
DIOPHANTINE GEOMETRY ON CURVES OVER FUNCTION FIELDS

CARLO GASBARRI

These are extended notes of my five hours lecture at the Winter School on Algebraic Curves,
Riemann Surfaces and Moduli Spaces held at the Morningside Center of Mathematics, CAS
from march 4th to 8th 2019.

We explain the main steps of the proof of three cornerstone theorems in the diophantine
geometry of smooth projective curves over a function field in one variable in characteristic
zero:

Let F be the function field of a smooth projective curve B defined over C.
– We prove that every XF curve of genus zero defined over F has infinitely many F–rational

points and therefore it is isomorphic, over F , to P1.
– We introduce then the important concept of isotrivality for curves defined over F : Isotriv-

ial curves are those which, after a finite extension of F , are isomorphic to curves defined over
C (which is naturally a subfield of F ). In particular we will prove an important isotriviality
criterion as a consequence of a classical Theorem by De Franchis (which is proved in the
notes).

– We prove that a smooth projective curve XF of genus one, equipped with a rational point,
has a natural structure of a commutative group variety. If the curve is not isotrivial, then we
will prove that this group is finitely generated. This is known as the Mordell Weil Theorem.

– We prove that a non isotrivial smooth projective curve XF of genus at least two has only
finitely many F–rational points.

We tried to keep the notes as much as self contained as possible. Nevertheless, the proof of
all these theorems require properties of the algebraic geometry of curves and surfaces. Most
of them are quite standard, for instance they are treated in the classical book by Hartshorne
[10] or, for the analytic point of view, the book by Griffiths and Harris [7]. We provide proofs
of statements which are specific to these notes.

Very good references which cover many of the topic treated on this course and where one
can find the proof of almost all the quoted properties are [11] and [2].

There are few standard main theorems whose proof requires a little bit deeper knowledge
of algebraic geometry:

–The semi stable reduction Theorem: Theorem 4.4, whose proof is not very difficult in
characteristic zero (but it requires a proof) and a proof may be found for instance in [9].

– The existence of parameter spaces for morphisms and isomorphisms. These are described
for instance in [3], in [8] and [5] (for parameter spaces of isomorphisms).
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– The basic theory of foliations : any standard book on ordinary differential equations over
the complex numbers would be sufficient to cover the facts used in these lectures.

The topic of thiese lectures may also be seen as a ”motivating topic” of part of algebraic
geometry: most of the classical theorems of the algebraic geometry of curves and surfaces are
used to obtain some relatively explicit theorems in diophantine geometry. These lectures do
not pretend any originality: most of the statements are very classical, the only contribution
here is to provide a diophantine geometry motivation and all the mistakes and inaccuracies.
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1. Lecture One

One of the main objectives in mathematics is solving algebraic equations. Given a system
of algebraic equations G(X) = 0 defined over a ring A, may we know if there are solutions of
it on A? and, in case, may we explicitly find them? Of course the prototype of such a ring
is Z or rings finite over it, but the theorem of Matiyasevich tells us that we cannot find a
general method to answer to the question in this situation.

Never the less one can try to see if it is possible to answer to the question for some class of
systems of algebraic equations.
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Since long time, we know that exists a similarity within the following three rings:

(1.1) Z; C[t]; Fq[t].

– They are all P.I.D.
– They have a unique prime ideal (0) which is dense in the Zariski topology and all the

other prime ideals are maximal.
– There is also another analogy called ”the Product formula” which, for the last two rings

is equivalent to the fact that a rational function on P1 has as many zeros as many poles
(counted with multiplicity).

Essentially all the technics one can develop to study the system of polynomial equations
over Z may be developed also for studying the same theory over C[t] or Fq[t]. But on the rings
k[t] (with k an algebraically closed field) we can use tools coming from projective geometry
and, in the case of C[t], from topology. Thus one can hope that the study of the diophantine
equations may be easier to solve over these rings then over Z. Consequently before we attack
the theory of systems of polynomial equations over Z, we can try to study the same theory
over C[t] or Fq[t]. In most of the cases, a statement which is false in the theory of polynomial
equations over k[t] is also false (often for the same reasons) when restated in the theory of
polynomial equations over Z.

The main topic of Diophantine geometry is attempt to answer to the following meta ques-
tion:

Given a system of polynomial equations G(X) = 0 over a ring R, can we understand the
structure of the set of solutions of it from the properties of R and the geometric properties of
the algebraic variety V(G)?

”Understanding the structure of the set of solutions” means being able to answer to some
of these questions:

– Under which geometric conditions this set of solutions is finite?
– Under which conditions this set is or is not Zariski dense in V(G)?
– Is there some particular structure on this set? (for instance a group structure, and in this

case what kind of group?)

Let K be the field of fraction of the involved ring R. By ”geometric properties of V(G)”
we mean the properties of the variety V(G) over the algebraic closure of K.

In these lectures we will concentrate on the Diophantine Geometry over the ring C[t].
It is well known that the variety Spec(C[t]) can be compactified to the projective line P1.
The field of fractions of C[t] is C(t) which is also the field of rational functions of P1.
To generalise a bit the situation, form now on we will fix a smooth projective curve B over

C and we will denote by F the field C(B).
We will be interested in studying the Diophantine Geometry of curves over F .
Observe that the field F is not algebraically closed.
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Let f : XF → Spec(F ) be a variety defined over F . We would like to understand the set of
F–rational points of XF . We begin by give a precise definition of a rational point:

We start with some examples:

Example 1.1. Let F = C(t) and XF be the line {X + tY + tZ = 0} ⊂ P2. Then the point
[0 : 1 : −1] is a F–rational point of XF . But also [−t; 1; 0] is a rational point of XF .

In the example above we see that the two points on the variety XF are of different nature:
the first one has coordinates in C and the second had coordinates over the field F . Also notice
that, in order to define the points and the curve, we used coordinates (thus an embedding
inside a projective plane).

We would like to provide a geometric definition of rational point which is intrinsic, in
particular it will depend on the coordinates or the particular embedding of the variety. .

We make another example:

Example 1.2. Let k be any field. Let X be the variety A1
k := Spec(k[t]). A k rational

point on X is simply an element a ∈ k. It correspond to the maximal ideal (t − a) ⊂ k[t].
It also corresponds to a k–morphism k[t] → k. And it also corresponds to a k–morphism
a : Spec(k)→ X.

In general we see that the example above generalises to any affine variety: If A is a k algebra
and X = Spec(A); Suppose that X ⊂ AN

k . A point (a1, . . . , aN) of AN
k with coordinates in k

which is contained in X corresponds to a maximal ideal ma ⊂ A such that A/ma ' k.
We deduce the following important observation (which is essentially the statement of the

classical Hilbert Nullstellensatz):

There is a bijection between k–rational points of X and morphisms of k-schemes Spec(k)→
X.

From this observation, it is natural to give the following definition:

Definition 1.3. Let F be a field and f : XF → Spec(F ) be a F–variety. A F–rational point
of XF is a morphism of F–Schemes

P : Spec(F ) −→ XF .

The set of F–rational points of XF is denoted XF (F ).

Observe that, if L/F is a field extension and XF is a variety defined over F , denoting XL

the L–variety XF ×F Spec(L), we have that

XF (F ) ⊆ XL(L).

(prove this by exercise).

1.1. Models of varieties. Suppose again that F = C(t). Let XF be an affine variety de-
fined over K. By definition XF = Spec(F [X1, . . . , Xn]/I), where I = (G1(X), . . . , Gr(X))
is the ideal specifying the equations which define XF . Each Gi(X) is a polynomial in
C(t)[X1, . . . , Xn].

Suppose that Gi(X) ∈ C[t][X1, . . . , Xn].
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In this case, we can associate to XF the variety X defined over C given by X :=
Spec(C[t,X1, . . . , Xn]/(G1(t,X), . . . , Gr(t,X))). Roughly speaking, X have been builded
up from XF by considering the element t ∈ K not as a constant but as a variable.

The natural morphism C[t]→ C[t][X1, . . . , Xn] give rise to a morphism

(1.2) X → A1
C

We also have a natural morphism (the generic point) η : Spec(F )→ A1
C and a morphism of

schemesXF →X given by the natural morphims C[t,X1, . . . , Xn]/(G1(t,X), . . . , Gr(t,X))→
F [X1, . . . , Xn]/I. Moreover the diagram

(1.3) XF
//

��

X

��
Spec(F )

η // A1
C

is cartesian.

Let F be the field C(B) as above and let XF → Spec(F ) be a F–variety. A model of XF

over B will be a C–variety which generalise the construction above. We will see that the
models are not unique and we will see the relations between them.

The field F is equipped with a map of k–schemes η : Spec(F )→ B. The image is a point
everywhere dense called the generic point of B.

Definition 1.4. Let f : XF → Spec(F ) be a variety. A model of XF over B is a C–
variety X equipped with a flat surjective map of C varieties g : X → B and such that
XF = X ×B Spec(F ); in other words the following diagram is cartesian:

(1.4) XF
//

��

X

��
Spec(F )

η // B.

Example 1.5. Consider the curve XF over field F = C(t) defined by the equation y2 = x3 + t2.
We may consider t as a variable and associate to XF the surface X defined over C defined
by the same equation (the variables will be x, y and t). The surface X has a k–morphism
f : X → A1

C; sending (x; y; t) to t. Each time we fix a point t0 ∈ A1
C we may look to the

fibre of f over t0; it will be the C–curve Xt0 := {y2 = x3 + t20}. Observe that the curve Xt0 is
smooth if t0 6= 0 and singular if t0 = 0. Observe also that the surface X is singular exactly
where the curve X0 is singular. If we blow up the singular point and then we blow up once

again the singular point of the strict transform of X be obtain a smooth surface X̃ . This is
another model of XF . Observe that this model has again a map over A1

C but this time the

fibre over 0 is a reducible curve. On the other side, the fibre of X̃ over 0 remains singular.
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1.2. Main properties of models.
(a) by definition, XF is the fibre over the generic point of B. Since η is dense in B, we have

that the image of XF in X is dense.
(b) Let F (XB) be the fraction field of XF , then F (XF ) = C(X ) (prove it by exercise).
(c) Let p ∈ B be a closed point and Y ⊂ X be a subvariety contained in the fibre over p;

Let X̃ →X be the blow up of Y ; then X̃ is another model of XF .
(d) More generally you can prove the following fact:

Proposition 1.6. Let X be a C–variety with an isomorphism of fields F (XF ) ' C(X )

then, there is a variety X̃ birational to X with a flat surjective map X̃ → B which is a
model of XF .

We can also clarify the relationship within two arbitrary models of the same projective
variety:

Proposition 1.7. Suppose that X1 and X2 are two projective models of the same variety
XF . Then, there exists a third model X3 of XF over B with a commutative diagram

(1.5) X3

}} !!
X1

// X2

where the dotted arrow is a birational map.

(e)A natural model for the projective space Pn
F is the product B ×C Pn

C. More generally,
if X0 is a variety defined over C, then a ”natural model for the F–variety X0 ×C Spec(F ) is
the variety X0 ×B.

(f) Suppose that XF is projective, an easy (but not always good) way to construct a model
of XF is the following:

Embed XF ↪→ PN
F . Consider the model of PN

F constructed in (e) and take the Zariski
closure of XF inside it. The Zariski closure X ↪→ B ×C PN

k is then a model of XF .
(g) Other natural models of PN

F are constructed as follows: Let E be a vector bundle of
rank N + 1 over B, then P(E) → B is a smooth projective model of PN

F ; of course we can
apply (f) to this situation and construct in this way other models of projective XF .

(h) Suppose that R is a C–scheme such that C(R) = F . Typical examples R are affine
open sets of B or the spectra of local rings of closed points of B. As before we have a natural
map η : Spec(F )→ R. We can generalise the notion of model to R: It will be a faithfully flat
R–scheme XR → R such that XF ' XR ×R Spec(F ). In this case we will say that XR is a
model of XF over R.

(i) Suppose that X is a model of XF over B. Let p0 : Spec(C) → B be a closed point.
Then we may consider the C–variety Xp0 := X ×B p0. This construction is the formal version
of the argument of ”specialising the parameters” used in the example 1.5.

(j) Suppose that h : B′ → B is a finite covering of curves. Let F ′ be the field of functions
of B′ (it is a finite extension of F ). Let X → B be a model of XF . Let XF ′ be the F ′–variety
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XF ×F Spec(F ′). Then X ′ =: X ×B B′ is a model of XF ′ over F ′. Warning: even if X is a
C–smooth variety, in general X ′ will not be a smooth variety.

(k) By the theorem of resolution of singularities (which holds over C), every smooth pro-
jective variety XF over F has a model which is a smooth projective C–variety. In this case
we will call such a model a projective regular model of XF over B.

(l) Suppose that XF is smooth. From now on we will always suppose that the models of it
are normal. Observe that every model is dominated by a normal model.

1.3. Models and rational points. We would like to understand the relations between mod-
els and rational points. If the variety XF is projective then the F–rational points of XF may
be described geometrically in terms of models and morphisms of C–varieties.

Let f : XF → Spec(F ) be a projective variety over F .
Let’s analyze first a simplified case.
Suppose that there exists a variety X0 defined over C such that XF = X0 ×C Spec(F ).

Thus a model of XF is X0×B. Each time we have a C–morphism of curves P : B → X0, we
can look to its graph ΓP : B → X0 ×k B.

The restriction of ΓP to the generic point Spec(F ) of B give rise to a point PF ∈ XF (F ).

Thus we get an inclusion HomC(B;X0) ⊆ XF (F ). Since X0 is projective, this inclusion is
indeed an equality:

Proposition 1.8. If X0 is projective then HomC(B;X0) = XF (F ).

Proof. We need to prove that any point p ∈ XF (F ) comes from a morphism P : B → X0.
We first do the case when X0 = PN . Fix coordinates on PN

k . A rational point p ∈ PN(F )
corresponds to N + 1 rational functions [f0; . . . ; fN ] up to a non trivial scalar factor. By
definition [f0; . . . ; fN ] defines a morphism from an affine open set of B to PN . Since B is
smooth, this extends to a morphism from B to PN .

Exercise 1.9. In the proof of the proposition above we used the following fact: Let B be a
smooth projective curve and U be a Zariski open set of it. Let f : U → PN be a morphism.
Then f extends to a morphism f ′ : B → PN . Prove it.

We have natural maps XF → X0 × B → PN × B and the closure of the image of XF is
X0 ×B. Every point p : Spec(F )→ XF extends to a morphism morphism P : B → PN ×B
whose projection on B is the identity (because of the first part of the proof); its image is
contained in X0 ×B because X0 ×B is the closure of XF in PN ×B. �

It is important to notice that the same proof applies in the general case:

Theorem 1.10. Let XF be a projective variety over F and f : X → B be a projective model
of it. Then there is a bijection:

{Points p ∈ XF (F )} ←→ {C−morphisms P : B →X s.t. f ◦ P = Id} .
The proof in the general case is a consequence of the case of PN and the Lemma below

(and then left as exercice).
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Lemma 1.11. Let f : X → B be a model of XF . Suppose that X is a smooth C–variety.
Then the morphism f : X → B can be factorized as f = p ◦ i with i : X → PN ×B a closed
immersion and p : PN ×B → B is the second projection.

Proof. Since X is projective over k; we can embed it inside some projective space ιX → Pn.
The map i := (ι; f) : X → PN ×B has the searched properties. �

The lemma above is useful because it will reduce the verification of many properties to
the ”easy” case of PN

F with the corresponding trivial model. Observe that X is a closed
subvariety of PN ×B.

The theorem above give a geometric interpretation of F rational points of a projective
variety: they correspond to C morphisms of the projective curve B to a model of the variety
which composed with the structural morphism are the identity.

Remark 1.12. Observe that a rational point is the generic fibre of a section.

The following example shows that the hypothesis of projectiveness is essential.

Example 1.13. Let F := C(t). The corresponding curve is P1
k. Consider the variety XF :=

A1
F . Consider the point p ∈ XF (F ) with coordinate t. This point do not extend to a morphism

P : P1
k → P1

C ×A1
k. Indeed such a point will give a non trivial morphism from P1

k to A1
k and

this is impossible.

1.4. Models of line bundles. It is important to observe that, if f : X → B is a model of
XF , p ∈ XF (F ) is a rational point and the we may see the section P : B →X corresponding
to p as a model of the morphism p : Spec(F )→ XF . In general, we can have models of many
”objects” defined over XF (cycles, divisors, sheaves, vector bundles...): these will be objects
of the same nature over a model cX of XF whose restriction to the generic fibre is the object
itself.

In particular we can have models of line bundles:
Let LF be a line bundle over XF . Fix a model f : X → B of XF over B. In the sequel,

we will denote by η : XF →X the natural inclusion.

Definition 1.14. A model of LF is a line bundle L over X such that, if η : XF → X is
the natural inclusion, then η∗(L ) ' LF .

(a) Suppose that XF is a curve. The degree of the restriction of the line bundle L to the
fibre over a closed point of B do not depend on the point. This number coincide with the
degree of the line bundle LF .

(b) If L is a line bundle on X whose restriction to the generic fibre is isomorphic to LF ,
then L will be a model of LF .

(c) If XF is PN
F then a natural model of O(1) over the model PN

k × B is p∗1(O(1)) where
p1 : PN

k ×B → PN
k is the the first projection. We will denote this model, again by O(1).

It is very important to observe that models of line bundles always exist over suitable models
of XF :
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Theorem 1.15. Let XF be a smooth projective variety over F and LF be a line bundle over

it. Let f : X → B be a projective model of XF . Then there is a blow up X̃ of X and a

model L of LF over X̃ .

Proof. Every line bundle LF on XF may be written as LF = M⊗N⊗−1 where M is generated
by global sections and N is very ample (thus generated by global sections). Consequently it
suffices to prove the theorem when LF is generated by global sections.

Since LF is generated by global sections, it defines a morphism gLF
: XF → PN

F for a suitable
N ; moreover g∗LF

(O(1)) = LF . This morphism extends to a rational map g : X 99K PN ×B.
Consequently there is a commutative diagram

(1.6) X1

}} $$
X // PN ×B

where the continuous arrows are morphisms. The variety X1 is birational to X and it is
model of XF over B. The line bundle g∗(O(1)) is a model of LF . �

A similar argument gives:

Proposition 1.16. Suppose that LF is an ample line bundle over a smooth projective variety
XF . Then one can find a regular projective model f : X → B of XF , a positive integer n
and an ample line bundle L1 of L⊗nF over it.

In order to prove this, we recall the following general fact:
d) Suppose that Z is a projective variety and L is an ample line bundle over it. Let

p : Z̃ → Z be a blow up of Z with exceptional divisor E. Then there exists a positive integer

n such that the line bundle p∗(L⊗n)(−E) is ample on Z̃.

Proof. There exists an integer m for which the linear system H0(XF , L
M
F ) gives an embedding

of XF in some projective space Pr. The Zariski closure X of XF in B ×Pr is a model of XF

equipped with a line bundle L which is ample. Let p : X → X be a resolution of singularities
which is is obtained by successive blow up and let E be the exceptional divisor. The line
bundle p∗(L

mn
)(−E) will be an ample model of LmnF . �

2. Lecture Two: Curves of genus zero over function fields

It is well known (Lüroth theorem) that every curve of genus zero over a algebraically closed
field is isomorphic to the projective line P1. If the base field is not algebraically closed it is
possible to have curves of genus zero which are not isomorphic to P1.

Example 2.1. Let X = {X2
0 + X2

1 + X2
2 = 0} ⊂ P2

Q. The curve XQ is of genus zero (it is
a conic) but it is not isomorphic to the projective line over Q: indeed X(Q) = ∅ and any
isomorphism defined over a field send rational points to rational points.
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Let F be a function field in one variable over the complex field as before and XF be a curve
of genus zero over it. In this lecture we will prove that there is an isomorphism XK ' P1

F

defined over F .
The proof we propose uses the complex topology. It is possible to find other proofs which

hold over any function field over an algebraically closed field.
The fact that every curve of genus zero over a function field of one variable F is isomorphic

to P1
F will be consequence of the following two theorems:

Theorem 2.2. Let F be a field and XF be a smooth projective curve of genus zero. Suppose
that XF (F ) is not empty, then there exists an isomorphism XF ' P1

F defined over F .

Proof. Let F be the algebraic closure of F . Since XF is of genus zero, the F curve X; =
XF ⊗F F is isomorphic to P1

F
. If KXF

is the canonical line bundle of XF then we have that

−KX is very ample. Indeed the restriction of −KX to X is isomorphic to OP1(2).
The linear system H0(XF ,−KXK

) embeds XK as a conic (smooth irreducible curve of
degree two) in P2

F . Thus every curve of genus zero over a field can be realized as a conic in
the projective line.

Let C ⊂ P2
F be a conic. Suppose that C(F ) is non empty. Let P ∈ C(F ); every line r in

P2
F defined over F and passing through P intersects the conic in P and another point Qr.
The point Qr is a F–rational point of C. Indeed every line defined over F intersects C in

two points which are conjugate. If one of the two points is F–rational, the other must be
rational too.

The linear system of the lines of P2
F passing through P is isomorphic to P1

F and the map
r → Qr defines a rational map between P1

F and C which is generically a bijection. Since C is
smooth, this map is an isomorphism. �

Exercise 2.3. Let F = C((t)) and C = {X2 + tY 2 − t2Z2 = 0} ⊂ P2
F . Find an explicit

isomorphism within C and P1
F defined over F .

The second Theorem is more difficult:

Theorem 2.4. Let F be the function field of an algebraic curve B defined over C and XF be
a smooth projective curve of genus zero. Then XF (F ) 6= ∅.

We will propose a proof of this theorem which holds over the complex numbers: we suppose
that the curve B is a curve defined over C. One can give a proof which holds over a general
algebraic closed field. The statement do not hold for arbitrary field.

In order to prove the theorem we need to recall some general properties of intersection
theory on surfaces:

– Let S be a smooth variety over the complex numbers. Let OS be the structural sheaf
of S and O∗S be the sheaf of invertible holomorphic functions on S. Let ZS be the sheaf of
locally constant continuous functions of S with values in Z, then we have an exact sequence
of sheafs

(2.1) 0→ ZS −→ OS
exp(2πi(·))−→ O∗S → 0.
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This give rise to an exact sequence of groups

(2.2) · · · → H1(S,Z) −→ H1(S,OS) −→ H1(S,O∗S) −→ H2(S,Z) −→ H2(S,ØS)→ . . . .

– The group H1(S,O∗S) is canonically isomorphic to the Picard group Pic(S) of isomorphism
classes of line bundles on S. Thus the exact sequence above give rise to a morphism of groups

δ : Pic(S) −→ H2(S; Z).

Now we list some properties of surfaces which will be used in the proof:
a) (Poincaré duality) In this case the cup product H2(S,Z)⊗Z H

2(S,Z)→ H4(S,Z) ' Z
is a perfect pairing.

b) (Serre Duality) Let Ω1
S be the locally free sheaf of differentials of S and KS := Λ2(Ω1

S).
Then KS is a line bundle on S called the canonical class of S. If L is a line bundle on S then
we have a canonical isomorphism

(2.3) H2(S, L) ' H0(S,KS ⊗ L∨)∨

where (·)∨ is the dual of (·).
c) (Riemann Roch) If L is a line bundle on S, then the Euler characteristic of L is the

integer χ(L) :=
∑2

i=0(−1)i dim(H i(S, L)). Then

lim
n→∞

χ(L⊗n)

n2
=

(L;L)

2
.

d) Let D1 and D2 be divisors in S. Then (D1;D2) = (δ(OS(D1); δ(OS(D2)). Thus the
algebraic intersection product coincides with the topological cup product.

e) (Adjunction formula) Suppose that D is a smooth curve in S then

(KS;D) + (D;D) = 2g(D)− 2.

In particular, since every class of line bundle is difference of two very ample line bundles and
a very ample line bundle is numerically equivalent to a smooth curve on S we find:

f) If A is a class of divisors on S then (KS;A) + (A : A) ≡ 0 mod(2).
g) A divisor H on S is said to be nef (numerically effective) if, for every effective divisor

D on S we have (H,D) ≥ 0. If H is nef and A is an ample divisor on S then for every
positive integer n the divisor nH +A is ample (this is a consequence of the Nakai Moishezon
ampleness criterion).

h)

Proposition 2.5. If H is a nef divisor and D is a divisor such that (H,D) > 0 and (D,D) >
0 then, for n� 0 we have H0(S,O(nD)) 6= 0.

Proof. Since (D;D) > 0, for n � 0 we have, by Riemann Roch, χ(O(nD)) > 0. Suppose
that H2(S,O(nD)) 6= {0} then by Serre duality, we can find a non zero effective divisor E on
S linearly equivalent to KS ⊗ O(−nD). But, for n sufficiently big, (KS ⊗ O(−nD), H) < 0
and this is not possible. Thus H2(S,O(nD)) = {0} and H0(S, nD) 6= {0}. �

We can now start the proof of Theorem 2.4.
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Proof. (Of 2.4) We fix a model f : X → B of XF where X is a smooth projective surface
and f is flat. Let b ∈ B(C) be a sufficiently general point and Fb the fibre f ∗(b). Then:

– Fb is a smooth projective curve in X which is of genus zero (because XF is) and it is nef
as a divisor (prove it by exercise). SInce two fibers are disjoint and numerically equivalent,
we have that (Fb, Fb) = 0.

– Let KX be the canonical class of X . By adjunction formula, we have (KX ;Fb) = −2.
– We have that H2(X ,OX ) = {0}: Indeed suppose that H2(X ; OX ) 6= {0}, then, by

Serre duality we have H0(X , KX ) 6= {0}. But (KX ;Fb) = −2 and Fb is nef. Contradiction.
– The remark above implies that the map δ : Pic(X ) → H2(X ,Z) is surjective. Conse-

quently every class in H2(X ,Z) is represented by a line bundle (or a divisor).
Consider the linear map

(2.4) (·; δ(O(Fb)) : H2(X ; Z) // Z

a // (a; δ(O(Fb)).

The image of the map will be a subgroup of Z so it will be of the form dZ.
Let’s prove that d = 1. The linear map

(2.5) αb := 1
d
(·; δ(O(Fb)) : H2(X ; Z) // Z

a // 1
d
(a; δ(O(Fb)).

is well defined and, by Poincaré duality, there exists a class A ∈ H2(X ,Z) such that
(·;A) = αb(·). The class A is the image, via δ of a divisor , which we will denote again by A.
Since d · (A;Fb) = d ·αb(Fb) = (Fb, Fb) = 0 and d · (A;A) = d ·αb(A) = (A,Fb) we obtain that
(A,A) = 0. Moreover, by the adjunction formula we have

(2.6) −2 = (KX ;Fb) = d(KX ;A)

But, as remarked above, (KX , A) + (A,A) ≡ 0 mod(2), thus the only possibility is d = 1.
We proved then that there exists a divisor B1 on X such that (B1;Fb) = 1.
We claim that B1 + nFb is effective for n � 0. Indeed (B1 + nFB;Fb) = 1 > 0 and

(B1 + nFb;B1 + nFb) = (B1 : B1) + 2n > 0 as soon as n� 0. By Riemann Roch, χ(O(B1 +
nFb)) > 0 for n � 0. Suppose that H2(X ,O(B1 + nF )) 6= {0} then by Serre duality, we
can find a non zero effective divisor E on S linearly equivalent to KX ⊗ O(−B1 − nFb).
But, (KX ⊗ O(−B1 − nFb), Fb) = −3 < 0 and this is not possible because Fb is nef. Thus
H2(X ,O(nD)) = {0} and H0(X , B1 + nFb) 6= {0}.

We proved that there exists an effective divisor B2 such that (B2;Fb) = 1. Write B2 =
Bh +V where Bh dominates B and f(V ) is a proper closed set of B. Let B3 be an irreducible
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component of Bh (indeed you can prove, by exercice, that Bh must be irreducible). The
morphism fB3 : B3 → B is finite and of degree one. Since B is smooth, it is an isomorphism.
Thus B3 is a section of f . The restriction of f to the generic fibre is a rational point of
XF . �

3. Lecture Three: Isotriviality

Let F be a function field as in the lectures before and B the smooth projective curve
associated to it. Within all the curves XF defined over F there are the curves which are
defined over C. Indeed, if X0 is a curve defined over C, then the curve X0 ×C Spec(F ) is a
curve defined over F .

Over F there can be also curves which are obtained in this way only after a finite extension
of F

Example 3.1. Let F = C(t). It is the field of fractions of P1. Consider the Curve C := {Y 2 =
X3 + t}. A priori it seems that C is a curve defined over F and which is not defined over C.
But consider the extension L := F [t1/2, t1/3]; over L the change of variables X = t1/3X1 and
Y = t1/2Y1 give rise to an isomorphism of C with the curve Y 2

1 = X3
1 + 1 which is defined

over C.

Curves of this kind play a special role in Diophantine Geometry thus we introduce the
following definition:

Definition 3.2. Let XF be a curve defined over F . We will say that XF is isotrivial if there
exists a curve X0 defined over C and an isomorphism

(3.1) XF ×F F ' X0 ×C F

where F is the algebraic closure of F .

Of course, if such an isomorphism exists, it is defined over a finite extension of F .
If XF is the curve X0 ×C Spec(F ) described before, a natural model of XF over B is the

surface X = X0 × B with the natural projection p : X0 × B → B. Observe that for every
b ∈ B, the fibre Xb of p over p is the curve X0. In particular all the fibres of the projection p
are isomorphic.

This property is specific to isotrivial curves.
Remark that in the lecture before we proved that every curve of genus zero is isotrivial.

Theorem 3.3. Let XF be a smooth projective curve of genus at least two defined over F .
Then XF is isotrivial if and only if for every projective model p : X → B of XF there exists
a non empty open set UX ⊂ B such that, for every couple of closed points b1 and b2 of UX

the fibre Xb1 is isomorphic to the fibre Xb2.
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A similar statement holds for curves of genus one but one has to suppose that they have a
rational point and one has to define isotriviality for curves of genus one with a markerd point.

Before we start the proof we recall the following fact from algebraic geometry:
a) Let X → B and Y → B be two families of projective curves of genus at least two.

Suppose that their generic fibre is smooth. Then there exists a scheme h : IsomB(X ,Y )→ B
with the following properties:

i) IsomB(X ,Y ) represents the functor of B–isomorphims from X to Y : for every T → B,
an element of IsomB(X ,Y )(T ) is an T– isomorphism from X ×B T to Y ×B T .

ii) IsomB(X ,Y ) is finite over B.
For more details about the scheme IsomB(X ; Y ), cf. for instance, [8] and [5].

We can now start the proof of Theorem 3.3:

Proof. Let XF be a F–curve. For the time being we will say that a projective model X → B
of XF has the ”isotrivial property” if there exists a open set UX ⊂ B such that, for every
couple of closed points b1 and b2 of UX the fibre Xb1 is isomorphic to the fibre Xb2 .

We claim that XF has a model which have the isotrivial property, then the isotrivial prop-
erty holds for every projective model of XF .

Indeed two models are birationally equivalent and they are dominated by a third one.
Thus it suffices to prove the claim when one model dominates the other. In this case, the
exceptional divisors do not dominate B thus the fibers of one model coincide with the fibers
of the other over a open set of B.

Moreover, if there is a finite extension L/K such that the curve XL := XF ×F L has a
model with the isotrivial property, then every model of XF has the isotrivial property (details
as exercise).

This implies that if XF is isotrivial, then every model of it has the isotrivial property.
Conversely, suppose that XF has a model X → B which has the isotrivial property. There

exists then a open set UX ⊂ B such that, for every b ∈ UX the fibre Xb is isomorphic to a
fixed curve X0 (defined over C).

Consider the B scheme IsomB(X , B × X0). It is finite over B (by property (b) above)
and dominant (by hypothesis). Thus there is a finite covering B′ → B with morphism
B′ → IsomB(X , B × X0). If we denote by L the field C(B′), we then have that the curve
XL is isomorphic to X0 ×C L. �

We will now prove an important criterion of isotriviality.

Theorem 3.4. Let XF be a smooth projective curve of genus at least two over F . Suppose
that there exists an isotrivial curve YF and a finite morphism f : YF → XF . Then XF is
isotrivial.

A similar statement hold for curves of genus one but one needs to require the presence of
a rational point.

The theorem will be consequence of a classical Theorem by De Franchis:

Theorem 3.5. (De Franchis) Let Y be a curve of genus g ≥ 2. Then there exist only finitely
many curves X with genus at least two and a non trivial morphism h : Y → X.
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Let’s see first how this implies Theorem 3.4:

Proof. (Of Theorem 3.4) We can make a field extension an suppose that YF is isomorphic to
a curve Y0 which is defined over C.

Let X → B be a model of XF .
The finite morphism f : YF → XF extends to a morphism from a blow up of B× Y0 to X .

Moreover the exceptional divisors of the morphisms do not dominate B.
This means that we can find an open set U ⊂ B such that for every b ∈ U we have a finite

morphism Y0 →Xb.
By De Franchis Theorem, this implies that the Xb’s belong to a finite list. Thus there exists

a smooth projective curve X0 for with there are infinitely many b ∈ U such that Xb ' X0.
We consider again the scheme IsomB(X , X0 × B). It is finite and dominant over B (the

image contains at least all the b’s as above. Thus we conclude as in the proof of Theorem
3.3. �

We now come to the proof of the De Franchis’s Theorem:

Proof. We first remark the following facts:
– By the Hurwitz formula, the genus of the possible X is bounded by the genus of Y .
– Moreover the degree of the possible h’s is also bounded by a constant which depends only

on the genus of Y .
– Consequently we may suppose that the genus of the X’s and the degree of h are fixed.
Given a curve X with a morphism h : Y → X, we can associate to it the ”equivalence

relation” Rh defined as follows:

(3.2) Rh
//

��

∆X

��
Y × Y

(h,h)
// X ×X.

The diagram being cartesian and ∆ is the diagonal. Observe that Rh = Y ×X Y . Moreover,
as a divisor, Rh = (h, h)∗(∆X).

We claim that if h : Y → X and k : Y → Z are two finite maps as above, then Rh = Rk if
and only if X ' Z and h = k (up to isomorphism of X).

Consider the map (h, k) : Y × Y → X ×Z. Let T := (h; k)(Rh). Since (h, k) is proper and
finite, T is a divisor. It suffices to prove that the natural projection T → X is an isomorphism
(by symmetry, T will be isomorphic to Z etc.)

Since X is smooth, it suffices to prove that T → X is of degree one.
Over an open set of X (and of Y ), Rh = {(a, b) ∈ Y × Y / h(a) = h(b)}; and similarly for

Rk.
Thus, the fact that Rh = Rk means that there exist open sets UX of X and VZ of Z such

that, for every x ∈ UX there exists a unique z ∈ UZ such that h−1(x) = k−1(z).
This implies that the restriction of T to UX × VZ is the set (x, y) where h−1(x) = k−1(y).

Consequently T |UX
→ UX is a bijection thus the map T → X is of degree one as claimed.
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In order to conclude, we need to prove that there are only finitely many such Rh.
We will prove the following two facts:
1) As a divisor, Rh =

∑a
i=1 niR

i
h where each of the Ri

h dominates ∆X , then there is a
constant c1, depending only on the genus of Y , such that, the multiplicity ni of Ri

h in Rh and
the number a of the components of Rh are both bounded by and c1.

2) Given two morphisms h : Y → X1 and k : Y → X2 (with Xi of genus at least two) with

associated divisors Rh
i =

∑a
i=1R

i
h and Rj

k =
∑b

j=1R
j
k respectively, then Ri

h is numerically

equivalent to Rj
k if and only if Rh

i = Rj
k.

3) There exists an ample line bundle H on Y × Y and a constant c which depends only on
the genus of Y , such that, for every morphism h : Y → X (with X of genus at least two) and
integer i we have (Ri

h;H) ≤ c.
To conclude we wii also need the following general fact:

Lemma 3.6. If H is an ample class on a smooth projective surface X, and T is a positive
constant, then the set AT of numerical classes of effective divisors D on X such that (D,H) ≤
T is finite

Proof. Let H = H1, . . . , Hr be a basis of Num(X)R made by ample divisors. Since rH1−Hi

is ample for r sufficiently big, we have that we may find a constant T1 such that if D ∈ AT
then (D,Hi) ≤ T1. The intersection product define an isomorphism between the vector space
Num(X)R and its dual. Let ϕH1 , . . . , ϕHr be the dual basis of the basis above. An element
D ∈ AT can be then written as D =

∑
aiϕHi

with 0 < ai ≤ T1. Since Num(X) is discrete,
the claim follows. �

Let’s see how points (1)–(3) and the Lemma above imply the Theorem: Let h : Y → X be
a morphism as above and Rh =

∑a
i=1R

i
h the associated divisor.

In order to conclude the proof, by point (1) it suffices to show that the Ri
H belong to a

finite list which depends only on Y . By point (2) in order to show this, it suffices to show
that the numerical class of the possible Ri

h belong to a finite list. Point (3) and Lemma 3.6
imply that the Ri

H belong to a finite list. Thus the conclusion of the Theorem Follows.
Let’s show now points (1)– (3).
Denote by f : Y × Y → X × X the morphism (h, h). It is a finite morphism of degree

d := deg(h)2. Thus its degree is bounded only in terms of the genus of Y . In particular it
does not contract any divisor of Y × Y .

For every irreducible component Ri
h, the morphism fRi

H
: Ri

h → ∆X = X is finite and its

degree di is less or equal to d. Thus f∗(R
i
H) = di ·∆X

Consequently we have that

(3.3) d ·∆X = f∗(f
∗(∆X)) = f∗(Rh) =

a∑
i=1

ni · (f∗(Ri
H)) = (

a∑
i=1

ni · di)∆X .

As a consequence we find that the number a of irreducible components of Rh and each of
the ni are bounded by d, thus by a constant depending only on the genus of Y . Which proves
(1).
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Remark 3.7. By restriction to the étale part of the morphism h one can actually prove that
ni = 1 for every i.

We recall the following standard fact on curves:
b) If X is a smooth projective curve of genus g and ∆X is the diagonal divisor in X ×X,

then we have (∆X ; ∆X) = 2− 2g. In particular it is negative if g ≥ 2.
By the projection formula and property (b), we obtain:

(Ri
H ;Ri

H) =
1

ni
· (Ri

H ;RH −
∑
j 6=i

Rj
H) ≤ 1

ni
· (Ri

H ; f ∗(∆X))

= 1
ni
· (f∗(Ri

H); ∆X)

= di
ni
· (∆X ; ∆X)

= 1
ni
· (2− 2g(X)).

In particular (Ri
h;R

i
H) is strictly negative.

We prove now (2): suppose that Ri
h 6= Rj

k. If they were numerically equivalent we would

have (Ri
H ;Ri

H) = (Ri
H ;Rj

k) ≥ 0. But since (Ri
H ;Ri

H) < 0 this cannot happens.
Fix a point q ∈ Y . For every p ∈ X, the line bundles h∗(OX(p)) and OY (deg(h) · q) are

numerically equivalent. Denote by pi : X × X → X and qi : Y × Y → Y (i = 1, 2) the
natural projections. We have that f ∗(pa1st(OX(p))⊗ p∗2(OX(p))) is numerically equivalent to
deg(h)(q∗1(OY (q))⊗ q∗2(OY (q))) and they are both ample.

Denote by L = q∗1(OY (q))⊗ q∗2(OY (q)) and by M = pa1st(OX(p))⊗ p∗2(OX(p)).
We have that

(L;Ri
H) = 1

deg(h)
· (f ∗(M);Ri

H)

= 1
deg(h)

· (M ; f∗(R
i
H))

= di
deg(h)

· (M ; ∆X)

= 2·di
deg(h)

Since the di’s and and deg(h) are bounded just in terms of the genus of Y , this proves (3). �

4. Lecture Four: The Mordell – Weil Theorem

In this lecture we will prove an importantTheorem on the theory of curves of genus one
over a function field: The Mordell Weil Theorem:
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Theorem 4.1. (Mordell–Weil) Let EF be a non isotrivial curve of genus one over the function
field F . Suppose that EF (F ) is non empty, then the set EF (F ) has a natural structure of
finitely generated abelian group.

In particular observe that EF (F ) is at most countable, which implies that the non isotriv-
iality condition is necessary.

Before we give the proof, we will need to recall and explain some facts on curves and
surfaces:

a) Let C be a smooth projective curve over a field k (arbitrary). Then there exists a
smooth projective commutative group variety J(C) called the Jacobian of C which classifies
the divisors of degree zero on C: each k–point of J(C) is a divisor of degre zero D on C
defined over k modulo rational equivalence. The dimension of J(C) is the genus of C.

b) If O ∈ C is a k rational point, we have an algebraic map, called the Abel Jacobi map
j0 : C → J(C) which sends the point P in the class of OC(P −O).

c) In particular, if the genus of C is one and O ∈ C(k) is a rational point, then the
Abel Jacobi map is an isomorphism. Consequently C inherit a natural structure of smooth
projective group variety of dimension one. We will call the couple (C, )) Elliptic curve defined
over k.

d) By definition of group variety, if the genus of C is one, as soon as we choose a k rational
point O ∈ C(k), the set C(k) has a natural structure of abelian group. The Mordell Weil
Theorem tells us that this, if k = F and C is non isotrivial, the group is finitely generated
over Z.

e) Suppose that XF is a a smooth projective curve and X → B is a smooth projective
model of it. There is a natural morphism of groups:

(4.1) ι : Pic(XF )→ Pic(X )

defined as follows: Let DF be an irreducible divisor on XF , the Zariski closure D of it is a
curve on X thus a divisor on it. Then OXF

(DF ) = OX (D).
The map ι is well posed because the field of rational functions of XF is the field of rational

functions of X . For the same reason, it is a group morphism.
f) In particular suppose that (EF , 0) is an elliptic curve over F . Let f : E → B be a model

of EF over B, b ∈ B and Eb the fibre of f over b. Suppose that cEb is smooth, thus Eb, Op) is
an elliptic curve over C. Point (f) above gives rise to a morphism of groups

(4.2) ιp : EF (F ) −→ Ep(C).

It is called morphism of specialisation at p.
g) Let k be a field of characteristic zero and (E, 0) be an elliptic curve over it. The curve

E can be realised as a smooth cubic curve in P 2: Riemann Roch Theorem on E tells us
that the llne bundle OE(30) is very ample and h0(E,OE(3O)) = 3. Thus the linear system
H0(E,OE(3O)) embeds E as a cubic curve in P2.

h) The group law on E may be described explicitly in terms of the cubic curve defined in
(d) above: given two points p and q in E, we define the point p + q in the following way:
consider the line through p and q, it intersects the curve E in a point r; Consider the line
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through r and 0. the third point of intersection of it with E is p+ q (the only non completely
evident fact that this construction equips E with the structure of a commutative group with
neutral element o is the associativity).

i) The elliptic curve E has four distinct points p such that 2 · p = 0. These are O and the
three points of the cubic having the tangent at the cubic which passes through 0.These points
are called points of two torsion of E.

j) Suppose that all the points of two torsions of E are rational over k. Observe that the
line passing through two of the non zero points of two torsions of E passes through the third
one. Indeed the sum of two points of two torsions is again a point of two torsion thus the
tangent to E in it passes through 0.

k) Suppose that all the two torsions points of E are rational over k. Impose that the line
through the three non zero two torsion points is the line Y2 = 0, that two of these three
points have coordinates [0 : 0 : 1] and [1 : 0 : 1], that the point 0 is the point of homogeneous
coordinates [1 : 0 : 0] and that the line Z3 = 0 is tangent to E in 0 with ordre of tangency
equal to three (thus 0 is an inflection point of E) then equation of the elliptic curve becomes

(4.3) Y 2 · Z = X(X − Z)(X − λ · Z)

In this case λ 6= 0 or 1 and the third non zero two torsion point has coordinates [λ : 0 : 1].
l) In Lecture two we shown that every curve of genus zero over F is isotrivial, in particular

it admits a model which is smooth over B. For elliptic curves too, the existence of a smooth
model impies isotriviality:

Theorem 4.2. Let (EF , O) be an ellipitc curve over F . If E admits a projective model
f : E → B which is smooth over B, then EF is isotrivial.

In other words we can state:

Corollary 4.3. Let EF be a non isotrivial curve of genus one over F . Then every model
f : E → B of EF is not smooth over B.

Proof. (Of Theorem 4.2) We can make a finite extension of F and suppose that the two torsion
points of E ar rational over F . Since all the two torsion points are rational over F , the curve
EF ca be written as in 4.3. In particular the element λ ∈ F defines a function λ : B → P1.

Fix a model f : E → B which is smooth over B (we, by hypothesis, suppose that it exists).
Fix a point b ∈ B. The restriction of the specialisation morphism ιp : EF (F ) → Ep(C)

is surjective on the group of the two torsion points (for instance because, locally E is dif-
feomorphic to a product). Consequently, the equation of the curve Eb is given by Y 2 · Z =
X(X−Z)(X−λ(b)·Z). This implies that∞ 6∈ λ(B). Consequently λ is the constant function
and the conclusion follows. �

m) The Theorem above gives a way to find non isotrivial elliptic curves: For instance the
curve

(4.4) Y 2 · Z = X(X − Z)(X − t · Z)

is not isotrivial over C(t) (in this case the function λ is not constant).
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n) Suppose that X is a smooth projective surface and D =
∑
Di is a divisor over it. We

will say that D is a simple normal crossing (SNC) divisor if D is reduced, each irreducible
component of D is a smooth curve and two components of D intersect transversally.

o) Suppose that XF is a smooth projective curve over the function field F . Let fX → B
be a model of XF . There exists a open set UX ⊂ B such that , for every b ∈ UX , the fibre
Xb is a smooth curve. In general, if b 6∈ UX , the fibre Xb is a divisor on X which may not
be SNC (it may contain non reduced or singular - or both - components).

p) Nevertheless the following Theorem holds:

Theorem 4.4. (Semistable Reduction Theorem) Let XF be a smooth projective curve. Then
there exists a finite extension F ′/F -with associated smooth projective curve B’ - such that the
F ′–curve XF ′ := XF ×F F ′ has a model (called the Semistable model) X → B′ whose fibres
are either smooth or SNC divisors with the following property: each irreducible component of
the fibre which is a rational curve intersects the other components in at least two points.

A proof of this theorem may be found for instance in [9] Proposition 3-48 page 118.

Proof. (of Mordell Weil Theorem) Since the theorem is true if we prove it after a finite
extension of F , from Theorem 4.4, it suffices to prove the following:

Lemma 4.5. Suppose that EF admits a semi stable model E → B, then the map

(4.5) EF (F ) −→ Pic(EF ) −→ Pic(E ) −→ H2(E ,Z)

is injective.

Lemma 4.5 will be consequence of the following:

Lemma 4.6. Let EF as above. Let p ∈ EF (F ) and P : B → E the associated section. Then

(4.6) (P ;P ) < 0.

Let’s see how Lemma 4.6 implies Lemma 4.5. suppose that p and q are two distinct F–
rational points of EF and P and Q be the associated sections. Then, since (P ;Q) ≥ 0 and
(P : P ) < 0, we have that P−0 and Q−O cannot be numerically equivalent, and consequenty
their image in H2(E ,Z) are distinct. �

In order to prove Lemma 4.6 we need to know recall some more properties of the geometry
of surfaces:

q) Let f : X → B be a smooth projective surface fibered over the curve B. The line
bundle KX /B := KX ⊗ f ∗(KB) (where KX is the canonical line bundle on the variety X) is
called the relative canonical line bundle of X over B and it is a model of the canonical line
bundle KXF

of the generic fibre XF .
r) If f : X → B is as in (f), we can define also the relative sheaf of differentials ΩX /B and

we have an exact sequence (called ”the first exact sequence of differentials”):

(4.7) 0 −→ f ∗(ΩB) −→ ΩX −→ ΩX /B −→ 0



DIOPHANTINE GEOMETRY ON CURVES OVER FUNCTION FIELDS 21

s) As one can see from the exact sequence above, the line bundle KX /B and the sheaf ΩX /B

coincide over the open set of X where the morphism f : X → B is smooth. In general there
is a natural map

(4.8) ΩX /B −→ KX /B.

Indeed it is given by the natural map ΩX /B⊗f ∗(ΩB)→ Λ2(ΩX ) = KX given by [α]⊗b→ α∧b.
t) Suppose that f : X → B is a semi stable model of the its generic fibre XF . In this case,

we can choose local equations (x, y) of X and t of B in a neighbourhood U of a singular point
p of a fibre of f , in such a way that f |U : U → f(U) is given by the morphism (x, y)→ t = xy.
Thus, the restriction to U of the first exact sequence of differentials gives that ΩX /B is without
torsion and thus the natural map 4.8 is an inclusion. Consequently, denoting by S the set of
singular points in the fibres of f we get the exact sequence

(4.9) 0 −→ ΩX /B −→ KX /B −→
⊕
p∈S

Cp −→ 0.

Where Cp is the skyscraper sheaf supported on p.
u) From point (s) we get that if X → B is a semi stable model of its generic fibre, we can

compute the Chern classes of ΩX /B and obtain:
– c1(ΩX /B) = KX /B;
– c2(ΩX /B) = s; where s is the cardinality of S.
In order to prove that, it suffices to remark that c1(

⊕
p∈S Cp) = 0 and c2(

⊕
p∈S Cp) = −s.

v) (Intersection bilinear form on fibres) Suppose that f : X → B is a smooth projective
model of its generic fibre. Let b ∈ B and Xb the fibre of f over it. Write the Cartier divisor
Xb as Xb =

∑
jmjFj where Fj are irreducible. Then the intersection product on the vector

space V := 〈Fj〉 is a semi defined negative form. An element v ∈ V is in V ⊥ if and only if
v is a multiple of the line generated by the entire fibre XF . In particular, for every Fj we
have (Fj;Fj) < 0. A proof of this, which is a consequence of the Hodge Index Theorem, on
surfaces, can be found for instance on [2] Corollary 2.6 page 19.

We will describe now a singular fibre of a semi stable model of a curve of genus one:

Theorem 4.7. Suppose that f : E → B is a semi stable model of its generic fibre EF which
is of genus one. Let Eb =

∑
j Fj be a fibre of f (observe that, since f is semi stable, the

multiplicity of each Fj is one). Then each Fj is a smooth rational curve and (Fj;Fj) = −2
and (KE ;Fj) = 0.

Proof. We begin by remarking that

(4.10) (Fj;Fj) = −
∑
i 6=j

(Fj;Fi)

Indeed, by (n) above, 0 = (Fj; Eb) = (Fj;
∑

i Fi) = (Fj;Fj) +
∑

i 6=j(Fj;Fi). Moreover , since

the fibre is connected, we must have that there exists j such that (Fi, Fj) > 0 which implies
that (Fi, FI) < 0.
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Observe that, the semi stability condition implies that, if Fi is a rational curve, then
(Fi, Fi) ≤ −2 (otherwise Fi would intersect the other components only in one point).

By the adjunction formula we have that (KE ; Eb) = (KE ; Eb) + (Eb; Eb) = 0. Suppose that
there is Fi such that (KE ;Fi) 6= 0 thus there would be another Fj such that (KE , Fj) < 0.
Again by adjunction formula we have then that (KE ;Fj) + (Fj;Fj) ≤ −2. But this number is
2g(Fj)− 2 which is at least −2. Thus (KE , Fj) = −1 and (Fj;Fj) = −1 which means that Fj
is a rational curve which intersects the other components of the fibre in only one point. This
is not possible for the semi stability condition. Thus we have that (KE , Fj) = 0 for any Fj.

But again, since, by adjunction, (KE ;Fj) + (Fj;Fj) is a even number which is at least −2,
and (Fj;Fj) < 0 we must have (Fj;Fj) = −2 and Fj is a rational curve. �

A key step of the proof of the proof of Lemma 4.5 is the following:

Theorem 4.8. Suppose that the curve EF admits a semi stable model f : E → B. Then
f∗(KE /B) is a line bundle, which we will denote by LE . Moreover, the natural map

(4.11) f ∗(LE ) −→ KE /B

is an isomorphism.

Proof. Let U ⊂ B the subset where the morphism f is smooth. Then, the restriction of
KE to f−1(U) is trivial on each fibre, consequently the restriction to it of the natural map
f ∗(LE )|U −→ KE /B|U is an isomorphism.

This implies that KE /B = f ∗(L)(
∑

j ajFj) where aj are positive integers and Fj are irre-
ducible components of the fibres of f .

By Theorem 4.7, we have that (KE /B;Fj) = 0 for every irreducible component Fjof a fibre
of f . This implies, by property (u) above, that the divisor

∑
j ajFj must be a multiple of the

entire fibre, which means that all the ai’ are the same. Thus
∑

j ajFj = f ∗(M) for a suitable
line bundle M on B.

But f∗(KE /B) = f∗(f
∗(LE (

∑
j ajFj)) = LE ⊗M (because f∗(OE ) = OB, since f is with

connected fibres and projective). The conclusion follows from the definition of LE . �

In order to conclude the proof of the Mordell –Weil Theorem we prove the following theorem:

Theorem 4.9. Let (EF ; 0) be an elliptic curve over F and suppose that it admits a semi
stable model f : E → B. Then, with the notations above,

(4.12) deg(LE ) =
s

12

Where, as in (m) above, s is the number of singular points of the fibres of f .

As a corollary we find

Corollary 4.10. Under the hypothesis above, if EF is non isotrivlal, we have deg(LE )) > 0.

The Corollary is a direct consequence of the Theorem and Corollary 4.3.
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Let’s show how Lemma 4.6 (and thus the Mordell Weil Theorem) is a consequence of
Theorem 4.9: Let P : B → E be a section. Then, by adjunction formula, we have

(4.13) 0 = (P,KE ,B) + (P ;P ) = (P ; f ∗(LE )) + (P ;P ) = deg(LE ) + (P ;P ).

The conclusion follows from Theorem 4.9 and the non isotriviality hypothesis.
in order to give the proof of Theorem 4.9 we need to recall some other properties of surfaces:
w) If X is a smooth projective surface, then the Noether formula holds:

(4.14) χ(OX) =
(KX ;KX) + c2(X)

12
.

x) (Relative Serre Duality) Suppose that f : X → B is a morphism from a smooth projective
surface to a smooth projective curve. As before we define the relative canonical line bundle
as Kf := KX ⊗ f ∗(K−1

B ). We have then, for every vector bundle E on X, a perfect pairing of
sheaves

(4.15) f∗(E)⊗R1f∗(E
∨ ⊗Kf ) −→ R1f∗(Kf ) ' OB.

y) (Leray Spectral Sequence) Suppose that f : X → B is a projective morphism from a
smooth surface to a smooth curve. Let E be a vector bundle over X, Then there is a spectral
sequence

(4.16) Ep,q
2 := Hp(B;Rqf∗(E))⇒ Hp+q(X,E).

In particular there is an exact sequence

(4.17) 0 −→ H1(B; f∗(E)) −→ H1(X;E) −→ H0(B,R1f∗(E)) −→ 0.

We can now begin the proof of Theorem 4.9

Proof. (Of Theorem 4.9) From the first exact sequence of differentials (r), the Chern classes
computations (t), the Noether formula (v) and the fact that KE = f ∗(LE ⊗KB) we obtain
that

(4.18) χ(E ) =
s

12
.

We have that χ(E ) = h0(E ,OE )− h1(E ,OE ) + h2(E ,OE ).
Let’s compute each term of χ(E ):
– h0(E ,OE ) = 1.
– From the Leray Spectral sequence (x) we get h1(E ,OE ) = h1(B,OB) + h0(B,R1f∗(OE )).
– From the relative Serre duality (w) applied to L|E , we have that R1f∗(OcE) = L−1

E .
Consequently h0(B,R1f∗(OcE)) = h0(B,L−1

E ).
– From Serre Duality on E , we have that h2(E ,OE ) = h0(E , KE ) = h0(B,LE ⊗KB). And,

by Serre duality on B we obtain h2(E ,OE ) = h1(B,L−1
E ).

Thus we find, by using Riemann–Roch Theorem on B,

(4.19) χ(E ) = 1− h1(B,OB)−0 (B,L−1
E ) + h1(B,L−1

E ) = χ(B)− χ(L−1
E ) = deg(LE ).

The conclusion follows. �
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5. Lecture Five: Rational points on curves of higher genus

In this lecture we will prove that, if XF is smooth, projective non isotrivial curve of genus
bigger or equal then two over F , then the set XF (F ) of its F – rational points is finite. The
analogous statement for curves over number fields is the former Mordell Conjecture, proved
by Faltings.

One can easily see that the isotriviality hypothesis is necessary: otherwise, if the curve is
defined over C then all the points with coordinates in C will be F–rational.

We need to recall some other properties of surfaces:
a) Parameter space of morphisms: Let X be a smooth projective surface equipped with

an ample line bundle L. Suppose that we have a fibration f : X → B (where B is, as in
the previous lectures, a fixed smooth projective curve). Let A be a positive constant, and
consider the following set

(5.1) Homf (B;X)≤A := {g : B → X such that f ◦ g = IdB and deg(g∗(L)) ≤ A}.
Then, there exists a quasi projective variety Homf (B;X)≤A such that:

– Homf (B;X)≤A = Homf (B;X)≤A(C). This means that every point in Homf (B;X)≤A
”is a morphism from B to X”.

– There exists a ”universal” morphism

F : B ×Homf (B;X)≤A −→ X

(b, f) −→ f(b)

Example 5.1. Suppose that X = P1 × P1 and B = P1 with the natural projection on the
first factor. We take as L the line bundle O(1, 1). An element of Homf (B;X)≤A is a map
f : P1 → P1 such that f ∗(O(1)) = O(d) with 0 < d ≤ A. Let d be the biggest integer less
or equal to A and consider the Veronese embedding P1 → Pd. For every hyperplane H of
codimension two of Pd, the restriction to the image of P1 of the projection prH : Pd 99K
P1 induced by H is an element of Homf (B;X)≤A and every element of it is of this form.
Consequently Homf (B;X)≤A is the Grassmannian of the hyperplanes of codimension two in

Pd.

For more details on the theory of parameter spaces of morphisms, cf. for instance [3]
Chapter 3.

5.1. Introduction to height theory over function fields. Suppose that XF is a smooth
projective variety defined over F and f : X → B is a projective model of it over B. Fix a
line bundle L over X . If p ∈ XF (F ) is a F–rational point and P : B →X is its associated
section, we define

(5.2) hL (p) := deg(P ∗(L ))

and call it the height of p with respect to L .
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Given a projective variety XF over F and a line bundle LF over it. We will say that function
hL (·) above is a height function associated to LF . Thus when we fix a height function, we
are implicitly fixing a model X of XF and a model L of the line bundle LF over it.

Of course, the value of a height function of a rational point depends on the choice of the
model and of the line bundle nevertheless some important functorial proprietes hold.

1) Addivity of heights: If L1 and L2 are line bundles as above, then, essentially by definition,
for every point p we have hL1⊗L2(p) = hL1(p) + hL2(p).

2) Suppose that L = O(D) with D an effective divisor on X . Suppose that p is a point
such that, the associated section is not contained in D . Then hL (p) ≥ 0.

Indeed, the restriction of D to P is a non everywhere vanishing section of P ∗(L ), thus, the
degree of this is non negative. Observe that it is zero if the image of B via P do not meet D .

3) Observe that, in the situation as in (2), in order to check that P (B) is not contained in
D , it suffices to check that the point p is not contained in the restriction DF of D to XF .

Property (3) above is typical of many properties of heights: even if heights are defined and
computed via models of the variety defined over F , many of their qualitative properties may
be studied and checked over the variety XF itself only. We would like to clarify this: Let’s
fix some terminology:

Definition 5.2. Let B be a curve and f : X → B be a morphism from a normal variety to
B. Let D be a reduced irreducible divisor on X :

(i) D is said to be horizontal, if f |D : D → B is dominant;
(ii) D is said to be vertical if f |D : D → B is a point.

Observe that every divisor D := niDi has a unique decomposition D = H + V with H
which is a sum of horizontal divisors and V is a sum of a vertical divisors. The divisor H
will be called the horizontal part of D and V will be called the vertical part of D . It is very
important to notice that the restriction to the generic fibre of D coincides with the restriction
to the generic fibre of H . Indeed, the image on B of the generic point of an irreducible
vertical divisor is a closed point.

Proposition 5.3. Suppose that L is a line bundle over X such that L = O(V ) where V
is a vertical divisor. Then there exists a constant C (which is is independent on the points)
such that, for every p ∈ XF (F ) we have

(5.3) |hL (p)| ≤ C.

Proof. Write V = V1 − V2 where Vi are vertical and effective. We can find effective divisors
Si on B such that f ∗(Si) ≥ Vi. Consequently, for every rational point p ∈ XF (F ), we have
that, by property (2) above, hf∗(O(Si))(p) ≥ hO(Vi)(p) ≥ 0 (observe that, since Vi is vertical,
P (B) is not contained in it). Thus

(5.4) − deg(S2) ≤ hL (p) ≤ deg(S1).

�

The proposition above tells us that, qualitatively speaking, the height function depends
only on the generic fibre of the involved line bundle. More specifically:
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Corollary 5.4. Suppose that f : X → B is as above. Let L1 and L2 be two line bundles
over X such that (L1)F ' (L2)F . Then there exists a constant C (depending on Li and X )
such that, for every rational point p ∈ XF (F ) we have

(5.5) |hL1(p)− hL2(p)| ≤ C.

Proof. It suffices to remark that, under the hypothesis of the corollary, we have that L1 ⊗
L −1

2 ' OX (V ) with V vertical divisor on X and then apply the proposition. �

We introduce now the notion of bounded set of a variety:

Definition 5.5. Let XF be a projective variety over a function field F . Let LF be a line
bundle defined over it. We will say that a subset S ⊂ XF (F ) is of bounded height with respect
to LF if there exist a constant C and models f : X → B of XF and L of LF over X for
which hL (p) ≤ C for every p ∈ S.

It is very important to observe that, for a given subset S ⊂ XF (F ), being of bounded
height with respect to LF is a property which depends only on S and LF and not on the
chosen models:

Proposition 5.6. Suppose that S ⊂ XF (F ) is a subset of bounded height with respect to the
line bundle LF . Then, for every model X and L of XF and LF over X respectively, we can
find a constant C (depending on the models) such that hL (p) ≤ C for every point in S.

Proof. Since S is of bounded height with respect to LF we can find models X1 and L1 of XF

and L for which hL1(p) ≤ C1 for a suitable constant C1.
We may suppose that X and X1 are dominated by a third model X2:

(5.6) X2

α

}}

α1

!!
X // X1

Each point p ∈ XF ) extends uniquely to sections P : B →X , P1 : B →X1 and P2 : B →X2.
The conclusion follows from the fact that α∗(L ) and α∗1(L1) are both models of LF over X2

and α ◦ P2 = P and α1 ◦ P2 = P1. �

A similar proof gives a functoriality property of heights:

Proposition 5.7. Suppose that f : XF → YF is a morphism between projective varieties
over F . Let LF be a line bundle over YF . For every height functions hL (·) and hf∗(LF )(·)
associated to LF and f ∗(LF ) respectively, we can find a constant (depending on the choice of
the height functions) such that, for every rational point p ∈ XF (F ) we have

(5.7) |hL (f(p))− hf∗(LF )(p)| ≤ C.

The proof, which is essentially the same of the proof of Proposition 5.6, is left as an exercise
to the reader.

One can also refine Proposition 5.7 and see that the property of being of bounded height
is actually independent of the chosen line bundle:
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Proposition 5.8. Let S be a subset of XF (F ) and L1 and L2 be two ample line bundles on
XF . Then S is of bounded height with respect to L1 if and only if it is of bounded height with
respect to L2.

In order to prove this Proposition, we prove first a Lemma which is interesting in its own:

Lemma 5.9. Suppose that LF is a line bundle which is generated by global sections on the
projective variety XF . Then for every projective model f : X → B of XF and every model
L of LF over it we can find a constant C (depending on the models), such that, for every
rational point p ∈ XF (F ) we have

(5.8) hL (p) ≥ C.

Proof. It suffices to prove that there exists a model f : X → B of XF and a model L of LF
over it for which the property of the Lemma holds.

Since LF is globally generated, the linear system H0(XF , LF ) give rise to a morphism
ϕL : XF → PN for a suitable N . The Zariski closure L of XF in B×PN is projective model
of XF with a line bundle L (the pull back of cOP(1)) which is a model of LF and is globally
generated. This means that we can find a basis s0, . . . , sr of H0(X ,L ) with the property
that for every subvariety Z of X , we can find at least one of the si’s which do not vanish on
it. Property (2) above allows to conclude. �

The proof ot 5.8 is now straightforward:

Proof. (of Proposition 5.8) Since Li are ample, we can find a positive constant n such that
L⊗n1 ⊗L−1

2 and L⊗n2 ⊗L−1
1 i are both generated by global sections. Thus, for every model X of

XF and models L1 and L2 of Li over it, we can find a constants C depending on the models,
such that, for every rational point p ∈ XF (F ) we have

(5.9) n · hL1(p)− hL2(p) ≥ C n · hL2(p)− hL1(p) ≥ C.

The conclusion easily follows. �

From Proposition 5.8 we can call a subset S ⊂ XF (F ) of bounded height with respect to
an ample line bundle just ”a bounded set of XF (F )”.

An important consequence of Lemma 5.9 is the following:

Corollary 5.10. Suppose that LF is an ample line bundle on the projective variety XF . Then
for every projective model f : X → B of XF and every model L of LF over it we can find a
constant C (depending on the models), such that, for every rational point p ∈ XF (F ) we have

(5.10) hL (p) ≥ C.

Proof. It suffices to remark that, since LF is ample, for N big enough, the line bundle LNF is
generated by global sections and hL N (·) = N · hL (·). The conclusion follows from Lemma
5.9. �

We can now state and prove the Theorem which relates the height theory to the finiteness
properties of rational points on curves:
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Theorem 5.11. Let XF be a smooth projective curve over a function field F . Let LF be a
an ample line bundle over XF . Suppose that there exists a subset S ⊂ XF (F ) and which is
bounded and infinite. Then XF is isotrivial.

A similar Theorem holds for XF of genus one but since we will not need it here, we will
restrict our proof to the case of higher genus curves. Observe also that if XF is of genus zero,
then, since XF ' P1 (lecture three), one can easily find infinitely many rational points on it
of bounded height.

Proof. Fix a regular projective model f : X → B of XF and an ample line bundle L over
it. By definition, we can find an infinite set of sections of f

(5.11) P : B −→X

such that deg(P ∗(L )) ≤ C, for a suitable constant C independent on P .
By property (a), we can consequently find a quasi projective variety Homf (B,X )≤C and

a dominant morphism

(5.12) F : B ×Homf (B,X )≤C −→X

Indeed, the restriction to the generic fibre of F contains the subset S which, being infinite, is
Zariski dense.

Since Homf (B,X )≤C is quasi projective, We can cut it with hyperplanes and obtain a
quasi projective (consequently affine or projective) curve Y (defined over C) with a dominant
morphism

(5.13) F |Y : B × Y −→X .

Let Y be the normalization of the projective compactification of Y . The restriction to the
generic fibre of the morphism FY extends to a morphism F : Y → XF . Since, by construction,
Y is isotrivial, the conclusion follows from Theorem 3.4. �

5.2. Mordell conjecture over function fields. We can now start the proof of the Mordell
conjecture over F . We begin by state it:

Theorem 5.12. Let XF be a smooth projective curve of genus at least two defined over the
function field F . Suppose that XF is not isotrivial. Then the set XF (S) is a bounded set. In
particular it is finite.

In order to prove the Theorem we can make some reductions and recall some further
properties of vector bundles on surfaces:

– We first remark that the finiteness property follows from the boundedness property, the
non isotriviality and Theorem 5.11.

– We can make a base extension and we can suppose that XF has a regular semi stable
model.

We recall now some properties of vector bundles over curves:
a) Let E be a vector bundle of rank r over a variety X. We can associate to it a projective

bundle p : P(E)→ X which is a projective morphism whose fibers are Pr−1.
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Over P(E) we have a tautological line bundle OP (1) with a surjection

(5.14) p∗(E) −→ OP (1).

b) Let T be a variety. To give a morphism g : T → P(E) is equivalent to give a couple
(h;L) where h : T → X is a morphism, L is a line bundle on T equipped with a surjection of
sheaves hast(E)→ L. Moreover, in this case, g∗(OP(1)) = L.

c) A vector bundle E on X is said to be ample if the line bundle OP (1) is ample on P(E).
d) If E is a rank two vector bundle over a curve X, the surface P(E) is called ruled surface

with ruling X. In this case (OP (1); OP (1)) = deg(
∧2(E)).

e) An exact sequence of vector bundles (over an arbitrary variety)

(5.15) E : 0 // A
i // E

j // B // 0

is said to be split, if we can find a morphism α : B → E such that j ◦ α : B → B is the
identity. This is equivalent to say that the morphism

(5.16) A⊕B
(i,j)

// E

is an isomorphism.
f) If we tensorise the exact sequence 5.18 by B∨ (the dual of B) and we take the associated

cohomology sequence we obtain

(5.17) H0(X;End(B)) // H1(X,A⊗B∨)

IdB // δE .

The class δE ∈ H1(X,A⊗B∨) vanishes if and only if the exact sequence splits.

Proposition 5.13. Suppose we have an exact sequence as in 5.18 over a smooth projective
curve X. Let f : Y → X be a possibly ramified covering of curves. The exact sequence 5.18
rises to an exact sequence

(5.18) f ∗(E ) : 0 // f ∗(A)
i // f ∗(E)

j // f ∗(B) // 0

Then f ∗(E ) splits if and only if E splits.

Proof. If E splits, then it is evident that f ∗(E ) splits too.
Suppose that f ∗(E ) splits. This means that the class δf∗(E ) ∈ H1(Y ; f ∗(A⊗B∨)) vanishes.
The natural inclusion OX → f∗(cOY ) has a natural spllitting given by the trace. Thus

for every vector bundle G on X the natural map f ∗ : H1(X;G) → H1(X; f∗(f
∗(G))) =

H1(Y ; f ∗(G)) is an inclusion (observe that the last equality is due to the fact that the mor-
phism f is finite).

A simple diagram chasing shows that the image, via f ∗, of δE in H1(Y ; f ∗(A⊗B∨)) is δf∗(cE).
Since this last class vanishes by hypothesis, the injectivity of f ∗ implies the conclusion. �
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Theorem 5.14. Let X be a smooth projective curve and E be a vector bundle of rank two
over it. Suppose that we have an fits an exact sequence

(5.19) E : 0 // OY
α // E

γ // L // 0

with L a line bundle of positive degree. Then E is ample if and only if the exact sequence is
non split.

Proof. We first remark that
∧2(E) = L thus (OP (1); OP (!)) = deg(L) > 0 by hypothesis.

If E is split, then OP (1) cannot be ample. Indeed, E ' OX⊕L; consequently, the surjection
E → OX given by the first projection give rise to an embedding s : X → P(E) such that
s∗(OP (1)) = OX . In particular (OP (1); s(X)) = 0. So by Nakai- Moishezon criterion, OP (1)
is not ample in this case.

Suppose now that E is non split. Let Y be a curve contained in P(E). Let ι : Y → X
the projection. By functoriality, we have a surjection ι∗(E)→ OO(1)|Y . If ι is not surjective,
then Y is a fibre of the projective bundle and deg(ι(OP (1)|Y )) = 1 > 0. Otherwise ι : Y → X
is a finite covering and we have a diagram

(5.20) 0 // OY
α // ι∗(E) //

β
��

ι∗(L) // 0

M

Where M is a line bundle over Y . Moreover (OP (1);Y ) = deg(M).
The degree of M cannot be negative: indeed, either the morphism β ◦ α : OY →M is non

zero, and consequently M is effective, or β ◦ α is the zero morphism, and, in this case, we
have an injection of ι∗(L) in M , thus deg(M) ≥ deg(ι∗(L)) > 0.

Suppose that deg(M) = 0. In this case, the morphism of line bundles β ◦α cannot be zero.
Thus it is an isomorphism of line bundles, which implies that the morphism

(5.21) (β; γ) : E −→ OY ⊕ ι∗(L)

is a splitting of ι∗(E ). But, by Proposition 5.13, this is not possible. �

We fix a semi regular projective stable model f : X → B of our curve XF .
The first exact sequence of differentials give rise to an exact sequence

(5.22) EΩ : 0 −→ f ∗(ΩB) −→ ΩX −→ ΩX /B −→ 0

(cf. (r) of the previous Lecture). We can restrict the exact sequence to the generic fibre
and we get an exact sequence over XF :

(5.23) (EΩ)F : 0 −→ OXF
−→ E −→ ΩXF

−→ 0.

The exact sequence above is a fundamental tool in the study of diophantine properties
of varieties (curves in these lectures) over function fields. We would like to remark that. a
similar exact sequence is not available (at the moment) for varieties defined over a number
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field. This is one of the reasons why the diophantine geometry over number fields is much
more involved than diophantine geometry over function fields.

Each rational point p ∈ XF (F ) gives rise to a section P : B → X . The morphism of
differentials give rise to a surjection

(5.24) dP : P ∗(ΩX ) −→ ΩB

thus to a ”derivation map”

(5.25) P(ΩX )

��
B

P ′
;;

P // X

And moreover (P ′)∗(OP (1)) = ΩB and consequently

(5.26) deg((P ′)∗(OP (1))) = 2g(B)− 2.

In order to conclude the proof of Theorem 5.12 and consequently of the Mordell conjecture
over function fields, we should analyse the case when the exact sequence (EΩ)F is split or not.

5.3. The exact sequence (EΩ)F is non split. In this case, by Theorem 5.14, the line bundle
OP (1) is ample on p : P(E )→ XF .

Let LF be an ample line bundle on XF . For N sufficiently big, the line bundle OP (N) ⊗
p∗(L−1

F ) is ample on P(E ).
The projective bundle pX : P(ΩX )→ X is a model of p : P(E )→ XF . We may suppose

that LF extends to an ample line bundle over X .
By Corollary 5.10 we can find a constant C such that, for every rational point q ∈ P(E )

we have

(5.27) hO(N)⊗p∗(L−1)(q) ≥ C

Consequently from the functioriality of heights, Proposition 5.7 and formula 5.26, we obtain
that, for every rational point p ∈ XF (F ),

(5.28) hL (p) ≤ N · (2g(B)− 2) + C.

This, by Theorem 5.7 ends the proof of Theorem 5.12 in this case, because FF is supposed to
be non isotrivial.

5.4. The exact sequence (EΩ)F is split. In this case we will prove the following:

Theorem 5.15. The exact sequence (EΩ)F is split if and only if the curve XF is isotrivial.

In order to prove Theorem 5.15 above, we need to recall some facts about foliations on
surfaces.

g) Let X be a smooth surface (not necessarily projective). A regular foliation F on X is
a sub line bundle NF of the cotangent bundle ΩX . Observe that the quotient KF := ΩX ?N
is also locally free of rank one. Thus we have an exact sequence
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(5.29) 0 // NF
// ΩX

// KF
// 0

h) let M be a Riemann surface (not necessarily compact nor algebraic). A morphism
ι : M →X is said to be a leaf of the foliation F if:

h.1) The morphism ι is an embedding;
h.2) the natural map ι∗(NF )→ ι∗(ΩX )→ ΩM , is the zero map.
In particular ΩM = ι∗(KF ).
i) if z ∈X is a point, then the is an unique leaf of the foliation passing through it.
j) Denote by ∆ the one dimensional unit disk. If z ∈ X , then there is an analytic neigh-

borhood z ∈ U ⊂X isomorphic to ∆×∆ with coordinates (z1, z2) and the restriction of the
exact sequence 5.29 to U is the exact sequence

(5.30) 0 −→ OUdz1 −→ OUdz1 ⊕ OUdz2 −→ OUdz2 −→ 0.

Consequently the leaves of the foliation passing through U are given by the equations z1 = c
(c ∈ ∆).

Actually, near a point z ∈ X , a foliation is just a differential form ω = f1(z1, z2)dz1 +
f2(z1, z2)dz2 with f1(z1, z2) or f2(z1, z2 (or both) non vanishing at z. Thus the foliation
defines a local differential equation on X . The local solutions of the differential equations
give the decomposition explained in (j).

We can now give the proof of Theorem 5.15:

Proof. (Of Theorem 5.15) Let U be the open set of B where the morphism f |U : X |U → U is
smooth. The exact sequence EΩ)F is the restriction to the generic fibre ot the exact sequence

(5.31) (EΩ)U : 0 −→ f ∗(ΩU) −→ ΩU −→ ΩX |U/U −→ 0.

Since f |U is a smooth morphism of relative dimension one, the sheaf ΩX |U/U is a line bundle
on X |U .

The exact sequence 5.31 give rise to a class δ(EΩ)U ∈ H1(X |U ; (ΩX |U/U))∨) (property (f)).
Moreover the natural inclusion ι : XF → X |U gives rise to map ι∗ : H1(X |U ; (Ω∨X |U/U)) →
H1(XF ; (ΩXF

)∨) (observe that ι∗(ΩX |U/U) = ΩXF ). This map is injective. Indeed, f∗(Ω
∨
X |U/U) =

0, thus by the Leray spectral sequence (y) of previous lecture, we have an inclusion

H1(X |U ; (Ω∨X |U/U)) ↪→ H0(U,R1f∗(Ω
∨
X |U/U))

and R1f∗(Ω
∨
X |U/U) is without torsion, thus locally free, consequently it injects in its local fibre.

By diagram chasing we see that ι∗(δ(EΩ)U ) = δ(EΩ)F . Thus, by property (f), the exact
sequence (EΩ)F splits if and only if the exact sequence (EΩ)U splits.

Consequently, from the hypothesis, the exact sequence (EΩ)U splits.
So we have a foliation

(5.32) F : 0 −→ ΩX |U/U −→ ΩU −→ f ∗(ΩU) −→ 0.

Fix a point b ∈ U and the fibre Xb over it. For every point z ∈ Xb, let Vz ' ∆ × ∆ the
neighbourhood of z in XU which trivializes the foliation F as in (j) above. If the coordinates
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of z in V are (0, 0), a local inspection shows that the equation of Xb ∩ Vz is given by z2 = 0
(and the leaves are given by z1 = c). Moreover the function fVz : Vz → U is given by
(z1, z2)→ z2. In particular, for every c ∈ ∆, the restriction of f to {c}×∆ is an isomorphism
with its image.

Since Xb is compact, we can cover it with finitely many open sets of the form Vz with
z ∈Xb. Call Wb the open set union of these Wz’s.

We can choose an ε and a disk ∆ε of radius ε centred in b such that Vb := f−1(∆ε) is
contained in Wb. The open set Vb is a ”tubular neighbourhood of the curve Xb.

Let b1 ∈ ∆ε and denote by Xb1 the fibre of f over b1. By construction, for every z ∈ Xb

the leaf of F passing through z meets Xb1 in a unique point α(z) and moreover the map
α : Xb →Xb1 sending z in α(z) is analytic and surjective.

Consequently, for every b1 ∈ ∆ε the curve Xb1 is isomorphic to Xb.
We can now conclude by using property (a) of Lecture 3:
Consider the scheme IsomB(X ;B ×Xb)→ B. It is finite over B and dominant. Indeed,

the image contains the open set ∆ε which is dense for the Zariski topology.
Thus, there exists an extension F1 of the field F such that IsomF (XF ; X1)(F1) is non

empty, which exactly means that XF is isotrivial, �

6. Conclusions

6.1. Back to arithmetic. The main results of these notes hold also for curves defined over
number fields. Nevertheless for curves of genus zero one have to be careful:

– As remarked before, one can find conics (thus curves of genus zero) defined over Q
which do not have rational points. Thus these curves are curves of genus zero which are
not isomorphic ( over Q) to the projective line. The following Theorem is the analogue of
Theorem 2.4 over a number field:

Theorem 6.1. Let X be a conic defined over a number field K. Suppose that for every place
p of K (finite or infinite), we have that X(Kp) 6= ∅ then X(K) 6= ∅.

As explained before, this Theorem is optimal. Strictly speaking, if one would like a sim-
ilar analogue over function fields, it suffices to remark that, each place of a function field
F corresponds to a closed point of the curve B and the restriction of a conic to it is not
empty (because of Hensel Lemma and the fact that every curve has a point over C). Thus
the hypothesis of the analogue of Theorem 6.1 are always verified over a function field and
consequently we find that every conic has a point.

– The analogue of Theorem 4.1 holds over a number field:

Theorem 6.2. Let (E;O) be a smooth projective curve of genus one equipped with a rational
point over a number field K. Then the set E has a natural structure of commutative group
variety (with trivial element 0) and the group E(K) is finitely generated.

This theorem is usually called Mordell–Weil Theorem and remark that there is no ”non
isotriviality” hyposesis involved. Actually, at the moment, we do not know what an analogue
of isotrivial varieties should be over a number field.
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– A Theorem analogue to Theorem 5.12 holds over number fields:

Theorem 6.3. Let X be a smooth projective curve over a number field K. Then the set
X(K) is finite.

The proof of this Theorem is much more involved (G. Faltings obtained the Fields Medal
for the proof of it). Observe that again there is no ”non isotriviality” hypothesis. At the
moment, we are not able to bound ”geometrically” the height of K– rational points of X.
One should remark that in the function field case, one can geometrically bound the height of
rational points of a curve.

6.2. Research directions. There are two main streams of research in the theme of rational
points of varieties over function fields (and similarly over number fields):

– One open problem, which is motivated by some deep conjectures in higher dimension is
the so called Uniform Bound Conjecture:

Conjecture 6.4. Let F be a function field in one variable (in characteristic zero). Then
there exists a constant N = N(g, F ) depending only on F and g such that, for every non
isotrivial smooth projective curve FX of genus at least two defined over F , one has

Card(XF (F )) ≤ N.

The best known result in this direction is obtained by Caporaso [4].
– Another research direction is the study of rational points of higher dimensional varieties.

In this case one expects that the classification of the projective varieties can give informations
on the structure of rational points. The näive version of conjectures may easily lead to
contradictions, cf. for instance [6], but there are deep conjectures which give some interesting
insights on the possible future researches. We refer to [1] for more details.
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