b)→ cb,µπ1(G)Γ.

Recall that as in subsection 2.2, after replacing µ by σ(µ) we may assume cb,µ = 1. On the
other hand, restricting ωG to G(Qp)/G(Zp) we get

ωG : G(Qp)/G(Zp)→ π1(G)Γ.

Lemma 5.19. There is a map

G(Qp)/G(Zp)→ XG
≤µ(b), g 7→ g0,

such that ωG(g) = ωG(g0).

Proof. Fix any point x ∈ Sht(G, b, µ)(C,OC). Then we have an injection

G(Qp)/G(Zp)→ Sht(G, b, µ)(C,OC)

which identifies G(Qp)/G(Zp) with the Hecke orbit of x. The composite map

G(Qp)/G(Zp)→ Sht(G, b, µ)(C,OC)→ XG
≤µ(b)

gives the desired map. The second assertion follows by the same argument as in the proof
of Lemma 1.2.18 of [33], by applying Theorem 5.8 (and Tannakian formalism) instead of
subsection 1.1 of [33]. �
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Remark 5.20. Consider the composite map G(Qp)/G(Zp) → XG
≤µ(b) → π1(G)Γ. Then

this is surjective by Lemma 2.3 (1). In [33] Proposition 1.2.23, Kisin proved a stronger
result: the map

G(Qp)/G(Zp)→ π0(XG
≤µ(b))

is surjective if (G, [b], {µ}) is a unramified local Shimura datum of Hodge type.

The following is an analogue of Lemma 2.4.1 and Corollary 2.4.2 of [7], see also Proposi-
tion 2.5.

Proposition 5.21. Let Z ⊂ ZG be a central sub group and G′ = G/Z, with the induced
[b′] and {µ′} such that (G′, [b′], {µ′}) is a local shtuka datum. Then we have a cartesian
diagram

Sht(G, b, µ)(C,OC) //

��

Sht(G′, b′, µ′)(C,OC)

��
XG
≤µ(b) // XG′

≤µ′(b
′).

In particular, the induced diagram

Sht(G, b, µ)(C,OC) //

��

Sht(G′, b′, µ′)(C,OC)

��
π1(G)Γ // π1(G′)Γ

is also cartesian.

Proof. Firstly, we have the natural identification Gr
B+
dR,adm

G,≤µ = Gr
B+
dR,adm

G′,≤µ′ , since by con-

struction Gr
B+
dR,adm

G,≤µ depends only on the adjoint local shtuka datum (Gad, [bad], {µad}).
Now consider the following commutative diagram

Sht(G, b, µ)(C,OC) //

πG,dR ))

Sht(G′, b′, µ′)(C,OC)

πG′,dRuu

Gr
B+
dR,adm

G,≤µ (C,OC).

For any point x ∈ GrB
+
dR,adm

G,≤µ (C,OC), the above horizontal map induces a map on fibers

G(Qp)/G(Zp)→ G′(Qp)/G
′(Zp),

thus it suffices to show that the following diagram is cartesian

G(Qp)/G(Zp) //

��

G′(Qp)/G
′(Zp)

��
XG
≤µ(b) // XG′

≤µ′(b
′),
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where the vertical maps are those constructed in Lemma 5.19. Consider the following
diagram

G(Qp)/G(Zp) //

��

G′(Qp)/G
′(Zp)

��
XG
≤µ(b) //

ωG
��

XG′
≤µ′(b

′)

ωG′

��
π1(G)Γ // π1(G′)Γ.

We know that the lower square is cartesian, cf. Proposition 2.5, and by Lemma 4.14

G(Qp)/G(Zp) //

��

G′(Qp)/G
′(Zp)

��
π1(G)Γ // π1(G′)Γ

is also cartesian. Therefore the upper square is cartesian. �

5.5. Local Shimura varieties as moduli of local G-shtukas. We return to the setting
of Definition 3.1. The following strengthened version of Theorem 5.12, which may be viewed
as a partial solution of Conjecture 3.2 (as we do not give information on the desired Weil
descent datum), is implied by the results in [5, 48, 49]. Recall that by [48] Proposition
10.2.8, there is a fully faithful functor X 7→ X� from the category of normal rigid analytic
spaces over k to the category of diamonds over Spa(k)� for any non-archimedean field k of
characteristic 0.

Theorem 5.22. Let (G, [b], {µ}) be a local Shimura datum. Assume that G is unramified.

Then there exists a tower of rigid analytic spaces over SpĔ

(MK)K ,

where K runs through all open compact subgroups of G(Zp), with the following properties:

(1) the group Jb(Qp) acts on each space MK ,
(2) the group G(Qp) acts on the tower (MK)K as Hecke correspondences,
(3) there exists a compatible system of étale and partially proper period maps

πK :MK → F `admG,µ

which is equivariant for the action of Jb(Qp), where F `admG,µ ⊂ F `G,µ is the open

subspace defined in [41] A.6 (see also Proposition 5.13 and [8]),
(4) for any K, we have an isomorphism of diamonds M�K ' ShtK .

Proof. Consider the Bialynicki-Birula morphism

Gr
B+
dR

G,µ −→ F `G,µ,

cf. [5] Proposition 3.4.3. Since µ is minuscule, it is an isomorphism, cf. [5] Theorem 3.4.5,
which induces an isomorphism

Gr
B+
dR,adm

G,µ
∼−→ F `adm,�G,µ .

The tower (ShtK)K is constructed out of a Jb(Qp)-equivariant Qp −G-local system V over

Gr
B+
dR,adm

G,µ , which realizes Sht(G, b, µ) as the functor of the set of GZp-local systems in V.

Since Gr
B+
dR,adm

G,µ ' F `adm,�G,µ , there exists a corresponding Jb(Qp)-equivariant Qp-G-local
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system over F `admG,µ which we still denote by V. Here we use the fact that the categories
of étale Zp-local systems and Qp-local systems on an adic space X are eauivalent to the
corresponding categories on the pro-étale site Xproét, cf. [29] Lemma 9.1.11. Therefore we
get a tower of rigid analytic spaces (MK)K with the properties listed as in the theorem. �

Remark 5.23. (Compare Remark 5.16 (2)) In the above situation, it is natural to conjecture

that there exists a preperfectoid space M∞ over Ĕ such that M∞ ∼ lim←−KMK and M�∞ =

Sht∞. We will see that this is true if (G, [b], {µ}) is unramified of abelian type. This is the
local analogue of the fact that Shimura varieties of abelian type with infinite level at p are
perfectoid, cf. [52].

Finally, we return to Rapoport-Zink spaces of abelian type. In particular we assume
p > 2 in the rest of this section.

Corollary 5.24. Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type. For

any open compact subgroup K ⊂ G(Zp), letMK andM′K be the rigid analytic spaces over Ĕ
constructed in subsection 4.4 and Theorem 5.22 respectively. Then we have an isomorphism
of rigid analytic spaces over Ĕ

MK 'M′K .
In particular, we get isomorphisms of diamonds over Spa(Ĕ)�

M�K ' ShtK ,

and

M�∞ ' Sht∞,

with compatible period morphisms on both sides. In particular, the Hodge-Tate period map
πHT in Proposition 4.16 factors through πHT :M∞ −→ F `bG,−µ.

Proof. We first prove the case (G, [b], {µ}) is of Hodge type. This follows exactly as the
proof of [48] Theorem 19.4.5. Moreover, we have the following cartesian diagram

M(G, b, µ)�K� _

��

∼ // Sht(G, b, µ)K� _

��
M(GLn, b

′, µ′)�K′
∼ // Sht(GLn, b

′, µ′)K′

Now assume that (G, [b], {µ}) is of abelian type. We can apply Propositions 4.15 and
5.21, and compare the construction of M(G, b, µ)K with that of Sht(G, b, µ)K . Here as
above, we use the fact that the categories of étale Zp-local systems and Qp-local systems on
an adic space X are eauivalent to the corresponding categories on the pro-étale site Xproét,
cf. [29] Lemma 9.1.11. �

Let (G, [b], {µ}) be a local Shimura datum with G unramified. By Theorem 5.22, there

exists a tower of local Shimura varieties
(
M(G, b, µ)K

)
K

over SpĔ as conjectured by

Rapoport-Viehmann. Take an embedding G ↪→ GLn. Then we get an induced triple
(GLn, [b

′], {µ′}), which is a local shtuka datum. The following corollary is now a conse-
quence of Proposition 5.17 and Theorem 5.22.

Corollary 5.25. For any K ⊂ G(Zp), there exists a K ′ ⊂ GLn(Zp) such that there exists
a natural closed embedding of diamonds

M(G, b, µ)�K ↪→ Sht(GLn, b
′, µ′)K′ .
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Remark 5.26. (1) Let (G, [b], {µ}) be a unramified local Shimura datum of Hodge type,
with the associated Rapoport-Zink spaces MK and the moduli spaces of local G-
shtukas ShtK . The isomorphism of diamonds over Spa(Ĕ)�

M�K ' ShtK

indicates the magic “switching p-divisible groups with additional structures to local
G-shtukas”.

(2) If (G, [b], {µ}) is a general local Shimura datum, e.g. a unramified local Shimura
datum of abelian type but not of Hodge type, then we do not have p-divisible groups
any more. However, viaM�K ' ShtK , the local Shimura varietiesMK can be viewed
as moduli of local G-shtukas.

Remark 5.27. We refer to [44] sections 6,7,8 and [14] section 8 for the discussions on
the conjectures on the realizations of local Langlands correspondences and local Jacquet-
Langlands correspondences in the `-adic cohomology of the tower (MK)K or (ShtK)K .

6. Rapoport-Zink uniformization for Shimura varieties of abelian type

We discuss some global applications in this section. As [43] chapter 6 and [31], we apply

our construction of the formal schemes M̆(G, b, µ) to prove a uniformization theorem for
Kisin’s integral canonical models of Shimura varieties of abelian type [32]. Throughout this
section, we assume p > 2.

6.1. Integral canonical models for Shimura varieties of abelian type. Let (G,X) be
a Shimura datum of abelian type, i.e. there exists a Shimura datum of Hodge type (G1, X1)
together with a central isogeny Gder1 → Gder, such that it induces an isomorphism of the
associated adjoint Shimura data (Gad1 , X

ad
1 ) ' (Gad, Xad). Fix a prime p > 2. Assume that

G is unramified at p from now on. By Lemma 3.4.13 of [32], we can find a Shimura datum
of Hodge type (G1, X1) satisfying the above and G1 is unramified at p. Let E be the local
reflex field of (G,X) for some place over p. In the following we will only consider the open
compact subgroups K ⊂ G(Af ) in the form K = KpK

p with Kp = G(Zp).

Theorem 6.1 ([32] Theorem 3.4.10, Corollary 3.4.14). With the above notation and as-
sumption, for any sufficiently small open compact subgroup Kp ⊂ G(Apf ), there exists an

integral canonical smooth model
SK(G,X)

of ShK(G,X) over OE. When Kp varies, the prime to p Hecke action on
(
ShK(G,X)

)
K

extends to (
SK(G,X)

)
K

It will be useful to review how these integral models are constructed, cf. [32] 2.3 and 3.4.

6.1.1. Case (G,X) is of Hodge type. Take an embedding of Shimura data (G,X) ↪→ (GSp, S±).
Let K = KpK

p ⊂ G(Af ) be an open compact subgroup with Kp = G(Zp). Take an open

compact subgroup K ′ = K ′pK
′p with K ′p = GSp(Zp), such that K ⊂ K ′ and we have an

closed immersion
ShK(G,X) ↪→ ShK′(GSp, S±)E ,

where E is the local reflex field for (G,X). For ShK′(GSp, S±) we have the integral
canonical model SK′(GSp, S±). Consider the Zariski closure S−K(G,X) of ShK(G,X)E
in SK′(GSp, S±)OE . Then SK(G,X) is defined as the normalization of S−K(G,X). In par-
ticular we have a finite morphism

SK(G,X)→ S−K(G,X) ⊂ SK′(GSp, S±)OE .
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It will be useful to review some further structures for the integral canonical model
SK(G,X). Let T be a scheme over OE . Attached to each point x ∈ SK(G,X)(T ) we
have a triple

(Ax, λx, ε
p
x,K),

where (Ax, λx) is the polarized abelian scheme up to prime to p isogeny coming from pullback
of the universal polarized abelian scheme over SK′(GSp, S±), and

εpx,K ∈ Γ(T, Isom(VApf
, V p(Ax)Q)/Kp)

is the (promoted) K-level structure coming from the K ′-level structure εpx,K′ on Ax, cf.

[32] 3.4.2. The triple (Ax, λx, ε
p
x,K′) can be viewed as the polarized abelian scheme with

level structure attached to the T -point of SK′(GSp, S±) induced by x. Let (sα) be a finite
collection of tensors which cut off the inclusion G ⊂ GL(V ). As explained in 1.3.6 of [33],
there exist de Rham tensors sα,dR,x and `-adic étale tensors (sα,l,x)l 6=p on the first relative
de Rham cohomology and the first `-adic cohomology of Ax respectively. The level εpx,K
takes sα to (sα,l,x)l 6=p.

If T = Spec k where k ⊂ Fp is a subfield containing the residue field kE of OE , then
there exists cristalline Tate tensors (sα,0,x) on the first cristalline cohomology of Ax. If x
is the specialization of a point x̃ over F with F |E an extension, then there exist p-adic
étale tensors (sα,p,x̃) on the first p-adic étale cohomology of Ax̃, and (sα,0,x) and (sα,p,x̃) are
related by the p-adic comparison theorem, cf. Proposition 1.3.7 of [33]. By Corollary 1.3.11
of [33] the data

(Ax, λx, ε
p
x,K , (sα,0,x))

uniquely determines the point x ∈∈ SK(G,X)(k). Sometimes we will write sα,0,x as tα,x to
be compatible with our previous notation on cristalline Tate tensors on p-divisible groups.

6.1.2. Case (G,X) is of abelian type. Take a unramified Shimura datum of Hodge type
(G1, X1), together with a central isogeny Gder1 → Gder, such that it induces an isomorphism
of the associated adjoint Shimura datum (Gad1 , X

ad
1 ) ' (Gad, Xad). Let K = KpK

p ⊂
G(Af ) be an open compact subgroup with Kp = G(Zp). The integral model SK(G,X) is
constructed as the quotient

SKp(G,X)/Kp,

where SKp(G,X) is an integral model over OE of the pro-scheme

ShKp(G,X) = lim←−
Kp

ShKpKp(G,X).

The scheme SKp(G,X) is constructed as follows. Fix a connected component X+ ⊂ X.

We get the induced connected component ShK(G,X)+
C of the complex Shimura variety as

usual. By [32] Proposition 2.2.4 it is defined over L. Consider the connected component

ShK1p(G1, X1)+ = lim←−
Kp

1

ShK1pK
p
1
(G1, X1)+

of ShK1p(G1, X1) = lim←−Kp
1

ShK1pK
p
1
(G1, X1). Let SK1p(G1, X1)+ be the Zariski closure of

ShK1p(G1, X1)+ in SK1p(G1, X1) over W = W (Fp). Write Z = ZG. The above integral
model SKp(G,X) of ShKp(G,X) over W is given by

SKp(G,X) = [A (GZ(p)
)× SK1p(G1, X1)+]/A (G1Z(p)

)◦,

where

A (GZ(p)
) = G(Apf )/Z(Z(p))

− ∗G(Z(p))+/Z(Z(p)) G
ad(Z(p))

+
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and

A (GZ(p)
)◦ = G(Z(p))

−
+/Z(Z(p))

− ∗G(Z(p))+/Z(Z(p)) G
ad(Z(p))

+;

similarly we have A (G1Z(p)
) and A (G1Z(p)

)◦, see [32] 3.3.2. The scheme SKp(G,X) descends

to OE and gives the integral canonical model of ShKp(G,X) = lim←−Kp ShKpKp(G,X), see
the proof of loc. cit. Theorem 3.4.10.

6.2. Newton stratification of the special fibers. We keep the notations as above. We
will work over Fp in this subsection. By abuse of notation, denote the special fiber of

SK = SK(G,X) over Fp by SK for simplicity. In this subsection, we will write an element
of B(GQp) simply by b, and B(G,µ) = B(GQp , µ) as usual. In [54], we proved the following
results.

Theorem 6.2. (1) For any b ∈ B(G,µ), there exists a non empty locally closed subset

S
b
K ⊂ SK , which we view as a subscheme of SK with its reduced structure, such that

set theoritically we have

SK =
∐

b∈B(G,µ)

S
b
K .

(2) For any b ∈ B(G,µ), the Zariski closure of S
b
K in SK is

∐
b′≤b S

b′

K .

For b ∈ B(G,µ), we call the subschemes S
b
K as the Newton strata of SK . If (G,X) is of

Hodge type, then the existence of the Newton stratification is implied by [42], see also [59]
5.2.

For later use, we briefly review the construction of the Newton stratification. If (G,X)
is of Hodge type, it is constructed by the associated p-divisible groups with crystalline
Tate tensors. We now assume that (G,X) is of abelian type. In this case, let (G1, X1)
be a unramified Shimura datum of Hodge type (G1, X1), together with a central isogeny
Gder1 → Gder, such that it induces an isomorphism of the associated adjoint Shimura data
(Gad1 , X

ad
1 ) ' (Gad, Xad). Then we have a canonical bijection B(G1, µ1) ' B(G,µ). Con-

sider the Newton stratification at level Kp
1 ,

SK1pK
p
1
(G1, X1) =

∐
b∈B(G1,µ1)

SK1pK
p
1
(G1, X1)b.

When the level Kp
1 varies, the Newton stratifications are compatible. Therefore, we get a

Newton stratification

SK1p(G1, X1) =
∐

b∈B(G1,µ1)

SK1p(G1, X1)b

by taking inverse limit over Kp
1 . As [33] 3.5.8, consider

π(G1) := G1(Q)−+ \G1(Af )/G1(Zp) = G1(Z(p))
−
+ \G1(Apf ),

which is the set of geometric connected components of SK1p(G1, X1). By [54],

SK1p(G1, X1)b ⊂ SK1p(G1, X1)

is stable under the action of A (G1Z(p)
), and we have a surjective A (G1Z(p)

)-equivariant
map

SK1p(G1, X1)b → π(G1).
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Let SK1p(G1, X1)b,+ be the pullback of SK1p(G1, X1)b under the inclusion SK1p(G1, X1)+ ↪→
SK1p(G1, X1). In other words, we consider the following commutative diagrams

SK1p(G1, X1)b,+ �
� //

� _

��

SK1p(G1, X1)+
� _

��
SK1p(G1, X1)b �

� //

����

SK1p(G1, X1)

����
π(G1) π(G1),

where the above diagram is cartesian. The stablizer of SK1p(G1, X1)b,+ ⊂ SK1p(G1, X1)b is
A (G1Z(p)

)◦, and we have the identity

SK1p(G1, X1)b = [A (G1Z(p)
)× SK1p(G1, X1)b,+]/A (G1Z(p)

)◦.

For more details we refer to [54]. Now as

SKp(G,X) = [A (GZ(p)
)× SK1p(G1, X1)+]/A (G1Z(p)

)◦,

we get the Newton stratification

SKp(G,X) =
∐

b∈B(G,µ)

SKp(G,X)b,

where for any b ∈ B(G,µ), the associated stratum

SKp(G,X)b = [A (GZ(p)
)× SK1p(G1, X1)b,+]/A (G1Z(p)

)◦ ↪→ SKp(G,X).

For any sufficiently small open compact subgroup Kp ⊂ G(Apf ), we define

SKpKp(G,X)b = SKp(G,X)b/Kp.

Therefore we get the Newton stratification

SKpKp(G,X) =
∐

b∈B(G,µ)

SKpKp(G,X)b.

6.3. Rapoport-Zink uniformization. The notations will be the same as the previous
subsection. We will work over W in the rest of this section. For simplicity, denote the
base change of SK = SK(G,X) over W by the same notation. Let b ∈ B(G,µ) (the same
convention as the last subsection). We get a unramified local Shimura datum of abelian

type (G, b, {µ}), thus a formal scheme M̆ = M̆(G, b, µ) over W . Fix a point x ∈ SbK(Fp).

6.3.1. Case (G,X) is of Hodge type. We want to construct a morphism of formal schemes
over SpfW

Θ = Θx : M̆ ×G(Apf )/Kp −→ ŜK ,

where ŜK is the formal completion of SK along its special fiber. The morphism Θ is
constructed in [31] Proposition 4.3 and Corollary 4.3.2. Let (Ax, (tα,x), η) be the abelian
variety with additional structures attached to x, and let Iφ(Q) be the group of quasi-
isogenies of Ax preserving (tα,x). Then Iφ(Q) is the group of Q-points of a reductive group
Iφ over Q (cf. [33] Corollary 2.3.1) which depends only on the isogeny class of x ([33] 1.4.14).
In this case, Θ factors through the quotient by Iφ(Q)

Θ : Iφ(Q) \ M̆ ×G(Apf )/Kp −→ ŜK ,

and the image Zφ,Kp is contained in the stratum S
b
K .
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6.3.2. Case (G,X) is of abelian type. We first work on the level of sets. By [33] Theorem
4.6.7, we have the following bijection

SKp(G,X)b(Fp)
∼−→

∐
[φ],b(φ)=b

S(G,φ),

where
φ : Q→ GG

runs through the set the admissible morphisms of Galois gerbs, [φ] is the associated equiv-
alence class, cf. [33] 3.3, and

S(G,φ) = lim←−
Kp

Iφ(Q) \Mred(Fp)×G(Apf )/Kp,

where Mred is the reduced special fiber of the Rapoport-Zink space M̆ associated to
(GQp , b(φ), {µ}).

Remark 6.3. In [33] 3.3, in fact one considers the set

S(G,φ) = lim←−
Kp

Iφ(Q) \Xp(φ)×Xp(φ)/Kp,

where Xp(φ) and Xp(φ) are certain sets canonically associated to φ, such that (cf. Lemma
3.3.4 of [33])

Xp(φ) ' XG
µ (b) 'Mred(Fp)

and Xp(φ) is a G(Apf )-torsor.

Take a unramified Shimura datum of Hodge type (G1, X1), together with a central isogeny
Gder1 → Gder, such that it induces an isomorphism of the associated adjoint Shimura data
(Gad1 , X

ad
1 ) ' (Gad, Xad). Let

φ1 : Q→ GG1

be an admissible morphism of Galois gerbs. We note that

S(G1, φ1) = lim←−
Kp

1

Iφ1(Q) \M1red(Fp)×G1(Apf )/Kp
1

= Iφ1(Q) \M1red(Fp)×G1(Apf ),

where M1red is the reduced special fiber of the Rapoport-Zink space M̆1 associated to
(G1Qp , b(φ1), {µ1}).

Fix an admissible morphism φ0 : Q→ GGad . Consider

S(G,φ0) =
∐

[φ],φad=φ0

S(G,φ)

=
∐

[φ],φad=φ0

lim←−
Kp

Iφ(Q) \Mred(Fp)×G(Apf )/Kp.

By [33] Lemmas 3.7.2 and 3.7.4, there is an action of A (GZ(p)
) on S(G,φ0), together with

a A (GZ(p)
)-equivariant surjective map

cG : S(G,φ0)→ π(G).

Let φ0 be such that x ∈ S(G,φ0) under the above bijection. For the identity class e ∈ π(G),
consider the fiber

S(G,φ0)+ = c−1
G (e).

Let (G1, X1) be a unramified Shimura datum of Hodge type as above. Similarly we have
S(G1, φ0) =

∐
[φ1],φad1 =φ0

S(G1, φ1) and S(G1, φ0)+.
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Proposition 6.4. We have the following isomorphism of sets with A (GZ(p)
)× 〈Φ〉-action

S(G,φ0) ' [A (GZ(p)
)× S(G1, φ0)+]/A (G1Z(p)

)◦.

Proof. This follows from Corollary 3.8.12 of [33]. �

Now we come back to Rapoport-Zink spaces. If Kp′

1 ⊂ Kp
1 is another open compact

subgroup of G1(Apf ), then we have the following commutative diagram

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp′

1
//

Θ
1K

p′
1

��

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp
1

Θ
1K

p
1

����

Ŝ
K1pK

p′
1

(G1, X1) // ŜK1pK
p
1
(G1, X1)

with horizontal maps finite. Therefore, if we set

Ŝ(G1, φ1) := lim←−
Kp

1

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp
1 ,

then we get

Θ1 = lim←−
Kp

1

Θ1Kp
1

: Ŝ(G1, φ1) −→ lim←−
Kp

1

ŜK1pK
p
1
(G1, X1),

where both limits are taken in the category of formal schemes.

Lemma 6.5. Let ŜK1p(G1, X1) be the formal completion of SK1p(G1, X1) along its special
fiber. Then we have a canonical isomorphism of formal schemes

lim←−
Kp

1

ŜK1pK
p
1
(G1, X1) = ŜK1p(G1, X1).

Proof. This follows from the definition of inverse limit of formal schemes. �

We have thus Θ1 : Ŝ(G1, φ1) −→ ŜK1p(G1, X1). On the other hand, we have a surjective
map

cG1 : SK1p(G1, X1) −→ π(G1).

Consider the fiber over e of this map cG1 , SK1p(G1, X1)+ ⊂ SK1p(G1, X1), and let ŜK1p(G1, X1)+

be formal completion of SK1p(G1, X1)+ along its special fiber. Let

Θ+
1 : Ŝ(G1, φ1)+ :=

(
lim←−
Kp

1

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp
1

)+
−→ ŜK1p(G1, X1)+

be the pullback of

Θ1 : Ŝ(G1, φ1) = lim←−
Kp

1

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp
1 −→ ŜK1p(G1, X1)

under the inclusion ŜK1p(G1, X1)+ ↪→ ŜK1p(G1, X1). The morphism Θ+
1 can be written as

Θ+
1 = lim←−Kp

1

Θ+
1Kp

1
, with(

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp
1

)+
//

Θ+

1K
p
1

��

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp
1

Θ
1K

p
1

��

ŜK1pK
p
1
(G1, X1)+ // ŜK1pK

p
1
(G1, X1).
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Define formal schemes

Ŝ(G1, φ0)+ =
∐

[φ1],φad1 =φ0

Ŝ(G1, φ1)+

=
∐

[φ1],φad1 =φ0

(
lim←−
Kp

1

Iφ1(Q) \ M̆1 ×G1(Apf )/Kp
1

)+

and

Ŝ(G,φ0) =
∐

[φ],φad=φ0

lim←−
Kp

Iφ(Q) \ M̆ ×G(Apf )/Kp.

Proposition 6.6. In the above situation, we have

Ŝ(G,φ0) ' [A (GZ(p)
)× Ŝ(G1, φ0)+]/A (G1Z(p)

)◦.

Proof. This is identical to the proof of Proposition 6.4. �

Let Zφ1,K
p
1

(resp. Z+
φ1,K

p
1

) be the image of Θ1Kp
1

(resp. Θ+
1Kp

1
). This exists a geometric

structure on Zφ1,K
p
1

as follows. We can write

Zφ1,K
p
1

=
⋃

j∈J
K
p
1

Zj
φ1,K

p
1
,

where JKp
1

is the Iφ1(Q)-orbits of irreducible components of M̆1 ×G1(Apf )/Kp, and Zj
φ1,K

p
1

is the image of the irreducible components under Θ1Kp
1

corresponding to j ∈ JKp
1
. For each

j ∈ JKp
1
, there exists only finitely many j′ ∈ JKp

1
such that

Zj
φ1,K

p
1

⋂
Zj
′

φ1,K
p
1
6= ∅.

Thus we get an induced geometric structure on Z+
φ1,K

p
1

as

Z+
φ1,K

p
1

=
⋃

j∈J
K
p
1

Zj,+
φ1,K

p
1
,

where Zj,+
φ1,K

p
1

is the pullback of Zj
φ1K

p
1

to ŜK1pK
p
1
(G1, X1)+. When Kp

1 varies, JKp
1
, Zφ1,K

p
1
,

and Z+
φ1,K

p
1

form inverse systems, and we set

Zφ1 = lim←−
Kp

1

Zφ1,K
p
1
, Z+

φ1
= lim←−

Kp
1

Z+
φ1,K

p
1
.

Let J1 be the Iφ1(Q)-orbits of irreducible components of M̆1 ×G1(Apf ). For any j ∈ J , let

Zjφ1
be the image of the irreducible components under Θ1 corresponding to j, then we can

write

Zφ1 =
⋃
j∈J1

Zjφ1

and

Zjφ1
= lim←−

Kp
1

Zj
φ1,K

p
1
,

where Zj
φ1K

p
1

is the image of the irreducible components corresponding to j under the

composition

M̆1 ×G1(Apf )→ M̆1 ×G1(Apf )/Kp
1 → ŜK1pK

p
1
(G1, X1).
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Similarly for Z+
φ1

. By the proof of Proposition 4.6.2 of [33], we have 〈Φ〉 × Z1(Qp) ×
A (G1Z(p)

)Iφ1 -equivariant bijection of sets (cf. Remark 6.8)

Zφ1(Fp) ' S(G1, φ1), Z+
φ1

(Fp) ' S(G1, φ1)+.

We have
[A (GZ(p)

)× ŜK1p(G1, X1)+]/A (G1Z(p)
)◦ = ŜKp(G,X).

Recall that we fixed an admissible morphism φ0 : Q→ GGad . Set

Z+
G1,φ0

=
∐

[φ1],φad1 =φ0

Z+
φ1
.

Applying the functor [A (GZ(p)
)×−]/A (G1Z(p)

)◦ to Z+
G1,φ0

, we get a subset Zφ0(= ZG,φ0) ⊂
ŜKp = ŜKp(G,X). Let Zφ0,Kp be the image of Zφ0 under the projection ŜKp → ŜK =

ŜKpKp . Then we can define the formal completion of ŜK along Zφ0,Kp as [43] chapter 6 and
[31] Definition 4.6.

Theorem 6.7. We have an isomorphism of formal schemes over W

Θ :
∐

[φ],φad=φ0

Iφ(Q) \ M̆ ×G(Apf )/Kp ∼−→ ŜK/Zφ0,K
p .

Proof. If (G,X) is of Hodge type, this is proved in [31] Theorem 4.7. Assume that we are
in the general case. By the above notation, it suffices to prove that∐

[φ],φad=φ0

lim←−
Kp

Iφ(Q) \ M̆ ×G(Apf )/Kp ' [A (GZ(p)
)× Ŝ(G1, φ0)+]/A (G1Z(p)

)◦.

This is given by Proposition 6.6. �

Remark 6.8. Denote by Gad1 (Z(p))
+,Iφ1 the kernel of the composite of

Gad1 (Z(p))
+ ↪→ Gad1 (Z(p))→ H1(Q, Z1)→ H1(Q, Iφ1),

where Z1 is the center of G1. Similarly we define Gad(Z(p))
+,Iφ. Following [33] 4.3.4, we

define

A (G1Z(p)
)Iφ1 = G1(Apf )/Z1(Z(p))

− ∗G1(Z(p))+/Z1(Z(p)) G
ad
1 (Z(p))

+,Iφ1

A (G1Z(p)
)Iφ1

,◦ = G1(Z(p))
−
+/Z1(Z(p))

− ∗G1(Z(p))+/Z1(Z(p)) G
ad
1 (Z(p))

+,Iφ1 .

Similarly we define A (GZ(p)
)Iφ and A (GZ(p)

)Iφ,◦. The group A (G1Z(p)
)Iφ1 acts on S(G1, φ1),

cf. [33] Lemma 4.5.9. By construction, we have an A (G1Z(p)
)Iφ1 -equivariant map

cG1 : S(G1, φ1)→ π(G1),

which is surjective since G1(Apf ) (and thus A (G1Z(p)
)Iφ1 ) acts transitively on π(G1). For

the identity class e ∈ π(G1), consider the fiber

S(G1, φ1)+ = c−1
G1

(e).

We have then S(G1, φ0)+ =
∐

[φ1],φad1 =φ0
S(G1, φ1)+. The stabilizer of S(G1, φ1)+ ⊂ S(G1, φ1)

is
A (G1Z(p)

)Iφ1
,◦ ⊂ A (G1Z(p)

)Iφ1 .

We have
S(G1, φ1) = [A (G1Z(p)

)Iφ1 × S(G1, φ1)+]/A (G1Z(p)
)Iφ1

,◦.

Take any φ1 : Q→ GG1, such that

φad = φad1 : Q→ GGad .
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It should be possible that the strategy of [33] 3.8 enables us to prove the following refinement
of Proposition 6.4

S(G,φ) = [A (G1Z(p)
)Iφ1 × S(G1, φ1)+]/A (GZ(p)

)Iφ,◦.

Once this is done, the same argument as above shows that there is an isomorphism of formal
schemes over W

Iφ(Q) \ M̆ ×G(Apf )/Kp ∼−→ ŜK/Zφ,Kp ,

where Zφ,Kp is the image under the projection ŜKp → ŜKpKp of

Zφ := [A (G1Z(p)
)Iφ1 ×Z+

φ1
]/A (GZ(p)

)Iφ,◦.

Remark 6.9. In the special cases of Shimura curves associated to quaternion algebras over
totally real field, see [3] for a construction of the uniformization by Drinfeld spaces.

Let ShK(φ0) = (ŜK/Zφ0,K
p )adη . We get a natural morphism of adic spaces ShK(φ0) →

ShadK . For any open compact subgroup K ′p ⊂ G(Qp), let ShK′pKp(φ0) → ShadK′pKp be the

pullback of ShK(φ0)→ ShadK under the projection ShadK′pKp → ShadKpKp . We get the following

corollary from Theorem 6.7.

Corollary 6.10. With the above notations, Θ induces an isomorphism of rigid analytic
spaces over Ĕ

Θ :
∐

[φ],φad=φ0

Iφ(Q) \MK′p ×G(Apf )/Kp ∼−→ ShK′pKp(φ0).

We fix a morphism

π :M−→ ShadK
coming from the above uniformization isomorphism, which factors through the good reduc-
tion locus

(ŜK)adη ⊂ ShadK .

By [36], the universal Qp − G-local system LK on ShadK is de Rham (which can be proved
directly for the abelian type case; moreover we assume that G = Gc for the notation Gc

there). When restricting to (ŜK)adη , it is even crystalline. Recall by Proposition 4.15, we
have the universal Qp-G-local system V on M. We have the natural local-global compati-
bility identity

V = π∗LK .
Recall that in [52] we have proved that there exists a perfectoid space SKp over Cp such

that

SKp ∼ lim←−
K′p

ShK′pKp(G,X)ad.

On the other hand, by Proposition 4.16, we get a perfectoid space M∞ over Cp such that

M∞ ∼ lim←−
K′p

MK′p .

From the above Corollary 6.10 we get

Corollary 6.11. There exists a perfectoid space SKp(φ0) together with a map SKp(φ0) →
SKp, such that

SKp(φ0) '
∐

[φ],φad=φ0

Iφ(Q) \M∞ ×G(Apf )/Kp.
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Remark 6.12. For the b ∈ B(G,µ) we fixed in this subsection, we can define the Newton
stratum SbKp ⊂ SKp, which is a locally closed subspace, cf. [5] subsection 4.3 or [53]. Then

we have SKp(φ0) → SKp factors through SbKp. In the case that b is basic, we will have

SKp(φ0) = SbKp, cf. the next subsection. In the general case, the image of SKp(φ0)→ SbKp

is a strict subsapce, and to under understand the whole stratum SbKp, one should introduce
Igusa varieties, cf. [5] section 4 in the PEL case and [53] in the general case.

6.4. The case of basic strata. Let the notations be as in the last subsection. Assume
now that b = b0 is the basic element. Note that there is only one φ such that b(φ) = b0.

Theorem 6.13. In the setting above, Zφ0,Kp = S
b
K . Thus we have an isomorphism

Θ : Iφ(Q) \ M̆ ×G(Apf )/Kp ∼−→ ŜK/SbK
.

Proof. In the case that (G,X) is of Hodge type, this is proved in Theorem 4.11 of [31]. The
general case follows from this by the construction. �

Corresponding to Corollaries 6.10 and 6.11, we have

Corollary 6.14. For any open compact subgroup K ′p ⊂ G(Qp), Θ induces an isomorphism
of rigid analytic spaces over L

Θ : Iφ(Q) \MK′p ×G(Apf )/Kp ∼−→ ShbK′pKp ,

and an isomorphism of perfectoid spaces over Cp

Θ : Iφ(Q) \M∞ ×G(Apf )/Kp ∼−→ SbKp .

7. Application to moduli spaces of K3 surfaces in mixed characteristic

In this section, we discuss some applications to K3 surfaces and their moduli in mixed
characteristic. We will first construct and study the Ekedahl-Oort stratification for the
special fibers of our Rapoport-Zink spaces, motivated by the study of Artin invariants of K3
surfaces. Then we will discuss some examples of Rapoport-Zink spaces of orthogonal type.
Finally, we will apply our constructions of Rapoport-Zink uniformization and Ekedahl-Oort
stratifications to moduli spaces of K3 surfaces. Again, we assume p > 2 in this section.

7.1. Ekedahl-Oort stratification for special fibers of Rapoport-Zink spaces. Let
(G, [b], {µ}) be a unramified local Shimura datum of abelian type, and M̆ = M̆(G, b, µ)
be the associated Rapoport-Zink space by Theorem 4.6. Consider the special fiber M over
Fp of M̆ and the associated reduced special fiber Mred of M̆, which is by definition the

reduced subscheme of M.
Let G-Zipµ be the stack of G-zips of type µ (we refer to [38] and [60] 1.2 for some basic

facts about G-zips and the stack G-Zipµ). The underling set of geometric points of G-Zipµ

is in canonical bijection with a subset JW of the Weyl group W of G (for a fixed choice
of maximal torus). More precisely, JW is the set of minimal length elements in the coset
WJ \ W, where J is the type of the parabolic subgroup of G attached to {µ} in the usual
way, and WJ is the associated subgroup of W. There is a partial order � on JW making
which into a topological space, cf. [60] 3.1 or [59] 5.3. In fact we have isomorphisms of
topological spaces

|G-Zipµ| ' JW,

cf. [60] Theorem 3.1.5 and [59] Proposition 5.12.
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Proposition 7.1. There exists a formally smooth morphism

ζ :M−→ G-Zipµ,

which induces a decomposition

M =
∐

w∈JW

Mw,

where Mw ⊂M is locally closed ( could be empty).

Proof. Assume first that (G, [b], {µ}) is of Hodge type. Then the universal p-divisible group
with crystalline Tate tensors on M gives rise to a G-zip of type µ: the arguments of [60]
Theorem 2.4.1 apply to our local setting. Thus we get a morphism

ζ :M−→ G-Zipµ.

This morphism is Jb(Qp)-invariant. To show this morphism is formally smooth, one can
apply the arguments for the proof of [60] Theorem 3.1.2.

Now assume that (G, [b], {µ}) is unramified of abelian type. Take any unramified local
Shimura datum of Hodge type (G1, [b1], {µ1}) such thatGad, [bad], {µad}) ' (Gad1 , [b

ad
1 ], {µad1 }).

Let M and M1 be the special fibers of Rapoport-Zink spaces attached to (G, [b], {µ}) and

(G1, [b1], {µ1}) respectively. By construction after fixing x0 ∈ π1(G1)Γ we haveM+
=M+

1 .

Consider the restriction ζ+
1 :M+

1 −→ G1-Zipµ1 . As |G1-Zipµ1 | ' |G-Zipµ|, we get a formally

smooth morphism ζ+ : M+ −→ G-Zipµ. Applying the Jb(Qp) action, we get a formally
smooth Jb(Qp)-invariant morphism

ζ :M−→ G-Zipµ,

as desired. �

We note that in the EL/PEL cases, Wedhorn and Lau proved the above proposition pre-
viously, cf. [58] and [38] Example 9.21. If (G, [b], {µ}) ↪→ (GLn, [b

′], {µ′}) is an embedding
of unramified local Shimura data of Hodge type, by construction, we have the commutative
diagram

M(G, b, µ) �
� //

ζG
��

M(GLn, b
′, µ′)

ζGLn
��

G-Zipµ �
� // GLn-Zipµ

′
.

Let JWb ⊂ JW be the subset defined by the image of ζ. For each w ∈ JWb, we callMw

the Ekedahl-Oort stratum of M attached to w. We get a stratification

M =
∐

w∈JWb

Mw.

We also get an induced stratification

Mred =
∐

w∈JWb

Mw,

where Mw ⊂Mred is a locally closed subscheme of Mred, which we call the Ekedahl-Oort
stratum of Mred associated to w. For a locally closed subscheme X ⊂ Y , we write Xcl the
(Zariski) closure of X in Y . By construction, we have the closure relations

Mcl
w =

∐
w′�w,w′∈JWb

Mw′ , Mcl
w =

∐
w′�w,w′∈JWb

Mw′ .
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In [21] 1.4 (and [20] 3.4), there exists a decomposition

XG
µ (b) =

∐
w∈Adm(µ)∩KW̃

XK,w(b),

where in our case K = G(Zp) is the fixed hyperspecial group. Here are some explanations

about the notations: W̃ is the Iwahori Weyl group of G, Adm(µ) ⊂ W̃ is the (finite) subset

defined as (2.1) of [25], KW̃ ⊂ W̃ is the set of minimal length elements in the coset WK \W̃ ,

with WK ⊂ W̃ the subgroup corresponding to K = G(Zp), our fixed hyperspecial group.

On the other hand, if we set AdmK(µ) = WKAdm(µ)WK , then we have

Adm(µ) ∩ KW̃ = AdmK(µ) ∩ KW̃
∼−→ JW,

where the first equality follows from [25] Theorem 6.10, and the second bijection is induced

by the projection W̃ →W by [57] Theorem 1.1 (1). Moreover, this bijection preserves the

order �K,σ on KW̃ (cf. [25] 6.5 and [20] 3.3) and the order � on JW. Therefore we can
rewrite the above decomposition in the hyperspecial level as

XG
µ (b) =

∐
w∈JW

XK,w(b).

Recall that by Theorem 4.6 we have

Mperf ' XG
µ (b).

Proposition 7.2. For w ∈ JW the strata XK,w(b) 6= ∅ if and only if w ∈ JWb, in which
case we have

Mperf
w ' XK,w(b).

In particular, Mw is of dimension dimXK,w(b) if it is non-empty.

Proof. It suffices to prove Mperf
w ' XK,w(b) for any w ∈ JW. We first consider the Hodge

type case. By the proof of [61] Proposition 3.11, we have two morphism f : Mperf →
XG
µ (b) and g : XG

µ (b) → Mperf
, inverse to each other, by using Dieudonné theory over

perfect rings. It suffices to check that f (resp. f−1) induces f : Mperf
w → XK,w(b) (resp.

f−1 : XK,w(b) → Mperf
w ). This follows from [57] Theorem 1.1 (see loc. cit. section 7 for

some discussion in the global setting of Shimura varieties), see also 5.1 of [20] and Remark
6.5 (2) of [25].

Now assume that (G, [b], {µ}) is unramified of abelian type. Take any unramified local
Shimura datum of Hodge type (G1, [b1], {µ1}) such thatGad, [bad], {µad}) ' (Gad1 , [b

ad
1 ], {µad1 }).

Let M and M1 be the special fibers of Rapoport-Zink spaces attached to (G, [b], {µ})
and (G1, [b1], {µ1}) respectively. As always after fixing a point x0 ∈ π1(G1)Γ we have

M+
= M+

1 . The restriction of f induces an isomorphism f+
1 : M+,perf

1w ' XK1,w(b1)+.
Applying the Jb(Qp) action, we get

Mperf
w ' XK,w(b)

as desired. �

Remark 7.3. (1) The closure relation for the decomposition XG
µ (b) =

∐
w∈JW XK,w(b)

can be proved similarly as [25] Theorem 6.15. See also [21] 4.11 and [20] section 7.
(2) If we were working in the equal characteristic setting, then a formula for dimXK,w(b)

is known by combining [20] Theorem 4.1.2 (2) and [24] Theorem 6.1. In our mixed
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characteristic setting, it should be possible to prove the same formula holds by ap-
plying [25] Proposition 6.20 and the Witt vector affine flag varieties in 1.4 of [61]
and the method in 3.1 of loc. cit..

7.2. Rapoport-Zink spaces for a fully Hodge-Newton decomposable pair (G, {µ}).
We discuss some special Rapoport-Zink spaces in this subsection. Our motivation here is
the observation that the list in the classification of [21] Theorem 2.5 (a posteriori) lies in
our class of local abelian type (for minuscule µ).

LetG be a connected reductive group over Qp and {µ} be a conjugacy class of cocharacters
µ : Gm → GQp

. Recall the following definition

Definition 7.4 ([21] Definition 2.1). The pair (G, {µ}) (or the set B(G,µ)) is called fully
Hodge-Newton decomposable if for any non basic [b′] ∈ B(G,µ), the pair ([b′], {µ}) is Hodge-
Newton decomposable, i.e. there exists a proper Levi subgroup G ) M ⊃ Mb′ such that
κM (b′) = µ] in π1(M)Γ.

Recall Mb′ = Mνb′ is the Levi subgroup of G defined as the centralizer of ν[b′]. In [21]
Theorem 2.5 there is a purely group theoretical classification of all the fully Hodge-Newton
decomposable pairs (G, {µ}), and in loc. cit. Theorem 2.3 one can find further equivalent
conditions ( those in (2)-(6) of the statement of the theorem) for (G, {µ}) being fully Hodge-
Newton decomposable.

Theorem 7.5. Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type, Mred

be the reduced Rapoport-Zink space associated to (G, [b], {µ}). Suppose that (G, {µ}) is fully
Hodge-Newton decomposable. Then we have

(1) if [b] is non basic, then dimMred = 0;
(2) if [b] is basic, then the perfection of each Ekedahl-Oort stratum Mw ⊂ M is a

disjoint union of perfections of classical Deligne-Lusztig varieties;
(3) for each w ∈ JW, there exists a unique [b′] ∈ B(G,µ) such thatMw 6= ∅, whereMw

is an Ekedahl-Oort stratum of M′red, the reduced Rapoport-Zink space associated to
(G, [b′], {µ}). In particular we get a decomposition

JW =
∐

[b′]∈B(G,µ)

JWb′ .

Conversely, if (G, {µ}) is part of any unramified local Shimura datum of abelian type with
one of the above three conditions holds, then (G, {µ}) is fully Hodge-Newton decomposable.

Proof. This follows from [21] Theorem 2.3 (in the hyperspecial level case), our Theorem 4.6
and Proposition 7.2. �

Remark 7.6. Let (G, [b], {µ}) be a unramified local Shimura datum of abelian type, with
M associated the special fiber of the associated Rapoport-Zink space. Suppose that [b] is non
basic and the pair (b, {µ}) is Hodge-Newton decomposable. With our Theorem 4.6 at hand,
we refer the reader to [21] Theorems 3.16 and 6.2 (in the unramified case) to write down

an isomorphism between Mperf
and M(M, bM , µM )perf , the perfection of the special fiber

of some Rapoport-Zink space of abelian type attached to a Levi subgroup M of G.

7.3. Rapoport-Zink spaces of orthogonal type. In this and the next subsection, we
will discuss an example of Rapoport-Zink space for a fully Hodge-Newton decomposable
pair (G, {µ}).

Let (L,Q) be a non degenerate self dual quadratic lattice of rank n + 2 over Zp, where
n ≥ 1 is an integer. We write (V,Q) as the induced quadratic space over Qp. Let G =
SO(V,Q), G1 = GSpin(V,Q) be the associated special orthogonal and spinor similitudes
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groups over Qp. By our assumption that L is self dual, both G and G1 are unramified. We
have an exact sequence of groups

1→ Gm → G1 → G→ 1,

which is in fact defined over Zp.
As in [26] subsection 4.2, there is a natural choice of minuscule cocharacter µ1 of G1.

Take any [b1] ∈ B(G1, µ1). Then (G1, [b1], {µ1}) is a local Shimura datum of Hodge type.
We get a local Shimura datum (G, [b], {µ}) by taking [b], {µ} as the image of [b1], {µ1} under
the map G1 → G. By construction (G, [b], {µ}) is unramified of abelian type. We get the

associated Rapoport-Zink spaces M̆1 = M̆(G1, b1, µ1) and M̆ = M̆(G, b, µ). The pairs
(G1, {µ1}) and (G, {µ}) are fully Hodge-Newton decomposable by Theorem 2.5 of [21] (or
one can compute the sets B(G1, µ1) and B(G,µ) directly to see they are fully Hodge-Newton
decomposable).

Let X0 be the p-divisible group over Fp with (covariant) Dieudonné module (C(V ) ⊗
W, b1σ), where C(V ) is the Clifford algebra attached to V . Fix any δ ∈ C(V )× with δ∗ = δ
where ∗ is the canonical involution on C(V ). Then ψδ(c1, c2) = Tr(c1δc

∗
2) is a perfect

symplectic form on C(V ). Here Tr : C(V ) → Zp is the reduced trace map. The perfect
symplectic form ψδ on C(V ) induces a principal polarization λ0 : X0 → X∨0 . There exists
a finite collection tensors (sα)α∈I which includes ψδ, such that G1 ⊂ GL(C(V )) is cut out

by (sα)α∈I . Recall that M̆1 has the following moduli interpretation. For any R ∈ NilpsmW ,

M̆1(R) = {(X, (tα)α∈I , ρ)}/ ', where

• X is a p-divisible group on SpecR,
• (tα)α∈I is a collection of cystalline Tate tensors of X,
• ρ : X0 ⊗ R/J → X ⊗ R/J is a quasi-isogeny which sends sα ⊗ 1 to tα for α ∈ I,

where J is some ideal of definition of R,

such that the following condition holds:
the R-scheme

Isom
((

D(X)R, (tα),Fil•(D(X)R)
)
,
(
Λ⊗R, (sα ⊗ 1),Fil•Λ⊗R

))
that classifies the isomorphisms between locally free sheaves D(X)R and Λ ⊗ R on SpecR
preserving the tensors and the filtrations is a Pµ1 ⊗R-torsor.

The exact sequence 1 → Gm → G1 → G → 1 induces a long exact sequence (cf. [2]
Lemma 1.5)

1→ π1(Gm)Γ → π1(G1)Γ → π1(G)Γ → H1(Γ, π1(Gm))→ · · ·
We have the following isomorphisms

π1(Gm)Γ = π1(Gm) ' X∗(Gm) ' Z.

Since Gder1 = Spin(V ) is simply connected and we have the exact sequence

1→ Spin(V )→ GSpin(V )→ Gm → 1,

we get ([2] 1.6)

π1(G1)Γ ' π1(Gm)Γ ' Z.
On the other hand, since

1→ µ2 → Spin(V )→ SO(V )→ 1

is exact, we get

π1(G) = µ2(−1) = Z/2Z.

Lemma 7.7. We have π1(G)Γ ' Z/2Z and the map π1(G1)Γ → π1(G)Γ is surjective.
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Proof. As µ2 ⊂ Gm, and Γ acts trivially on the later, we get π1(G)Γ = µ2(−1)Γ = µ2(−1) =
Z/2Z. For the second assertion, note that

π1(G1)Γ/2π1(G1)Γ = Z/2Z ⊂ Im(π1(G1)Γ → π1(G)Γ).

Thus the image is π1(G)Γ. �

Corollary 7.8. We have an isomorphism of formal schemes M̆ ' M̆1/p
Z.

Proof. By the above lemma π1(G1)Γ → π1(G)Γ is surjective.Thus M̆ ' M̆1/p
Z as the proof

of (1) of Proposition 4.8. �

As the pairs (G1, {µ1}) and (G, {µ}) are fully Hodge-Newton decomposable, by Theorem
7.5 we get

Corollary 7.9. Assume that [b1] (and hence [b]) is non basic. Then we have dimMred =
dimM1red = 0

7.4. Ekedahl-Oort and Howard-Pappas stratifications for basic Rapoport-Zink
spaces of orthogonal type. Let the notations be as in the previous subsection. Now
assume that [b1] (thus [b]) is basic.

In [26], Howard and Pappas introduced a stratification5 for the reduced special fiber

M1red of M̆1:

M1red =
∐
Λ

M◦1Λ,

where Λ runs through the set of vertex lattices. By definition (cf. [26] section 5), a vertex
Λ lattice is a Zp-lattice in V Φ

L , such that

pΛ ⊂ Λ∨ ⊂ Λ ⊂ V Φ
L .

Here L = W (Fp)Q,Φ = bσ is the Frobenius, V Φ
L admits a quadratic form induced from VL,

so that this quadratic space V Φ
L has the same dimension and determinant as V , but has

Hasse invariant -1. Associated to a vertex, we have the type

t(Λ) := dim Λ/Λ∨,

which is an even integer, and 2 ≤ t(Λ) ≤ tmax, where

tmax =


n+ 1, n odd,

n+ 2, n even, detV 6= (−1)
n
2 ,

n, n even, detV = (−1)
n
2 .

Recall that we have the inclusion

V Φ
L ⊂ End(X0)Q,

so each vertex lattice Λ ⊂ V Φ
L can be viewed as a set of self quasi-isogenies of X0. For each

vertex lattice Λ, the associated Howard-Pappas stratum

M◦1Λ ⊂M1red

is the locus (X, (tα), ρ) where
ρ ◦ Λ∨ ◦ ρ ⊂ End(X)

and this does not hold for any smaller vertex lattice Λ′ ( Λ. Let M1Λ ⊂ M1red be its
Zariski closure. In [26] 4.3.3 and 6.4.1, Howard and Pappas proved that there exists a
decomposition

M1red =
∐
j∈Z
M(j)

1 ,

5In [26] 6.5 it is called the Bruhat-Tits stratification, and our M◦1Λ is denoted as BTΛ there.
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such that each M(j)
1 is a connected component of M1red. Accordingly, we get a decompo-

sition for each stratum
M◦1Λ =

∐
j∈Z
M(j),◦

1Λ .

By [26] Theorem 6.5.6, each connected stratum M(j),◦
1Λ is isomorphic to a Deligne-Lusztig

variety XB(w) for the group SO(ΛW /Λ
∨
W ).

As
M̆ ' M̆1/p

Z ' M̆(0)
∐
M̆(1),

we get an induced Howard-Pappas stratification for Mred

Mred =
∐
Λ

M◦Λ.

In fact, in [26] sections 5 and 6 Howard and Pappas studied the geometric structures of
M1red by passing to the quotient space Mred =M1red/p

Z first.
Recall thatW = W (Fp), L = WQ. Following [26], we can describe the setsMred(Fp),MΛ(Fp)

andM◦Λ(Fp) in terms of special lattices of VL as follows. By definition ([26] Definition 5.2.1)
a special lattice L ⊂ VL is a self-dual W -lattice such that

(L+ Φ∗(L))/L 'W/pW,
where Φ∗(L) is the W -submodule generated by Φ(L). By Proposition 6.2.2 of [26], we have
a bijection

Mred(Fp) ' {special latticesL ⊂ VL}.
By loc. cit. 5.3.1 and Theorem 6.3.1 we have bijections

MΛ(Fp) ' {LagrangiansL ⊂ Ω : dim(L+ Φ(L)) = d+ 1}
' {special latticesL ⊂ VL : Λ∨W ⊂ L ⊂ ΛW }
= {special latticesL ⊂ VL : Λ(L) ⊂ Λ},

where Ω = ΛW /Λ
∨
W ,Λ(L) = (L(d))Φ, d = t(Λ)

2 , and L(d) = L + Φ(L) + · · · + Φd(L). Under
the above description, we have the bijection

M◦Λ(Fp) ' {special latticesL ⊂ VL : L(d) = ΛW }
= {special latticesL ⊂ VL : Λ(L) = Λ}.

In fact the above descriptions are true for any finitely generated field extension k′|Fp (cf.
[26]).

Let G1-Zipµ1 be the stack of G1-zips of type µ1. The universal p-divisible group with
crystalline Tate tensors on M̆1 defines a morphism

ζ :M1 −→ G1-Zipµ1 .

The underling set of geometric points of G1-Zipµ1 is in canonical bijection with the subset
JW of the Weyl group of G1. In fact we have isomorphisms of topological spaces

|G1-Zipµ1 | ' |G-Zipµ| ' JW.

Let JWb ⊂ JW be the subset defined by the image of ζ. For each w ∈ JWb, recall we have
the Ekedahl-Oort stratum of M1red associated to w:

M1w = ζ−1(w)red.

We get the Ekedahl-Oort stratification

M1red =
∐

w∈JWb

M1w.
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We get also the induced Ekedahl-Oort stratification for Mred.
Let m ≥ 1 be such that 2m = n+ 1 if n is odd, and 2m = n+ 2 if n is even. Then there

is a bijection (cf. [60] subsection 4.4)

JW ∼−→

{
{0, 1, · · · , 2m− 1}, n = 2m− 1 odd

{0, 1, · · · ,m− 2,m− 1,m− 1′,m, · · · , 2m− 2}, n = 2m− 2 even

induced by the length function w 7→ `(w), where we use the symbols m − 1′,m − 1 to
distinguish the two elements with the same length m − 1. Under the above bijection, the
subset JWb ⊂ JW can be described as

JWb ∼−→


{m, · · · , 2m− 1}, n = 2m− 1 odd,

{m, · · · , 2m− 2}, n = 2m− 2 even, detV = (−1)
n
2 ,

{m− 1,m− 1′,m, · · · , 2m− 2}, n = 2m− 2 even, detV 6= (−1)
n
2 .

For each i 6= m− 1′ on the right hand side, we denote the corresponding element of the left
hand side as wi. The element corresponding to m− 1′ will be denoted by w′m−1.

We can describe the map i 7→ wi in more details. Assume first that n is odd. The simple
reflections are {

si = (i, i+ 1)(2m+ 1− i, 2m+ 2− i), 1 ≤ i ≤ m− 1

sm = (m,m+ 2), i = m,

and we have

wi =

{
s1 · · · si, 0 ≤ i ≤ m
s1 · · · sm−1smsm−1 · · · s2m−i, m+ 1 ≤ i ≤ 2m− 1.

Now assume that n is even. The simple reflections are{
si = (i, i+ 1)(2m− i, 2m+ 1− i), 1 ≤ i ≤ m− 1

sm = (m− 1,m+ 1)(m,m+ 2), i = m,

and we have

wi =

{
s1 · · · si, 0 ≤ i ≤ m
s1 · · · smsm−2 · · · s2m−1−i, m+ 1 ≤ i ≤ 2m− 2,

and
w′m−1 = s1 · · · sm−2sm.

Let V = LW ⊗Fp be the quadratic space over Fp. For each wi ∈ JW we will attach to it
an orthogonal F -zip (also called a SO(V )-zip) as follows. Fix a basis e1, . . . , en+2 of L such
that the quadratic form Q has the form x1xn+2 +x2xn+1 + · · ·+xmxm+2 +x2

m+1 (cf. [60] the
proof of Proposition 4.4.1). By abuse of notation we still denote by e1, . . . , en+2 the induced
basis of (V ,Q). For each w ∈ JW, let Mw be the orthogonal F -zip (V ,Q,C•, D•, ϕ•) where

• C• is the descending filtration V ⊃ 〈e2, e3, . . . , en+2〉 ⊃ 〈en+2〉 ⊃ 0, denoted by
C0 ⊃ C1 ⊃ C2 ⊃ C3,
• D• is the ascending filtration 0 ⊂ 〈w(e1)〉 ⊂ 〈w(e1), w(e2), . . . , w(en+1)〉 ⊂ V , de-

noted by D0 ⊂ D1 ⊂ D2 ⊂ D3,
• ϕ• is the collections of isomorphisms ϕ0 : (C0/C1)(p) ∼→ D1, ϕ1 : (C1/C2)(p) ∼→
D2/D1, ϕ2 : (C2/C3)(p) ∼→ D3/D2.

We remark that the above construction is not the standard isomorphism JW ' |G−Zipµ| of
Pink-Wedhorn-Ziegler (for example as in Theorem 3.1.5 of [60]): the standard association is
the twist w 7→Mw0w of ours, where w0 is the maximal length element of JW. In particular
`(w0w) = n− `(w).
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Theorem 7.10. Each stratum M1w is some union of Howard-Pappas strata of M1red.

Proof. By the methods of [26], it suffices to prove the following assertion first. �

Corollary 7.11. Each stratum Mw is some union of Howard-Pappas strata of Mred.

Proof. We first prove the equalities for the sets of k-points, where k is an algebraically closed
field of characteristic p. This follows from [26] Theorem 6.5.6 and [20] Corollary 4.1.3.

Indeed, by [26] Theorem 6.5.6, we have an isomorphism

M◦Λ ' XB(w+)
∐

XB(w−),

where XB(w+) and XB(w−) are the Deligne-Lusztig varieties associated to the elements
w+ and w− of WΩ, the Weyl group of SO(Ω), where as before Ω = ΛW /Λ

∨
W . As in [26]

6.5.4, w± are Coxeter elements. Write w(Λ) = w+, and consider it as an element in W
under the inclusion WΩ ↪→W. Then by [20] Corollary 4.1.3, we have

Mw(k) =
∐

Λ,w(Λ)=w

M◦Λ(k).

To prove the identities on the level of schemes, we argue as in the proof of Corollary 4.10
of [55]. That is, it suffices to show that M◦Λ is open and closed in Mw. This follows from
the facts that M◦Λ is open in MΛ, MΛ ∩Mw =M◦Λ, and the above identities on the level
of points.

�

Consider the case k = Fp. For any vertex lattice Λ and any point x ∈ M◦Λ(Fp), we
have the associated special lattice Lx. Reduction modulo p, we get an orthogonal F -zip
Mx, which we write it as Mw0wx attached to w0wx ∈ JWb for some wx ∈ JWb. Then by
definition x ∈Mw0wx . By the above corollary, we have the equality

d− 1 = `(w0wx)

where d = t(Λ)
2 . The following corollaries are coarser versions of Theorem 7.10 and Corollary

7.11. However, they are more explicit in terms of types.

Corollary 7.12. (1) If n is odd, or n is even with det(V ) = (−1)
n
2 , then we have the

following identity

M1wi =
∐

Λ,t(Λ)=2(n−i+1)

M◦1Λ.

(2) If n is even with det(V ) 6= (−1)
n
2 , then

(a) if m ≤ i ≤ 2m− 1,

M1wi =
∐

Λ,t(Λ)=2(n−i+1)

M◦1Λ.

(b) if i = m− 1,

M1wm−1

∐
M1w′m−1

=
∐

Λ,t(Λ)=2m

M◦1Λ.

Corollary 7.13. (1) If n is odd, or n is even with det(V ) = (−1)
n
2 , then we have the

following identity

Mwi =
∐

Λ,t(Λ)=2(n−i+1)

M◦Λ.

(2) If n is even with det(V ) 6= (−1)
n
2 , then
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(a) if m ≤ i ≤ 2m− 1,

Mwi =
∐

Λ,t(Λ)=2(n−i+1)

M◦Λ.

(b) if i = m− 1,

Mwm−1

∐
Mw′m−1

=
∐

Λ,t(Λ)=2m

M◦Λ.

7.5. Moduli spaces of polarized K3 surfaces with level structures and the integral
Kuga-Satake map. In this and the next subsection, we will turn to moduli spaces of
polarized K3 surfaces, with the involved Shimura varieties, cf. [37] sections 2 and 4, [45]
section 6.

Let U be the hyperbolic lattice over Z of rank 2, and E8 be the positive quadratic lattice
associated to the Dynkin diagram of type E8. Set N = U⊕3 ⊕ E⊕2

8 , which is a self-dual
lattice. Let d ≥ 1 be an integer. Choose a basis e, f for the first copy of U in N and set

Ld = 〈e− df〉⊥ ⊂ N.
This is a quadratic lattice over Z of discriminant 2d and rank 21 (in [45] it is denoted by
L2d ). Let Vd = Ld ⊗Q and L∨d ⊂ Vd be the dual lattice. Set

G = SO(Vd),

which is isomorphic to the special orthogonal group over Q of signature (2, 19). Let K ⊂
G(Af ) be an open compact subgroup which stabilizes L

d,Ẑ and acts trivially on L∨d /Ld.

Such compact opens are called admissible. We fix a prime p > 2 such that p - d from now
on. Then as L is self dual at p, the local reductive group GQp is unramified. Let Kp = G(Zp)
be the hyperspecial group. We only consider open compact subgroups Kp ⊂ G(Apf ) which is

contained in the discriminant kernel of L
d,Ẑp with finite index. In particular, K = KpK

p is

admissible, cf. [45] 5.3. For the reductive group G, we have the associated Shimura varieties
ShKpKp , which are defined over Q. By [32], there exists an integral smooth canonical model
SKpKp of ShKpKp over Zp.

Let M2d (resp. M∗2d) be the moduli spaces of K3 surfaces f : X → S together with a
primitive polarization ξ (resp. quasi-polarization) of degree 2d over Zp (in [37] section 2,
these spaces are denoted by M◦2d and M2d respectively). These are Deligne-Mumford stacks
of finite type over Zp. The natural map M2d → M∗2d is an open immersion. Moreover, M2d

is separated and smooth of dimension 19 over Zp, cf. [45] Theorem 4.3.3, Proposition 4.3.11
and [37] Proposition 2.2.

Let (f : X → M2d, ξ) be the universal object over M2d. For any prime `, we consider
the second relative étale cohomology H2

` of X over M2d. This is a lisse Z`-sheaf of rank
22 equipped with a perfect symmetric Poincaré pairing 〈, 〉 : H2

` × H2
` → Z`(−2). The

`-adic Chern class ch`(ξ) of ξ is a global section of the Tate twist H2
` (1) that satisfies

〈ch`(ξ), ch`(ξ)〉 = 2d. The product

H2
Ẑ =

∏
`

H2
`

is a lisse Ẑ-sheaf, and the Chern classes of ξ can be put together to get the Chern class
chẐ(ξ) in H2

Ẑ
(1). Recall that we have the quadratic lattice N of rank 22 over Z.

Definition 7.14. Consider the étale sheaf over M2d whose sections over any scheme T →
M2d are given by

I(T ) = {η : N ⊗ Ẑ ∼→ H2
Ẑ,T (1) isometries, with η(e− df) = chẐ(ξ)}.
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Let K = KpK
p ⊂ KLẐp

be an admissible open compact subgroup. Then I admits a natural

action by the constant sheaf of groups K. A section η ∈ H0(T, I/K) is called a K-level
structure over T (in [45] 5.3 it is called a full K-level structure).

Let M2d,K (resp. M∗2d,K) be the relative moduli problem over M2d (resp. M∗2d) which

parametrizes K-level structures. For Kp (thus K) small enough, these are smooth algebraic
spaces. Moreover, the maps

M2d,K → M2d, M∗2d,K → M∗2d

are finite étale. For another admissible K ′ = KpK
p′ ⊂ K = KpK

p, we have natural finite
étale projections

M2d,K′ → M2d,K , M∗
2d,K′

→ M∗2d,K

as algebraic spaces over M2d,M
∗
2d respectively. When Kp′ is a normal subgroup of Kp, these

projections are Galois with Galois group Kp/Kp′ .
For any prime `, we have the primitive cohomology sheaf

P` = 〈ch`(ξ)〉⊥ ⊂ H2
` .

Let H2
B and H2

dR be the second relative Betti and de Rham cohomology respectively of the
universal K3 surface X → M∗2d,K,C. We have also the primitive cohomology sheaves

PB = 〈chB(ξ)〉⊥ ⊂ H2
B, PdR = 〈chdR(ξ)〉⊥ ⊂ H2

dR.

Consider M̃∗2d,K → M∗2d,K , the two-fold finite étale cover parameterizing isometric trivial-

izations det(Ld) ⊗ Z2
∼→ det(P2) of the determinant of the primitive 2-adic cohomology

of the universal quasi-polarized K3 surface. We can identify M̃∗2d,K with the the space

of isometric trivializations det(Ld)
∼→ det(PB) of the determinant of the primitive Betti

cohomology. There is a Hodge-de Rham filtration F •PdR on PdR, and we have a natu-
ral isometric trivialization η : disc(Ld)

∼→ disc(PB) and the the tautological trivialization

β : det(Ld)
∼→ det(PB). The tuple (PB, F

•PdR, η, β) gives rise to a natural period map

M̃∗2d,K,C → ShK,C,

cf. [37] Propositions 4.2 and 3.3. There is a section map M2d,K,C ⊂ M∗2d,K,C → M̃∗2d,K,C,
whose composition with the above period map gives us the Kuga-Satake period map

ιC : M2d,K,C −→ ShK,C.

It follows from [46] Theorem 3.9.1, this map is defined over Q. Therefore we get the map
over Qp

ιQp : M2d,K,Qp −→ ShK,Qp .

As SK is the integral canonical model of ShK , by extension property of SK , the Kuga-Satake
map extends to a map over Zp

ι : M2d,K −→ SK .

Theorem 7.15 ([37] Corollary 5.15). The integral Kuga-Satake period map

ι : M2d,K −→ SK

is an open immersion.
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When Kp
1 ⊂ Kp is another open compact subgroup, we note that the following diagram

is cartesian:

M2d,K1
//

��

SK1

��
M2d,K

// SK .

As a corollary, we see that for Kp small enough, M2d,K is a scheme.

7.6. Newton and Ekedahl-Oort stratifications of the moduli spaces of K3 sur-
faces. In the rest of this section we will work over W . As before we simply denote by the
same notation for an object base changed to W . Let M2d,K be the special fiber of M2d,K ,

which can be viewed as an open subspace of the special fiber SK of SK by Theorem 7.15.
For the good reduction of Shimura varieties of abelian type, in [54] we have introduced the
Newton and Ekedahl-Oort stratifications for the special fibers. In subsection 6.2 we have
seen the Newton stratification. In the cases of GSpin and SO Shimura varieties, we can
compare the Newton and Ekedahl-Oort stratifications as follows. These are in the list of
Shimura varieties of coxeter type studied in [20] (comp. [21]).

Theorem 7.16 ([54]). Assume that n is odd.

(1) We have

SK =
∐

b∈B(G,µ)

S
b
K , SK =

∐
w∈JW

S
w
K ,

with each stratum in the two stratifications non empty.
(2) Let b0 be the unique basic element in B(G,µ). We have

• for b 6= b0, there exists a unique wb ∈ JW such that S
b
K = S

wb
K

• for b0, S
b0
K =

∐
w∈JWb0 S

w
K

Note that the subset JWb = {wb} for any b 6= b0. When n is even, we have a similar
statement that each Newton stratum is a disjoint union of some Ekedahl-Oort strata. In
fact these statements are just the global analogue of Theorem 7.5 in the setting of Shimura
varieties of abelian type, cf. [54] section 7 (see also [21] section 6, where the authors there
assume that the axioms of [26] are verified).

We return to the case n = 19. Consider the Kuga-Satake map

ι : M2d,K ↪→ SK ,

which is an open immersion by Theorem 7.15. The above stratifications of SK in turn
induce stratifications of M2d,K

M2d,K =
∐

b∈B(G,µ)

M
b
2d,K , M2d,K =

∐
w∈ JW

M
w
2d,K ,

where M
b
2d,K and M

w
2d,K are the pullbacks of the corresponding strata S

b
K and S

w
K under

the open immersion ι : M2d,K ↪→ SK . We have the similar relation

• for b 6= b0, there exists a unique wb ∈ JW such that M
b
2d,K = M

wb
2d,K ,

• for b0, M
b0
2d,K =

∐
w∈ JWb0 M

w
2d,K . We will also write M

b0
2d,K as M

ss
2d,K to indicate

that it is the supersingular locus of M2d,K .

We will investigate these stratifications in some more classical terms.
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7.6.1. Newton stratification vs. height stratification. Let X be a K3 surface over a field k
of characteristic p. Consider the functor on local Artinian k-algebras with residue field k
defined by

Φ2
X/k : (Art/k)→ (Abelian groups)

R 7→ ker
(
H2
et(X × SpecR,Gm)→ H2

et(X,Gm)
)
.

It is pro-representable by a one-dimensional formal group B̂r(X), the so called formal Brauer
group. The height h of this formal Brauer group of the K3 surface X satisfies 1 ≤ h ≤ 10
or h =∞.

The Newton slopes of the F -crystal H2
cris(X/W ) are equal to (1− 1

h , 1, 1 + 1
h). Thus the

set B(G,µ) is in bijection with the set {1, . . . , 10,∞}. The basic element b0 corresponds to
∞. We write B(G,µ) = {b1, . . . , b10, b11 = b0}. The Newton stratification of M2d,K is just

the classical height stratification. By [12], for each b ∈ B(G,µ), the Newton stratum M
b
2d,K

is non empty.

7.6.2. Ekedahl-Oort stratification vs. Artin invariant stratification. Thanks to the recent
proof of the Tate conjecture for K3 surfaces, we know that for a K3 surface X over Fp,
h = ∞ if and only if its Picard rank ρ = 22, i.e. it is Artin supersingular if and only if
it is Shioda supersingular, cf. [35] Theorem 2.3. We simply call X supersingular in this
case. Let X be a supersingular K3 surface over Fp, then the discriminant of its Néron-Severi
lattice is equal to

−p2σ0(X)

for some integer 1 ≤ σ0(X) ≤ 10. The integer σ0(X) is called the Artin invariant of X.
By [12], we have an explicit description of the set JW as

{w1, . . . , w20},

with wi corresponds to bi for 1 ≤ i ≤ 10, and for 11 ≤ i ≤ 20 the elements wi are basic.
The K3 surfaces in the stratum M

wi
2d,K have Artin invariant 21 − i. In particular, we note

that the index i in the description of the set JW in subsection 7.4 (where 0 ≤ i ≤ 19 in our

case) is shifted to i + 1 here. By [12], for each w ∈ JW, the Ekedahl-Oort stratum M
w
2d,K

is non empty.

7.7. Rapoport-Zink type uniformization and Artin invariants. In this final subsec-
tion, we make the link between Rapoport-Zink spaces and moduli spaces of K3 surfaces.

Let M̂2d,K and ŜK be the formal completion of M2d,K and SK along their special fibers
respectively. Then the integral Kuga-Satake period map in Theorem 7.15 induces an open
immersion of formal schemes

ι̂ : M̂2d,K → ŜK .

Let x0 ∈ M2d,K be any point in the special fiber M2d,K of M2d,K , and x = ι(x0) be its
image. Let b ∈ B(G,µ) be the Newton point associated to x and consider the corresponding

formal Rapoport-Zink space M̆ = M̆b for the group SO(V ). The choice of the point x
determines a morphism of formal schemes

Θx : M̆ → ŜK .
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Denote by N̆ the pullback of M̆ under ι̂ : M̂2d,K → ŜK . In other words, we get a cartesian
diagram

N̆ //

��

M̆

Θx
��

M̂2d,K
ι̂ // ŜK ,

with the upper horizontal map N̆ → M̆ is an open immersion. By the moduli description
of M̆, we get the following description of N̆ : for any R ∈ NilpsmW ,

N̆ (R) = {(X, (tα), ρ) ∈ M̆(R)}
where

• (X, (tα), ρ) ∈ M̆1(R), with X = KS(Y )[p∞], where Y is a K3 surface over R,
KS(Y ) is the Kuga-Satake abelian scheme attached to Y (cf. Theorem 7.15 and
[37] section 5),
• ρ is a pZ-orbit of ρ.

In particular, N̆ is stable under the action of Jb(Qp) on M̆.

Remark 7.17. By construction, we have an open subspace N̆1 ⊂ M̆1, such that for any
R ∈ NilpsmW ,

N̆1(R) = {(X, (tα), ρ)}
with (X, (tα), ρ) ∈ M̆1(R) as above. The space N̆ is given by N̆ = N̆1/p

Z. On the level of
affine Deligne-Lusztig varieties, we get subsets

Nred(Fp) ⊂Mred(Fp) = XG
µ (b), N1red(Fp) ⊂M1red(Fp) = XG1

µ1
(b1).

In the case that b is basic, it will be interesting to describe the above subsets by special
lattices as in [26] section 5.

We can apply the Rapoport-Zink uniformization theorem for SK to deduce a similar
uniformization for M2d,K . Recall that as dimV = 21 is odd, the group G = SO(V ) is
adjoint.

Corollary 7.18. Let Jφ be the pullback of Zφ,Kp under the open immersion ι : M2d,K ↪→
SK . Then we have the following identity

M̂2d,K/Jφ
=
∐
j∈I
N̆/Γj ,

where Γj ⊂ Jb(Qp) are some discrete subgroups (constructed as usual from the uniformiza-

tion theorem of the last section). If moreover b = b0 is basic, then Jφ = M
ss
2d,K which is the

supersingular locus in M2d,K , and the above disjoint union is finite.

Remark 7.19. If the open compact subgroup K = KpK
p ⊂ G(Af ) (Kp = G(Zp)) is the

image of some open compact subgroup K1 = K1pK
p
1 ⊂ G1(Af ) (K1p = G1(Zp)), then it

will be much easier to prove the uniformization theorem for SK : one can work directly
on the finite level and take a finite étale quotient from the corresponding Rapoport-Zink
uniformization for G1, cf. [52] section 4 for example.

Assume that b = b0 is basic. Let Nred be the reduced special fiber of N̆ . Then the
Howard-Pappas stratification of the reduced special fiber Mred of M̆ induces a similar
stratification of the open subspace Nred:

Nred =
∐
Λ

N ◦Λ,
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where N ◦Λ ⊂ Nred is the pullback of the stratumM◦Λ ⊂Mred. For each wi ∈ JWb, consider
the corresponding Ekedahl-Oort stratum

Mwi =
∐

Λ,t(Λ)=2(21−i)

M◦Λ, Nwi =
∐

Λ,t(Λ)=2(21−i)

N ◦Λ.

For each 11 ≤ i ≤ 20, the image of Nwi under the uniformization morphism gives us the

corresponding Ekedahl-Oort stratum M
wi
2d,K in supersingular locus.

For (X, ξ) ∈ M
ss
2d,K(Fp), consider

L = 〈chcris(ξ)〉⊥ ⊂ H2
cris(X/W ).

This is a special lattice in the sense of Definition 5.2.1 of [26]. Then we can apply Proposition
5.2.2 of loc. cit. to produce a vertex lattice Λ(L). For any integer r ≥ 0 define

L(r) = L+ Φ(L) + · · ·+ Φr(L).

Then there is a unique integer 1 ≤ d ≤ 10 such that

L = L(0) ( L(1) ( · · · ( L(d) = L(d+1).

The vertex lattice Λ(L) is defined by

Λ(L) = (L(d))Φ.

It has type

t
(
Λ(L)

)
= 2d

and Λ(L)∨ = LΦ. The following corollary follows from the above uniformization and Corol-
lary 7.11.

Corollary 7.20. Under the uniformization identity

M
ss
2d,K =

∐
j∈I
Nred/Γj ,

the Ekedahl-Oort stratum M
wi
2d,K for each 11 ≤ i ≤ 20 is the image of Nwi. In particular,

if x ∈ M
ss
2d,K(Fp), let Xx be the associated supersingular K3 surface over Fp, then we have

the identity between the Artin invariant σ0(Xx) and the type t(Λx)

σ0(Xx) =
t(Λx)

2
,

where Λx = Λ(Lx) is the vertex lattice attached to the special lattice associated to (Xx, ξx)
as above.

Appendix A. Admissibility and weakly admissibility in the basic orthogonal
case

In this appendix, we investigate the p-adic period domains F `admG,µ and F `waG,µ in the case

b is basic and G = SO. All the following materials are taken from [17]. We thank Fargues
sincerely for kindly allowing us to include it here.

Let V = Qn
p equipped with the quadratic form Q with matrix

 1

. .
.

1

. Let

G = SO(V,Q) and consider the minuscule cocharacter µ : Gm → GQp
given by µ(z) =

diag(z, 1, · · · , 1, z−1). Then the basic class in B(G,µ) is [b] = [1] and thus Jb = G. One
checks easily that any non basic Newton polygon has a non trivial contact point with the
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Hodge polygon, i.e. (G, {µ}) is fully Hodge-Newton decomposable in the sense of [21]
Definition 2.1.

For simplicity, we write F ` = F `G,µ as the p-adic flag variety, F `wa = F `waG,µ, and

F `adm = F `admG,µ . We first describe the weakly admissible locus F `wa. The associated

isocrystal is Q̆n
p with Frobenius σ⊕n. The sub-isocrystals are in bijection with the sub Qp-

vector space of V . Let C be a complete and algebraically closed extension of Q̆p. Then we
have

F `(C,OC) = {Lagrangian linesD ⊂ VC}.
It follows that F ` ⊂ Pn

Q̆p
is the quadric defined by the equation

∑n
i=1 xixn−i+1 = 0. Let

Q[n
2

]
p ⊕ (0) ⊂ V be a Lagrangian subspace with associated parabolic subgroup P ⊂ G. For

any line D ∈ F `(C,OC) we attach to it the following Hodge filtration

0 ⊂ Fil1 = D ⊂ Fil0 = D⊥ ⊂ Fil−1 = VC .

Then

F `wa(C,OC) = {D ∈ F `(C,OC)|D ∩WC = 0, ∀ totally isotropic subspaceW ⊂ V }.
Therefore, we get

Proposition A.1.

F `wa = F ` \G(Qp)S
ad,

where Sad is the adic space associated to the Schubert variety attached to P (S is defined
by the locus x[n

2
]+1 = · · · = xn = 0 inside F `).

Now we look at the admissible locus F `adm (cf. [41] Definition A.6). We have the
following

Theorem A.2. F `adm = F `wa.

Proof. For any point x ∈ F `wa(C,OC), let Ex be the associated modification of OnX such

that the relative position of (B+
dR)n and Êx,∞ is bounded by µ. Here X is the Fargues-

Fontaine curve over Qp associated to the perfectoid field C[, and ∞ = xC ∈ X is the point
defined by C. We need to show this weakly admissible modification is in fact an admissible
modification (i.e. Ex is semi-stable of slope 0).

By [41] Proposition A. 9, we have either

Ex ' OX(
1

r
)⊕On−2r

X ⊕OX(−1

r
)

for some integer 1 ≤ r ≤ [n2 ], or
Ex ' OnX .

The second case is admissible. We have to show this is always the case. Suppose that we are
in the first case: we will find a contradiction. The perfect quadratic form on Ex is such that
for any λ ∈ Q, we have (E≥λx )⊥ = E>−λx , where Eλx ⊂ Ex is a step in the Harder-Narasimhan
filtration of Ex. Therefore, we get

OX(
1

r
)⊥ = OX(

1

r
)⊕On−2r

X

and OX(1
r ) is totally isotropic. It follows that there exists a unique sub vector bundle

F ⊂ OnX which is a locally direct summand, such that the modification Ex|X\∞
∼→ OnX\∞

induces a modification

OX(
1

r
)|X\∞

∼−→ F |X\∞.
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In particular, F is totally isotropic in OnX . Such a modification is necessarily of one of the
following types:

(1) (−1, 0, . . . , 0),
(2) (0, . . . , 0, 1),
(3) (0, . . . , 0).

Indeed, it suffices to look at for all the sub BdR-vector spaces E of Bn
dR, the relative positions

of the lattices E ∩ (B+
dR)n and E ∩ 〈te1, e2, . . . , en−1, t

−1en〉, where e1, . . . , en is a basis of
V . As OnX is semi-stable, we have deg(F ) ≤ 0. By looking at the above three cases, we get

that F is a degree −1 modification of OX(1
r ). Thus,

F ' OrX ,

that is F = W ⊗ OX for some totally isotropic subspace W ⊂ Qn
p of dimension r. This

implies that our modification Ex|X\∞
∼→ OnX\∞ is not weakly admissible. Thus we get a

contradiction. �
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2015.

[30] W. Kim, Rapoport-Zink spaces of Hodge type, Preprint, arXiv: 1308.5537.
[31] W. Kim, Rapoport-Zink uniformization of Hodge type Shimura varieties, Preprint.
[32] M. Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), 967-1012.
[33] M. Kisin, Mod p points on Shimura varieties of abelian type, Preprint, to appear in J. Amer. Math.

Soc.
[34] V. Lafforgue, Introduction aux chtoucas pour les groupes réductifs et à la paramétrisation de Langlands
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