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Abstract. In the p-adic local Langlands correspondence for GL2(Qp), the
following theorem of Berger and Breuil has played an important role: the
locally algebraic representations of GL2(Qp) associated to crystabelline Galois
representations admit a unique unitary completion. In this note, we give a
new proof of the weaker statement that the locally algebraic representations
admit at most one unitary completion and such a completion is automatically
admissible. Our proof is purely representation theoretic, involving neither
(ϕ,Γ)-module techniques nor global methods. When F is a finite extension of
Qp, we also get a simpler proof of a theorem of Vignéras for the existence of
integral structures for (locally algebraic) special series and for (smooth) tamely
ramified principal series.
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1. Introduction

Let p be a prime number and F be a finite extension of Qp with OF the ring of
integers. We also fixe a finite extension L of Qp with ring of integers OL, which
will serve as the coefficient field and be sufficiently large (in particular L contains
F ).

Let Π be a locally algebraic representation of GLn(F ) defined over L. It is a cen-
tral and difficult question that whether there exist integral structures in Π. Here,
by an integral structure we mean an OL-submodule L of Π which is stable under
GLn(F ), spans Π over L and contains no L-line (see for example [15, Def. 1.1]).
This is equivalent to asking whether Π admits non-zero p-adic unitary completion.
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The first non-trivial examples were found by C. Breuil [5] in the case of GL2(Qp).
One obvious necessary condition for the existence of integral structures is that the
central character of Π is unitary. In fact, Emerton’s theory of Jacquet functor on
locally analytic representations (in particular applicable to locally algebraic repre-
sentations) provides other necessary conditions and, conjecturally, these conditions
together with the unitarity of the central character are also sufficient. This is re-
lated to the so-called Breuil-Schneider conjecture, see [12], which turns out to be
very difficult to prove in general. Here is a list of works surrounding this problem:1

(1) G = GL2(Qp), see the work of Colmez [9] and Berger-Breuil [3] (both of
the proofs use Fontaine’s theory of (ϕ,Γ)-modules).

(2) G = GL2(F ), see the work of De Ieso [10], Vignéras [23], Kazhdan-De Shalit
[15], and Assaf-Kazhdan-De Shalit [1]; the proofs are local and representa-
tion theoretic.

(3) G = GLn(F ), see the work of Sorensen [19] and Caraiani-Emerton-Geraghty-
Gee-Paškūnas-Shin [7] (both of the proofs use global methods).

Note that, when F 6= Qp, the integral structures constructed in (2) do not give
admissible unitary completions.

In this note, we (re)prove the following results (see below for the notation), firstly
proved by Vignéras for (i) and (ii), and by Berger-Breuil for (iii).

Theorem 1.1. (Theorems 2.8, 2.10, 3.8) Let G = GL2(F ) and Π = Πsm ⊗ Πalg

be an irreducible locally algebraic L-representation of G. Assume that the central
character of Π is unitary.

(i) Assume Πsm is a special series representation. Then Π admits an integral
structure.

(ii) Assume Π = Πsm = IndGBχ1 ⊗ χ2 is irreducible principal series with χ1, χ2

tamely ramified characters such that χ1|O×F 6= χ2|O×F . Then Π admits an
integral structure if and only if 1 ≤ |χ1($F )| ≤ |q−1|.

(iii) Assume F = Qp and Πsm = IndGBχ1 ⊗ χ2 (irreducible). If Π admits an in-
tegral structure, say L, then L is necessarily finitely generated as an OL[G]-
module and is residually of finite length. Moreover, the universal unitary
completion of Π is irreducible.

Remark 1.2. Note that in [8, §5], another proof of (iii) is given, but under mild
restrictions. The proof, although local, involves certain projective envelopes of
GL2(Zp)-representations. Our proof is elementary and simpler, using only basic
results on diagrams and a key observation found in [14, Prop. 4.1]. More inter-
estingly, our proof provides an interpretation of the p-adic Hodge coincidence that
there exists only one weakly admissible filtration with given jumps on the under-
lying Weil-Deligne representation attached to two-dimensional crystabelline Galois
representations of Gal(Qp/Qp); see §3.

Notations: Let G = GL2(F ) and K = GL2(OF ) and Z be the center of G. We
fix a uniformizer $F of OF and let q = |OF /$F |. Define the following subgroups

1The list may not be complete and we refer to the cited papers for the precise conditions imposed.
See also [20] for a nice exposition about this problem.
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of G (where m ≥ 1):

I :=

(
O×F OF

$FOF O×F

)
, Im :=

(
1 +$m

F OF $m−1
F OF

$m
F OF 1 +$m

F OF

)
,

Km :=

(
1 +$m

F OF $m
F OF

$m
F OF 1 +$m

F OF

)
.

Let R0 be the G-normalizer of K so that R0 = KZ, and R1 be the G-normalizer
of I so that R1 is generated by I and t :=

(
0 1
$F 0

)
as a group. One checks that

R0∩R1 = IZ. Let valF be the p-adic valuation on F normalized as valF ($F ) := 1.
We write O = OL and let k = kL be the residue field of O. Fix a uniformizer

$ = $L of O and let valL be the normalized p-adic valuation on L.
Let B be the upper Borel subgroup of G. Given two characters χ1, χ2 : F× →

L×, we consider χ1 ⊗ χ2 as a character of B sending
(
a b
c d

)
to χ1(a)χ2(d) and let

IndGBχ1 ⊗ χ2 denote the principal series representation of G.
Finally, if H is a group, A is a commutative ring, W is an A[H]-module and

W1 ⊂W is any subset, we let 〈H.W1〉 denote the sub-A[H]-module of W generated
by W1.

2. Diagrams

Let A be a topological commutative ring, typically A = L,O, k. By a diagram D
(for GL2) of (continuous) A-modules, we mean the data (D0, D1, r), whereD0 (resp.
D1) is an A-module with a continuous action of R0 (resp. R1), and r : D1 → D0

is an IZ-equivariant continuous homomorphism of A-modules. Diagrams of A-
modules with obvious morphisms form an abelian category. Attached to a diagram,
we can define a G-equivariant homomorphism ∂ : c-IndGR1

D1 ⊗ δ−1 → c-IndGR0
D0

(see [6, §9] or [17, §3]), where δ−1 denotes the (continuous) character of R1 (to
A) of order 2 sending g to (−1)valF (det g), and ∂ is the G-equivariant morphism
determined by

(1) ∂([Id, x]) = [Id, r(x)]− [t, r(t−1 · x)] ∈ c-IndGR0
D0, ∀x ∈ D1 ⊗ δ−1.

The kernel and cokernel of ∂ are denoted by H1(D) and H0(D) respectively, so that
we have an exact sequence

0→ H1(D)→ c-IndGR1
D1 ⊗ δ−1

∂→ c-IndGR0
D0 → H0(D)→ 0.

By definition, a short exact sequence of diagrams of A-modules 0 → D′ → D →
D′′ → 0 gives a long exact sequence

(2) 0→ H1(D′)→ H1(D)→ H1(D′′)→ H0(D′)→ H0(D)→ H0(D′′)→ 0.

Note that, if π is a continuous A-representation of G, we get trivially a diagram
K(π) := (π|R0 , π|R1 , Id). One has that H0(K(π)) ∼= π by [16, Lem. 5.4.2] and
H1(K(π)) = 0 by Lemma 2.1 below.

2.1. Mod p diagrams with trivial H0. In this subsection, we only consider
diagrams of k-modules. Since k is equipped with the discrete topology, the action
of Ri on Di is smooth. We first recall the following result.

Lemma 2.1. Let D be a diagram of k-modules such that D0 is an admissible R0-
representation and r is injective. Then H0(D) 6= 0 and H1(D) = 0.

Proof. The first assertion is [16, Lem. 5.3.2] and the second is [23, Lem. 1.3]. �
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Proposition 2.2. Let D = (D0, D1, r) be a diagram of k-modules, not necessarily
finite dimensional, such that H0(D) = 0. Then D has a filtration by sub-diagrams
such that each graded piece has one of the following three forms (Q0, Q1, r):

(I) Q1 = k · v, Q0 = 0, r = 0;
(II) Q1 = k · v ⊕ k · t(v) where IZ acts on v via some character ψ, Q0

∼=
IndR0

IZ (k · t(v)), r|k·v = 0 and r|k·t(v) is the natural map;
(III) Q1 = k · v ⊕ k · t(v) where IZ acts on v via some character ψ, Q0 is a

quotient of IndR0

IZ (k · t(v)) such that dimkQ0 ≤ q (possibly 0), r|k·v = 0 and
r|k·t(v) is the natural map.

In particular, if D0 is of finite dimension, then dimkD0 ≤ dimkD1 · q+1
2 and the

equality holds if and only if only diagrams of type (II) appear as graded pieces of
the filtration.

Remark 2.3. Consider a diagram Q of type (III). Since IndR0

IZ (k ·t(v)) has dimen-
sion q+1, the condition dimkQ0 ≤ q is equivalent to demanding that Q0 is a proper
quotient of IndR0

IZ (k · t(v)). When F = Qp, this is again equivalent to demanding
that Q0 is irreducible or zero, since IndR0

IZψ has length 2 for any smooth character
ψ : IZ → k×.

Proof. Since H0(D) = 0, Lemma 2.1 implies that r is not injective. Choose a non-
zero vector v ∈

(
ker(r)

)I1 and write M = k · v. Since the order of I/I1 is prime to
p, we may choose v to be an eigenvector for I, i.e. M is stable under I. Consider
the sub-diagram Q := (Q0, Q1, rQ) of D defined by

Q1 = M + t(M), Q0 = 〈R0.r(t(M))〉, rQ = r|Q1
.

In particular, rQ = 0 on M . Remark that we do not guarantee that v and t(v) are
linearly independent over k; indeed Q0 could be zero and rQ be identically zero; in
this case Q is of type (I) in the statement. If v and t(v) are linearly independent
then dimkQ1 = 2. By Frobenius reciprocity, Q0 is a quotient of IndR0

IZ t(M) and
Q is of type (II) if Q0

∼= IndR0

IZ t(M), or equivalently dimkQ0 = q + 1, and of type
(III) otherwise. Note that r could be identically zero, hence Q0 = 0, in case of type
(III).

Since H0(D/Q) = 0 by (2), we can continue the above construction for D/Q and
in this way get a filtration of D by sub-diagrams whose graded pieces are one of the
three types (I)-(III). If D0 is of finite dimension, the filtration is also finite. The
last assertion follows from the corresponding dimension inequality for the graded
pieces Q. �

2.2. Naive diagrams. In this subsection, we classify diagrams of k-modules with
trivial H0 and H1.

Definition 2.4. Let D = (D0, D1, r) be a diagram of k-modules such that D0 and
D1 are both finite dimensional. We say that D satisfies the dimension relation if
there exists d ∈ Z≥0 such that

dimkD1 = 2d, dimkD0 = d(q + 1).

We give some examples of diagrams which satisfy the dimension relation. For an
absolutely irreducible k-representation σ of R0, λ ∈ k and χ : F× → k× a smooth
character, we recall the usual notation [4]:

π(σ, λ, χ) :=
(
c-IndGR0

σ/(T − λ)
)
⊗ χ ◦ det,
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where T ∈ EndG(c-IndGR0
σ) is the Hecke operator defined in [2].

Exemple 2.5. Let π = π(σ, λ, χ) for some σ, λ, χ as above and assume F = Qp if
λ = 0. Then the canonical diagram (see [13]) D(π) := (D0(π), D1(π), can) defined
by

D1(π) := πI1 , D0(π) := 〈R0.D1(π)〉 ⊂ π, can : D1(π) ↪→ D0(π)

satisfies the dimension relation. In fact, using results of [2] and [4] (when λ = 0
and F = Qp), one checks easily that dimkD1(π) = 2 and dimkD0(π) = q+1 (resp.
p+ 1 when λ = 0 in which case F = Qp).

Note that the canonical diagram D(Sp) (resp. D(1)) of the Steinberg repre-
sentation Sp (resp. the trivial representation 1) does not satisfy the dimension
relation (but D(Sp) ⊕ D(1) does). Another example of diagrams satisfying the
dimension relation is a diagram of type (II) in Proposition 2.2. We give it a name
for convenience.

Definition 2.6. A diagram D = (D0, D1, r) of k-modules is said to be naive if it
is of type (II) as in Proposition 2.2.

By definition, if D = (D0, D1, r) is a naive diagram, then dimkD1 = 2 and
dimkD0 = q + 1, hence D satisfies the dimension relation with d = 1 in Definition
2.4.

Lemma 2.7. (i) If D is a naive diagram, then H0(D) = H1(D) = 0.
(ii) Conversely, if D = (D0, D1, r) is a diagram of k-modules such that H0(D) =

H1(D) = 0, then D can be written as a successive extension of naive diagrams. In
particular, if D0 and D1 are finite dimensional, then D satisfies the dimension
relation.

Proof. (i) By definition of D, there exists some D+
1 ⊂ D1, a sub-IZ-representation,

such that
c-IndGR1

D1 ⊗ δ−1 ∼= c-IndGIZt(D
+
1 ) ∼= c-IndGR0

D0.

Moreover, one checks that if we identify both the source and the target with
c-IndGIZt(D

+
1 ), then ∂ is exactly the identity morphism. The result follows.

(ii) We may assume D is non-zero. First, by Proposition 2.2, D admits a sub-
diagram Q which is one of the three types (I)-(III). It suffices to show Q is naive.
Since H1(Q) ↪→ H1(D) and H1(D) = 0 by assumption, we have H1(Q) = 0.
Therefore, it suffices to show that diagrams of type (I) or (III) always have non-
zero H1. This is an easy exercise. �

2.3. Diagrams in characteristic 0. Let Πsm be a finite length smooth repre-
sentation of G on an L-vector space. Let c ≥ 1 be an integer such that Πsm is
generated by its Kc-invariants. To Πsm one may associate a diagram ΠIc

sm ↪→ ΠKc
sm .

As a special case of a theorem of Schneider-Stuhler [21, Thm. V.1], we know that

H0(ΠIc
sm ↪→ ΠKc

sm ) ∼= Πsm.

If moreover, Πalg is an irreducible algebraic L-representation of G, we set Π =
Πsm ⊗L Πalg and

X = (X1
r→ X0) := (ΠIc

sm ↪→ ΠKc
sm )⊗Πalg.

Then we have (see [23, Prop. 0.4])

(3) H0(X) ∼= Π.
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By a diagram of sub-O-lattices X in X, we mean X0 (resp. X1) is an O-lattice
inside X0 (resp. X1) and the morphism X1 → X0 is the restriction of r : X1 → X0.
We have a natural morphism H0(X ) → H0(X) ∼= Π which, however, need not be
injective.

Starting from a diagram of O-lattices X in X, Vignéras constructs in [23] a
sequence of diagrams of O-lattices (X (n))n≥0 with X0 = X (denoted by (zn(X ))n≥1
in loc. cit.). The construction is as follows: knowing X (n), we let inductively

– X (n+1)
1 = X (n)

0 + t(X (n)
0 );

– X (n+1)
0 = 〈R0.X (n+1)

1 〉.
By construction the natural map H0(X (n)) → H0(X (n+1)) is surjective for any
n. Moreover, by [23, Cor. 0.3], Π admits an integral structure if and only if the
sequence (X (n))n≥0 stabilizes.

2.4. Application I. Our first application of the techniques developed above is a
simple proof of the following result of Vignéras [23, Prop. 0.9]. Let St denote the
smooth Steinberg L-representation of G.

Theorem 2.8. Let Π = St⊗ SymkL2 ⊗ |det |k/2 for some integer k ≥ 0. Then Π
admits an integral structure.

Proof. In the notation of §2.3, we may take c = 1 so that

(4) X0 = StK1 ⊗ SymkL2 ⊗ | det |k/2, X1 = StI1 ⊗ SymkL2 ⊗ | det |k/2.

It is clear that the central character of Π is unitary. Since R1/Z is compact,
there exist open bounded R1-stable O-lattices inside X1. We fix such a lattice X1

and let X0 := 〈R0.X1〉, which is an open bounded O-lattice in X0. Let X (0) := X
and (X (n))n≥0 be the sequence of diagrams of O-modules obtained by applying
Vignéras’ algorithm. If the sequence is finite, we are done; so we assume it is
infinite in the rest of the proof. Since X1 is irreducible as an R1-representation2

and since the coefficient field L is discretely valued, there are only finitely many
homothety classes of R1-invariant O-lattices in X1. Therefore there exist integers
n < n′ such that X (n)

1 and X (n′)
1 lie in the same homothety class, that is, there

exists λ ∈ L× such that
X (n′)

1 = λX (n)
1 .

Since X (n)
0 (resp. X (n′)

0 ) is generated by X (n)
1 (resp. X (n′)

1 ), we get

X (n′) = λX (n).

Moreover, since X (n) ( X (n′), we have valL(λ) < 0.
To simplify the notation we assume X = X (n), i.e. n = 0. Since the natural

morphism H0(X ) → H0(λX ) is surjective, we have H0(λX/X ) = 0. Noting that
λX = $valL(λ)X , we deduce by dévissage that H0($−1X/X ) = 0, equivalently
H0(X ⊗O k) = 0. By Proposition 2.2, this implies that

dimk(X0 ⊗O k) ≤ dimk(X1 ⊗O k) · q + 1

2
,

but this is not the case (4) since dimk(Xi ⊗O k) = rankOXi = dimLXi for i ∈
{0, 1}. �

2Indeed, StI1 is 1-dimensional and SymkL2 is irreducible as an R1-representation
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Remark 2.9. It is known, at least in the case F = Qp and k ≥ 1, that the
universal unitary completion of St ⊗ SymkL2 ⊗ | det |k/2 is not admissible (in the
sense of Schneider-Teitelbaum [22]).

2.5. Application II. In this subsection, we reprove (under a mild extra condition)
a result of Vignéras [23, Thm. 0.10] about the existence of integral structures
in (smooth) tamely ramified principal series. Kazhdan and De Shalit have given
another proof using Kirillov models, see [15, Thm. 1.2]. Our proof is motivated by
Vignéras’, but has the advantage that the computation needed is very small.

Theorem 2.10. Let Π = IndGBχ1⊗χ2 be a smooth principal series L-representation
(i.e. the algebraic part is trivial). Assume that χ1, χ2 : F → L× are tamely ramified
and χ1|O×F 6= χ2|O×F . Then Π admits an integral structure if and only if χ1χ2 is
unitary and 1 ≤ |χ1($F ))| ≤ |q−1|.

Proof. The necessity is well-known, see [23] or [15, §3.1].
For the sufficiency, note that we may take

X0 = ΠK1 , X1 = ΠI1

in the notation of §2.3. In particular, we have dimLX1 = 2 and dimLX0 = q + 1.
Assume that Π does not admit an integral structure. Since X1 is irreducible as an
R1-representation by the assumption on χi, the proof of Theorem 2.8 produces a
diagram of O-modules X ⊂ X such that H0(X ⊗O k) = 0. Write D = X ⊗O k. The
assumption on χ1, χ2 also implies that D1 is irreducible as an R1-representation.
Since the dimension relation holds for D, Proposition 2.2 implies that D is a naive
diagram.

Again using the assumption χ1 6= χ2 on O×F , we have X1 = O·v⊕O· t(v), where
v is a non-zero vector on which I acts via (χ1 ⊗ χ2)|I , hence D1 = k · v ⊕ k · t(v).
Since D is naive, exactly one of v and t(v) is sent to zero via the natural morphism
r : D1 → D0. Without loss of generality, we assume that r(t(v)) = 0, i.e. t(v) ∈
$X0. Then we obtain

D0 = 〈R0.v〉 ∼= IndR0

IZ (k · v).

Using Nakayama’s lemma, this implies that X0 = IndR0

IZ (O · v) (here we use the
assumption that χ1, χ2 are tamely ramified). In particular, X0 has an O-basis
given by

v,
∑
λ∈Fq

[λ]i
(

[λ] 1
1 0

)
v, 0 ≤ i ≤ q − 1.

However, an easy computation shows that

t(v) = χ1($F )
∑
λ∈Fq

(
[λ] 1
1 0

)
v,

so t(v) ∈ $X0 if and only if |χ1($F )| < 1. The assumption on χ1($F ) then forces
that D is not a naive diagram, giving the desired contradiction. �

3. The case of GL2(Qp)

In this section, we assume F = Qp so that G = GL2(Qp). In [3], Berger and
Breuil proved that the locally algebraic representations associated to crystabelline
Galois representations admit a unique non-zero unitary completion. This fact, very



8 YONGQUAN HU

important in the p-adic local Langlands programme for GL2(Qp), corresponds to
the p-adic Hodge theoretic coincidence that there exists only one weakly admissible
filtration on the underlying Weil-Deligne representation with given jumps (deter-
mined by the Hodge-Tate weights of the Galois representation). This phenomenon
only happens for the group GL2(Qp) and crystabelline representations. In [8, §5],
the uniqueness part is reproved under mild conditions. We give a new proof here,
based on the techniques developed in last section. We will see that the coincidence
can be interpreted as a certain dimension relation.

3.1. Standard diagrams. Let π be a smooth k-representation of G of finite length
andD be a sub-diagram ofK(π). Note that r : D1 → D0 is injective andH1(D) = 0.

Definition 3.1. We say that D is a standard diagram3 of π if D0 is finite dimen-
sional and the natural morphism H0(D)→ π is an isomorphism.

The assumption G = GL2(Qp) guarantees the existence of standard diagrams D
of π; see [9, Chap. III]. When π is irreducible, we know that

D(π) = (D0(π), D1(π), can) := (〈R0.π
I1〉, πI1 , can)

is a standard diagram of π ([6, §10] or [9, Chap. III]). It is also called the canonical
diagram associated to π in [13], in the sense that D(π) is the smallest standard
diagram of π. We give a proof of this fact for completeness.

Lemma 3.2. Let π be an absolutely irreducible smooth k-representation of G with a
central character and D be a standard diagram of π. Then D contains the diagram
D(π).

Proof. We need to show the inclusions (i) D1(π) ⊆ D1 and (ii) D0(π) ⊆ D0. First
remark that it suffices to check either of them. In fact, since D0(π) = 〈R0.D1(π)〉
and D0 = 〈R0.D1〉, (ii) follows from (i); on the other hand, we have D1(π) =
D0(π) ∩ t(D0(π)) and D1 = D0 ∩ t(D0), so (i) follows from (ii). Note that, we
always have D1∩D1(π) 6= 0 (as DI1

1 6= 0) and D0∩D0(π) 6= 0 as we can check that
D0(π) ⊇ socKπ, where socKπ denotes the K-socle of π.

We refer to [9, §III.3] or [6, §10] for the explicit structure of D(π). If π is a
special series representation or a character, then D1(π) = πI1 is 1-dimensional,
hence is contained in D1 (since DI1

1 6= 0) and the proof is finished. If π is a ramified
principal series representation (see [6, §10,(iv)]), then D1(π) = πI1 is of the form
ψ ⊕ ψs with ψ 6= ψs. Since DI1

1 is non-zero and stable under t, we must have
D1(π) ⊆ D1 and the result follows again. Finally, in all other cases, that is π
is either supersingular or an unramified principal series representation, we have
D0(π)|K = socKπ ∼= σ1 ⊕ σ2 is the direct sum of two non-isomorphic irreducible
K-representations and D1(π) = σI11 ⊕ σ

I1
2 is two-dimensional (however, the eigen-

characters of I acting on σI1i are possibly equal). Since D1 ∩ πI1 6= 0, D1 contains
a non-zero vector v ∈ πI1 . If v ∈ σ1 (resp. v ∈ σ2), then by the explicit description
of D(π) (see [6, §10,(iii),(iv)]), we have t(v) ∈ σ2 (resp. t(v) ∈ σ1) so that the
inclusion (i) holds. If v /∈ σ1 and v /∈ σ2, then 〈R0.v〉 is equal to σ1 ⊕ σ2 because
σ1 and σ2 are non-isomorphic, which implies the inclusion (ii). This finishes the
proof. �

3The notion comes from Colmez’s “présentation standard”, see [9].
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Lemma 3.3. Let π be a smooth k-representation of G of finite length and D be
a standard diagram of π. Let π′ ⊂ π be a sub-G-representation and π′′ be the
corresponding quotient. Then D∩K(π′) is a standard diagram of π′ and D/(D∩π′)
is a standard diagram of π′′.

Proof. Write D′ := D∩π′ and D′′ := D/D′. By definition, we know that D′ (resp.
D′′) is a sub-diagram of K(π′) (resp. K(π′′)). In particular, we have H1(D′) =
H1(D′′) = 0. The exact sequence 0→ D′ → D → D′′ → 0 then gives a short exact
sequence

0→ H0(D′)→ H0(D)→ H0(D′′)→ 0.

In particular, H0(D′) and H0(D) are both of finite length since H0(D) is. It
then follows from [14, Prop. 4.1] that the natural morphisms H0(D′) → π′ and
H0(D′′)→ π′′ are both injective, hence are also surjective for the reason of lengths.

�

We introduce one more notion. If π is a k-representation of G of finite length
and if τ is an irreducible k-representation of G, we set

[π : τ ] := dim HomG(τ, πss),

i.e. the multiplicity with which τ appears in the semisimplification πss. Similarly
we have the notion for R0-representations.

Proposition 3.4. Let π be a smooth k-representation of G of finite length and
with central character χ. Let D ↪→ K(π) be a standard diagram of π. The following
statements hold.

(i) There exists r ∈ N such that

(5)
{

dimkD1 = 2r + ([π : χ ◦ det]− [π : Sp⊗ χ ◦ det])
dimkD0 = (p+ 1)r + ([π : χ ◦ det]− [π : Sp⊗ χ ◦ det]).

(ii) Let σ be an absolutely irreducible smooth k-representation of R0. If σ /∈
{χ ◦ det, st⊗ χ ◦ det}, then [D0 : σ] = [D0 : σ[s]]; otherwise we have

[D0 : χ ◦ det]− [D0 : st⊗ χ ◦ det] = [π : χ ◦ det]− [π : Sp⊗ χ ◦ det].

Proof. Using Lemma 3.3, we may assume that π is semi-simple, say π ∼= ⊕si=1πi.
Moreover, by twisting we may assume the central character χ is trivial.

(i) For each πi let D(πi) be the associated canonical diagram. Then D(π) :=
⊕si=0D(πi) is a standard diagram of π. We claim that the equalities (5) hold for
D(π). In fact, an induction shows that we may assume π irreducible, in which case
the assertion is obvious by Example 2.5 and the explicit description of D(1) and
D(Sp) (see [6, §10]).

Now, by Lemmas 3.2 and 3.3, D contains D(π) as a sub-diagram. If we denote
by Q the quotient D/D(π), then the long exact sequence (2) associated to 0 →
D(π) → D → Q → 0 shows that H1(Q) = H0(Q) = 0, hence Q satisfies the
dimension relation by Lemma 2.7(ii). This implies the equalities (5) for D.

(ii) The proof is similar as in (i) using two facts: a) the statement holds for D(π),
b) for a naive diagram Q, one has [Q0 : 1] = [Q0 : st]. �

We record an obvious corollary of Proposition 3.4.

Corollary 3.5. With notation in Proposition 3.4, we have

dimkD0 ≤ dimkD1 · (p+ 1)/2, (resp. dimkD0 ≥ dimkD1 · (p+ 1)/2)
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if and only if

[π : χ ◦ det] ≥ [π : Sp⊗ χ ◦ det], (resp. [π : χ ◦ det] ≤ [π : Sp⊗ χ ◦ det]).

3.2. Criteria. In this subsection we give two criteria for a diagram to be standard.

Theorem 3.6. Let π be a smooth k-representation of G of finite length and let
W = (W0,W1, r) ↪→ K(π) be a sub-diagram such that W0 is of finite dimension and
the natural morphism θ : H0(W )→ π is surjective. Assume that

(i)

(?) dimkW0 ≤ dimkW1 · (p+ 1)/2;

(ii) there exists one (hence any) standard diagram D of π such that dimkD0 ≥
dimkD1 · (p+ 1)/2.

Then W is a standard diagram of π. In particular, H0(W ) is of finite length and
the inequalities in (i) and (ii) are both equalities.

Proof. By [9, Cor. III.1.15], we can choose a standard diagram D of π containing
W . Let Q be the quotient D/W . Then we have an exact sequence

0→ H1(Q)→ H0(W )
θ→ π → H0(Q)→ 0.

Since θ is assumed to be surjective, we get H0(Q) = 0. Write Q = (Q0, Q1, rQ),
then dimkQ0 ≤ dimkQ1 · p+1

2 by Proposition 2.2. By (?), we deduce the same
inequality for dimkDi. Hence, by (ii) we have

dimkD0 = dimkD1 ·
p+ 1

2

and that (?) is in fact an equality. Moreover, Q also satisfies the dimension relation,
hence H0(Q) = H1(Q) = 0 by Proposition 2.2, and θ is an isomorphism. �

For application later, we need a variant of Theorem 3.6 as follows. The advantage
is that we do not need to fix a prior (finite length) representation π of G.

Theorem 3.7. Let W = (W0,W1, r) be a diagram of k-modules with central char-
acter such that r is an injection and that W0 is of finite dimension. Assume the
following conditions:

(a) (?) holds;
(b) up to semi-simplification, W0 is isomorphic to a direct sum of IndR0

IZχi, for
a finite set of smooth characters χi : I → k×.

Then H0(W ) is of finite length and (?) is an equality.

Proof. The idea of the proof is as follows: starting with a finite dimensional diagram
W , we produce π via the construction of Breuil-Paškūnas [6], then verify condition
(ii) of Theorem 3.6 under the assumption (b) on W0.

Up to twist we assume that the central character of W is trivial. By [6, §9],
we can embed W into K(Ω), where Ω is a smooth G-representation (with central
character) such that Ω|K is isomorphic to an injective envelope of socKW0. Let
π ⊂ Ω be the sub-G-representation generated by W0. Since Ω is admissible and W0

is of finite dimension, π is of finite length4; see for example [11, Cor. 4.9]. Write

4this is a special property for smooth k-representations of GL2(Qp); it is unknown whether it
remains true if F 6= Qp.
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m1 = [π : 1], the multiplicity of 1 in πss, and mSp = [π : Sp]. We will show that
m1 = mSp, so that the result follows from Theorem 3.6 using Proposition 3.4.

Let D be a standard diagram of π containing W . We claim that m1 ≥ mSp.
Indeed, ifm1 < mSp, then we would have dimkD0 > dimkD1·(p+1)/2 by Corollary
3.5, which would contradict Theorem 3.6. So we assume m1 ≥ mSp in the rest of
the proof. Note that Proposition 3.4(i) implies the following equality

(6) dimkD1 =
2

p− 1
(dimkD0 − dimkD1) + (m1 −mSp).

Since H0(D/W ) = 0, we can find a finite filtration of D/W whose graded pieces
Q has one of the shapes (I)-(III) in Proposition 2.2. In all cases, the condition
(?) holds for Q. We let s1 (resp. s2) be the number of Q of type (I) (resp. type
(II)) and s3,σ (resp. s3,0) be the number of Q of type (III) with Q0

∼= σ, for each
irreducible σ (resp. Q0 = 0); see Remark 2.3. The assumption (b) and Proposition
3.4(ii) imply that

(7) s3,σ = s3,σ[s] , if σ /∈ {1, st}

(8) m1 −mSp = s3,1 − s3,st.

On the other hand, if we let s = 1
2 dimW1 + s2 ∈ Q≥0 and s′ = s1 + 2s3,0, then

dimkD1 = dimkW1 + s1 + 2s2 +
∑
σ

2s3,σ + 2s3,0

= 2s+ s′ + 2
∑
σ
s3,σ

and using (7),

dimkD0 = dimkW0 + (p+ 1)s2 +
(p+ 1)

2

∑
σ/∈{1,st}

s3,σ + s3,1 + p · s3,st.

Using (?), we deduce

dimkD0 − dimkD1

≤ (p− 1)s− s′ + p−3
2 ·

( ∑
σ/∈{1,st}

s3,σ

)
− s3,1 + (p− 2)s3,st

= (p− 1)
(
s+ s′

2 +
∑
σ
s3,σ

)
− p+1

2

(
s′ +

∑
σ/∈{1,st}

s3,σ

)
− ps3,1 − s3,st.

Using the relations (6), (7), (8), we get

0 ≤ −p+ 1

p− 1

(
s′ +

∑
σ/∈{1,st}

s3,σ

)
− p+ 1

p− 1
s3,1 −

p+ 1

p− 1
s3,st.

This implies s′ = 0 and s3,σ = 0 for all σ, that is, only Type (II) diagrams appear
in the filtration of D/W . Hence H0(D/W ) = H1(D/W ) = 0 and W is a standard
diagram. �

3.3. Application III. Assume Πsm = IndGBχ1 ⊗ χ2 is irreducible principal series
and Π = Πsm ⊗ Πalg is an irreducible locally algebraic representation of G. The
following theorem is a part of a result of Berger and Breuil [3]. It is reproved under
mild conditions in [8, Thm. 5.1].
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Theorem 3.8. Let c ≥ 1 be such that ΠKc
sm 6= 0 and define X as in §2.3.

(i) If L is an integral structure inside Π and X ⊂ X is the induced diagram of
O-modules, then H0(X ) ∼= L and L is residually of finite length.

(ii) The universal unitary completion of Π, if non-zero, is automatically admis-
sible (in the sense of [22]).

(iii) The universal unitary completion of Π, if non-zero, is topologically irre-
ducible.

Proof. (i) We first show that H0(X ⊗ k) is of finite length as a G-representation.
It suffices to check that the conditions in Theorem 3.7 hold for X ⊗ k: indeed the
inequality (?) follows from the fact that

ΠKc
sm
∼= IndKJcθ, ΠIc

sm
∼= IndIJcθ

where θ := χ1⊗χ2 and Jc := (K ∩B)Kc = (I ∩B)Kc; the condition (b) is verified
using the isomorphism

X0 = ΠKc
sm ⊗Πalg

∼= IndKJc(θ ⊗Πalg) ∼= IndKI IndIJc(θ ⊗Πalg)

and the fact that irreducible k-representations of I are characters.
By construction the morphisms X1 ⊗ k ↪→ X0 ⊗ k ↪→ L⊗ k are all injective. So

[14, Prop. 4.1] is applicable and implies that the morphism H0(X ⊗ k)→ L⊗ k is
injective. Hence, we get H0(X ) = L by [14, Lem. 4.5].

(ii) By (i), any G-invariant open bounded O-lattice (if exists) inside Π is finitely
generated as an O[G]-module. Therefore, any two such lattices are commensurable
and the universal unitary completion Π̂ of Π is exactly the completion of Π with
respect to any such lattice. Hence, if Π̂ is non-zero, it is admissible.

(iii) If Π̂ is not topologically irreducible, it admits a non-trivial quotient, say Π̂′.
Since Π is itself absolutely irreducible, the composition Π → Π̂′ is still injective5.
Let L′ := Π ∩ Π̂′0 be the induced lattice of Π, where Π̂′0 denotes the unit ball of
Π̂′, and let X ′ := (X0 ∩L′, X1 ∩L′, can). Then L′ ∼= H0(X ′) by (i). It is clear that
L′/$L′ ∼= Π̂′0/$Π̂′0. Since L and L′ are commensurable, L/$L and L′/$L′ have
the same length as G-representations. But this would contradict the assumption
that Π̂′ is a non-trivial quotient of Π̂ (cf. [18, Lem. 5.5]). �

Remark 3.9. (1) Keep the notation in Theorem 3.8. In [14, Thm. 4.6], the authors
proved the isomorphism H0(X ) ∼= L by assuming L is residually of finite length (i.e.
theorem of Berger-Breuil). The proof also used crucially [14, Prop. 4.1]. The main
innovation of Theorem 3.8(i) is to prove H0(X ) ∼= L without the assumption: in
fact we deduce it as a byproduct.

(2) Note that our proof of topological irreducibility of Π̂ is different of the original
proof of Berger-Breuil which uses (ϕ,Γ)-modules (cf. [3, Cor. 5.3.2]).
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5Otherwise, Π would be contained in the kernel, say Π̂′′, which is a Banach sub-representation of
Π̂. The universal property of Π̂ gives a morphism Π̂ → Π̂′′ such that the composition with the
natural inclusion Π̂′′ ↪→ Π̂ is identity, hence the equality Π̂′′ = Π̂, a contradiction.
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