CELL DECOMPOSITION OF SOME UNITARY GROUP RAPOPORT-ZINK SPACES

XU SHEN

Let p > 2 be a fixed prime, $\mathbb{Q}_{p^2}|\mathbb{Q}_p$ be a quadratic unramified extension. Let (V, \langle, \rangle) be a hermitian space over \mathbb{Q}_{p^2} , and $G = GU(V, \langle, \rangle)$ be the associated unitary similitude group over \mathbb{Q}_p . Denote by $n = \dim_{\mathbb{Q}_{p^2}} V$, and assume there exists an autodual \mathbb{Z}_{p^2} -lattice in V. This implies that G is unramified. Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p . Then after fixing a basis of V we have an isomorphism $G_{\overline{\mathbb{Q}}_p} \simeq GL_{n\overline{\mathbb{Q}}_p} \times \mathbb{G}_{m\overline{\mathbb{Q}}_p}$. Consider the cocharacter $\mu : \mathbb{G}_{m\overline{\mathbb{Q}}_p} \to G_{\overline{\mathbb{Q}}_p}$, such that under the above isomorphism it is given by $z \mapsto (diag(z, \cdots, z, 1), z)$. Let $b = b_0 \in B(G, \mu)$ (the Kottwitz set) be the basic element, J_b be the associated inner form of G. We remark that if n is odd, then $J_b \simeq G$, and if n is even J_b is up to isomorphism the unique non quasi-split inner form of G.

Let $W = W(\overline{\mathbb{F}}_p), L = W_{\mathbb{Q}}$. Consider the associated Rapoport-Zink space $\widehat{\mathcal{M}}$ over SpfW: for any $S \in \operatorname{Nilp}W, \widehat{\mathcal{M}}(S) = \{(H, \iota, \lambda, \rho)\}/\simeq$, where H is a p-divisible group over S, ι is a \mathbb{Z}_{p^2} -action on H satisfying the determinant condition corresponding to μ, λ is a polarization which is compatible with ι , and $\rho : \mathbb{H}_{\overline{S}} \to H_{\overline{S}}$ is a quasi-isogeny (cf. [8] for more details). Here \mathbb{H} is the standard unitary p-divisible group over $\overline{\mathbb{F}}_p$. We consider the Berkovich analytic generic fiber $\mathcal{M} = \widehat{\mathcal{M}}^{an}$ over L. As usual, there is in fact a tower of L-analytic spaces $(\mathcal{M}_K)_{K \subset G(\mathbb{Z}_p)}$, where the index set is the open compact subgroups K of $G(\mathbb{Z}_p)$ and $\mathcal{M}_{G(\mathbb{Z}_p)} = \mathcal{M}$. $J_b(\mathbb{Q}_p)$ acts naturally on each space \mathcal{M}_K by modifying the quasi-isogeny, and moreover, $G(\mathbb{Q}_p)$ acts on the tower $(\mathcal{M}_K)_{K \subset G(\mathbb{Z}_p)}$ by Hecke correspondences. Note we have the decompositions (cf. [8])

$$\widehat{\mathcal{M}} = \coprod_{i \in \mathbb{Z}, \, ni \, even} \widehat{\mathcal{M}}^i, \mathcal{M} = \coprod_{i \in \mathbb{Z}, \, ni \, even} \mathcal{M}^i.$$

To state the theorem, we should fix some data. If n is even, fix an element $g_1 \in J_b(\mathbb{Q}_p)$ such that it induces an isomorphism $\mathcal{M}^0 \to \mathcal{M}^1$. We fix also a $\Lambda \in \mathcal{B}(J_b^{der}, \mathbb{Q}_p)$, the set of vertices of the Bruhat-Tits building of the derived subgroup J_b^{der} of J_b , such that $t(\Lambda)$ is maximal (cf. [8] for the precise meaning of the function t). Let $Stab(\Lambda)$ be the stabilizer of Λ in $J_b^{der}(\mathbb{Q}_p)$.

Theorem 1. There exists a relatively compact analytic domain $\mathcal{D} \subset \mathcal{M}^0$, such that we have a locally finite covering

$$\mathcal{M} = \bigcup_{\substack{T \in G(\mathbb{Z}_p) \setminus G(\mathbb{Q}_p) / G(\mathbb{Z}_p) \\ g \in J_b^{der}(\mathbb{Q}_p) / Stab(\Lambda)}} T.g\mathcal{D}$$

XU SHEN

if n is odd, and

$$\mathcal{M} = \bigcup_{\substack{T \in G(\mathbb{Z}_p) \setminus G(\mathbb{Q}_p) / G(\mathbb{Z}_p) \\ g \in J_b^{der}(\mathbb{Q}_p) / Stab(\Lambda) \\ j = 0, 1}} T.gg_1^j \mathcal{D}$$

if n is even.

The proof of this theorem is based some ideas developed in [3] and [4]. In particular we use the theory of Harder-Narasimhan filtration of finite flat group schemes to study the *p*-analytic geometry of \mathcal{M} . The fundamental inequality between Harder-Narasimhan polygon and Newton polygon (Théorème 21 of [4]) can be easily generalized to our case. But we have to modify Fargues's algorithm in [4] a little to produce totally isotropic finite flat group schemes to be compatible with Hecke correspondences. The analytic domain \mathcal{D} is defined as following. Let \mathcal{M}^{ss} be the semi-stable locus in \mathcal{M} (cf. Définition 4 of [4]). Consider

$$\mathcal{C} = \{x \in \mathcal{M} | \exists \text{ some finite extension } K'|\mathcal{H}(x), \text{ and a finite flat } \mathbb{Z}_{p^2} - \text{subgroup} \\ \text{ scheme } G \subset H_x[p] \text{ over } O_{K'}, \text{ such that } H_x/G \text{ is semi-stable over } O_{K'} \}.$$

Then one can prove that \mathcal{C} is a closed analytic domain of \mathcal{M} . Note $\mathcal{M}^{ss} \subset \mathcal{C}$. Let Λ be as above, and $\mathcal{M}_{\Lambda} \subset \mathcal{M}^{0}_{red}$ be the associated projective subvariety of the reduced special fiber of $\widehat{\mathcal{M}}^{0}$ defined by Vollaard-Wedhorn in [8]. Consider the specialization map $sp : \mathcal{M}^{0} \to \mathcal{M}^{0}_{red}$, then $sp^{-1}(\mathcal{M}_{\Lambda})$ is an open subspace of \mathcal{M}^{0} . The analytic domain \mathcal{D} is defined by $\mathcal{D} := \mathcal{C} \bigcap sp^{-1}(\mathcal{M}_{\Lambda})$. The relatively compactness of \mathcal{D} is proved by introducing some special unitary Shimura varieties (cf. [1] and [8]), and the fact that their Harder-Narasimhan stratification and Newton stratification coincide (cf. [6] and [7]). We remark that our methods of proof of the above theorem in some other places are also different from that of [4].

This theorem has many useful applications. First, we have corresponding coverings of the associated *p*-adic period domain and Shimura varieties. Second, we have the locally finite coverings for all Rapoport-Zink spaces \mathcal{M}_K for any open compact subgroup $K \subset G(\mathbb{Z}_p)$. By studying the action of regular semi-simple elliptic elements on the coverings of the later, we can verify easily that the conditions of Theorem 3.13 in [5] hold. Thus we can establish a Lefschetz trace formula for some sufficiently large subspaces. For more details, see section 11 of [7]. This formula should be useful for proving the realization of local Jacquet-Langlands correspondence in our case.

References

- O. Bültel, T. Wedhorn, Congruence relations for Shimura varieties associated to some unitary groups, J. Inst. Math. Jussieu 5 (2006), 229–261.
- [2] L. Fargues, L'isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques, in L'isomorphisme entre les tours de Lubin-Tate et de Drinfeld, volume 262 of Progr. Math. Birkhäuser, Basel, 2008, 1–325.
- [3] L. Fargues, La filtration de Harder-Narasimhan des schémas en groupes finis et plats, Journal für die reine und angewandte Mathematik 645 (2010), 1–39.
- [4] L. Fargues, Théorie de la réduction pour les groupes p-divisibles, prépublications, http://www-irma.u-strasbg.fr/~fargues/Prepublications.html
- [5] Y. Mieda, Lefschetz trace formula for open adic spaces, Preprint, arXiv:1101.1720.
- [6] X. Shen, On the Hodge-Newton filtration for p-divisible groups with additional structures, Preprint, arXiv:1203.2541.

3

- [7] X. Shen, Cell decomposition of some unitary group Rapoport-Zink spaces, Preprint, arXiv:1203.2537.
- [8] I. Vollaard, T. Wedhorn, The supersingular locus of the Shimura variety of GU(1,n-1) II, Invent. Math. 184 (2011), 591–627.