Binyong Sun (孙斌勇研究员)

Office:N809

Tel:010-82541734

Emailsun@math.ac.cn

Research Field:Representation theory of Lie groups

Address: Morningside Center of Mathematics, No. 55, Zhongguancun East Road, Beijing, 100190, China

 

Main Achievements

1.和合作者一起最终完全解决了theta对应理论中两个最基本猜想:Howe对偶猜想和Kudla-Rallis守恒律猜想。

2.和合作者一起在实数域情形证明了典型群重数一猜想,以及相关的唯一性定理。

3.构造了上同调表示的局部周期,证明了Kazhdan-Mazur非零假设。

4.和合作者一起确定了实典型群的幂单表示。

5.给出了上同调导出表示的矩阵元的积分表达式。

6.发展了实Nash群的结构理论。

 

Papers:

[1] J.Ma, B. Sun, C.-B. Zhu, Unipotent representations of real classical groups, arXiv:1712.05552

[2] B. Sun, Cohomologically induced distinguished representations and cohomological test vectors, arXiv:1111.2636

[3] W. T. Gan, B. Sun, The Howe duality conjecture: quaternionic case. Representation theory, number theory, and invariant theory, 175–192, Progr. Math., 323, Birkh?user/Springer, Cham, 2017

[4] B. Sun, The nonvanishing hypothesis at infinity for Rankin-Selberg convolutions. J. Amer. Math. Soc. 30 (2017), no. 1, 1–25

[5] B. Sun and C.-B. Zhu, Conservation relations for local theta correspondence, J. Amer. Math. Soc. 28 (2015), no. 4, 939-983.

[6] B. Sun, Almost linear Nash groups. Chin. Ann. Math. Ser. B 36 (2015), no. 3, 355-400.

[7] B. Sun, Multiplicity one theorems for Fourier-Jacobi models. Amer. J. Math. 134 (2012), no. 6, 1655–1678

[8] B. Sun and C.-B.Zhu, Multiplicity one theorems: the Archimedean case. Ann. of Math. (2) 175 (2012), no. 1, 23–44.

[9] J.-S. Li, B. Sun and Y. Tian, The multiplicity one conjecture for local theta correspondences, Invent. Math., 184 (2011), 117-124.

[10] B. Sun, Matrix coefficients of cohomologically induced representations, Compositio. Math. 143 (2007), no.1, 201-221.