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What is sparsity ?

Small dimesional phenomenon in high dimensional context

Simple example : vector x = (x1, · · · , xN) ∈ IRN representing a signal, image or
function, discretized with N >> 1.

The vector x is sparse if only few of its coordinates are non-zero.



How to quantify this ?

The set ot k-sparse vectors

Σk := {x ∈ IRN ; #{i ; xi 6= 0} ≤ k}

As k gets smaller, x ∈ Σk gets sparser.

More realistic : a vector is quasi-sparse if only a few numerically significant coordinates
concentrate most of the information. How to measure this notion of concentration ?

Remarks :

A vector in Σk is characterized by k non-zero values and their k positions.

Intrinsically nonlinear concepts : x , y ∈ Σk does not imply x + y ∈ Σk .
Sparsity is often hidden, and revealed through an appropriate representation (change
of basis).



Importance of the concept of representation : David Marr (“Vision”, Freeman, 1982).

“A representation is a formal system for making explicit certain entities or types of
information, together with a specification of how the system does this... For example,
the Arabic, Roman and binary numerical systems are all formal systems for
representing numbers. The Arabic representation consists in a string of symbols drawn
from the set 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and the rule for constructing the description of
a particular integer n is that one decomposes n into a sum of multiple of powers of
10...the alphabet allows the construction of a written representation of words... A
representation, therefore is not a foreign idea at all, we all use representations all the
time. However, the notion that one can capture some aspects of reality by making a
description of it using a symbol and that to do so can be useful seems to me a
fascinating and powerful idea...
...This issue is important, because how information is presented can greatly affect how
easy it is to do different things with it. This is evident even from our number
example : it is easy to add, to substract and even to multiply if the Arabic or binary
representation are used, but it is not at all easy to do these things - especially
multiplication - with Roman numerals. This is a key reason why the Roman culture
failed to develop mathematics in the way the Arabic culture had.”

The choice of an appropriate representation of a function can be fundamental to solve
a specific task.
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Fourier representations

- Analysis : f̂ (ω) =
∫+∞

−∞
f (t)e−iωtdt.

- Synthesis : f (t) = (2π)−1
∫+∞

−∞
f̂ (ω)e iωtdω.

Representation of f in terms of the pure waves eω(t) = e iωt , ω ∈ IR.

For 1-periodic functions :
- Analysis : cn(f ) =

∫1
0
f (t)e−i2πntdt.

- Synthesis : f (t) =
∑

n∈ZZ cn(f )e
i2πnt .

Discrete Fourier transform : (x [k])k=0,··· ,N−1 and (x̂ [k])k=0,··· ,N−1 connected by

x̂[k] =
1√
N

N−1∑

n=0

x [n]e−i2πnk/N and x [k] =
1√
N

N−1∑

n=0

x̂ [n]e i2πnk/N .

Implemented in O(N logN) operations by FFT.



Fourier representations and computation

Approximation of a (1-periodic) function by its partial sum

SN f (t) =
∑N

n=−N cn(f )e
i2πnt .

Problem : fast convergence ?

If f , f ′, · · · , f (m) are continuous over IR, we can apply n times the integration by part
to obtain

|cn(f )| = |(i2πn)−1cn(f
′)|

= · · · |(i2πn)−mcn(f
(m))|

≤ |i2πn|−m
∫1
0 |f

(m)| ≤ Cmn
−m .

⇒ Fast decay if f is smooth.

However, if f is smooth everywhere except at some discontinuity point x ∈ [0, 1], we
cannot hope better than |cn(f )| ≤ Cn−1 (also Gibbs phenomenon for SN f near the
singularity).

Better representations are needed for such functions.



Multiscale representations into wavelet bases : the Haar system
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ψλ(x) := 2j/2ψ(2jx − k), λ = (j , k), j ≥ 0, k ∈ ZZ, |λ| = j = j(λ).

More general wavelets are constructed from similar multiscale approximation
processes, using smoother functions such as splines, finite elements...

In d dimension ψλ(x) := 2dj/2ψ(2jx − k), k ∈ ZZd.



Discrete signals : fast decomposition/reconstruction algorithms

1D array (f0, · · · , fN )
⇒ Two half array : averages

f2k+f2k+1
2

and differences
f2k−f2k+1

2

⇒ Iterate on the half array of averages...

Multiscale processing of 2D data : separable algorithm

c

c

d d

d
J−1

a

b c

J−1

J−1 J−1

J

Image f (k, l) ⇒ process lines ⇒ process columns ⇒ Iterate ...



Digital Image 512x512 Multiscale Decomposition

Multiscale decompositions of natural images are sparse : a few numerically significant
coefficients concentrate most of the energy and information.



Application to Image Compression

Basic idea : encode with more precision
the few numerically significant coefficients
⇒Resolution is locally adapted
Example : 1 % largest coefficients encoded

Compression standard JPEG 2000 :
- Same basic principles
- Based on smoother wavelets
- Good quality with compression 1/40



Application to image denoising

Noisy digital image Multiscale decomposition

Natural strategy : thresholding
i.e. put to zero the coefficients which
are smaller than the noise level.



Two other applications

Statistical learning : given a set of data (xi , yi ), i = 1, 2, · · · ,m, drawn independently
according to a probability law, build a function f such that |f (x) − y | is small in the
average (E(|f (x) − y |2) as small as possible).

Difficulty : build the adaptive grid from uncertain data, update it as more and more
samples are received.

Adaptive numerical simulation of PDE’s : Computing on a non-uniform grid is justified
for solutions which displays isolated singularities (shocks).
Difficulty : the solution f is unknown. Build the grid or set of wavelet coefficients
which is best adapted to the solution. Use a-posteriori information, gained throughout
the numerical computation.



Measuring sparsity in a representation f =
∑

fλψλ

Intuition : the number of coefficients above a threshold η should not grow too fast as
η→ 0.

Weak spaces : (fλ) ∈ wℓp if and only if

Card{λ s.t. |fλ| > η} ≤ Cη−p ,

or equivalently, the decreasing rearrangement (fn)n>0 of (|fλ|) satisfies

fn ≤ Cn−1/p .

The wℓp quasi-norm can be defined by

‖(fλ)‖wℓp := sup
n>0

n1/p fn.

Obviously ℓp ⊂ wℓp . The representation is sparser as p → 0.

If p < 2 and (ψλ) is (any) orthonormal basis in a Hilbert space H, an equivalent
statement is in terms of best N-term approximation : with fN =

∑
N largest |fλ| fλψλ,

‖f −fN‖H =
(∑

n≥N

|fn |
2
)1/2

≤ ‖(fλ)‖wℓp

(∑

n≥N

n−2/p
)1/2

≤ C‖(fλ)‖wℓpN
−s , s =

1

p
−

1

2
.



Older observation by Stechkin

For the strong ℓp space one has

(fλ)λ∈Λ ∈ ℓp ⇒ ‖f − fN‖H ≤ ‖(fλ)‖ℓp (N + 1)−s , s =
1

p
−

1

2
.

Proof : using the decreasing rearrangement, we combine

‖f − fN‖H = (
∑

n>N

f 2n )
2 = (

∑

n>N

f 2−p
n f pn )1/2 ≤ f

1−p/2
N+1 ‖(fλ)‖p/2ℓp

and

(N + 1)f p
N+1 ≤

N+1∑

n=1

f pn ≤ ‖(fλ)‖pℓp .

Note that a large value of s corresponds to a value p < 1 (non-convex spaces).

For concrete choices of bases (such as wavelets) a relevant question is therefore : what
smoothness properties of f ensure that the coefficient sequence (fλ) belongs to ℓp or
wℓp for small values of p ?



Central problems in approximation theory

- X normed space.

- (ΣN )N≥0 ⊂ X approximation subspaces : g ∈ ΣN described by N (or O(N))
parameters.

- Best approximation error σN (f ) := infg∈ΣN
‖f − g‖X .

Problem 1 : characterise those functions in f ∈ X having a certain rate of
approximation

f ∈ X r ⇔ σN (f )<∼ N−r

Here A<∼ B means that A ≤ CB, where the constant C is independent of the
parameters defining A and B.



Examples

Linear approximation : ΣN linear space of dimension N (or O(N)).

- ΣN := ΠN polynomials of degree N in dimension 1

- ΣN := {f ∈ C r ([0, 1]) ; f
|[ k

N
, k+1

N
]
∈ Πm, k = 0, · · · ,N − 1} with 0 ≤ r ≤ m fixed,

splines with uniform knots.

- ΣN := Vect(e1, · · · , eN ) with (ek )k>0 a functional basis.

Nonlinear approximation : ΣN + ΣN 6= ΣN .
- ΣN := {

p
q
, p, q ∈ ΠN } rational fractions

- ΣN := {f ∈ C r ([0, 1]) ; f|[xk ,xk+1]
∈ Πm, 0 = x0 < · · · < xN = 1} with 0 ≤ r ≤ m

fixed, free knots splines.

- ΣN := {
∑

λ∈E dλψλ ; #(E) ≤ N} set of all N-terms combination of a basis (ψλ).



Central problem in computational approximation

Problem 2 : practical realization of f 7→ fN ∈ ΣN such that

‖f − fN‖X <∼ σN (f ).

If ΣN are linear spaces and PN : X → ΣN are uniformly bounded projectors
‖PN‖X→X ≤ C , then fN := PN f is a good choice, since for all g ∈ ΣN ,

‖f − fN‖X ≤ ‖f − g‖X + ‖g − fN‖X
= ‖f − g‖X + ‖PN (g − f ))‖X
≤ (1 + C )‖g − f ‖X ,

and therefore ‖f − fN‖X ≤ (1 + C )σN (f ).

What about nonlinear spaces ?



A basic example

Approximation of f ∈ C ([0, 1]) by piecewise constant functions on a partition
I1, · · · , IN , defining

fN(x) = ak := |Ik |
−1

∫

Ik

f , if x ∈ Ik .

Local error : ‖f − ak‖L∞(Ik )
≤ maxx,y∈Ik

|f (x) − f (y)|

Linear case : Ik = [ k
N
, k+1

N
] uniform partition.

f ′ ∈ L∞ ⇔ ‖f − fN‖L∞ ≤ CN−1 (C = sup |f ′|).
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Nonlinear case : Ik free partition. If f ′ ∈ L1, choose the partition such that equilibrates
the total variation

∫
Ik
|f ′| = N−1

∫1
0 |f

′|.

f ′ ∈ L1 ⇔ ‖f − fN‖L∞ ≤ CN−1 (C =

∫1

0
|f ′|).
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Approximation rate governed by differents smoothness spaces !

Example : f (t) = tα with 0 < α < 1, then f ′(t) = αtα−1 is in L1, not in L∞.
Nonlinear approximation rate N−1 outperforms linear approximation rate N−α.



Adaptive greedy splitting

Split intervals I into two equal parts as long as ‖f − aI ‖L∞(I ) > ε, the final adaptive
partition is built when ‖f − aI‖L∞(I ) ≤ ε holds for all intervals (leaves of the decision
tree).
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Limitation to dyadic intervals. In turn f ′ ∈ L1 is not sufficient to ensure that
‖f − fN‖L∞ <∼ N−1, but it can be shown that the slightly stronger condition on the

Hardy-Littlewood maximal function M(f ′) ∈ L1 suffices (holds if f ′ ∈ Lp for some
p > 1)



Approximating functions by wavelet bases

- Linear (uniform) approximation at resolution level j by taking the truncated sum
f 7→ Pj f :=

∑
|λ|<j fλψλ.

- Nonlinear (adaptive) approximation obtained by thresholding

f 7→ TΛf :=
∑

λ∈Λ

fλψλ, Λ = Λ(η) = {λ s.t. |fλ| ≥ η}.
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Wavelet analysis of local smoothness

- If f is bounded on Sλ := Supp(ψλ), an obvious estimate is

|fλ | = |〈f , ψλ〉| ≤ sup
t∈Sλ

|f (t)|

∫
|ψλ | = 2−|λ|/2 sup

t∈Sλ

|f (t)|.

- If f is C1 on Sλ, a finer estimate is

|fλ | = infc∈R |〈f − c, ψλ〉|
≤ infc∈R ‖f − c‖L∞(Sλ)‖ψλ‖L1
≤ 2−3|λ|/2 supt∈Sλ

|f ′(t)|.

- If f is Hölder continuous of exponent s on Sλ, i.e. |f (x) − f (y)| ≤ C |x − y |s , for some
s ∈ (0, 1], we have the intermediate estimate |fλ| ≤ C2−|λ|(s+1/2).

Decay of wavelet coefficients influenced by local smoothness (as opposed to that of
Fourier coefficients).



A general framework

Mallat and Meyer (1986) : a multiresolution approximation (MRA) is a sequence of
nested spaces Vj ⊂ Vj+1 ⊂ · · · of L2(IRd), such that :

- ∪Vj = L2, i.e. limj→+∞ ‖f − Pj f ‖L2 = 0 for all f ∈ L2 where Pj is the L2-orthogonal
projector.

- There exists a scaling function ϕ ∈ V0 such that

ϕj,k(t) = 2j/2ϕ(2j t − k), k ∈ ZZd,

constitute a Riesz basis of Vj .

Riesz basis in Hilbert spaces : basis (en) such that ‖(xn)‖ℓ2 ∼ ‖∑ xnen‖H .
For piecewise constant functions we had ϕ = χ[0,1]. In this case

‖f − Pj f ‖Lp ≤ 2−j‖f ′‖Lp ,

but no better rate such as 2−mj‖f (m)‖p (first order accuracy).



Raising the accuracy : Vj should contain higher order polynomials. Example : B-spline
of degree N

ϕ(x) = χ[0,1] ∗ · · · ∗ χ[0,1] = (∗)N+1χ[0,1],

Remark : except for N = 0, the functions ϕj,k are not orthogonal. In turn the
orthogonal projector Pj is not local. New difficulties :

- Define numerically simple projectors Pj onto Vj .

- Construct wavelet bases (ψλ) which characterize the difference between two
successive levels of projection so that

f = P0f +
∑

j≥0

Qj f , Qj f := Pj+1f − Pj f =
∑

|λ|=j

fλψλ

Recall that ψλ(x) = 2dj/2ψ(2jx − k) and |λ| := j when λ = (j , k).

Several approaches : orthogonal wavelets, biorthogonal wavelets, finite element
wavelets...

Can be adapted to a bounded domain Ω ⊂ Rd . Then dim(Vj ) ∼ 2jd .



Wavelet characterizations of functions spaces

Let f =
∑

fλψλ, fλ = 〈f , ψ̃λ〉.
- L2 characterized by ‖f ‖2

L2
∼ ‖P0f ‖2L2 +

∑
j≥0 ‖Qj f ‖2L2 ∼

∑
|fλ|

2.

- Sobolev space Hs = W s,2 characterized by

‖f ‖2Hs ∼ ‖P0f ‖2L2 +
∑

j≥0

22sj‖Qj f ‖2L2 ∼
∑

22s|λ||fλ |
2 ∼

∑
‖fλψλ‖2Hs .

Hint : ‖f ‖2
Hs ∼

∫
(1 + |ω|2s)|f̂ (ω)|2 ∼ ‖S0f ‖2L2 +

∑
j≥0 2

2sj‖∆j f ‖2L2 with

Ŝj f (ω) ∼ f̂ (ω)χ|ω|≤2j and ∆j f = Sj+1f − Sj f (Littlewood-Paley analysis).

- Besov space Bs
p,p characterized by

‖f ‖p
Bs
p,p

∼ ‖P0f ‖pLp +
∑

j≥0 2
psj‖Qj f ‖pLp ∼

∑
2ps|λ|‖fλψλ‖pLp

∼
∑

2ps|λ|2
pd( 1

2
− 1

p
)|λ|

|fλ |
p ∼

∑ ‖fλψλ‖pBs
p,p
.

Remark : Bs
p,p = W s,p if s /∈ N or p = 2 and Bs

∞,∞ = C s if s /∈ N.

All this holds provided that ψλ has enough smoothness



Linear multiscale approximation

From the characterization of Hs , we get ‖Qj f ‖L2 <∼ 2−js‖f ‖Hs and therefore

f ∈ Hs = Bs
2,2 ⇒ ‖f − Pj f ‖L2 ≤

∑

l≥j

‖Ql f ‖L2 <∼ 2−tj .

and in a similar manner

f ∈ Bs
p,p ⇒ ‖f − Pj f ‖Lp <∼ 2−sj .

We actually have a finer result

f ∈ Bs
p,q ⇔ (2sj‖f − Pj f ‖Lp )j≥0 ∈ ℓq .

Besov spaces are thus characterized from the rate of linear multiscale approximation.

These results are very similar to finite element approximation on uniform meshes
(Vj ∼ Vh with h ∼ 2−j ).

On a bounded domain, they roughly say that s order of smoothness in Lp corresponds
to a linear approximation rate O(N−s/d ) in ΣN = Vj where N = dim(Vj ) ∼ 2dj .



Nonlinear wavelet approximation in L2

Recall that Bs
p,p is characterized by

‖f ‖p
Bs
p,p

∼
∑

2ps|λ|2
pd( 1

2
− 1

p
)|λ|

|fλ|
p

Assume that f ∈ Bs
p,p with 1

p
= 1

2
+ s

d
. In this case

‖f ‖Bs
p,p

∼ ‖(fλ)‖ℓp ,

and therefore (fλ) ∈ ℓp ⊂ wℓp. If fN :=
∑

N largest |fλ | fλψλ, we have

‖f − fN‖L2 <∼ N−s/d .

For linear approximation, the same rate is achieved under the stronger condition
f ∈ Hs .

Note that the relation 1
p
= 1

2
+ s

d
corresponds to the critical (non-compact) embedding

Bs
p,p ⊂ L2, expressed in the wavelet representation by the elementary inclusion ℓp ⊂ ℓ2.



Nonlinear approximation results

N-terms approximations : ΣN := {
∑

λ∈Λ dλψλ ; #(Λ) ≤ N}.

- Rate of decay governed by weaker smoothness conditions (DeVore) : with 1
q
= 1

p
+ s

d

f ∈ Bs
q,q ⇒ inf

g∈ΣN

‖f − g‖Lp ≤ CN−s/d .

- Similar results when approximation is measured in smoother norms (W s,p, Bs
p,q ..)

- Similar theory for adaptive finite element on N simplices with isotropy constraints
(minimal angle condition).

1/p 1/q=1/p+t/d

s

s+t O(NO(N -t/d

Linear Nonlinear

(Slope d)

p L  spaces

X : measurement of the error
p

(s derivatives in L  )

s
C   spaces

Embedding

in X

No embedding 

in X

  )   )-t/d



Greedy bases

Let (ψλ) be a basis in a Banach space X with ‖ψλ‖X = 1 for all λ.

The basis is greedy if and only if for all f ∈ X and N > 0,

‖f −
∑

N largest |fλ |

fλψλ‖X ≤ C inf
g∈ΣN

‖f − g‖X .

The basis is unconditional if and only there exists C > 0 such that

|xλ| ≤ |yλ| for all λ⇒ ‖
∑

xλψλ‖X ≤ C‖
∑

yλψλ‖X .

The basis is democratic if and only if there exists C > 0 such that

#(E) = #(F ) ⇒ ‖
∑

λ∈E

ψλ‖X ≤ C‖
∑

λ∈F

ψλ‖X .

Two results due to Temlyakov (2003) :

1. Greedy ⇔ unconditional and democratic.

2. Conveniently normalized wavelet are greedy in X = Lp or X = Wm,p when
1 < p < +∞, and in all Besov spaces X = Bs

p,q .



General program for PDE’s

- Theoretical : revisit regularity theory for PDE’s. Solutions of certain PDE’s might
have substantially higher regularity in the scale governing nonlinear approximation
than in the scale governing linear approximation. Examples : hyperbolic conservation
laws (DeVore and Lucier 1987), elliptic problems on corner domains (Dahlke and
DeVore, 1997).

- Numerical : develop for the unknown u of the PDE F(u) = 0 appropriate adaptive
resolution strategies which perform essentially as well as thresholding : produce ũN
with N terms such that ‖u − ũN‖ has the same rate of decay N−s as ‖u − uN‖ in
some prescribed norm, if possible in O(N) computation.

Remark : similar goals can be formulated for adaptive finite elements with N being the
number of elements.



Revisiting regularity theory for PDE’s

Solutions of certain PDE’s might have substantially higher regularity in the scale
governing nonlinear approximation than in the scale governing linear approximation.

Example : 1D nonlinear conservation law

∂tu + ∂xF (u) = 0, u(x , 0) = u0(x), .

with F smooth and strictly convex (e.g. Burger F (u) = u2/2).

- Smoothness for linear approximation in L1 : for large t, u(·, t) ∈ BV but not
smoother.

- Smoothness for nonlinear approximation (DeVore & Lucier, 1987) : for all s > 0 and
1
p
= 1 + s, if u0 ∈ Bs

p,p then u(·, t) ∈ Bs
p,p for all t > 0.

Similar results are available for elliptic PDE’s on non-smooth domains (DeVore &
Dahlke)



Pictorial interpretation

1 1/p

1

s

Classical theory : s < 1/p for s ≤ 1

DeVore-Lucier : s < 1/p − 1 for all s > 0

Interpolation : s < 1/p for all s > 0



Principle of proof : approximation by adaptive piecewise polynomials

Simplest case : Burgers’ equation (F (u) = u2/2) and piecewise affine (s < 2).

u0 ∈ Bs
p,p ⇒ ‖u0 − uN0 ‖L1 <∼ N−s , with uN0 piecewise affine on N intervals.

t=Tt=0

Evolution to time T > 0 is L1 contractive. ⇒ ‖uT − uN
T
‖L1 <∼ N−s ⇒ uT ∈ Bs

p,p .



Functions of bounded variations

f ∈ BV if and only if f ∈ L1 and ∇I is a finite measure.

‖f ‖BV = ‖f ‖L1 + |f |BV with |f |BV = sup‖g‖L∞≤1

∫
f divg .

If f ∈ W 1,1, i.e. ∇f ∈ L1, then |f |BV =
∫
|∇f |.

Prototype : χΩ where ∂Ω has finite length.

In d dimensions BV ⊂ Ld
∗

with d∗ = d
d−1

. In 2d, this space is often used as a model
to describe real images. Intuition : Images are “piecewise smooth” and their
singularities (edges) have finite total length.

Co-area formula : |f |BV =
∫+∞

−∞
|χΩt

|BV dt (=
∫+∞

−∞
H1(∂Ωt )dt for smooth functions),

with Ωt := {x ; f (x) > t}.

This is an instance of an atomic decomposition in a Banach space B : dense set of
functions (ϕγ)γ∈Γ such that

‖f ‖B ∼ inf
{ ∑

γ∈Γ

‖cγϕγ‖B :
∑

γ∈Γ

cγϕγ = f
}
.

Here, the sum is replaced by an integral with the atoms being the characteristic

functions χΩ since we may write for f (x) = limA→−∞

(
A +

∫+∞

A
χΩt

(x)
)
.



Wavelet analysis of BV

Theorem (DeVore, Petrushev, Xu, Dahmen, Daubechies, AC)

f ∈ BV ([0, 1]2) ⇒ (fλ) ∈ wℓ1

where (fλ) are its wavelet coefficients, or equivalently

‖f − fN‖L2 <∼ N−1/2.

BV is almost characterized by wavelets since (fλ) ∈ ℓ1 ⇒ f ∈ BV ([0, 1]2) (no simple
exact characterization : BV has no unconditional basis).

Optimal estimate for wavelets : if f = χΩ then at scale 2−j there are O(2j ) nonzero
coefficients (edges) estimated by O(2−j ).

Optimal estimate among all bases

The case of Fourier coefficients (Lebeau) :

f ∈ BV ([0, 1]2) ⇒
∑

n∈ZZ2

|cn(f )|

1 + |n|
<∞.





Proof by co-area formula ?

For the expansion of a single atom χΩ =
∑

dλ(Ω)ψλ, one has

‖(dλ(Ω))‖wℓ1 ≤ C |χΩ|BV .

Now we use the representation f (x) = limA→−∞

(
A +

∫+∞

A
χΩt

(x)
)
and write

fλ =

∫+∞

−∞

dλ(Ωt ))dt.

Then use the co-area formula to write

‖(fλ)‖wℓ1 ≤
∫+∞

−∞

‖(dλ(Ωt ))‖wℓ1dt ≤ C

∫+∞

−∞

|χΩt
|BV dt = C |f |BV .

Unfortunately, not so simple...



An improved Sobolev inequality

In dimension d = 2, one has the continuous embedding BV ⊂ L2 with

‖f ‖L2 ≤ C |f |BV .

Not sharp for oscillatory functions : if fω(x) = e iωẋϕ(x) with ϕ ∈ D(R2), one has
‖fω‖L2 = ‖ϕ‖L2 and |fω|BV ∼ |ω|.

We introduce the Besov space B−1
∞,∞ which is defined by Littlewood-Paley theory or

by the wavelet characterization

‖f ‖
B−1
∞,∞

∼ ‖(fλ)‖ℓ∞

Then the Gagliardo-Nirenberg type inequality

‖f ‖L2 ≤ C |f |BV ‖ ‖|f ‖
B−1
∞,∞

,

follows from ‖(fλ)‖ℓ2 ≤ C‖(fλ)‖wℓ1‖(fλ)‖ℓ∞ . Sharper : ‖fω‖
B−1
∞,∞

∼ |ω|−1

One also has the real interpolation result

L2 = [B−1
∞,∞,BV ] 1

2
,2.

following from the fact that ℓ2 = [ℓ1, ℓ∞] 1
2
,2 = [wℓ1 , ℓ∞] 1

2
,2.



Practical implications in image processing

Optimal performances of wavelet adaptive denoising and compression methods when
the images are modeled by BV functions.

Yves Meyer : “In a world where images are BV functions and the eye measures the
error in L2, wavelets are the best tool”.

Toward better models : Image = geometry + texture.

Geometry (objects) : should take into account the smoothness of edges (ignored in
BV modeling).

Texture (or noise) : should involve statistical modeling, and a different error measure
than for geometry.



Wavelets and edges

Image : f = χΩ, with ∂Ω smooth.

fN = approximation by N largest
wavelet coefficients

⇒ ‖f − fN‖L2 ∼ N−1/2

Problem : imposes isotropic refinement

fN = piecewise linear interpolation
on N optimaly selected triangles
⇒ ‖f − fN‖L2 ∼ N−1

Problem : non-supervised algorithm ?



Greedy algorithms for adaptive triangulations

Optimal triangulation : NP hard problem.

Adaptive refinement algorithms : from an initial coarse triangulation T0, add points
iteratively, e.g. at the location where the interpolation error is the largest (A.C., Dyn,
Hecht, Mirebeau).

Adaptive coarsening algorithms : from a very fine triangulation T0, remove points
iteratively. Criterion for point removal : minimize the anticipated approximation error
when retriangulating (using e.g. Delaunay triangulation, Dyn-Floater, Iske).

Algorithms stop when reaching the minimal number of triangles N for which a
prescribed L2 error D is ensured.

Open problem : do greedy algorithms allow to obtain the rate D ≤ CN−1 for piecewise
smooth functions such as χΩ ?



Sparse geometric representations

- Donoho and Candes : sparse representations based on curvelets frames allow us to
recover ‖f − fN‖L2 ∼ N−1[logN]3/2 with a thresholding algorithm for piecewise C2

functions with C2 edges (curvelet coefficients are - roughly - in wℓ2/3). Closely
related : contourlets (Do and Vetterli), shearlets (Kuttyniok).

- Other approaches : bandlets (Mallat and Le Pennec), nonlinear multiscale
representations (Arandiga, Donat, A.C.), wedgelets (Donoho), wedgeprints (Baraniuk,
Romberg, Wakin), nonlinear lifting scheme (Baraniuk, Claypoole, Davis and
Sweldens).

This area of research lack solid functional analytic foundations : are there simple
function spaces describing piecewise smooth functions with geometrically smooth
edges ?



Exploiting sparsity in a different way

Assume that f is a sparse signal or image (in some basis).

Classical way to encode f : retain its k largest coordinates in the basis and encode
them. This requires to compute all coordinates before discarding the small one.

Compressed sensing (Donoho, Candes-Tao-Romberg) : use m linear measurements of
f prescribed in advance, and exploit that f is sparse in order to reconstruct it
accurately from these measurements.

In other word, we observe y = Φ(f ) ∈ IRm with Φ a fixed measurement matrix and we
want to build g = ∆(y) close to f .

Key ingredient : ∆ should be nonlinear.



An instructive example : 2D tomography (Candes-Romberg-Tao)

The Radon transform captures partial Fourier information.

Left : the Logan-Shep phantom test image

Right : position of the observed Fourier coefficients (white)



Two different reconstructions

Left : put the unknown coefficient to zero (minimum ℓ2 norm) and reconstruct the
partial Fourier serie ⇒ oscillation artifacts.

Right : adjust the unknown coefficients so to minimize the total variation of the image
|f |TV =

∫
|∇f | ⇒ exact reconstruction !



Questions

 m

y xΦ

n

 

Minimal number m of measures which is sufficient to characterize any x ∈ Σk .
With which matrices Φ ? Which decodes ∆ ?

Robustestness ? In practice, y = Φx + e with ‖e‖ℓ2 ≤ ε and x ∈ IRn close to Σk .



Available results

With m = 2k measures and generic choice of Φ, one can reconstruct exactly any
x ∈ Σk , but...
(i) Complex decoder : ∆(y) := Argmin{‖y −Φz‖ ; z ∈ Σk }, and therefore O(Nk ) least
square systems to solve. Alternative : ∆(y) := Argmin{‖z‖0 ; Φz = y }, with
‖z‖0 = #{i ; zi 6= 0}, same complexity.

(ii) No robustness to noise and deviation from Σk .

With m ∼ ck log(N/k) measures and specific choices of Φ, one can reconstruct exactly
any x ∈ Σk , with (Candes-Tao)

(i) Simple decoder : ∆(y) := Argmin{‖z‖1 ; Φz = y } with ‖z‖1 := |z1 | + · · · + |zn |,
convex optimization, linear programming.

(ii) Robustness : ‖x − ∆(Φx)‖ controlled by noise and deviation of x from Σk .

but... Φ obtained by probabilistic techniques. Example : Φ = (Φi,j ) with Φi,j

independant random draws of Bernoulli ±1 or gaussians N (0, 1).

Deterministic constructions ?



The curse of dimensionality

Consider a continuous function y 7→ u(y) with y ∈ [0, 1].
Sample at equispaced points.
Reconstruct, for example by piecewise linear interpolation.

�
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Error in terms of point spacing h > 0 : if u has C2 smoothness

‖u − R(u)‖L∞ ≤ C‖u ′′‖L∞h2.

Using piecewise polynomials of higher order, if u has Cm smoothness

‖u − R(u)‖L∞ ≤ C‖u(m)‖L∞hm .

In terms of the number of samples N ∼ h−1, the error is estimated by N−m.

In d dimensions : u(y) = u(y1, · · · , yd) with y ∈ [0, 1]d . With a uniform sampling, we
still have

‖u − R(u)‖L∞ ≤ C‖dmu‖L∞hm,

but the number of samples is now N ∼ h−d , and the error estimate is in N−m/d .



Other sampling/reconstruction methods cannot do better

Can be explained by N-width

Let X be a normed space and K ⊂ X a compact set.

Linear N-width (Kolmogorov) :

dN (K )X := inf
dim(E)=N

max
u∈K

min
v∈E

‖u − v‖X .

Benchmark for linear approximation methods applied to the elements from K .

If X = L∞([0, 1]d ) and K is the unit ball of Cm([0, 1]d ) it is known that

cN−m/d ≤ dN(K )X ≤ CN−m/d .

Upper bound : approximation by a specific method.

Lower bound : diversity in K .

Exponential growth in d of the needed complexity to reach a given accuracy.



Non-linear methods cannot do better

Use a notion of nonlinear N-width (Alexandrov, DeVore-Howard-Micchelli).

Consider maps E : K 7→ RN (encoding) and R : RN 7→ X (reconstruction).

Introducing the distorsion of the pair (E ,R) over K

max
u∈K

‖u − R(E(u))‖X ,

we define the nonlinear N-width of K as

δN (K )X := inf
E ,R

max
u∈K

‖u − R(E(u))‖X ,

where the infimum is taken over all continuous maps (E ,R). Comparison with the
Kolmorgorov N-width : δN ≤ dN and sometimes substantially smaller.

If X = L∞([0, 1]d ) and K is the unit ball of Cm([0, 1]d ) it is known that

cN−m/d ≤ δN (K )X ≤ CN−m/d .

Many other variants of N-widths exist (book by A. Pinkus).



Infinitely smooth functions

Nowak and Wozniakowski : if X = L∞([0, 1]d ) and

K := {u ∈ C∞([0, 1]d ) : ‖∂νu‖L∞ ≤ 1 for all ν}.

then, for the linear width,

min{N : dN (K )X ≤ 1/2} ≥ c2d/2 .

High dimensional problems occur frequently :

PDE’s with solutions u(x , v , t) defined in phase space : d = 7.

Post-processing of numerical codes : u solver with imput parameters (y1, · · · , yd ).
Learning theory : u regression function of imput parameters (y1, · · · , yd )
In these applications d may be of the order up to 103.

Approximation of stochastic-parametric PDEs : d = +∞.

Smoothness properties of functions should be revisited by other means than Cm

classes, and appropriate approximation tools should be used.

Key tools : (i) Sparsity, (ii) Variable reduction, (iii) Anisotropy



Parametric and stochastic PDE’s

We are interested in PDE’s of the general form

P(u, a) = 0,

where u is the unkown and a is a parameter which is either finite or infinite
dimensional. Typically

P : V × X → W ,

where V ,X ,W are Banach spaces and a ranges in some compact set K ⊂ X .

Model 1 : steady state linear diffusion equation.

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

where f ∈ L2(D) is fixed.

In this example P(u, a) = f + div(a∇u) and the spaces are

X = L∞(D), V = H1
0 (D), W = V ′ = H−1(D).



The solution map

We also assume well-posedness of the problem in the Banach space V for every
a ∈ K . This allows us to define

a 7→ u(a)

which is the solution map from K to V .

For Model 1, this is done by assuming that

0 < r ≤ a ≤ R, a ∈ K ⊂ X = L∞(D).

Then Lax-Milgram theory ensures existence in V = H1
0 (D).

A priori bound : the solution map is bounded from K to V . :

‖u(a)‖V ≤ Cr :=
‖f ‖V ′

r
, a ∈ K , where ‖v‖V := ‖∇v‖L2 .

The parameter may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and propagation, risk assessment).

These applications often requires many queries of u(a), and therefore in principle
running many times a numerical solver. We want to avoid this.



Scalar parametrization

We expand a according to

a = a(y) = a +
∑

j≥1

yjψj , y = (yj )j≥1,

where a ∈ X , and (ψj )j≥1 is a given basis of functions from X , and assume that

yj ∈ [−1, 1] for all a ∈ K , so that y ∈ U := [−1, 1]N (always possible up to
renormalizing the ψj ).

Therefore, we have

K ⊂ Q = {a(y) : y ∈ U} =
{
a +

∑

j≥1

yjψj , (yj )j≥1 ∈ U
}

In what we shall simply assume that K is exactly of the form Q (big geometrical
simplification, often used as a model though).

For Model 1 well posedness over Q is ensured by the uniform ellipticity assumption for

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U.,

where
a(x , y) = a(y)(x) = a(x) +

∑

j≥1

yjψj (x).

or equivalently ā ∈ L∞(D) and
∑

j |ψj (x)| ≤ ā(x) − r , x ∈ D.



Numerical approximation to the solution map

We may thus define a new solution map

y 7→ u(y) := u(a(y)),

from U to V , which we would like to approximate numerically.

Infinite number of variables : we face the curse of dimensionality.

Anisotropy : the variables yj are less active when ψj is small.

Approximation by truncated expansions

u ≈
N∑

j=1

ujϕj ,

with ϕj : U → R and uj ∈ V . Therefore, separable format :

u(x , y) = u(y)(x) ≈
N∑

j=1

uj (x)ϕj (y),

Optimal expansion ? In L2(D × U) provided by singular value decomposition (best low
rank approximation). However, generally not accessible and the functions ϕj and uj
could be numerically complicated.

Instead, we use functions ϕj which are sparsely picked from a predefined simple
dictionnary.



Sparse polynomial approximations using Taylor series

We consider the expansion of u(y) =
∑

ν∈F tνy
ν, where

yν :=
∏

j≥1

y
νj

j
and tν :=

1

ν!
∂νu|y=0 ∈ V with ν! :=

∏

j≥1

νj ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
νj 6= 0). The sequence (tν)ν∈F is indexed by countably many integers.

ν

1

ν3

2

ν
Objective : identify a set Λ ⊂ F with #(Λ) = N such that u is well approximated by
the partial expansion

uΛ(y) :=
∑

ν∈Λ

tνy
ν.



Best N-term approximation

By triangle inequality we have

‖u − uΛ‖L∞(U,V ) ≤ sup
y∈U

‖u(y) − uΛ(y)‖V ≤ sup
y∈U

‖
∑

ν/∈Λ

tνy
ν‖V ≤

∑

ν/∈Λ

‖tν‖V

Best N-term approximation in the ℓ1(F) norm : use for Λ the N largest ‖tν‖V .

Observation (Stechkin) : if (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1, then for this Λ,

∑

ν/∈Λ

‖tν‖V ≤ CN−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖p .

Proof : with (tn)n>0 the decreasing rearrangement, we combine

∑

ν/∈Λ

‖tν‖V =
∑

n>N

tn =
∑

n>N

t1−p
n tpn ≤ t

1−p
N

Cp and Nt
p
N
≤

N∑

n=1

tpn ≤ Cp .

Question : do we have (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1 ?



The main result for Model 1

Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(‖ψj‖L∞ )j>0 ∈ ℓp(N) ⇒ (‖tν‖V )ν∈F ∈ ℓp(F).

Interpretations :

(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ψj .

(ii) We approximate u(y) in L∞(U,V ) with algebraic rate O(N−s) despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large.

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

Same result for more general linear equations Au = f with affine operator dependance :
A = A+

∑
j≥1 yjAj uniformly invertible over y ∈ U, and (‖Aj‖V→W )j≥1 ∈ ℓp(N).

Key idea in the proof : holomorphic extension z 7→ u(z) with z = (zj ) ∈ CN. Domains
of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that

∑

j>0

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

for some δ > 0, then u is holomorphic, with bound ‖u(z)‖V ≤ Cδ, in the polydisc

Uρ := ⊗{|zj | ≤ ρj },

Hint : Lax-Milgram theorem applies with ℜ(a(x , z)) ≥ δ > 0.



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫

|z ′|=b

u(z ′)

z − z ′
dz ′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj , for a
δ-admissible sequence ρ gives

‖∂νu|z=0‖V ≤ Cδν!
∏

j>0

ρ
−νj

j
.

and therefore
‖tν‖V ≤ Cδ

∏

j>0

ρ
−νj

j
= Cδρ

−ν.

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf
{
ρ−ν ; ρ s.t.

∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D
}
.

We do not know the general solution to this problem, except when the ψj have
disjoint supports. Instead design a particular choice ρ = ρ(ν) satisfying the constraint
with δ = r/2, for which we prove that

(‖ψj‖L∞ )j≥1 ∈ ℓp(N) ⇒ (ρ(ν)−ν)ν∈F ∈ ℓp(F).



A simple case

Assume that the ψj have disjoint supports. Then we maximize separately the ρj so that

∑

j>0

ρj |ψj (x)| ≤ a(x) −
r

2
, x ∈ D,

which leads to

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
.

We have
‖tν‖V ≤ 2C0ρ

−ν = 2C0b
ν,

where b = (bj ) and

bj := ρ
−1
j

=
|ψj (x)|

a(x) − r
2

≤ ‖ψj‖L∞
R − r

2

.

Therefore b ∈ ℓp(N). From (UEA), we have |ψj (x)| ≤ a(x) − r and thus ‖b‖ℓ∞ < 1.

We finally observe that

b ∈ ℓp(N) and ‖b‖ℓ∞ < 1 ⇔ (bν)ν∈F ∈ ℓp(F).

Proof : factorize ∑

ν∈F

bpν =
∏

j>0

∑

n≥0

b
pn
j

=
∏

j>0

1

1 − b
p
j

.



Other models

Model 2 : same PDE but no affine dependence, e.g. a(x , y) = a(x) + (
∑

j≥0 yjψj (x))
2.

Assuming that a(x) ≥ r > 0 guarantees ellipticity uniformly over y ∈ U.

Model 3 : similar problems + non-linearities, e.g.

g(u) − div(a∇u) = f on D = D(y) u|∂D = 0,

with same assumptions on a and f . Well-posedness in V = H1
0 (D) for all f ∈ V ∗ is

ensured for certain nonlinearities, e.g. g(u) = u3 of u5 in dimension m = 3 (V ⊂ L6).

Model 4 : PDE’s on domains with parametrized boundaries, e.g.

−∆v = f on D = Dy u|∂D = 0.

where the boundary of Dy is parametrized by y , e.g.

Dy := {(x1, x2) ∈ R
2 : 0 < x1 < 1 and 0 < x2 < b(x1, y)},

where b = b(x , y) = b(x) +
∑

j yjψj (x) satisfies 0 < r < b(x , y) < R. We transport

this problem on the reference domain [0, 1]2 and study

u(y) := v(y) ◦ φy , φy : [0, 1]2 → Dy , φy (x1, x2) := (x1, x2b(x1, y)).

which satisfies a diffusion equation with coefficient a = a(x , y) non-affine in y .



Polynomial approximation results for these models

In contrast to model 1, bounded holomorphic extension is generally not feasible in a
complex domain containing the polydisc U = ⊗{|zj | ≤ 1}. For this reason,Taylor series
are not expected to converge. Instead we consider the tensorized Legendre expansion

u(y) =
∑

ν∈F

uνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are L∞ normalized Legendre polynomials.

Theorem (Chkifa-Cohen-Schwab, 2013) : For models 2, 3 and 4 and for any p < 1,

(‖ψj‖X )j>0 ∈ ℓp(N) ⇒ (‖uν‖V )ν∈F ∈ ℓp(F).

with X = L∞ for models 2, 3, and X = W 1,∞ for model 4.

Therefore, there exists polynomial approximations with uniform rate O(N−s) where
s = 1

p
− 1 and mean square rate O(N−r ) where r = 1

p
− 1

2
.

Key ingredient in the proof : estimates of Legendre coefficients for holomorphic
functions in a “small” complex neighbourhood of U.



Taylor vs Legendre expansions

In one variable :

- If u is holomorphic in an open neighbourhood of the disc {|z | ≤ b} and bounded by
M on this disc, then the n-th Taylor coefficient of u is bounded by

|tn | :=

∣∣∣∣∣
u(n)(0)

n!

∣∣∣∣∣ ≤ Mb−n

- If u is holomorphic in an open neighbourhood of the domain Eb limited by the ellipse
of semi axes of length (b + b−1)/2 and (b − b−1)/2, for some b > 1, and bounded by
M on this domain, then the n-th Legendre coefficent of u is bounded by

|un | := |〈u, Ln〉| ≤ Mb−nφ(b), φ(b) :=
πb

b − 1

b

10−1

b−b

10−1

2
b+b

−1

2

−1



A general assumption for sparsity of Legendre expansions

We say that the solution to a parametric PDE D(u, y) = 0 satisfies the
(p, ε)-holomorphy property if and only if there exist a sequence (cj )j≥1 ∈ ℓp(N), a
constant ε > 0 and C0 > 0, such that : for any sequence ρ = (ρj )j≥1 such that ρj > 1
and ∑

j≥1

(ρj − 1)cj ≤ ε,

the solution map has a complex extension

z 7→ u(z),

of the solution map that is holomorphic with respect to each variable on a domain of
the form Oρ = ⊗j≥1Oρj where Oρj is an open neigbourhood of the elliptical domain
Eρj , with bound

sup
z∈Eρ

‖u(z)‖V ≤ C0,

where Eρ = ⊗j≥1Eρj .

Under such an assumption, one has (up to additional harmless factors) an estimate of
the form

‖uν‖V ≤ C0 inf
{
ρ−ν ; ρ s.t.

∑

j≥1

(ρj − 1)cj ≤ ε
}
,

allowing us to prove that (‖uν‖V )ν∈F ∈ ℓp(F).



A general framework for establishing the (p, ε)-holomorphy assumption

Assume a general problem of the form

P(u, a) = 0,

with a = a(y) = a +
∑

j≥1 yjψj , where

P : V × X → W ,

with V ,X ,W a triplet of complex Banach spaces, and a and ψj are functions in X .

Theorem (Chkifa-Cohen-Schwab, 2013) : assume that

(i) The problem is well posed for all a ∈ Q = a(U) with solution u(y) = u(a(y)) ∈ V .

(ii) The map P is differentiable (holomorphic) from X × V to W .

(iii) For any a ∈ Q, the differential ∂uP(u(a), a) is an isomorphism from V to W

(iv) One has (‖ψj‖X )j≥1 in ℓp(N) for some 0 < p < 1,

Then, for ε > 0 small enough, the (p, ε)-holomorphy property holds.



Idea of proof

Based on the holomorphic Banach valued version of the implicit function theorem (see
e.g. Dieudonné).

1. For any a ∈ Q = {a(y) : y ∈ U} we can find a εa > 0 such that the map a → u(a)

has an holomorphic extension on the ball B(a, εa) := {ã ∈ X : ‖ã − a‖X < εa}.
2. Using the decay properties of the ‖ψj‖X , we find that Q is compact in X . It can be
covered by a finite union of balls B(ai , εai ), for i = 1, . . . ,M.

3. Thus a → u(a) has an holomorphic extension on a complex neighbourhood N of Q
of the form

N = ∪M
i=1B(ai , εai ).

4. For ε small enough, one proves that if
∑

j≥1(ρj − 1)cj ≤ ε with cj := ‖ψj‖L then

with Oρ = ⊗j≥1Oρj where Ob := {z ∈ C : dist(z , [−1, 1])C ≤ b − 1} is a
neighborhood of Eb, one has

z ∈ Oρ ⇒ a(z) ∈ N .

This gives holomorphy of z 7→ u(z) = u(a(z)) in each variable for z ∈ Oρ.



Numerical computation of polynomial approximations

Strategies to build the set Λ :

(i) Non-adaptive, based on the available a-priori estimates for the ‖tν‖V .

(ii) Adaptive, based on a-posteriori information gained in the computation
Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛN .

Objective : develop adaptive strategies that converge with optimal rate (similar to
adaptive wavelet methods for elliptic PDE’s : Cohen-Dahmen-DeVore, Stevenson).

Recursive computation of the Taylor coefficients for Model 1 : with ej the Kroenecker
sequence ∫

D

ā∇tν∇v = −
∑

j : νj 6=0

∫

D

ψj∇tν−ej∇v , v ∈ V .

We compute the tν on downward closed (or “lower”) sets Λ : ν ∈ Λ and
µ ≤ ν⇒ µ ∈ Λ.
Given such a Λk and the (tν)ν∈Λk

we compute the tν for ν in the margin

Mk := {ν /∈ Λk ; ν − ej ∈ Λk for some j},

and build the new set by bulk search : Λk+1 = Λk ∪ Sk , with Sk ⊂ Mk smallest such
that

∑
ν∈Sk

‖tν‖2V ≥ θ
∑

ν∈Mk
‖tν‖2V , with θ ∈ (0, 1).

Such a strategy can be proved to converge with optimal convergence rate #(Λk )
−s .
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Test case in high dimension d = 255

Physical domain D = [0, 1]2.

Diffusion coefficients a(x , y) = 1 +
∑d

j=1 yjψj where ψj are weighted Haar wavelets of
the form

ψ = βlhk,l , hk,l = h(2l · −k), βl = c2−γl

with γ > 0 (correlation in the diffusion field) and c > 0 such that (UEA) holds.

Adaptive search of Λ implemented in C++, spatial discretization by FreeFem++.

Comparison between the Λk generated by adaptive algorithms (red, green) and
non-adaptive choices {supνj ≤ k} (black) or {

∑
νj ≤ k} (purple) or k largest a-priori

bounds on the ‖tν‖V (blue). Left γ = 0.5, right γ = 3.
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Highest polynomial degree with #(Λ) = 1000 coefficients : 1, 2, 16 and 13.



Numerical methods : strategies to build the polynomial approximation

(i) Intrusive : exact computation of the Taylor coefficients ‖tν‖V for the linear-affine
model (Chkifa-Cohen-DeVore-Schwab) or Galerkin approximation of the Legendre
coefficients (Gittelson-Schwab). Adaptive algorithms with optimal theoretical
guarantees.

(ii) Non-intrusive : based on snapshots ui := u(y i ) for i = 1, . . . ,m. Interpolation
(Chkifa-Cohen-Schwab) or Least Squares (Chkifa-Cohen-Migliorati-Nobile-Tempone).
Adaptive algorithms seem to work well, however with no theoretical guarantees.

Additional prescriptions for non-intrusive methods :

(i) Progressive : enrichment ΛN → ΛN+1 requires only one or a few new snapshots.

(ii) Stable : moderate growth with N of the Lebesgue constant relative to the
interpolation operator.



Sparse interpolation

Let {t0, t1, t2 . . .}, be an infinite sequence of pairwise distinct points in [−1, 1] and let
Ik be the univariate interpolation operator on Pk associated to the section {t0, . . . , tk }.

Hierarchical (Newton) form : Ik =
∑k

l=0 ∆l , with ∆l := Il − Il−1 and I−1 := 0.

Tensorization and sparsification : for ν ∈ F , we define the point

zν := (tν1 , tν2 , . . . ) ∈ U .

Theorem (Kuntzmann 1959) : if Λ is downward closed, the set

ΓΛ := {zν : ν ∈ Λ},

is unisolvent for PΛ = Span{y 7→ yν : ν ∈ Λ} and the interpolant is

IΛ :=
∑

ν∈Λ

∆ν, ∆ν := ⊗j≥1∆νj .

Theorem (Chkifa-Cohen-Schwab, 2012) : if Lk = ‖Ik‖L∞→L∞ ≤ (1 + k)a, then
LΛ = ‖IΛ‖L∞→L∞ ≤ #(Λ)1+a. Moderate growth of Lk for Leja points (a = 1).

A straightforward adaptive algorithm : given ΛN , define ΛN+1 := ΛN ∪ {ν∗} with
ν∗ /∈ ΛN such that ΛN+1 is downward closed and maximizing ‖∆νu‖L∞ .

Remark : the same principles apply to the tensorization of other systems, such as
hierarchical piecewise linear finite elements.



Robustness to dimension growth

We apply the adaptive interpolation algorithm to

u(y) := (1 +

d∑

j=1

γjyj )
−1, γj =

3

5j3
,

for different numbers d of variables.
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Robustness to noise

Same function u in dimension d = 16, with noisy samples (noise level = 10−2). using
adaptive interpolation based on different univariate sequences.
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Stability

The Lebesgue constant for the Clemshaw-Curtis point with sequencial intermediate
filling.
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Stability

The Lebesgue constant for
- the Leja points on [−1, 1].
- the R-Leja points (Clemshaw-Curtis points with intermediate Van der Corput filling).
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Comparison with Kriging interpolation algorithms

Test case : y = (y1, y2, y3, y4) shape parameters in the design of an airfoil and u(y) is
the lift to drag ratio (scalar quantity of interest) obtained by ONERA numerical solver.
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Error curves in terms of number of points are comparable.

The CPU cost for sparse interpolation scales linearly with the number of points.

This contrasts with Kriging methods which require solving ill-conditionned linear
systems of growing size + optimization of the parameters of a Gaussian kernel.



Approximation of the solution map and reduced order modeling

For a parametric PDE P(u, a) = 0 with a ranging in K ⊂ X , we define the solution
manifold

M := u(K ) = {u(a) : a ∈ K } ⊂ V .

Reduced modeling : find low dimension spaces that simultaneously approximate well
all solutions to the parametric PDE.

Benchmark : Kolmogorov N-width

dN (M)V = inf
dim(E)=N

max
v∈M

min
w∈E

‖v − w‖V .

If K is of the form K = Q = {a(y) = a +
∑

j≥1 yjψj : y ∈ U}, we have

dN (M)V = inf
dim(E)=N

max
y∈U

min
w∈E

‖u(y) − w‖V .

Uniform approximation estimates of the solution map y 7→ u(y) by truncated
separable expansions of the form

max
y∈U

‖u(y) −
N∑

i=1

uiϕi (y)‖ ≤ εN ∼ N−s ,

with ui ∈ V and ϕi : U → R, imply similar estimates on the Kolmogorov width of the
solution manifold :

dN (M)V ≤ max
v∈M

min
w∈EN

‖v − w‖V ≤ εN , EN := span{u1, . . . , uN }.



Reduced bases (Maday, Patera)

Define a reduced modeling space EN = span{u1, . . . , uN }, where the ui are particular
instances (snapshots) from the solution manifold

ui = u(ai )

for some a1, . . . , aN ∈ K .

Greedy selection : having selected u1, . . . , uN−1 ∈ M, choose the next instance by

uN = argmax{‖v − PEN−1
v‖V : v ∈ M},

where PE is the orthogonal projector onto E , or equivalently uN = u(aN), with

aN = argmax{‖u(a) − PEN−1
u(a)‖V : a ∈ K }.

This algorithm is not realistic : ‖u(a) − PEN−1
u(a)‖V is unknown, however can be

estimate at moderate cost by a-posteriori error analysis. Therefore, one rather apply a
weak-greedy algorithm : uN such that

‖uN − PEN−1
uN‖V ≥ γmax{‖v − PEN−1

v‖V : v ∈ M},

for some fixed 0 < γ < 1.



Comparison with N-width

Performance of reduced bases : σN (M)V := max{‖v − PEN
v‖V : v ∈ M}

Comparison with N-width : σN (M)V can be much larger than dN (M)V for an
individual N and M.

There exists M and N such that σN (M)V ≥ 2NdN (M)V .

However, a more favorable comparison is possible in terms of convergence rates :

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk) : For any s > 0 one
has

sup
N≥1

NsdN (M)V <∞ ⇒ sup
N≥1

NsσN (M)X <∞,

and for any a > 0 there exists b > 0 such that

sup
N≥1

eaN
s

dN (M)V <∞ ⇒ sup
N≥1

ebN
s

σN (M)X <∞.



A result on N-widths.

For a compact set K ⊂ X and a continuous mapping u : K → V , we would like to
control the decay dN (u(K ))V from dN (K )X .

Note that if u was a linear mapping, we would simply have

dN (u(K ))V ≤ CdN (K )X , C := ‖u‖L(X ,V ).

The following result shows that nonlinear holomorphic maps behave almost like linear
maps with respect to the asymptotic decay of N-widths.

Theorem (Cohen-DeVore, 2014) : Let X ,V be complex Banach spaces and let

K ⊂ O ⊂ X ,

with K compact and O open sets. Assume that

u : O → V

is uniformly bounded and holomorphic (Frechet differentiable in the sense of complex
Banach space). Then, for all t > 0,

sup
N≥1

NtdN (K )X <∞ ⇒ sup
N≥1

NsdN(u(K ))V <∞, s < t − 1.

Proof uses scalar parametrizations of K and polynomial approximations.



Conclusions

The curse of dimensionality can be “defeated” by exploiting both smoothness and
anisotropy in the different variables.

For certain models, this can be achieved by sparse polynomial approximations.

Adaptive algorithms with optimal theoretical guarantees are still to be developed, in
particular for non-intrusive approaches (interpolation, collocation, least-squares).

The choice of parametrization and representation of the solution are critical in this
analysis since it affects the properties of the map y 7→ u(y).

Other approaches to evaluate Kolmogorov width of solution manifold ? Lower bounds ?


