
RIGID CONNECTIONS

(MCM–YMSC p-ADIC GEOMETRY LEARNING SEMINAR, SPRING 2024)

KOJI SHIMIZU (YMSC) AND DAXIN XU (MCM)

Purpose: The main goal of this seminar is to study various results around rigid connections:
existence of a Frobenius structure on a rigid connection due to Esnault–Groechenig [EG23],
application to Simpson’s integral conjecture, and the Fourier transform algorithm for rigid
connections on P1 due to Katz [Kat96] and Arinkin [Ari10].

Time: 2:30-4:00 pm on Mondays

Location: MCM 110

Website: https://ymsc.tsinghua.edu.cn/info/1053/3152.htm

Mailing List: We make the seminar announcements via the mailing list. To join the mailing
list, please contact Koji.

Schedule: The following is an outline and suggestion for each talk. Sometimes, too many topics
are assigned to one talk. Please reorganize the materials to give a 90-minute-long comprehensible
talk, rather than copying the lecture notes. Junior speakers are encouraged to talk with us
during the lecture preparation.

Lecture 1. Overview. (3/4, Daxin)
Give an overview of the seminar.

Lecture 2. Higgs-de Rham flow. (3/11, Mao)
Give an overview of the theory of Higgs-de Rham flow following Lan–Sheng–Zuo [LSZ19].

Lecture 3. p-adic topology on W -points of a scheme or a stack. (3/18, )
Discuss [EG23, §2] for a p-adic topology on W -points of a scheme or a linear quotient stack
over W . See [Čes15, §2] for more details.

Lecture 4. Frobenius pullback functor for flat connections. (3/25, Koji)
Discuss [EG23, §3.1-3.4]. Recall the Frobenius pullback functor for flat log-connections (Propo-
sition 3.3) and explain its relationship with Cartier transform (Definition 3.8). Prove Proposi-
tion 3.9 following Olsson’s stacky point of view on log-connections [EG23, §3.4].

Lecture 5. Rational F -isocrystal property. (4/1, )
Discuss [EG23, §4-5.2]. Show that F ∗ is an open embedding (Theorem 4.1) and explain that
F ∗ preserves isolated points (Corollaries 4.7 and 4.9). Use above corollaries to prove first part
of Theorem 1.2 (§5.2).

Lecture 6. Integral Frobenius structure. (4/8, )
Discuss [EG23, §3.5-3.7, 5.3]. Explain the flow functor Φ and finish the proof of the second
part of Theorem 1.2 (§5.3).
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Lecture 7. Applications to integrality & p-curvature conjectures. (4/15, )
Explain the application of previous local results to global problems: Simpson’s integral con-
jecture for rigid connections; an irreducible rigid connection with vanishing p-curvature has
unitary monodromy. Reference: [EG17, §7] (this section is not included in [EG20]) and [EG20,
§6].

Lecture 8. Review of formal connections over a punctured disc (4/22, )
Review a fundamental result of Levelt for (formal) connections over a punctured disc [Mal91,
III 1.2], discuss its application to the slope decomposition for formal connections and state the
result about canonical extension (also known as Katz’s extension) [Kat87, II 2.1-2.4].

Lecture 9. Review of Fourier transform and local Fourier transforms. (4/29, )
Discuss [BE04, §3]. Review the Fourier transform for D-modules over A1 and its description
in terms of Gauss–Manin connections [BE04, Lemma 3.2] and discuss local Fourier transforms
and their properties.

Lecture 10. Fourier transform preserves cohomological rigidity. (5/6, )
Review some properties of the intermediate extension and prove [BE04, Theorem 4.3] using
local Fourier transform.

Lecture 11. Rigidity index and rank of the Fourier transform. (5/13, )
Discuss [Ari10, §3]. Show that cohomological rigidity is equivalent to rigidity [BE04, Theorem
4.7, 4.10], and prove a formula about the rank of the Fourier transform [Mal91, V.1.5].

Lecture 12. Proof of main results. (5/20, )
Discuss [Ari10, §4] and finish the proof of main results [Ari10, Theorem A, Corollary 2.5].
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