Binyong Sun (孙斌勇研究员)
Office:N809
Tel:010-82541734
Email:sun@math.ac.cn
Research Field:Representation theory of Lie groups
Address: Morningside Center of Mathematics, No. 55, Zhongguancun East Road, Beijing, 100190, China
1.和合作者一起最终完全解决了theta对应理论中两个最基本猜想:Howe对偶猜想和Kudla-Rallis守恒律猜想。
2.和合作者一起在实数域情形证明了典型群重数一猜想,以及相关的唯一性定理。
3.构造了上同调表示的局部周期,证明了Kazhdan-Mazur非零假设。
4.和合作者一起确定了实典型群的幂单表示。
5.给出了上同调导出表示的矩阵元的积分表达式。
6.发展了实Nash群的结构理论。
Papers:
[1] J.Ma, B. Sun, C.-B. Zhu, Unipotent representations of real classical groups, arXiv:1712.05552
[2] B. Sun, Cohomologically induced distinguished representations and cohomological test vectors, arXiv:1111.2636
[3] W. T. Gan, B. Sun, The Howe duality conjecture: quaternionic case. Representation theory, number theory, and invariant theory, 175–192, Progr. Math., 323, Birkh?user/Springer, Cham, 2017
[4] B. Sun, The nonvanishing hypothesis at infinity for Rankin-Selberg convolutions. J. Amer. Math. Soc. 30 (2017), no. 1, 1–25
[5] B. Sun and C.-B. Zhu, Conservation relations for local theta correspondence, J. Amer. Math. Soc. 28 (2015), no. 4, 939-983.
[6] B. Sun, Almost linear Nash groups. Chin. Ann. Math. Ser. B 36 (2015), no. 3, 355-400.
[7] B. Sun, Multiplicity one theorems for Fourier-Jacobi models. Amer. J. Math. 134 (2012), no. 6, 1655–1678
[8] B. Sun and C.-B.Zhu, Multiplicity one theorems: the Archimedean case. Ann. of Math. (2) 175 (2012), no. 1, 23–44.
[9] J.-S. Li, B. Sun and Y. Tian, The multiplicity one conjecture for local theta correspondences, Invent. Math., 184 (2011), 117-124.
[10] B. Sun, Matrix coefficients of cohomologically induced representations, Compositio. Math. 143 (2007), no.1, 201-221.