ON SOME GENERALIZED RAPOPORT-ZINK SPACES

XU SHEN

ABSTRACT. We enlarge the class of Rapoport-Zink spaces of Hodge type by modifying
the centers of the associated p-adic reductive groups. These such-obtained Rapoport-Zink
spaces are called of abelian type. The class of Rapoport-Zink spaces of abelian type is
strictly larger than the class of Rapoport-Zink spaces of Hodge type, but the two type
spaces are closely related as having isomorphic connected components. The rigid analytic
generic fibers of Rapoport-Zink spaces of abelian type can be viewed as moduli spaces of
local G-shtukas in mixed characteristic in the sense of Scholze.

We prove that Shimura varieties of abelian type can be uniformized by the associated
Rapoport-Zink spaces of abelian type. We construct and study the Ekedahl-Oort stratifi-
cations for the special fibers of Rapoport-Zink spaces of abelian type. As an application,
we deduce a Rapoport-Zink type uniformization for the supersingular locus of the moduli
space of polarized K3 surfaces in mixed characteristic. Moreover, we show that the Artin
invariants of supersingular K3 surfaces are related to some purely local invariants.
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1. INTRODUCTION

The theory of Rapoport-Zink spaces finds its origin in the work of Drinfeld in [I1]. Let E
be a finite extension of Q,, and let QdE be the complement of all F-rational hyperplanes in
the p-adic projective space P41 over E. In [11] Drinfeld interpreted this rigid-analytic space
Q‘fE as the generic fibre of a formal scheme over O parametrizing certain p-divisible groups.
He used this formal moduli scheme to p-adically uniformize certain Shimura curves and to
construct étale coverings of QdE. In their foundational and seminal work [43], Rapoport
and Zink generalized greatly the construction of Drinfeld by introducing general formal
moduli spaces of p-divisible groups with EL/PEL structures, and proved these spaces M
can be used to uniformize certain pieces of general PEL type Shimura varieties. Moreover,
Rapoport and Zink constructed étale coverings Mg of the generic fibers of these formal
moduli spaces, and realized these rigid analytic spaces as étale coverings of more general
non-archimedean period domains. Besides these importances in arithemetic geometry and
p-adic Hodge theory, it was conjectured by Kottwitz that the f-adic cohomology of these
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Rapoport-Zink spaces M g realizes the local Langlands correspondence for the related local
reductive group G, cf. [39] section 5.

Recently, in [30] Kim has constructed more general formal moduli spaces of p-divisible
groups with additional structures. (Here and throughout the rest of this introduction we
assume p > 2.) These formal schemes

V)

M

are called of Rapoport-Zink spaces of Hodge type, associated to unramified local Shimura
data of Hodge type (G, [b], {i}) (see below). The additional structures on p-divisible groups
are given by the so called crystalline Tate tensors, cf. [30] Definition 4.6, generalizing
the EL/PEL structures introduced by Rapoport-Zink (in the unramified case). Kim also
constructed a tower (Mg )k of rigid analytic spaces (as usual, K C G(Qp) runs through
open compact subgroups of G(Q,)), when passing to the generic fibers of these formal
moduli schemes. These Rapoport-Zink spaces of Hodge type appear as local analogues of
the recent work of Kisin [32] on integral canonical models of Shimura varieties of Hodge type.
In [31] Kim has proved his Rapoport-Zink spaces of Hodge type can be used to uniformize
certain pieces of Shimura varieties of Hodge type. If the unramified local Shimura datum
of Hodge type comes from a Shimura datum of Hodge type, Howard and Pappas has given
another (global) construction of the associated Hodge type Rapoport-Zink spaces. We refer
to [26] for more details.

In this note, we show that we can in fact go ahead one step further: we will construct
some (slightly) more general formal and rigid analytic Rapoport-Zink spaces, and we will
show that these spaces can be used to uniformize (pieces of) Kisin’s integral canonical
models Shimura varieties of abelian type, cf. [32]. Moreover, we will give some interesting
applications to the moduli spaces of K3 surfaces in mixed characteristic.

There are several motivations for our work here. In our previous work [52], we constructed
perfectoid Shimura varieties of abelian type. One of the main motivations for this work is
to study the local geometric structures of these perfectoid Shimura varieties, and to study
the local geometric structures of Kisin’s integral models of Shimura varieties of abelian type
[32]. Another motivation is the recent developments in the theory of local Shimura varieties.
In [44], Rapoport-Viehmann conjectured the existence of a rigid analytic tower

(Mk )k
associated to a local Shimura datum (G, [b],{x}), Wherﬂ

e ( is a connected reductive group over Q,,
e {u} is a conjugacy class of minuscule cocharacters u : G, — G@ ,
P

e [b] is a o-conjugacy class in the Kottwitz set B(G, i) (see [7] 2.3.4 for example)

These conjectural local Shimura varieties are intended to be generalizations of Rapoport-
Zink spaces, and there should be a theory in the local situation as good as the classical theory
of Shimura varieties ([10]). Recently, using the theory of perfectoid spaces ([47]), and the
developments in p-adic Hodge theory due to Fargues, Fargues-Fontaine, and Kedlaya-Liu
[14} 19, 29], Scholze has almost given a solution for Rapoport-Viehmann’s conjecture by
constructing moduli of local G-shtukas in mixed characteristic (cf. [48])

(ShtK)K

as some reasonable geometric objects. These geometric objects are called diamonds there,
a generalization of perfectoid spaces and analytic adic spaces. Along the way of con-
struction, we get an infinite level moduli space Sht,, such that as diamonds we have
Shto, = 1£1K Sht .

IHere we have followed [44] to write a local Shimura datum as (G, [b], {1}).
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In fact, Scholze proved more: one can allow the conjugacy class of cocharacters {u} non
minuscule, contrary to the original requirement of Rapoport-Viehmann in [44], and in fact
one can allow several {u}’s. Thus this theory is the mixed characteristic analogue of the
theory of moduli of shtukas in the function fields case ([50]).

Although Scholze’s method makes a great success, it is purely generic: a priori, one has
no information on reduction mod p. In the case of EL/PEL Rapoport-Zink spaces Mg,
Scholze proved the associated diamonds M, are isomorphic to his moduli spaces of local G-
shtukas Sht . From the point of view of moduli, this means that one can switch p-divisible
groups with additional structures to local G-shtukas. Thus, in these classical cases, one
gets formal integral structures and can talk about reduction mod p. Assume that G is
unramified over QQ,. Using Dieudonné theory, one can prove the special fibers of formal
Rapoport-Zink spaces (of EL/PEL/Hodge type) are closely related to the corresponding
affine Deligne-Lusztig varieties

X (b):={g € G(L)/GW)| g~ bo(g) € GV )u(p)G(W)},

where W = W(?p), L = Wg, and o is the Frobenius. These objects are defined purely group
theoretically, and thus make sense for arbitrary (G, [b],{u}) (as in the case of Scholze’s
moduli of local G-shtukas). These affine Deligne-Lusztig varieties play a crucial role in
understanding the reduction mod p of Shimura varieties, cf. [40].

In this paper, we introduce a class of local Shimura data, the so called unramified local
Shimura data of abelian type, and for each such datum (G, [b],{u}), we construct a formal
scheme M, and a tower of rigid analytic spaces (M )k such that

e the reduced special fiber M,..q(F,) ~ Xf(b);
e the rigid analytic (adic) generic fiber M%d = Mqgz,);
e the associated diamonds M9, ~ Sht.

Moreover, we can prove that there exists a preperfectoid space M, over L such that

Moo ~ lim M,
K

where the meaning of ~ is as [50] Definition 2.4.1. This class of unramified local Shimura
data of abelian type is strictly larger than the class of unramified local Shimura data of
Hodge type. Thus, among all local Shimrua data, we find a class which is as large as possible
such that

e there exists a formal model M, such that M%d’o ~ Shtg(z,), Med(Fp) ~ Xf(b);
e there exists a preperfectoid space M, such that M ~ Sht.

We remark that the analogue of the above two additional structures in the global situation
of Shimura varieties of abelian type are known by [32, [52]. They are not known for general
local Shimura data (or local shtuka data).

A local Shimura datum (G, [b], {p}) is called of unramified Hodge type, if G is unramified,
and there exists an embedding (G, [b], {u}) < (GL(V), [t/], {1'}) of local Shimura data, such
that {4/} corresponds to (17,0™~") for some integral 1 < r < n. Roughly, the class of local
Shimura data of Hodge type is the largest class for which the associated Rapoport-Zink
spaces can be realized as moduli of p-divisible groups with additional structures. Never-
theless, we introduce the following notion. A local Shimura datum (G, [b],{x}) is called of
unramified abelian type, if there exists a unramified local Shimura datum of Hodge type
(G1, [b1],{p1}) such that we have an isomorphism of the associated adjoint local Shimura
data (G, %], {u9}) ~ (G97, [97], {ug9}). This is the local analogue of a Shimura datum
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of abelian typeﬂ We remark that although by definition we only change the centers of the
groups, there does not exist local Hodge embedding any more for a general local Shimura
datum of abelian type (G, [b],{p©}) (as in the corresponding global situation of Shimura
varieties). This means that the class of local Shimura data of (unramified) abelian type is
strictly larger than the class of (unramified) Hodge type. The groups G in this larger class
consist exactly of all classical groups, see section 4.

Our first main theorem is as follows. See Theorem [4.6] Proposition [f.15] Corollary [5.24]

Theorem 1.1. Let (G, [b], {,u}) be a unramified local Shimura datum of abelian type. Then
there exists a formal scheme M(G, b, ), which is formally smooth, formally locally of finite
over W, such that o
M(G, b, p)Perd ~ Xf(b).

Here M(G, b, 1)Pe"f is the perfection of the special fiber M(G,b, ), and Xf(b) is the affine
Deligne-Lusztig variety, considered as a perfect scheme by [61, [1]. The formal scheme
M ~ M(G, b, ) is equipped with a transitive action of Jp(Qp), compatible with the action
of Jy(Qp) on Xf(b). Moreover, there exist a tower of rigid analytic spaces (Mg )k and a
preperfectoid space Mo, such that

(1) Myt = Ma(z,);

(2) Moo ~ lim, My,

( ) ~ Shtg,

(4) there exists a compatible system of étale morphism mwyr : Mg — fﬁagd/’f,

(5) there exists a Hodge-Tate period morphism wgr : Moo — Flg —pe
Here # E“d:f is the admissible locus in the p-adic flag variety .# ¢, associated to (G, { ,u})

cf. [41] Definition A.6, and F{; __, is the p-adic flag variety associated to (G, {u'}). 1
fact, we will see in Corollary - 5.24] that wg7 also factors through a locally closed subspace
7 Eb —u C TG, —p

The construction of M(G, b, 11) associated to (G, [b], {1}) as above is based on the follow-
ing observations. Take any unramified local Shimura datum of Hodge type (G1, [b1],{p1})
such that (G2 [b99), {u%}) ~ (G99, [97], {1u§9}). We have the associated formal Raoport-
Zink space M(Gl, b1, 1) constructed by Kim [30], by patching together Faltings’s construc-
tion of deformation ring for p-divisible groups (with crystalline Tate tensors) with Artin’s
criterion for algebraic spaces. By [61] Proposition 3.11, M(GY, by, 1 )P ~ Xfll(bl). For
any local Shimura datum (G, [b], {u}), we have a J,(Q,)-equivariant surjective map

wa t X5 (b) — epum(G)

which factors through the set of connected components Wo(XE(b)). Here m(G) is the
algebraic fundamental algebraic group of G and I" = Gal(@p@p). See subsection for
the construction of this map and the element ¢, € 71 (G). Moreover, by [7] Theorem 1.2,
Jp(Qp) acts transitively on Wo(XE(b)). For any local Shimura datum (G, [b], {u}), by [7]
Corollary 2.4.2, we have a cartesian diagram

Gad @
X (b) X5 (o)

| |

Cb7M7T1(G)F —— Cbad’uadﬂ-l(Gad)F.

2More precisely, our local Shimura data of abelian type are the local analogues of Shimura data of
preabelian type.



ON SOME GENERALIZED RAPOPORT-ZINK SPACES 5

In particular we apply the above diagram to (G, [b], {u}) and (G1, [b1],{u1}) as above. Let
Xﬁ’;l(bl)+ C XMGll(bl) be a fixed choice of fiber of the map wg, : Xﬁl (b1) = ey a1 (G1)L.
This is isomorphic to the corresponding local piece for XMG(b). Let

M(G1, by, )t € M(Gr, by, )
be the open and closed subspace corresponding to Xﬁl(bl)Jr. As Xf(b) = Jb(Qp)Xf(b)+,

we get the formal scheme M(G, b, 1) whose special fiber satisfies M (G, b, p)Perf ~ Xf(b).
By construction, this formal scheme does not depend on the choice of the Hodge type local
Shimura datum (G1, [b1],{p1}). The other properties can be proved similarly.

Let (M(G, b’“)K)KcG(Qp) and (M(Gl’bh“l)Kl)chGl(Qp) be the two towers associ-

ated to (G, [b],{n}) and (Gi,[b1],{p1}) as above. By construction, the two towers are
locally isomorphic in the sense that there exist sub towers (M(G,b, ,u)';() and

KCG(Qp)
(M(G1, by, Ml)}l)chGl(Qp) such that

+ _ +
(M(G, b’ N)K)KCG(QP) - (M(Gl’ b1, “1>K1)K1cG1(Qp)’
This implies in particular that .# E“GCfL” = FLgm . The tower (M(G,b, 1))

Gip1° KCG(Qp)
be recovered from (M(G,b, u)})KcG(Qp) and 71(G)' by the action of either G(Q,) or

Jp(Qp). We expect that such results hold true for any local shtuka data (G, [b], {¢}) and
(G1, [b1], {pe1}) with the same adjoint data.

We note that the above construction is simpler than the corresponding global situation,
cf. [52, [32], where one has to make a quotient on each geometric connected component of
Shimura varieties of Hodge type.

In subsection 4.3 we will give a (non canonical local) moduli interpretation for the formal
scheme M(G, b, 1) associated to (G, [b], {u}) as above. It will be desirable to find a more
canonical moduli interpretation for M(G ,b, ). After the first version of this paper appeared
online, Biiltel and Pappas have recently found an intrinsic (and more canonical) moduli
interpretation for M(G,b, ;1) with (G, [b], {11} of Hodge type, cf. [4]. They use a notion
of (G, u)-displays, which is group theoretical. We naturally expect that the formal scheme
M(G, b, 1) associated to a general abelian type datum (G, [b], {x}) admits a similar moduli
interpretation. We decide to discuss nothing about (G, u)-displays here, and we will leave
the task of finding a more canonical moduli interpretation to a future work, where we plan
to treat arbitrary unramified local Shimura data.

If the unramified local Shimrua datum of abelian type comes from a Shimura datum of
abelian type (G, X ), we can prove the following uniformization theorem. Let K? C G (A?) be
a fixed sufficiently small open compact subgroup. Consider Sk, the Kisin integral canonical
model over W of the Shimura variety Shx with K = G(Z,)KP?. Let

¢:0Q— Bg

be a Langlands-Rapoport parameter with [b] = [b(¢)], with the associated reductive group
I, over Q. Fix a Langlands-Rapoport parameter ¢g : Q — &gaa for the adjoint group
such that ¢2¢ = ¢¢. In section 6 we will construct a subspace Zpo kv C Sk, such that the
formal completion of Sk along Z4, k» can be defined. The following theorem was proved by
Rapoport and Zink in the PEL type case ([43]), and by Kim in the Hodge type case ([31], see
also [26]). It can be viewed as the geometric version of the Langlands-Rapoport description
for the underlying F,-points, cf. [33]. In fact, it was pointed out in the introduction of [44]
that the works of Kisin [32], B3] should yield new Rapoport-Zink spaces (comp. [26]). Here
we construct these spaces locally, and show that they admit global application (comp. [44]

Remark 5.9). See Theorems |6.7] and

can
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Theorem 1.2. We have an isomorphism of formal schemes over W

O: ] L@\MxGAaY/K? =5 Sk)z,
[¢]7¢ad:¢0

where ¢g : Q — Baa is a fived admissible morphism such that [b] = [b(¢)],V ¢, ¢ = ¢p.

When [b] is basic, we have Zg, kr = gl;( which is the basic locus, and the above isomorphism
reduces to

0 : I,(Q) \ M x G(A)/KP = 5}@.

Unsurprisingly, we apply the tricks of Kisin as in [33] to deduce the theorem from the
Hodge type case. One can also deduce rigid analytic and perfectoid versions of the above
uniformization theorem.

We consider the examples of basic GSpin and special orthogonal groups Rapoport-Zink
spaces. Let M; = M(GSpin, b, ), M = M(SO,V, i) be the associated Rapoport-Zink
spaces, where GSpin = GSpin(V,Q),SO = SO(V,Q) are unramified GSpin and special
orthogonal groups associated to a quadratic space (V, Q) over Q,, with dimV = n + 2 for
some integer n > 1. By considering the G-zip associated to the universal p-divisible group
with crystalline Tate tensors on the special fiber M of Ml, we can define an Ekedahl-Oort
stratification on My, and thus on My, (the reduced special fiber), which is the local
analogue of the Ekedahl-Oort stratification for Shimura varieties of Hodge type, cf. [60].
The index set of this stratification is a subset W? of the Weyl group of G, which is then in
bijection with some set of integers. For each w € WP, we have the associated Ekedahl-Oort
stratum My, of M1,eq. By Corollary M ~ ./\>ll/ p%, we get an induced Ekedahl-Oort
stratification of M,4. On the other hand, in [26], Howard and Pappas introduced another
stratification for the reduced special fiber M1,¢q4:

ered = H MEIA’
A

where A runs through the set of vertex lattices, see loc. cit. section 5. The following
theorem is proved in subsection |[7.4; see Theorem and Corollary for more precise
statements.

Theorem 1.3. FEach Ekedahl-Oort stratum My of Miyeq is some (disjoint) union of
Howard-Pappas strata. Sitmilar result holds for M.eq.

For a similar result in the case of the basic unitary group GU(1,n — 1) Rapoport-Zink
space, see [55] Theorem D.

In fact, in subsection 7.1 we construct the Ekedahl-Oort stratification for the special
fibers of arbitrary Rapoport-Zink spaces of abelian type, cf. Proposition [7.1 We can
compare our geometric construction with the Ekedahl-Oort stratification for affine Deligne-
Lusztig varieties (with hyperspecial levels) in [20], cf. Proposition In subsection 7.2,
we discuss a theorem of similar phenomenon as Theorem (cf. Theorem for a
unramified local Shimura datum of abelian type (G, [b],{u}), with (G, {p}) fully Hodge-
Newton decomposable in the sense of [2I] Definition 2.1. Our discussion in this more
general setting is indeed motivated by [21] Theorems 2.3 and 2.5, where a posteriori the
classification there (for minuscule i) lies in our class of local Shimura data of abelian type.
The basic GSpin and special orthogonal groups Rapoport-Zink spaces are just special cases
where one can make things more explicit (by the work of [26]).

Specializing further to the case of K3 surfaces, we have some interesting applications.
Take an integer d > 1 such that p { 2d. Let Mg be the moduli spaces of K3 surfaces
f X — S together with a primitive polarization £ of degree 2d and a K-level structure
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over W. Recall that by the global integral Torelli theorem (cf. [37] Corollary 5.15), the
integral Kuga-Satake period map

L: MgdyK — SK

is an open immersion, where Sk is the integral canonical model over W of the Shimura
variety Shg for G = SO(2,19), see subsection for more details. Here, we assume that
K = K,K? with K, = G(Z,) is the fixed hyperspecial subgroup. Let X be a supersingular
K3 surface over Ey, then the discriminant of its Néron-Severi lattice is equal to

—p20(X)
for some integer 1 < 0g(X) < 10. The integer o¢(X) is called the Artin invariant of X.
The following corollary is a consequence of the above theorems. Note that the group G is

adjoint and thus ¢ = ¢q.

Corollary 1.4 (Corollaries and ) (1) Let ¢, [b] and Z4 kv be as in the above
Theorem and let Jy be the pullback of Z4 rcr under the open immersion MMK —
Sk of special fibers. Then we have the following identity

Maax )y, = [TN/T5,
jel
where N' C M(G, b, ) is an open subspace, I'; C Jy(Qp) are some discrete sub-
groups. if moreover b = by is basic, then Jy = M;Z,K which is the supersingular
locus in Mag g, and the above disjoint union is finite.
(2) Eet T € M;‘;K(Fp) be a point, and X, the associated supersingular K3 surface over

F,. Then we have the identity between the Artin invariant og(X;) and the type
t(Ay):

UO(Xx) = "5

where Ny is the vertex lattice attached to the special lattice associated to (X, &),

cf. subsection [7.7]

We briefly describe the structure of this article. In section 2, we review some basics
about affine Deligne-Lusztig varieties which will be used later. In section 3, we first re-
call the Rapoport-Viehmann conjecture on the theory of local Shimura varieties, then we
concentrate on the case of unramified local Shimura datum of Hodge type, and review the
construction of Kim [30] on the associated Rapoport-Zink spaces of Hodge type. In section
4, we introduce unramified local Shimura datum of abelian type, and construct the associ-
ated formal and rigid analytic Rapoport-Zink spaces. Section 5 is devoted as a review the
general framework of moduli of local G-shtukas in mixed characteristic due to Scholze, to
give a moduli interpretation of the generic fibers of our Rapoport-Zink spaces of abelian
type. In section 6, we turn to the global situation of Shimura varieties of abelian type,
and prove a Rapoport-Zink type uniformization theorem in this setting. In section 7, we
discuss some applications of our theory. Motivated by the study of Artin invariants of K3
surfaces, we first construct the Ekedahl-Oort stratification for special fibers of Rapoport-
Zink spaces. Then we work on the examples of basic GSpin and special orthogonal groups
Rapoport-Zink spaces, and then more specially on the case of moduli spaces of K3 surfaces.
These examples are just (related to) special cases of the fully Hodge-Newton decomposable
Shimura varieties introduced in [21] (see also [54]). Finally, we investigate p-adic period
domains in the basic orthogonal case in the appendix following Fargues.

Acknowledgments. I would like to thank Laurent Fargues for his constant encouragement
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2. AFFINE DELIGNE-LUSZTIG VARIETIES IN MIXED CHARACTERISTIC

In this section, we recall some basic facts about affine Deligne-Lusztig varieties in mixed
characteristic, which will be used later.
Fix a prime p. Let G be a connected reductive group over Q,, which we assume to be

unramified. Fix 7' C B a maximal torus inside a Borel subgroup of G. Let W = W (F,) be
the ring of Witt vectors, and L = Wg. Denote o as the Frobenius on L and W.

2.1. Affine Deligne-Lusztig varieties. For b € G(L) and a conjugacy class {u} of cochar-
acters p : G, — G@ , we define the affine Deligne-Lusztig sets
P

X7 (b) = {g € G(L)/GW)| g~ bo(g) € GW)u(p)G(W)},
and
XE,(0) ={g € G(L)/GW)|g~"ba(g) € | GW)u'(p)G(W)}.
W<p

Here, for dominant elements u, 1/ € X, (T'), we say that p/ < p if u — g/ is a non-negative
integral linear combination of positive coroots. The isomorphism classes of both Xf(b) and
X g ,.(b) depend only on the o-conjugacy class [b] of b, and they are non empty if and only if
[b] € B(G, ). Here B(G, u) is the Kottwitz subset inside B(G), the set of all o-conjugacy
classes in G(L). We assume [b] € B(G, ) from now on. The triple (G, [b], {i}) will be
called a local shtuka datum in the section 5, cf. Definition By construction, we have
Xf(b) C Xg”(b). When {p} is minuscule, we have ng(b) = Xf(b).

By the recent work of Zhu [61] and Bhatt-Schoze [I], there exist perfect scheme structures
on the sets Xﬁ(b) and Xgu (b). More precisely, Xf(b) and Xgu(b) are the sets of F,-points
of some perfect schemes over F,,, which are locally closed subschemes of the Witt vector
affine Grassmannian Grg (cf. [61, [I]). It will be useful to briefly recall the related moduli
interpretation. Denote & the trivial G-torsor on W. For any perfect [Fp-algebra R, we have
(cf. [61]1.2 and 3.1) Grg(R) = {(£,8)}/ ~, where

e & is a G-torsor in W(R),
o 3:&[1/p| ~ &[1/p] is a trivialization,
and
XE,(0)(R) = {(£.5) € Gra(R)|nv, (5~ 'bo (8)) < . Va € SpecR},
X5 (0)(R) = {(£. ) € Gra(R)[Inv,(8~'00(B)) = 1, Var € SpecR},

where Inv, is the relative position at x. By abuse of notation, we denote also by X gu(b)
and Xf(b) the associated perfect schemes. By construction, XMG(b) C Xgu(b) is an open
subscheme.

Lemma 2.1. Let (Gy, [bi],{p1}) = (Ga, [ba], {n2}) be a morphism (cf. Definition [3.5) It
nduces a natural map
G G
Xy (01) = X, (b2).
If G1 — G4 is a closed immersion, the above map is a closed immersion.

Proof. The first statement is clear. For the second statement, see [30] Lemma 2.5.4 (1) and
[26] 2.4.4. O
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2.2. Connected components. In [7] 2.3.5, Chen, Kisin and Viehmann introduced a no-
tion of connected components for the affine Deligne-Lusztig sets Xgu(b) by some ad hoc

methods, since the algebro-geometric structure on X& #(b) had not been known by then. We
denote by mo(X gu(b) the set of connected components defined by Chen-Kisin-Viehmann in
such a way. By resorting on the perfect scheme structure, we have a naturally defined
notion of connected components for Xgu(b). It is conjectured that the two definitions co-
incide, cf. [61] Remark 3.2 and [7] 2.3.5. This is known in the case of unramified EL/PEL
Rapoport-Zink spaces, cf. [7] Theorem 5.1.5.

Let 71(G) be the quotiengﬁ of X,(T) by the coroot lattice of G. There is the Kottwitz
homomorphism

we : G(L) = m1(Q)

for which an element g € G(W)u(p)G(W) C G(L) is sent to the class of p. Recall that for
our pair (b, ;1) we assume that [b] € B(G, ). Then there is an element ¢, € 71(G) such
that we(b) — = (1 — o)(cp,). The 71(G) -coset of ¢, is uniquely determined. Here and
the following, I' = Gal(Q,/Q,) is the local Galois group. As wg is trivial on G(W), when
restricting to Xgﬂ(b) C G(L)/G(W), by [1] 2.3 we have a J,(Qp)-equivariant map

wa - Xgu(b) — belﬂTl(G)F,

which factors through mo(X gu (b)). Thus we get a commutative diagram

X2(0)

T

Wo(Xg“(b)) e Cb,,uﬂ'l (G)F

T

Therefore, the non empty fibers of the map wg : Xgu(b) — ¢y, (G)" are unions of

connected components of X g ,.(0). Recall the following main theorem of [7].

Theorem 2.2 ([7] Theorems 1.2 and 1.1). Assume that p is minuscule.
(1) Jp(Qp) acts transitively on Fo(XE(b)).
(2) Assume that G is simple, and (u,b) is Hodge-Newton indecomposable in G. Then
wg tnduces a bijection

mo(X7 (b)) = epm (G)F
unless [b] = [u(p)] with p central, in which case

X7 (b) = G(Qy)/G(Zy)
is discrete.

Assume that p is minuscule. By (1) of the above theorem, all non empty fibers of
wg X gu(b) — ¢p,,m(G)! are isomorphic to each other under the transition induced by
the action of J,(Q,). Fix a point z¢ € Im(wg : Xf(b) — ¢p,um1(G)T) (Soon we will show
that wq is surjective). Let

XS )t c X5 (b)
be the fiber of wg over xy. By (1) of the above theorem, we have the equality
X7 (b) = Jy(Qp) X[ (b)*.

3We note that () is finite if G is semisimple.
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In the following, we will not need to work on each connected component of X E (b). The
subspace XMG(b)Jr and the equality above will be all what we need.

Now let p be arbitrary. As in [33] 1.2.20 and 1.2.15, if we take v = o(u), we have a
natural bijection

G ~ G —1/—1
X’U (b) —>Xu (b)a gr—ao (b g)7
and similarly
XZ,(b) = XE,(b).
For ng(b), as we can choose b € [b] such that b € G(W)o(u(p))G(W), we have 1 € ng(b)
and thus ¢, = 1 (we note that the element ¢, , can be defined for arbitrary ;). Therefore,
we may assume the element ¢, = 1 by working on X gv (b) in the following.
Lemma 2.3. (1) The restriction of wg : G(L) — m1(G) to G(Qp) induces a surjective
map
we : G(Q,) — m(G).
(2) The map Jp(Qp) — m(G)L is surjective.

Proof. For (1): this is contained in Lemma 1.2.3 of [33].

For (2): in the case that (G, [b],{p}) comes from a Hodge type Shimura datum (G, X)

unramified at p (and Zg is a torus), see Lemma 4.6.4 of [33]. The arguments there work
also in the general case. ]

With the above convention, we have

Proposition 2.4. The map

we Xgu(b) — m ()
18 surjective. In particular we get a surjection

mo(XE, (b)) —» m(G)".

Proof. By Lemma 2.3.6 of [7], the map w¢ is compatible with the J,(Qj)-actions on both
sides. By construction, J,(Q,) acts on 71 (G)" by left multiplication via the map J,(Q,) —
71(G)F, which is surjective by (2) of Lemma Thus wg : Xgﬂ(b) — m1(G)" is surjective.

- ([l

We continue to assume that p can be arbitrary. For a reductive group G over Q,, we
write Zg as its center.

Proposition 2.5. Let (G, [b1],{p1}) = (Ga, [b2], {u2}) be a morphism. If Gy = G1/Z for
some central group Z C Zg,, we have the following cartesian diagram

X (1) X0 (b2)

lwcl lwcz

by (G —— chy ™ (Go)L

Proof. This is contained in [7] Corollary 2.4.2. O
Let the notations be as in the above proposition. Combined with Proposition [2.4], we get

Corollary 2.6. Let 1 € cbhmm(Gl)F be a point and xy € cb%mm(Gg)F be its image
under cp, 1, m(G1)Y = cpy uym (G2)'. Let Xglln(bl)*‘ and ngz(b2)+ be the fibers of wa,
and wg, at 1 and xo respectively, which are non empty by Proposition[2.4. Then the map
Xg;l1 (b1) — X§Z2 (be) induces a bijection

X (b)) = X, (b2)"
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We still keep the above notations.

Lemma 2.7. If m(G1)" — m1(G2)' is surjective, then the map Xg;l(bl) — XgiQ(bg)
mduces an isomorphism

XS (01)/Z(Qp) ~ XE2 (by).

Proof. This is implied by the proof of [7] Corollaries 2.4.2 and 2.4.3: under the assumption
that 71 (G1)" — 71(G2)' is surjective, all fibers of Xgl“(bl) — ngw(bg) are torsors under

X.(Z)L'. The group Z(Q,) acts on Xg;“(bl) via the natural map Z(Q,) — X.(2)!. O

3. RAPOPORT-ZINK SPACES OF HODGE TYPE

Following Rapoport-Viehmann, we first review the general conjecture on the theory of
local Shimura varieties in [44]. Then we concentrate on the Hodge type case, cf. [30} 26].

3.1. Local Shimura data and local Shimura varieties. Recall the following definition
of Rapoport-Viehmann.

Definition 3.1 ([44] Definition 5.1). A local Shimura datum over Q, is a triple (G, [b], {u})
where
e G is a connected reductive group over Qp,
e [b] € B(G) is a o-conjugacy class,
e {u} is a conjugacy class of cocharacters y : Gy, — G@ ,
P

such that the following conditions are satisfied

(1) [o] € B(G, ),
(2) {u} is minuscule.

Associated to a local Shimura datum, we have

o the reflex field E = E(G, {u}), which is the field of definition of {u} inside the fixed
algebraic closure @p,

o the flag variety .# (g ,, considered as a rigid analytic space (or an adic space) over
E, the completion of the maximal unramified extension of F,

e the reductive group J, over Qy, for b € [b], which up to isomorphism only depends
on [b]. The group J,(Qp) acts on Flg ,,

e the weakly admissible open subspace F (¢, C Flg,, defined in [43] 1.35 and [9]
Definition 9.5.4. The action of J,(Qp) on F{¢,, stabilizes F g,

In fact, if G is unramified, we have also (cf. the last section)

e the affine Delligne-Lusztig variety Xf(b) over F,, (which will be expected to be the
special fiber of some formal model of the following local Shimura variety Mg (z,),

cf. Conjecture .
Let (G, [b], {i}) be alocal Shimura datum, with local reflex field E. We have the following
conjecture ([44] 5.1):

Conjecture 3.2 (Rapoport-Viehmann). There is a tower of rigid analytic spaces over SpE’,

(MK)K7
where K runs through all open compact subgroups of G(Qy), with the following properties:

(1) the group Jp(Qp) acts on each space M,
(2) the group G(Qp) acts on the tower (M )k as Hecke correspondences,
(3) the tower is equipped with a Weil descent datum over E,
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(4) there exists a compatible system of étale and partially proper period maps
TK ./\/lK — F 8‘;
which is equivariant for the action of Jy(Qp).

In fact, in [44] 5.1 there is a more precise statement on the point (4) of the conjecture.

In particular, there should be an open subspace
T, C T,

which should be the image of the period maps 7 for all K. In fact, Rapoport and Zink
conjecture that there exists a Qp-local system with G-structure over .# e, L which interpo-
lates the p-adic crystalline Galois representations attached to all classical points. Moreover,
the tower (Mxk)gkcq(g,) should be the geometric realization (i.e. spaces of lattices with
level structures) of this universal Q)-local system with G-structure over F (¢, - We refer to
[44] 5.1, [43] section 1, [9] Conjecture 11.4.4, and [23] Conjecture 2.3 for more details. This
conjecture has been known for the local Shimura data which arise from local EL/PEL data
([43]), and the unramified local Shimura datum of Hodge type ([30]). In both cases, these
spaces M are finite étale covers of the rigid analytic generic fibers of some formal schemes
M over SpfOy;, which are formal moduli spaces of p-divisible groups with some additional
structures. The special fibers of these formal schemes M are the affine Deligne-Lusztig
varieties which we introduced in the last section. In section [5| we will give a partial solution
of the above conjecture by applying Scholze’s ideas and methods in [48].

It will be useful to make a definition for morphisms of local Shimura data.

Definition 3.3. Let (G, [b1], {u1}), (G2, [b2], {i2}) be two local Shimura data. A morphism

(G1, [ba], {pa}) = (G, [ba], {pa})
is a hommorphism of algebraic groups f : G1 — G2 sending ([b1],{p1}) to ([b2], {12}).

If (G, [b1], {p1}) — (Go,[b2],{u2}) is a morphism of local Shimura data, then it is con-
jectured ([44] Properties 5.3 (iv)) that for any open compact subgroups K1 C G1(Q)), K2 C
G2(Qp) with f(K7) C Ko, there exists a morphism of the associated local Shimura varieties

M(lebalu/)Kl — M(G27b27,u/2)K2 X SpElu

and when G; — G is a closed immersion these are closed embeddings for K1 = KoNG1(Q)p).

3.2. Local Shimura data of Hodge type. Now we recall the definition of a special class
of local Shimura data (cf. [44] Remark 5.4 (i)):

Definition 3.4. A local Shimura datum (G, [b],{n}) is called of Hodge type, if there exists
an embedding f : G — GL(V) and a local Shimura datum (GL(V),[b],{¢'}) with {u'}

corresponds to (17,0"") for some integer 1 < r <n = dimV, such that [b], {u} are mapped
to [V'],{i'} under f.

If G is moreover unramified, by [32] Lemma 2.3.1, we can find some Z,-lattice Vz, C V/
such that G < GL(V) is induced by an embedding Gz, — GL(Vz,), where Gz, is a
reductive model of G over Z,.

Definition 3.5. A local Shimura datum of Hodge type (G, [b],{u}) is called unramified, if
G is unramified.

We note that for a unramified local Shimura datum of Hodge type (G, [b],{x}), the local
reflex field E is a unramified extension of Q. Thus £ = L, Oy = O, = W where as before

W =W(F,), L = Wg. We will fix a reductive model Gz, of G over Zy,.
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Remark 3.6. The above definition of unramified local Shimura data of Hodge type is more
general than that in [26] Definition 2.53.3. Moreover, for a unramified local Shimura datum
of Hodge type (G, [b],{u}) in the sense of [26], one always has Zg D Gy,

We want to classify local Shimura data of Hodge type. Let (G, [b],{u}) be a given
local Shimura datum. Take any faithful representation V' of G' over Qp, so that we get
an embedding p : G — GL(V). Therefore we get a conjugacy class {y'} of cocharacters
W= pg, O M Gy — GL(V)g . Let N(G) be the set of Newton points of G, cf. [42] 1.7.

Recall that the maps Qp
vg: B(G) — N(G), kqg:B(G)— m(G)r
are functorial in G, cf. [42] 1.9 and 1.15. We get in particular a map
B(G,p) = B(GL(V), 1).

Let [b'] € B(GL(V), 1) be the image of [b] under this map. The triple (GL(V), [¢'],{1'})
is a local Shimura datum if and only if {4/} is minuscule and corresponds to (17,0"~") for
some integer 1 < r < dimV. In which case (G, [b],{u}) is of Hodge type. As above, let
G be a reductive group over Q, and {u} be a conjugacy class of minuscule cocharacters
w: Gy — G@p. In [51] Serre classified the pair (G, {u}) for which there exists a faithful

representation V' of G such that the induced class of cocharacters {u'} under the embedding
G — GL(V) corresponds to (17,0""") for some integer 1 < r < dim V. It turn out the
simple factors of G%d are groups of type A, B,C or D, cf. [51] section 3.

The following exafnples of local Shimura datum of Hodge type are standard.

Example 3.7. (1) Let (G, [b],{p}) be a local Shimura datum which comes from a local
EL/PEL datum, then it is of Hodge type.

(2) Let (G, X) be a Shimura datum of Hodge type, i.e. there exists some embedding into
the Siegel Shimura datum (G, X) < (GSp, S*). Let u be the cocharacter associated
to X. Take any [b] € B(Gq,, ). Then the local Shimura datum (Gg,, [b], {1}) is of
Hodge type.

Here is an example of non Hodge type local Shimura datum.

Example 3.8 (See [44] Example 5.5). Let G = PGL,, u be any non trivial minuscule
cocharacter, and [b] € B(G, ) be arbitrary. Then the local Shimura datum (G, [b], {u}) is
not of Hodge type.

3.3. Rapoport-Zink spaces of Hodge type. Throughout the rest of this section, we
assume that p > 2. Let (G, [b],{}) be a unramified local Shimura datum of Hodge type.
Kim ([30]) constructs a formal moduli scheme M = M(G,b, 1) over SpfW parametrizing
p-divisible groups with crystalline Tate tensors. We briefly review the related constructions
in this subsection. By abuse of notation, we write also G as the fixed associated reductive
group scheme over Z,. Then there exists a faithful representation

p:G— GL(A),
such that the induced cocharacter p/ = Py, O G — GL(A ®@p) is minuscule. Let AV be
P
the dual lattice, and A® be the tensor algebra of A@® AY. By Proposition 1.3.2 of [32], there
exists a finite collection of tensors {s, € A®},cs such that p: G C GL(A) is the schematic
stabilizer of (s,). We fix a representative p. Let A ® W = A% @ A! be the decomposition
of A ® W according to the weights of x, which in turn induces a filtration Fil*A @ W with

FilPA@ W = A® W,Fil'A@ W = Al. We assume that rank A = n,rank A' = d. We note
that P, := Aut(A, so, Fil*A ® W) is a parabolic subgroup of Gy .
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By our assumption and the classical Dieudonné theory, there exists a p-divisible group X
of dimension d and height n over F,, together with an isomorphism ¢ : D(Xy) ~ (A@W, bo),
where D(X) is the contravariant Dieudonné module of X(. The pair (Xp,¢) is unique up
to a unique isomorphism and we fix it in the sequel. Then we can regard s, ® 1 as tensors
in D(X)® via . We note that bo fixes (s, ® 1) and (sq ® 1) lie in Fil'A ® W. Each s, ® 1
can be regarded as a map 1 := D(Q,/Z,) — D(X()®, compatible with the filtrations, and
such that the induced map 1 — D(XO)@)[%] is Frobenius-invariant, i.e. s, ®1 is a crystalline
Tate tensor of Xy, cf. [30] Definition 4.6.

Let Nilpy, be the category of W-algebras on which p is locally nilpotent. Let R € Nilpy,
and X be a p-divisible group on SpecR. Consider the contravariant Dieudonné crystal
D(X) attached to X. Then as usual there is a decreasing (Hodge) filtration Fil*D(X )z on
D(X)gr with locally free graded pieces over R. Here D(X)g is the value of D(X) at the
trivial PD-thickening R ‘4 R. Namely, Fil’D(X)z = D(X)g, Fil'D(X)z = (LieX)" and
Fil’D(X)g = 0. As above, a crystalline Tate tensor of X is a morphism t, : 1 — D(X)® of
crystals, such that tor : 1g — D(X )% is compatible with the filtrations, and the induced
map tq: 1 — ]D)(X)®[%] is Frobenius-invariant.

Denote by Nilpfj"* the full subcategory of Nilpy, consisting of formally smooth formally
finitely generated W /p™-algebras for m > 1. We use the following version of Rapoport-Zink
functor, cf. [61] Definition 3.8, which is equivalent to Definition 4.6 of [30].

Definition 3.9. The Rapoport-Zink space associated to the unramified local Shimura datum
of Hodge type is the functor M on Nilpl?* defined by M(R) = {(X, (ta)aer, p)}/ =~ where
e X is a p-divisible group on SpecR,
e (to)acr 18 a collection of cystalline Tate tensors of X,
e p: Xg®R/J —- X ®R/J is a quasi-isogeny which sends s, @ 1 to t, for a € I,
where J is some ideal of definition of R,
such that the following condition holds:
the R-scheme

Isom((]D(X)R, (ta), FiI*(D(X)g)), (A ® R, (5o © 1), Fil*A @ R))

that classifies the isomorphisms between locally free sheaves D(X)r and A ® R on SpecR
preserving the tensors and the filtrations is a P, ® R-torsor.

Theorem 3.10 ([30] Theorem 4.9.1). The functor M is represented by a separated formal
scheme, formally smooth and locally formally of finite type over W

In the classical EL/PEL case ( and with ramification), see [43] Theorem 3.25. In [30] 4.7,
the unramified local EL/PEL data are explained as special examples of unramified Hodge
type data. See also [26] Theorem 3.2.1 for the case that (G, [b], {¢}) comes from a Shimura
datum of Hodge type. We denote also by M the associated formal scheme, and refer it as
the formal Rapoport-Zink space of Hodge type attached to (G, [b], {u}).

Let M be the rigid analytic generic fiber over L = Wg of the formal scheme M. In
the rest of this paer, we will use the following convention: if G is a unramified reductive
group over Q,, we will fix a reductive model over Z, and write G(Z,) for the associated
hyperspecial group. In [30] 7.4, Kim explained how to construct a tower of rigid analytic
spaces

(MK)kca,)
that satisfies the list of properties in Conjecture Moreover, Mg z,) = M, and Mg —

M is finite étale for any open compact subgroup K C G(Z,). In particular, for unramified
local Shimura data of Hodge type, the Conjecture is true.
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Let M be the special fiber over F,, of M. Recall that in section 2 attached to (G, [b], {1}),
we introduced the affine Deligne-Lusztig variety Xf(b) over [F,,, viewed as a perfect scheme.

The relation between M and Xf(b) is as follows.

Proposition 3.11 ([61] Proposition 3.11). Xf(b) is the perfection A of M.

If (G, [b],{p}) = (GLy, [t],{¢'}) is an embedding of unramified local Shimura data of
Hodge type, by construction, we have the following embeddings
M(G,b, ) = M(GLn, ¥, 1), X (b) = X (),

which are compatible in the sense of the above proposition.

3.4. Connected components. Let the notations be as above. Recall in subsection 2.2 we
have the map
wa - XMG(b) — cp,m(G).
By Proposition [3.11] we get an induced map
wa - M — Cp,u 1 (G)F.

Let G9" C G be the derived subgroup, and G the abelian quotient G/G9". Consider the
exact sequence
1= G% G- G® -1,

which induces a map
Cb,uwl(G)F - Cb,uﬂl(Gab)F = Cb,uX*(Gab)Fa

where X, (G) is the cocharacter group of the torus G over Q. Let Xg,(G) be the group
of Qp-rational characters of G. Then we have

X§,(G) = X*(G)".
The T-equivariant pairing X, (G%) x X*(G®) — Z then induces a map
b, u X« (G*)' = Hom(X*(G*)", Z) = Hom(X§, (G), Z).
In summary, we get a map by considering the composition
st M= e um (G) = 0, X (G™) — Hom(X§ (G), Z).

In the EL/PEL case, this is just the map constructed in [43] 3.52. (See also [7] 5.1.3.)
If (G, [b],{p}) = (GLy, V'], {¢'}) is an embedding of unramified local Shimura data of
Hodge type, we get the following commutative diagram

G GLn
XS(b) X5 (v)

| |

cb,,ﬂrl(G)F — cbfyumrl(GLn)F.

Moreover, we know 71(GL,)" = 7 (GL,) ~ Z.
Since by Proposition|3.11 Xﬁ;(b) is the perfection ﬂperf of M, we have the isomorphism
between the sets of connected components

mo(Myed) = b (XS (b)).

Here Wémf

(Xf(b)) denotes the set of connected components of the perfect scheme Xf(b).
On the other hand, we have also the set of connected components Wo(XE(b)) defined in [7].
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Proposition 3.12. With the above notations, there is a bijection
0(Myea) = mo(X S (D))
Proof. See the Remark 3.2 of [61]. O

Let WO(M) be the set of connected components of the formal scheme M, which is the
same as mo(Meq). On the other hand, we have also the set of connected components 7y (M)
of the generic fiber M. As M is formally smooth and in particular normal, by [28] Theorem
7.4.1, we have a bijection

WO(Mred) = 71—0(-/\/1)'

One can also consider the set of connected components 7y(M ) for the finite étale cover
M of M. In [44], Rapoport and Viehmann made a conjecture on mo(Mg x Cp) under
the assumption that G%" is simply connected. We refer to [44] Conjecture 4.26 for the
precise statement on the existence of a determinant morphism for the tower (Mg ). This
conjecture is known in the unramified simple EL/PEL case, cf. Theorem 6.3.1 of [6] (see
also [7] Theorem 5.1.10 and Remark 5.1.11). It will be interesting to consider the more
general Hodge type case studied here.

Fix a point xg € cbyum(G)F. Let M , C M,.q be the fiber of wg over zg. Then M

red red
is some union of connected components of M,.qy. Let M™% C M be the associated sub
formal scheme, with generic fiber M™. For any open compact subgroup K C G(Q,), let

M. C M be the pullback of M C M. We get a tower

(M) kca,)
We have the equalities

M = QMY Myeq = Jp(Qu)M . M = J(Q)MT

and

_ +
Mg = Jb(Qp)MK.
4. RAPOPORT-ZINK SPACES OF ABELIAN TYPE

We enlarge the class of Rapoport-Zink spaces of Hodge type in this section. They are
constructed locally from Rapoport-Zink spaces of Hodge type. Throughout this section we
assume p > 2.

4.1. Local Shimura data of abelian type. Let (G, [b],{u}) be a local Shimrua datum.
Consider the natural projection G — G from G to its associated adjoint group. We get
induced [b%], {u®}, so that

(6 ), )
is also a local Shimura datum and (G, [b], {u}) — (G, [b2%], {u??}) is a morphism of local
Shimura data. We introduce the local analogue of a Shimura datum of abelian type (more
precisely, of preabelian type) as follows.

Definition 4.1. A local Shimura datum (G, [b],{p}) is called of abelian type, if there exists
a local Shimura datum of Hodge type (G1,[b1],{p1}) such that we have an isomorphism of
the associated adjoint local Shimura data (G°%, [b%9], {u}) ~ (G44, [b$9], {us?}).

Thus any local Shimura datum of Hodge type is also of abelian type. The later class is
strictly larger.

Example 4.2. Let G = PGL,. Consider a nontrivial minuscule cocharacter py : Gy, —
GL,, and by € B(GLy,, p1). Take pn = p$d, b = 34, Then (G,[b],{u}) is of abelian type, but
not of Hodge type, cf. Example|[3.8.
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Recall that for a local Shimura datum (G, [b], {¢}), if G; is a simple local factor of G%d

P

such that the component u?d of u® is not trivial, then G; is a group of one of types
A,B,C, D, Eg, Eq, cf. [51] Annexe. By Serre’s classification ([51] section 3) and our defini-
tion, simple factors of G appearing in local Shimura data of abelian type consists exactly of
local reductive groups of types A, B,C, D. This is compatible with Deligne’s classification

of Shimura data of abelian type in [I0], cf. Example

4.2. The associated Rapoport-Zink spaces. To construct Rapoport-Zink spaces, we
need the following unramified assumption.

Definition 4.3. A local Shimura datum of abelian type (G,[b],{un}) is called unrami-
fied, if G is unramified, and there exists a unramified local Shimura datum of Hodge type

(G1, [br] {pa}) such that (G, (b7, {u*?}) = (G§%, [b§], {ui"}).

For a unramified local Shimura datum of abelian type, the local reflex field £ is a unram-
ified extension of Q,. Thus E' = L,Op = Op = W where as before W = W(F,), L = Wg.

The following example is one of our main motivations.

Example 4.4. Let (G, X) be a Shimura datum of abelian type such that G is unramified at
p (cf. [10,132]). Take any [b] € B(G, p), the associated triple (Gg,, [b], {it}) is a unramified
local Shimura datum of abelian type.

Lemma 4.5. Let (G, [b],{u}) be a unramified local Shimura datum of abelian type. Con-
sider the associated adjoint local Shimura datum (G, [b%), {u®}). We have the following
isomorphism of reductive groups over

Jl?d ~ Jba(i.
Proof. This follows from the definitions of J, and Jyad. O

Theorem 4.6. Let (G, [b],{u}) be a unramified local Shimura datum of abelian type. Then

there ezists a formal scheme M(G, b, p), which is formally smooth, formally locally of finite
over W, such that

M(G, b, )Pt ~ X5 (b),

where M(G,b, 1) is the special fiber of M(G, b,p). The formal scheme M(G, b, ) is
equipped with a transitive action of Jy(Qp), compatible with the action of Jy(Qp) on Xf(b).

Proof. Take any unramified local Shimura datum of Hodge type (G1, [b1],{i1}) as in Defi-
nition Consider the associated formal Rapoport-Zink space M(G1,b1, 1) over SpfW.
Then its special fiber M(G1, b1, j11) satisfies

M(G1, by, )P~ X5 (by).
Recall that we have following cartesian diagram (cf. Proposition

Gad @
Xl?ll (bl) Xutlxld (bld)

w Weaad

Cb1,u1 1 (Gl)r T Cpgd pygd T (Gllld)r‘

Let Xﬁll (1)t C Xﬁl (b1) be the fiber over ¢, ,,, under the map WG Xffll (b1) = by 1 (G1)T.
Let M(G1, by, pu1)T be the corresponding formal sub scheme of M(G1, by, 11). On the other
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hand, we can consider also the fiber XMG(b)Jr C Xf(b) over ¢, under wg : Xf(b) —
¢, (G)F. Then by Corollary

Xffll(bl)+ ~ Xf;‘

(b)*.
We set
M(G, b, )t = M(Gy, by, )™,

then MG, b, ) TP/ ~ X% (b)T. By Theorem [2.2| (1), we have
X7 (b) = Jy(Qp) X[ (b)*.

Therefore, there exists a formal scheme M(G ,b, 1), equipped with an action of J,(Q)), such
that

M(G, b,/l,) = Jb(@p)M(G7 bnu')Jra
M(G, b, )P ! ~ XT(b),

and the induced action of J;,(Qp,) on M(G, b, 11)yeq is compatible with that on Xf(b) under
the above identification. In fact, we can take

M(Gv b?/j') = [Jb((@p) X M(Gv b7 M)Jr]/Jb(QP)Jr

= H M(G7 bv ,LL)+,
Io(@p)/ To(Qp)*

where J,(Qp)t C J,(Q,) is the stabilizer of XE(b)Jr under the action of J,(Q,) on Xf(b).

The above construction does not depend on the choice of the unramified local Shimura da-
tum of Hodge type (G1, [b1], {i11}) as in the statement of the theorem, since if (G2, [b2], {p2})
is another such one, then we have a canonical isomorphism

M(G1,b1, 1)t =~ M(Ga, ba, o).

This follows from the bijection Xﬁ;ll (by)T ~ XMG22(b2)+, the isomorphism of deformation
rings Rey .z, ~ Raywy, where X01(b1)T 5 21 — 0 € XG2(bo)™, of. [32] 1.5.4 (from the
description there, Rg depends only on the adjoint group G“d), and the constructions in
section 6 of [30].

O

As [6I] Corollary 3.12, we have the following dimension formula for the special fibers by
applying loc. cit. Theorem 3.1.

Corollary 4.7. Let the notations be as in Theorem . We have dim M,..q = (p,u —
Vi) — 2defq(b), where p is the half-sum of (absolute) positive roots of G, and defs(b) =
rankg,G — rankg, Jy.

Let (G, [b], {i}) be a unramified local Shimura datum of abelian type. Take an embedding
G — GL,. Then we get an induced triple (GLy, [V'],{/'}). If (G, [b], {p}) is not of Hodge
type, then {4’} is not minuscule. In any case, we have the embedding

M(G, b, )P ~ X G (b) — XS0 (1),
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4.3. A moduli interpretation. Let (G, [b], {i}) be as in Theorem 4.6 Then by construc-
tion, locally the formal scheme M(G, b, 1) admits a moduli interpretation. More precisely,
take (G1, [b1], {p1}) as in Deﬁnition Then the formal scheme M(G1, by, 1) is a moduli
space of p-divisible groups with crystalline Tate tensors. In particular, M(G,b, w)t s a
moduli space of p-divisible groups with crystalline Tate tensors such that under the map
wq, the image is fixed.

Suppose now that there exists a triple (Gy, [b1], {p1}) as in Definition such that the
map

m(G1)" = m(G1H"

is surjective. Then the formal scheme M(G, b, 1) admits a global moduli interpretation as
follows.

Proposition 4.8. Under the above assumption,

(1) we have an isomorphism of formal schemes
MG B, u§?) = MG br, ) [ X (Zey)"

(2) M(G,b, 1) is the pullback of M(G1,by, 1)/ X+(Za,)" under the morphism w1 (G)T —
Wl(Gad)F.

Proof. We have the following cartesian diagrams

Gad a
XG(bn) X8 (o)

| |

Cby iy (G1)T —— cb%d’“%dm(G‘fd)r ~— 71 (G)

X7 ()

T

All the vertical maps are surjective by Proposition [2.4l The assertions follow by the as-
sumption 71(G1)" — m (G$9)Y is surjective. O

Example 4.9. Consider Example again. As the exact sequence 1 — G,, — GL, —
PGL,, — 1 induces a surjection

T (GLn)F = Wl(GLn) — Wl(PGLn)F,

we have

M(PGLy, b, i) = M(GLy, b1, 1) /p”.

Another example will be given in section 7.

By construction, both the above local moduli interpretation, and the global moduli in-
terpretation in Proposition are not canonical. Moreover, the formal scheme M(G, b, )
associated to a general unramified local Shimura datum of abelian type does not admit a
moduli interpretation by p-divisible groups with additional structures. Nevertheless, when
passing to the generic fibers, they are indeed canonical moduli spaces of some objects (local
G-shtukas in the sense of Scholze): see the next section.

4.4. Generic fibers and local Shimura varieties of abelian type. Let (G, [b],{u}) and
M = M(G,b, 1) be as in Theorem We consider the rigid analytic fiber M = M(G, b, p1)
over L, regarded as an adic space. For any open compact subgroup K C G(Z,), we construct
a finite étale cover Mg of M as follows.

First, assume that K = K,, for some n > 1, where K,, = ker (G(ZP) — G(Zp/p"Zp)>.

On the component M* = (M(G,b, u)+)%d, we can construct a finite étale cover M by
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taking some unramified loal Shimura datum of Hodge type (Gi, [b1], {i1}) as in Definition
and using the moduli interpretation of M(G1, b1, u1). We can take

My = [T(Qp) x M1/ Tp(Qp) "
In this way we get a tower (M,,), on which G(Z,) acts. Set My = M. The action of G(Z))
on M,, factors through G(Z,)/K, = G(Z,/p"Z,). Now let K C G(Z,) be arbitrary. Take
some sufficiently large n such that K,, C K. Set
Mg =M, /K.

Then Mg is a finite étale cover of M, and it does not depend on the choice of n. When
K C G(Zy) is normal, M is a Galois cover of M, with Galois group G(Z,)/K. For any
g € G(Qp) and any open compact subgroup K C G(Z,), we have a natural isomorphism
Mg — M
As a result, the group G(Qy) acts on the tower

gKg71 .

(MK)kca,)
by Hecke correspondences.
As before, for any open compact K C G(Z,), let /\/l}“( C Mg be the pullback of M* C
M. In this way we get a sub tower (ML)x C (Mkg)k. Let G(Q,)" C G(Qp) be the
subgroup which is the stabilizer of the sub tower

(M})K C (Mg)k.
By Lemma (1) the map
we : G(Qp) = m(G)"
is surjective. By construction we have the induced bijection

wa = G(Qy)/G(Qp)* = m(G),
and moreover,
Mg = Ty(@Q)M,  (Mg)x = G(Qp) (M )k
Let (G, [b], {p}) be a unramified local Shimura datum of abelian type. Take any (G1, [b1], {#1})
as in Definition [4.3] Then we have the canonical identification of the associated p-adic flag
varieties over L
Flgy =GP, = Flg, u = G1/Py,.
Sometimes we will simply write them as .#¢,. By [30] 7.5, we have a period map
TGy ,dR - M(Gl,bl,,ul) — yﬁlﬂ

which is Jy, (Qp)-equivalent. If (G, [b],{u}) — (GL,, [t'], {¢'}) is an embedding of unrami-
fied local Shimura data of Hodge type, we get an induced embedding of flag varieties over
L: Flg, u, — FLlaL, - By construction, we have the following commutative diagram

M(G17 b17 Ml)cH M(GL'IM b/7 ,U/I)
lﬂ'cl,tm lﬂ'GLn,dR

TGy~ Flar, -

Let us briefly review the construction of 7g, 4r. Let (so) be a finite collection of A (rankA =
n) such that G C GL(A) is the schematic stabilizer of (s,). Then the closed embedding
Fley = Flar, w classifies {y'}-filtrations of A with respect to (so). By [30] 7.5, the

period morphism 7g, qr : M(G1,b1, 1) = Flg, 4, is given by (Fil'ID)(X“m”)TMfg  ( Zig))
. 1

using the induced isomorphism p : D(X“m”)xvg ~ Opr, ® A which matches (t5?) with
1
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1 ® 84, where My = M(Gl,bl,m),/\/ll = M(G1,b1, 1), (X4 (t4), p) is the universal
p-divisible group with crystalline Tate tensors and quasi-isogeny over M. Thus the above
diagram is commutative.

Restricting the map g, ar to M(G1,b1, p1)t = M™, we get a map
WJR : ./VlJr = ./\/I(Gl,bl,ul)+ — ﬁéu.
Then applying the group action of J,(Q,), we can define a J,(Qp)-equivalent period map
for M
TG,dR M= M(G, b,,u) — f%\gu

Let .7 chll”’;:l C Z{, be the open subspace defined by Hartl (using Robba rings) in [23]
section 6, which can be defined equivalently by using the crystalline period ring Beris (cf.
[13]). In [50, [41], the subspace .# é‘gﬁf is described using the Fargues-Fontaine curve, which
applies to an arbitrary local Shimura datum (G, [b], {i}). See also Proposition

Proposition 4.10. ﬂf%%%l is the image of 7q, ar- And we have the following commutative
diagram

M(Gl) bla Ml)g M(GLTL7 blv :u/)
iﬂ'Gl,dR iﬂ'GLn,dR

ar padm ar padm

Proof. By [23] Proposition 6.2, we have

grpadm adm a
JEGIHL“ — yﬁGanﬂ/ ﬂ /6@1’#1.

By [23] Theorem 7.3 and [I3] section 4, we have Im 7gr,, 4dr = F Z“G‘%TM - Thus we get the

above commutative diagram. To show Im 7g, gr = F E%ﬁ%l,

any algebraically closed complete extension C|L, the induced map on C-valued points is
surjective. Let (z,(sza)) € Fla, u, (C,Oc) with image x € Flqy,, v (C,Oc), such that
there exists a point (X/O¢,p) € M(GL,, 0, 1/)(C,O¢) maps to = under mgr,, dr- By
definition, we have the isomorphism

p: ]D)(Xkc)Q ~ OM(GLn,b’yﬂ') @A,

and x = p(Fil'D(Xj.)g) considered as a filtration on the right hand side. Via the rigid-
ification p, there exists an element g € G(Q,)/G(Z,) C GL,(Qp)/GL,(Z,) such that
D(Xy.) ~ (9A ® W,g 0 0(g)o). Therefore, each tensor s, on A induces a crystalline
Tate tensor t, on X. We get a point (X/Oc¢, (ta),p) € M(G1,b1,11)(C,O¢), which by
construction maps to (X/Oc¢, p) € M(GLy, V', /') (C,O¢) and (z, (sza)) € Fla, 1, (C,Oc)
under the embedding M(G1,b1, p1) < M(GLy, V', 1) and the period map 7¢, 4r respec-
tively.

it suffices to show that for

For any open compact subgroup K C G(Z,), we have the finite étale map M;r{ =
M(G1, b1, 1) e — M = M(G1,by, 1) T, thus we get a morphism

+
M = FU,.
From this we can define a J,(Qp)-equivalent period map for Mg
TGdR : MK — g‘\ﬁﬂ.

When K varies, these period maps are compatible with the Hecke action of G(Qp) on
(Mk)k. Thus we may think that there exists a G(Qp)-invariant map (Mg)x — F,..

Recall that we also have Z (%! p_and F G- By construction, we have ﬂ‘é‘gﬁ%l C
ﬁﬁg‘im, and similarly # E‘éd,Zl C 955‘7’“'
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Lemma 4.11. We have

ar pwa _ grpwa adm adm
JGlMl_J G, KGIM E

Proof. The equality F(¢] | = FL4°, follows by [] Pr0p051t10n 9.5.3 (iv). The second
equality follows by the definition usmg G bundles on the Fargues-Fontaine curve. ]

Corollary 4.12. .% K“Gdzl C F{, is the image of the above period map mG ar.-

Proof. Let ﬁﬂadm ' c Flg, 4 be the image of w1,

Since (M(Gl,blaﬂl)K)K = Gl(Qp)(M(Gl,bl,Ml);r()K and the map M(Gl,bl,,u,l)[( —

ﬁﬁ‘é‘i”; | 18 G1(Qp)-invariant, we get

adm,+
Gi,p1 °

We have also (M(G, b, 1)k )k = G(Qp)(M(G, b, 1) %)k, and by our construction the map
(M(G,b, ) k) Kk = FL,, is G(Qp)-invariant, we get also

Im7g, gr = FU

adm,+
Gri,u1 °

Thus Im g, 4r = Im g qr. By Proposition and Lemma we have

ImﬂG,dR =%/

ar gadm gadm

Im7gar =Im7g, dr = FLG ),

O

Remark 4.13. We always have ﬁﬁaadl’? C Flgl,. In [23] section 9 and [A1] Question A.

20, Hartl and Rapoport asked that when is fﬁa‘ﬁf = ffﬂé‘fu? For G = GL,, in Theorem
9.3 of 23] Hartl gave a complete solution of this question. For arbitrary unramified G, if
[b] is basic, Fargues and Rapoport conjecture that this holds true if and only if (G,{u}) is
fully Hodge-Newton decomposable in the sense of [21] Definition 2.1 (2), cf. [21] Theorem
B and Conjecture 0.1. In the appendiz we will see that ﬁ’f‘(‘;ﬁn =7 8‘2 in the case [b] is
basic and G is the special orthogonal group. See also [§].

Recall that by Lemma [2.3[ (1) the map
we : G(Qp)/G(Zy) = m(G)
is surjective.

Lemma 4.14. (1) The following diagram is cartesian:

G(Qp)/G(Zp) m(G)"

L

ad

Go(Q,)/G(Zy) “E% i (Go)T

(2) In particular, for G and Gy as above we have G(Q,)T ~ G1(Q,)*.

Proof. Note that non empty fibers of both vertical maps are torsors under X, (Zg)". By [33]

Lemma 1.2.4, if g% € G*(Q,)/GZ,) and weaa(g??) lifts to an element of w1 (G)T, then

g% lies in the image of G(Q,)/G(Z,) — G*(Q,)/G*(Z,). Therefore the above diagram is
cartesian.

In particular, we have the bijection G(Q,)" ~ G1(Q,)™ from (1) for G and G; as above.

U
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Let X be a rigid analytic space over a local field k|Q,, and G be a reductive group
over (Q,. Denote by RepG the category of rational representations of G, and Q, — Locx
the category of Qp-local systems on X. Recall that a Q,-G-local system on X is a tensor
functor RepG — @, — Locx. If G is moreover unramified, and fix a reductive model Gz,
of G over Zj,, then we can define similarly Z,-G-local systems (or better notion: Gz, -local
systems) on X. By construction, we have

adm

Proposition 4.15. There exists a Jp(Qp)-equivariant Q,-G-local system V on Q’EG,M such
that M(R, R™) is the set of Gy, -local systems in Vgpa (g r+y- In particular, there exists a
Jo(Qp)-equivariant Gz, -local system I on M, and the tower (Mk)gca(z,) is obtained by
trivializing L.

Proof. Under the identity ﬂéaGdl%l = ﬁﬁ‘gfﬁl, we have a Q, — G'1-local system V; on ﬂé‘gfl’].

Indeed, let V,,(X“"") be the rational Tate module of the universal p-divisible group X"
over M. We have the étale Tate tensors

taer : 1= Vp(XU)E

corresponding to each ¢, under the comparison theorem, cf. [30] Theorem 7.1.6. V(X ")

descends to a Qp-local system V; on & K“GCZ”, equipped with the induced étale Tate tensors

ta,et- Fix any geometric point 7 — % E‘é‘fﬁq’. Let

PviT - ﬂl(‘g\gaGCanvf) — GLn(@p)
be the p-adic representation of the (de Jong’s) fundamental group Wl(ﬂﬁé‘ff,f) corre-

sponding to Vi, cf. [27] Theorem 4.2. Then as tq4 ¢ is invariant under 7 (F Ecgle, Z), cf. [30]
Theorem 7.1.6, we get a morphism

Pviz - T (3\68%?75) — Gy (Qp)

which thus defines a Q, — Gy-local system V; on .# E‘é‘f;”. Moreover, as in the proof of

Proposition M (R, R") can be identified with the set of Z,-lattices together with ten-

sors (ta) in Vigpa(r,r+), O equivalently, Isom:%(édm (G1,V1)/G1(Zp), where G, is the trivial
s T -

Qp-Gi-local system on ﬂf‘é‘i’f. The tower (Mik)kca,(z,) 18 the geometric realization of

Qp — Gi-local system Vi on % é‘ngL in the sense that

Mg ~ IsomygaGdT(ﬁ, V1)/K.

This identification preserves the Hecke actions of G1(Q,) and the actions of Jp, (Qp), cf.
[23] Remark 2.7 and the proof of loc. cit. Theorem 7.3 (¢) and (d).

The group ﬂl(ﬂ\ﬁag‘%zl,f) acts on G1(Qp) through py, z. The group J,, (Q,) acts on
G1(Qp) as the Qp-local system V; on ﬂE“GCfL” is Jp, (Qp)-equivariant.

Fix a point =g € m1(G1)’. Then we have the associated M and (M) k. The tower
(M) K defines a subgroup G1(Q,)™ C G1(Q,) and a morphism

pg}h5 : Wl(ta/‘E“GCfL”,E) — G1(Qp) ™.
By Lemma m (2), we have G(Qp)" ~ G1(Qp)". Therefore, we can define an action of
w1 (F EaGCfL”,f) on G(Qp), which commutes with the natural action of J,(Q,). Thus we get a
p-adic representation
0z Wl(ﬁf(léle,f) — G(Qy),
which defines the desired Q,-G-local system V on % 6‘&‘%;”. Moreover, for any K C G(Zy),

we have the identification
M =~ Isom zpadm (G,V)/K,
1
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where G is the trivial Q,-G-local system on .% K‘gf/z”. As above, this identification preserves
the Hecke actions of G(Q)) and the actions of J,(Qy). O

We note Corollary and Proposition generalize [23] Theorem 8.4 (EL/PEL type
case, but there one can allow ramification) to the abelian type case.

Let (G, [b],{p}) be a unramified local Shimura datum of abelian type. For each open
compact subgroup K C G(Z,), we get the associated Rapoport-Zink space

M~ T Mk
m ()"
Let Ag be the image of 71 (G)' — 71(G)T. This is a finite group. We have an exact
sequence
1= X, (Za)F - m(G)Y = Ag — 1.
We have the Hecke action of G(Q)) on the tower (Mg)g. The Hecke action of the central

subgroup Zg(Q,) C G(Q)) stabilizes each M. This action of Z5(Q,) is the same of that
induced from J;,(Q,) when we view Zg(Q,) C J5(Qp). This action on

Mg~ ] M
m (G)T
=11 I Mz
Ac X (Za)V

is through the map Zg(Q,) — X.(Zg)" and the injection X.(Zg)" — m(G)L.

In summary, the tower (M k) gcq(z,) associated to a unramified local Shimura datum of
abelian type can be viewed as the local Shimura varieties thought of in Conjecture In
the next section, we will put these spaces in a more general framework to get some moduli
interpretation for each M.

4.5. Infinite level and the Hodge-Tate period map. Let (G, [b], {i}) be a unramified
local Shimura datum of abelian type, and (Mg )g be associated tower of Rapoport-Zink
spaces of abelian type. Let .# (¢, _,, be the p-adic flag variety over L associated to (G, {u~1}).

Proposition 4.16. There exists a preperfectoid space Mo, over L such that
Moo ~ mMKa
K

cf. BO] Definition 2.4.1 for the precise meaning of such formula. Moreover, there exists a
Hodge-Tate period map
THT - ./\/loo — gfq_‘u,
which agrees with the period map previously defined in the EL/PFEL cases in [50, [5].
Proof. If (G, [b],{n}) is of Hodge type, the existence of the preperfectoid space My, over
L such that Moo ~ lim My is proved in [30] Proposition 7.6.1. Fix an embedding
(G,[b],{n}) < (GL,, [t'],{x}) with {g'} minuscule. We have the associated preperfeoid
space M(GLy, b, /' )oo over L such that M(GL,, 0, pt)oe ~ @K,M(GLn,b/,p’)Ku The
Hodge-Tate period map
THT - M(GLn, b’,,u’)OO — yéGLn,—p/
is defined in [50] 7.1. Arguing as [5] section 2, we get that the composition
Moo — M(GLn, b',//)oo — ngLn,fu’
factors through .#/{g _,. In particular we get

THT : ./\/loo — 97@7_#.
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Now assume that we are in the general case. As Jy(Qp) acts on [Meo| = lim [Mkl, it
suffices to prove that there exist a preperfectoid space M over L such that

M, ~ lim M,
K

and a Hodge-Tate period map
Tt MY = Za
This follows from the Hodge type case. O
The following corollary is clear now.

Corollary 4.17. There exists a sub preperfectoid space MY, C Moo over L, which is stable
under G(Qp)", such that

ME ~lm M, Moo = G(Q)ME.
K

5. GENERIC FIBERS OF RAPOPORT-ZINK SPACES AS MODULI OF LOCAL (G-SHTUKAS

In this section, we work mainly on generic fibers. We want to explain that the generic
fibers of the formal schemes M(G,b, u), associated to unramified local Shimura data of
abelian type (G, [b],{p}), can be viewed as moduli spaces fo local G-shtukas in mixed
characteristic in the sense of Scholze, cf. [48]. We will work in the more general context of
Conjecture[3.2] The first few subsections will be denoted as some review of works of Fargues
[16, 19] and Scholze [48]. The reader familiar with these can go directly to subsection

5.1. The Fargues-Fontaine curve and G-bundles. The Fargues-Fontaine curve Xrg g
is associated to a datum (F, E), where E is a local field with finite residue field F, and F|F,
is a perfectoid field of characteristic p. For our purpose, we set ' = Q,,, and denote simply
XFq, as Xp. It has several incarnations.

5.1.1. The adic curve. The adic curve X admits the following adic uniformization
Xr=Yr/¢",

where Yr = Spa(W(OF)) \ V(p[wr]), with wr € F satisfying 0 < |wp| < 1. The action of
the Frobenius ¢ on the Witt vectors is given by

(> [walp™) =D [2B]p", V> [walp" € W(OF).
It induces a totally discontinuous action on Y.

Suppose now that F' is algebraically closed. Then there is a unique non analytic point
x € Spa(W(OF)). Set Y = Yrp = Spa(W(Or))\{zx}. There exists a surjective continuous
map k: Y — R>o U {oo} defined by

 log|[wr] @)
") = Pogp(@)]

where 7 is the unique maximal generalization of x, cf. [4§] 12.2. For any I C R>q U {oo},
we denote Yy = £~ 1(I). Then Y :=Yr = Y 50)-

Let I C [0, 00| be an interval of the form [r, c0) or [r, c0]. Recall that a ¢-module over Y is
a pair (&, ¢¢), where £ is a vector bundle over V; and ¢g : ¢*E|y, — £ is an isomorphism,
cf. [48] Definition 13.2.1. It follows that ¢-modules over ) ) are the same as vector
bundles over X := Xp.
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5.1.2. The algebraic curve. There is a natural line bundle O(1) on X, corresponding to the
¢-module on Yo ) whose underlying line bundle is trivial and for which ¢ is plo. Set
O(n) = O(1)®", and

P=H(X,0(n)).

n>0
We have

7

HY(X,0(n)) = O(Y)¥=",
Let
X" = Proj(P).
By [19], this is a one dimensional noetherian regular scheme over @Q,. There exists a
morphism of ringed spaces

X — Xoch

and X may be viewed as the analytification of X*°" in some generalized sense.

Remark 5.1. Using the theory of diamond developed in [48], the curve admits yet another
version: the diamond curve

X® = (Spa(F) x Spa(Q@y)°)/¢”,
where ¢ = Frobp x Id. We will not use this version in the following.

Let Bun yscx and Bunx be the categories of vector bundles on X*" and X respectively.
The morphism X — X** induces a GAGA functor

Bunyscn — Buny.
Theorem 5.2 (|29, [15]). The GAGA functor induces an equivalence of categories
Bun y.cn — Buny.

There is another way to describe vector bundles on X. Consider the Robba ring

Rp = lim H (Yo, Oy,

’Iihe Frobenius ¢ induces an action on ﬁp Recall a ¢-module over ﬁp is a finite free
R r-module M equipped with a ¢-linear automorphism.

Theorem 5.3 ([29], Theorem 6.3.12). There is an equivalence of categories
Buny ~ {¢ — modules overRp}.

The idea for the proof is that any ¢-module over R is defined over
= HOQ;(O’T], Oy(w])

for some r small enough. This can be spread to a ¢-module over Yr = ) g, via pullback
under Frobenius. Giving a ¢-module over V(g o) is the same giving a vector bundle over
X by the uniformization Xp = y(oﬁoo)/ﬂ.

Let ¢ —Mody, be the category of F-isocystals over F,,, where as before L = W(IF,,)q. For
any (D, @) € ¢ — Mody, we can construct a vector bundle £(D, ¢) on X*¢" by

E(D, ) = Proj( (D &1 OY))5+=").
n>0

Theorem 5.4 ([19]). The functor £E(—) : ¢ — Mody, — Bunyscn is essentially surjective.
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Therefore, the composite £(—) : ¢ — Modr, — Bunysn — Bunx is also essentially
surjective.

Let G be a connected reductive group over Q,. We have the following equivalent defini-
tions of a G-bundle on X (or equivalently on X*¢):

(1) an exact tensor functor RepG — Buny, where as before RepG is the category of
rational algebraic representations of G,
(2) a G-torsor on X locally trivial for the étale topology.

Recall that an F-isocrystal with G-structure over F, is an exact tensor functor
RepG — ¢ — Mody.
If b € G(L), it then defines an F-isocystal with a G-structure
My : RepG — ¢ — Modyp,
V= (VL,bo).
Its isomorphism class only depends on the o-conjugacy class [b] € B(G) of b. Conversely,
by Steinberg’s theorem any F-isocrystal with G-structure arises in this way. Thus B(G) is

the set of isomorphism classes of F-isocrystals with G-structure, cf. [42] Remarks 3.4 (i).
For b € G(L), let & be the composition of the above functor M} and

E(—) : ¢ — Mody, — Bunysen ~ Buny.
In this way, the set B(G) also classifies G-bundles on X. In fact, we have
Theorem 5.5 ([16]). Assume that F is algebraically closed. Then there is a bijection of
sets
B(G) = HL(X,G)
[b] =[]
We discuss briefly the relative version of the above theory. Let (R, RT) be a perfectoid

affinoid Fp-algebra, and S = Spa(R, R") be the associated perfectoid space. We have an
adic space over Qp:

Xs =Ys/¢",
with Yg = Y g+ = Spa(A4, A") \ V(p[wg]), where
A= W(E) = (Xlaalson € B, A = (S lmaly” € Al € B},
n>0 n>0

and wpr be a pseudo-uniformizer of R. The adic space Xg is the relative version of the
Fargues-Fontaine curve. We can also define the scheme

X3 = Proj ( P H°(Xs, Ox, (d))).
d>0

Then there exists a map of locally ringed spaces Xg — X §Ch. We can define vector bundles
on Xg, X §Ch as above, and the relative Robba ring Rr. Moreover, we have

Theorem 5.6 ([15,29] ).

Bunxgch ~ Bunyg ~ {¢ — modules overﬁ’:R}.

Let S = Spa(R,R™) be a affinoid perfectoid space over Fp, and wpr be a pseudo-
uniformizer of R. We denote

Yo,00) (B, BY) = SpaW (RT) \ V([wr]).
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Then we have a continuous map
K- y[O,oo)(R¢ R+) - [07 OO),
the relative version of the map defined previously. With the same notation there, we have
Ys = y((),oo) (R7 R+)
Let G be a connected reductive group over Q,.Then as above we can define G-bundles on
Xs, Yg = y(O,oo)(R) R+) and y[O,oo)(Rv R+)'
If we start with a perfectoid space S over ,, then there exits a canonical closed embed-

ding

1'5 . S — Ysb,
which in turn induces a closed embedding

z5: 8 = X,
cf. [14] 1.4. Here S” is the tilt of S over F, in the sense of [A7]. Thus we can view S as

a Cartier divisor on Xg,. If S = Spa(R, R") is perfectoid affinoid over Q,, by [16] 1.6 we
have a corresponding Cartier divisor D on XE sch The formal completion of X% sch along D is

SprdR’R,
cf. Proposition 1.33 of [14].

5.2. Local G-shtukas in mixed characteristic. Let the notations be as above. Let
S = Spa(R, R") be a affinoid perfectoid space over F,, with a untilt St of S. Then there
exists a closed embedding S* — Vio,00) (R, RT).

Definition 5.7 ([48] Definition 11.4.1). A local G-shtuka over S with one paw = : S* —
Vo,0)(R, RY) is a pair (€, pg), where
e & is a G-bundle over Vi oo\ (R, RT),
e ¢¢ is an isomorphism ¢g 1 $*E — £ over Vg o) (R, R\ Ty, such that along Ty it
is meromorphic. Here I, is the image of x.

One can then generalize the above notion to define a local G-shtuka over a general
perfectoid space over .

Let C be a complete algebraically closed extension of Q,. We have the associated de Rham
period ring B;{R = B:[R,C with a fixed uniformizer £ € B;[R. Let Byr = B;_R[%],Ainf =
W(O¢»). We have the following various descriptions of local G-shtukas with one paw at C,
in the case G = GL,,.

Theorem 5.8 ([48] Proposition 20.1.1; see also [18]). The following categories are equiva-
lent.
(1) Shtukas over Spa(C”, O») with one paw at C.
(2) Pairs (T,Z), where T is a finite free Zy-module, and = C T @ B is a Bx-lattice.
(3) Breuil-Kisin-Fargues modules over Amf
(4) Quadruples (F,F',3,T), where F and F' are vector bundles on the Fargues-Fontaine
curve X = X¢» , and B 1 Flx\{oo} = .7-"3(\{00} is an isomorphism, where F is trivial,
and T C HY(X,F) is a Zy,-lattice.

If the paw is minuscule, i.e. we have
&(T ®z, Bjp) CECT ®z, Bln,

then these categories are equivalent to the category of p-divisible groups over O¢.
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Recall that a Breuil-Kisin-Fargues module over Ay is a pair (M, ¢pr), where M is a finite
free Aje-module and ¢y : (¢*M)[¢Y = M[¢7Y] is an isomorphism, cf. [48] Definition
11.4.2.

5.3. Moduli of local G-shtukas in mixed characteristic. We have the following gen-
eralizations of Definitions [3.1] and 3.3l

Definition 5.9. (1) A local shtuka datum is a triple (G, [b],{p}), where
e G is a connected reductive group over Qp,
o {u} is a conjugacy class of cocharacters p : G, — G@ over @p,
P
e [b] € B(G,n) C B(G).
(2) Let (Gy,[b1],{p1}), (Ga,[b2],{p2}) be two local shtuka data. A morphism

(G1, [ba], {pa}) = (G, [ba], {p2})
is a hommorphism f : G — G2 of algebraic groups sending ([b1], {g1}) to ([ba], {p2})-

Remark 5.10. (1) By definition, a local Shimura datum (G, [b],{p}) is a local shtuka
datum with {u} minuscule. For a local shtuka datum (G, [b],{u}), the simple factors
of G can be groups of arbitrary type.

(2) In [48], several {u}’s can be allowed, as in the classical function field case, cf. [56].

(3) In particular, if (G, [b],{u}) is a local shtuka datum, and G — G' is a hommorphism
of reductive groups over Qp,, we get the induced [V'],{i'} such that (G, [V'],{i'}) is
also a local shtuka datum.

Let (G, [b],{u}) be a local shtuka datum. As before, we have the associated local reflex
field E, and the reductive group J, over Q,. Let F' be an algebraically closed perfectoid
field of characteristic p. By Theorem we have a G-bundle on X, which is the same
as a ¢-G-module (&, ¢g,) on Yr, well defined up to isomorphism. We will use freely the
notion of diamond in the following, cf. [48] for basic definitions and properties. We define
a functor on the category of perfectoid affinoid algebras over F, as follows.

Definition 5.11 ([48] Definition 19.3.3). Let (R, R™) be a perfectoid affinoid Fy-algebra
together with a map x : Spa(R, RT)* — Spa(E)°® (which is the same as giving a untilt of R
over E). Let Sht(G, b, 1) — Spa(E)° be the functor such that for any ((R,RT),x),

Sht(G, b, ) (R, RY), ) = {((€, de), 1)}/ =

where

o (£,0¢) is a G-shtuka over Vi oo\ (R, RT) with one paw at x, such that (€, pg) is
bounded by {p}.
e 1:(&,9¢)][p,00) 5 (&, be,)|[p,00) 18 an isomorphism for some sufficiently large p.

For our purpose, we assume that G is unramiﬁedﬁ from now on. We will also fix a
reductive model Gz, of G over Z,. The main theorem of [4§] is

Theorem 5.12 (Scholze, [48] Theorem 20.3.1). The functor Sht(G,b, ) is represented by
a diamond over Spa(FE)°.

(In [48] the theorem is proved for the case G = GL,, but one sees immediately that the
proof given there works also for the general case.)

4This may be not necessary by the methods of [48] [49]. Here we restrict to the unramified case to simplify
the exposition.
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We want to discuss period maps in this setting. Consider the B;R—aﬂine Grassmannian
Bf .. _ . .
Gr " over Q. This is the functor associating to any perfectoid affinoid Q,-algebra (R, R™)
the set
BIR +
GTG (R7R ) = {(575)}/ =
where £ is a G-torsor over SpechR p> and B is a trivialization of £ ® B o Bigr.r- One can

+
check that Grng is the étale sheaf associated to the presheaf
(R,R") — G(BdR,R)/G(BjR,R)-

Consider the case (C,CT) with C|Q, an algebraically closed perfectoid field. Then we have
the Cartan decomposition

GBare) = I GBiro)n©G(Bg ),
rEXL(T)+

where T' C B C G is a fixed choice of maximal torus inside a Borel subgroup B of G, and
X«(T)4+ C X«(T) is the associated set of dominant cocharacters. Fix a conjugacy class of
cocharacters {p} Wlth the domlnant representative p. Let E be the field of definition of

{p}. Consider G’I"G 2, CGr dR ® E the sub functor such that

GT‘G (R RT) ={(&,¢) € GerR(R RN |Inv (&, E0z) < 1, Yo € Spa(R, RT)}.

This is the analogue of the classical Schubert variety associated to {u} in the setting of
+

: By, . . B
Bi.-affine Grassmannian Gr.?®. There is an action of J,(Q,) on Grgl,. By abuse of

Bt y y
notation, we still denote GTGdR — Spa(E)® the sheaf base changed over Spa(E)°. By
Theorem 21.3.6 of [48], this is a dlamond

There exists an étale morphism of diamonds over Spa(E)° (cf. [48] 20.4)

+
Tar  Sht(G, b, i) — Gres,
When G = GL,,, this morphism can be defined by using Theorem (4). Let

BT, ,adm
Grgid, — car G’<M
be the image of myg. This is an open sub-diamond, and we call it the admissible locus. We
have the following description of the admissible locus.

Proposition 5.13 ([48] 20.5, [29] ). Let (£,08) € GT‘G (R RT). Then

(€,8) € Groa= ™ (R, )

if and only if one of the following equivalent conditions holds: for any representation V &€
RepG such that the center of G is mapped into the center of GL(V'), with the associated
vector bundle (Ev, By ),
(1) Va € Spa(R, R") the vector bundle v, is semi-stable of slope 0;
(2) ¢-module of Ey is trivial;
(3) Ev extends to a p-module over ﬁ%t, where ﬁ’:mt lim HO(Y 0], Ov) is the integral
Robba ring.

adm

+
The action of J,(Q,) on GT‘G stabilizes the open sub diamond GerR’ . The period

morphism
dR ,adm

mar : Sht(G, b, u) — GTG
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is then J,(Qp)-equivariant.
We have the following definition of local systems with additional structures on the dia-

;R,ad

P similar to the classical situation.

B
mond GrG

Definition 5.14. Let X be a diamond, and G be a reductive group over Q,. Denote by
RepG the category of rational representations of G, and Q, — Locx the category of Qp-local
systems on X. Then a Q,-G-local system on X is a tensor functor RepG — Q, — Locx.
If G is moreover unramified, and fix a reductive model (over Z,) Gz, of G, then we can
define similarly Z,-G-local systems (or better notion: Gz, -local systems) on X.

By [29] Corollary 8.7.10, there exists a J;(Qp)-equivariant Q,-G-local system V over

+ aam
Grgfgl ¢ , which realizes Sht(G, b, ;1) as the functor of the set of Z,-G-local systems in V.

In particular, there exists a J,(Qy)-equivariant Z,-G-local system L over Sht(G,b, ).
Scholze’s theorem above (Theorem|5.12]) in fact tells us more information. More precisely,
we get a tower of diamonds

Sht(G, b
($06(G-0.01)
indexed by open compact subgroups K C G(Zp) with Sht(G, b, u)g(z,) = Sht(G, b, ), and

the group G(Qy) acts on this tower (Sht(G, b, 1) K)K . by Hecke correspondences. Let
CG(Zp

(R, R™) be a perfectoid affinoid F,-algebra together with a map z : Spa(R, R")® — Spa(E)°.
Then
Sht(G, b, )k (R, RY),z) = {((€, pg), 1, )}/ =
where
o (&,¢¢) is a G-shtuka over Vg )(R, R™) with one paw at w, such that (€, ¢¢) is
bounded by {u}.
o L1 (&, 0¢)|[p,00) 5 (&, b&,)|[p,00) 18 an isomorphism for some sufficiently large p.
e « is a K-orbit of an isomorphism L(E, ¢g) ~ Lo, where L(E, ¢¢) is the G-local
system associated to (&, ¢g), Lo is the trivial G-local system over Vo o) (R, R™).
As
Jo(Qp) C Aut(&y, d¢,),

cf. [14] 2.5, J,(Q)) acts each Sht(G, b, 1) k by modifying ¢, and these actions are compatible
when K varies. When the context is clear, we will simply denote Sht(G, b, 1)k by Shtg.
The cover

mr : Sht(G, b, )k — Sht(G, b, 1)
is obtained by trivializing K-level structures, which is finite étale. By trivializing all of I
we get a pro-étale cover

Too & Sht(G, b, pt) oo — Sht(G, b, u).
We have the following moduli interpretation for Sht(G, b, i1)so. Let (R, RT) be a perfectoid
affinoid F,-algebra together with a map z : Spa(R, RT)° — Spa(E)°. Then

Sht(G7 b, U)oo ((Ra R+)7 (L‘) - {((87 ¢5)7 L a)}/ =
where
e (£,0¢) is a G-shtuka over Vg o)(R, R*) with one paw at z, such that (€, ¢¢) is
bounded by {u}.

o 11 (E,0¢)|po0) = (Ebs e, )|[p.o0) 1s an isomorphism for some sufficiently large p.

o a: (&, ¢g) ~ Ly is an isomorphism, where as before L is the trivial G-local system
over Vo o0) (R, RT).
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By construction, we have an isomorphism of diamonds over Spa(E)<>

Sht(G, b, pt) oo/ K =~ Sht(G, b, 1), Sht(G, b, i1)oo = l'&nSht(G, b, 1) K
K

Question 5.15. For any open compact subgroup K C G(Q,), we know that the fibers of

adm
(

Sht(G, b, u)x (C, O¢) — GTGdR’ C,0¢)

are in bijection with G(Qp)/K. Is it possible to define a notion of étale fundamental group

+
for the diamond GerR’adm s [27], so that the Qp,-G-local system V on Gr dR’ad can be
described in term of a collectzon of representations
Bl .adm _
ﬂl(G Gdgua m71_) — G(Qp)7
R ,adm P

for the geometric point T runs through each connected component of GT‘G

At the infinite level, there exists a Hodge-Tate period map (cf. [14] p.38; see also [22]

Theorem 5.4)
+

maT : Sht(G, b, 1) oo — GTG< —w

+ +
where Grgdf; u C Grng ® E is the Schubert diamond associated to {u~1}. We can make
a little precise on the image of mgp. By [5] Corollary 3.5.2 there is a natural map

+
E: Grng (R,R") — Bung x , .,
Take (R,R") = (C,0¢) with C|Q, complete and algebraically closed. By Theorem
+
we get a map b(-) : Grng(C, Oc¢) — B(G). By [5] Proposition 3.5.3, when restricting to
+

€ Grg'®_ (C,0¢), one has

b(z) € B(G, ).
Then for any [V'] € B(G, i), we get a 10cally closed sub diamond

B+

dR’
GG< — i GTG< w

such that the underling topological space |G7‘GdR’ | is the fiber over [0'] under the above
map b(-). Consider [b'] = [b] as in the local shtuka datum. Then by construction, one has

wr : Sht(G, b, 1) (C, Oc) — GTG (C’ Oc),

for any (C, O¢) with C|Q, complete and algebraically closed. That is, 7gr factors through
Bl,.b

G dR>
G< w
In summary, we get two period morphisms
Sht(G, b, 1t) o
TdR THT
ar Bla,adm G Blab
G <,LL TG7§7M7

and the period morphism m4p factors through Sht(G, b, u).

Remark 5.16. (1) In [14] 8.2.1, there is an alternative construction of the diamond
Sht(G, b, 1t) 0o
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(2) It is natural to ask whether Sht(G,b, 1)~ is representable by a perfectoid space. We
will show that this is the case if (G, [b],{p}) is a unramified local Shimura datum of

abelian type, cf. Corollary[5.24

By construction, a morphism (G1, [b1], {p1}) — (Ga, [ba], {pe}) of local shtuka data in-
duces a morphism of diamonds

Sht(G1, by, p1) — Sht(Ga, b, p2).
More generally, we have morphisms
Sht(G, b1, p1) k, — Sht(Ga, ba, p12) K,

if K7 is mapped into K5 under G; — Gb.

The above functoriality enables us to apply the Tannakian formalism. As before, we as-
sume that G is unramified over Q,. Consider now an embedding G < GL,,, then ([b], {x})
induces ([0], {i'}), so that (GLy, [b'],{1'}) forms a local shtuka datum, and we get a mor-
phism of local shtuka data (G, [b], {u}) = (GLy, [V'],{¢'}). The following proposition is the
local analogue of Deligne’s theorem for Shimura varieties.

Proposition 5.17. In the above setting, for any K C G(Zy), there ezists a K' C GL,,(Z,)
such that there exists a natural closed embedding of diamonds

Sht(G, b, ) gk < Sht(GLy, V', 1) k.
The induced embedding of diamonds
Sht(G, b, 11)0o = Sht(GLy, V', 1) oo
is compatible with the de Rham and Hodge-Tate period morphisms on both sides.
Proof. 1t suffices to prove that we have a closed embedding of diamonds
Sht(G, b, 1) oo = Sht(GLy, b, 1) oo-
This is clear from the construction above. Moreover, we have a closed embedding

BT, .adm BT, .adm
dR> dR>
GrG,Su s GrGngw ,

and the following diagram on de Rham period maps is commutative

Sht(G, b, i) oo > Sht(GLy, V', 1) oo

leR leR

BT..adm BT..adm
ar’ (G dR>
Graid, G, < -

We have also the following commutative diagram on Hodge-Tate period maps

Sht(G, b, 1) so—> Sht(GLn, V', 1)

\LWHT \LWHT

B b BT, b
dR’ dR’
GTG,S#L(—> GTGLR,S—M"
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5.4. Moduli of local G-shtukas and affine Deligne-Lusztig varieties. Let (G, [b], {u})
be a local shtuka datum. Recall that we assume G is unramified. We want to compare the
moduli space of local G-shtukas Sht(G, b, 1) and the affine Deligne-Lusztig variety X& L.(0)
associated to (G, [b], {u}) as in section 2. -

Let (C,O¢) be an affinoid perfectoid field of characteristic p with a untilt C* of C. Let
k be the residue field of Oc. We have a J,(Q))-equivariant morphism of sets

P = PG * ShH(G, b, 1)(C, Oc) — XE,(b) (k).
Indeed, consider first the case G = GL,,, we have
Sht(G, ba /J)(C, OC’) = {((57 ¢5)7 L)}/ =

with ((€,¢¢),t) a shtuka over Spa(C,Oc¢) with one paw at C*. By Theorem [5.8] there
exists a Breuil-Kisin module (M, ¢) over Ay = W(O¢). Let

(M @4, W(K), 0)

be the associated Dieudonné module. This defines a point in X gﬂ(b)(k) This construction
is compatible with the J,(Q,) actions on both sides. For the ‘general case, we apply the
Tannakian formalism: take any embedding (G, [b], {u}) = (GLy, [b], {¢}), then we have a
commutative diagram

Sht(G, b, 11)(C, Oc)— Sht(GLy, ¥/, 1)(C, Oc)

SPG,b.p iSPGLn,b’,u’

Remark 5.18. It would be nice to have a morphism of sheaves sp = sp(ap, ) : Sht(G, b, ) —

Xgu(b) which realizes the above map on the level of sets of points. If Sht(G,b,pn) comes
from the generic fiber of a Rapoport-Zink space, then it is clear how to define sp: it is just
the usual specialization map from the generic fiber to the special fiber.

Recall that we have the map wg : G(L)/G(W) — m1(G). In the rest of this subsection
we will only consider X gu(b) as a subset of G(L)/G(W). Restricting wg to X gu(b)’ it gives

wa Xg#(b) — ¢cp,m1(G).

Recall that as in subsection 2.2, after replacing ;1 by (1) we may assume ¢, = 1. On the
other hand, restricting wg to G(Qp)/G(Zy) we get

we  GQy)/GI(Z,) — m(G).
Lemma 5.19. There is a map
G(Q)/G(Zy) = XE,(0), g+ o,
such that wg(g) = wa(go)-
Proof. Fix any point x € Sht(G, b, 11)(C,O¢). Then we have an injection
G(Qp)/G(Zp) = Sht(G, b, 1)(C, Oc)
which identifies G(Qp)/G(Z,) with the Hecke orbit of . The composite map
G(Qp)/G(Zp) = Sht(G, b, 1) (C, Oc) = XE,,(b)

gives the desired map. The second assertion follows by the same argument as in the proof
of Lemma 1.2.18 of [33], by applying Theorem [5.8| (and Tannakian formalism) instead of
subsection 1.1 of [33]. O
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Remark 5.20. Consider the composite map G(Qp)/G(Z,) — Xgu(b) — m(G)'. Then
this is surjective by Lemma (1). In [33] Proposition 1.2.23, Kisin proved a stronger
result: the map

G(Qp)/G(Zp) = mo(XE,(b))
is surjective if (G, [b],{u}) is a unramified local Shimura datum of Hodge type.

The following is an analogue of Lemma 2.4.1 and Corollary 2.4.2 of [7], see also Proposi-
tion

Proposition 5.21. Let Z C Zg be a central sub group and G' = G/Z, with the induced
[b'] and {p'} such that (G',[V'],{1/}) is a local shtuka datum. Then we have a cartesian
diagram

Sht(G, b, u)(C, Oc) —= Sht(G", ¥, 1')(C, O¢)

i |

X¢,(b) XS, ).

In particular, the induced diagram

Sht(G, b, 41)(C, Oc) — Sht(G, ¥/, 1) (C, O¢)

i i

T (G)' T (GHF

18 also cartesian.

+ad Bl ..adm
dR’a m o dR’a .
. GrG,éu, , since by con-

+
struction Grg:igjdm depends only on the adjoint local shtuka datum (G°?, [b®9], {u29}).
Now consider the following commutative diagram

Proof. Firstly, we have the natural identification Grg

Sht(G, b, 1)(C, Oc) Sht(G", ¥/, 1) (C, Oc)
m AWG’,%

Bt adm

Gro/ =™, Oc).

;R,adm

2. (C,O¢), the above horizontal map induces a map on fibers

. B
For any point = € Gr,

G(Qp)/G(Zp) = G'(Qp) /G (Zy),

thus it suffices to show that the following diagram is cartesian

G(Qp)/G(Zy) —= G'(Qp) /G (Zy)

| |

X, (0) XZ, ),
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where the vertical maps are those constructed in Lemma Consider the following
diagram

G(@p)/G(Zp) - G/(@p)/GI(Zp)

| |

Xgu(b) th’(b/)
m(G)" 71 (GNYE.

We know that the lower square is cartesian, cf. Proposition and by Lemma
G(Qp)/G(Zy) — G'(Qy)/G'(Zyp)
™1 (G)F ™ (G

is also cartesian. Therefore the upper square is cartesian. O

5.5. Local Shimura varieties as moduli of local G-shtukas. We return to the setting
of Definition[3.1] The following strengthened version of Theorem [5.12] which may be viewed
as a partial solution of Conjecture (as we do not give information on the desired Weil
descent datum), is implied by the results in [5], 48, [49]. Recall that by [48] Proposition
10.2.8, there is a fully faithful functor X — X° from the category of normal rigid analytic
spaces over k to the category of diamonds over Spa(k)® for any non-archimedean field & of
characteristic 0.

Theorem 5.22. Let (G, [b], {u}) be a local Shimura datum. Assume that G is unramified.
Then there exists a tower of rigid analytic spaces over SpE

(MK)k,

where K runs through all open compact subgroups of G(Z,), with the following properties:

(1) the group Jp(Qp) acts on each space M,
(2) the group G(Q)) acts on the tower (Mg )k as Hecke correspondences,
(3) there exists a compatible system of étale and partially proper period maps

Tkt Mg — FLE

which is equivariant for the action of Jy(Qyp), where EWG‘?L’L C Flg, is the open
subspace defined in [41] A.6 (see also Proposition[5.15 and [8]),
(4) for any K, we have an isomorphism of diamonds M$, ~ Sht.

Proof. Consider the Bialynicki-Birula morphism
+
Groit —s Flg,,,
cf. [5] Proposition 3.4.3. Since p is minuscule, it is an isomorphism, cf. [5] Theorem 3.4.5,
which induces an isomorphism

Bi,adm ~ d
dR>’ o paam,o
GTG’M —>J€G7u .

The tower (Shtg )k is constructed out of a J,(Qp)-equivariant Q, — G-local system V over

Bl .ad . . .
Gerf’a ™ which realizes Sht(G,b, 1) as the functor of the set of Gz,-local systems in V.
. BY, . . N
Since GrGf’f’adm ~ ﬂﬂ‘gle’o, there exists a corresponding J,(Qp)-equivariant Q,-G-local
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system over .# Z‘gle which we still denote by V. Here we use the fact that the categories
of étale Z,-local systems and Q,-local systems on an adic space X are eauivalent to the
corresponding categories on the pro-étale site Xprost, cf. [29] Lemma 9.1.11. Therefore we
get a tower of rigid analytic spaces (M ) g with the properties listed as in the theorem. [

Remark 5.23. (Compare Remark (2)) In the above situation, it is natural to conjecture
that there exists a preperfectoid space My, over E such that My, ~ @K Mg and M, =
Shteo. We will see that this is true if (G, [b],{u}) is unramified of abelian type. This is the

local analogue of the fact that Shimura varieties of abelian type with infinite level at p are
perfectoid, cf. [52].

Finally, we return to Rapoport-Zink spaces of abelian type. In particular we assume
p > 2 in the rest of this section.

Corollary 5.24. Let (G, [b],{n}) be a unramified local Shimura datum of abelian type. For
any open compact subgroup K C G(Zy), let M and My be the rigid analytic spaces over E
constructed in subsection[{.4) and Theorem[5.29 respectively. Then we have an isomorphism
of rigid analytic spaces over E

MK ~ ./\/l/K
In particular, we get isomorphisms of diamonds over Spa(E)<>
% =~ Shtg,
and
M, ~ Sht,

with compatible period morphisms on both sides. In particular, the Hodge-Tate period map
wgr n Proposition factors through mgr : Mo — ﬁEbG’_“.

Proof. We first prove the case (G, [b], {u}) is of Hodge type. This follows exactly as the
proof of [48] Theorem 19.4.5. Moreover, we have the following cartesian diagram

~

M(G, b, 1)

Sht(G, b, 1)k

M(GL,,, V', 1/)Se) —=> Sht(GLy, b/, 1)

Now assume that (G, [b], {i}) is of abelian type. We can apply Propositions and
and compare the construction of M(G,b, u)x with that of Sht(G,b, u)k. Here as
above, we use the fact that the categories of étale Z,-local systems and Q,-local systems on

an adic space X are eauivalent to the corresponding categories on the pro-étale site X o¢t,
cf. [29] Lemma 9.1.11. O

Let (G, [b],{u}) be a local Shimura datum with G unramified. By Theorem there
exists a tower of local Shimura varieties <M(G, b, 1) K) over SpE as conjectured by

Rapoport-Viehmann. Take an embedding G — GL,. Then we get an induced triple
(GL,,, [b'],{#'}), which is a local shtuka datum. The following corollary is now a conse-
quence of Proposition [5.17] and Theorem [5.22

Corollary 5.25. For any K C G(Z,), there exists a K' C GLy(Zy) such that there exists
a natural closed embedding of diamonds

M(G, b, 1)% = Sht(GLy, 0, 1) .
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Remark 5.26. (1) Let (G,[b],{u}) be a unramified local Shimura datum of Hodge type,
with the associated Rapoport-Zink spaces My and theumoduli spaces of local G-
shtukas Shtg. The isomorphism of diamonds over Spa(FE)®

}} ~ Shtg
indicates the magic “switching p-divisible groups with additional structures to local
G-shtukas”.
(2) If (G, [b],{p}) is a general local Shimura datum, e.g. a unramified local Shimura
datum of abelian type but not of Hodge type, then we do not have p-divisible groups

any more. However, via M$, ~ Shtg, the local Shimura varieties M can be viewed
as moduli of local G-shtukas.

Remark 5.27. We refer to [44] sections 6,7,8 and [14] section 8 for the discussions on
the conjectures on the realizations of local Langlands correspondences and local Jacquet-
Langlands correspondences in the (-adic cohomology of the tower (Mg )k or (Shtx)k.

6. RAPOPORT-ZINK UNIFORMIZATION FOR SHIMURA VARIETIES OF ABELIAN TYPE

We discuss some global applications in this section. As [43] chapter 6 and [31], we apply
our construction of the formal schemes M(G, b, ;) to prove a uniformization theorem for
Kisin’s integral canonical models of Shimura varieties of abelian type [32]. Throughout this
section, we assume p > 2.

6.1. Integral canonical models for Shimura varieties of abelian type. Let (G, X) be
a Shimura datum of abelian type, i.e. there exists a Shimura datum of Hodge type (G1, X1)
together with a central isogeny G‘fer — G%7 such that it induces an isomorphism of the
associated adjoint Shimura data (G§9, X{#4) ~ (G, X%). Fix a prime p > 2. Assume that
G is unramified at p from now on. By Lemma 3.4.13 of [32], we can find a Shimura datum
of Hodge type (G, X1) satisfying the above and G is unramified at p. Let E be the local
reflex field of (G, X)) for some place over p. In the following we will only consider the open
compact subgroups K C G(Ay) in the form K = K,K? with K, = G(Zy,).

Theorem 6.1 ([32] Theorem 3.4.10, Corollary 3.4.14). With the above notation and as-
sumption, for any sufficiently small open compact subgroup KP C G(A?), there exists an
integral canonical smooth model
Sk (G, X)
of Shx (G, X) over Op. When KP varies, the prime to p Hecke action on (ShK(G, X))K
extends to
(SK (G, X ))K

It will be useful to review how these integral models are constructed, cf. [32] 2.3 and 3.4.

6.1.1. Case (G, X) is of Hodge type. Take an embedding of Shimura data (G, X) < (GSp, ST).
Let K = K,K? C G(Ay) be an open compact subgroup with K, = G(Z,). Take an open
compact subgroup K’ = KI’,K’I’ with K}, = GSp(Z,), such that K C K’ and we have an
closed immersion

Shi (G, X) < Shg/(GSp, 5*) g,
where E is the local reflex field for (G, X). For Shg/(GSp, S*) we have the integral
canonical model Sk/(GSp, SF). Consider the Zariski closure Sx (G, X) of Shi (G, X)g
in Sk (GSp, SF)o,. Then Sk (G, X) is defined as the normalization of S (G, X). In par-
ticular we have a finite morphism

Sk(G,X) = Sg(G, X) C Sk/(GSp, SF)o,-
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It will be useful to review some further structures for the integral canonical model
Sk(G,X). Let T be a scheme over Op. Attached to each point x € Sk (G, X)(T) we
have a triple

(ATL‘: )‘$75§,K)7

where (Az, A;) is the polarized abelian scheme up to prime to p isogeny coming from pullback
of the universal polarized abelian scheme over Sx:(GSp, ST), and

& 1 € DT, Tsom(Vy, VP (Ar)q) /)

is the (promoted) K-level structure coming from the K’-level structure 5};7 i on Ag, cf.
[32] 3.4.2. The triple (A, /\x,ﬁi,m) can be viewed as the polarized abelian scheme with
level structure attached to the T-point of Sk/(GSp, ST) induced by x. Let (s,) be a finite
collection of tensors which cut off the inclusion G C GL(V). As explained in 1.3.6 of [33],
there exist de Rham tensors s, 4r . and f-adic étale tensors (sq.)i£p on the first relative
de Rham cohomology and the first ¢-adic cohomology of A, respectively. The level 557 K
takes sq t0 (Sa,1,2)i£p-

If T = Speck where k C F, is a subfield containing the residue field kg of O, then
there exists cristalline Tate tensors (sq,0z) on the first cristalline cohomology of A,. If x
is the specialization of a point z over F' with F|E an extension, then there exist p-adic
étale tensors (s, 7) on the first p-adic étale cohomology of Az, and (s4,0,.) and (s, pz) are
related by the p-adic comparison theorem, cf. Proposition 1.3.7 of [33]. By Corollary 1.3.11
of [33] the data

(A:ca )\:m Eg,Ky (Sa,O,z))

uniquely determines the point z €€ Sk (G, X)(k). Sometimes we will write 5404 as tqz to
be compatible with our previous notation on cristalline Tate tensors on p-divisible groups.

6.1.2. Case (G, X) is of abelian type. Take a unramified Shimura datum of Hodge type
(G1, X1), together with a central isogeny G¢" — G%" such that it induces an isomorphism
of the associated adjoint Shimura datum (G¢4, X¢4) ~ (G, X%). Let K = K,K? C
G(Ay) be an open compact subgroup with K, = G(Z,). The integral model Sk (G, X) is
constructed as the quotient

Sk, (G, X)/K?,
where Sk, (G, X) is an integral model over Of of the pro-scheme

Shy, (G, X) = lim Sh, o (G, X).
Kp

The scheme Sk, (G, X) is constructed as follows. Fix a connected component X+ C X.

We get the induced connected component Shy (G, X )E of the complex Shimura variety as
usual. By [32] Proposition 2.2.4 it is defined over L. Consider the connected component

Shi,,(G1, X1)" = limShy, g0 (G, X1) "
KP

of Shg,,(G1,X1) = T&an Shg,, k7 (G1, X1). Let Sk, (G1,X1)" be the Zariski closure of

Shg,,(G1, X1)* in Sk,,(G1, X1) over W = W(F,). Write Z = Zg. The above integral
model Sk, (G, X) of Shg, (G, X) over W is given by

Sk, (G. X) = [(Gz,,) % Sk, (G1, X1) "]/ (Giz,))°,

where

— ad
A (Gz,)) = GAY)Z(Ly))™ *a(z,) 1220 G (L) T
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and
A (G,))* = G(Li) T /2 (L) ™ %62+ /220 G (L) T

similarly we have & (G1z,,) ) and &/(G1z,,,)°, see [32] 3.3.2. The scheme Sk, (G, X) descends
to Op and gives the integral canonical model of Shy (G, X) = I'&HKP Shg,x» (G, X), see
the proof of loc. cit. Theorem 3.4.10.

6.2. Newton stratification of the special fibers. We keep the notations as above. We
will work over F, in this subsection. By abuse of notation, denote the special fiber of
Sk = Sk(G, X) over F, by Sk for simplicity. In this subsection, we will write an element
of B(Ggq,) simply by b, and B(G, 1) = B(Gg,, ) as usual. In [54], we proved the following
results.

Theorem 6.2. (1) For any b € B(G, ), there exists a non empty locally closed subset

b = . ‘ = s
S C Sk, which we view as a subscheme of Sk with its reduced structure, such that
set theoritically we have

Sk= JI S
beB(G,p)

(2) For any b € B(G, ), the Zariski closure ofgl;{ in S is [Ty< ?l;;.

For b € B(G, ), we call the subschemes gl;( as the Newton strata of Sg. If (G, X) is of
Hodge type, then the existence of the Newton stratification is implied by [42], see also [59]
5.2.

For later use, we briefly review the construction of the Newton stratification. If (G, X)
is of Hodge type, it is constructed by the associated p-divisible groups with crystalline
Tate tensors. We now assume that (G, X) is of abelian type. In this case, let (G1,X1)
be a unramified Shimura datum of Hodge type (G, X1), together with a central isogeny
Giler — G such that it induces an isomorphism of the associated adjoint Shimura data
(G4, X¢) ~ (G4, X99), Then we have a canonical bijection B(Gq, 1) ~ B(G, ). Con-
sider the Newton stratification at level K7,

St xr(G1, X1) = H gKlpKf(Gl,Xl)b.
beB(G1,11)

When the level K? varies, the Newton stratifications are compatible. Therefore, we get a
Newton stratification

§K1p(G1’X1) = H gKlp(Gla-Xl)b
beB(G1,u1)

by taking inverse limit over K7. As [33] 3.5.8, consider
m(G1) == G1(Q)L \ G1(Af)/G1(Zy) = G1(Zp)) T \ Gl(AI;«)’
which is the set of geometric connected components of Sk, (G1, X1). By [54],
Sk, (G1,X1)" C Sk, (G1, X1)

is stable under the action of &/(Giz, ), and we have a surjective &/(G1z,, )-equivariant
map

Sk, (G1, X1)" — 7(Gy).
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Let Sk,,(G1,X1)"" be the pullback of Sk, ,(G1, X1)? under the inclusion Sk, (G1, X1)" <
§K1p (G1,X1). In other words, we consider the following commutative diagrams

§K1P(G1, Xl)b’+c—> gKlp(Gl, X))t

Sy, (G, X1)P——— Sk, (G1, X1)

i :

m(G1) ————=(G1),
where the above diagram is cartesian. The stablizer of §K1P(G1, X)bt ¢ §K1P<G1, X1)bis
A (G1z,,,)°, and we have the identity
§K1P(G13X1)b = [M(Glz(p)) X gKlp(G:L’Xl)b7+:|/'d(Glz(p))o'
For more details we refer to [54]. Now as
ng(G7X) = [d(GZ(p)) X gKlp(GlaX1)+]/£{(Glz<p))ov
we get the Newton stratification
Sk, (G.X)= [ Sk (G.X),
beB(G,u)
where for any b € B(G, i), the associated stratum
FKP (G, X)b = [%(GZ@)) X §K1P(Gl7 Xl)b’Jr]/JZ{(GlZ(p))o — EKP(G, X)
For any sufficiently small open compact subgroup K? C G(A?), we define
Sk, k0 (G, X)" =Sk, (G, X)"/KP.
Therefore we get the Newton stratification
ngKp(G,X) = H EKPKP(G7X)Z).
beB(G,p)

6.3. Rapoport-Zink uniformization. The notations will be the same as the previous
subsection. We will work over W in the rest of this section. For simplicity, denote the
base change of Sk = Sk (G, X) over W by the same notation. Let b € B(G, ) (the same
convention as the last subsection). We get a unramified local Shimura datum of abelian

type (G, b, {}), thus a formal scheme M = M(G, b, u) over W. Fix a point z € gl;((ﬁp).

6.3.1. Case (G, X) is of Hodge type. We want to construct a morphism of formal schemes
over SpfW

0 =0, : M x G(A)/K? — Sk,
where §K is the formal completion of Sk along its special fiber. The morphism O is
constructed in [31] Proposition 4.3 and Corollary 4.3.2. Let (A, (ta,z),7) be the abelian
variety with additional structures attached to x, and let I4(Q) be the group of quasi-
isogenies of A, preserving (ta,.). Then I4(Q) is the group of Q-points of a reductive group
I over Q (cf. [33] Corollary 2.3.1) which depends only on the isogeny class of = ([33] 1.4.14).
In this case, © factors through the quotient by I,(Q)

O : 1,(Q) \ M x G(A})/K? — Sy,

. : : . <b
and the image Zy4 k» is contained in the stratum S.
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6.3.2. Case (G, X) is of abelian type. We first work on the level of sets. By [33] Theorem
4.6.7, we have the following bijection

Sk, (G X)) = ][ 8G90,
[¢],b(¢)=b
where
¢ : 9 — Ga
runs through the set the admissible morphisms of Galois gerbs, [¢] is the associated equiv-
alence class, cf. [33] 3.3, and

S(G,¢) =1im I4(Q) \ Myea(Fp) x G(A})/ K,
Kp

where M,..q is the reduced special fiber of the Rapoport-Zink space M associated to
(G, b(9), {u})-
Remark 6.3. In [33] 3.3, in fact one considers the set

S(G,8) = Im I,(Q) \ X,(9) x X?(9)/K?,
Kp

where Xp,(¢) and XP(¢p) are certain sets canonically associated to ¢, such that (cf. Lemma
3.53.4 of [33]) B

Xp(¢) = XG(b) = Mred(Fp)
and XP(¢) is a G(A?)—torsor.

Take a unramified Shimura datum of Hodge type (G1, X1), together with a central isogeny
Giler — G%7 such that it induces an isomorphism of the associated adjoint Shimura data
(G4, X ) ~ (G*, X?). Let

gf)l : Q — QSGl
be an admissible morphism of Galois gerbs. We note that

S(G1,¢1) = lim Iy, (Q) \ Mirea(Fp) x Gr(A%)/KY
KY

= 15, (Q) \ Mirea(F,) x G1(AD),

where My,¢q is the reduced special fiber of the Rapoport-Zink space M associated to
(G1g,: b(¢1), {m1 }).

Fix an admissible morphism ¢g : Q — &gaa. Consider
S@G¢0)= ] 5G9
[¢],099=¢0o
= ] lim 74(Q) \ Myea(Fp) x G(A})/KP.
[(ﬂ’qbad:(bo KP
By [33] Lemmas 3.7.2 and 3.7.4, there is an action of &/(Gz, ) on S(G, ¢o), together with
a of (Gz(p))—equivariant surjective map
¢+ S(G, ¢o) — m(G).

Let ¢g be such that x € S(G, ¢p) under the above bijection. For the identity class e € 7(G),
consider the fiber

S(G.d0)* = cg'(e).
Let (G1,X1) be a unramified Shimura datum of Hodge type as above. Similarly we have
S(G1, (Z)o) = H[¢1]7¢%d:¢0 S(Gl, (;51) and S(Gl, ¢0)+.



ON SOME GENERALIZED RAPOPORT-ZINK SPACES 43

Proposition 6.4. We have the following isomorphism of sets with o/ (Gz,, ) x (®)-action
S(G, ¢0) o [JZ/(GZ(p)) X S(Gl, ¢0)+]/JZ/(G12<p))O.
Proof. This follows from Corollary 3.8.12 of [33]. O

Now we come back to Rapoport-Zink spaces. If Kf/ C K is another open compact
subgroup of G (Afc), then we have the following commutative diagram

I, (Q) \ My x G1(A)/KY ——= I, (Q) \ My x G1(A?)/KY

l(alel 1911({’

§K1pKf/(G1’X1) §K1PKf (Gl’Xl)

with horizontal maps finite. Therefore, if we set

S(G1, 1) = lim Iy, (Q) \ My x G1(A%)/KY,
Kp

then we get
©1 =m0 g : S(G1,¢1) — Im Sk ger(G1, X1),
Ky K7
where both limits are taken in the category of formal schemes.

Lemma 6.5. Let §K1p(G1,X1) be the formal completion of Sk, ,(G1,X1) along its special
fiber. Then we have a canonical isomorphism of formal schemes

T&ﬂgKlpKf(Gle) = Sk, (G1, X1).
KY

Proof. This follows from the definition of inverse limit of formal schemes. O

We have thus ©; : §(G1, 1) — gKlp(Gl, X1). On the other hand, we have a surjective
map

Gy - SKlp(GLXl) — 7T<G1).
Consider the fiber over e of this map cg,, Sk, (G1, X1)" C Sk,,(G1,X1), and let §K1P(G1, Xp)*
be formal completion of Sk, (G1, X 1)T along its special fiber. Let
~ 9 + ~
OF : S(G1,¢1)" = (1'&“[@(@) \ My x Gl(Afc)/Kf> — Sk, (G, X1)*
KY

be the pullback of
@ G1,¢1 £_I¢1 \./\/ll XGl(Ap)/KpHSKIP(Gl,Xl)

under the inclusion SKIP(Gl, X))t — SKlp(Gl, X1). The morphism @f can be written as

Of =lim,, O, with

(£ @\ s x G (AR)/KT) T = 14, (@) \ My x G (A)/KY

+
lglK{) lQU({’

§K1pK{’(G1aX1)+ §K1pKf(G17X1)'
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Define formal schemes

S(Gre0) = [ S(Gie)*
[91],6¢%=¢0
- 11 @_ m I, (Q) \ My x Gl(A”)/Kp>
[¢1}7¢(11d:¢0 Kp
and R
S(G,00)= I UmIy(Q)\MxG(A})/KP.
[¢]7¢ad:¢0 K?

Proposition 6.6. In the above situation, we have
S(G.¢0) ~ [(Gy,,,) x S(G1,¢0) "]/ (Grz,,))°-
Proof. This is identical to the proof of Proposition [6.4] O

Let Z,, g» (resp. Zt ., ) be the image of ©, kv (resp. © This exists a geometric

é1,K7
structure on Zy, xr as follows. We can write

_ J
Z¢17Kf - U Z¢>1,Kf’
jEJK;f

le)

where Jyer is the Iy, (Q)-orbits of irreducible components of My x Gy (A%)/KP, and Zfb e

is the image of the irreducible components under ©, K? corresponding to j € J K- For each
jed KP there exists only finitely many 5’ € J KP such that

¢1,K" ﬂ 1,KP # 0.

Thus we get an induced geometric structure on Z; kP 38

+ gt
Z¢1,Kp o U Z¢1,Kp’
jeJKf
where Z7" , is the pullback of Zile to §K1pKf(G1,X1)+. When K7 varies, kv, 24, K7,

é1,K7
and Z+ 61, KP form inverse systems, and we set

1 + i 2t
Zy = 1]mZ¢17Kf, Z, = hmZm,Kf'
KP K?

1 1

Let Ji be the Iy, (Q)-orbits of irreducible components of My x Gy (A?). For any j € J, let

ZZH be the image of the irreducible components under ©1 corresponding to j, then we can

write
25 =] 7
JEN
and
J : J
Z¢1 @ Z¢19Kf7
K7

where Zdjn v s the image of the irreducible components corresponding to j under the
1
composition

My x Gi(AR) = My x Gy (AD)/KY — Spe, ser(Gr, X1).
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Similarly for Z{;. By the proof of Proposition 4.6.2 of [33], we have (®) x Z;(Qp) X
%(Glz(p))ld)l—equivariant bijection of sets (cf. Remark

Z4,(Fp) = S(Gr, 1), 25 (Fp) =~ S(G1,¢1)".
We have R R
[ (Gz,,) % SKlp(Gl,Xl)ﬂ/,;z{(GlZ(p))o = Sk, (G, X).
Recall that we fixed an admissible morphism ¢ : Q — Gaa. Set
+  _ +
ZG17¢0 - H Z¢1'
[#1],09%=¢0
épplying the functor [« (G, ) x —]/# (G1z,)° to Z&rh%, we get a subset Z(@ (= ZG’,?O) C
Sk, = Sk,(G,X). Let Z4, kr be the image of Zy, under the projection Sk, — Sk =
S k,kr- Then we can define the formal completion of S K along Zy gpr as [43] chapter 6 and
[31] Definition 4.6.
Theorem 6.7. We have an isomorphism of formal schemes over W
0: ] L@\MxGAN)/K? = Sz, .
[¢]7¢ad:¢0
Proof. If (G, X) is of Hodge type, this is proved in [31] Theorem 4.7. Assume that we are
in the general case. By the above notation, it suffices to prove that
[T lim (@) \ M x G(AR)/KP ~ [/ (Gz,,)) x S(G1,¢0) "]/ (Giz,))°-
6], 02 d=g9 KF
This is given by Proposition O
Remark 6.8. Denote by G‘fd(Z(p))+’Id’1 the kernel of the composite of
G Zpy) T = GIUZy)) = H(Q, Z1) = HY(Q, 1)),
where Zy is the center of G1. Similarly we define G*(Z,))t'¢. Following [33] 4.3.4, we
define
o (Ghz,))'r = GL(AY)/21(Zw) ™ *Gr(Z )4 121 2ir) G (Zp)) Tl
o — - ad ,
A Gz, ) = GU(Zy)) L) 21 (L)~ %G @)+ 1202y G (L)) P10
Similarly we define ;ZZ(GZ(p))I¢ and M(GZ@))I@O. The group M(Glz(p))IW acts on S(G1, ¢1),
cf. B3] Lemma 4.5.9. By construction, we have an %(Glz(m)lﬂh -equivariant map
Cay : S(G1,¢1) — F(Gl),
which is surjective since Gl(A?) (and thus d(GlZ(p))Lﬁl) acts transitively on w(G1). For
the identity class e € w(G1), consider the fiber
S(Gl, ¢1)+ = 051(6)
We have then S(G1, ¢o)t = H[(ﬁﬂ’(ﬁizd:(bo S(G1,¢1)". The stabilizer of S(G1,$1)" C S(G1, ¢1)
18
(G, € A (Grg,) )"
We have
S(G1,¢1) = [ (Grz,)) ' x S(G1,61) 7]/ (Ghg,,)) o0 °.
Take any ¢1 : Q — B¢, such that

¢ = 9% Q = Graa.
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It should be possible that the strategy of [33] 3.8 enables us to prove the following refinement
of Proposition
S(G,¢) = ['Q{(Glz(p)yqﬁl x S(Gh, ¢1)+]/JZ{(GZ@))I¢7O'

Once this is done, the same argument as above shows that there is an isomorphism of formal
schemes over W

I5(Q) \ M x G(A})/K? < Sk )z, 0
where Zy kv is the image under the projection §K,, — §Kpr of
Zy:= [ (Crz,) " x 2} ]/ (Gy,,))'*°.

Remark 6.9. In the special cases of Shimura curves associated to quaternion algebras over
totally real field, see [3] for a construction of the uniformization by Drinfeld spaces.

Let Shx(¢0) = (§;\</Z¢O’Kp)‘}]d. We get a natural morphism of adic spaces Shx (¢g) —
Sh%d. For any open compact subgroup K}, C G(Qp), let Shiskr(do) — Sh‘}%KF be the
pullback of Shg (¢o) — Sh%¢ under the projection Sh%i,j kv — Shi 1. We get the following
corollary from Theorem [6.7]

Corollary 6.10. With the above motations, © induces an isomorphism of rigid analytic
spaces over E

O: J] 1@\ Mg x GAR)/KP 5 Shiy ko (o).
[¢],9%¢=¢0o

We fix a morphism
7 : M — Sh¥
coming from the above uniformization isomorphism, which factors through the good reduc-
tion locus
(Sk)pd c Shye.
By [36], the universal Q, — G-local system Lx on Sh}¢ is de Rham (which can be proved
directly for the abelian type case; moreover we assume that G = G¢ for the notation G¢
there). When restricting to (S K);‘;d, it is even crystalline. Recall by Proposition we
have the universal Q,-G-local system V on M. We have the natural local-global compati-
bility identity
V=n"Lk.
Recall that in [52] we have proved that there exists a perfectoid space Sk» over C, such
that
- d
SKp ~ @ShK;Kp(G, X)a .
Ky
On the other hand, by Proposition we get a perfectoid space Mo, over C, such that

Moo ~ I&HMK{O
Kp

From the above Corollary we get
Corollary 6.11. There ezists a perfectoid space Skv(¢o) together with a map Skr(po) —
Skpr, such that

Sir(d0)~ [  1s(Q)\ Moo x G(A})/EP.
[¢],¢2¢=¢0



ON SOME GENERALIZED RAPOPORT-ZINK SPACES 47

Remark 6.12. For the b € B(G, 1) we fized in this subsection, we can define the Newton
stratum 8%, C Skr, which is a locally closed subspace, cf. [5] subsection 4.3 or [53]. Then
we have Skr(¢o) — Sk» factors through S}’{p. In the case that b is basic, we will have
Skr(¢o) = S}’(p, cf. the next subsection. In the general case, the image of Skv(¢o) — S}’(p
18 a strict subsapce, and to under understand the whole stratum S}’{p, one should introduce
Igusa varieties, cf. [5] section 4 in the PEL case and [53] in the general case.

6.4. The case of basic strata. Let the notations be as in the last subsection. Assume
now that b = by is the basic element. Note that there is only one ¢ such that b(¢) = by.

Theorem 6.13. In the setting above, Zy, gr = gl;(. Thus we have an isomorphism
0 : I4(Q) \ M x G(A})/KP 5 Sk o .

/S
Proof. In the case that (G, X) is of Hodge type, this is proved in Theorem 4.11 of [31]. The
general case follows from this by the construction. O

Corresponding to Corollaries [6.10] and [6.11] we have

Corollary 6.14. For any open compact subgroup Kz/> C G(Qp), © induces an isomorphism
of rigid analytic spaces over L

0 : 14(Q) \ Mg x G(A})/KP = Shi o,
and an isomorphism of perfectoid spaces over C,

0 : 14(Q) \ Moo x G(A})/KP = Sip.

7. APPLICATION TO MODULI SPACES OF K3 SURFACES IN MIXED CHARACTERISTIC

In this section, we discuss some applications to K3 surfaces and their moduli in mixed
characteristic. We will first construct and study the Ekedahl-Oort stratification for the
special fibers of our Rapoport-Zink spaces, motivated by the study of Artin invariants of K3
surfaces. Then we will discuss some examples of Rapoport-Zink spaces of orthogonal type.
Finally, we will apply our constructions of Rapoport-Zink uniformization and Ekedahl-Oort
stratifications to moduli spaces of K3 surfaces. Again, we assume p > 2 in this section.

7.1. Ekedahl-Oort stratification for special fibers of Rapoport-Zink spaces. Let
(G, [b], {1} be a unramified local Shimura datum of abelian type, and M = M(G, b, 1)
be the associated Rapoport-Zink space by Theorem . Consider the special fiber M over

p of M and the associated reduced special fiber M,..q of ./\/l which is by definition the
reduced subscheme of M.

Let G-Zip" be the stack of G-zips of type p (we refer to [38] and [60] 1.2 for some basic
facts about G-zips and the stack G-Zip*). The underling set of geometric points of G-Zip"
is in canonical bijection with a subset YW of the Weyl group W of G (for a fixed choice
of maximal torus). More precisely, W is the set of minimal length elements in the coset
Wy \ W, where J is the type of the parabolic subgroup of G attached to {u} in the usual
way, and W; is the associated subgroup of W. There is a partial order < on YW making
which into a topological space, cf. [60] 3.1 or [59] 5.3. In fact we have isomorphisms of
topological spaces

|G-ZipH| ~ 7
cf. [60] Theorem 3.1.5 and [59] Proposition 5.12.
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Proposition 7.1. There exists a formally smooth morphism
¢: M — G-ZipH,
which induces a decomposition
M= ][ M.
weW

where My, C M s locally closed ( could be empty).
Proof. Assume first that (G, [b], {u}) is of Hodge type. Then the universal p-divisible group

with crystalline Tate tensors on M gives rise to a G-zip of type u: the arguments of [60]
Theorem 2.4.1 apply to our local setting. Thus we get a morphism

¢: M — G-Zip".

This morphism is J,(Qp)-invariant. To show this morphism is formally smooth, one can
apply the arguments for the proof of [60] Theorem 3.1.2.

Now assume that (G, [b], {i}) is unramified of abelian type. Take any unramified local
Shimura datum of Hodge type (G, [b1], {1}) such that G4, [b%9], {u®?}) ~ (G$4, [b97], {ud?}).
Let M and M be the special fibers of Rapoport-Zink spaces attached to (G, [b], {u}) and
(Gq, [b1], {u1}) respectively. By construction after fixing zo € m1(G1)" we have M= MT
Consider the restriction ;' : ﬂf — G1-Zip"'. As|G1-Zip"'| ~ |G-Zip#|, we get a formally
smooth morphism (T : M — G-Zip". Applying the J,(Qp) action, we get a formally
smooth J;(Qy)-invariant morphism

¢: M — G-ZipH,
as desired. g
We note that in the EL/PEL cases, Wedhorn and Lau proved the above proposition pre-
viously, cf. [58] and [38] Example 9.21. If (G, [b],{u}) — (GLy,, [t], {¢'}) is an embedding

of unramified local Shimura data of Hodge type, by construction, we have the commutative
diagram

M(G, b, )= M(GLy, V', i)

lCG \LCGLTL

G-Ziph—— GL,,-Zip" .

Let 7W? ¢ /W be the subset defined by the image of ¢. For each w € TWP, we call M,
the Ekedahl-Oort stratum of M attached to w. We get a stratification

we Wb
We also get an induced stratification
Mred = H va
weI Wb
where M,, C M4 is a locally closed subscheme of M4, which we call the Ekedahl-Oort

stratum of M4 associated to w. For a locally closed subscheme X C Y, we write X cl the
(Zariski) closure of X in Y. By construction, we have the closure relations

My= I Me. Mi= ] M.

w’ <w,w’ €I Wb w’ <w,w’ €I Wb
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In [21] 1.4 (and [20] 3.4), there exists a decomposition

X5 (b) = 1T Xk.0(b),
weAdm(u)NEW

where in our case K = G(Z,) is the fixed hyperspecial group. Here are some explanations
about the notations: W is the Iwahori Weyl group of G, Adm(u) C W is the (finite) subset
defined as (2.1) of [25], ¥W C W is the set of minimal length elements in the coset Wy \ W,

with Wi C W the subgroup corresponding to K = G(Z,), our fixed hyperspecial group.
On the other hand, if we set Adm® (1) = W Adm(u) Wy, then we have

Adm(p) N EW = Adm™ () n Kw =5 Iw,
where the first equality follows from [25] Theorem 6.10, and the second bijection is induced

by the projection W — W by [57] Theorem 1.1 (1). Moreover, this bijection preserves the

order =g , on KW (cf. [25] 6.5 and [20] 3.3) and the order < on /W. Therefore we can
rewrite the above decomposition in the hyperspecial level as

XF0) = [] Xrw).

welW
Recall that by Theorem [4.6] we have

M~ X6 w).

Proposition 7.2. For w € 'W the strata Xg .,(b) # 0 if and only if w € 7WP, in which
case we have

M~ X o (b).

In particular, M., is of dimension dim X .,(b) if it is non-empty.

Proof. 1t suffices to prove meﬁ ~ Xk (b) for any w € W. We first consider the Hodge
type case. By the proof of [61] Proposition 3.11, we have two morphism f : ﬂperf —
Xf(b) and g : Xf(b) — Werf, inverse to each other, by using Dieudonné theory over
perfect rings. It suffices to check that f (resp. f~!) induces f : Mfumﬂf — Xk w(b) (resp.
1 X)) — Mpwerf). This follows from [57] Theorem 1.1 (see loc. cit. section 7 for
some discussion in the global setting of Shimura varieties), see also 5.1 of [20] and Remark
6.5 (2) of [25].

Now assume that (G, [b], {u}) is unramified of abelian type. Take any unramified local
Shimura datum of Hodge type (G1, [b1], {1 }) such that G4, [b%9], {u2}) ~ (G$4, [b99], {ud?}).
Let M and M; be the special fibers of Rapoport-Zink spaces attached to (G, [b], {u})
and (G1,[b1], {p1}) respectively. As always after fixing a point zop € m1(G1)" we have
M = MIL The restriction of f induces an isomorphism f; : ﬂffﬁf ~ Xk, (b))
Applying the J;,(Q,) action, we get

M o X ()
as desired. O

Remark 7.3. (1) The closure relation for the decomposition Xﬁ;(b) = [Hyperw Xrw(b)
can be proved similarly as [25] Theorem 6.15. See also [21] 4.11 and [20] section 7.

(2) If we were working in the equal characteristic setting, then a formula for dim X ,,(b)
is known by combining [20] Theorem 4.1.2 (2) and [24] Theorem 6.1. In our mized
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characteristic setting, it should be possible to prove the same formula holds by ap-
plying [25] Proposition 6.20 and the Witt vector affine flag varieties in 1.4 of [61]
and the method in 3.1 of loc. cit..

7.2. Rapoport-Zink spaces for a fully Hodge-Newton decomposable pair (G, {u}).
We discuss some special Rapoport-Zink spaces in this subsection. Our motivation here is
the observation that the list in the classification of [21] Theorem 2.5 (a posteriori) lies in
our class of local abelian type (for minuscule ).

Let G be a connected reductive group over Q,, and {y} be a conjugacy class of cocharacters
w: Gy — G@p. Recall the following definition

Definition 7.4 (|21I] Definition 2.1). The pair (G,{u}) (or the set B(G,u)) is called fully
Hodge-Newton decomposable if for any non basic ['] € B(G, u), the pair ([V'],{u}) is Hodge-
Newton decomposable, i.e. there exists a proper Levi subgroup G 2 M O My such that
HA4(bq ::;ﬂ in‘ﬂl(ﬂf)F.

Recall My = M,,, is the Levi subgroup of G defined as the centralizer of vy,. In [21]
Theorem 2.5 there is a purely group theoretical classification of all the fully Hodge-Newton
decomposable pairs (G, {u}), and in loc. cit. Theorem 2.3 one can find further equivalent
conditions ( those in (2)-(6) of the statement of the theorem) for (G, {x}) being fully Hodge-
Newton decomposable.

Theorem 7.5. Let (G, [b],{n}) be a unramified local Shimura datum of abelian type, M,cq
be the reduced Rapoport-Zink space associated to (G, [b], {u}). Suppose that (G,{u}) is fully
Hodge-Newton decomposable. Then we have
(1) if [b] is non basic, then dim M,..q = 0;
(2) if [b] is basic, then the perfection of each Ekedahl-Oort stratum M, C M is a
disjoint union of perfections of classical Deligne-Lusztig varieties;
(3) for eachw € 'W, there exists a unique [V'] € B(G, ) such that My, # (), where M.,
is an Ekedahl-Oort stratum of M!_,, the reduced Rapoport-Zink space associated to

red’

(G, [V'],{p}). In particular we get a decomposition
w= I ‘.
[b'€B(G.p)

Conversely, if (G,{u}) is part of any unramified local Shimura datum of abelian type with
one of the above three conditions holds, then (G,{u}) is fully Hodge-Newton decomposable.

Proof. This follows from [21] Theorem 2.3 (in the hyperspecial level case), our Theorem
and Proposition O

Remark 7.6. Let (G, [b],{u}) be a unramified local Shimura datum of abelian type, with
M associated the special fiber of the associated Rapoport-Zink space. Suppose that [b] is non
basic and the pair (b,{p}) is Hodge-Newton decomposable. With our Theorem at hand,
we refer the reader to [21] Theorems 3.16 and 6.2 (in the unramified case) to write down

an isomorphism between Mperf and M(M,byr, par)P"7, the perfection of the special fiber
of some Rapoport-Zink space of abelian type attached to a Levi subgroup M of G.

7.3. Rapoport-Zink spaces of orthogonal type. In this and the next subsection, we
will discuss an example of Rapoport-Zink space for a fully Hodge-Newton decomposable
pair (G, {11}).

Let (L,Q) be a non degenerate self dual quadratic lattice of rank n + 2 over Z,, where
n > 1 is an integer. We write (V,Q) as the induced quadratic space over Q,. Let G =
SO(V,@Q),G1 = GSpin(V, Q) be the associated special orthogonal and spinor similitudes
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groups over Q,. By our assumption that L is self dual, both G and G are unramified. We
have an exact sequence of groups

1-G, -G —>G—1,

which is in fact defined over Z,.

As in [26] subsection 4.2, there is a natural choice of minuscule cocharacter p; of Gj.
Take any [b1] € B(G1,p1). Then (Gi,[b1],{p1}) is a local Shimura datum of Hodge type.
We get a local Shimura datum (G, [b], {u}) by taking [b], {u} as the image of [b1], {1} under
the map G7 — G. By construction (G, [b], {i}) is unramified of abelian type. We get the
associated Rapoport-Zink spaces M; = M(Gl,bl,m) and M = M(G, b, ). The pairs
(G1,{p1}) and (G, {pu}) are fully Hodge-Newton decomposable by Theorem 2.5 of [21] (or
one can compute the sets B(G1, 1) and B(G, ) directly to see they are fully Hodge-Newton
decomposable).

Let Xo be the p-divisible group over F, with (covariant) Dieudonné module (C(V) &
W, bio), where C(V) is the Clifford algebra attached to V. Fix any 6 € C(V)* with 6* =6
where * is the canonical involution on C(V)). Then 9s(c1,c2) = Tr(cidch) is a perfect
symplectic form on C(V). Here Tr : C(V) — Z, is the reduced trace map. The perfect
symplectic form 5 on C(V) induces a principal polarization \g : Xo — X. There exists
a finite collection tensors (Sq)aer which includes 15, such that G; € GL(C(V)) is cut out
by (Sa)acr- Recall that M has the following moduli interpretation. For any R € Nilpy,
Mi(R) = {(X7 (ta)aer, P)}/ =, where

e X is a p-divisible group on SpecR,
e (ta)acr is a collection of cystalline Tate tensors of X,
e p: Xo®R/J = X ® R/J is a quasi-isogeny which sends s, ® 1 to t, for a € I,
where J is some ideal of definition of R,
such that the following condition holds:
the R-scheme

Isom((]D)(X)R, (to), Fil*(D(X)R)), (A ® R, (50 ® 1), Fil*A @ R))
that classifies the isomorphisms between locally free sheaves D(X)r and A ® R on SpecR
preserving the tensors and the filtrations is a P,; ® R-torsor.

The exact sequence 1 — G,, — G; — G — 1 induces a long exact sequence (cf. [2]
Lemma 1.5)

1= m(Gp)' = 1 (G = m(G) — HYT, m1(Gp)) — - -
We have the following isomorphisms
11(G)t = 71(Gpy) =~ Xu(G,,) ~ Z.
Since G¢¢" = Spin(V) is simply connected and we have the exact sequence
1 — Spin(V) — GSpin(V) — G,, — 1,

we get ([2] 1.6)

(G ~ 71 (G)t ~ Z.
On the other hand, since

1 — pe — Spin(V) = SO(V) —» 1

is exact, we get

m(G) = pa(-1) = Z/22.
Lemma 7.7. We have 71(G)' ~ Z/27 and the map m1(G1)" — m(G)' is surjective.
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Proof. As jiz C Gy, and I acts trivially on the later, we get m1(G)!' = pa(—=1)1' = pa(—1) =
Z/2Z. For the second assertion, note that

7T1(G1)F/27T1(G1)F =7/27 C Im(m(Gl)F — 7T1(G)F).
Thus the image is m (G)F. O
Corollary 7.8. We have an isomorphism of formal schemes M ~ Ml/pz.

Proof. By the above lemma 71 (G1)' — m1(G)F is surjective. Thus M ~ M, /p% as the proof
of (1) of Proposition O

As the pairs (G1, {p1}) and (G, {u}) are fully Hodge-Newton decomposable, by Theorem
[7.5] we get
Corollary 7.9. Assume that [bi] (and hence [b]) is non basic. Then we have dim M,..q =
dim ered =0

7.4. Ekedahl-Oort and Howard-Pappas stratifications for basic Rapoport-Zink
spaces of orthogonal type. Let the notations be as in the previous subsection. Now
assume that [b;] (thus [b]) is basic.

In [26], Howard and Pappas introduced a stratiﬁcationﬂ for the reduced special fiber
ered of Ml:

ered = H M(1)A7
A
where A runs through the set of vertex lattices. By definition (cf. [26] section 5), a vertex
A lattice is a Zp-lattice in V]jb , such that
pAC AV CAcCVP

Here L = W(E,)Q, ® = bo is the Frobenius, VLCI) admits a quadratic form induced from V7,
so that this quadratic space Vg’ has the same dimension and determinant as V', but has
Hasse invariant -1. Associated to a vertex, we have the type

t(A) :=dim A/AY,

which is an even integer, and 2 < t(A) < ty40, Where

n+1, n odd,
tmae = 4N +2, n even, detV ;é (—1)%,
n, n even, detV =(—1)2.

Recall that we have the inclusion
V¥ C End(Xo)g,

so each vertex lattice A C VLCI> can be viewed as a set of self quasi-isogenies of X;. For each
vertex lattice A, the associated Howard-Pappas stratum

M?A C ered
is the locus (X, (ta), p) where
poAYopC End(X)
and this does not hold for any smaller vertex lattice A’ C A. Let Mjy C Mypeq be its
Zariski closure. In [26] 4.3.3 and 6.4.1, Howard and Pappas proved that there exists a
decomposition ‘
ered = H gj)v
JEZ

SIn [26] 6.5 it is called the Bruhat-Tits stratification, and our M7, is denoted as BT there.
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such that each ng ) is a connected component of My,.q. Accordingly, we get a decompo-
sition for each stratum )
J 70
= H MR-

JEZL
By [26] Theorem 6.5.6, each connected stratum MEJA)O is isomorphic to a Deligne-Lusztig
variety Xp(w) for the group SO(Aw /Ay,).
As
M ~ /\>l1/pZ ~ M(O)HM(l),

we get an induced Howard-Pappas stratification for M,..q

Mred = H M?\
A

In fact, in [26] sections 5 and 6 Howard and Pappas studied the geometric structures of
Miyea by passing to the quotient space Myeq = Mired /p” first. _ _
Recall that W = W(F,), L = Wg. Following [26], we can describe the sets Mq(Fp), M (Fp)
and M$ (F,) in terms of special lattices of V, as follows. By definition ([26] Definition 5.2.1)
a special lattice £ C Vp, is a self-dual W-lattice such that
(L+D.(L))/L ~W/pW,
where @, (L) is the W-submodule generated by ®(L£). By Proposition 6.2.2 of [26], we have
a bijection B
Meq(Fp) ~ {special lattices £ C V7. }.
By loc. cit. 5.3.1 and Theorem 6.3.1 we have bijections
M (F,) ~ {Lagrangians £ C Q : dim(L + ®(L)) = d + 1}
~ {special lattices L C Vi, : Aj;y C L C Ay}
= {special lattices L C V, : A(L) C A},
where Q = Ay /Ay, A(L) = (LO)® d = "X and £ = £ 4 (L) + -+ + ®9(L). Under
the above description, we have the bijection
MS (F,) =~ {special lattices £ C Vi, : LD = Ay}
= {special lattices L C Vg, : A(L) = A}.
In fact the above descriptions are true for any finitely generated field extension k'|F, (cf.
[26]).
Let G1-Zip"' be the stack of GG1-zips of type u1. The universal p-divisible group with
crystalline Tate tensors on M defines a morphism

C : Ml — Gl—Zipm.

The underling set of geometric points of G1-Zip”* is in canonical bijection with the subset
JW of the Weyl group of G;. In fact we have isomorphisms of topological spaces

|G1-Zip" | ~ |G-Zip*| ~ W

Let “W? ¢ /W be the subset defined by the image of (. For each w € YW?, recall we have
the Ekedahl-Oort stratum of Mj,.q associated to w:

le = C_l(w)red-
We get the Ekedahl-Oort stratification
ered = H M1w~

weI WP
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We get also the induced Ekedahl-Oort stratification for M,..q4.
Let m > 1 be such that 2m =n + 1 if n is odd, and 2m = n + 2 if n is even. Then there
is a bijection (cf. [60] subsection 4.4)

~ 0,1,---,2m—1 =2m—1 odd
JVV_> { s Ly , 41 }7 / n m (e}
{0,1,--- m—=2m—1m—1m,--- ,2m—2}, n=2m—2 even
induced by the length function w ~— ¢(w), where we use the symbols m — 1", m — 1 to

distinguish the two elements with the same length m — 1. Under the above bijection, the
subset WP C W can be described as

{m,---,2m — 1}, n=2m—1 odd,
WP 5 S m, - 2m - 2, n=2m—2 even, detV =(—1)2,
{m—-1,m-1,m,--- ,2m —2}, n=2m—2 even, detV#(—l)%.

For each 7 # m — 1’ on the right hand side, we denote the corresponding element of the left

hand side as w;. The element corresponding to m — 1’ will be denoted by w/, ;.

We can describe the map i — w; in more details. Assume first that n is odd. The simple
reflections are

{si:(i,i+1)(2m+1—i,2m—|—2—i), 1<i<m-—1
Sm = (m,m+2), i =m,
and we have
w,_{sw-sz', 0<i<m
L St St SmSmet - Sam—is M+ 1<i<2m—1.
Now assume that n is even. The simple reflections are
{si:(i,i+1)(2m—i,2m—|—1—i), 1<i<m-1
Sm=(m—-1m+1)(mm+2), i=m,
and we have

. S1 S84, OSZSm
e 81 SmSm-2""S2m-1—i, Mm+1<1<2m —2,
and
W, | =81 Sm_25m.

Let V = Ly ®Fp be the quadratic space over Fp. For each w; € YW we will attach to it

an orthogonal F-zip (also called a SO(V)-zip) as follows. Fix a basis e1, ..., ep42 of L such
that the quadratic form @ has the form x12y,49+22Zpn11 4+ +TmTm2 +J:,2n+1 (cf. [60] the
proof of Proposition 4.4.1). By abuse of notation we still denote by eq, ..., e,12 the induced

basis of (V, Q). For each w € YW, let M,, be the orthogonal F-zip (V,Q, C*, D,, vs) where

e C* is the descending filtration V' DO (eg,e3,...,en42) D (ens2) D 0, denoted by
cC'>0l'oC?o B,
e D, is the ascending filtration 0 C (w(e1)) C (w(e1),w(ez),...,w(epy1)) C V, de-
noted by Dy C D1 C Dy C Dsg,
e ¢, is the collections of isomorphisms ¢g : (C0/CV)P) 5 Dy ¢ : (CT/C?)P) 5
Dy/D1, 2 (C?/C¥)P) 5 Dy /Dy,
We remark that the above construction is not the standard isomorphism /W =~ |G — Zip*| of
Pink-Wedhorn-Ziegler (for example as in Theorem 3.1.5 of [60]): the standard association is
the twist w + M, of ours, where wy is the maximal length element of 7WW. In particular
l(wow) =n — L(w).
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Theorem 7.10. Fach stratum M1y, is some union of Howard-Pappas strata of Mireq.
Proof. By the methods of [26], it suffices to prove the following assertion first. O
Corollary 7.11. Fach stratum M., is some union of Howard-Pappas strata of Myeq.

Proof. We first prove the equalities for the sets of k-points, where k is an algebraically closed
field of characteristic p. This follows from [26] Theorem 6.5.6 and [20] Corollary 4.1.3.
Indeed, by [26] Theorem 6.5.6, we have an isomorphism

MG ~ Xp(wh) [ Xp(w),

where Xp(wt) and Xp(w™) are the Deligne-Lusztig varieties associated to the elements
wt and w™ of Wy, the Weyl group of SO(Q), where as before & = Ay /Ay, As in [20]
6.5.4, wt are Coxeter elements. Write w(A) = w™, and consider it as an element in W
under the inclusion Wq < W. Then by [20] Corollary 4.1.3, we have

My(k)y=J[ Mik).
Aw(A)=w

To prove the identities on the level of schemes, we argue as in the proof of Corollary 4.10
of [55]. That is, it suffices to show that M9 is open and closed in M,,. This follows from
the facts that MY is open in My, Mp N M,, = MY, and the above identities on the level
of points.

O

Consider the case k = F,. For any vertex lattice A and any point z € M} (F,), we
have the associated special lattice £,. Reduction modulo p, we get an orthogonal F-zip
M,,, which we write it as My,w, attached to wow, € JWP for some w, € WP, Then by
definition z € My, . By the above corollary, we have the equality

d—1=l(wywy)

where d = @ The following corollaries are coarser versions of Theorem and Corollary
However, they are more explicit in terms of types.

Corollary 7.12. (1) If n is odd, or n is even with det(V) = (—1)2, then we have the
following identity

lei = H ?A'

(a) if m<i<2m-—1,
Miw, = H 1A-
A(A)=2(n—it1)
(b) ifi=m—1,
lem,l Hle’ = H MiA'

m—1
At(A)=2m

Corollary 7.13. (1) If n is odd, or n is even with det(V) = (=1)2, then we have the
following identity

My, = 1T M3.
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(a) if m<i<2m—1,

My, = 1T M3.
At(A)=2(n—i+1)

(b) ifi=m—1,
Mwm—l Mw;n—l = H M?\

At(A)=2m

7.5. Moduli spaces of polarized K3 surfaces with level structures and the integral
Kuga-Satake map. In this and the next subsection, we will turn to moduli spaces of
polarized K3 surfaces, with the involved Shimura varieties, cf. [37] sections 2 and 4, [45]
section 6.

Let U be the hyperbolic lattice over Z of rank 2, and Fg be the positive quadratic lattice
associated to the Dynkin diagram of type Es. Set N = U®3 @ EP?, which is a self-dual
lattice. Let d > 1 be an integer. Choose a basis e, f for the first copy of U in N and set

Lg= (e —df)* c N.

This is a quadratic lattice over Z of discriminant 2d and rank 21 (in [45] it is denoted by
Log ). Let Vg = Lq® Q and L] C Vg be the dual lattice. Set

G = SO(Vy),

which is isomorphic to the special orthogonal group over Q of signature (2,19). Let K C
G(Ay) be an open compact subgroup which stabilizes L a7 and acts trivially on LY/Lg.
Such compact opens are called admissible. We fix a prime p > 2 such that p { d from now
on. Then as L is self dual at p, the local reductive group G, is unramified. Let K, = G(Z,)
be the hyperspecial group. We only consider open compact subgroups K C GG (A‘;) which is
contained in the discriminant kernel of L 4.7 with finite index. In particular, K = K,KP? is
admissible, cf. [45] 5.3. For the reductive group G, we have the associated Shimura varieties
Shg, xc», which are defined over Q. By [32], there exists an integral smooth canonical model
Sk, ke of Shg kv over Zy.

Let Mag (resp. Mj,) be the moduli spaces of K3 surfaces f : X — S together with a
primitive polarization { (resp. quasi-polarization) of degree 2d over Z, (in [37] section 2,
these spaces are denoted by M3, and Myg respectively). These are Deligne-Mumford stacks
of finite type over Z,. The natural map My; — M3, is an open immersion. Moreover, Mag
is separated and smooth of dimension 19 over Z,, cf. [45] Theorem 4.3.3, Proposition 4.3.11
and [37] Proposition 2.2.

Let (f : X — Mayg, &) be the universal object over Myy. For any prime ¢, we consider
the second relative étale cohomology H, £2 of X over Myy. This is a lisse Zy-sheaf of rank
22 equipped with a perfect symmetric Poincaré pairing (,) : H? x H? — Zy(—2). The
(-adic Chern class chy(§) of ¢ is a global section of the Tate twist HZ(1) that satisfies
(chy(&),che(€)) = 2d. The product

w =]
l

is a lisse Z—Sheaf, and the Chern classes of £ can be put together to get the Chern class
ch5(€) in H% (1). Recall that we have the quadratic lattice N of rank 22 over Z.

Definition 7.14. Consider the étale sheaf over Moy whose sections over any scheme T —
Msy are given by

IT)={n:NoZ>3 H%T(l) isometries, withn(e — df) = ch5 ()}



ON SOME GENERALIZED RAPOPORT-ZINK SPACES 57

Let K = K,KP C KLip be an admissible open compact subgroup. Then I admits a natural

action by the constant sheaf of groups K. A section n € HY(T,I/K) is called a K-level
structure over T' (in [45] 5.3 it is called a full K-level structure).

Let Mg i (resp. M3, ;) be the relative moduli problem over Mag (resp. M3,;) which
parametrizes K-level structures. For K? (thus K) small enough, these are smooth algebraic
spaces. Moreover, the maps

Moy — Mag, M3, — M3y,

are finite étale. For another admissible K/ = Kpr/ C K = K,K?, we have natural finite
étale projections

*
My, v = Mag e, M, 0 = Moy

*
2d,K
as algebraic spaces over Myg, M7, respectively. When K 7' is a normal subgroup of KP, these

projections are Galois with Galois group K?/K v,
For any prime ¢, we have the primitive cohomology sheaf

Py = (che(€))" C H.

Let H?B and H(%R be the second relative Betti and de Rham cohomology respectively of the
universal K3 surface X — M5, ;- . We have also the primitive cohomology sheaves

Pp = (chp(&))t € Hp,  Pup = (chyr(&))* C Hip.

Consider 1\~/I§d7 Kk — M3, g, the two-fold finite étale cover parameterizing isometric trivial-

izations det(Ly) ® Zo — det(P) of the determinant of the primitive 2-adic cohomology
of the universal quasi-polarized K3 surface. We can identify M3, with the the space

of isometric trivializations det(Ly) — det(Pg) of the determinant of the primitive Betti
cohomology. There is a Hodge-de Rham filtration F*P;r on Pygr, and we have a natu-
ral isometric trivialization 7 : disc(Ly) = disc(Pg) and the the tautological trivialization
B : det(Lg) ~ det(Pg). The tuple (Pg, F*Pyg,n, ) gives rise to a natural period map

M3, k.c — Shrc,

cf. [37] Propositions 4.2 and 3.3. There is a section map Mag xc C M3, oo — 1\~/[§ch,
whose composition with the above period map gives us the Kuga-Satake period map

Lc - Mgd’}g@ — ShK@.

It follows from [46] Theorem 3.9.1, this map is defined over Q. Therefore we get the map
over
LQ, - M2d,K,Qp — ShK@p.

As Sk is the integral canonical model of Shg, by extension property of Sk, the Kuga-Satake
map extends to a map over Z,

L M2d,K — SK.
Theorem 7.15 ([37] Corollary 5.15). The integral Kuga-Satake period map
L: MgdyK — SK

1S an open iMmmersion.
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When K? C KP is another open compact subgroup, we note that the following diagram
is cartesian:

Mog x;, — Sk,

L

Moy x — Sk

As a corollary, we see that for K? small enough, Myg g is a scheme.

7.6. Newton and Ekedahl-Oort stratifications of the moduli spaces of K3 sur-
faces. In the rest of this section we will work over W. As before we simply denote by the
same notation for an object base changed to W. Let Mgd, Kk be the special fiber of My, g,
which can be viewed as an open subspace of the special fiber Si of Sk by Theorem
For the good reduction of Shimura varieties of abelian type, in [54] we have introduced the
Newton and Ekedahl-Oort stratifications for the special fibers. In subsection [6.2] we have
seen the Newton stratification. In the cases of GSpin and SO Shimura varieties, we can
compare the Newton and Ekedahl-Oort stratifications as follows. These are in the list of
Shimura varieties of coxeter type studied in [20] (comp. [21]).

Theorem 7.16 ([54]). Assume that n is odd.
(1) We have
= - —
Sk= ]I Sk, Sk= ][] Sk
beB(G,u) weI W

with each stratum in the two stratifications non empty.
(2) Let by be the unique basic element in B(G, ). We have

e for b+ by, there exists a unique wy, € W such that ?I% =Sy
7b p—
o for by, Si = [ermro Sk

Note that the subset 7W? = {w} for any b # bg. When n is even, we have a similar
statement that each Newton stratum is a disjoint union of some Ekedahl-Oort strata. In
fact these statements are just the global analogue of Theorem in the setting of Shimura
varieties of abelian type, cf. [54] section 7 (see also [2I] section 6, where the authors there
assume that the axioms of [20] are verified).

We return to the case n = 19. Consider the Kuga-Satake map

l: M2d’K — Sk,

which is an open immersion by Theorem The above stratifications of Sk in turn
induce stratifications of Mag i

~ b ~F W
Mag i = H Myg i, Mg = H My, s
beB(G,u) weIW

b . b
where My, 5 and M;Ud7 , are the pullbacks of the corresponding strata Sy, and Sy under
the open immersion 7 : MQd, x — Sk. We have the similar relation

. . b
e for b # by, there exists a unique wy € /W such that Moy k= M;UCZK,

~—=b . . ~=b = . 1.
e for by, M22l, & = Hwemwoo M;UCL k- We will also write MQ(CJL K as Mgz 5 to indicate
that it is the supersingular locus of Mgd, K-

We will investigate these stratifications in some more classical terms.
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7.6.1. Newton stratification vs. height stratification. Let X be a K3 surface over a field k
of characteristic p. Consider the functor on local Artinian k-algebras with residue field k
defined by

X/k : (Art/k) — (Abelian groups)
R+ ker (HA(X x SpecR, Gy,) — HA(X,Gy)).

It is pro-representable by a one-dimensional formal group ]/3\1‘(X ), the so called formal Brauer
group. The height h of this formal Brauer group of the K3 surface X satisfies 1 < h < 10
or h = oo.

The Newton slopes of the F-crystal H2, (X/W) are equal to (1 — +,1,1+ ). Thus the

set B(G, u1) is in bijection with the set {1,...,10,00}. The basic element by corresponds to
oo. We write B(G, u) = {b1,...,b10,b11 = bo}. The Newton stratification of Mag g is just

the classical height stratification. By [12], for each b € B(G, i), the Newton stratum Mgd’ K
is non empty.

7.6.2. Ekedahl-Oort stratification vs. Artin invariant stratification. Thanks to the recent
proof of the Tate conjecture for K3 surfaces, we know that for a K3 surface X over E,,
h = oo if and only if its Picard rank p = 22, i.e. it is Artin supersingular if and only if
it is Shioda supersingular, cf. [35] Theorem 2.3. We simply call X supersingular in this
case. Let X be a supersingular K3 surface over Fp, then the discriminant of its Néron-Severi
lattice is equal to

_pQUo(X )
for some integer 1 < o¢(X) < 10. The integer oo(X) is called the Artin invariant of X.
By [12], we have an explicit description of the set YW as

{’U)l, ) U)Q()},

with w; corresponds to b; for 1 < ¢ < 10, and for 11 < ¢ < 20 the elements w; are basic.
The K3 surfaces in the stratum M;ﬁ x have Artin invariant 21 — ¢. In particular, we note
that the index ¢ in the description of the set YW in subsection (where 0 < <19 in our
case) is shifted to i + 1 here. By [12], for each w € /W, the Ekedahl-Oort stratum My, j
is non empty. 7

7.7. Rapoport-Zink type uniformization and Artin invariants. In this final subsec-
tion, we make the link between Rapoport-Zink spaces and moduli spaces of K3 surfaces.

Let M?d, K and S Kk be the formal completion of Myg x and Sk along their special fibers
respectively. Then the integral Kuga-Satake period map in Theorem induces an open
immersion of formal schemes

T MQd,K — §K~
Let 79 € Myg i be any point in the special fiber MgdK of Mag i, and « = (zg) be its
image. Let b € B(G, ) be the Newton point associated to « and consider the corresponding

formal Rapoport-Zink space M = M, for the group SO(V). The choice of the point z
determines a morphism of formal schemes
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Denote by N the pullback of M under 7 I\A/IM K — S k. In other words, we get a cartesian
diagram

N—M

T

o~ z\ ~
Mg x — Sk,

with the upper horizontal map N — M is an open immersion. By the moduli description
of M, we get the following description of N: for any R € Nilp{j”,

N(R) = {(X, (ta),p) € M(R)}
where

o (X, (ta),p) € Mi(R), with X = KS(Y)[p™], where Y is a K3 surface over R,
KS(Y) is the Kuga-Satake abelian scheme attached to Y (cf. Theorem and
[37] section 5),
e p is a pZ-orbit of p.
In particular, N is stable under the action of Jp(Qp) on M.

Remark 7.17. By construction, we have an open subspace N C Ml, such that for any
R e Nilpyy?,
Ni(R) ={(X, (ta), p)}
with (X, (ta),p) € M1(R) as above. The space N is given by N' = Ni/p%. On the level of
affine Deligne-Lusztig varieties, we get subsets
Nrea(Fp) C Miyea(Fp) = Xf(b), Nired(Fp) C Mipea(Fy) = X;?ll(bﬁ-

In the case that b is basic, it will be interesting to describe the above subsets by special
lattices as in [26] section 5.

We can apply the Rapoport-Zink uniformization theorem for Sk to deduce a similar
uniformization for Myg k. Recall that as dimV = 21 is odd, the group G = SO(V) is
adjoint.

Corollary 7.18. Let Jy be the pullback of Z4 kv under the open immersion T : MZd,K —
Sk. Then we have the following identity
M2d,K/J¢ = HN/Fjv
Jel
where I'; C J,(Qp) are some discrete subgroups (constructed as usual from the uniformiza-
tion theorem of the lastsection). If moreover b = by is basic, then Jy = M;ZK which is the
supersingular locus in Mag g, and the above disjoint union is finite.

Remark 7.19. If the open compact subgroup K = K,K? C G(Ay) (K, = G(Zy)) is the
image of some open compact subgroup K1 = K1,K7 C Gi1(Ay) (K1p = G1(Zy)), then it
will be much easier to prove the uniformization theorem for Si: one can work directly
on the finite level and take a finite étale quotient from the corresponding Rapoport-Zink
uniformization for Gy, cf. [62] section 4 for example.

Assume that b = by is basic. Let N,.q be the reduced special fiber of N. Then the
Howard-Pappas stratification of the reduced special fiber M.y of M induces a similar
stratification of the open subspace N,.qq:

Nred = HNX’
A
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where N C N;¢q is the pullback of the stratum M3 C M,..4. For each w; € JWP | consider
the corresponding Ekedahl-Oort stratum

Mwi - H M?\a Nwi = H NA
A(A)=2(21—3) A(A)=2(21—3)

For each 11 < i < 20, the image of N, under the uniformization morphism gives us the
corresponding Ekedahl-Oort stratum M;ﬁ x 1n supersingular locus.
For (X,¢) € M;;K(Fp), consider

L = (cheris(§)) C Haio(X/W).
This is a special lattice in the sense of Definition 5.2.1 of [26]. Then we can apply Proposition
5.2.2 of loc. cit. to produce a vertex lattice A(L). For any integer r > 0 define

LY =L+ &L+ +D7(L).
Then there is a unique integer 1 < d < 10 such that

L=L0c M c...crd=pl+l)

The vertex lattice A(L) is defined by

It has type
t(A(L)) =2d

and A(L)Y = L£2. The following corollary follows from the above uniformization and Corol-

lary

Corollary 7.20. Under the uniformization identity
M;Z,K = HNred/Fj>
Jel
the Ekedahl-Oort stratum MI;C}K for each 11 < i < 20 is the image of Ny,. In particular,
if x € M2d «(Fp), let X, be the associated supersingular K3 surface over F,, then we have
the zdentzty between the Artin invariant oo(X,) and the type t(Ay)

oo(xs) = B2

where Ay = A(Ly) is the vertex lattice attached to the special lattice associated to (X, &)
as above.

APPENDIX A. ADMISSIBILITY AND WEAKLY ADMISSIBILITY IN THE BASIC ORTHOGONAL
CASE

In this appendix, we investigate the p-adic period domains .# f“dL” and .F# fwau in the case
b is basic and G = SO. All the following materials are taken from [I7]. We thank Fargues

sincerely for kindly allowing us to include it here.
1

Let V' = Q} equipped with the quadratic form @ with matrix . Let
1
G = SO(V, Q) and consider the minuscule cocharacter p : Gy, — Gg given by pu(z) =
D
diag(z,1,---,1,271). Then the basic class in B(G,u) is [b] = [1] and thus J, = G. One
checks easily that any non basic Newton polygon has a non trivial contact point with the
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Hodge polygon, ie. (G,{u}) is fully Hodge-Newton decomposable in the sense of [21]
Definition 2.1.

For simplicity, we write #{ = F{g, as the p-adic flag variety, #(* = F ¢4y and
Fedm — Z‘gf;”. We first describe the weakly admissible locus #/¢%%. The associated
isocrystal is @Z with Frobenius o®". The sub-isocrystals are in bijection with the sub Q,-

vector space of V. Let C be a complete and algebraically closed extension of @p. Then we
have
FLU(C,O¢) = {Lagrangian lines D C Vi}.

It follows that F#¢ C ]P’%p is the quadric defined by the equation Y ' | x;zp—it1 = 0. Let

,[3%] @ (0) C V be a Lagrangian subspace with associated parabolic subgroup P C G. For
any line D € .Z((C,O¢) we attach to it the following Hodge filtration

0CFil' =D c Fil’ = D+ c Fil ™' = 1.
Then
FU1'NC,0c) =4{D € FLC,0c)| DN W¢ =0, Vtotally isotropic subspace W C V'}.
Therefore, we get

Proposition A.1.

F = F0\ G(Q,)S™,
where S is the adic space associated to the Schubert variety attached to P (S is defined
by the locus Tnjpr = =Tp =0 inside F1).

Now we look at the admissible locus .#¢%¥™ (cf. [41] Definition A.6). We have the
following

Theorem A.2. F/(wm — Fpwa,

Proof. For any point x € F{("*(C,O¢), let & be the associated modification of O% such
that the relative position of (Bj,)" and ELOO is bounded by p. Here X is the Fargues-
Fontaine curve over QQ, associated to the perfectoid field C”, and 0o = z¢ € X is the point
defined by C'. We need to show this weakly admissible modification is in fact an admissible
modification (i.e. &, is semi-stable of slope 0).
By [41] Proposition A. 9, we have either
1

1
Ep OX(;) OOr o OX(—;)

for some integer 1 < r < [3], or

Er >~ O%.
The second case is admissible. We have to show this is always the case. Suppose that we are
in the first case: we will find a contradiction. The perfect quadratic form on &, is such that
for any A € Q, we have (£2*)* = £27*, where £) C &, is a step in the Harder-Narasimhan
filtration of &,. Therefore, we get

1
Ox(

r

1

=0k e oy

and O X(%) is totally isotropic. It follows that there exists a unique sub vector bundle

ZF C O% which is a locally direct summand, such that the modification &;|x\ oo = (’)}‘(\Oo

induces a modification

1 ~
OX(;)|X\OO — y’X\oo
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In particular, .# is totally isotropic in O%. Such a modification is necessarily of one of the
following types:

(1) (-1,0,...,0),

(2) (0,...,0,1),

(3) (0,...,0).
Indeed, it suffices to look at for all the sub Byg-vector spaces E of B, the relative positions
of the lattices E N (B;R)” and E N (te1,ea,...,en1,t ‘e,), where e, ..., e, is a basis of
V. As OY% is semi-stable, we have deg(.#) < 0. By looking at the above three cases, we get
that .Z is a degree —1 modification of Ox (). Thus,

r
F ~ O,
that is # = W @ Ox for some totally isotropic subspace W C Qp of dimension r. This

implies that our modification &[x\a = OSL(\ ~ 1s not weakly admissible. Thus we get a
contradiction. OJ
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